WO2017075922A1 - 一种非授权频谱的drs配置方法、测量方法和相关设备 - Google Patents

一种非授权频谱的drs配置方法、测量方法和相关设备 Download PDF

Info

Publication number
WO2017075922A1
WO2017075922A1 PCT/CN2016/072868 CN2016072868W WO2017075922A1 WO 2017075922 A1 WO2017075922 A1 WO 2017075922A1 CN 2016072868 W CN2016072868 W CN 2016072868W WO 2017075922 A1 WO2017075922 A1 WO 2017075922A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
drs
location information
location
subframe
Prior art date
Application number
PCT/CN2016/072868
Other languages
English (en)
French (fr)
Inventor
李明菊
朱亚军
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2017075922A1 publication Critical patent/WO2017075922A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to the field of communications, and in particular, to a DRS configuration method, a measurement method, and related devices for an unlicensed spectrum.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • LAA LTE Assisted Access
  • LTA LTE Assisted Access
  • the unlicensed spectrum can work in two ways.
  • One is the Supplemental Downlink, that is, only the downlink transmission subframe; the other is the time division duplex mode, and both the uplink and downlink transmission subframes are included. This situation can only be supplemented by the carrier aggregation technology.
  • the 3GPP stipulates that the DAS (Discovery Reference Signal, DRS) for RRM measurement of the LAA can be sent as follows: multiple DMTC (DRS Measurement Timing Configuration) can be configured in a periodic manner. Send location.
  • the DMTC is a time period of 6 ms, and its occurrence period is 40 ms/80 ms/160 ms.
  • the transmittable positions of multiple DRSs are configured, and each transmittable location occupies 12 symbols of each subframe.
  • an initial signal or a reservation signal may be sent for downlink synchronization or channel reservation. And these initial signal or reservation signal plus The length of the 12 symbols on the DRS cannot be greater than 1ms. Therefore, the length of the initial signal or the reservation signal cannot be greater than 2symbol.
  • the base station needs to configure the location of the DMTC and the location of the DRS. How to configure the location of the DMTC and the DRS is a hot research topic.
  • the technical problem to be solved by the embodiments of the present invention is to provide a DRS configuration method, a measurement method, and related devices for an unlicensed spectrum.
  • the DRS transmitted on the unlicensed spectrum can be accurately measured.
  • an embodiment of the present invention provides a DRS configuration method based on an unlicensed spectrum, including:
  • the base station configuration finds a reference signal measurement time to configure a location of the DMTC time period, and generates first location information.
  • the duration of the DMTC time period is M subframe lengths, and the start symbol of the DMTC time segment is a subframe number. One of the symbols to the 14th symbol;
  • the base station configures the location of the N discovery reference signals DRS to be sent in the DMTC time period to generate second location information, where each DRS occupies 12 symbols, and each DRS only corresponds to one subframe, N ⁇ M, and N and M are positive integers;
  • the base station configures a location of a set of initial signals and/or reserved signals for each of the N DRSs to be sent, to generate third location information, where each set of initial signals and/or reserved signals occupies at most 2 symbols;
  • the base station sends a measurement configuration message carrying the first location information, the second location information, and the third location information to the user equipment, where the measurement configuration message is used to instruct the user equipment to perform DRS-based measurement .
  • the embodiment of the present invention further provides a DRS measurement method based on an unlicensed spectrum, including:
  • the user equipment receives a measurement configuration message that is sent by the base station and carries the first location information, the second location information, and the third location information, where the first location information indicates a location of the DMTC time period, and the second location information indicates the location a location of the DRS configured in the DMTC time period, where the third location information indicates a location of a group of initial signals and/or reserved signals corresponding to the DRS;
  • the second location information determines a location of the DRS, and determines a location of a set of initial signals and/or reserved signals corresponding to the DRS according to the third location information;
  • the user equipment performs DRS based measurements based on the location of the DRS.
  • an embodiment of the present invention further provides a base station, including:
  • a first configuration module configured to configure a position of the discovery reference signal measurement time to configure a DMTC time period, to generate first location information, where the duration of the DMTC time period is M subframe lengths, and the start of the DMTC time period
  • the symbol is any one of the first symbol to the 14th symbol in the subframe
  • a second configuration module configured to configure a location of the N discovery reference signals DRS to be sent in the DMTC time period, to generate second location information, where each DRS occupies 12 symbols, and each DRS only corresponds to one Subframe, N ⁇ M, and N and M are positive integers;
  • a third configuration module configured to configure a location of a set of initial signals and/or reserved signals for each of the N DRSs to be sent, to generate third location information, where each group of initial signals and/or pre- The residual signal occupies at most 2 symbols;
  • a sending module configured to send, to the user equipment, a measurement configuration message that carries the first location information, the second location information, and the third location information, where the measurement configuration message is used to indicate that the user equipment performs DRS-based Measurement.
  • the embodiment of the present invention further provides a user equipment, including:
  • a receiving module configured to receive, by the base station, a measurement configuration message that carries the first location information, the second location information, and the third location information, where the first location information indicates a location of the DMTC time period, and the second location information And indicating a location of the DRS configured in the DMTC time period, where the third location information indicates a location of a group of initial signals and/or reserved signals corresponding to the DRS;
  • a determining module configured to determine a location of the DMTC time period according to the first location information, determine a location of the DRS according to the second location information, and determine a group of initial signals and/or reservations corresponding to the DRS according to the third location information The position of the signal;
  • a synchronization module configured to determine whether there is a PSS and an SSS in the initial signal and/or the reserved signal, and if yes, performing downlink synchronization according to the PSS and the SSS;
  • a measurement module configured for the user equipment to perform DRS-based measurement according to the location of the DRS.
  • the base station generates a measurement configuration message by configuring the location of the DMTC time period, the location of the DRS, and the location of the initial signal and/or the reserved signal, and sends a measurement configuration message to the user equipment, indicating the DRS specified by the user equipment in the specified DMTC time period.
  • the measurement is performed to enable the user equipment to accurately obtain the symbol position of the DRS to be measured, and increase the accuracy of the measurement.
  • FIG. 1 is a schematic flowchart of a DRS configuration method based on an unlicensed spectrum according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a DRS according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a DRS measurement method based on an unlicensed spectrum according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method for configuring a DRS based on an unlicensed spectrum according to an embodiment of the present invention.
  • the method includes:
  • the base station configures a location of the DMTC time period to generate first location information.
  • each subframe includes 14 symbols, and each subframe has a length of 1 ms.
  • the DMTC time period is a time interval of a certain length.
  • the length of the DMTC time period is 6 ms, and the DMTC time period may be periodic.
  • the period of occurrence is 40 ms, 60 ms, or 80 ms, and multiple DMTC time segments are configured.
  • DRS, and the bit of DRS in each DMTC time period The settings can be the same, and the DRS is used by the user equipment to perform DRS-based RRM measurements within a specified time interval.
  • the location of the DMTC time period is determined by the base station, where the base station determines the location of the first DMTC time segment, and the duration of each DMTC time period is M subframe lengths, and the length of one subframe is 1 ms, that is, the duration of the DMTC time period is M milliseconds, the start symbol of the DMTC time period may be any one of the symbols in the subframe.
  • the length of the DMTC is 6 ms as described above, and the start symbol of the DMTC period is the first symbol of a certain subframe.
  • the subframes occupied by the DMTC are not necessarily complete subframes, and may also include partial subframes, that is, the DMTC time segment may also include some symbols in a certain subframe, which is not limited in the present invention.
  • the base station configures a location of the N DRSs to be sent in the DMTC time period to generate second location information.
  • the N DRSs to be sent by the base station side need to be mapped into M subframes of the DMTC time period, and the base station maps the N DRSs into corresponding subframes in the DMTC time segment, each DRS occupies 12 symbols, and Each DRS corresponds to only one subframe.
  • Each DRS must be mapped to a complete subframe (14 symbols) included in the DMTC time period, each DRS occupies 12 symbols in a complete subframe, and the number N of DRSs to be transmitted is less than or equal to DMTC. The number of full subframes in the time period.
  • the base station After the mapping operation of the N DRSs is completed, the base station generates second location information, where the second location information is used to indicate that the N DRSs are located in the DMTC time period.
  • the base station configures a location of a set of initial signals and/or reserved signals for each DRS of the N DRSs to be sent, and generates third location information.
  • the base station configures a set of initial signal and/or a reserved signal for each DRS of the N DRSs, where the symbols occupied by each group of initial signals and/or reserved signals are located in the corresponding DRS occupied symbols.
  • each group of initial signals and/or reserved signals occupies at most 2 symbols, that is, each group of initial signals and/or reserved signals can occupy 2 symbols, 1 symbol or 0 symbols, it should be noted that The symbols occupied by each group of initial signals and/or reserved signals are not limited to an integer number of symbols, and only part of the symbols may be occupied.
  • the base station sends a measurement configuration message carrying the first location information, the second location information, and the third location information to the user equipment, where the measurement configuration message is used to indicate that the user equipment performs the DRS-based measurement.
  • the base station sends the first location information, the second location information, and the third bit to the user equipment.
  • the measurement configuration message of the information, the first location information is used to indicate the location of the DMTC
  • the user equipment may determine the location of the DMTC according to the first location information, and determine the location of the subsequent DMTC according to the appearance period of the DMTC, and the user equipment according to the second location information Determining a location of the N DRSs to be sent on the base station side, so as to measure each DRS in the corresponding subframe position, and determining, by the user equipment, a set of initial signals and/or reserved signals corresponding to each DRS according to the third location information.
  • the location, initial signal and/or reserved signal are used for downlink synchronization and channel reservation.
  • the base station generates a measurement configuration message by configuring a location of the DMTC time period, a location of the DRS, and a location of the initial signal and/or the reserved signal, and sends a measurement configuration message to the user equipment, indicating that the user equipment is specified.
  • the DRS specified in the DMTC time period is measured, so that the user equipment accurately obtains the symbol position of the DRS to be measured, and increases the accuracy of the measurement.
  • each of the N DRSs to be sent occupies the first symbol to the twelfth symbol of the one subframe; or the second symbol to the thirteenth symbol; or the third symbol to the third symbol 14 symbols.
  • each DRS of the N DRSs to be transmitted occupies 12 consecutive symbols in one subframe. Since each subframe contains 14 symbols, the occupied mode is divided into three types: the first in the DRS occupied subframe. 1 symbol to the 12th symbol, a total of 12 symbols; DRS occupies the 2nd symbol to the 13th symbol in the sub-frame, a total of 12 symbols; DRS occupies the 3rd symbol to the 14th symbol, a total of 12 symbol.
  • the position of each of the N DRSs in the DMTC is the same, that is, the DRS has the same position occupying 12 symbols in the subframe.
  • a set of initial signals and/or reserved signals corresponding to the first DRS in the N DRSs occupy the last one or two symbols of the previous subframe of the subframe in which the first DRS is located, and The start symbol of the DMTC time period coincides with the start symbol of the subframe in which the first DRS is located;
  • a set of initial signals and/or reserved signals corresponding to the first DRS of the N DRSs are located in the last one or two symbols of the previous subframe of the subframe occupied by the first DRS, and the DMTC time period The start symbol coincides with the start symbol of the previous subframe; or
  • a set of initial signals and/or reserved signals corresponding to the first DRS of the N DRSs are located in the last one or two symbols of the previous subframe of the subframe occupied by the first DRS, and the DMTC time
  • the start symbol of the segment coincides with the start symbol of the initial signal and/or the reserved signal in the previous subframe.
  • the location of the DMTC configured by the base station is classified into the following three types:
  • the base station sorts the N DRSs according to the sending order, the base station configures the position of the first DRS, determines the subframe occupied by the first DRS, and configures a set of initial signals and/or reserved signals for the first DRS, the initial signal sum
  • the reserved signal is located in the last one or two symbols of the previous subframe of the subframe occupied by the first DRS, and the start symbol of the DMTC time period coincides with the start symbol of the subframe in which the first DRS is located, that is, The start signal and/or the reserved signal are not completely covered by the DMTC time period.
  • the base station refers to the first DRS mapping method when mapping the subframe positions of the other DRSs of the first DRS among the N DRSs: the subsequent subframes occupied by each DRS are from the first symbol or the second of the subframes.
  • a set of initial signals and/or reserved signals corresponding to each DRS are located within the last 1 or 2 symbols of the previous subframe.
  • the base station sorts the N DRSs according to the sending order, the base station configures the position of the first DRS, determines the subframe occupied by the first DRS, and configures a set of initial signals and/or reserved signals for the first DRS, and the initial signals of the group
  • the reserved signal is located in the last one or two symbols of the previous subframe of the subframe occupied by the first DRS, and the start symbol of the DMTC time period coincides with the start symbol of the previous subframe, that is, the DMTC time period.
  • a set of initial signals and/or reserved signals corresponding to the first DRS is completely covered.
  • the initial signal and/or the reserved signal corresponding to each subsequent DRS is located in the last one or two symbols of the previous subframe.
  • the base station sorts the N DRSs according to the sending order, the base station configures the position of the first DRS, determines the subframe occupied by the first DRS, and configures a set of initial signals and/or reserved signals for the first DRS, the initial signal sum of the group. / or the reserved signal is located in the last one or two symbols of the previous subframe of the subframe occupied by the first DRS, and the start symbol of the DMTC period and the initial signal and/or the reserved signal in the previous subframe The start symbols coincide, that is, the DMTC time period completely covers the initial signal and/or the reserved signal corresponding to the first DRS.
  • the base station configures the position of the first DRS in the N DRSs, the initial signal and/or the reserved signal corresponding to each subsequent DRS is in the last one or two symbols of the previous subframe.
  • a set of initial signals and/or reserved signals corresponding to each DRS is not limited to occupying an integer number of symbols, and may also occupy part of the symbols, even without occupying any symbols, that is, not configuring an initial signal for the DRS and/or Reserved signal.
  • the first symbol, the fifth symbol, the eighth symbol, and the twelfth symbol of the 12 symbols occupied by each DRS in the to-be-transmitted DRS are allocated with at least CRS port0; or
  • the first symbol, the fifth symbol, the eighth symbol, and the twelfth symbol are assigned CRS port1; and/or
  • the second symbol, the ninth symbol is assigned CRS port 2 and CRS port3; and/or
  • the sixth symbol is assigned an SSS, and the seventh symbol is assigned a PSS; and/or
  • the 10th symbol and the 11th symbol are assigned with a ZP CSI-RS and or an NZP CSI-RS.
  • each DRS occupies 12 consecutive symbols in the subframe, and the 12 symbols occupied by the DRS are numbered according to the order of time: the first symbol to the twelfth symbol, and the signal type of the above 12 symbol configurations See Figure 2:
  • the first, fifth, eighth, and twelfth symbols have at least CRS port 0 (Cell specific Reference Signal port 0, CRS port 0 for short), and may have CRS port 1 (Cell specific Reference Signal port 1). Reference signal port 1, referred to as CRS port1), and if CRS port 1 is sent, 4 symbols are available.
  • the 2nd and 9th symbols may send CRS port 2 (Cell specific Reference Signal port 2, CRS port 2 for short) and CRS port 3 (Cell specific Reference Signal port 3, CRS port 3 for short). , or have a reference signal or synchronization signal or a new signal padding other than CRS port 2 and CRS port3. And if there are CRS port 2 and CRS port3 transmission, these two symbols are available, wherein port0 represents antenna port 0, port1 represents antenna port 1, port 2 represents antenna port 2, and port 3 represents antenna port 3.
  • the 3rd and 4th symbols may have one or more of CRS port 0, CRS port 0/1, CRS port 2, CRS port 2/3, or NZP CSI-RS (Non Zero Power Channel State Information Reference Signal, non- One or more of the zero power channel state information reference signals, referred to as NZP CSI-RS), one or more of the SSS/PSS, or a new signal fill;
  • NZP CSI-RS Non Zero Power Channel State Information Reference Signal, non- One or more of the zero power channel state information reference signals, referred to as NZP CSI-RS
  • SSS Secondary Synchronization Signal, SSS for short
  • PSS Primary Synchronization Signal, PSS for short
  • PSS Primary Synchronization Signal
  • ZP CSI-RS Zero Power Channel State Information Reference Signal
  • NZP CSI-RS Non Zero Power Channel State Information Reference Signal
  • the method further includes:
  • the base station configures a CCA time period in front of a symbol occupied by each group of initial signals and/or reserved signals, where the CCA time period is used to detect a channel state, and a start position of the CCA time period and a corresponding DRS The starting position is at most 2 symbols.
  • the base station configures a CCA time period for the symbols occupied by each group of initial signals and/or reserved signals, and the length of the CCA time period has the following restrictions: the CCA time period, the initial signal, and/or the reserved signal occupy at most two
  • the symbol that is, the distance between the start position of the CCA period and the start position of the corresponding DRS is at most 2 symbols, for example, the length of the CCA period is 25 us.
  • the CCA time period is used by the base station to detect the channel state. When the base station detects that the unlicensed spectrum channel is idle in the CCA time period, the base station may send an initial signal and/or a reserved signal configured later, and then send the corresponding DRS.
  • the DRS cannot be transmitted; if the unlicensed spectrum channel is detected as being idle in the time period of the length of the CCA period before the start of the DRS, then Send the initial signal and/or the reserved signal to send the DRS directly.
  • FIG. 3 is a schematic flowchart of a DRS measurement method based on an unlicensed spectrum according to an embodiment of the present invention.
  • the method includes:
  • the user equipment receives a measurement configuration message that is sent by the base station and carries the first location information, the second location information, and the third location information.
  • the first location information indicates a location of the DMTC time period
  • the second location information indicates The location of the DRS configured in the DMTC time period
  • the third location information indicating a location of a set of initial signals and/or reserved signals corresponding to the DRS.
  • the DRS is configured in the DMTC time period, and each DRS is configured with a set of initial signals and/or reserved signals.
  • the location of the DMTC time period configured by the base station is divided into two cases: the DMTC time period does not completely cover the first DRS.
  • the initial signal and/or the reserved signal; or the DMTC time period completely covers the initial signal and/or the reserved signal corresponding to the first DRS.
  • the user equipment determines a location of the DMTC time period according to the first location information, determines a location of the DRS according to the second location information, and determines a group of initial signals and/or pre-corresponds to the DRS according to the third location information. The location of the signal.
  • the user equipment determines whether there is a PSS and an SSS in the initial signal and/or the reserved signal, and if yes, performs downlink synchronization according to the PSS and the SSS.
  • the user equipment parses whether the PSS and the SSS are present in the initial signal and/or the reserved signal. If yes, the user equipment performs downlink basic synchronization according to the time configuration information in the initial signal and/or the reserved signal; if not, the user equipment can only blindly check the PSS and the SSS in the DRS to obtain downlink synchronization, and the downlink synchronization is completed. After that, the user equipment finds the DRS according to the second location information. The start symbol and the position of the 12 symbols occupied by the DRS are then measured according to the configuration method in the measurement configuration message.
  • the user equipment determines the location of the DMTC time period according to the first location information, and obtains the DMTC time period.
  • Starting symbol starting from the start symbol of the DMTC time period, the user equipment performs blind detection on each symbol in the DMTC time period, detects the symbol positions of the PSS and the SSS in the DRS, thereby obtaining downlink basic synchronization, and downlink synchronization is completed.
  • the user equipment finds the start symbol of the DRS and the position of the 12 symbols occupied by the DRS according to the second location information, and then measures the DRS according to the configuration method in the measurement configuration message. Since the starting position of the DMTC period is not the initial position of the initial signal and/or the reserved signal or the starting position of the DRS in this case, it is necessary to perform blind detection for each symbol.
  • the user equipment performs DRS-based measurement according to the location of the DRS.
  • the user equipment determines the symbol position in the DMTC time period according to the location of the DRS, and performs measurement according to the DRS mapped to the specified symbol in the DMTC time period, and the measurement method is not limited in the present invention.
  • the base station generates a measurement configuration message by configuring a location of the DMTC time period, a location of the DRS, and a location of the initial signal and/or the reserved signal, and the user receives the measurement configuration message, and specifies the indication according to the measurement configuration message.
  • the DRS specified in the DMTC time period is measured, so that the user equipment accurately obtains the symbol position of the DRS to be measured, and increases the accuracy of the measurement.
  • the method further includes:
  • the user equipment If there is no PSS and SSS in the initial signal and or the reserved signal, the user equipment performs blind detection on the PSS and the SSS in the DRS to obtain downlink synchronization.
  • FIG. 4 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station 4 includes a first configuration module 401, a second configuration module 402, a third configuration module 403, and a sending module 404.
  • the first configuration module 401 is configured to configure a position of the discovery reference signal measurement time DMTC time period to generate first location information, where the duration of the DMTC time period is M subframe lengths, and the start of the DMTC time period The symbol is any one of the first symbol to the 14th symbol in the subframe.
  • the second configuration module 402 is configured to configure a location of the N discovery reference signals DRS to be sent in the DMTC time period to generate second location information, where each DRS occupies 12 symbols, and each DRS only corresponds to One subframe, N ⁇ M, and N and M are positive integers.
  • a third configuration module 403 configured to configure a location of a set of initial signals and/or reserved signals for each of the N DRSs to be sent, to generate third location information, where each group of initial signals and/or The reserved signal occupies up to 2 symbols.
  • a sending module configured to send, to the user equipment, a measurement configuration message that carries the first location information, the second location information, and the third location information, where the measurement configuration message is used to indicate that the user equipment performs DRS-based Measurement.
  • each of the N DRSs to be sent occupies the first symbol to the twelfth symbol of the one subframe; or the second symbol to the thirteenth symbol; or the third symbol to the third symbol 14 symbols.
  • a set of initial signals and/or reserved signals corresponding to the first DRS in the N DRSs occupy the last one or two symbols of the previous subframe of the subframe in which the first DRS is located, and The start symbol of the DMTC time period coincides with the start symbol of the subframe in which the first DRS is located;
  • a set of initial signals and/or reserved signals corresponding to the first DRS of the N DRSs are located in the last one or two symbols of the previous subframe of the subframe occupied by the first DRS, and the DMTC time The start symbol of the segment coincides with the start symbol of the previous subframe; or
  • a set of initial signals and/or reserved signals corresponding to the first DRS of the N DRSs are located in the last one or two symbols of the previous subframe of the subframe occupied by the first DRS, and the DMTC time
  • the start symbol of the segment coincides with the start symbol of the initial signal and/or the reserved signal in the previous subframe.
  • the first symbol, the fifth symbol, the eighth symbol, and the twelfth symbol of the 12 symbols occupied by each DRS in the to-be-transmitted DRS are allocated with at least CRS port0; or
  • the first symbol, the fifth symbol, the eighth symbol, and the twelfth symbol are assigned CRS port1; and/or
  • the second symbol, the ninth symbol is assigned CRS port 2 and CRS port3; and/or
  • the sixth symbol is assigned an SSS, and the seventh symbol is assigned a PSS; and/or
  • the 10th symbol and the 11th symbol are assigned with a ZP CSI-RS and/or an NZP CSI-RS.
  • the base station 4 further includes:
  • a fourth configuration module configured to configure a CCA time period in front of a symbol occupied by each group of initial signals and/or reserved signals, where the CCA time period is used to detect a channel state, and a starting position of the CCA time period and a corresponding DRS The starting position is at most 2 symbols.
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the user equipment 5 includes: a receiving module 501, a determining module 502, a synchronization module 503, and a measuring module 504.
  • the receiving module 501 is configured to receive, by the base station, a measurement configuration message that carries the first location information, the second location information, and the third location information, where the first location information indicates a location of the DMTC time period, and the second location The information indicates the location of the DRS configured in the DMTC time period, and the third location information indicates the location of a set of initial signals and/or reserved signals corresponding to the DRS.
  • the determining module 502 is configured to determine a location of the DMTC time period according to the first location information, determine a location of the DRS according to the second location information, and determine a group of initial signals and/or pre-corresponds to the DRS according to the third location information. The location of the signal.
  • the synchronization module 503 is configured to determine whether the PSS and the SSS are present in the initial signal and/or the reserved signal, and if yes, perform downlink synchronization according to the PSS and the SSS.
  • a measurement module configured for the user equipment to perform DRS-based measurement according to the location of the DRS.
  • the user equipment 5 further includes:
  • a blind detection module configured to perform blind detection on the PSS and the SSS in the DRS to obtain downlink synchronization if the PSS and the SSS are not present in the initial signal and or the reserved signal.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种基于非授权频谱的DRS配置方法,包括:基站配置发现参考信号测量时间配置DMTC时间段的位置,生成第一位置信息;所述基站在所述DMTC时间段内配置待发送的N个发现参考信号DRS的位置,生成第二位置信息;所述基站为所述待发送的N个DRS中每个DRS配置一组初始信号和/或预留信号的位置,生成第三位置信息;所述基站向用户设备发送携带所述第一位置信息、所述第二位置信息和所述第三位置信息的测量配置消息,所述测量配置消息用于指示所述用户设备进行基于DRS的测量。本发明实施例还公开了一种DRS测量方法、基站和用户设备。采用本发明,能准确对非授权频谱上的DRS进行测量。

Description

一种非授权频谱的DRS配置方法、测量方法和相关设备 技术领域
本发明涉及通信领域,尤其涉及一种非授权频谱的DRS配置方法、测量方法和相关设备。
背景技术
随着通信业务量的急剧增加,3GPP(3rd Generation Partnership Project,第三代合作伙伴计划,简称3GPP)授权频谱显得越来越不足以提供更高的网络容量。为了进一步提高频谱资源的利用,3GPP正讨论如何在授权频谱的帮助下使用未授权频谱,如2.4GHz和5GHz频段。这些未授权频谱目前主要是WiFi(Wireless Fidelity,无线保真,简称WiFi)、蓝牙、雷达和医疗等系统在使用。一般来说,为已授权频段设计的接入技术,如LTE(Long Term Evolution,长期演进,简称LTE)不适合在未授权频段上使用,因为LTE这类接入技术对频谱效率和用户体验优化的要求非常高。然而,载波聚合功能让将LTE部署于非授权频段变为可能。3GPP提出了LAA(LTE Assisted Access,LTT辅助接入,简称LAA)的概念,借助LTE授权频谱的帮助来使用未授权频谱。而未授权频谱可以有两种工作方式,一种是补充下行(Supplemental Downlink),即只有下行传输子帧;另一种是时分双工模式,上下行都传输子帧都包含。补充下行这种情况只能是借助载波聚合技术使用。
目前3GPP规定,LAA的用于RRM测量的DRS(Discovery Reference Signal,发现参考信号,简称DRS)可以如下发送:在周期性出现的DMTC(DRS Measurement Timing Configuration,DRS测量时间配置)中配置多个可发送位置。其中DMTC是一个长6ms的时间段,其出现的周期是40ms/80ms/160ms。而在DMTC 6ms中配置多个DRS的可发送位置,每个可发送位置占用每个subframe的12个符号。而在DRS发送之前还可能发送initial signal或reservation signal用于下行同步和或信道预留等作用。而这些initial signal或reservation signal加 上DRS 12个symbol的长度之后不能大于1ms。所以initial signal或reservation signal的长度是不能大于2symbol。
由上可知,当需要用户设备对DRS进行测量时,基站需要对DMTC的位置和DRS的位置进行配置,如何对DMTC和DRS的位置进行配置是目前研究的热点。
发明内容
本发明实施例所要解决的技术问题在于,提供一种非授权频谱的DRS配置方法、测量方法和相关设备。可准确的对非授权频谱上发送的DRS进行测量。
为了解决上述技术问题,本发明实施例提供了一种基于非授权频谱的DRS配置方法,包括:
基站配置发现参考信号测量时间配置DMTC时间段的位置,生成第一位置信息;其中,所述DMTC时间段的持续时间为M个子帧长度,所述DMTC时间段的起始符号为子帧中第1个符号至第14个符号中的任意一个;
所述基站在所述DMTC时间段内配置待发送的N个发现参考信号DRS的位置,生成第二位置信息;其中,每个DRS占用12个符号,且每个DRS只对应一个子帧,N<M,且N和M为正整数;
所述基站为所述待发送的N个DRS中每个DRS配置一组初始信号和/或预留信号的位置,生成第三位置信息;其中,每组初始信号和/或预留信号占用至多2个符号;
所述基站向用户设备发送携带所述第一位置信息、所述第二位置信息和所述第三位置信息的测量配置消息,所述测量配置消息用于指示所述用户设备进行基于DRS的测量。
相应的,本发明实施例还提供了一种基于非授权频谱的DRS测量方法,包括:
用户设备接收基站发送的携带第一位置信息、第二位置信息和第三位置信息的测量配置消息;其中,所述第一位置信息表示DMTC时间段的位置,所述第二位置信息表示所述DMTC时间段中配置的DRS的位置,所述第三位置信息表示DRS对应的一组初始信号和/或预留信号的位置;
所述用户设备根据所述第一位置信息确定DMTC时间段的位置、根据所述 第二位置信息确定DRS的位置,以及根据第三位置信息确定DRS对应的一组初始信号和/或预留信号的位置;
所述用户设备判断所述初始信号和/或预留信号中是否存在PSS和SSS,若存在,根据所述PSS和SSS进行下行同步;
所述用户设备根据所述DRS的位置进行基于DRS的测量。
相应的,本发明实施例还提供了一种基站,包括:
第一配置模块,用于配置发现参考信号测量时间配置DMTC时间段的位置,生成第一位置信息;其中,所述DMTC时间段的持续时间为M个子帧长度,所述DMTC时间段的起始符号为子帧中第1个符号至第14个符号中的任意一个;
第二配置模块,用于在所述DMTC时间段内配置待发送的N个发现参考信号DRS的位置,生成第二位置信息;其中,每个DRS占用12个符号,且每个DRS只对应一个子帧,N<M,且N和M为正整数;
第三配置模块,用于为所述待发送的N个DRS中每个DRS配置一组初始信号和/或预留信号的位置,生成第三位置信息;其中,每组初始信号和/或预留信号占用至多2个符号;
发送模块,用于向用户设备发送携带所述第一位置信息、所述第二位置信息和所述第三位置信息的测量配置消息,所述测量配置消息用于指示所述用户设备进行基于DRS的测量。
相应的,本发明实施例还提供了一种用户设备,包括:
接收模块,用于接收基站发送的携带第一位置信息、第二位置信息和第三位置信息的测量配置消息;其中,所述第一位置信息表示DMTC时间段的位置,所述第二位置信息表示所述DMTC时间段中配置的DRS的位置,所述第三位置信息表示DRS对应的一组初始信号和/或预留信号的位置;
确定模块,用于根据所述第一位置信息确定DMTC时间段的位置、根据所述第二位置信息确定DRS的位置,以及根据第三位置信息确定DRS对应的一组初始信号和/或预留信号的位置;
同步模块,用于判断所述初始信号和/或预留信号中是否存在PSS和SSS,若存在,根据所述PSS和SSS进行下行同步;
测量模块,用于用户设备根据所述DRS的位置进行基于DRS的测量。
实施本发明实施例,具有如下有益效果:
基站通过配置DMTC时间段的位置、DRS的位置以及初始信号和/或预留信号的位置,生成测量配置消息,向用户设备发送测量配置消息,指示用户设备在指定的DMTC时间段中指定的DRS进行测量,使用户设备准确的获取需要测量的DRS的符号位置,增加测量的准确性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种基于非授权频谱的DRS配置方法的流程示意图;
图2是本发明实施例提供的DRS的组成示意图;
图3是本发明实施例提供的一种基于非授权频谱的DRS测量方法的流程示意图;
图4是本发明实施例提供的一种基站的结构示意图;
图5是本发明实施例提供的一种用户设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,为本发明实施例提供的一种基于非授权频谱的DRS配置方法的流程示意图,在本发明实施例中,所述方法包括:
S101、基站配置DMTC时间段的位置,生成第一位置信息。
具体的,在LTE辅助接入技术中,每个子帧包含14个符号,每个子帧的长度为1ms。DMTC时间段为一定长度的时间区间,例如:DMTC时间段的长度为6ms,DMTC时间段可以为周期性的出现,其出现的周期为40ms、60ms或80ms,每个DMTC时间段内配置多个DRS,且每个DMTC时间段内DRS的位 置可以相同,DRS用于用户设备在指定的时间区间内进行基于DRS的RRM测量。基站配置DMTC时间段的位置具体包括:基站确定配置首个DMTC时间段的位置,每个DMTC时间段的持续时间为M个子帧长度,1个子帧长度为1ms,即DMTC时间段的持续时间为M毫秒,DMTC时间段的起始符号可以为子帧中的任意一个符号。例如,DMTC的时间长度为上述的6ms,DMTC时间段的起始符号为某个子帧的首个符号。基站配置首个DMTC时间段的位置后生成第一位置信息,第一位置信息用于表示DMTC时间段的位置信息。
需要说明的是,DMTC占用的子帧不一定都是完整的子帧,也可以包括部分的子帧,即DMTC时间段也可以包括某个子帧中的部分符号,本发明不作限制。
S102、基站在DMTC时间段内配置待发送的N个DRS的位置,生成第二位置信息。
具体的,基站侧待发送的N个DRS需要映射到DMTC时间段的M个子帧内,基站将N个DRS分别映射到DMTC时间段中对应的子帧中,每个DRS占用12个符号,且每个DRS只对应一个子帧。其中,每个DRS必须映射到DMTC时间段中包括的完整的子帧(14个符号)中,每个DRS占用完整的子帧中的12个符号,待发送的DRS的数量N小于或等于DMTC时间段中的完整子帧的数量。基站完成N个DRS的映射操作后,生成第二位置信息,第二位置信息用于表示N个DRS位于DMTC时间段中的位置。
S103、所述基站为待发送的N个DRS中每个DRS配置一组初始信号和/或预留信号的位置,生成第三位置信息。
具体的,基站为N个DRS中每个DRS配置一组初始信号initial signal和/或预留信号reservation signal,其中,每组初始信号和/或预留信号占用的符号位于对应的DRS占用的符号的前面,且每组初始信号和/或预留信号至多占用2个符号,即每组初始信号和/或预留信号可以占用2个符号、1个符号或0个符号,需要说明的是,每组初始信号和/或预留信号占用的符号并不限于整数个符号,可以只占用部分符号。
S104、基站向用户设备发送携带第一位置信息、第二位置信息和第三位置信息的测量配置消息,测量配置消息用于指示用户设备进行基于DRS的测量。
具体的,基站向用户设备发送携带第一位置信息、第二位置信息和第三位 置信息的测量配置消息,第一位置信息用于表示DMTC的位置,用户设备可以根据第一位置信息确定DMTC的位置以及根据DMTC的出现周期确定后续的DMTC的位置,用户设备根据第二位置信息确定基站侧待发送的N个DRS的位置,以便在对应的子帧位置对每个DRS进行测量,用户设备根据第三位置信息确定每个DRS对应的一组初始信号和/或预留信号的位置,初始信号和/或预留信号用于进行下行同步和信道预留。用户设备完成对DMTC中的各个DRS的测量后,向基站上报测量结果。
实施本发明的实施例,基站通过配置DMTC时间段的位置、DRS的位置以及初始信号和/或预留信号的位置,生成测量配置消息,向用户设备发送测量配置消息,指示用户设备在指定的DMTC时间段中指定的DRS进行测量,使用户设备准确的获取需要测量的DRS的符号位置,增加测量的准确性。
可选的,所述待发送的N个DRS中每个DRS占用1个子帧中的第1个符号至第12个符号;或第2个符号至第13个符号;或第3个符号至第14个符号。
具体的,待发送的N个DRS中每个DRS占用一个子帧中的12个连续的符号,由于每个子帧包含14个符号,因此占用的方式分为三种:DRS占用子帧中的第1个符号至第12个符号,共12个符号;DRS占用子帧中的第2个符号至第13个符号,共12个符号;DRS占用第3个符号至第14个符号,共12个符号。
其中,N个DRS中每个DRS在DMTC中的子帧的位置相同,即DRS在子帧内的占用12个符号的位置相同。
可选的,所述N个DRS中首个DRS对应的一组初始信号和/或预留信号占用所述首个DRS所在的子帧的上一子帧的最后一个或两个符号,且所述DMTC时间段的起始符号与所述首个DRS所在的子帧的起始符号重合;或
所述N个DRS中首个DRS对应的一组初始信号和/或预留信号位于所述首个DRS占用的子帧的上一子帧的最后一个或两个符号,且所述DMTC时间段的起始符号与所述上一子帧的起始符号重合;或
所述N个DRS中首个DRS对应的一组初始信号和/或预留信号位于所述首个DRS占用的子帧的上一子帧的最后一个或两个符号内,且所述DMTC时间段的起始符号与所述上一子帧中初始信号和/或预留信号的起始符号重合。
具体的,基站配置DMTC的位置分为如下三种:
一、基站将N个DRS根据发送顺序进行排序,基站配置首个DRS的位置,确定首个DRS占用的子帧,为首个DRS配置一组初始信号和/或预留信号,这组初始信号和/或预留信号位于首个DRS占用的子帧的上一子帧的最后一个或两个符号内,且DMTC时间段的起始符号与首个DRS所在的子帧的起始符号重合,即DMTC时间段不完全覆盖该起始信号和/或预留信号。相应的,基站对N个DRS中除首个DRS的其他DRS进行映射子帧位置时参照首个DRS的映射方法:后续每个DRS占用的子帧从该子帧的首个符号或第2个符号开始,每个DRS对应的一组初始信号和/或预留信号位于上一子帧的最后的1个或2个符号内。
二、基站将N个DRS根据发送顺序进行排序,基站配置首个DRS的位置,确定首个DRS占用的子帧,为首个DRS配置一组初始信号和/或预留信号,该组初始信号和/或预留信号位于首个DRS占用的子帧的上一子帧的最后一个或两个符号内,且DMTC时间段的起始符号与上一子帧的起始符号重合,即DMTC时间段完全覆盖首个DRS对应的一组初始信号和/或预留信号。相应的,基站在配置N个DRS中除首个DRS的位置时,后续每个DRS对应的初始信号和/或预留信号位于上一子帧的最后的一个或两个符号内。
三、基站将N个DRS根据发送顺序进行排序,基站配置首个DRS的位置,确定首个DRS占用的子帧,为首个DRS配置一组初始信号和/或预留信号,该组初始信号和/或预留信号位于首个DRS占用的子帧的上一子帧的最后一个或两个符号内,且DMTC时间段的起始符号与上一子帧中的初始信号和/或预留信号的起始符号重合,即DMTC时间段完全覆盖首个DRS对应的初始信号和/或预留信号。相应的,基站在配置N个DRS中除首个DRS的位置时,后续每个DRS对应的初始信号和/或预留信号在上一子帧的最后一个或两个符号内。
需要说明的是,每个DRS对应的一组初始信号和/或预留信号并不限于占用整数个符号,也可以占用部分符号,甚至不占用任何符号,即不为DRS配置初始信号和/或预留信号。
可选的,所述待发送的N个DRS中每个DRS占用的12个符号中第1个符号、第5个符号、第8个符号和第12个符号至少分配有CRS port0;或
第1个符号、第5个符号、第8个符号和第12个符号分配有CRS port1;和/或
第2个符号、第9个符号分配有CRS port 2和CRS port3;和/或
第6个符号分配有SSS,第7个符号分配有PSS;和/或
第10个符号、第11个符号分配有ZP CSI-RS和或NZP CSI-RS。
具体的,每个DRS占用子帧中的12个连续的符号,根据时间的先后顺序对DRS占用的12个符号进行编号:第1个符号至第12个符号,上述12个符号配置的信号类型参见图2所示:
第1、5、8、12个符号至少有CRS port 0(Cell specific Reference Signal port0,小区专用参考信号端口0,简称CRS port0)的发送,可能有CRS port 1(Cell specific Reference Signal port1,小区专用参考信号端口1,简称CRS port1)的发送,且若有CRS port 1发送,4个符号就都有。
第2、9个符号可能发送CRS port 2(Cell specific Reference Signal port2,小区专用参考信号端口2,简称CRS port2)和CRS port3(Cell specific Reference Signal port3,小区专用参考信号端口3,简称CRS port3),或者有除CRS port 2和CRS port3以外的参考信号或同步信号或新的信号填充。且若有CRS port 2和CRS port3发送,这2个符号就都有,其中,port0表示天线端口0,port1表示天线端口1、port2表示天线端口2、port3表示天线端口3。
第3、4个符号可能有CRS port 0、CRS port 0/1、CRS port 2、CRS port 2/3中的一个或多个,或NZP CSI-RS(Non Zero Power Channel State Information Reference Signal,非零功率信道状态信息参考信号,简称NZP CSI-RS)的一个或多个,SSS/PSS的一个或多个,或新的信号填充;
第6个符号的中间6RB带宽发送SSS(Secondary Synchronization Signal,辅同步信号,简称SSS);
第7个符号的中间6RB带宽发送PSS(Primary Synchronization Signal,主同步信号,简称PSS);
第10、11个用来发送ZP CSI-RS(Zero Power Channel State Information Reference Signal,零功率信道状态信息参考信号,简称ZP CSI-RS)和或NZP CSI-RS(Non Zero Power Channel State Information Reference Signal,非零功率信道状态信息参考信号,简称NZP CSI-RS)。
可选的,所述方法还包括:
所述基站在每组初始信号和/或预留信号占用的符号前面配置CCA时间段,所述CCA时间段用于检测信道状态,且CCA时间段的起始位置与对应的DRS 的起始位置的距离至多为2个符号。
具体的,基站为每组初始信号和/或预留信号占用的符号前面配置一个CCA时间段,CCA时间段的长度有如下限制:CCA时间段、初始信号和/或预留信号占用至多两个符号,即CCA时间段的起始位置与对应的DRS的起始位置的距离至多为2个符号,例如CCA时间段的长度为25us。CCA时间段用于基站检测信道状态,基站在CCA时间段内检测到非授权频谱信道为空闲状态,则可以发送后面配置的初始信号和/或预留信号,然后再发送对应的DRS。如果DRS的起点开始之前没有检测到非授权频谱信道为空闲状态,则不能发送DRS;如果正好在DRS的起点之前的CCA时间段长度的时间段内检测到非授权频谱信道为空闲状态,则不用发送初始信号和/或预留信号,直接发送DRS。
参见图3,为本发明实施例提供的一种基于非授权频谱的DRS测量方法的流程示意图,在本发明实施例中,所述方法包括:
S301、用户设备接收基站发送的携带第一位置信息、第二位置信息和第三位置信息的测量配置消息;其中,所述第一位置信息表示DMTC时间段的位置,所述第二位置信息表示所述DMTC时间段中配置的DRS的位置,所述第三位置信息表示DRS对应的一组初始信号和/或预留信号的位置。
具体的,DRS配置在DMTC时间段内,每个DRS配置有一组初始信号和/或预留信号,基站配置DMTC时间段的位置分为两种情况:DMTC时间段不完全覆盖首个DRS对应的初始信号和/或预留信号;或DMTC时间段完全覆盖首个DRS对应的初始信号和/或预留信号。
S302、所述用户设备根据所述第一位置信息确定DMTC时间段的位置、根据所述第二位置信息确定DRS的位置,以及根据第三位置信息确定DRS对应的一组初始信号和/或预留信号的位置。
S303、所述用户设备判断所述初始信号和/或预留信号中是否存在PSS和SSS,若存在,根据所述PSS和SSS进行下行同步。
具体的,在DMTC时间段完全覆盖首个DRS对应的初始信号和/或预留信号的情况下:用户设备接收到测量配置消息后,解析初始信号和/或预留信号中是否存在PSS和SSS,若存在,用户设备根据初始信号和/或预留信号中的时间配置信息进行下行基本同步;若不存在,用户设备只能盲检中DRS中的PSS和SSS来获得下行同步,下行同步完成后,用户设备根据第二位置信息找到DRS 的起始符号以及DRS占用的12个符号的位置,然后根据测量配置消息中的配置方法对DRS进行测量。
在DMTC时间段不完全覆盖首个DRS对应的初始信号和/或预留信号的情况下:用户设备接收到测量配置消息后,根据第一位置信息确定DMTC时间段的位置,得到DMTC时间段的起始符号,从DMTC时间段的起始符号开始,用户设备对DMTC时间段中的每个符号进行盲检,检测出DRS中的PSS和SSS的符号位置,从而获得下行基本同步,下行同步完成后,用户设备根据第二位置信息找到DRS的起始符号以及DRS占用的12个符号的位置,然后根据测量配置消息中的配置方法对DRS进行测量。因为这种情况下,DMTC时间段的起始位置不是初始信号和/或预留信号的起始位置或DRS的起始位置,所以需要每个符号都进行盲检。
S304、所述用户设备根据所述DRS的位置进行基于DRS的测量。
具体的,用户设备根据DRS的位置确定DMTC时间段中的符号位置,根据对DMTC时间段中映射到指定符号的DRS进行测量,测量方法本发明不作限制。
实施本发明的实施例,基站通过配置DMTC时间段的位置、DRS的位置以及初始信号和/或预留信号的位置,生成测量配置消息,用户接收测量配置消息,根据测量配置消息的指示在指定的DMTC时间段中指定的DRS进行测量,使用户设备准确的获取需要测量的DRS的符号位置,增加测量的准确性。
可选的,所述方法还包括:
若所述初始信号和或预留信号中不存在PSS和SSS,所述用户设备进行盲检所述DRS中的PSS和SSS以获得下行同步。
参见图4,为本发明实施例提供的一种基站的结构示意图,在本发明实施例中,基站4包括第一配置模块401、第二配置模块402、第三配置模块403和发送模块404。
第一配置模块401,用于配置发现参考信号测量时间DMTC时间段的位置,生成第一位置信息;其中,所述DMTC时间段的持续时间为M个子帧长度,所述DMTC时间段的起始符号为子帧中第1个符号至第14个符号中的任意一个。
第二配置模块402,用于在所述DMTC时间段内配置待发送的N个发现参考信号DRS的位置,生成第二位置信息;其中,每个DRS占用12个符号,且每个DRS只对应一个子帧,N<M,且N和M为正整数。
第三配置模块403,用于为所述待发送的N个DRS中每个DRS配置一组初始信号和/或预留信号的位置,生成第三位置信息;其中,每组初始信号和/或预留信号占用至多2个符号。
发送模块,用于向用户设备发送携带所述第一位置信息、所述第二位置信息和所述第三位置信息的测量配置消息,所述测量配置消息用于指示所述用户设备进行基于DRS的测量。
可选的,所述待发送的N个DRS中每个DRS占用1个子帧中的第1个符号至第12个符号;或第2个符号至第13个符号;或第3个符号至第14个符号。
可选的,所述N个DRS中首个DRS对应的一组初始信号和/或预留信号占用所述首个DRS所在的子帧的上一子帧的最后一个或两个符号内,且所述DMTC时间段的起始符号与所述首个DRS所在的子帧的起始符号重合;或
所述N个DRS中首个DRS对应的一组初始信号和/或预留信号位于所述首个DRS占用的子帧的上一子帧的最后一个或两个符号内,且所述DMTC时间段的起始符号与所述上一子帧的起始符号重合;或
所述N个DRS中首个DRS对应的一组初始信号和/或预留信号位于所述首个DRS占用的子帧的上一子帧的最后一个或两个符号内,且所述DMTC时间段的起始符号与所述上一子帧中初始信号和/或预留信号的起始符号重合。
可选的,所述待发送的N个DRS中每个DRS占用的12个符号中第1个符号、第5个符号、第8个符号和第12个符号至少分配有CRS port0;或
第1个符号、第5个符号、第8个符号和第12个符号分配有CRS port1;和/或
第2个符号、第9个符号分配有CRS port 2和CRS port3;和/或
第6个符号分配有SSS,第7个符号分配有PSS;和/或
第10个符号、第11个符号分配有ZP CSI-RS和/或NZP CSI-RS。
可选的,基站4还包括:
第四配置模块,用于在每组初始信号和/或预留信号占用的符号前面配置CCA时间段,所述CCA时间段用于检测信道状态,且CCA时间段的起始位置与对应的DRS的起始位置的距离至多为2个符号。
本发明实施例和图1的实施例基于同一构思,其带来的技术效果也相同,具体过程请参照图1的实施例的说明,此处不再赘述。
参见图5,为本发明实施例提供的一种用户设备的结构示意图,在本发明实施例中,用户设备5包括:接收模块501、确定模块502、同步模块503和测量模块504。
接收模块501,用于接收基站发送的携带第一位置信息、第二位置信息和第三位置信息的测量配置消息;其中,所述第一位置信息表示DMTC时间段的位置,所述第二位置信息表示所述DMTC时间段中配置的DRS的位置,所述第三位置信息表示DRS对应的一组初始信号和/或预留信号的位置。
确定模块502,用于根据所述第一位置信息确定DMTC时间段的位置、根据所述第二位置信息确定DRS的位置,以及根据第三位置信息确定DRS对应的一组初始信号和/或预留信号的位置。
同步模块503,用于判断所述初始信号和/或预留信号中是否存在PSS和SSS,若存在,根据所述PSS和SSS进行下行同步。
测量模块,用于用户设备根据所述DRS的位置进行基于DRS的测量。
可选的,用户设备5还包括:
盲检模块,用于若所述初始信号和或预留信号中不存在PSS和SSS,进行盲检所述DRS中的PSS和SSS以获得下行同步。
本发明实施例和图3的实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图3的实施例的说明,此处不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (14)

  1. 一种基于非授权频谱的DRS配置方法,其特征在于,包括:
    基站配置发现参考信号测量时间配置DMTC时间段的位置,生成第一位置信息;其中,所述DMTC时间段的持续时间为M个子帧长度,所述DMTC时间段的起始符号为子帧中第1个符号至第14个符号中的任意一个;
    所述基站在所述DMTC时间段内配置待发送的N个发现参考信号DRS的位置,生成第二位置信息;其中,每个DRS占用12个符号,且每个DRS只对应一个子帧,N<M,且N和M为正整数;
    所述基站为所述待发送的N个DRS中每个DRS配置一组初始信号和/或预留信号的位置,生成第三位置信息;其中,每组初始信号和/或预留信号占用至多2个符号;
    所述基站向用户设备发送携带所述第一位置信息、所述第二位置信息和所述第三位置信息的测量配置消息,所述测量配置消息用于指示所述用户设备进行基于DRS的测量。
  2. 如权利要求1所述的方法,其特征在于,所述待发送的N个DRS中每个DRS占用1个子帧中的第1个符号至第12个符号;或第2个符号至第13个符号;或第3个符号至第14个符号。
  3. 如权利要求1所述的方法,其特征在于,所述N个DRS中首个DRS对应的一组初始信号和/或预留信号占用所述首个DRS所在的子帧的上一子帧的最后一个或两个符号内,且所述DMTC时间段的起始符号与所述首个DRS所在的子帧的起始符号重合;或
    所述N个DRS中首个DRS对应的一组初始信号和/或预留信号位于所述首个DRS占用的子帧的上一子帧的最后一个或两个符号内,且所述DMTC时间段的起始符号与所述上一子帧的起始符号重合;或
    所述N个DRS中首个DRS对应的一组初始信号和/或预留信号位于所述首个DRS占用的子帧的上一子帧的最后一个或两个符号内,且所述DMTC时间段的起始符号与所述上一子帧中初始信号和/或预留信号的起始符号重合。
  4. 如权利要求2所述的方法,其特征在于,所述待发送的N个DRS中每个DRS占用的12个符号中第1个符号、第5个符号、第8个符号和第12个符号至少分配有小区专用参考信号端口0 CRS port0;和/或
    第1个符号、第5个符号、第8个符号和第12个符号分配有小区专用参考信号端口1 CRS port1;和/或
    第2个符号、第9个符号分配有小区专用参考信号端口2 CRS port 2和端口3 CRS port3;和/或
    第6个符号分配有辅同步信号SSS,第7个符号分配有主同步信号PSS;和/或
    第10个符号、第11个符号分配有零功率信道状态信息参考信号ZP CSI-RS和/或非零功率信道状态参考信号NZP CSI-RS。
  5. 如权利要求1所述的方法,其特征在于,还包括:
    所述基站在每组初始信号和/或预留信号占用的符号前面配置空闲信道检测CCA时间段,所述CCA时间段用于检测信道状态,且CCA时间段的起始位置与对应的DRS的起始位置的距离至多为2个符号。
  6. 一种基于非授权频谱的DRS测量方法,其特征在于,包括:
    用户设备接收基站发送的携带第一位置信息、第二位置信息和第三位置信息的测量配置消息;其中,所述第一位置信息表示DMTC时间段的位置,所述第二位置信息表示所述DMTC时间段中配置的DRS的位置,所述第三位置信息表示DRS对应的一组初始信号和/或预留信号的位置;
    所述用户设备根据所述第一位置信息确定DMTC时间段的位置、根据所述第二位置信息确定DRS的位置,以及根据第三位置信息确定DRS对应的一组初始信号和/或预留信号的位置;
    所述用户设备判断所述初始信号和/或预留信号中是否存在PSS和SSS,若存在,根据所述PSS和SSS进行下行同步;
    所述用户设备根据所述DRS的位置进行基于DRS的测量。
  7. 如权利要求6所述的方法,其特征在于,还包括:
    若所述初始信号和或预留信号中不存在PSS和SSS,所述用户设备进行盲检所述DRS中的PSS和SSS以获得下行同步。
  8. 一种基站,其特征在于,包括:
    第一配置模块,用于配置发现参考信号测量时间配置DMTC时间段的位置,生成第一位置信息;其中,所述DMTC时间段的持续时间为M个子帧长度,所述DMTC时间段的起始符号为子帧中第1个符号至第14个符号中的任意一个;
    第二配置模块,用于在所述DMTC时间段内配置待发送的N个发现参考信号DRS的位置,生成第二位置信息;其中,每个DRS占用12个符号,且每个DRS只对应一个子帧,N<M,且N和M为正整数;
    第三配置模块,用于为所述待发送的N个DRS中每个DRS配置一组初始信号和/或预留信号的位置,生成第三位置信息;其中,每组初始信号和/或预留信号占用至多2个符号;
    发送模块,用于向用户设备发送携带所述第一位置信息、所述第二位置信息和所述第三位置信息的测量配置消息,所述测量配置消息用于指示所述用户设备进行基于DRS的测量。
  9. 如权利要求8所述的基站,其特征在于,所述待发送的N个DRS中每个DRS占用1个子帧中的第1个符号至第12个符号;或第2个符号至第13个符号;或第3个符号至第14个符号。
  10. 如权利要求8所述的基站,其特征在于,所述N个DRS中首个DRS对应的一组初始信号和/或预留信号占用所述首个DRS所在的子帧的上一子帧的最后一个或两个符号内,且所述DMTC时间段的起始符号与所述首个DRS所在的子帧的起始符号重合;或
    所述N个DRS中首个DRS对应的一组初始信号和/或预留信号位于所述首个DRS占用的子帧的上一子帧的最后一个或两个符号内,且所述DMTC时间段的起始符号与所述上一子帧的起始符号重合;或
    所述N个DRS中首个DRS对应的一组初始信号和/或预留信号位于所述首 个DRS占用的子帧的上一子帧的最后一个或两个符号内,且所述DMTC时间段的起始符号与所述上一子帧中初始信号和/或预留信号的起始符号重合。
  11. 如权利要求9所述的基站,其特征在于,所述待发送的N个DRS中每个DRS占用的12个符号中第1个符号、第5个符号、第8个符号和第12个符号至少分配有小区专用参考信号端口0 CRS port0;和/或
    第1个符号、第5个符号、第8个符号和第12个符号分配有小区专用参考信号端口1 CRS port1;和/或
    第2个符号、第9个符号分配有小区专用参考信号端口2 CRS port 2和端口3 CRS port3;和/或
    第6个符号分配有辅同步信号SSS,第7个符号分配有主同步信号PSS;和/或
    第10个符号、第11个符号分配有零功率信道状态信息参考信号ZP CSI-RS和/或非零功率信道状态参考信号NZP CSI-RS。
  12. 如权利要求9所述的基站,其特征在于,还包括:
    第四配置模块,用于在每组初始信号和/或预留信号占用的符号前面配置空闲信道检测CCA时间段,所述CCA时间段用于检测信道状态,且CCA时间段的起始位置与对应的DRS的起始位置的距离至多为2个符号。
  13. 一种用户设备,其特征在于,包括:
    接收模块,用于接收基站发送的携带第一位置信息、第二位置信息和第三位置信息的测量配置消息;其中,所述第一位置信息表示DMTC时间段的位置,所述第二位置信息表示所述DMTC时间段中配置的DRS的位置,所述第三位置信息表示DRS对应的一组初始信号和/或预留信号的位置;
    确定模块,用于根据所述第一位置信息确定DMTC时间段的位置、根据所述第二位置信息确定DRS的位置,以及根据第三位置信息确定DRS对应的一组初始信号和/或预留信号的位置;
    同步模块,用于判断所述初始信号和/或预留信号中是否存在PSS和SSS,若存在,根据所述PSS和SSS进行下行同步;
    测量模块,用于用户设备根据所述DRS的位置进行基于DRS的测量。
  14. 如权利要求13所述的用户设备,其特征在于,还包括:
    盲检模块,用于若所述初始信号和或预留信号中不存在PSS和SSS,进行盲检所述DRS中的PSS和SSS以获得下行同步。
PCT/CN2016/072868 2015-11-06 2016-01-29 一种非授权频谱的drs配置方法、测量方法和相关设备 WO2017075922A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510755808.5A CN105451251B (zh) 2015-11-06 2015-11-06 一种非授权频谱的drs配置方法、测量方法和相关设备
CN201510755808.5 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017075922A1 true WO2017075922A1 (zh) 2017-05-11

Family

ID=55560943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072868 WO2017075922A1 (zh) 2015-11-06 2016-01-29 一种非授权频谱的drs配置方法、测量方法和相关设备

Country Status (2)

Country Link
CN (1) CN105451251B (zh)
WO (1) WO2017075922A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294686A (zh) * 2016-04-01 2017-10-24 中兴通讯股份有限公司 探测参考信号发送、接收方法、装置、ue及基站
TWI636700B (zh) * 2016-05-13 2018-09-21 諾基亞科技公司 用於授權輔助接取中未授權副服務區檢測、量測及啟動之最大時間技術
CN107770804B (zh) * 2016-08-22 2021-04-13 北京佰才邦技术有限公司 一种邻区信道测量方法、装置、终端及基站
TWI616111B (zh) * 2016-12-23 2018-02-21 財團法人工業技術研究院 在未授權頻譜中的無線電資源排程方法及使用其之基地台
US10951285B2 (en) 2017-01-06 2021-03-16 Futurewei Technologies, Inc. Hybrid mobility and radio resource management mechanisms
WO2018137205A1 (zh) * 2017-01-25 2018-08-02 华为技术有限公司 一种传输控制信道的方法、装置及系统
CN111148263B (zh) 2017-05-05 2021-04-09 华为技术有限公司 发送数据的方法及其装置
CN110166393B (zh) * 2018-02-13 2021-06-25 展讯通信(上海)有限公司 同步信号块的发送、接收方法及装置
CN110933764B (zh) * 2018-09-20 2022-03-11 维沃移动通信有限公司 传输指示信号的传输方法、网络设备及终端
US20220086776A1 (en) * 2019-01-10 2022-03-17 Beijing Xiaomi Mobile Software Co., Ltd. Methods and devices for configuring, sending and receiving discovery reference signal (drs)
CN110035028B (zh) * 2019-03-29 2020-02-21 宇龙计算机通信科技(深圳)有限公司 基于非授权频谱的同步信号传输方法、装置和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579518A (zh) * 2015-01-30 2015-04-29 深圳酷派技术有限公司 Csi测量及反馈方法、csi测量及反馈系统和基站
CN104717687A (zh) * 2015-04-09 2015-06-17 宇龙计算机通信科技(深圳)有限公司 信道占用概率的调整方法、调整系统和设备
WO2015137782A1 (en) * 2014-03-14 2015-09-17 Samsung Electronics Co., Ltd. Methods and apparatus for discovery and measurement in cellular networks
CN104955018A (zh) * 2015-06-19 2015-09-30 宇龙计算机通信科技(深圳)有限公司 在非授权频段上识别运营商标识的方法、装置和终端
CN104968052A (zh) * 2015-05-15 2015-10-07 宇龙计算机通信科技(深圳)有限公司 配置方法、配置系统、设备、接收方法、接收系统和终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2477649B (en) * 2011-03-31 2012-01-11 Renesas Mobile Corp Multiplexing logical channels in mixed licensed and unlicensed spectrum carrier aggregation
CN104717686B (zh) * 2015-03-31 2018-11-30 深圳酷派技术有限公司 一种未授权频段的信道检测方法及网元设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137782A1 (en) * 2014-03-14 2015-09-17 Samsung Electronics Co., Ltd. Methods and apparatus for discovery and measurement in cellular networks
CN104579518A (zh) * 2015-01-30 2015-04-29 深圳酷派技术有限公司 Csi测量及反馈方法、csi测量及反馈系统和基站
CN104717687A (zh) * 2015-04-09 2015-06-17 宇龙计算机通信科技(深圳)有限公司 信道占用概率的调整方法、调整系统和设备
CN104968052A (zh) * 2015-05-15 2015-10-07 宇龙计算机通信科技(深圳)有限公司 配置方法、配置系统、设备、接收方法、接收系统和终端
CN104955018A (zh) * 2015-06-19 2015-09-30 宇龙计算机通信科技(深圳)有限公司 在非授权频段上识别运营商标识的方法、装置和终端

Also Published As

Publication number Publication date
CN105451251A (zh) 2016-03-30
CN105451251B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2017075922A1 (zh) 一种非授权频谱的drs配置方法、测量方法和相关设备
CN104333902B (zh) 数据同步方法、同步系统、具有基站功能的设备和终端
EP3096481B1 (en) Signal transmission method and apparatus
WO2016183941A1 (zh) 配置方法、配置系统、设备、接收方法、接收系统和终端
WO2016119325A1 (zh) Csi测量及反馈方法、csi测量及反馈系统和基站
EP3499984A1 (en) Transmission timing adjustment method and device
WO2017028556A1 (zh) 基于非授权频段的发现参考信号配置方法、装置和基站
US11974320B2 (en) Methods providing control signaling and related wireless devices and network nodes
JP2016534588A5 (zh)
EP3955475A1 (en) Uplink beam management method and apparatus
KR20120083863A (ko) 무선 통신 시스템에서 셀 간 간섭 전력량을 효율적으로 제어하는 방법 및 장치
US10098058B2 (en) Method and apparatus of transmitting discovery signal, method and apparatus of discovering cell
CN107079414B (zh) 数据传输方法、传输系统、控制方法、控制系统和设备
US11711854B2 (en) Technique for generating and/or managing RNTIs
US20190349799A1 (en) Controlling lean carrier operation with configurable control channel monitoring
US20220346157A1 (en) Configuration for Random Access Procedure
EP2849507A1 (en) Reference signal measurement method, base station, and user equipment
WO2016045108A1 (zh) 数据传输方法、系统和具有基站功能的设备
US9980306B2 (en) UE device and method
EP3154282A1 (en) Small cell discovery method and system, base station, and user equipment
WO2014063355A1 (zh) 传输参考信号的方法和装置
WO2016161657A1 (zh) 小区测量方法、信号接收和测量方法及用户设备
WO2016049915A1 (zh) 数据传输方法、传输系统、控制方法、控制系统和设备
EP4197269A1 (en) Beam indication in random access
EP3989671A1 (en) Information transmission method, network device, and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861195

Country of ref document: EP

Kind code of ref document: A1