WO2017076372A1 - 一种srs传输方法及装置 - Google Patents

一种srs传输方法及装置 Download PDF

Info

Publication number
WO2017076372A1
WO2017076372A1 PCT/CN2017/070366 CN2017070366W WO2017076372A1 WO 2017076372 A1 WO2017076372 A1 WO 2017076372A1 CN 2017070366 W CN2017070366 W CN 2017070366W WO 2017076372 A1 WO2017076372 A1 WO 2017076372A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
subframe
narrowband
uplink
frequency domain
Prior art date
Application number
PCT/CN2017/070366
Other languages
English (en)
French (fr)
Inventor
高雪娟
邢艳萍
潘学明
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP24155212.4A priority Critical patent/EP4340288A3/en
Priority to EP17721313.9A priority patent/EP3373499A4/en
Priority to US15/774,270 priority patent/US11316632B2/en
Publication of WO2017076372A1 publication Critical patent/WO2017076372A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to an SRS transmission method and apparatus.
  • MTC Machine Type Communication
  • LTE Long Term Evolution
  • An MTC device may have some of the characteristics of M2M (Machine to Machine) communication characteristics, such as low mobility, small amount of transmitted data, insensitivity to communication delay, and extremely low requirements. Features such as power consumption.
  • M2M Machine to Machine
  • a new type of terminal is defined, and both uplink and downlink support only 1.4 MHz radio frequency bandwidth.
  • each narrowband includes a limited number of PRBs (Physical Resource Blocks). Specifically, each narrow band contains 6 PRBs.
  • PRBs Physical Resource Blocks
  • each narrow band contains 6 PRBs.
  • the uplink and downlink transmissions of the MTC terminal can only be performed on one of the narrowband. When the terminal needs to jump from one narrowband to another, it needs a certain retuning time for the terminal's radio and other devices to adjust from one frequency band to another.
  • the SRS (Sounding Reference Symbol) is transmitted on the last SC-FDMA symbol in the pre-configured SRS subframe of the high layer signaling.
  • SRS Sounding Reference Symbol
  • the transmission bandwidth of the SRS is pre-configured by the high layer signaling, which is an integer multiple of 4 PRBs.
  • SRS supports frequency hopping transmission within the system SRS bandwidth, and whether frequency hopping is supported by high layer signaling configuration. When SRS frequency hopping transmission is enabled, the SRS selects different frequency domain locations for transmission in different SRS subframes according to a fixed frequency hopping format.
  • the SRS may be transmitted in the same subframe as the PUCCH/PUSCH, where the last symbol of the PUCCH (Physical Uplink Control Channel) and the PUSCH (Physical Uplink Shared Channel) are vacant and not used for transmitting data. SRS transmission.
  • the transmission frequency domain position of the SRS and the transmission narrowband of the PUCCH/PUSCH can be independently determined, and when the SRS supports frequency hopping, the transmission frequency domain position of the SRS in different SRS subframes The same is true. Therefore, the transmission frequency domain location of the SRS and the narrowband of the PUCCH/PUSCH transmission adjacent thereto may not overlap in the frequency domain.
  • the low complexity MTC has limited transmission and reception bandwidth, and cannot transmit and receive signals at different narrowband positions at the same time. Retuning time is required between different narrowbands to adjust the position of different frequency domains of the RF device. Therefore, the SRS transmission in the prior art is adopted. The rules no longer apply to the low complexity MTC system.
  • an embodiment of the present application provides an SRS transmission method and apparatus.
  • whether the transmission frequency domain resource according to the SRS overlaps with a narrowband used for transmitting data, and determining whether to transmit the SRS includes:
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used to transmit the uplink data, it is determined that the SRS is not transmitted in the SRS subframe;
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used for transmitting the uplink data, and the uplink data transmission exists in the SRS subframe, it is determined that the SRS is not transmitted in the SRS subframe; or ,
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used to transmit the uplink data, it is determined that the SRS is not transmitted in the SRS subframe;
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used for transmitting the uplink data, it is determined that the transmission frequency domain resource of the SRS does not overlap with the narrowband used for transmitting the uplink data.
  • SRS is not transmitted on the frequency domain resources; or,
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband for transmitting the uplink data, and the uplink data transmission exists in the SRS subframe, determining that the SRS is not transmitted in the SRS subframe; or,
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used for transmitting the uplink data, and the uplink data transmission exists in the SRS subframe, it is determined that the transmission frequency domain resource of the SRS is not The SRS is not transmitted on the frequency domain resource that overlaps with the narrowband used to transmit the uplink data.
  • whether the transmission frequency domain resource according to the SRS overlaps with a narrowband used for transmitting data, and determining whether to transmit the SRS includes:
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used to transmit the uplink data in the next adjacent uplink subframe of the SRS subframe, it is determined that the SRS is not transmitted in the SRS subframe. ;or,
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used for transmitting the uplink data in the next adjacent uplink subframe of the SRS subframe, and the next adjacent uplink of the SRS subframe There are uplink numbers in the subframe According to the transmission, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used to transmit the uplink data in the next adjacent uplink subframe of the SRS subframe, it is determined that the transmission is not transmitted in the SRS subframe.
  • the transmission frequency domain resource in the SRS is determined.
  • the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband used to transmit the uplink data; or,
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the uplink data in the subsequent adjacent uplink subframe of the SRS subframe, and the next neighbor of the SRS subframe If there is an uplink data transmission in the uplink subframe, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the uplink data in the subsequent adjacent uplink subframe of the SRS subframe, and the next neighbor of the SRS subframe If there is an uplink data transmission in the uplink subframe, it is determined that the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband used to transmit the uplink data in the transmission frequency domain resource of the SRS.
  • the uplink channel transmitted in the next adjacent uplink subframe of the SRS subframe is the physical random access channel PRACH, whether the transmission frequency domain resource according to the SRS overlaps with the narrowband used for transmitting data, and determining Whether to transmit SRS, including:
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used to transmit the PRACH in the next adjacent uplink subframe of the SRS subframe, and the time corresponding to the SRS subframe is advanced If the TA value is less than the adjusted Retuning time, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the PRACH in the subsequent adjacent uplink subframe of the SRS subframe, and the TA corresponding to the SRS subframe If the value is less than the adjusted Retuning time, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the PRACH in the subsequent adjacent uplink subframe of the SRS subframe, and the TA corresponding to the SRS subframe If the value is less than the adjusted Retuning time, it is determined that the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband used to transmit the uplink data in the transmission frequency domain resource of the SRS.
  • determining whether to transmit the SRS according to whether the adjacent narrowbands for data transmission are the same including:
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe Narrow band and the SRS If there is an uplink data transmission in a narrow band for transmitting uplink data in a subsequent adjacent uplink subframe of the subframe, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe And determining, in the SRS sub-segment, that there is an uplink data transmission on a narrowband that does not overlap with a transmission frequency domain resource of the SRS in a narrowband and a subsequent one of the neighboring uplink subframes of the SRS subframe.
  • SRS is not transmitted in the frame; or,
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe
  • the narrowband and the narrowband of the downlink adjacent data in the subsequent adjacent uplink subframe of the SRS subframe where there is an uplink data transmission on a narrowband partially overlapping the transmission frequency domain resource of the SRS, and determining the SRS in the SRS SRS is not transmitted in a subframe;
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe
  • the narrowband and the narrowband of the downlink adjacent data in the subsequent adjacent uplink subframe of the SRS subframe where there is an uplink data transmission on a narrowband partially overlapping the transmission frequency domain resource of the SRS, and determining the SRS in the SRS
  • the SRS is not transmitted on the frequency domain resource in the transmission frequency domain resource that does not overlap with the narrow band in which the uplink data transmission exists.
  • whether the transmission frequency domain resource according to the SRS overlaps with a narrowband used for transmitting data, and determining whether to transmit the SRS includes:
  • the transmission frequency domain resource of the SRS in the uplink pilot time slot UpPTS does not overlap with the narrowband used to transmit the downlink data in the downlink pilot time slot DwPTS, it is determined in the SRS is not transmitted in the UpPTS of the special subframe; or,
  • the transmission frequency domain resource of the SRS in the UpPTS partially overlaps with the narrowband used to transmit the downlink data in the DwPTS, it is determined that the DwPTS is not in the transmission frequency domain resource of the SRS.
  • the SRS is not transmitted on the frequency domain resources in which the narrowband with the downlink data is transmitted; or
  • the transmission frequency domain resource of the SRS in the UpPTS partially overlaps with the narrowband for transmitting downlink data in the DwPTS, and the downlink data transmission exists in the DwPTS, determining the transmission in the SRS The SRS is not transmitted on the frequency domain resource in the frequency domain resource that does not overlap with the narrowband used to transmit the downlink data in the DwPTS.
  • determining whether to transmit the SRS according to whether the adjacent narrowbands for data transmission are the same including:
  • the narrowband for transmitting downlink data in the DwPTS of the special subframe of the TDD system is different from the narrowband for transmitting uplink data in the subsequent adjacent uplink subframe of the special subframe, and the DwPTS of the special subframe is And if there is data transmission in the next adjacent uplink subframe of the special subframe, it is determined that the SRS is not transmitted in the UpPTS of the special subframe.
  • the uplink data includes data transmitted by one or more of the following uplink channels: PUCCH, PUSCH, PRACH, PBCH, PMCH.
  • the downlink data includes data transmitted by one or more of the following downlink channels: a PDSCH, an M-PDCCH.
  • the SRS subframe is a subframe that is specific to the narrowband terminal, and the SRS subframe includes an UpPTS or a normal uplink subframe.
  • a determining unit configured to determine whether to transmit the SRS according to whether the transmission frequency domain resource of the SRS overlaps with a narrowband for transmitting data, or according to whether the adjacent narrowband for data transmission is the same.
  • the determining unit is specifically configured to:
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used to transmit the uplink data, it is determined that the SRS is not transmitted in the SRS subframe;
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used for transmitting the uplink data, and the uplink data transmission exists in the SRS subframe, it is determined that the SRS is not transmitted in the SRS subframe; or ,
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used to transmit the uplink data, it is determined that the SRS is not transmitted in the SRS subframe;
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used to transmit the uplink data, Determining that the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband for transmitting the uplink data in the transmission frequency domain resource of the SRS; or
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband for transmitting the uplink data, and the uplink data transmission exists in the SRS subframe, determining that the SRS is not transmitted in the SRS subframe; or,
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used for transmitting the uplink data, and the uplink data transmission exists in the SRS subframe, it is determined that the transmission frequency domain resource of the SRS is not The SRS is not transmitted on the frequency domain resource that overlaps with the narrowband used to transmit the uplink data.
  • the determining unit is specifically configured to:
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used to transmit the uplink data in the next adjacent uplink subframe of the SRS subframe, it is determined that the SRS is not transmitted in the SRS subframe. ;or,
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used for transmitting the uplink data in the next adjacent uplink subframe of the SRS subframe, and the next adjacent uplink of the SRS subframe If there is an uplink data transmission in the subframe, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used to transmit the uplink data in the next adjacent uplink subframe of the SRS subframe, it is determined that the transmission is not transmitted in the SRS subframe.
  • the transmission frequency domain resource in the SRS is determined.
  • the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband used to transmit the uplink data; or,
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the uplink data in the subsequent adjacent uplink subframe of the SRS subframe, and the next neighbor of the SRS subframe If there is an uplink data transmission in the uplink subframe, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the uplink data in the subsequent adjacent uplink subframe of the SRS subframe, and the next neighbor of the SRS subframe If there is an uplink data transmission in the uplink subframe, it is determined that the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband used to transmit the uplink data in the transmission frequency domain resource of the SRS.
  • the determining unit is specifically configured to:
  • the uplink channel transmitted in the next adjacent uplink subframe of the SRS subframe is a physical random access channel PRACH, then:
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used to transmit the PRACH in the next adjacent uplink subframe of the SRS subframe, and the time corresponding to the SRS subframe is advanced If the TA value is less than the adjusted Retuning time, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the PRACH in the subsequent adjacent uplink subframe of the SRS subframe, and the TA corresponding to the SRS subframe If the value is less than the adjusted Retuning time, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the PRACH in the subsequent adjacent uplink subframe of the SRS subframe, and the TA corresponding to the SRS subframe If the value is less than the adjusted Retuning time, it is determined that the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband used to transmit the uplink data in the transmission frequency domain resource of the SRS.
  • the determining unit is specifically configured to:
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe If there is an uplink data transmission in a narrowband and a narrowband for transmitting uplink data in a subsequent adjacent uplink subframe of the SRS subframe, determining that the SRS is not transmitted in the SRS subframe; or
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe And determining, in the SRS sub-segment, that there is an uplink data transmission on a narrowband that does not overlap with a transmission frequency domain resource of the SRS in a narrowband and a subsequent one of the neighboring uplink subframes of the SRS subframe.
  • SRS is not transmitted in the frame; or,
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe
  • the narrowband and the narrowband of the downlink adjacent data in the subsequent adjacent uplink subframe of the SRS subframe where there is an uplink data transmission on a narrowband partially overlapping the transmission frequency domain resource of the SRS, and determining the SRS in the SRS SRS is not transmitted in a subframe;
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe
  • the narrowband and the narrowband of the downlink adjacent data in the subsequent adjacent uplink subframe of the SRS subframe where there is an uplink data transmission on a narrowband partially overlapping the transmission frequency domain resource of the SRS, and determining the SRS in the SRS
  • the SRS is not transmitted on the frequency domain resource in the transmission frequency domain resource that does not overlap with the narrow band in which the uplink data transmission exists.
  • the determining unit is specifically configured to:
  • the transmission frequency domain resource of the SRS in the uplink pilot time slot UpPTS does not overlap with the narrowband used to transmit the downlink data in the downlink pilot time slot DwPTS, it is determined in the SRS is not transmitted in the UpPTS of the special subframe; or,
  • the transmission frequency domain resource of the SRS in the UpPTS partially overlaps with the narrowband used to transmit the downlink data in the DwPTS, it is determined that the DwPTS is not in the transmission frequency domain resource of the SRS.
  • the SRS is not transmitted on the frequency domain resources in which the narrowband with the downlink data is transmitted; or
  • the transmission frequency domain resource of the SRS in the UpPTS partially overlaps with the narrowband for transmitting downlink data in the DwPTS, and the downlink data transmission exists in the DwPTS, determining the transmission in the SRS The SRS is not transmitted on the frequency domain resource in the frequency domain resource that does not overlap with the narrowband used to transmit the downlink data in the DwPTS.
  • the determining unit is specifically configured to:
  • the narrowband for transmitting downlink data in the DwPTS of the special subframe of the TDD system is different from the narrowband for transmitting uplink data in the subsequent adjacent uplink subframe of the special subframe, and the DwPTS of the special subframe is And if there is data transmission in the next adjacent uplink subframe of the special subframe, it is determined that the SRS is not transmitted in the UpPTS of the special subframe.
  • the uplink data includes data transmitted by one or more of the following uplink channels: PUCCH, PUSCH, and PRACH.
  • the downlink data includes data transmitted by one or more of the following downlink channels: a PDSCH, an M-PDCCH, a PBCH, and a PMCH.
  • the SRS subframe is a subframe that is specific to the narrowband terminal, and the SRS subframe includes an UpPTS or a normal uplink subframe.
  • the embodiment of the present application further provides a sounding reference signal SRS transmission device, including: a processor, a memory, and a transceiver;
  • a processor that reads a program in memory performs the following process:
  • a transceiver for receiving and transmitting data under the control of a processor.
  • the processor is specifically configured to:
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used to transmit the uplink data, it is determined that the SRS is not transmitted in the SRS subframe;
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used for transmitting the uplink data, and the uplink data transmission exists in the SRS subframe, it is determined that the SRS is not transmitted in the SRS subframe; or ,
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used to transmit the uplink data, it is determined that the SRS is not transmitted in the SRS subframe;
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used for transmitting the uplink data, it is determined that the transmission frequency domain resource of the SRS does not overlap with the narrowband used for transmitting the uplink data.
  • SRS is not transmitted on the frequency domain resources; or,
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband for transmitting the uplink data, and the uplink data transmission exists in the SRS subframe, determining that the SRS is not transmitted in the SRS subframe; or,
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used for transmitting the uplink data, and the uplink data transmission exists in the SRS subframe, it is determined that the transmission frequency domain resource of the SRS is not The SRS is not transmitted on the frequency domain resource that overlaps with the narrowband used to transmit the uplink data.
  • the processor is specifically configured to:
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used to transmit the uplink data in the next adjacent uplink subframe of the SRS subframe, it is determined that the SRS is not transmitted in the SRS subframe. ;or,
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used for transmitting the uplink data in the next adjacent uplink subframe of the SRS subframe, and the next adjacent uplink of the SRS subframe If there is an uplink data transmission in the subframe, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used to transmit the uplink data in the next adjacent uplink subframe of the SRS subframe, it is determined that the transmission is not transmitted in the SRS subframe.
  • the transmission frequency domain resource in the SRS is determined.
  • the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband used to transmit the uplink data; or,
  • the transmission frequency domain resource of the SRS is used in the next adjacent uplink subframe of the SRS subframe If the narrowband of the uplink data is partially overlapped, and the uplink data transmission exists in the next adjacent uplink subframe of the SRS subframe, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the uplink data in the subsequent adjacent uplink subframe of the SRS subframe, and the next neighbor of the SRS subframe If there is an uplink data transmission in the uplink subframe, it is determined that the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband used to transmit the uplink data in the transmission frequency domain resource of the SRS.
  • the processor is specifically configured to:
  • the uplink channel transmitted in the next adjacent uplink subframe of the SRS subframe is a physical random access channel PRACH, then:
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used to transmit the PRACH in the next adjacent uplink subframe of the SRS subframe, and the time corresponding to the SRS subframe is advanced If the TA value is less than the adjusted Retuning time, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the PRACH in the subsequent adjacent uplink subframe of the SRS subframe, and the TA corresponding to the SRS subframe If the value is less than the adjusted Retuning time, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the PRACH in the subsequent adjacent uplink subframe of the SRS subframe, and the TA corresponding to the SRS subframe If the value is less than the adjusted Retuning time, it is determined that the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband used to transmit the uplink data in the transmission frequency domain resource of the SRS.
  • the processor is specifically configured to:
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe If there is an uplink data transmission in a narrowband and a narrowband for transmitting uplink data in a subsequent adjacent uplink subframe of the SRS subframe, determining that the SRS is not transmitted in the SRS subframe; or
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe And determining, in the SRS sub-segment, that there is an uplink data transmission on a narrowband that does not overlap with a transmission frequency domain resource of the SRS in a narrowband and a subsequent one of the neighboring uplink subframes of the SRS subframe.
  • SRS is not transmitted in the frame; or,
  • the narrowband for transmitting uplink data in the SRS subframe is used in the next adjacent uplink subframe of the SRS subframe Differentiating the narrowband of the uplink data, and narrowband in the SRS subframe for transmitting uplink data and a narrowband for transmitting uplink data in the subsequent adjacent uplink subframe of the SRS subframe and the SRS If there is uplink data transmission on the partially overlapping narrowband of the transmission frequency domain resource, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe
  • the narrowband and the narrowband of the downlink adjacent data in the subsequent adjacent uplink subframe of the SRS subframe where there is an uplink data transmission on a narrowband partially overlapping the transmission frequency domain resource of the SRS, and determining the SRS in the SRS
  • the SRS is not transmitted on the frequency domain resource in the transmission frequency domain resource that does not overlap with the narrow band in which the uplink data transmission exists.
  • the processor is specifically configured to:
  • the transmission frequency domain resource of the SRS in the uplink pilot time slot UpPTS does not overlap with the narrowband used to transmit the downlink data in the downlink pilot time slot DwPTS, it is determined in the SRS is not transmitted in the UpPTS of the special subframe; or,
  • the transmission frequency domain resource of the SRS in the UpPTS partially overlaps with the narrowband used to transmit the downlink data in the DwPTS, it is determined that the DwPTS is not in the transmission frequency domain resource of the SRS.
  • the SRS is not transmitted on the frequency domain resources in which the narrowband with the downlink data is transmitted; or
  • the transmission frequency domain resource of the SRS in the UpPTS partially overlaps with the narrowband for transmitting downlink data in the DwPTS, and the downlink data transmission exists in the DwPTS, determining the transmission in the SRS The SRS is not transmitted on the frequency domain resource in the frequency domain resource that does not overlap with the narrowband used to transmit the downlink data in the DwPTS.
  • the processor is specifically configured to:
  • the narrowband for transmitting downlink data in the DwPTS of the special subframe of the TDD system is different from the narrowband for transmitting uplink data in the subsequent adjacent uplink subframe of the special subframe, and the DwPTS of the special subframe is And if there is data transmission in the next adjacent uplink subframe of the special subframe, it is determined that the SRS is not transmitted in the UpPTS of the special subframe.
  • the uplink data includes data transmitted by one or more of the following uplink channels: a physical uplink control channel PUCCH, a physical uplink shared channel PUSCH, and a physical random access channel PRACH.
  • a physical uplink control channel PUCCH a physical uplink control channel
  • PUSCH a physical uplink shared channel
  • PRACH a physical random access channel
  • the downlink data includes data transmitted by one or more of the following downlink channels: a physical downlink shared channel PDSCH, a machine type communication physical downlink control channel M-PDCCH, a physical broadcast channel PBCH, and a physical multicast.
  • a physical downlink shared channel PDSCH a physical downlink shared channel PDSCH, a machine type communication physical downlink control channel M-PDCCH, a physical broadcast channel PBCH, and a physical multicast.
  • PDSCH physical downlink shared channel
  • M-PDCCH machine type communication physical downlink control channel
  • PBCH physical broadcast channel
  • PBCH physical multicast.
  • Channel PMCH Physical multicast
  • the SRS subframe is a subframe that is specific to the narrowband terminal, and the SRS subframe includes an UpPTS or a normal uplink subframe.
  • the terminal may determine whether to transmit the SRS according to whether the transmission frequency domain resource of the SRS overlaps with the narrowband used for transmitting data, or according to whether the adjacent narrowband for data transmission is the same, that is, a terminal is provided.
  • a new SRS transmission rule especially when applying the embodiment of the present application to a low complexity MTC (low complexity MTC) system, fills in the gap that has not yet been clearly defined.
  • FIG. 1 is a schematic diagram of a SRS transmission process according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • the transmission frequency domain position of the SRS and the transmission narrowband of the PUCCH/PUSCH can be independently determined, and when the SRS supports frequency hopping, the transmission frequency domain position of the SRS in different SRS subframes Therefore, the transmission frequency domain location of the SRS and the narrowband of the PUCCH/PUSCH transmission adjacent thereto may not overlap in the frequency domain. Since the transmission and reception bandwidth of the low complexity MTC is limited, it cannot be at the same time.
  • Transceiver signals in different narrowband positions require retuning time between different narrowbands for RF devices
  • the adjustment of different frequency domain locations so the SRS transmission rules in the prior art are no longer applicable to the low complexity MTC system, and a new transmission rule needs to be defined for the SRS transmission of the low complexity MTC terminal.
  • the embodiment of the present application provides an SRS transmission scheme.
  • the SRS transmission scheme provided by the embodiment of the present application can be applied to multiple communication systems, such as an LTE system and a subsequent evolution system, and is particularly suitable for a scenario in which a narrowband terminal transmits an SRS.
  • the narrowband terminal is compared to a terminal with a radio frequency width of 20 MHz, and the radio frequency bandwidth of the narrowband terminal is less than 20 MHz.
  • the narrowband terminal may be an MTC terminal that only supports the 1.4 MHz radio frequency bandwidth.
  • the SRS transmission scheme provided by the embodiment of the present application is described in detail below by taking a scenario in which a narrowband terminal transmits an SRS.
  • the terminal in the following embodiments refers to an MTC terminal that only supports a 1.4 MHz radio frequency bandwidth.
  • FIG. 1 it is a schematic diagram of an SRS transmission process provided by an embodiment of the present application, where the process may be performed by a terminal.
  • the process can include the following steps:
  • Step 101 Determine whether to transmit the SRS according to whether the transmission frequency domain resource of the SRS overlaps with the narrowband used for transmitting data, or according to whether the adjacent narrowband for data transmission is the same.
  • determining whether to transmit the SRS results may include several possibilities:
  • the method for determining whether to transmit the SRS in step 101 may include one or a combination of the following manners:
  • Manner 1 determining whether to transmit an SRS in the SRS subframe according to whether an SRS transmission frequency domain resource in an SRS subframe overlaps with a narrowband used to transmit uplink data in the SRS subframe;
  • Manner 2 determining whether the SRS subframe is in the SRS subframe according to whether an SRS transmission frequency domain resource in an SRS subframe overlaps with a narrowband used to transmit uplink data in a subsequent uplink subframe of the SRS subframe. Transmitting SRS;
  • Manner 3 determining whether the SRS is transmitted in the SRS subframe according to whether the adjacent narrowband for uplink data transmission is the same.
  • Manner 4 determining whether the SRS transmission frequency domain resource in a special subframe of a TDD (Time Division Duplexing) system overlaps with a narrowband for transmitting downlink data in the special subframe, Transmitting SRS in a special subframe;
  • TDD Time Division Duplexing
  • Manner 5 determining whether the narrow band of the downlink data used in the special subframe of the TDD system is the same as the narrowband used for transmitting the uplink data in the subsequent adjacent uplink subframe of the special subframe. Frame pass Lose SRS.
  • the SRS subframe may be a subframe dedicated to a narrowband terminal, and the SRS subframe may include an UpPTS or a normal uplink subframe.
  • the uplink data may be transmitted through an uplink channel, and correspondingly, the uplink channel may include one or more of the following channels: PUCCH, PUSCH, and PRACH (Physical Random Access Channel) Access channel).
  • PUCCH Physical Random Access Channel
  • PUSCH Physical Random Access Channel
  • PRACH Physical Random Access Channel
  • PRACH is mainly used for non-competition.
  • the downlink data may be transmitted through a downlink channel, and the downlink channel may include one or more of the following channels: a PDSCH (Physical Downlink Shared Channel), M-PDCCH (MTC Physical Downlink Control Channel), PBCH (Physical Broadcast Channel), and PMCH (Physical Multicast Channel).
  • the M-PDCCH may be a downlink control channel defined for a narrowband terminal.
  • the “overlap” refers to whether the frequency domain overlaps, for example, for the frequency domain range A and the frequency domain range B, if the partial value of the frequency domain range A and the frequency domain range B are partially taken If the values are the same, it is considered that the frequency domain range A and the frequency domain range B overlap, or there is partial overlap. If all the values of the frequency domain range A and the frequency domain range B are different, the frequency domain range is considered to be A and the frequency domain range B do not overlap; specifically, the above frequency domain range may be a PRB set.
  • Step 102 If it is determined by step 101 that the SRS is transmitted, the SRS is transmitted on the transmission frequency domain resource of the SRS; otherwise, the SRS transmission is abandoned.
  • the SRS may be transmitted on the partial transmission frequency domain resource of the SRS and the drop SRS may be transmitted on the other part of the transmission frequency domain resource.
  • the terminal may determine whether to transmit the SRS in the SRS subframe according to whether the SRS transmission frequency domain resource in one SRS subframe overlaps with the narrowband used to transmit the uplink data in the SRS subframe (for example, whether Drop SRS).
  • the “narrowband for transmitting uplink data” may also be expressed as “narrowband for transmitting an uplink channel”, and the uplink channel may include a PUCCH, a PUSCH, or the like.
  • Mode 1 can also be subdivided into the following implementations:
  • Mode 1-1 In the SRS subframe, if the transmission frequency domain resource of the SRS does not overlap with the narrowband used to transmit the uplink data, it is determined that the SRS is not transmitted in the SRS subframe.
  • the SRS is transmitted in the uplink subframe 2 corresponding to the PRB8 to PRB11, and the uplink subframe 2 is used for the transmission.
  • the narrow band of the uplink channel (such as PUCCH or PUSCH, the same below) is narrowband 0 (PRB2 to PRB7).
  • the SRS ie, drop SRS
  • the SRS is not transmitted in the uplink subframe 2, that is, The SRS is not transmitted regardless of whether there is actually an uplink channel transmission in the uplink subframe 2.
  • the SRS in the SRS subframe, if the transmission frequency domain resource of the SRS overlaps with the narrowband for transmitting the uplink data, the SRS still has a chance to be transmitted in the uplink subframe 2, for example, the SRS is in the uplink subframe 2
  • the corresponding ones are transmitted in the PRB2 to the PRB5.
  • all the PRBs in which the SRS transmission is located are included in the narrowband 0 for transmitting the uplink data, and the rerouting is not required between the SRS resources and the narrowband of the uplink data in the SRS subframe. Therefore, the SRS It can be transmitted in the uplink subframe 2, or the SRS needs to be further combined with other methods (for example, mode 2) to further determine whether it can be transmitted.
  • mode 2 for example, in the following manners 1-4 and 1-6, the SRS is in a part of the frequency domain resource. There is still a chance to transmit.
  • Mode 1-2 In the SRS subframe, if the transmission frequency domain resource of the SRS does not overlap with the narrowband used for transmitting the uplink data, and there is an uplink data transmission in the SRS subframe, it is determined that the SRS is not transmitted in the SRS subframe. .
  • the SRS corresponds to the PRB8 to PRB11 transmission in the uplink subframe 2
  • the narrowband for transmitting the uplink channel in the uplink subframe 2 is the narrowband 0 (PRB2 to PRB7).
  • the SRS is not transmitted.
  • the SRS still has the opportunity to transmit.
  • the SRS can be directly defined at this time, or the SRS needs to be further combined with other methods (for example, mode 2) to further determine whether it can be transmitted.
  • Mode 1-3 In the SRS subframe, if the transmission frequency domain resource of the SRS partially overlaps with the narrowband used to transmit the uplink data, it is determined that the SRS is not transmitted in the SRS subframe.
  • the SRS corresponds to the PRB6 to PRB9 transmission in the uplink subframe 2
  • the narrowband for transmitting the uplink channel in the uplink subframe 2 is the narrowband 0 (PRB2 to PRB7).
  • the SRS since the PRB in which the SRS is transmitted in the uplink subframe 2 overlaps with the narrowband portion in the uplink subframe 2 for transmitting the uplink channel, the SRS is not transmitted in the uplink subframe 2.
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used to transmit the uplink data, it is determined that the transmission frequency domain resource of the SRS is not used for transmitting the uplink data.
  • SRS is not transmitted on narrow-band overlapping frequency domain resources.
  • the SRS corresponds to the PRB6 to PRB9 transmission in the uplink subframe 2
  • the narrowband for transmitting the uplink channel in the uplink subframe 2 is the narrowband 0 (PRB2 to PRB7).
  • the SRS since the PRB in which the SRS is transmitted in the uplink subframe 2 overlaps with the narrowband portion of the uplink subframe 2 used for transmitting the uplink channel, the SRS is not transmitted on the PRB8 and the PRB9 in the uplink subframe 2.
  • the SRS still has the opportunity to transmit on PRB6 and PRB7 in the uplink subframe 2.
  • the PRB transmission at which the SRS can be overlapped at this time can be directly defined, or the SRS needs to be further combined with other methods (for example, Mode 2) to further determine whether the PRB transmission can be performed in the overlapping portion. That is, whether or not the uplink channel transmission actually exists in the uplink subframe 2 determines whether or not to transmit the SRS in the above manner.
  • the SRS corresponds to the PRB6 to PRB9 transmission in the uplink subframe 2
  • the narrowband for transmitting the uplink channel in the uplink subframe 2 is the narrowband 0 (PRB2 to PRB7).
  • the SRS is not transmitted in the uplink subframe 2.
  • the SRS may be directly defined, or the SRS needs to be further combined. Other methods (such as mode 2) make further judgments as to whether or not they can be transmitted.
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used for transmitting the uplink data, and the uplink data transmission exists in the SRS subframe, determining the transmission frequency domain in the SRS The SRS is not transmitted on the frequency domain resources in the resource that do not overlap with the narrowband used to transmit the uplink data.
  • the SRS corresponds to the PRB6 to PRB9 transmission in the uplink subframe 2
  • the narrowband for transmitting the uplink channel in the uplink subframe 2 is the narrowband 0 (PRB2 to PRB7).
  • the SRS is not transmitted on the PRB8 and the PRB9 in the uplink subframe 2.
  • the SRS still has a chance to be in the PRB6 and in the uplink subframe 2.
  • the PRB7 can directly define the PRB transmission in which the SRS can be overlapped, or the SRS needs to further combine other methods (for example, Mode 2) to further determine whether the PRB transmission can be performed in the overlapping portion.
  • the SRS still has a chance to be transmitted in the uplink subframe 2.
  • the SRS may be directly defined, or the SRS needs to be further combined.
  • Other methods make further judgments as to whether or not they can be transmitted.
  • the terminal may determine whether the SRS is in accordance with whether the SRS transmission frequency domain resource in one SRS subframe overlaps with a narrowband used to transmit uplink data in a subsequent uplink subframe of the SRS subframe.
  • the SRS is transmitted in the subframe (such as whether or not the drop SRS).
  • the “narrowband for transmitting uplink data” may also be expressed as “narrowband for transmitting an uplink channel”, and the uplink channel may include a PUCCH, a PUSCH, or the like.
  • Mode 2 can also be subdivided into the following implementations:
  • Mode 2-1 In the SRS subframe, if the transmission frequency domain resource of the SRS does not overlap with the narrowband used for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, determining that the SRS subframe is in the SRS subframe SRS is not transmitted.
  • the SRS corresponds to the PRB8 to PRB11 transmission in the uplink subframe 2
  • the narrowband for transmitting the uplink channel in the uplink subframe 3 is the narrowband 0 (PRB2 to PRB7).
  • the SRS since the SRS is transmitted in the uplink subframe 2 If the PRB in the uplink subframe 3 does not overlap the narrowband used to transmit the uplink channel, the SRS is not transmitted in the uplink subframe 2, that is, the SRS is not transmitted regardless of whether the uplink channel transmission actually exists in the uplink subframe 3.
  • the SRS still has an opportunity to be in the uplink subframe.
  • the SRS is transmitted in the uplink subframe 2 corresponding to the PRB2 to PRB5.
  • all the PRBs in which the SRS transmission is located are included in the narrowband 0 for transmitting the uplink data, and the SRS resources and the SRS subframes. The rerouting of the uplink data does not need to be retuned.
  • the SRS can be transmitted in the uplink subframe 2, or the SRS needs to be further combined with other methods (for example, mode 1) to further determine whether it can be transmitted, for example, as follows: In the case of 2-6, SRS still has a chance to transmit on some frequency domain resources.
  • Mode 2-2 In the SRS subframe, if the transmission frequency domain resource of the SRS does not overlap with the narrowband used for transmitting the uplink data in the next adjacent uplink subframe of the SRS subframe, and the latter of the SRS subframe If there is an uplink data transmission in the adjacent uplink subframe, it is determined that the SRS is not transmitted in the SRS subframe.
  • the SRS corresponds to the PRB8 to PRB11 transmission in the uplink subframe 2
  • the narrowband for transmitting the uplink channel in the uplink subframe 3 is the narrowband 0 (PRB2 to PRB7).
  • the SRS is not transmitted in the uplink subframe 2.
  • the specific example is the same as the corresponding manner in the foregoing manner 2-1.
  • the SRS still has a chance to be transmitted in the uplink subframe 2.
  • the SRS can be directly defined at this time, or the SRS needs to be further combined with other methods (for example, mode 1) to further determine whether it can be transmitted.
  • Mode 2-3 In the SRS subframe, if the transmission frequency domain resource of the SRS partially overlaps with the narrowband used to transmit the uplink data in the next adjacent uplink subframe of the SRS subframe, determining the SRS subframe SRS is not transmitted.
  • the SRS corresponds to the PRB6 to PRB9 transmission in the uplink subframe 2
  • the narrowband for transmitting the uplink channel in the uplink subframe 3 is the narrowband 0 (PRB2 to PRB7).
  • the SRS since the PRB in which the SRS is transmitted in the uplink subframe 2 overlaps with the narrowband portion in the uplink subframe 3 for transmitting the uplink channel, the SRS is not transmitted in the uplink subframe 2.
  • the SRS corresponds to the PRB6 to PRB9 transmission in the uplink subframe 2
  • the narrowband for transmitting the uplink channel in the uplink subframe 3 is the narrowband 0 (PRB2 to PRB7).
  • the SRS is not transmitted on the PRB8 and the PRB9 in the uplink subframe 2.
  • the SRS still has a chance to be transmitted on the PRB6 and the PRB7 in the uplink subframe 2.
  • the SRS can be directly defined at this time.
  • the mode (for example, mode 1) further determines whether the PRB transmission can be performed in the overlapping portion; that is, whether or not the uplink channel transmission actually exists in the uplink subframe 3, whether or not the SRS is transmitted is determined in the above manner.
  • Mode 2-5 In the SRS subframe, if the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the uplink data in the subsequent adjacent uplink subframe of the SRS subframe, and after the SRS subframe If there is an uplink data transmission in a neighboring uplink subframe, it is determined that the SRS is not transmitted in the SRS subframe.
  • the SRS corresponds to the PRB6 to PRB9 transmission in the uplink subframe 2
  • the narrowband for transmitting the uplink channel in the uplink subframe 3 is the narrowband 0 (PRB2 to PRB7).
  • the SRS is not transmitted in the uplink subframe 2.
  • the SRS still has a chance to be transmitted in the uplink subframe 2.
  • the SRS may be directly defined, or the SRS needs further In combination with other methods (such as mode 1), it is further judged whether it can be transmitted.
  • Mode 2-6 In the SRS subframe, if the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the uplink data in the subsequent adjacent uplink subframe of the SRS subframe, and after the SRS subframe If there is an uplink data transmission in a neighboring uplink subframe, it is determined that the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband used for transmitting the uplink data in the transmission frequency domain resource of the SRS.
  • the SRS corresponds to the PRB6 to PRB9 transmission in the uplink subframe 2
  • the narrowband for transmitting the uplink channel in the uplink subframe 3 is the narrowband 0 (PRB2 to PRB7).
  • the SRS is not transmitted on the PRB8 and the PRB9 in the uplink subframe 2.
  • the SRS still has the opportunity to PRB6 in the uplink subframe 2.
  • the PRB7 can directly define the PRB transmission in which the SRS can be overlapped at this time, or the SRS needs to further combine other methods (for example, Mode 1) to further determine whether the PRB transmission can be performed in the overlapping portion.
  • the SRS still has a chance to be transmitted in the uplink subframe 2.
  • the SRS may be directly defined, or the SRS needs further In combination with other methods (such as mode 1), it is further judged whether it can be transmitted.
  • whether to transmit the SRS may also be determined by one of the following manners:
  • the retuning time refers to a time required for the narrowband terminal to transfer data between different frequency domain locations or narrowbands, usually a radio frequency.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the transmission frequency domain resource of the SRS overlaps with the narrowband for transmitting the PRACH in the next adjacent uplink subframe of the SRS subframe, and the TA value corresponding to the SRS subframe is smaller than the adjustment Time (Retuning time), determining that the SRS is not transmitted in the SRS subframe;
  • the Retuning time determines that the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband used to transmit the uplink data in the transmission frequency domain resource of the SRS.
  • the terminal may determine whether to transmit the SRS (such as whether to drop SRS) in the SRS subframe according to whether the adjacent narrowbands for data transmission are the same.
  • the "narrowband for data transmission” may be a narrowband for transmitting uplink data, wherein “narrowband for transmitting uplink data” may also be expressed as “narrowband for transmitting an uplink channel", and the uplink channel may Includes PUCCH or PUSCH or PRACH.
  • Mode 3 can also be subdivided into the following implementations:
  • Mode 3-1 If the narrowband used for transmitting uplink data in the SRS subframe is different from the narrowband used for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, it is determined that the uplink packet is not transmitted in the SRS subframe. SRS.
  • the SRS is transmitted in the uplink subframe 2 corresponding to the PRB8 to the PRB11, and the narrowband for transmitting the uplink channel in the uplink subframe 2 is the narrowband 1 (PRB8 to PRB13), and the uplink subframe 3 is used for transmitting the uplink channel.
  • the narrowband is narrowband 0 (PRB2 to PRB7).
  • the transmission resource of the portion of the SRS in the uplink subframe 2 can be used as a retuning between different narrowbands of the adjacent uplink subframe.
  • the narrowband used for transmitting the uplink channel in the uplink subframe 2 is the same as the narrowband used for transmitting the uplink channel in the uplink subframe 3, the SRS still has a chance to be transmitted in the uplink subframe 2, and specifically whether it can be transmitted.
  • the transmission frequency domain resource of the SRS and the narrowband used for transmitting the uplink channel in the subframe 2 which may be further determined in combination with the mode 1, for example, if the uplink data is transmitted in the uplink subframes 2 and 3.
  • the narrowband of the narrowband is narrowband 1, and the transmission PRB of the SRS is included in the narrowband 1, and the SRS is transmittable. If the narrowband of the uplink data transmitted in the uplink subframes 2 and 3 is narrowband 0, the transmission PRB and the narrowband of the SRS are 0. If there is no overlap, the SRS cannot be transmitted. If the narrowband of the uplink data transmitted in the uplink subframes 2 and 3 is narrowband 0, and the SRS is transmitted in the uplink subframe 2 corresponding to the PRB6 to PRB9, the SRS cannot be transmitted or at least in the PRB8. It is not possible to transmit on /9, and it can be further determined in combination with the determination method of whether or not there is uplink channel transmission in subframe 2 in connection with mode 1.
  • Mode 3-2 The narrowband used for transmitting uplink data in the SRS subframe is different from the narrowband used for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and is used for transmission in the SRS subframe. Narrowband of upstream data and the SRS If there is an uplink data transmission in a narrow band for transmitting uplink data in the next adjacent uplink subframe of the subframe, it is determined that the SRS is not transmitted in the SRS subframe.
  • the SRS is transmitted in the uplink subframe 2 corresponding to the PRB8 to the PRB11, and the narrowband for transmitting the uplink channel in the uplink subframe 2 is the narrowband 1 (PRB8 to PRB13), and the uplink subframe 3 is used for transmitting the uplink channel.
  • the narrow band is narrow band 0 (PRB2 to PRB7). In this case, if there is uplink data transmission in the narrowband 1 in the uplink subframe 2 and the narrowband 0 in the uplink subframe 3, the SRS is not transmitted in the uplink subframe 2.
  • the SRS still has a chance to be transmitted in the uplink subframe 2, for example, if the uplink subframe There is no data transmission in the frame 3, and the PRB of the SRS is included in the narrowband 1 for transmitting the uplink channel in the uplink subframe 2, that is, the uplink channel and the SRS in the uplink subframe 2 do not need to be retuning, and the uplink subframe 3
  • the narrowband is different from the subframe 2, there is no need to use the OFDM symbol in which the SRS is located for retuning when the channel is transmitted, so the SRS can be transmitted in the uplink subframe 2, and regardless of whether there is data transmission in the uplink subframe 2, The SRS can be transmitted in the uplink subframe 2.
  • the narrowband of the uplink subframe 2 used for transmitting the uplink channel is narrowband 0, and the narrowband of the uplink subframe 3 for transmitting the uplink channel is narrowband 1, and the PRB of the SRS is included in In the narrowband 1 for transmitting the uplink channel in the uplink subframe 3, but since there is no channel transmission in the uplink subframe 2, retuning may be performed by using the idle OFDM symbol before the SRS in the uplink subframe 2, and the SRS and the uplink subframe Uplink letter in 3 Retuning is not required between the channels, so the SRS can be transmitted in the uplink subframe 2.
  • the SRS still has a chance to be transmitted in the uplink subframe 2, whether it can be transmitted, and also depends on the transmission frequency domain resources and subframes of the SRS.
  • the relationship between the narrowbands used for transmitting the uplink channel can be further determined in combination with the method 1, for example, the example described in the same mode 3-1, or the uplink channel transmission in the subframe 2 is considered in the combination mode 1. The way of judging is further judged.
  • Mode 3-3 The narrowband used for transmitting uplink data in the SRS subframe is different from the narrowband used for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and is used for transmission in the SRS subframe. And determining, in the SRS subframe, that the uplink data transmission exists on a narrowband of the uplink data and the narrowband of the downlink uplink for transmitting the uplink data in the downlink adjacent subframe of the SRS subframe does not overlap with the transmission frequency domain resource of the SRS. SRS is not transmitted.
  • the SRS is transmitted in the uplink subframe 2 corresponding to the PRB8 to the PRB11, and the narrowband for transmitting the uplink channel in the uplink subframe 2 is the narrowband 1 (PRB8 to PRB13), and the uplink subframe 3 is used for transmitting the uplink channel.
  • the narrowband is narrowband 0 (PRB2 to PRB7), wherein the narrowband 0 in the uplink subframe 3 does not overlap with the transmission frequency domain resource of the SRS. In this case, if there is an uplink channel transmission on the narrowband 0 of the uplink subframe 3, the SRS is not transmitted in the uplink subframe 2.
  • the SRS still has a chance to be transmitted in the uplink subframe 2.
  • the PRB of the SRS is included in In the narrowband 1 of the uplink subframe 2, therefore, there is no need for retuning between the SRS and the uplink channel in the uplink subframe 2, and there is no uplink in the subframe 3.
  • the OFDM symbol in which the SRS is located does not need to be retuning between different narrowbands. Therefore, the SRS can be transmitted in the uplink subframe 2 at this time.
  • the SRS still has a chance to be transmitted in the uplink subframe 2, whether it can be transmitted, and also depends on the transmission frequency domain resources and subframes of the SRS.
  • the relationship between the narrowbands used for transmitting the uplink channel can be further determined in combination with the method 1, for example, the example described in the same mode 3-1, or the uplink channel transmission in the subframe 2 is considered in the combination mode 1. The way of judging is further judged.
  • Mode 3-4 If a narrowband for transmitting uplink data in an SRS subframe is different from a narrowband for transmitting uplink data in a subsequent adjacent uplink subframe of the SRS subframe, and is used for transmission in the SRS subframe
  • the narrowband of the uplink data and the narrowband of the downlink adjacent data frame for transmitting the uplink data in the downlink adjacent subframe of the SRS subframe and the transmission frequency domain resource partially overlapping with the SRS have uplink data transmission, and then the SRS is determined.
  • the SRS is not transmitted in the subframe.
  • the SRS is transmitted in the uplink subframe 2 corresponding to the PRB6 to PRB9, and the narrowband for transmitting the uplink channel in the uplink subframe 2 is the narrowband 1 (PRB8 to PRB13), and the uplink subframe 3 is used for transmitting the uplink channel.
  • the narrowband is narrowband 0 (PRB2 to PRB7), wherein the narrowband 1 in the uplink subframe 2 and the narrowband 0 in the uplink subframe 3 partially overlap with the transmission frequency domain resources of the SRS, respectively.
  • the SRS is not transmitted in the uplink subframe 2.
  • the SRS still has a chance to be transmitted in the uplink subframe 2, for example,
  • the SRS does not need to be retuned between the narrowbands 0 in the uplink subframe 3 on the PRBs 6 and 7, and may be used before the SRS in the uplink subframe 2.
  • the OFDM symbol is retuned from narrowband 0 to narrowband 1, so the SRS can be transmitted on PRBs 6 and 7.
  • the SRS can be transmitted on the PRBs 6 and 7, for example, When there is no uplink data transmission on the narrowband 0 in the uplink subframe 3, the SRS does not need to be retuned between the narrowband 1 in the uplink subframe 2 on the PRBs 8 and 9, and there is no uplink channel transmission in the uplink subframe 3.
  • SRS can be transmitted on PRB8 and 9, for example, when When there is no uplink data transmission on the narrowband 1 in the uplink subframe 2 and the narrowband 0 in the uplink subframe 3, the above case 2 may be selected, that is, the SRS may be selected to be transmitted on the PRBs 6 and 7, or the SRS may be selected in the PRB8 and 9 is transmitted, but since the narrowband terminal can only transmit and receive according to the defined narrowband, it will not be transmitted on the narrowband 0, 1, at the same time, the SRS is sent on the PRBs 6, 7, and 8, 9 at the same time.
  • the SRS still has a chance to be transmitted in the uplink subframe 2, whether it can be transmitted, and also depends on the transmission frequency domain resources and subframes of the SRS.
  • the relationship between the narrowbands used for transmitting the uplink channel can be further determined in combination with the method 1, for example, the example described in the same mode 3-1, or the combination mode 1
  • the determination of whether there is an uplink channel transmission in subframe 2 is considered in further determination.
  • Mode 3-5 If a narrowband for transmitting uplink data in an SRS subframe is different from a narrowband for transmitting uplink data in a subsequent adjacent uplink subframe of the SRS subframe, and is used for transmission in the SRS subframe
  • the uplink data transmission is performed on the narrowband of the uplink data and the narrowband of the transmission of the uplink data in the narrowband for transmitting the uplink data in the downlink adjacent subframe of the SRS subframe, and the uplink data transmission is performed, and the transmission in the SRS is determined.
  • the SRS is not transmitted on the frequency domain resource in the frequency domain resource that does not overlap with the narrow band in which the uplink data transmission exists.
  • the SRS is transmitted in the uplink subframe 2 corresponding to the PRB12 to the PRB15, and the narrowband for transmitting the uplink channel in the uplink subframe 2 is the narrowband 1 (PRB8 to PRB13), and the uplink subframe 3 is used for transmitting the uplink channel.
  • the narrowband is narrowband 0 (PRB2 to PRB7), and the narrowband 1 in the uplink subframe 2 partially overlaps with the transmission frequency domain resource of the SRS, and the narrowband 0 in the uplink subframe 3 does not overlap with the transmission frequency domain resource of the SRS.
  • the uplink channel is transmitted on the narrowband 1 of the uplink subframe 2, the SRS is not transmitted on the PRBs 14 and 15 in the uplink subframe 2, and further, the SRS is in the uplink subframe 2 at the PRBs 12 and 13.
  • the SRS position in the subframe 2 does not need to occupy the retuning between the narrowbands, and the SRS can be transmitted on the PRBs 12 and 13 overlapping the narrowband 1.
  • the SRS still has a chance to be transmitted on the PRBs 12 and 13 or on the PRBs 14 and 15 in the uplink subframe 2, whether it can be transmitted.
  • the relationship between the frequency domain resource of the SRS and the narrowband used for transmitting the uplink channel in the subframe 3 is further determined by using the method 2, for example, directly according to the frequency domain resource of the SRS and the subframe 3
  • the narrowbands are not overlapped, and it is determined that the SRS is not transmitted, or is further determined according to whether there is uplink data in the subframe 3.
  • the SRS may be transmitted on the PRBs 12 and 13 overlapping the narrowband 1 or on the PRBs 14 and 15 not overlapping the narrowbands 1 and 0 (at this time) PRB 14 and 15 belong to narrow band 3).
  • the SRS still has a chance to be transmitted in the uplink subframe 2, whether it can be transmitted, and also depends on the transmission frequency domain resources and subframes of the SRS.
  • the relationship between the narrowbands used for transmitting the uplink channel can be further determined in combination with the method 1, for example, the example described in the same mode 3-1, or the uplink channel transmission in the subframe 2 is considered in the combination mode 1.
  • the way of judging is further judged.
  • the terminal can be based on a special TDD (Time Division Duplexing) system.
  • Whether the SRS transmission frequency domain resource in the subframe overlaps with the narrowband used to transmit the downlink data in the special subframe determines whether the SRS is transmitted in the special subframe (such as whether or not drop SRS).
  • the "narrowband for transmitting downlink data" may also be expressed as "a narrowband for transmitting a downlink channel", and the downlink channel may include a PDSCH, an M-PDCCH, a PBCH, a PMCH, and the like.
  • Mode 4 can also be subdivided into the following implementations:
  • Mode 4-1 In the special subframe of the TDD system, if the SRS transmission frequency domain resource and the DwPTS (Downlink Pilot Time Slot) in the UpPTS (Uplink Pilot Time Slot) are UpPTS (Downlink Pilot Time Slot)
  • the narrowband used to transmit the downlink data does not overlap, and it is determined that the SRS is not transmitted in the UpPTS of the special subframe.
  • the UpPTS portion of the SRS in the TDD special subframe 1 corresponds to the PRB8 to PRB11 transmission
  • the narrowband for transmitting the downlink channel in the DwPTS portion of the special subframe 1 is the narrowband 0 (PRB2 to PRB7), since the SRS is special. If the PRB in the subframe 1 is not overlapped with the narrowband used to transmit the downlink channel in the special subframe 1, the SRS is not transmitted in the UpPTS in the special subframe 1, that is, whether the DwPTS actually exists in the special subframe 1 For downlink channel transmission, it is determined whether to transmit the SRS in the above manner.
  • the SRS still has an opportunity to be transmitted in the UpPTS of the special subframe, for example, when the SRS resource is included in the DwPTS.
  • the SRS may be transmitted.
  • the sRS resource overlaps with the narrowband thickband used to transmit the downlink data in the DwPTS, as shown in mode 4-5 or 4-6, the SRS is only in part of the PRB. If there is no transmission, there is still opportunity to transmit on the remaining PRB, or further combined with other methods (for example, mode 2) for further judgment.
  • mode 2 for example, mode 2
  • Mode 4-2 In the special subframe of the TDD system, if the transmission frequency domain resource of the SRS in the UpPTS does not overlap with the narrowband used for transmitting downlink data in the DwPTS, and the downlink data transmission exists in the DwPTS, it is determined that the special frequency is The SRS is not transmitted in the UpPTS of the subframe.
  • the UpPTS portion of the SRS in the TDD special subframe 1 corresponds to the PRB8 to PRB11 transmission
  • the narrowband for transmitting the downlink channel in the DwPTS portion of the special subframe 1 is the narrowband 0 (PRB2 to PRB7).
  • the SRS is not transmitted in the UpPTS in the special subframe 1.
  • the SRS still has a chance to be transmitted in the UpPTS of the special subframe, and whether the SRS can be transmitted, can be directly defined to be transmitted at this time, or further combined with other methods (for example, 2) Judgment.
  • Mode 4-3 In the special subframe of the TDD system, if the transmission frequency domain resource of the SRS in the UpPTS partially overlaps with the narrowband used to transmit the downlink data in the DwPTS, it is determined that the transmission is not transmitted in the UpPTS of the special subframe. SRS.
  • the UpPTS portion of the SRS in the TDD special subframe 1 corresponds to the PRB6 to PRB9 transmission
  • the narrowband for transmitting the downlink channel in the DwPTS portion of the special subframe 1 is the narrowband 0 (PRB2 to PRB7)
  • the SRS is If the PRB in the special subframe 1 overlaps with the narrowband portion in the special subframe 1 for transmitting the downlink channel, the SRS is not transmitted in the UpPTS in the special subframe 1, that is, whether the DwPTS in the special subframe 1 is actually There is a downlink channel transmission, and it is determined whether to transmit the SRS in the above manner.
  • Mode 4-4 In the special subframe of the TDD system, if the transmission frequency domain resource of the SRS in the UpPTS partially overlaps with the narrowband used for transmitting downlink data in the DwPTS, and the downlink data transmission exists in the DwPTS, it is determined that The SRS is not transmitted in the UpPTS of the special subframe.
  • the UpPTS portion of the SRS in the TDD special subframe 1 corresponds to the PRB6 to PRB9 transmission
  • the narrowband for transmitting the downlink channel in the DwPTS portion of the special subframe 1 is the narrowband 0 (PRB2 to PRB7).
  • the SRS is not transmitted in the UpPTS in the special subframe 1.
  • the SRS still has a chance to be transmitted on a part of the PRB in the TDD special subframe 1, and whether the SRS can be transmitted, and the PRB6 and the PRB6 can be directly defined at this time. 7 or PRB8 and 9 transmission, or need to be further combined with other methods (such as mode 2).
  • Mode 4-5 In the special subframe of the TDD system, if the transmission frequency domain resource of the SRS in the UpPTS partially overlaps with the narrowband used to transmit the downlink data in the DwPTS, it is determined that the transmission frequency domain resource in the SRS is not The SRS is not transmitted on the frequency domain resources in which the narrowband with the downlink data is transmitted in the DwPTS.
  • the UpPTS portion of the SRS in the TDD special subframe 1 corresponds to the PRB6 to PRB9 transmission
  • the narrowband for transmitting the downlink channel in the DwPTS portion of the special subframe 1 is the narrowband 0 (PRB2 to PRB7), since the SRS is special. If the PRB in the subframe 1 is overlapped with the narrowband portion of the special subframe 1 for transmitting the downlink channel, the SRS is not transmitted on the PRB8 and the PRB9 in the UpPTS in the special subframe 1. Alternatively, the SRS still has a chance.
  • Whether the SRS is transmitted on the PRB6 and the PRB7, whether the SRS can be transmitted or not, can be directly defined at the time of transmission on the PRBs 6 and 7, or further combined with other methods (for example, mode 2); that is, whether the DwPTS in the special subframe 1 is actually There is a downlink channel transmission, and it is determined whether to transmit the SRS in the above manner.
  • Mode 4-6 In the special subframe of the TDD system, if the transmission frequency domain resource of the SRS in the UpPTS partially overlaps with the narrowband used for transmitting the downlink data in the DwPTS, and the downlink data transmission exists in the DwPTS, the SRS is determined. The SRS is not transmitted on the frequency domain resource in the transmission frequency domain resource that does not overlap with the narrowband used to transmit the downlink data in the DwPTS.
  • the UpPTS portion of the SRS in the TDD special subframe 1 corresponds to the PRB6 to PRB9 transmission
  • the narrowband for transmitting the downlink channel in the DwPTS portion of the special subframe 1 is the narrowband 0 (PRB2 to PRB7).
  • the SRS is not transmitted on the PRB8 and the PRB9 in the UpPTS in the special subframe 1.
  • the SRS still has the opportunity to transmit on the PRB6 and the PRB7.
  • the transmission of the SRS can be directly defined at the time of transmission on the PRBs 6 and 7, or further combined with other means (for example, mode 2).
  • the SRS still has a chance to be transmitted on the PRBs 6 and 7 or the PRBs 8 and 9 in the TDD special subframe 1, and whether the SRS can be transmitted, can be directly defined. At this time, it can be transmitted on PRB6 and 7 or PRBs 8 and 9, or it needs to be further combined with other methods (for example, mode 2).
  • the terminal determines whether the narrowband of the downlink data used in the special subframe of the TDD system is the same as the narrowband used for transmitting the uplink data in the subsequent uplink subframe of the special subframe.
  • the SRS is transmitted in the special subframe (such as whether or not the drop SRS).
  • the “narrowband for transmitting downlink data” may also be expressed as “narrowband for transmitting downlink channel", and the downlink channel may include PDSCH, M-PDCCH, etc.; “narrowband for transmitting uplink data” may also be expressed as "Narrowband for transmitting an uplink channel", which may include PUCCH or PUSCH, and the like.
  • mode 5 can also be subdivided into the following implementations:
  • Mode 5-1 If the narrowband for transmitting downlink data in the DwPTS of the special subframe of the TDD system is different from the narrowband for transmitting uplink data in the subsequent adjacent uplink subframe of the special subframe, it is determined that the special The SRS is not transmitted in the UpPTS of the subframe.
  • the UpPTS portion of the SRS in the TDD special subframe 1 corresponds to the PRB8 to PRB11 transmission
  • the narrowband for transmitting the downlink channel in the DwPTS portion of the special subframe 1 is the narrowband 0 (PRB2 to PRB7)
  • the special subframe 1 The narrowband for transmitting the uplink channel in the subsequent adjacent uplink subframe 2 is narrowband 1 (PRB 8-13).
  • the narrowband of the DwPTS part for transmitting the downlink channel in the special subframe 1 does not overlap with the narrowband for transmitting the uplink channel in the uplink subframe 2, the SRS is not transmitted in the UpPTS in the special subframe 1.
  • the SRS still has a chance to Whether the SRS is transmitted in the UpPTS of the special subframe, whether it is capable of transmitting the SRS, and the relationship between the transmission frequency domain resource of the SRS and the narrowband need to be further determined by other methods (for example, modes 2 and 4).
  • Mode 5-2 if the narrowband for transmitting downlink data in the DwPTS of the special subframe of the TDD system is different from the narrowband for transmitting uplink data in the subsequent adjacent uplink subframe of the special subframe, and the special subframe The data transmission exists in both the DwPTS and the subsequent adjacent uplink subframe of the special subframe, and it is determined that the SRS is not transmitted in the UpPTS of the special subframe.
  • the UpPTS portion of the SRS in the TDD special subframe 1 corresponds to the PRB8 to PRB11 transmission
  • the narrowband for transmitting the downlink channel in the DwPTS portion of the special subframe 1 is the narrowband 0 (PRB2 to PRB7)
  • the special subframe 1 The narrowband for transmitting the uplink channel in the subsequent adjacent uplink subframe 2 is narrowband 1 (PRB 8-13).
  • the SRS is not transmitted in the UpPTS in the special subframe 1.
  • the SRS still has a chance to be transmitted in the UpPTS of the special subframe, and whether the SRS can be transmitted. It is necessary to look at the relationship between the transmission frequency domain resources of the SRS and the narrowband, and further need to be combined with other methods (for example, modes 2 and 4).
  • the foregoing manners 4 and 5 may be used in a configuration scenario in which the number of OFDM symbols configured in the GP (protection interval) does not include a retuning time, that is, in the configuration scenario, the length of the GP is only supported to support downlink to uplink.
  • the switching time and the uplink transmission time advance time do not include the retuning time.
  • the foregoing modes 1, 2, and 3 are applicable to an FDD (Frequency Division Duplexing) system and a TDD system.
  • the SRS is transmitted in the uplink subframe 2 corresponding to the PRB8 to the PRB11, and the narrowband used in the uplink subframe 2 for transmitting the uplink channel is the narrowband 1 (PRB8 ⁇ ).
  • PRB13 the narrowband for transmitting the uplink channel in the uplink subframe 3 is narrowband 0 (PRB2 to PRB7).
  • the PRB in which the SRS is transmitted in the uplink subframe 2 is included in the narrowband for transmitting the uplink channel in the uplink subframe 2, but does not overlap with the narrowband used for transmitting the uplink channel in the uplink subframe 3. then:
  • the SRS is not transmitted in the uplink subframe 2, that is, whether the uplink channel transmission actually exists in the uplink subframe 2 and the uplink subframe 3, and the SRS is not transmitted; in another example, if the uplink subframe In frame 3 (the corresponding narrowband for data transmission does not overlap with the PRB of the SRS), there is indeed uplink channel transmission, then the SRS is not transmitted in the uplink subframe 2, otherwise the SRS can still be transmitted.
  • Mode 3 when narrowbands for transmitting uplink channels in the adjacent uplink subframes are the same, they may be further combined.
  • Mode 1 or combination mode 2 determines whether to transmit the SRS.
  • the narrowbands for transmitting data corresponding to the DwPTS and the UpPTS respectively are the same, and the mode 2 can be further determined to determine whether to transmit the SRS.
  • mode 5 when the narrowband for transmitting the downlink channel in the special subframe is the same as the narrowband for transmitting the uplink channel in the adjacent uplink subframe, the further The mode 2 is combined to determine whether to transmit the SRS, and details are not described herein.
  • a plurality of sub-modes included in one mode may also be used in combination.
  • the mode 1-1 and the mode 1-3 in the mode 1 may be used in combination
  • the mode 1-1 and the mode 1-4 may be used in combination.
  • 2 and modes 1-5 can be used in combination
  • mode 1-2 and mode 1-6 can be used in combination, respectively, for the case where there is no overlap and partial overlap, and the sub-modes included in other modes can also be similarly combined. use.
  • the embodiment of the present application proposes a new SRS transmission rule, which is particularly suitable for SRS transmission of a narrowband terminal.
  • the embodiment of the present application further provides an SRS transmission apparatus.
  • an SRS transmission apparatus may be a terminal, or may be a hardware and/or software component that can be integrated inside the terminal.
  • the apparatus may include a determining unit 201, and further may further include a transmitting unit 202 (shown by a dashed box in the figure), wherein:
  • the determining unit 201 is configured to determine whether to transmit the SRS according to whether the transmission frequency domain resource of the SRS overlaps with a narrowband for transmitting data, or according to whether the adjacent narrowband for data transmission is the same.
  • determining whether to transmit the SRS results may include several possibilities:
  • the SRS is transmitted on the part of the transmission frequency domain resource of the SRS, and the SRS (ie, the partial drop SRS) is not transmitted on the other part of the transmission frequency domain resource.
  • the transmission unit 202 may be configured to perform SRS transmission according to the determination result of the determining unit 201.
  • the possible processing operations of the transmission unit 202 may include: if the transmission SRS is determined, transmitting the SRS on the transmission frequency domain resource of the SRS; otherwise, discarding the SRS transmission.
  • the SRS may also be transmitted on the part of the transmission frequency domain resource of the SRS, and the SRS may be dropped on the other part of the transmission frequency domain resource.
  • the determining unit 201 may be specifically configured to:
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used to transmit the uplink data, it is determined that the SRS is not transmitted in the SRS subframe;
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used for transmitting the uplink data, and the uplink data transmission exists in the SRS subframe, it is determined that the SRS is not transmitted in the SRS subframe; or ,
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used to transmit the uplink data, it is determined that the SRS is not transmitted in the SRS subframe;
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used for transmitting the uplink data, it is determined that the transmission frequency domain resource of the SRS does not overlap with the narrowband used for transmitting the uplink data.
  • SRS is not transmitted on the frequency domain resources; or,
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband for transmitting the uplink data, and the uplink data transmission exists in the SRS subframe, determining that the SRS is not transmitted in the SRS subframe; or,
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used for transmitting the uplink data, and the uplink data transmission exists in the SRS subframe, it is determined that the transmission frequency domain resource of the SRS is not The SRS is not transmitted on the frequency domain resource that overlaps with the narrowband used to transmit the uplink data.
  • the SRS subframe is a subframe dedicated to a narrowband terminal, and the SRS subframe includes an UpPTS or a normal uplink subframe.
  • the determining unit 201 may be specifically configured to:
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used to transmit the uplink data in the next adjacent uplink subframe of the SRS subframe, it is determined that the SRS is not transmitted in the SRS subframe. ;or,
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used for transmitting the uplink data in the next adjacent uplink subframe of the SRS subframe, and the next adjacent uplink of the SRS subframe If there is an uplink data transmission in the subframe, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS partially overlaps with the narrowband used to transmit the uplink data in the next adjacent uplink subframe of the SRS subframe, it is determined that the transmission is not transmitted in the SRS subframe.
  • the transmission frequency domain resource in the SRS is determined.
  • the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband used to transmit the uplink data; or,
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the uplink data in the subsequent adjacent uplink subframe of the SRS subframe, and the next neighbor of the SRS subframe If there is an uplink data transmission in the uplink subframe, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the uplink data in the subsequent adjacent uplink subframe of the SRS subframe, and the next neighbor of the SRS subframe If there is an uplink data transmission in the uplink subframe, it is determined that the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband used to transmit the uplink data in the transmission frequency domain resource of the SRS.
  • the determining unit 201 may be specifically configured to:
  • the uplink channel transmitted in the next adjacent uplink subframe of the SRS subframe is a physical random access channel PRACH, then:
  • the transmission frequency domain resource of the SRS does not overlap with the narrowband used to transmit the PRACH in the next adjacent uplink subframe of the SRS subframe, and the time corresponding to the SRS subframe is advanced If the TA value is less than the adjusted Retuning time, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the PRACH in the subsequent adjacent uplink subframe of the SRS subframe, and the TA corresponding to the SRS subframe If the value is less than the adjusted Retuning time, it is determined that the SRS is not transmitted in the SRS subframe; or
  • the transmission frequency domain resource of the SRS overlaps with the narrowband used to transmit the PRACH in the subsequent adjacent uplink subframe of the SRS subframe, and the TA corresponding to the SRS subframe If the value is less than the adjusted Retuning time, it is determined that the SRS is not transmitted on the frequency domain resource that does not overlap with the narrowband used to transmit the uplink data in the transmission frequency domain resource of the SRS.
  • the determining unit 201 may be specifically configured to:
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe If there is an uplink data transmission in a narrowband and a narrowband for transmitting uplink data in a subsequent adjacent uplink subframe of the SRS subframe, determining that the SRS is not transmitted in the SRS subframe; or
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe And determining, in the SRS sub-segment, that there is an uplink data transmission on a narrowband that does not overlap with a transmission frequency domain resource of the SRS in a narrowband and a subsequent one of the neighboring uplink subframes of the SRS subframe.
  • SRS is not transmitted in the frame; or,
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe
  • the narrowband and the narrowband of the downlink adjacent data in the subsequent adjacent uplink subframe of the SRS subframe where there is an uplink data transmission on a narrowband partially overlapping the transmission frequency domain resource of the SRS, and determining the SRS in the SRS SRS is not transmitted in a subframe;
  • the narrowband for transmitting uplink data in the SRS subframe is different from the narrowband for transmitting uplink data in the next adjacent uplink subframe of the SRS subframe, and used for transmitting uplink data in the SRS subframe
  • the narrowband and the narrowband of the downlink adjacent data in the subsequent adjacent uplink subframe of the SRS subframe where there is an uplink data transmission on a narrowband partially overlapping the transmission frequency domain resource of the SRS, and determining the SRS in the SRS
  • the SRS is not transmitted on the frequency domain resource in the transmission frequency domain resource that does not overlap with the narrow band in which the uplink data transmission exists.
  • the determining unit 201 may be specifically configured to:
  • the transmission frequency domain resource of the SRS in the UpPTS does not overlap with the narrowband used to transmit the downlink data in the DwPTS, it is determined that the SRS is not transmitted in the UpPTS of the special subframe; or
  • the transmission frequency domain resource of the SRS in the UpPTS is used for transmission in the DwPTS
  • the narrowband of the downlink data is not overlapped, and the downlink data transmission exists in the DwPTS, and it is determined that the SRS is not transmitted in the UpPTS of the special subframe; or
  • the transmission frequency domain resource of the SRS in the UpPTS partially overlaps with the narrowband used to transmit the downlink data in the DwPTS, it is determined that the DwPTS is not in the transmission frequency domain resource of the SRS.
  • the SRS is not transmitted on the frequency domain resources in which the narrowband with the downlink data is transmitted; or
  • the transmission frequency domain resource of the SRS in the UpPTS partially overlaps with the narrowband for transmitting downlink data in the DwPTS, and the downlink data transmission exists in the DwPTS, determining the transmission in the SRS The SRS is not transmitted on the frequency domain resource in the frequency domain resource that does not overlap with the narrowband used to transmit the downlink data in the DwPTS.
  • the determining unit 201 may be specifically configured to:
  • the narrowband for transmitting downlink data in the DwPTS of the special subframe of the TDD system is different from the narrowband for transmitting uplink data in the subsequent adjacent uplink subframe of the special subframe, and the DwPTS of the special subframe is And if there is data transmission in the next adjacent uplink subframe of the special subframe, it is determined that the SRS is not transmitted in the UpPTS of the special subframe.
  • the embodiment of the present application further provides a terminal.
  • the structure of the terminal may include: a processor 301, a memory 302, a transceiver 303, and a bus interface.
  • the processor 301 is responsible for managing the bus architecture and general processing, and the memory 302 can store data used by the processor 301 in performing operations.
  • the transceiver 303 is configured to receive and transmit data under the control of the processor 301.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 301 and various circuits of memory represented by memory 302.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 303 can be a plurality of components. That is, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 301 is responsible for managing the bus architecture and general processing, and the memory 302 can store data used by the processor 301 in performing operations.
  • the SRS transmission procedure disclosed in the embodiment of the present application may be applied to the processor 301 or implemented by the processor 301.
  • each step of the SRS transmission process may be completed by an integrated logic circuit of hardware in the processor 301 or an instruction in the form of software.
  • the processor 301 can be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or a transistor logic device, and a discrete hardware component, which can be implemented or executed in the embodiment of the present application.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 302.
  • the processor 301 reads the information in the memory 302 and combines the hardware to complete the steps of the SRS transmission process provided by the foregoing embodiment.
  • the processor 301 is configured to read a program in the memory 302 and execute the SRS transmission process described in the foregoing embodiment.
  • the processor 301 is configured to read a program in the memory 302 and execute the SRS transmission process described in the foregoing embodiment.
  • the SRS transmission process described in the foregoing embodiment.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种SRS传输方法及装置。本申请中,终端可根据SRS的传输频域资源与用于传输数据的窄带是否重叠,或者根据相邻的用于数据传输的窄带是否相同,确定是否传输SRS。本申请尤其适用于窄带终端的SRS传输。

Description

一种SRS传输方法及装置
本申请要求在2015年11月06日提交中国专利局、申请号为201510752428.6、申请名称为“一种SRS传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种SRS传输方法及装置。
背景技术
随着物联网的兴起,在LTE(Long Term Evolution,长期演进)系统中支持MTC(Machine Type Communication,机器类通信)越来越受到重视。一台MTC设备(MTC终端)可能具有多种M2M(Machine to Machine,机器与机器)通信特性之中的部分特性,如低移动性、传输数据量小、对通信时延不敏感、要求极低功耗等特征。其中,为了降低MTC终端的成本,新定义一种终端类型,其上行和下行均只支持1.4MHz射频带宽。
由于MTC终端只能工作在有限带宽上,在系统频带上会对MTC终端定义若干个窄带(narrowband),每个窄带包含有限个PRB(Physical Resource Block,物理资源块)。具体的,每个窄带包含6个PRB。MTC终端的上行传输和下行传输只能在其中一个窄带上进行。当终端需要从一个窄带跳转到另一个窄带传输时,需要有一定的调整(retuning)时间供终端的射频等器件从一个频带调整到另一个频带。
SRS(Sounding Reference Symbol,探测用参考符号)在高层信令预先配置的SRS子帧中的最后一个SC-FDMA符号上传输。对于TDD系统,当SRS在特殊子帧中传输时,可以在一个或两个UpPTS符号中传输。在频域上,SRS的传输带宽由高层信令预先配置,为4个PRB的整数倍。SRS支持在系统SRS带宽内的跳频传输,是否支持跳频由高层信令配置。当开启SRS跳频传输时,SRS会按照固定的跳频格式,在不同的SRS子帧中选择不同的频域位置进行传输。
SRS可以与PUCCH/PUSCH在同一个子帧中传输,其中PUCCH(Physical Uplink Control Channel,物理上行控制信道)和PUSCH(Physical Uplink Shared Channel,物理上行共享信道)的最后一个符号空置不传输数据,用于SRS传输。在low complexity(低复杂度)MTC系统中,由于SRS的传输频域位置和PUCCH/PUSCH的传输窄带可以独立确定,且当SRS支持跳频时,不同SRS子帧中的SRS的传输频域位置也不相同,因此,SRS的传输频域位置和与之相邻的PUCCH/PUSCH传输所在的窄带在频域上可能并不重叠,由 于low complexity MTC的发送和接收带宽受限,不能在同一时刻在不同窄带位置收发信号,不同窄带之间需要retuning时间来进行射频器件对不同频域位置的调整,因此现有技术中的SRS传输规则不再适用于low complexity MTC系统。
发明内容
为此目的,本申请实施例提供一种SRS传输方法及装置。
本申请实施例提供的一种SRS传输方法,包括:
根据SRS的传输频域资源与用于传输数据的窄带是否重叠,或者根据相邻的用于数据传输的窄带是否相同,确定是否传输SRS。
可选的,所述根据SRS的传输频域资源与用于传输数据的窄带是否重叠,确定是否传输SRS,包括:
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
可选的,所述根据SRS的传输频域资源与用于传输数据的窄带是否重叠,确定是否传输SRS,包括:
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数 据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
其中,若所述SRS子帧的后一个相邻上行子帧中传输的上行信道为物理随机接入信道PRACH,则所述根据SRS的传输频域资源与用于传输数据的窄带是否重叠,确定是否传输SRS,包括:
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带没有重叠,且所述SRS子帧所对应的时间提前TA值小于调整Retuning时间,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带存在部分重叠,且所述SRS子帧所对应的TA值小于调整Retuning时间,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带存在部分重叠,且所述SRS子帧所对应的TA值小于调整Retuning时间,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
可选的,所述根据相邻的用于数据传输的窄带是否相同,确定是否传输SRS,包括:
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS 子帧的后一个相邻上行子帧中用于传输上行数据的窄带中都存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源没有重叠的窄带上存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述存在上行数据传输的窄带存在重叠的频域资源上不传输SRS。
可选的,所述根据SRS的传输频域资源与用于传输数据的窄带是否重叠,确定是否传输SRS,包括:
在时分双工TDD系统的特殊子帧中,若上行导频时隙UpPTS中的SRS的传输频域资源与下行导频时隙DwPTS中用于传输下行数据的窄带没有重叠,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带没有重叠,且所述DwPTS存在下行数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且所述DwPTS存在下行数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述DwPTS 中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且所述DwPTS存在下行数据传输,则确定在所述SRS的传输频域资源中未与所述DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS。
可选的,所述根据相邻的用于数据传输的窄带是否相同,确定是否传输SRS,包括:
若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与所述特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与所述特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且所述特殊子帧的DwPTS中以及所述特殊子帧的后一个相邻上行子帧中均存在数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS。
可选的,所述上行数据包括以下上行信道中的一种或多种信道所传输的数据:PUCCH、PUSCH、PRACH、PBCH、PMCH。
可选的,所述下行数据包括以下下行信道中的一种或多种信道所传输的数据:PDSCH、M-PDCCH。
可选的,所述SRS子帧为窄带终端专属的子帧,所述SRS子帧包括UpPTS或普通上行子帧。
本申请实施例提供的一种SRS传输装置,包括:
确定单元,用于根据SRS的传输频域资源与用于传输数据的窄带是否重叠,或者根据相邻的用于数据传输的窄带是否相同,确定是否传输SRS。
可选的,所述确定单元具体用于:
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠, 则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
可选的,所述确定单元具体用于:
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
可选的,所述确定单元具体用于:
若所述SRS子帧的后一个相邻上行子帧中传输的上行信道为物理随机接入信道PRACH,则:
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带没有重叠,且所述SRS子帧所对应的时间提前TA值小于调整Retuning时间,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带存在部分重叠,且所述SRS子帧所对应的TA值小于调整Retuning时间,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带存在部分重叠,且所述SRS子帧所对应的TA值小于调整Retuning时间,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
可选的,所述确定单元具体用于:
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中都存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源没有重叠的窄带上存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述存在上行数据传输的窄带存在重叠的频域资源上不传输SRS。
可选的,所述确定单元具体用于:
在时分双工TDD系统的特殊子帧中,若上行导频时隙UpPTS中的SRS的传输频域资源与下行导频时隙DwPTS中用于传输下行数据的窄带没有重叠,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带没有重叠,且所述DwPTS存在下行数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且所述DwPTS存在下行数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且所述DwPTS存在下行数据传输,则确定在所述SRS的传输频域资源中未与所述DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS。
可选的,所述确定单元具体用于:
若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与所述特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与所述特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且所述特殊子帧的DwPTS中以及所述特殊子帧的后一个相邻上行子帧中均存在数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS。
可选的,所述上行数据包括以下上行信道中的一种或多种信道所传输的数据:PUCCH、PUSCH、PRACH。
可选的,所述下行数据包括以下下行信道中的一种或多种信道所传输的数据:PDSCH、M-PDCCH、PBCH、PMCH。
可选的,所述SRS子帧为窄带终端专属的子帧,所述SRS子帧包括UpPTS或普通上行子帧。
本申请实施例还提供了一种探测参考信号SRS传输装置,包括:处理器、存储器和收发机;
处理器,用于读取存储器中的程序执行下列过程:
根据SRS的传输频域资源与用于传输数据的窄带是否重叠,或者根据相邻的用于数据传输的窄带是否相同,确定是否传输SRS;
收发机,用于在处理器的控制下接收和发送数据。
可选的,所述处理器具体用于:
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
可选的,所述处理器具体用于:
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用 于传输上行数据的窄带存在部分重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
可选的,所述处理器具体用于:
若所述SRS子帧的后一个相邻上行子帧中传输的上行信道为物理随机接入信道PRACH,则:
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带没有重叠,且所述SRS子帧所对应的时间提前TA值小于调整Retuning时间,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带存在部分重叠,且所述SRS子帧所对应的TA值小于调整Retuning时间,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带存在部分重叠,且所述SRS子帧所对应的TA值小于调整Retuning时间,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
可选的,所述处理器具体用于:
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中都存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源没有重叠的窄带上存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用 于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述存在上行数据传输的窄带存在重叠的频域资源上不传输SRS。
可选的,所述处理器具体用于:
在时分双工TDD系统的特殊子帧中,若上行导频时隙UpPTS中的SRS的传输频域资源与下行导频时隙DwPTS中用于传输下行数据的窄带没有重叠,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带没有重叠,且所述DwPTS存在下行数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且所述DwPTS存在下行数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且所述DwPTS存在下行数据传输,则确定在所述SRS的传输频域资源中未与所述DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS。
可选的,所述处理器具体用于:
若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与所述特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与所述特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且所述特殊子帧的DwPTS中以及所述特殊子帧的后一个相邻上行子帧中均存在数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS。
可选的,所述上行数据包括以下上行信道中的一种或多种信道所传输的数据:物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH。
可选的,所述下行数据包括以下下行信道中的一种或多种信道所传输的数据:物理下行共享信道PDSCH、机器类通信物理下行控制信道M-PDCCH、物理广播信道PBCH、物理多播信道PMCH。
可选的,所述SRS子帧为窄带终端专属的子帧,所述SRS子帧包括UpPTS或普通上行子帧。
本申请的上述实施例中,终端可根据SRS的传输频域资源与用于传输数据的窄带是否重叠,或者根据相邻的用于数据传输的窄带是否相同,确定是否传输SRS,即提供了一种新的SRS传输规则,尤其在将本申请实施例应用于low complexity MTC(低复杂度MTC)系统时,填补了目前尚未有明确的SRS传输规则的空白。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的SRS传输流程示意图;
图2为本申请实施例提供的终端的结构示意图;
图3为本申请另一实施例提供的终端的结构示意图。
具体实施方式
如前所述,在low complexity MTC系统中,由于SRS的传输频域位置和PUCCH/PUSCH的传输窄带可以独立确定,且当SRS支持跳频时,不同SRS子帧中的SRS的传输频域位置也不相同,因此,SRS的传输频域位置和与之相邻的PUCCH/PUSCH传输所在的窄带在频域上可能并不重叠,由于low complexity MTC的发送和接收带宽受限,不能在同一时刻在不同窄带位置收发信号,不同窄带之间需要retuning时间来进行射频器件 对不同频域位置的调整,因此现有技术中的SRS传输规则不再适用于low complexity MTC系统,需要对low complexity MTC终端的SRS传输定义新的传输规则。
为此目的,本申请实施例提供了一种SRS传输方案。本申请实施例提供的SRS传输方案可以应用于多种通信系统,比如LTE系统以及后续演进系统,尤其适合应用于窄带终端传输SRS的场景。
其中,所述的窄带终端是相对于射频宽度为20MHz的终端而言的,窄带终端的射频带宽小于20MHz,比如窄带终端可以是仅支持1.4MHz射频带宽的MTC终端。
下面以窄带终端传输SRS的场景为例,对本申请实施例提供的SRS传输方案进行详细说明。若不特别声明,以下实施例中的终端是指仅支持1.4MHz射频带宽的MTC终端。
参见图1,为本申请实施例提供的SRS传输流程示意图,该流程可由终端执行。
如图所示,该流程可包括如下步骤:
步骤101:根据SRS的传输频域资源与用于传输数据的窄带是否重叠,或者根据相邻的用于数据传输的窄带是否相同,确定是否传输SRS。
其中,确定是否传输SRS的结果可包括几种可能:
-确定不传输SRS(即drop SRS);
-确定传输SRS;
-确定在SRS的部分传输频域资源上传输SRS,在另外的部分传输频域资源上不传输SRS(即部分drop SRS)。
其中,步骤101中用于确定是否传输SRS的方式,可包括以下几种方式中的一种或者多种的组合:
方式1:根据一个SRS子帧中的SRS传输频域资源与该SRS子帧中用于传输上行数据的窄带之间是否重叠,来确定是否在该SRS子帧中传输SRS;
方式2:根据一个SRS子帧中的SRS传输频域资源与该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带之间是否重叠,来确定是否在该SRS子帧中传输SRS;
方式3:根据相邻的用于上行数据传输的窄带是否相同,来确定是否在该SRS子帧中传输SRS;
方式4:根据一个TDD(Time Division Duplexing,时分双工)系统的特殊子帧中的SRS传输频域资源与该特殊子帧中用于传输下行数据的窄带之间是否重叠,来确定是否在该特殊子帧中传输SRS;
方式5:根据一个TDD系统的特殊子帧中用于传输下行数据的窄带与该特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带是否相同,来确定是否在该特殊子帧中传 输SRS。
上述这几种方式中,所述的SRS子帧可以是窄带终端专属的子帧,所述的SRS子帧可包括UpPTS或普通上行子帧。
上述这几种方式中,所述的上行数据可通过上行信道进行传输,相应地,该上行信道可包括以下信道中的一种或多种:PUCCH、PUSCH、PRACH(Physical Random Access Channel,物理随机接入信道)。其中,PRACH主要是用于非竞争的。
上述这几种方式中,所述的下行数据可通过下行信道进行传输,相应地,该下行信道可包括以下信道中的一种或多种:PDSCH(Physical Downlink Shared Channel,物理下行共享信道)、M-PDCCH(MTC Physical Downlink Control Channel,MTC物理下行控制信道)、PBCH(Physical Broadcast Channel,物理广播信道)、PMCH(Physical Multicast Channel,物理多播信道)。其中,M-PDCCH可以是为窄带终端定义的下行控制信道。
上述流程中,所述的“重叠”是指在频域上是否重叠,比如对于频域范围A和频域范围B来说,如果频域范围A的部分取值与频域范围B的部分取值相同,则认为频域范围A和频域范围B存在重叠,或称存在部分重叠,如果频域范围A的全部取值与频域范围B的全部取值都不相同,则认为频域范围A和频域范围B没有重叠;具体的,上述频域范围可以是PRB集合。
进一步地,在确定出是否传输SRS之后,还可包括以下步骤(如图中的虚线框所示):
步骤102:若通过步骤101确定出传输SRS,则在SRS的传输频域资源上传输SRS;否则,放弃SRS传输。或者,也可以通过步骤101的确定结果,在SRS的部分传输频域资源上传输SRS,在另外的部分传输频域资源上drop SRS。
下面分别对上述方式1至方式5的优选实现方式进行详细描述。
方式1
方式1中,终端可根据一个SRS子帧中的SRS传输频域资源与该SRS子帧中用于传输上行数据的窄带之间是否重叠,来确定是否在该SRS子帧中传输SRS(比如是否drop SRS)。其中,“用于传输上行数据的窄带”也可表述为“用于传输上行信道的窄带”,该上行信道可以包括PUCCH或PUSCH等。
具体地,方式1还可被细分为以下几种实现方式:
方式1-1:在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,则确定在该SRS子帧中不传输SRS。
例如,SRS在上行子帧2中对应在PRB8~PRB11传输,而上行子帧2中的用于传输 上行信道(比如PUCCH或PUSCH,以下同)的窄带为窄带0(PRB2~PRB7)。这种情况下,由于SRS在上行子帧2中传输所在的PRB与上行子帧2中用于传输上行信道的窄带不重叠,则在上行子帧2中不传输SRS(即drop SRS),即,不论上行子帧2中是否实际存在上行信道传输,都不传输SRS。可选地,在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带有重叠,则SRS还是有机会在上行子帧2中传输的,例如,SRS在上行子帧2中对应在PRB2~PRB5传输,此时SRS传输所在的所有PRB都包含在用于传输上行数据的窄带0中,SRS资源与SRS子帧中的上行数据的窄带之间不需要retuning,因此,SRS可以在上行子帧2中传输,或者SRS还需要进一步结合其他方式(例如方式2)做进一步判断是否能够传输,又例如如下方式1-4和1-6中的情况,SRS在部分频域资源上还是有机会传输的。
方式1-2:在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,且SRS子帧中存在上行数据传输,则确定在该SRS子帧中不传输SRS。
例如,SRS在上行子帧2中对应在PRB8~PRB11传输,而上行子帧2中的用于传输上行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,若上行子帧2中确实存在上行信道传输,则不传输SRS。可选地,上述情况下,若上行子帧2中不存在上行信道传输,或者,SRS的传输频域资源与用于传输上行数据的窄带有重叠(具体举例同上述方式1-1中的相应描述),则SRS还是有机会传输的,例如可以直接定义此时SRS可以传输,或者SRS还需要进一步结合其他方式(例如方式2)做进一步判断是否能够传输。
方式1-3:在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在该SRS子帧中不传输SRS。
例如,SRS在上行子帧2中对应在PRB6~PRB9传输,而上行子帧2中的用于传输上行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,由于SRS在上行子帧2中传输所在的PRB与上行子帧2中用于传输上行信道的窄带部分重叠,则在上行子帧2中不传输SRS。
方式1-4:在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在该SRS的传输频域资源中未与该用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
例如,SRS在上行子帧2中对应在PRB6~PRB9传输,而上行子帧2中的用于传输上行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,由于SRS在上行子帧2中传输所在的PRB与上行子帧2中用于传输上行信道的窄带部分重叠,则在上行子帧2中的PRB8和PRB9上不传输SRS,可选地,SRS还是有机会在上行子帧2中的PRB6和PRB7上传输 的,例如可以直接定义此时SRS可以在重叠部分的PRB传输,或者SRS还需要进一步结合其他方式(例如方式2)做进一步判断是否能够在重叠部分的PRB传输。即,不论上行子帧2中是否实际存在上行信道传输,都按照上述方式确定是否传输SRS。
方式1-5:在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且该SRS子帧中存在上行数据传输,则确定在该SRS子帧中不传输SRS。
例如,SRS在上行子帧2中对应在PRB6~PRB9传输,而上行子帧2中的用于传输上行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,若上行子帧2中确实存在上行信道传输,则在上行子帧2中不传输SRS。可选地,上述情况下,若上行子帧2中不存在上行信道传输,则SRS还是有机会在上行子帧2中传输的,例如可以直接定义此时SRS可以传输,或者SRS还需要进一步结合其他方式(例如方式2)做进一步判断是否能够传输。
方式1-6:在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且该SRS子帧中存在上行数据传输,则确定在该SRS的传输频域资源中未与该用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
例如,SRS在上行子帧2中对应在PRB6~PRB9传输,而上行子帧2中的用于传输上行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,若上行子帧2中确实存在上行信道传输,则在上行子帧2中的PRB8和PRB9上不传输SRS,可选地,SRS还是有机会在上行子帧2中的PRB6和PRB7上传输的,例如可以直接定义此时SRS可以在重叠部分的PRB传输,或者SRS还需要进一步结合其他方式(例如方式2)做进一步判断是否能够在重叠部分的PRB传输。可选地,上述情况下,若上行子帧2中不存在上行信道传输,则SRS还是有机会在上行子帧2中传输的,例如可以直接定义此时SRS可以传输,或者SRS还需要进一步结合其他方式(例如方式2)做进一步判断是否能够传输。
方式2
方式2中,终端可根据一个SRS子帧中的SRS传输频域资源与该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带之间是否重叠,来确定是否在该SRS子帧中传输SRS(比如是否drop SRS)。其中,“用于传输上行数据的窄带”也可表述为“用于传输上行信道的窄带”,该上行信道可以包括PUCCH或PUSCH等。
具体地,方式2还可被细分为以下几种实现方式:
方式2-1:在SRS子帧中,若SRS的传输频域资源与该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,则确定在该SRS子帧中不传输SRS。
例如,SRS在上行子帧2中对应在PRB8~PRB11传输,而上行子帧3中的用于传输上行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,由于SRS在上行子帧2中传输所 在的PRB与上行子帧3中用于传输上行信道的窄带不重叠,则在上行子帧2中不传输SRS,即,不论上行子帧3中是否实际存在上行信道传输,都不传输SRS。可选地,在SRS子帧中,若SRS的传输频域资源与该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带有重叠,则SRS还是有机会在上行子帧2中传输的,例如,SRS在上行子帧2中对应在PRB2~PRB5传输,此时SRS传输所在的所有PRB都包含在用于传输上行数据的窄带0中,SRS资源与SRS子帧中的上行数据的窄带之间不需要retuning,因此,SRS可以在上行子帧2中传输,或者SRS还需要进一步结合其他方式(例如方式1)做进一步判断是否能够传输,又例如如下方式2-4和2-6中的情况,SRS在部分频域资源上还是有机会传输的。
方式2-2:在SRS子帧中,若SRS的传输频域资源与该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,且该SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在该SRS子帧中不传输SRS。
例如,SRS在上行子帧2中对应在PRB8~PRB11传输,而上行子帧3中的用于传输上行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,若上行子帧3中确实存在上行信道传输,则在上行子帧2中不传输SRS。可选地,上述情况下,若上行子帧3中不存在上行信道传输,或者,SRS的传输频域资源与用于传输上行数据的窄带有重叠(具体举例同上述方式2-1中的相应描述),则SRS还是有机会在上行子帧2中传输的,例如可以直接定义此时SRS可以传输,或者SRS还需要进一步结合其他方式(例如方式1)做进一步判断是否能够传输。
方式2-3:在SRS子帧中,若SRS的传输频域资源与该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在该SRS子帧中不传输SRS。
例如,SRS在上行子帧2中对应在PRB6~PRB9传输,而上行子帧3中的用于传输上行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,由于SRS在上行子帧2中传输所在的PRB与上行子帧3中用于传输上行信道的窄带部分重叠,则在上行子帧2中不传输SRS。
方式2-4:在SRS子帧中,若SRS的传输频域资源与该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在该SRS的传输频域资源中未与该用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
例如,SRS在上行子帧2中对应在PRB6~PRB9传输,而上行子帧3中的用于传输上行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,在上行子帧2中的PRB8和PRB9上不传输SRS,可选地,SRS还是有机会在上行子帧2中的PRB6和PRB7上传输的,例如可以直接定义此时SRS可以在重叠部分的PRB传输,或者SRS还需要进一步结合其他 方式(例如方式1)做进一步判断是否能够在重叠部分的PRB传输;即不论上行子帧3中是否实际存在上行信道传输,都按照上述方式确定是否传输SRS。
方式2-5:在SRS子帧中,若SRS的传输频域资源与该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且该SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在该SRS子帧中不传输SRS。
例如,SRS在上行子帧2中对应在PRB6~PRB9传输,而上行子帧3中的用于传输上行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,若上行子帧3中确实存在上行信道传输,则在上行子帧2中不传输SRS。可选地,这种情况下,若上行子帧3中不存在上行信道传输,则SRS还是有机会在上行子帧2中传输的,例如可以直接定义此时SRS可以传输,或者SRS还需要进一步结合其他方式(例如方式1)做进一步判断是否能够传输。
方式2-6:在SRS子帧中,若SRS的传输频域资源与该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且该SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在该SRS的传输频域资源中未与该用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
例如,SRS在上行子帧2中对应在PRB6~PRB9传输,而上行子帧3中的用于传输上行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,若上行子帧3中确实存在上行信道传输,则在上行子帧2中的PRB8和PRB9上不传输SRS,可选地,SRS还是有机会在上行子帧2中的PRB6和PRB7上传输的,例如可以直接定义此时SRS可以在重叠部分的PRB传输,或者SRS还需要进一步结合其他方式(例如方式1)做进一步判断是否能够在重叠部分的PRB传输。可选地,该种情况下,若上行子帧3中不存在上行信道传输,则SRS还是有机会在上行子帧2中传输的,例如可以直接定义此时SRS可以传输,或者SRS还需要进一步结合其他方式(例如方式1)做进一步判断是否能够传输。
在一些实施例中,特别的,如果SRS子帧的后一个相邻上行子帧中传输的上行信道为PRACH,则还可以通过以下方式中的一种确定是否传输SRS:
-在SRS子帧中,若SRS的传输频域资源与SRS子帧的后一个相邻上行子帧中用于传输PRACH的窄带没有重叠,且该SRS子帧所对应的TA(时间提前)值小于调整Retuning时间,则确定在该SRS子帧中不传输SRS;其中,调整时间(Retuning时间)是指窄带终端在不同频域位置或窄带之间转移进行数据收发所需要的时间,通常为射频器件从一个频点调整到另一个频点所用的时间,比如,目前认为最多需要2个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号长度,其中包含循环前缀(CP,cyclic prefix)长度。
-在SRS子帧中,若SRS的传输频域资源与该SRS子帧的后一个相邻上行子帧中用于传输PRACH的窄带存在部分重叠,且该SRS子帧所对应的TA值小于调整时间(Retuning时间),则确定在该SRS子帧中不传输SRS;
-在SRS子帧中,若SRS的传输频域资源与该SRS子帧的后一个相邻上行子帧中用于传输PRACH的窄带存在部分重叠,且该SRS子帧所对应的TA值小于调整Retuning时间,则确定在SRS的传输频域资源中未与用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
方式3
方式3中,终端可根据相邻的用于数据传输的窄带是否相同,来确定是否在该SRS子帧中传输SRS(比如是否drop SRS)。具体地,“用于数据传输的窄带”可以是用于传输上行数据的窄带,其中,“用于传输上行数据的窄带”也可表述为“用于传输上行信道的窄带”,该上行信道可以包括PUCCH或PUSCH或PRACH等。
具体地,方式3还可被细分为以下几种实现方式:
方式3-1:若SRS子帧中用于传输上行数据的窄带与该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在该SRS子帧中不传输SRS。
例如,SRS在上行子帧2中对应在PRB8~PRB11传输,而上行子帧2中的用于传输上行信道的窄带为窄带1(PRB8~PRB13)、上行子帧3中的用于传输上行信道的窄带为窄带0(PRB2~PRB7),在判断SRS传输资源与窄带是否重叠之前,先判断相邻上行子帧的窄带是否相同,由于上行子帧2和上行子帧3中的用于传输上行信道的窄带不同,则在上行子帧2中不传输SRS,上行子帧2中的这部分SRS的传输资源可以用作对应相邻上行子帧的不同窄带之间的调整时间(retuning)。可选地,若上行子帧2中用于传输上行信道的窄带与上行子帧3中用于传输上行信道的窄带相同,则SRS还是有机会在上行子帧2中传输的,具体是否可以传输,还取决于SRS的传输频域资源与子帧2中用于传输上行信道的窄带之间的关系,具体可以结合方式1做进一步判断,例如,如果上行子帧2和3中的传输上行数据的窄带都为窄带1,SRS的传输PRB包含在窄带1中,则SRS是可以传输的,如果上行子帧2和3中的传输上行数据的窄带都为窄带0,SRS的传输PRB与窄带0没有重叠,则SRS不能传输,如果上行子帧2和3中的传输上行数据的窄带都为窄带0,而SRS在上行子帧2中对应在PRB6~PRB9传输,则SRS不能传输或者至少在PRB8/9上不能传输,还可以结合方式1中考虑了子帧2中是否存在上行信道传输的判断方式来进一步判断。
方式3-2:若SRS子帧中用于传输上行数据的窄带与该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在该SRS子帧中用于传输上行数据的窄带和该SRS 子帧的后一个相邻上行子帧中用于传输上行数据的窄带中都存在上行数据传输,则确定在该SRS子帧中不传输SRS。
例如,SRS在上行子帧2中对应在PRB8~PRB11传输,而上行子帧2中的用于传输上行信道的窄带为窄带1(PRB8~PRB13)、上行子帧3中的用于传输上行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,若在上行子帧2中的窄带1以及在上行子帧3中的窄带0上均存在上行数据传输,则在上行子帧2中不传输SRS。可选地,若在上行子帧2中的窄带1或在上行子帧3中的窄带0上不存在上行数据传输,则SRS还是有机会在上行子帧2中传输的,例如,如果上行子帧3中不存在数据传输,而SRS的PRB包含在上行子帧2中用于传输上行信道的窄带1中,即上行子帧2中的上行信道和SRS之间不需要retuning,上行子帧3虽然窄带与子帧2不同,但不存在信道传输时不需要使用SRS所在的OFDM符号进行retuning,因此SRS可以在上行子帧2中传输,而且此时不论上行子帧2中是否存在数据传输,SRS都可以在上行子帧2中传输,又例如,假设上行子帧2用于传输上行信道的窄带为窄带0,上行子帧3用于传输上行信道的窄带为窄带1,SRS的PRB包含在上行子帧3中用于传输上行信道的窄带1中,但由于上行子帧2中不存在信道传输,可以利用上行子帧2中的SRS之前的空闲OFDM符号进行retuning,且SRS和上行子帧3中的上行信道之间不需要retuning,因此SRS可以在上行子帧2中传输。可选的,当上行子帧2和上行子帧3中的窄带相同时,SRS还是有机会在上行子帧2中传输的,具体是否可以传输,还取决于SRS的传输频域资源与子帧2中用于传输上行信道的窄带之间的关系,具体可以结合方式1做进一步判断,例如同方式3-1中描述的例子,或者结合方式1中考虑了子帧2中是否存在上行信道传输的判断方式来进一步判断。
方式3-3:若SRS子帧中用于传输上行数据的窄带与该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在该SRS子帧中用于传输上行数据的窄带和该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与SRS的传输频域资源没有重叠的窄带上存在上行数据传输,则确定在该SRS子帧中不传输SRS。
例如,SRS在上行子帧2中对应在PRB8~PRB11传输,而上行子帧2中的用于传输上行信道的窄带为窄带1(PRB8~PRB13)、上行子帧3中的用于传输上行信道的窄带为窄带0(PRB2~PRB7),其中,上行子帧3中的窄带0与SRS的传输频域资源不存在重叠。这种情况下,若在上行子帧3的窄带0上存在上行信道传输,则在上行子帧2中不传输SRS。可选地,在上述假设中,若在上行子帧3中的窄带0上不存在上行数据传输,则SRS还是有机会在上行子帧2中传输的,例如如上假设中,SRS的PRB包含在上行子帧2的窄带1中,因此SRS与上行子帧2中的上行信道之间不需要retuning,而在子帧3中不存在上行 信道传输时,不需要占用SRS所在的OFDM符号进行不同窄带间的retuning,因此此时SRS可以在上行子帧2中传输。可选的,当上行子帧2和上行子帧3中的窄带相同时,SRS还是有机会在上行子帧2中传输的,具体是否可以传输,还取决于SRS的传输频域资源与子帧2中用于传输上行信道的窄带之间的关系,具体可以结合方式1做进一步判断,例如同方式3-1中描述的例子,或者结合方式1中考虑了子帧2中是否存在上行信道传输的判断方式来进一步判断。
方式3-4:若SRS子帧中用于传输上行数据的窄带与该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在该SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在该SRS子帧中不传输SRS。
例如,SRS在上行子帧2中对应在PRB6~PRB9传输,而上行子帧2中的用于传输上行信道的窄带为窄带1(PRB8~PRB13)、上行子帧3中的用于传输上行信道的窄带为窄带0(PRB2~PRB7),其中,上行子帧2中的窄带1以及上行子帧3中的窄带0分别与SRS的传输频域资源存在部分重叠。这种情况下,若在上行子帧2中的窄带1上以及上行子帧3的窄带0上均存在上行信道传输,则在上行子帧2中不传输SRS。可选地,若在上行子帧2中的窄带1上和/或在上行子帧3中的窄带0上不存在上行数据传输,则SRS还是有机会在上行子帧2中传输的,例如,当上行子帧2中的窄带1上不存在上行数据传输时,则SRS在PRB6和7上不需要与上行子帧3中的窄带0之间进行retuning,可以利用上行子帧2中SRS之前的OFDM符号从窄带0retuning到窄带1,因此SRS可以在PRB6和7上传输,此时不论上行子帧3中的窄带0上是否存在上行数据传输,SRS都可以在PRB6和7上传输,又例如,当上行子帧3中的窄带0上不存在上行数据传输时,SRS在PRB8和9上不需要与上行子帧2中的窄带1之间进行retuning,上行子帧3中不存在上行信道传输时,也不需要占用子帧2中的SRS位置进行窄带1和窄带0之间的retuning,因此SRS可以在PRB8和9上传输,此时不论上行子帧2中的窄带1上是否存在上行数据传输,SRS都可以在PRB8和9上传输,又例如,当上行子帧2中的窄带1和上行子帧3中的窄带0上都不存在上行数据传输时,可以上述情况2选1,即可以选择SRS在PRB6和7上传输,或者选择SRS在PRB8和9上传输,但由于窄带终端只能按照定义的窄带进行收发,因此不会同时在窄带0、1上发送,因此不同同时在PRB6、7和8、9上发SRS。可选的,当上行子帧2和上行子帧3中的窄带相同时,SRS还是有机会在上行子帧2中传输的,具体是否可以传输,还取决于SRS的传输频域资源与子帧2中用于传输上行信道的窄带之间的关系,具体可以结合方式1做进一步判断,例如同方式3-1中描述的例子,或者结合方式1 中考虑了子帧2中是否存在上行信道传输的判断方式来进一步判断。
方式3-5:若SRS子帧中用于传输上行数据的窄带与该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在该SRS子帧中用于传输上行数据的窄带和该SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在SRS的传输频域资源中未与存在上行数据传输的窄带存在重叠的频域资源上不传输SRS。
例如,SRS在上行子帧2中对应在PRB12~PRB15传输,而上行子帧2中的用于传输上行信道的窄带为窄带1(PRB8~PRB13)、上行子帧3中的用于传输上行信道的窄带为窄带0(PRB2~PRB7),其中,上行子帧2中的窄带1与SRS的传输频域资源存在部分重叠,上行子帧3中的窄带0与SRS的传输频域资源没有重叠。这种情况下,若在上行子帧2的窄带1上在上行信道传输,则在上行子帧2中在PRB14和15上不传输SRS,进一步地,SRS在上行子帧2中在PRB12和13上还是有机会传输的,具体是否可以传输,还取决于SRS的传输频域资源与子帧3中用于传输上行信道的窄带之间的关系,具体可以结合方式2做进一步判断,例如,直接根据SRS的频域资源与子帧3中的窄带没有重叠,确定不传输SRS,或者,进一步根据子帧3中是否存在上行数据来判断,如果子帧3中存在上行数据,则确定不传输SRS,如果子帧3中没有上行数据,则不需要占用子帧2中的SRS位置进行窄带间的retuning,SRS则可以在与窄带1重叠的PRB12和13上传输。可选地,若在上行子帧2中的窄带1上不存在上行数据传输,则SRS还是有机会在上行子帧2中在PRB12和13上或者在PRB14和15上传输的,具体是否可以传输,还取决于SRS的传输频域资源与子帧3中用于传输上行信道的窄带之间的关系,具体可以结合方式2做进一步判断,例如,直接根据SRS的频域资源与子帧3中的窄带没有重叠,确定不传输SRS,或者,进一步根据子帧3中是否存在上行数据来判断,如果子帧3中存在上行数据,则确定不传输SRS,如果子帧3中没有上行数据,则不需要占用子帧2中的SRS位置进行窄带间的retuning,SRS则可以在与窄带1重叠的PRB12和13上传输,也可以在不与窄带1和0重叠的PRB14和15上传输(此时PRB14和15属于窄带3)。可选的,当上行子帧2和上行子帧3中的窄带相同时,SRS还是有机会在上行子帧2中传输的,具体是否可以传输,还取决于SRS的传输频域资源与子帧2中用于传输上行信道的窄带之间的关系,具体可以结合方式1做进一步判断,例如同方式3-1中描述的例子,或者结合方式1中考虑了子帧2中是否存在上行信道传输的判断方式来进一步判断。
方式4
方式4中,终端可根据一个TDD(Time Division Duplexing,时分双工)系统的特殊 子帧中的SRS传输频域资源与该特殊子帧中用于传输下行数据的窄带之间是否重叠,来确定是否在该特殊子帧中传输SRS(比如是否drop SRS)。其中,“用于传输下行数据的窄带”也可表述为“用于传输下行信道的窄带”,该下行信道可以包括PDSCH、M-PDCCH、PBCH、PMCH等。
具体地,方式4还可被细分为以下几种实现方式:
方式4-1:在TDD系统的特殊子帧中,若UpPTS(Uplink Pilot Time Slot,上行导频时隙)中的SRS的传输频域资源与DwPTS(Downlink Pilot Time Slot,下行导频时隙)中用于传输下行数据的窄带没有重叠,则确定在该特殊子帧的UpPTS中不传输SRS。
例如,SRS在TDD特殊子帧1中的UpPTS部分对应在PRB8~PRB11传输,而特殊子帧1中DwPTS部分中的用于传输下行信道的窄带为窄带0(PRB2~PRB7),由于SRS在特殊子帧1中传输所在的PRB与特殊子帧1中用于传输下行信道的窄带不重叠,则在特殊子帧1中的UpPTS中不传输SRS,即不论特殊子帧1中DwPTS中是否实际存在下行信道传输,都按照上述方式确定是否传输SRS。可选地,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在重叠,则SRS还是有机会在特殊子帧的UpPTS中传输的,例如当SRS资源包含在DwPTS中用于传输下行数据的窄带中时,可以传输SRS,当sRS资源与DwPTS中用于传输下行数据的窄带粗壮呢部分重叠时,如方式4-5或4-6所示,SRS仅在部分PRB上不传输,剩余PRB上还有机会传输,或者进一步结合其他方式(例如方式2)做进一步判断,具体举例类似于上述方式,不再赘述。
方式4-2:在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带没有重叠,且该DwPTS存在下行数据传输,则确定在该特殊子帧的UpPTS中不传输SRS。
例如,SRS在TDD特殊子帧1中的UpPTS部分对应在PRB8~PRB11传输,而特殊子帧1中DwPTS部分中的用于传输下行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,若该DwPTS存在下行信道传输,则在特殊子帧1中的UpPTS中不传输SRS。可选地,若DwPTS不存在下行信道传输,则SRS还是有机会在特殊子帧的UpPTS中传输的,具体是否能够传输SRS,可以直接定义此时可以传输,或者需进一步结合其他方式(例如方式2)判断。
方式4-3:在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在该特殊子帧的UpPTS中不传输SRS。
例如,SRS在TDD特殊子帧1中的UpPTS部分对应在PRB6~PRB9传输,而特殊子帧1中DwPTS部分中的用于传输下行信道的窄带为窄带0(PRB2~PRB7),由于SRS在 特殊子帧1中传输所在的PRB与特殊子帧1中用于传输下行信道的窄带部分重叠,则在特殊子帧1中的UpPTS中不传输SRS,即不论特殊子帧1中DwPTS中是否实际存在下行信道传输,都按照上述方式确定是否传输SRS。
方式4-4:在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且该DwPTS存在下行数据传输,则确定在该特殊子帧的UpPTS中不传输SRS。
例如,SRS在TDD特殊子帧1中的UpPTS部分对应在PRB6~PRB9传输,而特殊子帧1中DwPTS部分中的用于传输下行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,若该DwPTS存在下行信道传输,则在特殊子帧1中的UpPTS中不传输SRS。可选地,上述情况下,若该DwPTS不存在下行信道传输,则SRS还是有机会在TDD特殊子帧1中的部分PRB上传输的,具体是否能够传输SRS,可以直接定义此时可以PRB6和7或者PRB8和9上传输,或者需进一步结合其他方式(例如方式2)判断。
方式4-5:在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在SRS的传输频域资源中未与DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS。
例如,SRS在TDD特殊子帧1中的UpPTS部分对应在PRB6~PRB9传输,而特殊子帧1中DwPTS部分中的用于传输下行信道的窄带为窄带0(PRB2~PRB7),由于SRS在特殊子帧1中传输所在的PRB与特殊子帧1中用于传输下行信道的窄带部分重叠,则在特殊子帧1中UpPTS中在PRB8和PRB9上不传输SRS,可选地,SRS还是有机会在PRB6和PRB7上传输的,具体是否能够传输SRS,可以直接定义此时可以PRB6和7上传输,或者需进一步结合其他方式(例如方式2)判断;即不论特殊子帧1中DwPTS中是否实际存在下行信道传输,都按照上述方式确定是否传输SRS。
方式4-6:在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且该DwPTS存在下行数据传输,则确定在SRS的传输频域资源中未与该DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS。
例如,SRS在TDD特殊子帧1中的UpPTS部分对应在PRB6~PRB9传输,而特殊子帧1中DwPTS部分中的用于传输下行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,若该DwPTS存在下行信道传输,则在特殊子帧1中UpPTS中在PRB8和PRB9上不传输SRS,可选地,SRS还是有机会在PRB6和PRB7上传输的,具体是否能够传输SRS,可以直接定义此时可以PRB6和7上传输,或者需进一步结合其他方式(例如方式2)判断。 可选地,上述情况下,若该DwPTS不存在下行信道传输,则SRS还是有机会在TDD特殊子帧1中在PRB6和7或者PRB8和9上传输的,具体是否能够传输SRS,可以直接定义此时可以PRB6和7或者PRB8和9上传输,或者需进一步结合其他方式(例如方式2)判断。
方式5
方式5中,终端可根据一个TDD系统的特殊子帧中用于传输下行数据的窄带与该特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带是否相同,来确定是否在该特殊子帧中传输SRS(比如是否drop SRS)。其中,“用于传输下行数据的窄带”也可表述为“用于传输下行信道的窄带”,该下行信道可以包括PDSCH、M-PDCCH等;“用于传输上行数据的窄带”也可表述为“用于传输上行信道的窄带”,该上行信道可以包括PUCCH或PUSCH等。
具体地,方式5还可被细分为以下几种实现方式:
方式5-1:若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与该特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在该特殊子帧的UpPTS中不传输SRS。
例如,SRS在TDD特殊子帧1中的UpPTS部分对应在PRB8~PRB11传输,而特殊子帧1中DwPTS部分中的用于传输下行信道的窄带为窄带0(PRB2~PRB7),特殊子帧1之后的相邻上行子帧2中用于传输上行信道的窄带为窄带1(PRB8~13)。这种情况下,由于特殊子帧1中DwPTS部分用于传输下行信道的窄带与上行子帧2中用于传输上行信道的窄带不重叠,则在特殊子帧1中UpPTS中不传输SRS,即,不论特殊子帧1中DwPTS和上行子帧2中是否实际存在信道传输,都按照上述方式确定是否传输SRS。可选地,若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与该特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带相同,则SRS还是有机会在该特殊子帧的UpPTS中传输的,具体是否能够传输SRS,还需要看SRS的传输频域资源与窄带之间的关系,需进一步结合其他方式(例如方式2、4)判断。
方式5-2:若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与该特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且该特殊子帧的DwPTS中以及该特殊子帧的后一个相邻上行子帧中均存在数据传输,则确定在该特殊子帧的UpPTS中不传输SRS。
例如,SRS在TDD特殊子帧1中的UpPTS部分对应在PRB8~PRB11传输,而特殊子帧1中DwPTS部分中的用于传输下行信道的窄带为窄带0(PRB2~PRB7),特殊子帧1 之后的相邻上行子帧2中用于传输上行信道的窄带为窄带1(PRB8~13)。这种情况下,若该特殊子帧的DwPTS中以及上行子帧2中均存在数据传输,则在特殊子帧1中UpPTS中不传输SRS。可选地,上述情况下,若该特殊子帧的DwPTS中或上行子帧2中不存在数据传输,则SRS还是有机会在该特殊子帧的UpPTS中传输的,具体是否能够传输SRS,还需要看SRS的传输频域资源与窄带之间的关系,需进一步结合其他方式(例如方式2、4)判断。
可选的,上述方式4和方式5可用于当GP(保护间隔)配置的OFDM符号个数中不包含retuning时间的配置场景,即,该配置场景下,GP的时间长度仅用支持下行到上行的切换时间以及上行发送时间提前量时间,并未包含retuning时间。
可选的,上述方式1、方式2和方式3可适用于FDD(Frequency Division Duplexing,频分双工)系统和TDD系统。
上述各种方式可以独立使用,也可以结合使用。比如,当上述某一实施例中的判断结果不成立时(例如为重叠或窄带相同时),可以进一步与其他实施例相结合判断是否传输SRS,以体现不同方法的结合。
一种将上述方式1和上述方式2结合使用的例子中,SRS在上行子帧2中对应在PRB8~PRB11传输,而上行子帧2中的用于传输上行信道的窄带为窄带1(PRB8~PRB13)、上行子帧3中的用于传输上行信道的窄带为窄带0(PRB2~PRB7)。这种情况下,由于SRS在上行子帧2中传输所在的PRB包含在上行子帧2中用于传输上行信道的窄带中,但与上行子帧3中用于传输上行信道的窄带没有重叠,则:
在一种例子中,确定上行子帧2中不传输SRS,即不论上行子帧2和上行子帧3中是否实际存在上行信道传输,都不传输SRS;在另一种例子中,若上行子帧3中(所对应的用于数据传输的窄带与SRS的PRB不重叠的子帧)确实存在上行信道传输,则在上行子帧2中不传输SRS,否则SRS还是可以传输的。
另一种多种方式相结合的例子中,在方式3(如方式3-1、方式3-2)中,当相邻上行子帧中的用于传输上行信道的窄带相同时,可以进一步结合方式1或结合方式2,判断是否传输SRS。
另一种多种方式相结合的例子中,在方式4中,DwPTS和UpPTS分别对应的用于传输数据的窄带相同,则可以进一步结合方式2判断是否传输SRS。
另一种多种方式相结合的例子中,在方式5中,当特殊子帧中的用于传输下行信道的窄带与相邻上行子帧中的用于传输上行信道的窄带相同时,可以进一步结合方式2判断是否传输SRS,不再赘述。
另外,一种方式所包含的多个子方式也可以结合使用,例如方式1中的方式1-1和方式1-3可以结合使用,方式1-1和方式1-4可以结合使用,方式1-2和方式1-5可以结合使用,方式1-2和方式1-6可以结合使用,分别针对没有重叠和存在部分重叠的情况进行处理;其他方式中所包含的子方式也可以进行类似的组合使用。
通过以上描述可以看出,本申请实施例提出了一种新的SRS传输规则,尤其适用于窄带终端的SRS传输。
基于相同的技术构思,本申请实施例还提供了一种SRS传输装置。
参见图2,为本申请实施例提供的SRS传输装置,该装置可以是终端,也可以是能够集成在终端内部的硬件和/或软件组件。该装置可包括确定单元201,进一步地,还可包括传输单元202(如图中的虚线框所示),其中:
确定单元201,用于根据SRS的传输频域资源与用于传输数据的窄带是否重叠,或者根据相邻的用于数据传输的窄带是否相同,确定是否传输SRS。
其中,确定是否传输SRS的结果可包括几种可能:
-确定不传输SRS(即drop SRS);
-确定传输SRS;
确定在SRS的部分传输频域资源上传输SRS,在另外的部分传输频域资源上不传输SRS(即部分drop SRS)。
传输单元202可用于根据确定单元201的确定结果进行SRS传输,比如,传输单元202可能的处理操作可包括:若确定出传输SRS,则在SRS的传输频域资源上传输SRS;否则,放弃SRS传输。或者,也可以在SRS的部分传输频域资源上传输SRS,在另外的部分传输频域资源上drop SRS。
可选的,确定单元201可具体用于:
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
其中,所述SRS子帧为窄带终端专属的子帧,所述SRS子帧包括UpPTS或普通上行子帧。
可选的,确定单元201可具体用于:
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
可选的,确定单元201可具体用于:
若所述SRS子帧的后一个相邻上行子帧中传输的上行信道为物理随机接入信道PRACH,则:
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带没有重叠,且所述SRS子帧所对应的时间提前TA值小于调整Retuning时间,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带存在部分重叠,且所述SRS子帧所对应的TA值小于调整Retuning时间,则确定在所述SRS子帧中不传输SRS;或者,
在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带存在部分重叠,且所述SRS子帧所对应的TA值小于调整Retuning时间,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
可选的,确定单元201可具体用于:
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中都存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源没有重叠的窄带上存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述存在上行数据传输的窄带存在重叠的频域资源上不传输SRS。
可选的,确定单元201可具体用于:
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带没有重叠,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传 输下行数据的窄带没有重叠,且所述DwPTS存在下行数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且所述DwPTS存在下行数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS;或者,
在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且所述DwPTS存在下行数据传输,则确定在所述SRS的传输频域资源中未与所述DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS。
可选的,确定单元201可具体用于:
若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与所述特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与所述特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且所述特殊子帧的DwPTS中以及所述特殊子帧的后一个相邻上行子帧中均存在数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS。
基于相同的技术构思,本申请实施例还提供了一种终端。
参见图3,为本申请实施例提供的终端的结构,该终端可包括:处理器301、存储器302、收发机303以及总线接口。
处理器301负责管理总线架构和通常的处理,存储器302可以存储处理器301在执行操作时所使用的数据。收发机303用于在处理器301的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器301代表的一个或多个处理器和存储器302代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机303可以是多个元件, 即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器301负责管理总线架构和通常的处理,存储器302可以存储处理器301在执行操作时所使用的数据。
本申请实施例揭示的SRS传输流程,可以应用于处理器301中,或者由处理器301实现。在实现过程中,SRS传输流程的各步骤可以通过处理器301中的硬件的集成逻辑电路或者软件形式的指令完成。处理器301可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器302,处理器301读取存储器302中的信息,结合其硬件完成前述实施例提供的SRS传输流程的步骤。
具体地,处理器301,用于读取存储器302中的程序,执行前述实施例描述的SRS传输流程。该流程的具体实现方式可参见前述实施例,在此不再赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种探测参考信号SRS传输方法,其特征在于,包括:
    根据SRS的传输频域资源与用于传输数据的窄带是否重叠,或者根据相邻的用于数据传输的窄带是否相同,确定是否传输SRS。
  2. 如权利要求1所述的方法,其特征在于,所述根据SRS的传输频域资源与用于传输数据的窄带是否重叠,确定是否传输SRS,包括:
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
  3. 如权利要求1所述的方法,其特征在于,所述根据SRS的传输频域资源与用于传输数据的窄带是否重叠,确定是否传输SRS,包括:
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述用于 传输上行数据的窄带存在重叠的频域资源上不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
  4. 如权利要求3所述的方法,其特征在于,若所述SRS子帧的后一个相邻上行子帧中传输的上行信道为物理随机接入信道PRACH,则所述根据SRS的传输频域资源与用于传输数据的窄带是否重叠,确定是否传输SRS,包括:
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带没有重叠,且所述SRS子帧所对应的时间提前TA值小于调整Retuning时间,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带存在部分重叠,且所述SRS子帧所对应的TA值小于调整Retuning时间,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带存在部分重叠,且所述SRS子帧所对应的TA值小于调整Retuning时间,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
  5. 如权利要求1所述的方法,其特征在于,所述根据相邻的用于数据传输的窄带是否相同,确定是否传输SRS,包括:
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在所述SRS子帧中不传输SRS;或者,
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中都存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS 子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源没有重叠的窄带上存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述存在上行数据传输的窄带存在重叠的频域资源上不传输SRS。
  6. 如权利要求1所述的方法,其特征在于,所述根据SRS的传输频域资源与用于传输数据的窄带是否重叠,确定是否传输SRS,包括:
    在时分双工TDD系统的特殊子帧中,若上行导频时隙UpPTS中的SRS的传输频域资源与下行导频时隙DwPTS中用于传输下行数据的窄带没有重叠,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带没有重叠,且所述DwPTS存在下行数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且所述DwPTS存在下行数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且所述DwPTS存在下行数据传输,则确定在所述SRS的传输频域资源中未与所述DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS。
  7. 如权利要求1所述的方法,其特征在于,所述根据相邻的用于数据传输的窄带是否相同,确定是否传输SRS,包括:
    若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与所述特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与所述特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且所述特殊子帧的DwPTS中以及所述特殊子帧的后一个相邻上行子帧中均存在数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述上行数据包括以下上行信道中的一种或多种信道所传输的数据:物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH。
  9. 如权利要求1至7中任一项所述的方法,其特征在于,所述下行数据包括以下下行信道中的一种或多种信道所传输的数据:物理下行共享信道PDSCH、机器类通信物理下行控制信道M-PDCCH、物理广播信道PBCH、物理多播信道PMCH。
  10. 如权利要求1至7中任一项所述的方法,其特征在于,所述SRS子帧为窄带终端专属的子帧,所述SRS子帧包括UpPTS或普通上行子帧。
  11. 一种探测参考信号SRS传输装置,其特征在于,包括:
    确定单元,用于根据SRS的传输频域资源与用于传输数据的窄带是否重叠,或者根据相邻的用于数据传输的窄带是否相同,确定是否传输SRS。
  12. 如权利要求11所述的装置,其特征在于,所述确定单元具体用于:
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠, 且所述SRS子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
  13. 如权利要求11所述的装置,其特征在于,所述确定单元具体用于:
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
  14. 如权利要求13所述的装置,其特征在于,所述确定单元具体用于:
    若所述SRS子帧的后一个相邻上行子帧中传输的上行信道为物理随机接入信道PRACH,则:
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带没有重叠,且所述SRS子帧所对应的时间提前TA值小于调整Retuning时间,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带存在部分重叠,且所述SRS子帧所对应的TA值小于调整Retuning时间,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带存在部分重叠,且所述SRS子帧所对应的TA值小于调整Retuning时间,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
  15. 如权利要求11所述的装置,其特征在于,所述确定单元具体用于:
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在所述SRS子帧中不传输SRS;或者,
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中都存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源没有重叠的窄带上存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述存在上行数据传输的窄带存在重叠的频域资源上不传输SRS。
  16. 如权利要求11所述的装置,其特征在于,所述确定单元具体用于:
    在时分双工TDD系统的特殊子帧中,若上行导频时隙UpPTS中的SRS的传输频域资源与下行导频时隙DwPTS中用于传输下行数据的窄带没有重叠,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带没有重叠,且所述DwPTS存在下行数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且所述DwPTS存在下行数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且所述DwPTS存在下行数据传输,则确定在所述SRS的传输频域资源中未与所述DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS。
  17. 如权利要求11所述的装置,其特征在于,所述确定单元具体用于:
    若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与所述特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与所述特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且所述特殊子帧的DwPTS中以及所述特殊子帧的后一个相邻上行子帧中均存在数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS。
  18. 如权利要求11至17中任一项所述的装置,其特征在于,所述上行数据包括以下上行信道中的一种或多种信道所传输的数据:物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH。
  19. 如权利要求11至17中任一项所述的装置,其特征在于,所述下行数据包括以下下行信道中的一种或多种信道所传输的数据:物理下行共享信道PDSCH、机器类通信物理下行控制信道M-PDCCH、物理广播信道PBCH、物理多播信道PMCH。
  20. 如权利要求11至17中任一项所述的装置,其特征在于,所述SRS子帧为窄带终端专属的子帧,所述SRS子帧包括UpPTS或普通上行子帧。
  21. 一种探测参考信号SRS传输装置,其特征在于,包括:处理器、存储器和收发机;
    处理器,用于读取存储器中的程序执行下列过程:
    根据SRS的传输频域资源与用于传输数据的窄带是否重叠,或者根据相邻的用于数据传输的窄带是否相同,确定是否传输SRS;
    收发机,用于在处理器的控制下接收和发送数据。
  22. 如权利要求21所述的装置,其特征在于,所述处理器具体用于:
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带没有重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与用于传输上行数据的窄带存在部分重叠,且所述SRS子帧中存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
  23. 如权利要求21所述的装置,其特征在于,所述处理器具体用于:
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带没有重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行 数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带存在部分重叠,且所述SRS子帧的后一个相邻上行子帧中存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
  24. 如权利要求23所述的装置,其特征在于,所述处理器具体用于:
    若所述SRS子帧的后一个相邻上行子帧中传输的上行信道为物理随机接入信道PRACH,则:
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带没有重叠,且所述SRS子帧所对应的时间提前TA值小于调整Retuning时间,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带存在部分重叠,且所述SRS子帧所对应的TA值小于调整Retuning时间,则确定在所述SRS子帧中不传输SRS;或者,
    在SRS子帧中,若SRS的传输频域资源与所述SRS子帧的后一个相邻上行子帧中用于传输所述PRACH的窄带存在部分重叠,且所述SRS子帧所对应的TA值小于调整Retuning时间,则确定在所述SRS的传输频域资源中未与所述用于传输上行数据的窄带存在重叠的频域资源上不传输SRS。
  25. 如权利要求21所述的装置,其特征在于,所述处理器具体用于:
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在所述SRS子帧中不传输SRS;或者,
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中都存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源没有重叠的窄带上存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS 子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在所述SRS子帧中不传输SRS;或者,
    若SRS子帧中用于传输上行数据的窄带与所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,且在所述SRS子帧中用于传输上行数据的窄带和所述SRS子帧的后一个相邻上行子帧中用于传输上行数据的窄带中与所述SRS的传输频域资源存在部分重叠的窄带上存在上行数据传输,则确定在所述SRS的传输频域资源中未与所述存在上行数据传输的窄带存在重叠的频域资源上不传输SRS。
  26. 如权利要求21所述的装置,其特征在于,所述处理器具体用于:
    在时分双工TDD系统的特殊子帧中,若上行导频时隙UpPTS中的SRS的传输频域资源与下行导频时隙DwPTS中用于传输下行数据的窄带没有重叠,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带没有重叠,且所述DwPTS存在下行数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且所述DwPTS存在下行数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,则确定在所述SRS的传输频域资源中未与所述DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS;或者,
    在TDD系统的特殊子帧中,若UpPTS中的SRS的传输频域资源与DwPTS中用于传输下行数据的窄带存在部分重叠,且所述DwPTS存在下行数据传输,则确定在所述SRS的传输频域资源中未与所述DwPTS中用于传输下行数据的窄带存在重叠的频域资源上不传输SRS。
  27. 如权利要求21所述的装置,其特征在于,所述处理器具体用于:
    若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与所述特殊子帧的后一个相邻上行子帧中用于传输上行数据的窄带不同,则确定在所述特殊子帧的UpPTS中不传输SRS;或者,
    若TDD系统的特殊子帧的DwPTS中用于传输下行数据的窄带与所述特殊子帧的后 一个相邻上行子帧中用于传输上行数据的窄带不同,且所述特殊子帧的DwPTS中以及所述特殊子帧的后一个相邻上行子帧中均存在数据传输,则确定在所述特殊子帧的UpPTS中不传输SRS。
  28. 如权利要求21至27中任一项所述的装置,其特征在于,所述上行数据包括以下上行信道中的一种或多种信道所传输的数据:物理上行控制信道PUCCH、物理上行共享信道PUSCH、物理随机接入信道PRACH。
  29. 如权利要求21至27中任一项所述的装置,其特征在于,所述下行数据包括以下下行信道中的一种或多种信道所传输的数据:物理下行共享信道PDSCH、机器类通信物理下行控制信道M-PDCCH、物理广播信道PBCH、物理多播信道PMCH。
  30. 如权利要求21至27中任一项所述的装置,其特征在于,所述SRS子帧为窄带终端专属的子帧,所述SRS子帧包括UpPTS或普通上行子帧。
PCT/CN2017/070366 2015-11-06 2017-01-06 一种srs传输方法及装置 WO2017076372A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP24155212.4A EP4340288A3 (en) 2015-11-06 2017-01-06 Srs transmission method and device
EP17721313.9A EP3373499A4 (en) 2015-11-06 2017-01-06 Srs transmission method and device
US15/774,270 US11316632B2 (en) 2015-11-06 2017-01-06 SRS transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510752428.6 2015-11-06
CN201510752428.6A CN106685613B (zh) 2015-11-06 2015-11-06 一种srs传输方法及装置

Publications (1)

Publication Number Publication Date
WO2017076372A1 true WO2017076372A1 (zh) 2017-05-11

Family

ID=58661915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070366 WO2017076372A1 (zh) 2015-11-06 2017-01-06 一种srs传输方法及装置

Country Status (4)

Country Link
US (1) US11316632B2 (zh)
EP (2) EP4340288A3 (zh)
CN (1) CN106685613B (zh)
WO (1) WO2017076372A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10681676B2 (en) * 2015-02-25 2020-06-09 Qualcomm Incorporated Narrowband management for machine type communications
US11329787B2 (en) * 2017-09-28 2022-05-10 Lg Electronics Inc. Method for transmitting and receiving SRS and communication device therefor
WO2019061304A1 (zh) * 2017-09-29 2019-04-04 北京小米移动软件有限公司 参考信号的传输及接收方法、装置、基站和用户设备
US20210391951A1 (en) * 2019-05-03 2021-12-16 Lg Electronics Inc. Sidelink harq feedback for groupcast transmission
JP2024512101A (ja) * 2021-04-01 2024-03-18 アップル インコーポレイテッド サウンディング参照信号(srs)送信アンテナポート切替えに基づくsrs送信
US11632776B2 (en) * 2021-09-03 2023-04-18 Qualcomm Incorporated Techniques for handling overlapping transmissions after timing adjustment
CN115811389A (zh) * 2021-09-13 2023-03-17 华为技术有限公司 通信方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167594A (zh) * 2011-12-19 2013-06-19 华为技术有限公司 一种上行发射功率控制方法及用户设备
CN103220070A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 一种上行信号的发送方法及用户设备
CN104380820A (zh) * 2012-05-17 2015-02-25 高通股份有限公司 用于低成本用户设备的窄带划分和高效资源分配
CN104854805A (zh) * 2012-10-31 2015-08-19 Lg电子株式会社 用于发送上行链路信号的方法和设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012021879A2 (en) * 2010-08-13 2012-02-16 Interdigital Patent Holdings, Inc. Methods and systems for in-device interference mitigation
WO2013002591A2 (ko) * 2011-06-28 2013-01-03 엘지전자 주식회사 무선 통신 시스템에서 사용자 기기의 신호 송수신 방법
WO2014054887A1 (ko) * 2012-10-02 2014-04-10 한양대학교 산학협력단 하향링크 신호 및 채널의 전송방법 및 수신방법, 그 단말, 그 기지국
KR101587508B1 (ko) * 2012-10-12 2016-01-22 주식회사 케이티 단말의 상향링크 전력제어방법 및 그 단말
US10932205B2 (en) * 2013-08-02 2021-02-23 Blackberry Limited Uplink power sharing control
CN110856242B (zh) * 2014-01-29 2023-07-25 交互数字专利控股公司 无线通信中的上行链路传输
JP5948376B2 (ja) * 2014-07-30 2016-07-06 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
EP3217700A4 (en) * 2014-11-06 2018-07-11 Ntt Docomo, Inc. User terminal, wireless base station, and wireless communication method
US10200181B2 (en) * 2015-04-05 2019-02-05 Ofinno Technologies, Llc Sounding reference signal in a wireless network
US10454646B2 (en) * 2015-11-14 2019-10-22 Qualcomm Incorporated Sounding reference signal transmissions in enhanced machine type communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167594A (zh) * 2011-12-19 2013-06-19 华为技术有限公司 一种上行发射功率控制方法及用户设备
CN103220070A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 一种上行信号的发送方法及用户设备
CN104380820A (zh) * 2012-05-17 2015-02-25 高通股份有限公司 用于低成本用户设备的窄带划分和高效资源分配
CN104854805A (zh) * 2012-10-31 2015-08-19 Lg电子株式会社 用于发送上行链路信号的方法和设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON RAPPORTEUR: "Email Discussion Report on CSI/SRS reporting at DRX state change", 3GPP TSG-RAN WG2 #80, TDOC R2-125628, 16 November 2012 (2012-11-16), XP050667465 *
NTT DOCOMO: "Remaining Issues Regarding Multiple TA", 3GPP TSG RAN WG1 MEETING #71, R1-124836, 16 November 2012 (2012-11-16), XP050662819 *
QUALCOMM INC.: "Corrections SRS dropping in CA in 36.213", 3GPP TSG-RAN WG1 MEETING #84BIS, R1-163434, 15 April 2016 (2016-04-15), XP051090384 *
See also references of EP3373499A4 *

Also Published As

Publication number Publication date
US20180331800A1 (en) 2018-11-15
EP3373499A1 (en) 2018-09-12
CN106685613A (zh) 2017-05-17
EP4340288A3 (en) 2024-05-22
US11316632B2 (en) 2022-04-26
EP3373499A4 (en) 2018-11-21
EP4340288A2 (en) 2024-03-20
CN106685613B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2017076372A1 (zh) 一种srs传输方法及装置
US11006400B2 (en) User equipments, base stations and methods
US11659530B2 (en) Wireless communication method, device and storage medium
US20180309513A1 (en) Apparatus, System and Method for Utilizing a Flexible Slot Format Indicator
US10165557B2 (en) Data transmission method and device, and related computer storage medium
US10757693B2 (en) Base station, user equipment and wireless communication method
CN108811075B (zh) 通信方法、网络设备和终端设备
CN105991256B (zh) 一种上行数据传输控制、传输方法及装置
CN107371225B (zh) 一种上行共享信道的导频传输方法及相关设备
WO2016070704A1 (zh) 一种在非授权频段上的数据传输方法及装置
CN110366246A (zh) 取消上行传输的方法和终端设备
WO2018227498A1 (en) Method and device for cross-numerology scheduling
US20200045733A1 (en) Uplink Scheduling For NR-U
US20160242038A1 (en) BACKHAUL SIGNALING SUPPORT FOR UL-DL INTERFERENCE MANAGEMENT FOR TDD eIMTA
KR20190089881A (ko) 정보를 전송하는 방법, 단말 장치와 네트워크 장치
WO2022078271A1 (zh) 用于信息传输的配置方法、电子设备和存储介质
CN111713153A (zh) 用于定时提前调整的方法及设备
US20200187238A1 (en) Methods and apparatuses for control resource mapping
WO2018059073A1 (zh) 一种上行控制信息uci的传输方法和设备
JP2020537370A (ja) 無線通信方法、ネットワークデバイス及び端末デバイス
JP7100706B2 (ja) チャネル伝送の方法、端末機器及びネットワーク機器
WO2017128816A1 (zh) 一种信号发送方法和用户设备、存储介质
CN107800522A (zh) 一种无线通信中的方法和装置
RU2745959C1 (ru) Способ беспроводной связи, оконечное устройство, сетевое устройство и сетевой узел
WO2022028458A1 (zh) 确定数据处理时间的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17721313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15774270

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017721313

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP