WO2017076030A1 - 一种三极化天线 - Google Patents

一种三极化天线 Download PDF

Info

Publication number
WO2017076030A1
WO2017076030A1 PCT/CN2016/088421 CN2016088421W WO2017076030A1 WO 2017076030 A1 WO2017076030 A1 WO 2017076030A1 CN 2016088421 W CN2016088421 W CN 2016088421W WO 2017076030 A1 WO2017076030 A1 WO 2017076030A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrator
horizontal
vertical
polarized antenna
horizontal vibrator
Prior art date
Application number
PCT/CN2016/088421
Other languages
English (en)
French (fr)
Inventor
王君翊
Original Assignee
乐视控股(北京)有限公司
乐视移动智能信息技术(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乐视控股(北京)有限公司, 乐视移动智能信息技术(北京)有限公司 filed Critical 乐视控股(北京)有限公司
Publication of WO2017076030A1 publication Critical patent/WO2017076030A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and in particular, to a three-polarized antenna.
  • MIMO Multiple-Input Multiple-Output
  • a basic requirement of MIMO systems is that the signals between the various channels are uncorrelated or have low correlation.
  • Existing solutions can utilize different polarizations of the antenna to meet the above basic requirements, such as dual-polarized antennas have been widely used in MIMO systems.
  • the modeling of MIMO channel is very important, so it is necessary to test the channel model.
  • the above test process can extract the characteristic parameters of the actual test data. And statistical analysis to get all the characteristic parameters.
  • the existing dual-polarized antenna is easy to introduce additional errors due to the phase deviation of the antenna itself when receiving the multipath signal, resulting in inefficient channel test. .
  • the embodiment of the present application provides a three-polarized antenna to solve the effect of channel testing in the prior art. Low rate defects improve the accuracy and efficiency of channel testing.
  • An embodiment of the present application provides a three-polarized antenna, including: a first horizontal vibrator, a second horizontal vibrator, and a vertical vibrator;
  • the first horizontal vibrator, the second horizontal vibrator and the vertical vibrator are perpendicular to each other, and the patterns of the first horizontal vibrator, the second horizontal vibrator and the vertical vibrator are in phase center.
  • the three-polarized antenna provided by the embodiment of the present application has the characteristics of the common phase center of three patterns. Since the influence of the phase deviation of the antenna itself on the test complexity is eliminated, the test algorithm for the channel can be greatly simplified, thereby enabling Greatly improve the efficiency and accuracy of channel testing.
  • FIG. 1 is a schematic structural diagram of a three-polarized antenna embodiment of the present application.
  • FIG. 2 is a schematic structural view of a support structure 400 of the present application.
  • FIG. 3 is a schematic structural view of a first horizontal vibrator 100, a second horizontal vibrator 200, a hollow cylindrical support structure 401, and a printed circuit board structure 402 according to the present application;
  • FIG. 4 is a schematic structural view of a hollow cylindrical support structure 401 and a vertical vibrator upper portion 301 of the present application;
  • FIG. 5 is a schematic structural view of an annular metal foil 403 according to the present application.
  • FIG. 6 is a schematic structural view of a printed circuit board structure 402, an annular metal foil 403, and a vertical vibrator lower portion 302 of the present application;
  • FIG. 7 is a schematic diagram of a global structure of a feeder cylinder 600 of the present application.
  • FIG. 8 is a partial structural schematic view of a feeder cylinder 600 of the present application.
  • FIG. 9 is a schematic structural view of a cable of the present application as for the inside of the feeder cylinder 600; FIG.
  • FIG. 10 is a schematic structural view of a honeycomb cavity 601 and an annular metal foil 403 according to the present application;
  • FIG. 11 is a schematic diagram of a global structure of a balun 500 according to the present application.
  • balun 500 is a partial structural schematic view of a balun 500 of the present application.
  • Figure 13 is a general view of a three-polarized antenna of the present application.
  • Figure 14 is a side view of a three-polarized antenna of the present application.
  • Figure 15 is a top plan view of a three-polarized antenna of the present application.
  • the embodiment of the present application provides a three-polarized antenna, which may specifically include: a first horizontal vibrator, a second horizontal vibrator, and a vertical vibrator; wherein the first horizontal vibrator, the second horizontal vibrator, and the vertical vibrator The two horizontal directions are perpendicular to each other, and the patterns of the first horizontal vibrator, the second horizontal vibrator, and the vertical vibrator are in phase center.
  • the embodiments of the present application can be widely applied not only to a communication network formed by using MIMO technology, but also to the study of a channel model, which is used to optimize a channel model, specifically, characteristics of a common phase center of three polarization directions.
  • a three-polarized antenna provided by the present application is described in detail below through a specific embodiment.
  • the three-polarized antenna may specifically include: a first horizontal vibrator 100, a second horizontal vibrator 200, and a vertical vibrator 300;
  • the first horizontal vibrator 100, the second horizontal vibrator 200, and the vertical vibrator 300 are perpendicular to each other, and the patterns of the first horizontal vibrator 100, the second horizontal vibrator 200, and the vertical vibrator 300 are common. Phase center.
  • the first horizontal vibrator 100 and the second horizontal vibrator 200 may have the same structure, and the first horizontal vibrator 100 and the second horizontal vibrator 200 may respectively The first feed structure and the second feed structure are fed.
  • the number of the first feed structure and the second feed structure may both be 2.
  • the first horizontal vibrator 100 may be respectively fed by the feed 1, 2 included in the first feed structure, feed 1, 2
  • the feed signal is equal in amplitude;
  • the second horizontal vibrator 200 can be fed by the feeds 3, 4 included in the second feed structure, and the feed signals of the feeds 3, 4 are reversed, thereby
  • a horizontal vibrator 100 and the second horizontal vibrator 200 may constitute two pairs of dipoles.
  • first feeding structure and the second feeding structure may be semi-rigid coaxial cables, and the first horizontal vibrator 100 and the second horizontal vibrator 200 may be fed by a differential mode.
  • the specific feeding manner of the first horizontal vibrator 100 and the second horizontal vibrator 200 is not limited in the embodiment of the present application.
  • the first feed structure and the second feed structure may be symmetrically placed in a vertical direction.
  • the symmetrical placement may specifically include: the first feeding structure is symmetrically placed with respect to a vertical line corresponding to a horizontal center, and the second feeding structure is symmetrically disposed with respect to a vertical line corresponding to the horizontal center, and the horizontal center is available.
  • the centers of the first horizontal vibrator 100 and the second horizontal vibrator 200 are indicated.
  • an adjacent set of first feed structures and a set of second feed structures may be symmetrically placed with another adjacent set of first feed structures and another set of second feed structures, eg, feed1 And feed3 and feed2 and feed4 are placed symmetrically.
  • the first feeding structure and the second feeding structure are symmetrically placed in the vertical direction, and the influence of the unbalance current on the patterns of the first horizontal vibrator 100 and the second horizontal vibrator 200 can be reduced.
  • first horizontal vibrator 100 can adjust the first horizontal vibrator 100 by reason.
  • the positions of the second horizontal vibrator 200 and the vertical vibrator 300 are used to ensure the common phase center of the three horizontal patterns.
  • Embodiment 2 is an optional embodiment of Embodiment 1.
  • the vertical vibrator 300 may specifically include: a vertical vibrator upper portion 301 and a vertical vibrator lower portion 302, wherein the vertical vibrator upper portion 301 and the The vertical vibrator lower portion 302 is asymmetric with respect to the horizontal plane corresponding to the first horizontal vibrator 100 and the second horizontal vibrator 200, and the vertical vibrator upper portion 301 and the vertical vibrator lower portion 302 can be fed through the third feeding structure.
  • the third feed structure may be located at the center of the first feed structure and the second feed structure.
  • the number of the third feeding structures may be 1, and may be a semi-rigid coaxial cable.
  • the vertical vibrator upper portion 301 and the vertical vibrator lower portion 302 may each have a hollow cylindrical structure, and the vertical vibrator upper portion 301 and the vertical vibrator lower portion 302 are opposite to the first horizontal vibrator 100 and the second horizontal vibrator.
  • the corresponding horizontal plane asymmetry may include: the vertical vibrator upper portion 301 and the vertical vibrator lower portion 302 have different outer diameters and/or lengths corresponding to the hollow cylindrical structure.
  • the vertical vibrator 300 has a symmetrical structure
  • the unbalanced current is easily generated, thereby distorting the pattern of the vertical vibrator 300.
  • the non-selective embodiment is not The symmetrical design combined with other structures enables the vertical vibrator 300 to be equivalent to the dipole of the ideal symmetrical structure in the current distribution, so that the unbalanced current of the pattern of the vertical vibrator 300 can be better constrained.
  • the third embodiment is an optional embodiment of the second embodiment.
  • the three-polarized antenna may further include a supporting structure 400.
  • FIG. 2 the structure of a supporting structure 400 of the present application is shown.
  • the schematic diagram may specifically include: a hollow cylindrical support structure 401 for facilitating support of the vertical vibrator upper portion 301 and the first feed structure, the second feed structure, and facilitating the support A first horizontal vibrator 100, a second horizontal vibrator 200, and a PCB (Printed Circuit Board) 402 of the lower vibrator lower portion 302.
  • the material of the hollow cylindrical support structure 401 may include a non-metal material such as plastic to prevent the conductive property from affecting the feeding of the tripolar antenna.
  • the lower portion of the hollow cylindrical support structure 401 and the printed circuit board structure 402 may be connected by gluing or the like.
  • the specific connection manner of the hollow cylindrical support structure 401 and the printed circuit board structure 402 is not limited in the embodiment of the present application.
  • the lower portion of the hollow cylindrical support structure and the PCB may be connected by gluing or the like; and the first horizontal vibrator and the second horizontal vibrator are fixed on the printed circuit board structure by means of glue or the like; Realizing support of the first horizontal vibrator and the second horizontal vibrator;
  • the first feed line structure and the second feed line structure may be electrically connected in a circumferential direction of the first horizontal vibrator and the second horizontal vibrator through the hollow cylindrical support structure, thereby enabling support of the first feed line structure and the second feed line structure;
  • the upper part of the vertical vibrator can be connected to the hollow cylindrical support structure through the auxiliary structure to realize the support of the upper part of the vertical vibrator; for example, the hollow cylindrical support structure can be connected to the upper part of the vertical vibrator through the third feeder structure and the small diameter hollow cylinder located at the center, where the small diameter
  • the hollow cylinder is an example of an accessory structure; thereby, support of the upper portion of the vertical vibrator can be achieved;
  • the lower part of the vertical vibrator can be connected to the printed circuit board structure by soldering or the like, whereby the support of the lower part of the vertical vibrator can be realized.
  • the printed circuit board structure is printed with a line, it can be used as a connection medium of the first feed structure, the second feed structure, and the third feed structure and the corresponding vibrator. Therefore, the embodiment of the present application
  • the support structure can provide the first of the vertical vibrator upper portion, the first feed structure and the second feed structure support through the hollow cylindrical support structure while feeding the three polarization direction vibrators, and realize the first through the printed circuit board structure
  • the support of the horizontal vibrator, the second horizontal vibrator and the lower part of the vertical vibrator has the advantage of simple structure and wiring.
  • a first hole may be disposed on a side of the hollow cylindrical support structure 401, and a second hole may be disposed on a bottom surface of the hollow cylindrical support structure to pass the a hole and the second hole connect the first horizontal vibrator 100 and the first feed structure, and the second horizontal vibrator 200 and the second feed structure, and are supported by the second hole The upper part of the vertical vibrator.
  • the number of the first holes may be 4, the first horizontal vibrator 100 and The second horizontal vibrators 200 can each be placed in a corresponding first hole.
  • FIG. 3 a schematic structural view of a first horizontal vibrator 100, a second horizontal vibrator 200, a hollow cylindrical support structure 401, and a printed circuit board structure 402 of the present application is shown, wherein the first horizontal vibrator 100 and the second The horizontal vibrators 200 can be placed in the corresponding first holes and fixed on the printed circuit board structure 402 by glue or the like.
  • the number of the second holes may be 5, and the 5 second holes may correspond to the distributions of the first feed structure, the second feed structure, and the third feed structure, such that the two sets of the first feed structure and the two The second feed structure of the group can pass through the corresponding second hole and access the first horizontal vibrator 100 and the second horizontal vibrator 200 in the corresponding first hole.
  • FIG. 4 a schematic structural view of a hollow cylindrical support structure 401 and a vertical vibrator upper portion 401 of the present application is shown, wherein the vertical vibrator upper portion 301 can be a hollow closed cylindrical structure, and the third feed structure can pass through the corresponding The two holes are connected to and support the vertical vibrator upper portion 301.
  • connection manner of the third feeding structure and the vertical vibrator upper portion 301 may specifically include: a welding method, etc., and the specific connection manner of the third feeding structure and the vertical vibrator upper portion 301 is not limited in the embodiment of the present application.
  • the support structure 400 may further include: an annular metal foil 403 disposed at a lower portion of the printed circuit board structure 402. Referring to FIG. 5, a schematic structural view of an annular metal foil 403 of the present application is shown, which may be located on the back (lower portion) of the printed circuit board structure 402.
  • FIG. 6 a schematic structural view of a printed circuit board structure 402, an annular metal foil 403, and a vertical vibrator lower portion 302 of the present application is illustrated, wherein the vertical vibrator lower portion 302 may be a hollow cylindrical structure,
  • the outer diameter of the hollow cylindrical structure may be equal to the outer diameter of the annular metal foil 403, and the hollow cylindrical structure may be fixed on the annular metal foil 403; wherein the hollow cylindrical structure and the annular shape
  • the connection manner of the metal foil 403 may specifically include: welding or the like, so that the vertical vibrator lower portion 302 can realize the third feeding structure through the annular metal foil 403, the printed circuit board structure 402, and the feeder cylinder 600. Electrical connection.
  • the fourth embodiment is an optional embodiment of the second embodiment.
  • the triple-polarized antenna may further include a feeder cylinder 600.
  • a feeder cylinder 600 of the present application is illustrated.
  • Schematic diagram of the global structure referring to FIG. 9, a cable of the present application is shown in the feeder cylinder 600.
  • Schematic diagram of the structure all feeder structures of the tripolar antenna can be routed from the vertical direction and placed in the feeder cylinder 600, which can avoid the unbalanced current caused by the random position of the feeder structure and cause the far field of the vertical vibrator 300.
  • the pattern is uncontrollable, so it can better constrain the unbalanced current.
  • the feeder cylinder 600 may specifically include: a honeycomb cavity 601 fixed to the annular metal foil.
  • the honeycomb cavity 601 is provided with five cylindrical hollow bodies 602, and the first feeding structure, the second feeding structure and the third feeding structure can pass through the five cylindrical hollow bodies 602 is connected to the corresponding vibrator.
  • the honeycomb cavity 601 may be a solid structure made of a metal material, and the cables of the three feed structures may be welded to the upper and lower portions of the honeycomb cavity 601.
  • the honeycomb cavity 601 and the cylindrical cavity 602 may be welded together; and the length of the cylindrical cavity 602 may be greater than or equal to twice the preset wavelength, and the preset wavelength herein may be set by a person skilled in the art according to actual needs.
  • FIG. 10 a schematic structural view of a honeycomb cavity 601 and an annular metal foil 403 of the present application is shown, wherein the diameter of the honeycomb cavity 601 may be larger than the inner diameter of the annular metal foil 403.
  • the honeycomb cavity 601 is welded and fixed to the bottom of the annular metal foil 403.
  • the tri-polarized antenna may further include: a balun 500 located outside the feeder cylinder 600.
  • a balun 500 located outside the feeder cylinder 600.
  • This alternative embodiment adds a balun 500 to the feeder cylinder and is capable of damaging the current flowing into the outside of the cable shield, thereby further constraining the unbalanced current.
  • balun 500 may be a hollow cylindrical structure, and the length may be 1/4 of a preset wavelength;
  • a metal ring 501 may be disposed on the upper portion of the balun 500, and the metal ring 501 may be used to connect the balun 500 and the feeder cylinder 600, wherein the inner side of the metal ring 501 is welded to the surface of the feeder cylinder 600. The outer side of the metal ring 501 is welded to the balun 500.
  • the three-polarized antenna may specifically include: a first horizontal vibrator 100 and a second level.
  • the pattern of the vibrator 300 is co-phase center;
  • the support structure 400 can be used to support the first horizontal vibrator 100, the second horizontal vibrator 200, the vertical vibrator 300, and the corresponding feeder structure, and the first horizontal vibrator can be placed inside the feeder cylinder 600 100, the second horizontal vibrator 200, the feeder structure of the vertical vibrator 300, the balun can be used to eliminate the current outside the cable shield flowing into the feeder structure.
  • phase center parameter may specifically include: phase center coordinates and possible errors. It is seen that the phase centers of the patterns of the first horizontal vibrator, the second horizontal vibrator, and the vertical vibrator are approximately the same. Moreover, the simulation results show that the first horizontal vibrator, the second horizontal vibrator and the vertical vibrator have better isolation between the two.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种三极化天线,包括:第一水平振子、第二水平振子和垂直振子;其中,所述第一水平振子、所述第二水平振子和所述垂直振子两两互相垂直,所述第一水平振子、所述第二水平振子和所述垂直振子的方向图共相位中心。本申请实施例能够大大简化对信道的测试算法,从而能够大大提高信道测试的效率和准确性。

Description

一种三极化天线
本申请要求在2015年11月06日提交中国专利局、申请号为201510756451.2、发明名称为“一种三极化天线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种三极化天线。
背景技术
随着通信技术的发展,通信系统对信道容量和系统资源的利用率要求越来越高。MIMO(Multiple-Input Multiple-Output,多入多出)系统因其在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量而被视为无线通信领域的关键技术之一。
MIMO系统的一个基本要求是各个信道之间信号不相关或具有较低的相关性。现有方案可以利用天线的不同极化来满足上述基本要求,如双极化天线已被广泛应用到MIMO系统中。
为了实现MIMO各种关键技术和处理算法的仿真和评估,MIMO信道的建模非常重要,故还需对得到信道模型进行测试,例如,上述测试过程可以对实际的测试数据进行特性参数的提取,并统计分析得到所有的特性参数。
然而,由于测试数据的误差会直接影响模型的准确性,这样,现有的双极化天线在接收多径信号时,容易因为天线本身相位偏差而引入额外的误差,从而导致信道测试的效率低下。
发明内容
本申请实施例提供一种三极化天线,用以解决现有技术中信道测试的效 率低下的缺陷,提高信道测试的准确性和效率。
本申请实施例提供一种三极化天线,包括:第一水平振子、第二水平振子和垂直振子;
其中,所述第一水平振子、所述第二水平振子和所述垂直振子两两互相垂直,所述第一水平振子、所述第二水平振子和所述垂直振子的方向图共相位中心。
本申请实施例提供的三极化天线,具有三个方向图共相位中心的特性,由于消除了天线本身相位偏差的因素对测试复杂度的影响,因此能够大大简化对信道的测试算法,从而能够大大提高信道测试的效率和准确性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的一种三极化天线实施例的结构示意图;
图2为本申请的一种支撑结构400的结构示意图;
图3为本申请的一种第一水平振子100、第二水平振子200、空心圆柱支撑结构401和印制电路板结构402的结构示意图;
图4为本申请的一种空心圆柱支撑结构401和垂直振子上部301的结构示意图;
图5为本申请的一种圆环状金属箔403的结构示意图;
图6为本申请的一种印制电路板结构402、圆环状金属箔403和垂直振子下部302的结构示意图;
图7为本申请的一种馈线圆筒600的全局结构示意图;
图8为本申请的一种馈线圆筒600的局部结构示意图;
图9为本申请的一种电缆至于馈线圆筒600内部的结构示意图;
图10为本申请的一种蜂巢状腔体601和圆环状金属箔403的结构示意图;
图11为本申请的一种巴伦500的全局结构示意图;
图12为本申请的一种巴伦500的局部结构示意图;
图13为本申请的一种三极化天线的整体视图;
图14为本申请的一种三极化天线的侧视图;及
图15为本申请的一种三极化天线的俯视图;
图中,100-第一水平振子,200-第二水平振子,300-垂直振子,301-垂直振子上部,302-垂直振子下部,400-支撑结构,401-空心圆柱支撑结构,402-印制电路板结构,403-圆环状金属箔,500-巴伦,501-巴伦与馈线圆筒连接的金属圆环,600-馈线圆筒,601-蜂巢状腔体,602-圆柱空腔体。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种三极化天线,具体可以包括:第一水平振子、第二水平振子和垂直振子;其中,所述第一水平振子、所述第二水平振子和所述垂直振子两两互相垂直,所述第一水平振子、所述第二水平振子和所述垂直振子的方向图共相位中心。
本申请实施例不仅可以广泛运用于采用MIMO技术组建的通信网络中,而且可以应用于对信道模型的研究中,用于优化信道模型,具体地,其三个极化方向共相位中心的特性,能够消除相位偏差的因素对测试复杂度的影响,因此能够大大简化对信道的测试算法,从而能够大大提高信道测试的效 率和准确性。
下面通过具体的实施例详细介绍本申请提供的一种三极化天线。
实施例一
参照图1,示出了本申请的一种三极化天线实施例的结构示意图,该三极化天线具体可以包括:第一水平振子100、第二水平振子200和垂直振子300;其中,所述第一水平振子100、所述第二水平振子200和所述垂直振子300两两互相垂直,所述第一水平振子100、所述第二水平振子200和所述垂直振子300的方向图共相位中心。
在本申请的一种可选实施例中,所述第一水平振子100和所述第二水平振子200可以具有相同结构,且所述第一水平振子100和所述第二水平振子200可以分别通过第一馈电结构和第二馈电结构馈电。其中,所述第一馈电结构和第二馈电结构的数目均可以为2,例如,第一水平振子100可由第一馈电结构所包括的feed 1,2分别馈电,feed 1,2的馈电信号等幅反向;第二水平振子200可由第二馈电结构所包括的feed 3,4分别馈电,feed 3,4的馈电信号等幅反向,由此,所述第一水平振子100和所述第二水平振子200可以构成两对偶极子。在实际应用中,上述第一馈电结构和第二馈电结构可以为半刚性同轴电缆,且可以通过差分模式对所述第一水平振子100和所述第二水平振子200进行馈电,本申请实施例对于所述第一水平振子100和所述第二水平振子200的具体馈电方式不加以限制。
在本申请的另一种可选实施例中,所述第一馈电结构和所述第二馈电结构可以在垂直方向上对称放置。其中,上述对称放置具体可以包括:所述第一馈电结构相对于水平中心对应垂直线对称放置,以及,所述第二馈电结构相对于上述水平中心对应垂直线对称放置,上述水平中心可用于表示第一水平振子100和第二水平振子200的中心。可选地,相邻的一组第一馈电结构和一组第二馈电结构可以与相邻的另一组第一馈电结构和另一组第二馈电结构对称放置,例如,feed1和feed3与feed2和feed4对称放置等。上述第一馈电结构和上述第二馈电结构在垂直方向上对称放置,能够降低不平衡电流对第一水平振子100和第二水平振子200的方向图的影响。
需要说明的是,本领域技术人员可以通过合理调整第一水平振子100、 第二水平振子200和垂直振子300的位置,以保证其三个方向图共相位中心,本申请实施例对于第一水平振子100、第二水平振子200和垂直振子300的位置及对应的调整方式不加以限制。
实施例二
实施例二为实施例一的可选实施例,在实施例一的基础上,其垂直振子300具体可以包括:垂直振子上部301和垂直振子下部302,其中,所述垂直振子上部301和所述垂直振子下部302相对于所述第一水平振子100和所述第二水平振子200对应水平面不对称,所述垂直振子上部301和所述垂直振子下部302可以通过第三馈电结构馈电,所述第三馈电结构可以位于所述第一馈电结构和所述第二馈电结构的中心。
在具体实现中,上述第三馈电结构的数目可以为1,且可以为半刚性同轴电缆。所述垂直振子上部301和所述垂直振子下部302均可以为空心圆柱结构,则所述垂直振子上部301和所述垂直振子下部302相对于所述第一水平振子100和所述第二水平振子200对应水平面不对称具体可以包括:所述垂直振子上部301和所述垂直振子下部302对应空心圆柱结构的外径不同和/或长度不同等。可以理解,上述只是作为示例,本申请实施例对于所述垂直振子上部301和所述垂直振子下部302相对于所述第一水平振子100和所述第二水平振子200对应水平面不对称不加以限制。
在上述垂直振子300为对称结构的情况下,由于其馈电同轴电缆的引入,容易导致不平衡电流的产生,从而扭曲垂直振子300的方向图;针对上述问题,本可选实施例的非对称设计结合其他结构,在电流分布上能够使垂直振子300等效于理想对称结构的偶极子,从而能够较好地约束垂直振子300的方向图的不平衡电流。
实施例三
实施例三为实施例二的可选实施例,在实施例二的基础上,其三极化天线还可以包括支撑结构400,参照图2,示出了本申请的一种支撑结构400的结构示意图,其具体可以包括:便于支撑所述垂直振子上部301和所述第一馈电结构、所述第二馈电结构的空心圆柱支撑结构401、以及便于支撑所述 第一水平振子100、所述第二水平振子200和所述垂直振子下部302的PCB(Printed Circuit Board,印制电路板结构)402。其中,空心圆柱支撑结构401的材质可以包括:塑料等非金属材质,以避免其导电属性影响到三极化天线的馈电。另外,空心圆柱支撑结构401的下部和印制电路板结构402可以通过胶接等方式连接,本申请实施例对于空心圆柱支撑结构401与印制电路板结构402的具体连接方式不加以限制。
在实际应用中,空心圆柱支撑结构的下部和PCB可以通过胶接等方式连接;以及,第一水平振子和第二水平振子通过胶连等方式固定于印制电路板结构之上;由此可以实现第一水平振子和第二水平振子的支撑;
第一馈线结构和第二馈线结构可以通过空心圆柱支撑结构在第一水平振子和第二水平振子的圆周方向上实现电连接,由此可以实现第一馈线结构和第二馈线结构的支撑;
垂直振子上部可以通过附属结构与空心圆柱支撑结构连接,以实现垂直振子上部的支撑;例如,空心圆柱支撑结构可以通过位于中心的第三馈线结构和小径空心圆柱与垂直振子上部连接,这里,小径空心圆柱为附属结构的一种示例;由此,可以实现垂直振子上部的支撑;
垂直振子下部可以通过焊接等方式与印制电路板结构相连,由此,可以实现垂直振子下部的支撑。
综上,由于印制电路板结构印制有线路,故可以作为第一馈电结构、所述第二馈电结构和第三馈电结构与对应振子的连接媒介,因此,本申请实施例的支撑结构可以在提供三个极化方向振子的馈电的同时,通过空心圆柱支撑结构垂直振子上部、第一馈电结构和第二馈电结构支撑,以及,通过印制电路板结构实现第一水平振子、第二水平振子和垂直振子下部的支撑,从而具有结构和布线简单的优点。
在本申请的一种可选实施例中,所述空心圆柱支撑结构401的侧面上可以设有第一孔,所述空心圆柱支撑结构的底面上可以设有第二孔,以通过所述第一孔和所述第二孔连接所述第一水平振子100和所述第一馈电结构、及所述第二水平振子200和所述第二馈电结构,以及通过所述第二孔支撑所述垂直振子上部。
在具体实现中,上述第一孔的数目可以为4,上述第一水平振子100和 所述第二水平振子200均可以置入对应的第一孔。参照图3,示出了本申请的一种第一水平振子100、第二水平振子200、空心圆柱支撑结构401和印制电路板结构402的结构示意图,其中,第一水平振子100和第二水平振子200均可以置入对应的第一孔,并通过胶连等方式固定于印制电路板结构402之上。
上述第二孔的数目可以为5,该5个第二孔可以与第一馈电结构、第二馈电结构和第三馈电结构的分布相应,这样,两组第一馈电结构和两组第二馈电结构均可以穿过对应的第二孔并接入对应的第一孔中的第一水平振子100和第二水平振子200。参照图4,示出了本申请的一种空心圆柱支撑结构401和垂直振子上部401的结构示意图,其中,垂直振子上部301可以为中空封闭圆柱结构,第三馈电结构可以穿过对应的第二孔并接入和支撑垂直振子上部301。可以理解,第三馈电结构与垂直振子上部301的连接方式具体可以包括:焊接方式等,本申请实施例对于第三馈电结构与垂直振子上部301的具体连接方式不加以限制。
在本申请的另一种可选实施例中,所述支撑结构400还可以包括:置于所述印制电路板结构402下部的圆环状金属箔403。参照图5,示出了本申请的一种圆环状金属箔403的结构示意图,其可以位于所述印制电路板结构402的背面(下部)。
参照图6,示出了本申请的一种印制电路板结构402、圆环状金属箔403和垂直振子下部302的结构示意图,其中,所述垂直振子下部302可以为空心圆柱结构,所述空心圆柱结构的外径可以等于所述圆环状金属箔403的外径,所述空心圆柱结构可以固定于所述圆环状金属箔403之上;其中,所述空心圆柱结构与圆环状金属箔403的连接方式具体可以包括:焊接等,这样,通过所述圆环状金属箔403、印制电路板结构402和馈线圆筒600,垂直振子下部302就可以实现与第三馈电结构的电连接。
实施例四
实施例四为实施例二的可选实施例,在实施例二的基础上,其三极化天线还可以包括馈线圆筒600,参照图7,示出了本申请的一种馈线圆筒600的全局结构示意图,参照图9,示出了本申请的一种电缆至于馈线圆筒600内 部的结构示意图,三极化天线的所有馈线结构均可以从垂直方向走线,并置于馈线圆筒600中,能够避免馈线结构的随机位置所带来不平衡电流导致垂直振子300的远场方向图不可控,因此能够较好地约束不平衡电流。
参照图8,示出了本申请的一种馈线圆筒600的局部结构示意图,其中,所述馈线圆筒600具体可以包括:固定于所述圆环状金属箔的蜂巢状腔体601,所述蜂巢状腔体601上设置有五个圆柱空腔体602,所述第一馈电结构、所述第二馈电结构和所述第三馈电结构可以通过所述五个圆柱空腔体602与对应的振子相连。其中,蜂巢状腔体601可以为金属材质的实心结构,三种馈电结构的电缆可以与蜂巢状腔体601的上部和下部焊接。蜂巢状腔体601和圆柱空腔体602可以焊接在一起;且圆柱空腔体602的长度可以大于等于预设波长的两倍,这里的预设波长可由本领域技术人员根据实际需求设定。
参照图10,示出了本申请的一种蜂巢状腔体601和圆环状金属箔403的结构示意图,其中,蜂巢状腔体601的直径可以大于所述圆环状金属箔403的内径,以将蜂巢状腔体601焊接固定在圆环状金属箔403的底部。
在本申请的一种可选实施例中,所述三极化天线还可以包括:位于所述馈线圆筒600外部的巴伦500。本可选实施例在馈线圆筒的基础上增加巴伦500,能够将流入电缆屏蔽层外部的电流扼制掉,因此能够进一步约束不平衡电流。
参照图11、图12分别示出了本申请的一种巴伦500的全局、局部结构示意图,其中,巴伦500可以为空心圆柱筒结构,其长度可以为预设波长的1/4;图12中,可以在巴伦500的上部设置金属圆环501,该金属圆环501可用于连接巴伦500和馈线圆筒600,其中,该金属圆环501的内侧焊接在馈线圆筒600的表面,该金属圆环501的外侧和巴伦500焊接在一起。
实施例五
参照图13、图14和图15,分别示出了本申请的一种三极化天线的整体视图、侧视图和俯视图,该三极化天线具体可以包括:第一水平振子100、第二水平振子200、垂直振子300、支撑结构400、巴伦500和馈线圆筒600;其中,所述第一水平振子100、所述第二水平振子200和所述垂直振子300两两互相垂直,所述第一水平振子100、所述第二水平振子200和所述垂直 振子300的方向图共相位中心;所述支撑结构400可用于支撑第一水平振子100、第二水平振子200、垂直振子300及对应馈线结构,所述馈线圆筒600内部可以放置第一水平振子100、第二水平振子200、垂直振子300的馈线结构,巴伦可用于消除流入馈线结构的电缆屏蔽层外部的电流。
参照表1,示出了本申请的一种三极化天线的相位中心参数在工作频率800MHz、波长375mm下的仿真结果,其中,相位中心参数具体可以包括:相位中心坐标和可能的误差,可以看出第一水平振子、第二水平振子和垂直振子的方向图的相位中心近似相同。并且,仿真结果表明,第一水平振子、第二水平振子和垂直振子两两之间具有较好的隔离。
表1
  相位中心坐标(mm) 可能的误差(mm)
第一水平振子 (0,0,2.5) 0.7
第二水平振子 (0,0,2.5) 0.1
垂直振子 (-0.3,0,2.0) 1.3
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其 限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种三极化天线,其特征在于,包括:第一水平振子、第二水平振子和垂直振子;
    其中,所述第一水平振子、所述第二水平振子和所述垂直振子两两互相垂直,所述第一水平振子、所述第二水平振子和所述垂直振子的方向图共相位中心。
  2. 根据权利要求1所述的三极化天线,其特征在于,所述第一水平振子和所述第二水平振子具有相同结构,所述第一水平振子和所述第二水平振子分别通过第一馈电结构和第二馈电结构馈电,所述第一馈电结构和所述第二馈电结构在垂直方向上对称放置。
  3. 根据权利要求2所述的三极化天线,其特征在于,所述垂直振子包括:垂直振子上部和垂直振子下部,其中,所述垂直振子上部和所述垂直振子下部相对于所述第一水平振子和所述第二水平振子对应水平面不对称,所述垂直振子上部和所述垂直振子下部通过第三馈电结构馈电,所述第三馈电结构位于所述第一馈电结构和所述第二馈电结构的中心。
  4. 根据权利要求3所述的三极化天线,其特征在于,所述三极化天线还包括支撑结构,所述支撑结构包括:便于支撑所述垂直振子上部、所述第一馈电结构和所述第二馈电结构的空心圆柱支撑结构、以及便于支撑所述第一水平振子、所述第二水平振子和所述垂直振子下部的印制电路板结构。
  5. 根据权利要求4所述的三极化天线,其特征在于,所述空心圆柱支撑结构的侧面上设有第一孔,所述空心圆柱支撑结构的底面上设有第二孔,以通过所述第一孔和所述第二孔连接所述第一水平振子和所述第一馈电结构、及所述第二水平振子和所述第二馈电结构,以及通过所述第二孔支撑所述垂直振子上部。
  6. 根据权利要求4或5所述的三极化天线,其特征在于,所述支撑结构还包括:置于所述印制电路板结构下部的圆环状金属箔。
  7. 根据权利要求6所述的三极化天线,其特征在于,所述垂直振子下部为空心圆柱结构,所述空心圆柱结构的外径等于所述圆环状金属箔的外径,所述空心圆柱结构固定于所述圆环状金属箔。
  8. 根据权利要求3至7中任一所述的三极化天线,其特征在于,所述三极化天线还包括:馈线圆筒,所述馈线圆筒包括:固定于所述圆环状金属箔的蜂巢状腔体,所述蜂巢状腔体上设置有圆柱空腔体,所述第一馈电结构、所述第二馈电结构和所述第三馈电结构通过所述圆柱空腔体与对应的第一水平振子、第二水平振子和垂直振子相连。
  9. 根据权利要求8所述的三极化天线,其特征在于,所述蜂巢状腔体的直径大于所述圆环状金属箔的内径。
  10. 根据权利要求8所述的三极化天线,其特征在于,所述三极化天线还包括:位于所述馈线圆筒外部的巴伦。
PCT/CN2016/088421 2015-11-06 2016-07-04 一种三极化天线 WO2017076030A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510756451.2A CN105977617A (zh) 2015-11-06 2015-11-06 一种三极化天线
CN201510756451.2 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017076030A1 true WO2017076030A1 (zh) 2017-05-11

Family

ID=56988132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088421 WO2017076030A1 (zh) 2015-11-06 2016-07-04 一种三极化天线

Country Status (2)

Country Link
CN (1) CN105977617A (zh)
WO (1) WO2017076030A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110197950A (zh) * 2019-06-06 2019-09-03 昆山瀚德通信科技有限公司 一种双极化天线
CN112952379A (zh) * 2021-01-29 2021-06-11 普联技术有限公司 三极化天线及通讯装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107508037A (zh) * 2017-07-11 2017-12-22 上海安费诺永亿通讯电子有限公司 基站天线单元及基站天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201307640Y (zh) * 2008-07-23 2009-09-09 大唐移动通信设备有限公司 振子单元、天线单元及天线阵列
US20100073237A1 (en) * 2008-09-24 2010-03-25 Lucent Technologies Inc. Multi-polarized antenna array
CN104009277A (zh) * 2013-02-21 2014-08-27 中国移动通信集团设计院有限公司 一种天线设备和天线阵列
CN204243180U (zh) * 2014-12-11 2015-04-01 公安部第一研究所 一种水平全方向辐射的圆极化天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195064B1 (en) * 1999-08-23 2001-02-27 Lucent Technologies Inc. Communication employing triply-polarized transmissions
US8325101B2 (en) * 2009-08-03 2012-12-04 Venti Group, LLC Cross-dipole antenna configurations
CN103531919B (zh) * 2012-07-05 2016-08-10 中国电信股份有限公司 四极化天线和四极化多天线阵
CN102916245A (zh) * 2012-11-17 2013-02-06 福建邮科通信技术有限公司 一种终端宽频全向mimo天线
CN104868247B (zh) * 2015-05-22 2017-06-27 厦门大学 圆形背腔结构方向性三极化天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201307640Y (zh) * 2008-07-23 2009-09-09 大唐移动通信设备有限公司 振子单元、天线单元及天线阵列
US20100073237A1 (en) * 2008-09-24 2010-03-25 Lucent Technologies Inc. Multi-polarized antenna array
CN104009277A (zh) * 2013-02-21 2014-08-27 中国移动通信集团设计院有限公司 一种天线设备和天线阵列
CN204243180U (zh) * 2014-12-11 2015-04-01 公安部第一研究所 一种水平全方向辐射的圆极化天线

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110197950A (zh) * 2019-06-06 2019-09-03 昆山瀚德通信科技有限公司 一种双极化天线
CN110197950B (zh) * 2019-06-06 2024-01-02 昆山瀚德通信科技有限公司 一种双极化天线
CN112952379A (zh) * 2021-01-29 2021-06-11 普联技术有限公司 三极化天线及通讯装置
CN112952379B (zh) * 2021-01-29 2024-03-19 普联技术有限公司 三极化天线及通讯装置

Also Published As

Publication number Publication date
CN105977617A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
US9319155B2 (en) Multiple input multiple output antenna module and associated method
WO2018001007A1 (zh) 一种用于5g系统的密集阵列天线
US11043738B2 (en) Dual-polarized radiating element, antenna, base station, and communications system
WO2016065830A1 (zh) 一种天线阵耦合校准网络装置及校准方法、存储介质
CN106935963A (zh) 高隔离度双极化环缝微带天线单元
US20190288406A1 (en) Antenna feed structure and base station antenna
WO2017076030A1 (zh) 一种三极化天线
WO2020119367A1 (zh) 天线及终端设备
US10333228B2 (en) Low coupling 2×2 MIMO array
WO2015062545A1 (en) Antenna dipole unit with an asymmetric dipole
US9331396B2 (en) Antenna structure having orthogonal polarizations
US20140354510A1 (en) Antenna system providing simultaneously identical main beam radiation characteristics for independent polarizations
CN104600422A (zh) 一种双极化共轴八木天线系统
WO2015168845A1 (zh) 超宽带双极化辐射单元和基站天线
US9077086B2 (en) Portable communication apparatus
WO2016123924A1 (zh) 一种多输入多输出天线及终端
JP6185665B2 (ja) 偏電効果を用いた指向性mimoアンテナ
US20150009092A1 (en) Multi-antenna structure
KR101412135B1 (ko) Mimo용 수평 편파 무지향성 안테나
WO2017135368A1 (ja) 無線通信装置
US20170149143A1 (en) A method, apparatus and system
CN106898877B (zh) 一种盲插结构的密集阵列天线
US20200212591A1 (en) Mimo antenna system and electronic device
WO2019114340A1 (zh) 一种垂直极化mimo天线和具有mimo天线的终端
RU180322U1 (ru) Широкополосная направленная двухполяризационная антенна

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861300

Country of ref document: EP

Kind code of ref document: A1