WO2017074862A1 - Water-insoluble alpha-(1,3->glucan) composition - Google Patents

Water-insoluble alpha-(1,3->glucan) composition Download PDF

Info

Publication number
WO2017074862A1
WO2017074862A1 PCT/US2016/058453 US2016058453W WO2017074862A1 WO 2017074862 A1 WO2017074862 A1 WO 2017074862A1 US 2016058453 W US2016058453 W US 2016058453W WO 2017074862 A1 WO2017074862 A1 WO 2017074862A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
substrate
polymer
aqueous
glucan
Prior art date
Application number
PCT/US2016/058453
Other languages
French (fr)
Inventor
Natnael Behabtu
Xiaoqing Li
Michael Stephen Wolfe
Original Assignee
E. I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2016347048A priority Critical patent/AU2016347048B2/en
Priority to KR1020187014311A priority patent/KR20180074734A/en
Priority to CA2998773A priority patent/CA2998773C/en
Priority to RU2018119291A priority patent/RU2018119291A/en
Priority to US15/756,681 priority patent/US10731297B2/en
Priority to JP2018541095A priority patent/JP6975158B2/en
Application filed by E. I. Du Pont De Nemours And Company filed Critical E. I. Du Pont De Nemours And Company
Priority to CN201680062791.8A priority patent/CN108350660B/en
Priority to EP16788394.1A priority patent/EP3368716B1/en
Priority to FIEP16788394.1T priority patent/FI3368716T3/en
Priority to ES16788394T priority patent/ES2937288T3/en
Publication of WO2017074862A1 publication Critical patent/WO2017074862A1/en
Priority to US16/942,828 priority patent/US11208765B2/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/62Macromolecular organic compounds or oligomers thereof obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/46General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing natural macromolecular substances or derivatives thereof
    • D06P1/48Derivatives of carbohydrates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/30Ink jet printing
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/52Cellulose; Derivatives thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/72Coated paper characterised by the paper substrate
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/08Ingredients of unknown constitution and ingredients covered by the main groups C08K3/00 - C08K9/00

Definitions

  • compositions comprising water insoluble a-(1 ,3 ⁇ glucan) polymer and its use as an ink receiving layer for paper, plastic, and textiles.
  • the use of the water insoluble a- (1 ,3 ⁇ glucan) polymer produces fast-drying surfaces that provide sharp images that show very little bleeding or mottling after having been printed with ink from a printer, for example, Ink jet printing.
  • the paper industry produces many different kinds of paper, depending upon its ultimate use. in many cases, the uncoated paper does not have sufficient properties to allow printing directly to the surface. For this reason, paper is often coated with one or more layers in order to render the surface receptive to inks.
  • the coatings are generally made from starch, a thermoplastic polymer, a non-thermoplastic polymer or a combination thereof. Starch, however, tends to form a gelatinous slurry which can be difficult to work with and thermoplastics can be expensive and are not easily recyclable when applied to paper.
  • the ink receiving layer should have a high ink absorbing capacity, so that the dots will not flow out and will not be expanded more than is necessary to obtain a high optical density, even if ink droplet in a multi- color system may be superposed on the same physical spot.
  • the ink receiving layer should have a high ink absorbing speed (short ink drying time) so that the ink droplets will not feather if smeared immediately after applying.
  • the ink receiving layer should be excellent in color forming characteristics.
  • the ink receiving layer must be readily wetted so that there is no "puddling", i.e. coalescence of adjacent ink dots, and an earlier absorbed ink drop should not show any "bleeding", i.e. overlap with neighboring or later placed dots. It must have a low haze-value and be excellent in transmittance properties.
  • the image After being printed, the image must have a good resistance to water, light, and/or time-dependent discoloration.
  • the ink recording element may not show any curl or sticky behavior if stacked before or after being printed.
  • the ink receptive layers of the prior art have been prepared using many different materials.
  • a dimensionally stable substrate such as polyethylene terephtalate (PET), cellulose triacetate, or paper is used most frequently and coated with one or more polymer coatings.
  • PET polyethylene terephtalate
  • cellulose triacetate cellulose triacetate
  • paper is used most frequently and coated with one or more polymer coatings.
  • an ink receiving layer that can be coated onto multiple substrates and provide ail of the properties that are needed for such a layer.
  • the disclosure relates to a substrate, wherein at least a portion of the substrate is coated with a layer of a coating composition, the coating composition comprising;
  • a-(1 ,3 ⁇ glucan) polymer having 90% or greater a-1 ,3-giycosidic linkages, less than 1 % by weight of a-1 ,3,6- glycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000;
  • the disclosure relates to a method of forming a layer of a coating composition on a substrate comprising:
  • a-(1 ,3 ⁇ glucan) polymer having 90% or greater a-1 ,3-giycosidic linkages, less than 1 % of a-1 ,3,6-glycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000;
  • the disclosure further relates to the aqueous coating composition.
  • the disclosures of all cited patent and non-patent literature are incorporated herein by reference in their entirety.
  • starch means a polymeric carbohydrate consisting of amyiose and amyiopectin.
  • hydroxyalkyl starch means an ether derivative of partially hydrolyzed natural starches, in which hydroxy! groups in the starch are hydroxy! alkylated.
  • water insoluble means that less than 5 grams of the a-
  • (1 ,3 ⁇ glucan) polymer dissolves in 100 milliliters of water at 23°C. in other embodiments, water insoluble means that less than 4 grams or 3 grams or 2 grams or 1 grams of the polymer is dissolved in water at 23°C.
  • a-(1 ,3 ⁇ glucan) polymer means a polysaccharide comprising glucose monomer units linked together by glycosidic linkages wherein at least 50% of the glycosidic linkages are a-1 ,3-glycosidic linkages.
  • the percentage of a-1 ,3-glycosidic linkages can be greater than or equal to 90%, 95%, 96%, 97%, 98%, 99% or 100% (or any integer value between 50% and 100%).
  • the a-(1 ,3 ⁇ glucan) polymer comprises less than or equal to 10%, 5%, 4%, 3%, 2%, 1 % or 0% of glycosidic linkages that are not a-1 ,3-glycosidic linkages.
  • glycosidic linkage refers to the type of covalent bond that joins a carbohydrate (sugar) molecule to another group such as another carbohydrate.
  • alpha- 1 ,3-glycosidic linkage refers to the type of covalent bond that joins aipha-D-glucose molecules to each other through carbons 1 and 3 on adjacent alpha-D- glucose rings.
  • alpha-D-glucose will be referred to as "glucose”.
  • coating composition refers to ail of the solid
  • (1 ,3 ⁇ glucan) polymer (1 ,3 ⁇ glucan) polymer, pigment, as well as optional surfactant, dispersing agent, binder, crosslinking agent, and/or other additives.
  • surfactant optional surfactant, dispersing agent, binder, crosslinking agent, and/or other additives.
  • solid is used even though some of the components may be liquids at or below room temperature.
  • aqueous coating composition refers to the coating composition further comprising an aqueous carrier. After being applied to a substrate, at least a portion of the aqueous carrier is removed to form the desired layer of the coating composition on the substrate. Removing at least a portion of the aqueous carrier means to remove greater than or equal to 50% by weight of the aqueous carrier. In other embodiments, greater than or equal to 90% or 95% or 99% by weight of the aqueous carrier is removed. Water content can be assessed by Karl Fischer titration.
  • a composition consisting essentially of A and B must contain at least 95% by weight of A and B and no more than 5% by weight of any other component or combination components, wherein the percentage by weight is based on the total weight of the composition.
  • the phrase consisting essentially of means that the composition contains less than 4% or 3% or 2% or 1 % or less than 0,5% by weight of the components that are not recited, based on the total weight of the composition.
  • the present disclosure relates to a substrate, wherein at least a portion of the substrate is coated with a layer of a coating composition, the coating composition comprising:
  • a-1 ,3-glycosidic linkages less than 1 % of a-1 ,3,6- giycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000; and ii) a pigment, a binder or a combination thereof.
  • the present disclosure also relates to a method of forming a layer of a coating composition on a substrate comprising: 1 ) applying a layer of an aqueous coating composition to at least a portion of a substrate, wherein the aqueous coating composition comprises;
  • a-(1 ,3 ⁇ glucan) polymer having 90% or greater a-1 ,3-glycosidic linkages, less than 1 % of a-1 ,3,6- glycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000; ii) a pigment, a binder or a combination thereof; and iii) an aqueous carrier; and
  • the water insoluble a-(1 ,3 ⁇ glucan) polymer can be produced using an enzymatic method, for example, a method using giucosyi transferase enzymes as provided by US 7,000,000 or US 8,871 ,474, in some embodiments, the wafer insoluble a-(1 ,3 ->glucan) polymer is produced by a glucosyltransferase enzyme having 90% or greater sequence identity to Gtf J.
  • An enzymatic production of the water insoluble a-(1 ,3 ⁇ glucan) polymer can result in a number average degree of polymerization (DPn) in the range of from 55 to 10,000. in other embodiments, the DPn can be in the range of from 75 to 1 ,000 and, in still further embodiments, in the range of from 100 to 800.
  • the number average degree of polymerization can be determined by size exclusion chromatography.
  • the enzymes disclosed in the above references are also particularly useful for producing water insoluble fiber having greater than or equal to 90% a-1 ,3-glycosidic linkages.
  • the water insoluble a- (1 ,3 ⁇ glucan) polymer comprising greater than or equal to 90% a-1 ,3- glycosidic linkages is herein to be considered a linear polymer having a homogeneous structure.
  • the water insoluble a-(1 ,3 ⁇ glucan) polymer has less than 10% linkages that are not a-1 ,3-glycosidic linkages, for example, a-1 ,6-giycosidic linkages a- 1 ,4-giycosidic linkages or a-1 ,3,6-giycosidic branch points.
  • the water insoluble a-(1 ,3 ⁇ glucan) polymer comprises less than 9% or 8% or 7% or 6% or 5% or 4% or 3% or 2% or 1 % of glycosidic linkages that are not a-1 ,3-linkages.
  • the water insoluble a-(1 ,3 ⁇ g!ucan) polymer is a linear polymer having greater than or equal to 99% of a-1 ,3-glycosidic linkages and less than 1 % a- 1 ,3,8-glycosidic branch points.
  • the percentage of a-1 ,3- glycosidic linkages refers to the average number of monomer units that are linked via a-1 ,3-linkages divided by the total number of monomer units in the polymer composition (x100).
  • the percentage of a-1 ,3-glycosidic linkages is determined via integration of the peaks in a 1 H N R spectra, wherein a sample of the water insoluble a-(1 ,3 ⁇ glucan) polymer is solvated in d 6 -dimethy! sulfoxide (DMSO) containing 3 percent by weight LiCl and 0.1 milliliters of trifluoroacetic acid in de-DMSO.
  • DMSO d 6 -dimethy! sulfoxide
  • the percentages of linkages that are not a-1 ,3-glycosidic linkages can be determined in the same manner and using the same general formula.
  • the aqueous coating composition that is applied to the substrate is a dispersion of the water insoluble a-(1 ,3 ⁇ glucan) polymer in water.
  • the layer of coating composition comprises an average pore size volume in the range of from 0.1 to 0.50 milliliters/gram (mi/g), as measured by mercury porosimetry, in other embodiments, the average pore size volume can be in the range of from 0.12 to 0.45 or 0.14 to 0.40 ml/g.
  • a water soluble polysaccharide composition when applied to a substrate, forms a continuous layer that does not have pores or voids on the same scale as the water insoluble a-(1 ,3 ⁇ glucan) polymer.
  • discontinuous layer means a layer with individual particles wherein a free standing layer of the material has an elongation to break of less than 5%.
  • the water insoluble a-(1 ,3 ⁇ giucan) polymer can comprise in the range of from 0.1 % to about 50% by weight based on the total amount of the coating composition.
  • the water insoluble a- (1 ,3 ⁇ glucan) polymer can comprise in the range of from 1 % to 45% or 2% to 40% or 3% to 35% or 3% to 30% by weight of the water insoluble a- (1 ,3 ⁇ glucan) polymer, wherein all percentages by weight are based on the total weight of the coating composition.
  • the coating composition also comprises at least one pigment, at least one binder, or a combination thereof.
  • the coating composition comprises the water insoluble a-(1 ,3 ⁇ glucan) polymer and a pigment, in some embodiments, the coating composition consists essentially of the water insoluble a-(1 ,3 ⁇ glucan) polymer and a pigment.
  • the coating composition comprises the water insoluble a-(1 ,3 ⁇ glucan) polymer and a binder
  • the coating composition consists essentially of the water insoluble a-(1 ,3 ⁇ giucan) polymer and a binder
  • the coating composition comprises the water insoluble o(1 ,3— >giucan) polymer, a pigment, and a binder.
  • the coating composition consists essentially of the water insoluble a-(1 ,3 ⁇ glucan) polymer, a pigment, and a binder.
  • the coating composition can comprise the water insoluble a- (1 ,3 ⁇ glucan) polymer and a pigment.
  • Suitable pigments can include, for example, titanium dioxide, calcium carbonate, clays such as kaolin, structured and calcined clays, hydrated aluminum silicates, bentonite, natural and synthetic calcium carbonate, calcium sulphate (gypsum), calcium silicate, calcium silicate hydrate, silicas, precipitated silicas, fumed silicas, alumina, aluminum trihydrate, plastic (polystyrene) pigments, satin white, talc, barium sulphate, zinc oxide, or a combination thereof.
  • the pigment is calcium carbonate, crystalline silica, amorphous silica, titanium dioxide calcium silicate, or a combination thereof.
  • the pigment can be present in the range of from 10 to 75% by weight, based on the total weight of the coating composition. In other embodiments, the pigment can be present in the range of from 20 to 70% by weight or 25 to 65% by weight, based on the total weight of the coating composition.
  • the coating composition can comprise the water insoluble a- (1 ,3 ⁇ glucan) polymer and a binder.
  • the binder can comprise in the range of from 1 to 50% by weight of the coating composition, based on the total weight of the coating composition, in other embodiments, the binder can comprise in the range of from 2 to 45% or 2 to 40% or 2 to 30% by weight of the coating composition, wherein the percentages by weight are based on the total weight of the coating composition.
  • One or more binders can be included in the coating compositions.
  • Suitable binders can include, for example, polyvinyl alcohol, polyvinyl acetate, partially saponified polyvinyl acetate, silanol-modified polyvinyl alcohol, polyurethane, starch, com dextrin, carboxy methyl cellulose, cellulose ethers, hydroxyethyl cellulose, hydroxypropyl cellulose, ethyl hydroxyethyl cellulose, methyl cellulose, alginates, sodium alginate, xanthan, carrageenan, casein, soy protein, guar gums, synthetic polymers, styrene butadiene latex, styrene acrylate latex, or a combination thereof.
  • the binder is polyvinyl alcohol, polyvinyl acetate, partially saponified polyvinyl acetate, silanol-modified polyvinyl alcohol, polyurethane, starch, corn dextrin, cellulose ethers, hydroxyethyl cellulose, hydroxypropyl cellulose, ethyl hydroxyethyl cellulose, methyl cellulose, alginates, sodium alginate, xanthan, carrageenan, guar gums, synthetic polymers, styrene butadiene latex, or a combination thereof.
  • the binder is polyvinyl alcohol.
  • the binder is a combination of two or more of polyvinyl alcohol, a silanol-modified polyvinyl alcohol and polyvinyl acetate, if present, the coating composition can comprise up to 50% by weight of the binder, wherein the percentage by weight is based on the total amount of the coating composition.
  • the coating composition is free from the binder.
  • the coating composition is free from starch and/or hydroxyaikyi starch, in other embodiments, the coating composition is free from water soluble polysaccharides.
  • the phrase free from means that the coating composition contains less than 1 % by weight of the component, or less than 0.5 % by weight or less than 0.1 % by weight or less than 0.01 % by weight of the component. In still further embodiments, free from means that the particular component is undetectable by 1 H NMR.
  • the coating composition can further comprise iv) an additive.
  • an additive One or more of each of these components can be added.
  • the additives category encompasses a large number of potential components of which one or more of the individual components can be used.
  • a pigment and/or a binder, and one or more additives can be used, in other embodiments, the coating composition can include a pigment and one or more additives without the addition of a binder, in still further embodiments, the coating composition can include a binder and one or more additives without the addition of a pigment.
  • the coating composition can further comprise any of the additives that are normally used in paper coatings.
  • Suitable additives can include, for example, dispersants, quaternary ammonium salts, calcium chloride, calcium silicate; surfactants, for example, cationic surfactants, anionic surfactants, non-ionic surfactants, amphoteric surfactants, fluorinated surfactants; hardeners, for example, active halogen compounds, vinyisuifone compounds, epoxy compounds; dispersing agents, for example, polyacrylates, polyphosphates, poiycarboxyiates, flowability improvers; lubricants, for example, calcium, ammonium and/or zinc stearate, wax or wax emulsions, alkyl ketene dimer, glycols; antifoam agent, for example, octyl alcohol, silicone-based antifoam agents;
  • releasing agents foaming agents; penetrants, for example, 1 ,2- propanediol, triethylene glycol butyl ether, 2-pyrrolidone; optical brighteners, for example, fluorescent whiteners; preservatives, for example, benzoisothiazolone and isothiazoione compounds; biocides, for example, metaborate, thiocyanate, sodium benzoate, benzisothiaoiin-3- one; yellowing inhibitors, for example, sodium hydroxymethyi sulfonate, sodium p-toluenesulfonate; ultraviolet absorbers, for example,
  • benzotriazoie compounds antioxidants, for example, sterically hindered phenol compounds; insolubiiisers; antistatic agents; pH regulators, for example, weak bases, primary, secondary or tertiary amines, sulfuric acid, hydrochloric acid; water-resistance agents, for example, ketone resin, anionic latex, glyoxal; wet and/or dry strengthening agents, for example, glyoxai-based resins, oxidized poiyethyienes, meiamine resins, urea formaldehyde; cross-linking agents; gloss-ink holdout additives; grease and oil resistance additives; leveling aids, for example, polyethylene emulsions, aicohol/ethylene oxide or combinations thereof.
  • pH regulators for example, weak bases, primary, secondary or tertiary amines, sulfuric acid, hydrochloric acid
  • water-resistance agents for example, ketone resin, anionic latex, glyox
  • the coating composition further comprises one or more of an additive, wherein the additive is one or more of a dispersant, a quaternary ammonium salts, calcium chloride, a surfactant, a hardener, a flowability improver, a lubricant, an antifoam, a releasing agent, a foaming agent, a penetrant, an optical brightener, a preservative, a biocide, a yellowing inhibitor, an ultraviolet absorber, an antioxidant, an insoiubiiiser, an antistatic agent, a pH regulator, a water-resistance agent, a wet and/or dry strengthening agent, a cross-linking agent, a gloss-ink holdout additive, a grease and oil resistance additive, a leveling aid, or a combination thereof.
  • the additive is one or more of a dispersant, a quaternary ammonium salts, calcium chloride, a surfactant, a hardener, a flowability improver, a
  • the coating composition can contain any one or more of the listed additives in an amount in the range of from 0 to 5% by weight, based on the total amount of the coating composition.
  • the additives can be present in an amount in the range of from 0.1 to 4% by weight or 0.5 to 3.5% by weight or 0.5 to 3% by weight. Ail percentages by weight are based on the total amount of the coating composition.
  • aqueous carrier means a liquid carrier comprising greater than or equal to 50% by weight of water.
  • the aqueous carrier comprises greater than or equal to 75% or 85% or 90% or 95% water, all percentages by weight are based on the total amount of the aqueous carrier.
  • Volatile non-aqueous solvents may be present, for example alcohols or other organic solvents, however, it is expected that the amount of the non-aqueous carriers will be low when compared to the amount of water present in the aqueous coating composition.
  • the amount of aqueous carrier in the aqueous coating composition less than or equal to 95% by weight, based on the total weight of the aqueous coating composition.
  • the aqueous carrier is present at less than or equal to 90% or 85% or 80% or 75% or 70% or 65% or 80% or 55% or 50% or 40% or 30% or 20% by weight, based on the total weight of the aqueous coating composition.
  • the aqueous coating composition should have a viscosity that allows a relatively smooth coating to be applied to the surface of the substrate without lumps, voids, or streaking. Such application details are well-known to one of ordinary skill in the art.
  • the aqueous coating composition can be formed using standard methods known in the art.
  • the dry ingredients can be added to water either all at once, in batches, or one after the other.
  • pigments, with any additives can be mixed with the aqueous carrier first, followed by the addition of the water insoluble a-(1 ,3 ⁇ giucan) polymer as a powder or as a wet cake.
  • the components of the coating composition can be dry-blended to form a pre-mix which can then be added to the aqueous carrier.
  • the aqueous coating composition should be mixed thoroughly, in order to form a dispersion of the water- insoluble a-(1 ,3 ⁇ giucan) polymer.
  • the present disclosure also relates to a method of forming a layer of a coating composition on a substrate comprising:
  • a-1 ,3-glycosidic linkages less than 1 % of a-1 ,3,6- giycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000; ii) a pigment, a binder or a combination thereof; and an aqueous carrier; and
  • the step of applying the layer of the aqueous coating composition to at least a portion of the substrate can be accomplished by any means known in the art.
  • the substrate can be a cellulose substrate, a polymer, paper, a textile, paperboard, cardboard, or corrugated board.
  • the polymer substrate can be a transparency sheet, for example comprising cellulose acetate, polyester, or polyvinyl chloride.
  • Methods of applying the layer of the aqueous coating composition can include, for example, air knife coating, rod coating, bar coating, wire bar coating, spray coating, brush coating, cast coating, flexible blade coating, gravure coating, jet applicator coating, short dwell coating, slide hopper coating, curtain coating, flexographic coating, size-press coating, reverse roil coating and transfer roil coating.
  • the aqueous coating composition can be applied on at least a portion of the substrate, for example, on a single side or both sides of the substrate, a portion of a single side, or a portion of both sides of a fiat substrate.
  • the aqueous coating can be applied once to the substrate or multiple times to the substrate.
  • the aqueous coating composition can be applied to the substrate either shortly before or during the printing operation.
  • a printing machine such as an ink jet printer, may be equipped to apply a layer of the aqueous coating composition to a portion of the paper that will receive the ink prior to placing the ink on the substrate.
  • the layer of coating composition applied in this manner can be the same size as the to-be-applied ink or can be larger than the to-be- applied ink.
  • the coating step After the coating step, at least a portion of the water is removed by any method known in the art. For example, air or convection drying, linear tunnel drying, arc drying, air-loop drying, contact or conduction drying, radiant energy drying, infrared drying, microwave drying, or a combination thereof may be used.
  • the coated substrate can optionally be calendared after drying in order to improve the surface smoothness and gloss.
  • Calendaring can be carried out by passing the coated substrate through nips and rollers one or more times.
  • the aqueous coating composition can be applied to the substrate at such a rate as to apply a dry coating weigh in the range of from 0.1 to 30 grams/meter 2 (g/m 2 ). In other embodiments, the dry coating weight can be in the range of from 0,5 to 25 g/m 2 or 1 to 20 g/m 2 .
  • the applied layer of coating composition can have a thickness in the range of from 0.1 to 50 micrometers ( ⁇ ). In other embodiments, the thickness can be in the range of from 0.5 to 40 ⁇ or 1 to 30 Mm or 1 to 20 ⁇ .
  • a substrate wherein at least a portion of the substrate is coated with a layer of a coating composition, the coating composition comprising; i) water insoluble a-(1 ,3 ⁇ glucan) polymer having 90% or
  • a-1 ,3-glycosidic linkages less than 1 % by weight of a-1 ,3,6-giycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000;
  • the substrate of embodiment 1 wherein the substrate is a cellulose substrate, a polymer, paper, a textile, paperboard, cardboard, or corrugated board.
  • the substrate of any one of embodiments 1 or 2 wherein the layer of coating composition comprises an average pore size diameter in the range of from 0.10 to 0.50 miiliiiters/gram.
  • any one of embodiments 1 , 2 or 3 wherein the binder is polyvinyl alcohol, polyvinyl acetate, partially saponified polyvinyl acetate, silanoi-modified polyvinyl alcohol, polyurefhane, starch, corn dextrin, carboxy methyl cellulose, cellulose ethers, hydroxyethyl cellulose, hydroxypropyl cellulose, ethylhydroxyethyl cellulose, methyl cellulose, alginates, sodium alginate, xanthan, carrageenan, casein, soy protein, guar gums, synthetic polymers, styrene butadiene latex, styrene acryiate latex, or a combination thereof.
  • the coating composition comprises in the range of from 0.1 to 50% by weight of the water insoluble a-(1 ,3 ->glucan) polymer, wherein the percentage by weight is based on the total weight of the coating composition.
  • (1 ,3 ⁇ glucan) polymer is a linear polymer having greater than or equal to 99% of a-1 ,3-glycosidic linkages and less than 1 % a-1 ,3,6-glycosidic branch points.
  • po!yurethane starch, corn dextrin, cellulose ethers, hydroxyethyi cellulose, hydroxypropyl cellulose, ethyihydroxyethyi cellulose, methyl cellulose, alginates, sodium alginate, xanthan, carrageenan, guar gums, synthetic polymers, styrene butadiene latex or a combination thereof.
  • the additive is one or more of a dispersant, a quaternary ammonium salts, calcium chloride, a surfactant, a hardener, a flowability improver, a lubricant, an antifoam, a releasing agent, a foaming agent, a penetrant, an optical brightener, a preservative, a biocide, a yellowing inhibitor, an ultraviolet absorber, an antioxidant, an insoiubiliser, an antistatic agent, a pH regulator, a water-resistance agent, a wet and/or dry strengthening agent, a cross-linking agent, a gloss-ink holdout additive, a grease and oil resistance additive, a leveling aid, or a combination thereof.
  • the additive is one or more of a dispersant, a quaternary ammonium salts, calcium chloride, a surfactant, a hardener, a flowability improver, a lubricant, an antifoam, a
  • An aqueous coating composition comprising the coating
  • composition of any one of embodiments 1 , 2, 3, 4, 5, 8, 7, 8, 9 or 10 and iii) an aqueous carrier iii) an aqueous carrier. 12
  • the aqueous coating composition of embodiment 1 1 wherein the a- (1 ,3 ⁇ glucan) polymer is produced by a giucosyltransferase enzyme having 90% or greater sequence identity to Gtf J.
  • aqueous coating composition of any one of embodiments 1 1 , 12 or 13 wherein the aqueous carrier comprises less than or equal to 80% by weight of the total weight of the aqueous coating composition.
  • aqueous coating composition of any one of embodiments 1 1 , 12, 13 or 14 wherein the composition further comprises one or more of: iv) an additive.
  • aqueous coating composition of any one of embodiments 1 1 , 12, 13, 14 or 15 wherein the composition is essentially free from starch and/or hydroxyalkyl starch.
  • aqueous coating composition of any one of embodiments 1 1 , 12, 13, 1 4, 15 or 16 wherein the a-(1 ,3 ⁇ glucan) polymer is a linear polymer having greater than or equal to 99% of a-1 ,3-giucosydic linkages and less than 1 % a-1 ,3,6-branching points.
  • aqueous coating composition of any one of embodiments 1 1 , 12, 13, 14, 15, 16 or 17 wherein the binder is polyvinyl alcohol, polyvinyl acetate, partially saponified polyvinyl acetate, silanol-modified polyvinyl alcohol, polyurethane, starch, corn dextrin, cellulose ethers, hydroxyethyl cellulose, hydroxypropyi cellulose, ethyihydroxyethyi cellulose, methyl cellulose, alginates, sodium alginate, xanthan, carrageenan, guar gums, synthetic polymers, styrene butadiene latex or a combination thereof. 19.
  • the binder is polyvinyl alcohol, polyvinyl acetate, partially saponified polyvinyl acetate, silanol-modified polyvinyl alcohol, polyurethane, starch, corn dextrin, cellulose ethers, hydroxyethyl cellulose, hydroxypropyi cellulose,
  • the additive is one or more of a dispersant, a quaternary ammonium salts, calcium chloride, a surfactant, a hardener, a flowability improver, a
  • a method of forming a layer of a coating composition on a substrate comprising:
  • a-(1 ,3 ->glucan) polymer having 90% or greater a-1 ,3-glycosidic linkages, less than 1 % of a-1 ,3,6- glycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000; ii) a pigment, a binder or a combination thereof;
  • aqueous coating composition further comprises:
  • Silica #1 having a pore volume of 1 .8 ml/g and Silica # 2, amorphous silica, having a pore volume of 1 .2 ml/g are both available from the PQ Corporation, Valley Forge, Pennsylvania.
  • PVOH #1 partially saponified PVOH, PVOH #2, silanoi-modified PVOH and PVOH #3 polyvinyl alcohol are available from Kuraray Europe GmbH, Germany.
  • PVAc vinyl acetate emulsion
  • Aminomethacrylate-based quaternary copolymer are both available from Indulor Chemie GmbH, Germany.
  • HYDROCARB® 80 and HYDROCARB® 90 calcium carbonates are available from Omya Incorporated, Proctor, Vermont.
  • Calcium Silicate is available from Cirkei GmbH & Co, Haltern, Germany.
  • the water insoluble a-(1 ,3 ⁇ glucan) polymer was produced according to a method of US 8,871 ,474.
  • the polymer had a number average degree of polymerization of about 300 and >98% a-1 ,3 giycosidic linkages.
  • SURFYNOL® 465 nonionic surfactant and other nonionic organic wetting agents are available from Air Products, Aiientown, Pennsylvania.
  • Corn dextrin is available from Cargiil, Wayzata, Minnesota.
  • PROXEL® GXL antimicrobial is available from Arch Chemicals, inc., Smyrna, Georgia.
  • Pore Size Volume was measured using a POREMASTER® GT pore size analyzer, available from Quantachrome Instruments, Boynton Beach, Florida,
  • Coating compositions 1 -4 were produced by dispersing
  • compositions in water according to the Table 1 according to the Table 1 .
  • the amounts in Table 1 are parts by weight.
  • compositions A and B are Compositions A and B.
  • Coating compositions 5, 6, and 7 and Comparative coating compositions A and B were also prepared by dispersing the ingredients of Table 2 in water. The amounts in Table 2 are parts by weight.
  • the aqueous coating compositions of Table 1 and 2 were applied to Ink jet paper and dried. The dried coatings were then fed through an ink jet printer printing a 600 dots per inch (dpi), 900 dpi, and 1200 dpi to visually analyze the print quality using a rating scale of A, B, C, D, or F with A being the highest visual quality and F being the lowest visual quality.
  • dpi dots per inch
  • F the lowest visual quality.
  • a second test 1 .7 seconds after the ink was applied to the coating composition, the ink was wiped and the wiped area was visually analyzed and given a rating of A, B, C, D or F, with A being the best rating and F being the worst rating (i.e., the most smudged).
  • a rating of a "u” means that the smudge rendered the ink unidentifiable.
  • the results are shown in Table 3.
  • the abbreviation "n/a" means not analyzed.
  • a dispersion comprising 3 parts by weight (pbw) of the water insoluble a-(1 ,3 ⁇ glucan) polymer, 5 pbw 1 ,2-propanediol, 1 pbw triethylene glycol butyl ether, 10 pbw glycerol, 3 pbw 2-pyrrolidone, 0.15 pbw PROXEL® GXL antimicrobial, 0.5 pbw SURFYNOL® surfactant and 1 pbw polyurethane was mixed with 76.35 pbw water.
  • a dispersion of aqueous Coating Composition 8 was applied to a transparency sheet and the coating was dried.
  • the coated transparency sheet was placed in an ink jet printer and printed using color ink.
  • an uncoated transparency sheet was also printed with the same image.
  • the coated transparency sheet showed sharp images and no evidence of mottling, in comparison, the uncoated transparency sheet showed an unacceptable degree of bleeding and mottling.
  • the following examples show coating performance for Folding Box Boards (FBB) and Label applications where coating compositions comprising water insoluble a-(1 ,3 ⁇ glucan) polymer were formulated to improving printing performance while preserving other key paper parameters such as brightness and opacity.
  • FBB Folding Box Boards
  • Label applications where coating compositions comprising water insoluble a-(1 ,3 ⁇ glucan) polymer were formulated to improving printing performance while preserving other key paper parameters such as brightness and opacity.
  • Composition C (Comp. C) were prepared by dispersing the ingredients of Table 4 in water. The amounts in Table 4 are parts by weight. These coating compositions were coated onto Folding Box Boards.
  • Coating procedure All coating was performed on Sumet coating unit in blade coating mode with bent blade. Blade angle was 25°, Blade pressure was 25 N, Roll pressure was 25 N and machine speed was 20 m/min.
  • ristow wheei method and High speed fluid characterization a defined volume of ink is dispensed onto the substrate, it gives a track of the ink which is longer if the setting speed is low. For Inkjet applications it is important to have a track of shorter than 150 mm.
  • Table 5 show that increasing the amount of polysaccharide in the coating gives a decrease in the track length and an increase in the setting speed. The shorter track length compared to that of the reference sample
  • polysaccharide yielded improved printability while preserving key coating characteristics of whiteness and pick strength.
  • Coating composition 1 1 and Comparative Coating Compositions D, E, and F were prepared by dispersing the ingredients of Table 6 in water. The amounts in Table 6 are parts by weight. These coating compositions were coated onto labels as described above.
  • Table 7 shows the obtained data from whiteness and opacity measures.
  • the substrate contains optical brightening agent (OBA) which gives a high D65 whiteness. Since whiteness without UV part of the light ignores OBA and is comparable between ail samples we have a direct measure for the opacity. The difference in D85 values.
  • OBA optical brightening agent
  • the data in Table 7 shows that coating formulations containing polysaccharide show comparable whiteness (ISO 2470-1 and 2470-2) and wet opacity (DIN 53146) as Ti0 2 -containing formulation.
  • the Bristow length measurement shows again that formulations containing polysaccharide give the fastest setting speed and hence the shortest setting time (the shortest track length in Bristow).

Abstract

The disclosure relates to a coating composition that can be applied to a substrate, especially a cellulose substrate. A layer of the coating composition applied to the substrate provides an excellent ink receptive layer and can be used as a coating on paper. The disclosure also relates to aqueous compositions and method for applying the layer of the coating composition onto the substrate.

Description

TITLE
Water-insoluble Alpha-(1 ,3-→Glucan) Composition
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of priority of United States
Provisional Application No. 62/246,308, filed on October 28, 2015; the entire disclosure of which is hereby incorporated by reference.
FIELD OF THE DISCLOSURE
The present disclosure is directed towards compositions comprising water insoluble a-(1 ,3→glucan) polymer and its use as an ink receiving layer for paper, plastic, and textiles. The use of the water insoluble a- (1 ,3→glucan) polymer produces fast-drying surfaces that provide sharp images that show very little bleeding or mottling after having been printed with ink from a printer, for example, Ink jet printing.
BACKGROUND OF THE DISCLOSURE
The paper industry produces many different kinds of paper, depending upon its ultimate use. in many cases, the uncoated paper does not have sufficient properties to allow printing directly to the surface. For this reason, paper is often coated with one or more layers in order to render the surface receptive to inks. The coatings are generally made from starch, a thermoplastic polymer, a non-thermoplastic polymer or a combination thereof. Starch, however, tends to form a gelatinous slurry which can be difficult to work with and thermoplastics can be expensive and are not easily recyclable when applied to paper.
There are many requirements for an ink receiving layer, not only for paper, but for any printable surface, for example, plastic sheets and textiles. The ink receiving layer should have a high ink absorbing capacity, so that the dots will not flow out and will not be expanded more than is necessary to obtain a high optical density, even if ink droplet in a multi- color system may be superposed on the same physical spot. The ink receiving layer should have a high ink absorbing speed (short ink drying time) so that the ink droplets will not feather if smeared immediately after applying. The ink receiving layer should be excellent in color forming characteristics. The ink receiving layer must be readily wetted so that there is no "puddling", i.e. coalescence of adjacent ink dots, and an earlier absorbed ink drop should not show any "bleeding", i.e. overlap with neighboring or later placed dots. It must have a low haze-value and be excellent in transmittance properties.
After being printed, the image must have a good resistance to water, light, and/or time-dependent discoloration. The ink recording element may not show any curl or sticky behavior if stacked before or after being printed.
To meet these requirements, the ink receptive layers of the prior art have been prepared using many different materials. A dimensionally stable substrate such as polyethylene terephtalate (PET), cellulose triacetate, or paper is used most frequently and coated with one or more polymer coatings. There is a need for an ink receiving layer that can be coated onto multiple substrates and provide ail of the properties that are needed for such a layer.
SUMMARY OF THE DISCLOSURE
The disclosure relates to a substrate, wherein at least a portion of the substrate is coated with a layer of a coating composition, the coating composition comprising;
i) water insoluble a-(1 ,3→glucan) polymer having 90% or greater a-1 ,3-giycosidic linkages, less than 1 % by weight of a-1 ,3,6- glycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000; and
ii) at least one pigment, at least one binder or a combination thereof.
In other embodiments, the disclosure relates to a method of forming a layer of a coating composition on a substrate comprising:
1 ) applying an aqueous coating composition to at least a portion of a substrate, wherein the aqueous coating composition comprises;
i) water insoluble a-(1 ,3→glucan) polymer having 90% or greater a-1 ,3-giycosidic linkages, less than 1 % of a-1 ,3,6-glycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000;
ii) a pigment, a binder or a combination thereof;
iii) an aqueous carrier; and
2) removing at least a portion of the aqueous carrier from the applied layer of the aqueous coating composition to form the layer of the coating composition.
The disclosure further relates to the aqueous coating composition. The disclosures of all cited patent and non-patent literature are incorporated herein by reference in their entirety.
As used herein, the term "embodiment" or "disclosure" is not meant to be limiting, but applies generally to any of the embodiments defined in the claims or described herein. These terms are used interchangeably herein.
Unless otherwise disclosed, the terms "a" and "an" as used herein are intended to encompass one or more (i.e., at least one) of a referenced feature.
The features and advantages of the present disclosure will be more readily understood by those of ordinary skill in the art from reading the following detailed description. It is to be appreciated that certain features of the disclosure, which are, for clarity, described above and below in the context of separate embodiments, may also be provided in combination in a single element. Conversely, various features of the disclosure that are, for brevity, described in the context of a single embodiment, may also be provided separately or in any sub-combination, in addition, references to the singular may also include the plural (for example, "a" and "an" may refer to one or more) unless the context specifically states otherwise.
The use of numerical values in the various ranges specified in this application, unless expressly indicated otherwise, are stated as approximations as though the minimum and maximum values within the stated ranges were both proceeded by the word "about". In this manner, slight variations above and below the stated ranges can be used to achieve substantially the same results as values within the ranges. Also, the disclosure of these ranges is intended as a continuous range including each and every value between the minimum and maximum values.
As used herein:
The term "starch" means a polymeric carbohydrate consisting of amyiose and amyiopectin.
The term "hydroxyalkyl starch" means an ether derivative of partially hydrolyzed natural starches, in which hydroxy! groups in the starch are hydroxy! alkylated.
The phrase "water insoluble" means that less than 5 grams of the a-
(1 ,3→glucan) polymer dissolves in 100 milliliters of water at 23°C. in other embodiments, water insoluble means that less than 4 grams or 3 grams or 2 grams or 1 grams of the polymer is dissolved in water at 23°C.
The phrase "a-(1 ,3→glucan) polymer means a polysaccharide comprising glucose monomer units linked together by glycosidic linkages wherein at least 50% of the glycosidic linkages are a-1 ,3-glycosidic linkages. In other embodiments, the percentage of a-1 ,3-glycosidic linkages can be greater than or equal to 90%, 95%, 96%, 97%, 98%, 99% or 100% (or any integer value between 50% and 100%). Accordingly, the a-(1 ,3→glucan) polymer comprises less than or equal to 10%, 5%, 4%, 3%, 2%, 1 % or 0% of glycosidic linkages that are not a-1 ,3-glycosidic linkages.
The terms "glycosidic linkage" refers to the type of covalent bond that joins a carbohydrate (sugar) molecule to another group such as another carbohydrate. The term "alpha- 1 ,3-glycosidic linkage" as used herein refers to the type of covalent bond that joins aipha-D-glucose molecules to each other through carbons 1 and 3 on adjacent alpha-D- glucose rings. Herein, "aipha-D-giucose" will be referred to as "glucose".
The phrase "coating composition" refers to ail of the solid
components that form the layer on the substrate, for example, the a-
(1 ,3→glucan) polymer, pigment, as well as optional surfactant, dispersing agent, binder, crosslinking agent, and/or other additives. The term solid is used even though some of the components may be liquids at or below room temperature.
The phrase "aqueous coating composition" refers to the coating composition further comprising an aqueous carrier. After being applied to a substrate, at least a portion of the aqueous carrier is removed to form the desired layer of the coating composition on the substrate. Removing at least a portion of the aqueous carrier means to remove greater than or equal to 50% by weight of the aqueous carrier. In other embodiments, greater than or equal to 90% or 95% or 99% by weight of the aqueous carrier is removed. Water content can be assessed by Karl Fischer titration.
The phrase "consists essentially of means that the composition contains all of the recited components and less than 5% by weight, based on the total weight of the composition of any other component or combination of components. For example, a composition consisting essentially of A and B must contain at least 95% by weight of A and B and no more than 5% by weight of any other component or combination components, wherein the percentage by weight is based on the total weight of the composition. In other embodiments, the phrase consisting essentially of means that the composition contains less than 4% or 3% or 2% or 1 % or less than 0,5% by weight of the components that are not recited, based on the total weight of the composition.
In some embodiments, the present disclosure relates to a substrate, wherein at least a portion of the substrate is coated with a layer of a coating composition, the coating composition comprising:
i) water insoluble a-(1 ,3→glucan) polymer having 90% or
greater a-1 ,3-glycosidic linkages, less than 1 % of a-1 ,3,6- giycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000; and ii) a pigment, a binder or a combination thereof.
The present disclosure also relates to a method of forming a layer of a coating composition on a substrate comprising: 1 ) applying a layer of an aqueous coating composition to at least a portion of a substrate, wherein the aqueous coating composition comprises;
i) water insoluble a-(1 ,3→glucan) polymer having 90% or greater a-1 ,3-glycosidic linkages, less than 1 % of a-1 ,3,6- glycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000; ii) a pigment, a binder or a combination thereof; and iii) an aqueous carrier; and
2) removing at least a portion of the aqueous carrier from the
applied layer of the aqueous coating composition to form the layer of the coating composition.
The water insoluble a-(1 ,3→glucan) polymer can be produced using an enzymatic method, for example, a method using giucosyi transferase enzymes as provided by US 7,000,000 or US 8,871 ,474, in some embodiments, the wafer insoluble a-(1 ,3 ->glucan) polymer is produced by a glucosyltransferase enzyme having 90% or greater sequence identity to Gtf J. An enzymatic production of the water insoluble a-(1 ,3→glucan) polymer can result in a number average degree of polymerization (DPn) in the range of from 55 to 10,000. in other embodiments, the DPn can be in the range of from 75 to 1 ,000 and, in still further embodiments, in the range of from 100 to 800. The number average degree of polymerization can be determined by size exclusion chromatography.
The enzymes disclosed in the above references are also particularly useful for producing water insoluble fiber having greater than or equal to 90% a-1 ,3-glycosidic linkages. The water insoluble a- (1 ,3→glucan) polymer comprising greater than or equal to 90% a-1 ,3- glycosidic linkages is herein to be considered a linear polymer having a homogeneous structure. By homogeneous structure is meant that the water insoluble a-(1 ,3→glucan) polymer has less than 10% linkages that are not a-1 ,3-glycosidic linkages, for example, a-1 ,6-giycosidic linkages a- 1 ,4-giycosidic linkages or a-1 ,3,6-giycosidic branch points. In other embodiments, the water insoluble a-(1 ,3→glucan) polymer comprises less than 9% or 8% or 7% or 6% or 5% or 4% or 3% or 2% or 1 % of glycosidic linkages that are not a-1 ,3-linkages. In still further embodiments, the water insoluble a-(1 ,3→g!ucan) polymer is a linear polymer having greater than or equal to 99% of a-1 ,3-glycosidic linkages and less than 1 % a- 1 ,3,8-glycosidic branch points. As used herein the percentage of a-1 ,3- glycosidic linkages refers to the average number of monomer units that are linked via a-1 ,3-linkages divided by the total number of monomer units in the polymer composition (x100). The percentage of a-1 ,3-glycosidic linkages is determined via integration of the peaks in a 1 H N R spectra, wherein a sample of the water insoluble a-(1 ,3→glucan) polymer is solvated in d6-dimethy! sulfoxide (DMSO) containing 3 percent by weight LiCl and 0.1 milliliters of trifluoroacetic acid in de-DMSO. The percentages of linkages that are not a-1 ,3-glycosidic linkages can be determined in the same manner and using the same general formula.
It is important that the a-(1 ,3→glucan) polymer is water insoluble. The aqueous coating composition that is applied to the substrate is a dispersion of the water insoluble a-(1 ,3→glucan) polymer in water. When applied to at least a portion of the substrate and the applied layer is dried, the layer of coating composition comprises an average pore size volume in the range of from 0.1 to 0.50 milliliters/gram (mi/g), as measured by mercury porosimetry, in other embodiments, the average pore size volume can be in the range of from 0.12 to 0.45 or 0.14 to 0.40 ml/g. in contrast, a water soluble polysaccharide composition, when applied to a substrate, forms a continuous layer that does not have pores or voids on the same scale as the water insoluble a-(1 ,3→glucan) polymer. The phrase "discontinuous layer" means a layer with individual particles wherein a free standing layer of the material has an elongation to break of less than 5%.
The water insoluble a-(1 ,3→giucan) polymer can comprise in the range of from 0.1 % to about 50% by weight based on the total amount of the coating composition. In other embodiments, the water insoluble a- (1 ,3→glucan) polymer can comprise in the range of from 1 % to 45% or 2% to 40% or 3% to 35% or 3% to 30% by weight of the water insoluble a- (1 ,3→glucan) polymer, wherein all percentages by weight are based on the total weight of the coating composition.
The coating composition also comprises at least one pigment, at least one binder, or a combination thereof. In some embodiments, the coating composition comprises the water insoluble a-(1 ,3→glucan) polymer and a pigment, in some embodiments, the coating composition consists essentially of the water insoluble a-(1 ,3→glucan) polymer and a pigment. In some embodiments, the coating composition comprises the water insoluble a-(1 ,3→glucan) polymer and a binder, in other embodiments, the coating composition consists essentially of the water insoluble a-(1 ,3→giucan) polymer and a binder, in some embodiments, the coating composition comprises the water insoluble o(1 ,3— >giucan) polymer, a pigment, and a binder. In other embodiments, the coating composition consists essentially of the water insoluble a-(1 ,3→glucan) polymer, a pigment, and a binder.
The coating composition can comprise the water insoluble a- (1 ,3→glucan) polymer and a pigment. One or more pigments can be included in the coating compositions. Suitable pigments can include, for example, titanium dioxide, calcium carbonate, clays such as kaolin, structured and calcined clays, hydrated aluminum silicates, bentonite, natural and synthetic calcium carbonate, calcium sulphate (gypsum), calcium silicate, calcium silicate hydrate, silicas, precipitated silicas, fumed silicas, alumina, aluminum trihydrate, plastic (polystyrene) pigments, satin white, talc, barium sulphate, zinc oxide, or a combination thereof. In some embodiments, the pigment is calcium carbonate, crystalline silica, amorphous silica, titanium dioxide calcium silicate, or a combination thereof. The pigment can be present in the range of from 10 to 75% by weight, based on the total weight of the coating composition. In other embodiments, the pigment can be present in the range of from 20 to 70% by weight or 25 to 65% by weight, based on the total weight of the coating composition. The coating composition can comprise the water insoluble a- (1 ,3→glucan) polymer and a binder. The binder can comprise in the range of from 1 to 50% by weight of the coating composition, based on the total weight of the coating composition, in other embodiments, the binder can comprise in the range of from 2 to 45% or 2 to 40% or 2 to 30% by weight of the coating composition, wherein the percentages by weight are based on the total weight of the coating composition. One or more binders can be included in the coating compositions. Suitable binders can include, for example, polyvinyl alcohol, polyvinyl acetate, partially saponified polyvinyl acetate, silanol-modified polyvinyl alcohol, polyurethane, starch, com dextrin, carboxy methyl cellulose, cellulose ethers, hydroxyethyl cellulose, hydroxypropyl cellulose, ethyl hydroxyethyl cellulose, methyl cellulose, alginates, sodium alginate, xanthan, carrageenan, casein, soy protein, guar gums, synthetic polymers, styrene butadiene latex, styrene acrylate latex, or a combination thereof. In some embodiments, the binder is polyvinyl alcohol, polyvinyl acetate, partially saponified polyvinyl acetate, silanol-modified polyvinyl alcohol, polyurethane, starch, corn dextrin, cellulose ethers, hydroxyethyl cellulose, hydroxypropyl cellulose, ethyl hydroxyethyl cellulose, methyl cellulose, alginates, sodium alginate, xanthan, carrageenan, guar gums, synthetic polymers, styrene butadiene latex, or a combination thereof. In some embodiments, the binder is polyvinyl alcohol. In other embodiments, the binder is a combination of two or more of polyvinyl alcohol, a silanol-modified polyvinyl alcohol and polyvinyl acetate, if present, the coating composition can comprise up to 50% by weight of the binder, wherein the percentage by weight is based on the total amount of the coating composition. In some embodiments, the coating composition is free from the binder. In other embodiments, the coating composition is free from starch and/or hydroxyaikyi starch, in other embodiments, the coating composition is free from water soluble polysaccharides. As used herein, the phrase free from means that the coating composition contains less than 1 % by weight of the component, or less than 0.5 % by weight or less than 0.1 % by weight or less than 0.01 % by weight of the component. In still further embodiments, free from means that the particular component is undetectable by 1 H NMR.
The coating composition can further comprise iv) an additive. One or more of each of these components can be added. For example, the additives category encompasses a large number of potential components of which one or more of the individual components can be used. In some embodiments, a pigment and/or a binder, and one or more additives can be used, in other embodiments, the coating composition can include a pigment and one or more additives without the addition of a binder, in still further embodiments, the coating composition can include a binder and one or more additives without the addition of a pigment.
The coating composition can further comprise any of the additives that are normally used in paper coatings. Suitable additives can include, for example, dispersants, quaternary ammonium salts, calcium chloride, calcium silicate; surfactants, for example, cationic surfactants, anionic surfactants, non-ionic surfactants, amphoteric surfactants, fluorinated surfactants; hardeners, for example, active halogen compounds, vinyisuifone compounds, epoxy compounds; dispersing agents, for example, polyacrylates, polyphosphates, poiycarboxyiates, flowability improvers; lubricants, for example, calcium, ammonium and/or zinc stearate, wax or wax emulsions, alkyl ketene dimer, glycols; antifoam agent, for example, octyl alcohol, silicone-based antifoam agents;
releasing agents; foaming agents; penetrants, for example, 1 ,2- propanediol, triethylene glycol butyl ether, 2-pyrrolidone; optical brighteners, for example, fluorescent whiteners; preservatives, for example, benzoisothiazolone and isothiazoione compounds; biocides, for example, metaborate, thiocyanate, sodium benzoate, benzisothiaoiin-3- one; yellowing inhibitors, for example, sodium hydroxymethyi sulfonate, sodium p-toluenesulfonate; ultraviolet absorbers, for example,
benzotriazoie compounds; antioxidants, for example, sterically hindered phenol compounds; insolubiiisers; antistatic agents; pH regulators, for example, weak bases, primary, secondary or tertiary amines, sulfuric acid, hydrochloric acid; water-resistance agents, for example, ketone resin, anionic latex, glyoxal; wet and/or dry strengthening agents, for example, glyoxai-based resins, oxidized poiyethyienes, meiamine resins, urea formaldehyde; cross-linking agents; gloss-ink holdout additives; grease and oil resistance additives; leveling aids, for example, polyethylene emulsions, aicohol/ethylene oxide or combinations thereof. In some embodiments, the coating composition further comprises one or more of an additive, wherein the additive is one or more of a dispersant, a quaternary ammonium salts, calcium chloride, a surfactant, a hardener, a flowability improver, a lubricant, an antifoam, a releasing agent, a foaming agent, a penetrant, an optical brightener, a preservative, a biocide, a yellowing inhibitor, an ultraviolet absorber, an antioxidant, an insoiubiiiser, an antistatic agent, a pH regulator, a water-resistance agent, a wet and/or dry strengthening agent, a cross-linking agent, a gloss-ink holdout additive, a grease and oil resistance additive, a leveling aid, or a combination thereof. The coating composition can contain any one or more of the listed additives in an amount in the range of from 0 to 5% by weight, based on the total amount of the coating composition. In other embodiments, the additives can be present in an amount in the range of from 0.1 to 4% by weight or 0.5 to 3.5% by weight or 0.5 to 3% by weight. Ail percentages by weight are based on the total amount of the coating composition.
The individual components of the coating composition can be dispersed in an aqueous carrier to form the aqueous coating composition. As used herein, aqueous carrier means a liquid carrier comprising greater than or equal to 50% by weight of water. In other embodiments, the aqueous carrier comprises greater than or equal to 75% or 85% or 90% or 95% water, all percentages by weight are based on the total amount of the aqueous carrier. Volatile non-aqueous solvents may be present, for example alcohols or other organic solvents, however, it is expected that the amount of the non-aqueous carriers will be low when compared to the amount of water present in the aqueous coating composition. The amount of aqueous carrier in the aqueous coating composition less than or equal to 95% by weight, based on the total weight of the aqueous coating composition. In other embodiments, the aqueous carrier is present at less than or equal to 90% or 85% or 80% or 75% or 70% or 65% or 80% or 55% or 50% or 40% or 30% or 20% by weight, based on the total weight of the aqueous coating composition. In general, the aqueous coating composition should have a viscosity that allows a relatively smooth coating to be applied to the surface of the substrate without lumps, voids, or streaking. Such application details are well-known to one of ordinary skill in the art.
The aqueous coating composition can be formed using standard methods known in the art. For example, the dry ingredients can be added to water either all at once, in batches, or one after the other. For example, pigments, with any additives, can be mixed with the aqueous carrier first, followed by the addition of the water insoluble a-(1 ,3→giucan) polymer as a powder or as a wet cake. In other embodiments, the components of the coating composition can be dry-blended to form a pre-mix which can then be added to the aqueous carrier. The aqueous coating composition should be mixed thoroughly, in order to form a dispersion of the water- insoluble a-(1 ,3→giucan) polymer.
The present disclosure also relates to a method of forming a layer of a coating composition on a substrate comprising:
1 ) applying a layer of an aqueous coating composition to at least a portion of a substrate, wherein the aqueous coating composition comprises;
i) water insoluble a-(1 ,3→glucan) polymer having 90% or
greater a-1 ,3-glycosidic linkages, less than 1 % of a-1 ,3,6- giycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000; ii) a pigment, a binder or a combination thereof; and an aqueous carrier; and
2) removing at least a portion of the aqueous carrier from the
applied layer of the aqueous coating composition to form the layer of the coating composition. The step of applying the layer of the aqueous coating composition to at least a portion of the substrate can be accomplished by any means known in the art. The substrate can be a cellulose substrate, a polymer, paper, a textile, paperboard, cardboard, or corrugated board. In some embodiments, the polymer substrate can be a transparency sheet, for example comprising cellulose acetate, polyester, or polyvinyl chloride.
Methods of applying the layer of the aqueous coating composition can include, for example, air knife coating, rod coating, bar coating, wire bar coating, spray coating, brush coating, cast coating, flexible blade coating, gravure coating, jet applicator coating, short dwell coating, slide hopper coating, curtain coating, flexographic coating, size-press coating, reverse roil coating and transfer roil coating. The aqueous coating composition can be applied on at least a portion of the substrate, for example, on a single side or both sides of the substrate, a portion of a single side, or a portion of both sides of a fiat substrate. The aqueous coating can be applied once to the substrate or multiple times to the substrate.
In other embodiments, the aqueous coating composition can be applied to the substrate either shortly before or during the printing operation. For example, a printing machine such as an ink jet printer, may be equipped to apply a layer of the aqueous coating composition to a portion of the paper that will receive the ink prior to placing the ink on the substrate. The layer of coating composition applied in this manner can be the same size as the to-be-applied ink or can be larger than the to-be- applied ink.
After the coating step, at least a portion of the water is removed by any method known in the art. For example, air or convection drying, linear tunnel drying, arc drying, air-loop drying, contact or conduction drying, radiant energy drying, infrared drying, microwave drying, or a combination thereof may be used. The coated substrate can optionally be calendared after drying in order to improve the surface smoothness and gloss.
Calendaring can be carried out by passing the coated substrate through nips and rollers one or more times. The aqueous coating composition can be applied to the substrate at such a rate as to apply a dry coating weigh in the range of from 0.1 to 30 grams/meter2 (g/m2). In other embodiments, the dry coating weight can be in the range of from 0,5 to 25 g/m2 or 1 to 20 g/m2. The applied layer of coating composition can have a thickness in the range of from 0.1 to 50 micrometers (μιτι). In other embodiments, the thickness can be in the range of from 0.5 to 40 μηι or 1 to 30 Mm or 1 to 20 μπτι.
Non-limiting examples of the embodiments disclosed herein include:
1 . A substrate, wherein at least a portion of the substrate is coated with a layer of a coating composition, the coating composition comprising; i) water insoluble a-(1 ,3→glucan) polymer having 90% or
greater a-1 ,3-glycosidic linkages, less than 1 % by weight of a-1 ,3,6-giycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000; and
ii) at least one pigment, at least one binder or a combination thereof.
2. The substrate of embodiment 1 wherein the substrate is a cellulose substrate, a polymer, paper, a textile, paperboard, cardboard, or corrugated board.
3. The substrate of any one of embodiments 1 or 2 wherein the layer of coating composition comprises an average pore size diameter in the range of from 0.10 to 0.50 miiliiiters/gram.
4. The substrate of any one of embodiments 1 , 2 or 3 wherein the binder is polyvinyl alcohol, polyvinyl acetate, partially saponified polyvinyl acetate, silanoi-modified polyvinyl alcohol, polyurefhane, starch, corn dextrin, carboxy methyl cellulose, cellulose ethers, hydroxyethyl cellulose, hydroxypropyl cellulose, ethylhydroxyethyl cellulose, methyl cellulose, alginates, sodium alginate, xanthan, carrageenan, casein, soy protein, guar gums, synthetic polymers, styrene butadiene latex, styrene acryiate latex, or a combination thereof. 5. The substrate of any one of embodiments 1 , 2, 3 or 4 wherein the coating composition comprises in the range of from 0.1 to 50% by weight of the water insoluble a-(1 ,3 ->glucan) polymer, wherein the percentage by weight is based on the total weight of the coating composition.
6. The substrate of any one of embodiments 1 , 2, 3, 4 or 5 wherein the coating composition further comprises one or more of:
iv) an additive.
7. The substrate of claim 1 wherein the water insoluble a-
(1 ,3→glucan) polymer is a linear polymer having greater than or equal to 99% of a-1 ,3-glycosidic linkages and less than 1 % a-1 ,3,6-glycosidic branch points.
8. The substrate of any one of embodiments 1 , 2, 3, 4, 5 or 8 wherein the coating composition is free from or essentially free from starch and/or hydroxyalkyl starch.
9. The substrate of any one of embodiments 1 , 2, 3, 4, 5, 8, 7 or 8 wherein the binder is polyvinyl alcohol, polyvinyl acetate, partially saponified polyvinyl acetate, silanoi-modified polyvinyl alcohol,
po!yurethane, starch, corn dextrin, cellulose ethers, hydroxyethyi cellulose, hydroxypropyl cellulose, ethyihydroxyethyi cellulose, methyl cellulose, alginates, sodium alginate, xanthan, carrageenan, guar gums, synthetic polymers, styrene butadiene latex or a combination thereof.
10. The substrate of any one of embodiments 8, 7 8 or 9 wherein the additive is one or more of a dispersant, a quaternary ammonium salts, calcium chloride, a surfactant, a hardener, a flowability improver, a lubricant, an antifoam, a releasing agent, a foaming agent, a penetrant, an optical brightener, a preservative, a biocide, a yellowing inhibitor, an ultraviolet absorber, an antioxidant, an insoiubiliser, an antistatic agent, a pH regulator, a water-resistance agent, a wet and/or dry strengthening agent, a cross-linking agent, a gloss-ink holdout additive, a grease and oil resistance additive, a leveling aid, or a combination thereof.
1 1 . An aqueous coating composition comprising the coating
composition of any one of embodiments 1 , 2, 3, 4, 5, 8, 7, 8, 9 or 10 and iii) an aqueous carrier. 12, The aqueous coating composition of embodiment 1 1 wherein the a- (1 ,3→glucan) polymer is produced by a giucosyltransferase enzyme having 90% or greater sequence identity to Gtf J.
13, The aqueous coating composition of any one of embodiments 1 1 or 12 wherein the aqueous coating composition is free from water soluble polysaccharides.
14, The aqueous coating composition of any one of embodiments 1 1 , 12 or 13 wherein the aqueous carrier comprises less than or equal to 80% by weight of the total weight of the aqueous coating composition.
1 5. The aqueous coating composition of any one of embodiments 1 1 , 12, 13 or 14 wherein the composition further comprises one or more of: iv) an additive.
16. The aqueous coating composition of any one of embodiments 1 1 , 12, 13, 14 or 15 wherein the composition is essentially free from starch and/or hydroxyalkyl starch.
17. The aqueous coating composition of any one of embodiments 1 1 , 12, 13, 1 4, 15 or 16 wherein the a-(1 ,3→glucan) polymer is a linear polymer having greater than or equal to 99% of a-1 ,3-giucosydic linkages and less than 1 % a-1 ,3,6-branching points.
18. The aqueous coating composition of any one of embodiments 1 1 , 12, 13, 14, 15, 16 or 17 wherein the binder is polyvinyl alcohol, polyvinyl acetate, partially saponified polyvinyl acetate, silanol-modified polyvinyl alcohol, polyurethane, starch, corn dextrin, cellulose ethers, hydroxyethyl cellulose, hydroxypropyi cellulose, ethyihydroxyethyi cellulose, methyl cellulose, alginates, sodium alginate, xanthan, carrageenan, guar gums, synthetic polymers, styrene butadiene latex or a combination thereof. 19. The aqueous composition of any one of embodiments 15, 16, 17 or 18 wherein the additive is one or more of a dispersant, a quaternary ammonium salts, calcium chloride, a surfactant, a hardener, a flowability improver, a lubricant, an antifoam, a releasing agent, a foaming agent, a penetrant, an optical brightener, a preservative, a biocide, a yellowing inhibitor, an ultraviolet absorber, an antioxidant, an insolubiliser, an antistatic agent, a pH regulator, a water-resistance agent, a wet and/or dry strengthening agent, a cross-linking agent, a gloss-ink holdout additive, a grease and oil resistance additive, a leveling aid or a combination thereof
20. A method of forming a layer of a coating composition on a substrate comprising:
1 ) applying an aqueous coating composition to at least a portion of a substrate, wherein the aqueous coating composition comprises;
i) water insoluble a-(1 ,3 ->glucan) polymer having 90% or greater a-1 ,3-glycosidic linkages, less than 1 % of a-1 ,3,6- glycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000; ii) a pigment, a binder or a combination thereof;
iii) an aqueous carrier; and
2) removing at least a portion of the aqueous carrier from the
applied layer of the aqueous coating composition to form the layer of the coating composition.
21 . The method of embodiment 20 wherein the a) a-(1 ,3→glucan) polymer is synthesized by a glucosyltransferase enzyme having 90% or greater identity to Gtf J.
22. The method of any one of embodiments 20 or 21 wherein the substrate is paper or a polymer.
23. The method of any one of embodiments 20, 21 or 22 wherein the aqueous coating composition further comprises:
iv) an additive.
24. The method of any one of embodiments 20, 21 , 22 or 23 wherein the applied layer of coating composition, after having at least a portion of the water removed, forms a surface having an average porosity in the range of from 0.10 to 0,50 miiliiiters/gram.
EXAMPLES
Unless otherwise noted, all ingredients are available from Sigma- Aidrich, St. Louis, Missouri. Silica #1 , having a pore volume of 1 .8 ml/g and Silica # 2, amorphous silica, having a pore volume of 1 .2 ml/g are both available from the PQ Corporation, Valley Forge, Pennsylvania.
PVOH #1 , partially saponified PVOH, PVOH #2, silanoi-modified PVOH and PVOH #3 polyvinyl alcohol are available from Kuraray Europe GmbH, Germany.
PVAc, vinyl acetate emulsion and Aminomethacrylate-based quaternary copolymer are both available from Indulor Chemie GmbH, Germany.
HYDROCARB® 80 and HYDROCARB® 90 calcium carbonates are available from Omya Incorporated, Proctor, Vermont.
Calcium Silicate is available from Cirkei GmbH & Co, Haltern, Germany.
The water insoluble a-(1 ,3→glucan) polymer was produced according to a method of US 8,871 ,474. The polymer had a number average degree of polymerization of about 300 and >98% a-1 ,3 giycosidic linkages.
SURFYNOL® 465 nonionic surfactant and other nonionic organic wetting agents are available from Air Products, Aiientown, Pennsylvania.
Corn dextrin is available from Cargiil, Wayzata, Minnesota.
PROXEL® GXL antimicrobial is available from Arch Chemicals, inc., Smyrna, Georgia.
Pore Size Volume was measured using a POREMASTER® GT pore size analyzer, available from Quantachrome Instruments, Boynton Beach, Florida,
Coating compositions 1 -4
Coating compositions 1 -4 were produced by dispersing
compositions in water according to the Table 1 . The amounts in Table 1 are parts by weight.
TABLE 1
Figure imgf000019_0001
Figure imgf000020_0001
Coating compositions 5, 6, 7 and Comparative Coating
Compositions A and B
Coating compositions 5, 6, and 7 and Comparative coating compositions A and B were also prepared by dispersing the ingredients of Table 2 in water. The amounts in Table 2 are parts by weight.
TABLE 2
Figure imgf000020_0002
The aqueous coating compositions of Table 1 and 2 were applied to Ink jet paper and dried. The dried coatings were then fed through an ink jet printer printing a 600 dots per inch (dpi), 900 dpi, and 1200 dpi to visually analyze the print quality using a rating scale of A, B, C, D, or F with A being the highest visual quality and F being the lowest visual quality. In a second test, 1 .7 seconds after the ink was applied to the coating composition, the ink was wiped and the wiped area was visually analyzed and given a rating of A, B, C, D or F, with A being the best rating and F being the worst rating (i.e., the most smudged). In Table 3, a rating of a "u" means that the smudge rendered the ink unidentifiable. The results are shown in Table 3. The abbreviation "n/a" means not analyzed.
TABLE 3
Figure imgf000022_0001
Preparation of Coating Composition 8
A dispersion comprising 3 parts by weight (pbw) of the water insoluble a-(1 ,3→glucan) polymer, 5 pbw 1 ,2-propanediol, 1 pbw triethylene glycol butyl ether, 10 pbw glycerol, 3 pbw 2-pyrrolidone, 0.15 pbw PROXEL® GXL antimicrobial, 0.5 pbw SURFYNOL® surfactant and 1 pbw polyurethane was mixed with 76.35 pbw water.
A dispersion of aqueous Coating Composition 8 was applied to a transparency sheet and the coating was dried. The coated transparency sheet was placed in an ink jet printer and printed using color ink. As a comparison, an uncoated transparency sheet was also printed with the same image. The coated transparency sheet showed sharp images and no evidence of mottling, in comparison, the uncoated transparency sheet showed an unacceptable degree of bleeding and mottling. Preparation of Coating Compositions 9 and 10, and
Comparative Coating Composition C
The following examples show coating performance for Folding Box Boards (FBB) and Label applications where coating compositions comprising water insoluble a-(1 ,3→glucan) polymer were formulated to improving printing performance while preserving other key paper parameters such as brightness and opacity.
Coating compositions 9 and 10 and Comparative Coating
Composition C (Comp. C) were prepared by dispersing the ingredients of Table 4 in water. The amounts in Table 4 are parts by weight. These coating compositions were coated onto Folding Box Boards.
TABLE 4
Figure imgf000024_0001
Coating procedure: All coating was performed on Sumet coating unit in blade coating mode with bent blade. Blade angle was 25°, Blade pressure was 25 N, Roll pressure was 25 N and machine speed was 20 m/min.
ristow wheei method and High speed fluid characterization: a defined volume of ink is dispensed onto the substrate, it gives a track of the ink which is longer if the setting speed is low. For Inkjet applications it is important to have a track of shorter than 150 mm.
For the FBB-samples it is important to improve opacity of the coating relative to pure uncoated board and to improve printabiiity relative to precipitated calcium carbonate (PCC) coating. Whiteness was determined once with UV-component in the light source and once without.
The change in coating opacity when applying a standard varnish onto the sample was checked. The setting speed of ink on the coated samples was probed by means of Bristow wheel. Binding power of the coating was also checked by means of a pick test (ISO 3783). All coating compositions were set to the same solids content (45 %). To highlight the effect of the polysaccharide, the relative increase in whiteness (ISO 2470- 1 and 2470-2) for ail the samples is shown. The results in Table 5 show that the polysaccharide is behaving quite similarly to calcium carbonate pigments. By exchanging pigment by polysaccharide one obtains the same increase in whiteness. To check the opacity of the coating further, a thin film of standard varnish was applied from offset printing (Actega Terrawet). Whiteness decreased by about 8 points for all samples. Hence, coating containing parts of polysaccharide have comparable brightness properties to other pigments. To determine the binding power of the coating to the substrate we performed pick test, where medium viscosity oil was applied onto the surface and pulled with increasing speed. Higher values show a higher binding power to the substrate. The values in Table 5 indicate that coating adhesions were not affected by the presence of polysaccharide.
Setting speed was tested by Bristow wheel method. The results in
Table 5 show that increasing the amount of polysaccharide in the coating gives a decrease in the track length and an increase in the setting speed. The shorter track length compared to that of the reference sample
(Comparative Coating Composition C) indicate that the use of
polysaccharide yielded improved printability while preserving key coating characteristics of whiteness and pick strength.
TABLE S
Figure imgf000025_0001
In Label application it is important to have a high opacity, even when the paper gets wet. Furthermore printability matters, so the setting behavior of model ink at the coated samples was investigated. The composition with polysaccharide (Coating Composition 1 1 ) was compared with compositions having three different T1O2 controls (Comparative Coating Compositions D, E, and F).
Coating composition 1 1 and Comparative Coating Compositions D, E, and F (Comp. D, Comp. E, and Comp. F) were prepared by dispersing the ingredients of Table 6 in water. The amounts in Table 6 are parts by weight. These coating compositions were coated onto labels as described above.
TABLE 6
Figure imgf000026_0001
Table 7 shows the obtained data from whiteness and opacity measures. The substrate contains optical brightening agent (OBA) which gives a high D65 whiteness. Since whiteness without UV part of the light ignores OBA and is comparable between ail samples we have a direct measure for the opacity. The difference in D85 values. The data in Table 7 shows that coating formulations containing polysaccharide show comparable whiteness (ISO 2470-1 and 2470-2) and wet opacity (DIN 53146) as Ti02-containing formulation. Moreover, the Bristow length measurement shows again that formulations containing polysaccharide give the fastest setting speed and hence the shortest setting time (the shortest track length in Bristow).
TABLE 7
Figure imgf000027_0001

Claims

CLA MS
What is claimed is: 1 . A substrate, wherein at least a portion of the substrate is coated with a layer of a coating composition, the coating composition comprising;
i) water insoluble a-(1 ,3→glucan) polymer having 90% or
greater a-1 ,3-glycosidic linkages, less than 1 % by weight of a-1 ,3,6-glycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000; and
ii) at least one pigment, at least one binder, or a combination thereof.
2. The substrate of claim 1 wherein the substrate is a cellulose substrate, a polymer, paper, a textile, paperboard, cardboard, or corrugated board.
3. The substrate of claim 1 , wherein the layer of coating composition comprises an average pore size volume in the range of from 0, 1 to 0.50 miliiliters/gram.
4. The substrate of claim 1 , wherein the binder is polyvinyl alcohol, polyvinyl acetate, partially saponified polyvinyl acetate, si!ano!-modified polyvinyl alcohol, polyurethane, starch, corn dextrin, carboxy methyl celiuiose, cellulose ethers, hydroxyethyl ceilulose, hydroxypropyl ceilulose, ethyl hydroxyethyl cellulose, methyl ceilulose, alginates, sodium alginate, xanthan, carrageenan, casein, soy protein, guar gums, synthetic polymers, styrene butadiene latex, styrene acrylate latex, or a combination thereof.
5. The substrate of claim 1 , wherein the coating composition comprises in the range of from 0.1 to 50% by weight of the water insoluble a-(1 ,3→glucan) polymer, based on the total weight of the coating composition.
8. The substrate of claim 1 , wherein the coating composition further comprises one or more of:
iv) an additive.
7. The substrate of claim 1 , wherein the water insoluble a-
(1 ,3-->glucan) polymer is a linear polymer having greater than or equal to 99% of a-1 ,3-glycosidic linkages and less than 1 % a-1 ,3,6-glycosidic branch points.
8. The substrate of claim 1 , wherein the coating composition is free from or essentially free from starch or hydroxy alkyl starch.
9. The substrate of claim 6, wherein the additive is one or more of a dispersant, a quaternary ammonium salts, calcium chloride, a surfactant, a hardener, a flowabiiity improver, a lubricant, an antifoam, a releasing agent, a foaming agent, a penetrant, an optical brightener, a preservative, a biocide, a yellowing inhibitor, an ultraviolet absorber, an antioxidant, an insolubiliser, an antistatic agent, a pH regulator, a wafer-resistance agent, a wet and/or dry strengthening agent, a cross-linking agent, a gloss-ink holdout additive, a grease and oil resistance additive, a leveling aid, or a combination thereof.
10. An aqueous coating composition comprising the coating
composition of claim 1 and iii) an aqueous carrier.
1 1 . The aqueous coating composition of claim 10, wherein the aqueous coating composition is free from water soluble polysaccharides.
12. The aqueous coating composition of claim 10, wherein the aqueous carrier comprises less than or equal to 80% by weight of the total weight of the aqueous coating composition.
13. The aqueous coating composition of claim 10, wherein the composition further comprises one or more of:
iv) an additive.
14. The aqueous coating composition of claim 10, wherein the composition is essentially free from starch or hydroxyaikyl starch.
15. The aqueous coating composition of claim 10, wherein the o (1 ,3→glucan) polymer is a linear polymer having greater than or equal to 99% of a-1 ,3-glucosydic linkages and less than 1 % a-1 ,3,6-branching points.
16. The aqueous coating composition of claim 10, wherein the binder is polyvinyl alcohol, polyvinyl acetate, partially saponified polyvinyl acetate, silanol-modified polyvinyl alcohol, polyurethane, starch, corn dextrin, cellulose ethers, hydroxyefhyl cellulose, hydroxypropyl cellulose, ethyl hydroxyethyi cellulose, methyl cellulose, alginates, sodium alginate, xanthan, carrageenan, guar gums, synthetic polymers, styrene butadiene latex or a combination thereof.
17. The aqueous coating composition of claim 13, wherein the additive is one or more of a dispersant, a quaternary ammonium salts, calcium chloride, a surfactant, a hardener, a fiowability improver, a lubricant, an antifoam, a releasing agent, a foaming agent, a penetrant, an optical brightener, a preservative, a biocide, a yellowing inhibitor, an ultraviolet absorber, an antioxidant, an insolubiiiser, an antistatic agent, a pH regulator, a wafer-resistance agent, a wet and/or dry strengthening agent, a cross-linking agent, a gloss-ink holdout additive, a grease and oil resistance additive, a leveling aid or a combination thereof.
18. A method of forming a layer of a coating composition on a substrate comprising: 1 ) applying an aqueous coating composition to at least a portion of a substrate, wherein the aqueous coating composition comprises;
i) water insoluble a-(1 ,3→glucan) polymer having 90% or greater a-1 ,3-glycosidic linkages, less than 1 % of a-1 ,3,6- giycosidic branch points and a number average degree of polymerization in the range of from 55 to 10,000; ii) a pigment, a binder or a combination thereof;
iii) an aqueous carrier; and
2) removing at least a portion of the aqueous carrier from the
applied layer of the aqueous coating composition to form the layer of the coating composition.
19, The method of claim 18, wherein the substrate is paper or a polymer.
PCT/US2016/058453 2015-10-26 2016-10-24 Water-insoluble alpha-(1,3->glucan) composition WO2017074862A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020187014311A KR20180074734A (en) 2015-10-26 2016-10-24 Water insoluble alpha - (1,3 - glucan) composition
CA2998773A CA2998773C (en) 2015-10-26 2016-10-24 Water-insoluble alpha-(1,3->glucan) composition
RU2018119291A RU2018119291A (en) 2015-10-26 2016-10-24 COMPOSITION OF ALPHA- INSOLUBLE IN WATER- (1,3 → Glucan)
US15/756,681 US10731297B2 (en) 2015-10-26 2016-10-24 Water insoluble alpha-(1,3-glucan) composition
JP2018541095A JP6975158B2 (en) 2015-10-26 2016-10-24 Water-insoluble α- (1,3 → glucan) composition
AU2016347048A AU2016347048B2 (en) 2015-10-26 2016-10-24 Water-insoluble alpha-(1,3->glucan) composition
CN201680062791.8A CN108350660B (en) 2015-10-26 2016-10-24 Water-insoluble alpha- (1,3 → glucan) composition
EP16788394.1A EP3368716B1 (en) 2015-10-26 2016-10-24 Water-insoluble alpha-(1,3->glucan) composition
FIEP16788394.1T FI3368716T3 (en) 2015-10-26 2016-10-24 Water-insoluble alpha-(1,3->glucan) composition
ES16788394T ES2937288T3 (en) 2015-10-26 2016-10-24 Composition of alpha-(1,3->glucan) insoluble in water
US16/942,828 US11208765B2 (en) 2015-10-26 2020-07-30 Water insoluble alpha-(1,3-glucan) composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562246308P 2015-10-26 2015-10-26
US62/246,308 2015-10-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/756,681 A-371-Of-International US10731297B2 (en) 2015-10-26 2016-10-24 Water insoluble alpha-(1,3-glucan) composition
US16/942,828 Continuation US11208765B2 (en) 2015-10-26 2020-07-30 Water insoluble alpha-(1,3-glucan) composition

Publications (1)

Publication Number Publication Date
WO2017074862A1 true WO2017074862A1 (en) 2017-05-04

Family

ID=57209950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/058453 WO2017074862A1 (en) 2015-10-26 2016-10-24 Water-insoluble alpha-(1,3->glucan) composition

Country Status (11)

Country Link
US (2) US10731297B2 (en)
EP (1) EP3368716B1 (en)
JP (1) JP6975158B2 (en)
KR (1) KR20180074734A (en)
CN (1) CN108350660B (en)
AU (1) AU2016347048B2 (en)
CA (1) CA2998773C (en)
ES (1) ES2937288T3 (en)
FI (1) FI3368716T3 (en)
RU (1) RU2018119291A (en)
WO (1) WO2017074862A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019055397A1 (en) * 2017-09-13 2019-03-21 E. I. Du Pont De Nemours And Company Nonwoven webs comprising polysaccharides
CN109505193A (en) * 2018-09-12 2019-03-22 华南理工大学 A kind of composite paper-plastic material water-soluble coating material and preparation method thereof that recyclable regenerative utilizes
JP2020526605A (en) * 2017-06-30 2020-08-31 デュポン・インダストリアル・バイオサイエンシーズ・ユーエスエイ・エルエルシー Polysaccharide-elastomer masterbatch composition
US10822574B2 (en) 2015-11-13 2020-11-03 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
JP2020532622A (en) * 2017-09-01 2020-11-12 デュポン・インダストリアル・バイオサイエンシーズ・ユーエスエイ・エルエルシー Latex composition containing polysaccharides
US10844324B2 (en) 2015-11-13 2020-11-24 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
US10876074B2 (en) 2015-11-13 2020-12-29 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
US10895028B2 (en) 2015-12-14 2021-01-19 Dupont Industrial Biosciences Usa, Llc Nonwoven glucan webs
WO2021030850A1 (en) * 2019-08-16 2021-02-25 Mondi Ag Transfer paper for dye sublimation printing processes, and method for producing transfer paper
US11230812B2 (en) 2015-10-26 2022-01-25 Nutrition & Biosciences Usa 4, Inc Polysaccharide coatings for paper

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2824678T3 (en) * 2014-12-22 2021-05-13 Dupont Ind Biosciences Usa Llc Polymeric blend containing poly alpha-1,3-glucan
US11193005B2 (en) * 2016-11-16 2021-12-07 Nutrition & Biosciences USA 4, Inc. Cellulose/polysaccharide composites
WO2022235655A1 (en) 2021-05-04 2022-11-10 Nutrition & Biosciences USA 4, Inc. Compositions comprising insoluble alpha-glucan
CN117337308A (en) 2021-05-04 2024-01-02 营养与生物科学美国4公司 Composition comprising oxidized insoluble alpha-glucan
WO2023287684A1 (en) 2021-07-13 2023-01-19 Nutrition & Biosciences USA 4, Inc. Cationic glucan ester derivatives
KR102386057B1 (en) * 2022-03-07 2022-04-12 주식회사 현대엘앤씨 Binder composition for spraying artificial mineral fiber insulation and finishing material having flame retardancy and heat insulation manufactured using the composition
WO2024015769A1 (en) 2022-07-11 2024-01-18 Nutrition & Biosciences USA 4, Inc. Amphiphilic glucan ester derivatives

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7000000B1 (en) 1999-01-25 2006-02-14 E. I. Du Pont De Nemours And Company Polysaccharide fibers
WO2008002618A2 (en) * 2006-06-27 2008-01-03 Lexmark International, Inc. Ink jet recording sheet for pigmented ink
US8871474B2 (en) 2012-09-25 2014-10-28 E. I. Du Pont De Nemours And Company Glucosyltransferase enzymes for production of glucan polymers
WO2015094402A1 (en) * 2013-12-20 2015-06-25 E. I. Du Pont De Nemours And Company Films of poly alpha-1,3-glucan esters and method for their preparation
WO2016106068A1 (en) * 2014-12-22 2016-06-30 E. I. Du Pont De Nemours And Company Polymeric blend containing poly alpha-1,3-glucan

Family Cites Families (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2478425A (en) 1946-03-26 1949-08-09 Eastman Kodak Co Manufacture of cellulose acetate
US2817592A (en) 1954-03-08 1957-12-24 Ohio Commw Eng Co Artificial tubing
NL246230A (en) 1958-12-09
US2988782A (en) 1958-12-09 1961-06-20 Du Pont Process for producing fibrids by precipitation and violent agitation
US3114747A (en) 1959-03-26 1963-12-17 Du Pont Process for producing a fibrous regenerated cellulose precipitate
US3285765A (en) 1965-10-18 1966-11-15 Charles R Cannon Cellulose acetate reverse osmosis desalination membranes cast from nonaqueous solutions and a method of making the same
US3833022A (en) 1972-07-24 1974-09-03 Tee Pak Inc Matte finish sausage casing
JPS52117492A (en) * 1975-12-11 1977-10-01 Hayashibara Biochem Lab Inc Preparation of water-insoluble glucan
JPS6054322B2 (en) * 1977-09-30 1985-11-29 株式会社林原生物化学研究所 Manufacturing method for molded products
US4590107A (en) 1981-02-06 1986-05-20 Teepak, Inc. Thin-walled, low plasticized content regenerated cellulose sausage casing
US4501886A (en) 1982-08-09 1985-02-26 E. I. Du Pont De Nemours And Company Cellulosic fibers from anisotropic solutions
US4562020A (en) 1982-12-11 1985-12-31 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Process for producing self-supporting glucan film
US5296286A (en) 1989-02-01 1994-03-22 E. I. Du Pont De Nemours And Company Process for preparing subdenier fibers, pulp-like short fibers, fibrids, rovings and mats from isotropic polymer solutions
US4963298A (en) 1989-02-01 1990-10-16 E. I. Du Pont De Nemours And Company Process for preparing fiber, rovings and mats from lyotropic liquid crystalline polymers
US5248712A (en) 1990-12-21 1993-09-28 Takeda Chemical Industries, Ltd. Binders for forming a ceramics sheet and applications thereof
US5604042A (en) 1991-12-23 1997-02-18 Mobil Oil Corporation Cellulose material containing barrier film structures
US5494509A (en) * 1993-10-29 1996-02-27 Aqualon Company Paper coating composition with increased thickener efficiency
EP0770002B1 (en) 1994-07-08 2004-01-02 Exxonmobil Oil Corporation Barrier film structures
US5496649A (en) 1994-07-21 1996-03-05 Mobil Oil Corp. Cross-linked PVOH coatings having enhanced barrier characteristics
US6444750B1 (en) 1995-03-06 2002-09-03 Exxonmobil Oil Corp. PVOH-based coating solutions
US5985666A (en) 1995-06-07 1999-11-16 Pioneer Hi-Bred International, Inc. Forages
US6127602A (en) 1995-06-07 2000-10-03 Pioneer Hi-Bred International, Inc. Plant cells and plants transformed with streptococcus mutans genes encoding wild-type or mutant glucosyltransferase D enzymes
US6087559A (en) 1995-06-07 2000-07-11 Pioneer Hi-Bred International, Inc. Plant cells and plants transformed with Streptococcus mutans genes encoding wild-type or mutant glucosyltransferase B enzymes
US6284479B1 (en) 1995-06-07 2001-09-04 Pioneer Hi-Bred International, Inc. Substitutes for modified starch and latexes in paper manufacture
US5712107A (en) 1995-06-07 1998-01-27 Pioneer Hi-Bred International, Inc. Substitutes for modified starch and latexes in paper manufacture
US6410025B1 (en) 1996-02-14 2002-06-25 Merck & Co., Inc. Polysaccharide precipitation process
DE19729273C2 (en) 1997-07-09 2000-08-17 Aventis Res & Tech Gmbh & Co Thermoplastic mixture based on 1,4-alpha-D-polyglucan, process for its production and use
KR100809562B1 (en) 1998-07-29 2008-03-04 더블유.에이. 샌더스 페이피어패브리크 콜덴호브 비.브이. Transfer paper for ink-jet printing
US6323338B1 (en) 1999-02-17 2001-11-27 Nurture, Inc. Method for concentrating β-glucan
FR2794762B1 (en) 1999-06-14 2002-06-21 Centre Nat Rech Scient DISPERSION OF MICROFIBRILLES AND / OR MICROCRYSTALS, ESPECIALLY CELLULOSE, IN AN ORGANIC SOLVENT
US6830803B2 (en) 1999-12-16 2004-12-14 Datacard Corporation Printed substrate made by transfer of ink jet printed image from a printable transfer film
GB0027310D0 (en) * 2000-11-09 2000-12-27 Eastman Kodak Co Coating fluid for the preparation of a recording medium for use in inkjet printing
US20020182376A1 (en) 2001-03-27 2002-12-05 Debabrata Mukherjee Novel universal ink jet recording medium
JP2003145921A (en) * 2001-08-31 2003-05-21 Tomoegawa Paper Co Ltd Ink jet recording sheet
US20040091581A1 (en) 2002-11-08 2004-05-13 Ghislaine Joly Starch/collagen casings for co-extruded food products
JP4331112B2 (en) * 2002-11-21 2009-09-16 日揮触媒化成株式会社 Recording sheet with ink receiving layer and coating liquid for forming ink receiving layer
JP3996078B2 (en) 2003-03-28 2007-10-24 三菱製紙株式会社 Method for producing inkjet recording material
US7638176B2 (en) * 2003-06-11 2009-12-29 Hewlett-Packard Development Company, L.P. Sealable coating for ink-jet media
FR2862878B1 (en) 2003-11-27 2006-03-24 Sofradim Production METAL SUBSTRATE COATED WITH A COMPOSITION OF COLLAGEN AND POLYSACCHARIDES, PROCESS AND APPLICATIONS
WO2006036092A1 (en) 2004-09-30 2006-04-06 Sca Hygiene Products Ab Paper improving additive
CA2589934A1 (en) * 2004-12-10 2006-06-15 Danisco A/S Print receptive topcoat for ink jet printing media comprising a polysaccharide as a binder
CN101443363B (en) 2006-04-24 2012-04-18 西巴控股有限公司 Cationic polysaccharide, its preparation and use
EP2164908A1 (en) 2007-07-05 2010-03-24 Basf Se Method for producing aqueous suspensions of fine particulate fillers and use thereof for producing papers having a high filler content and a high dry strength
EP2364143A1 (en) * 2008-10-31 2011-09-14 McNeil-PPC, Inc. Osmotic tablet with a compressed outer coating
US8551378B2 (en) 2009-03-24 2013-10-08 North Carolina State University Nanospinning of polymer fibers from sheared solutions
FI121890B (en) 2009-06-08 2011-05-31 Upm Kymmene Corp A new type of paper and a process for making it
US20110189271A1 (en) * 2010-02-02 2011-08-04 Vishal Lad Pharmaceutical formulations of acid-labile drugs
DE102010034134A1 (en) 2010-08-12 2012-02-16 Ult Papier Ug Transfer paper having a coating for printing in the inkjet printing process for sublimation transfer printing
US8852750B2 (en) 2011-03-29 2014-10-07 Wintershall Holding GmbH Method for the coating of a cellulose material by using a glucan
EP2529942B1 (en) * 2011-06-03 2016-01-13 Omya International AG Process for manufacturing coated substrates
JP6360647B2 (en) 2011-08-01 2018-07-18 ナノパック、インク. Barrier coatings for films and structures
US8642757B2 (en) 2011-09-09 2014-02-04 E I Du Pont De Nemours And Company High titer production of highly linear poly (α 1,3 glucan)
US9080195B2 (en) 2011-09-09 2015-07-14 E I Du Pont De Nemours And Company High titer production of poly (α 1,3 glucan)
TWI565801B (en) 2011-10-05 2017-01-11 杜邦股份有限公司 Novel composition for preparing polysaccharide fibers
JP6182148B2 (en) 2011-10-05 2017-08-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Novel composition for producing polysaccharide fibers
WO2013066246A1 (en) 2011-10-31 2013-05-10 Xylophane Aktiebolag Migration barrier film or coating comprising hemicellulose
WO2013096511A1 (en) 2011-12-19 2013-06-27 E. I. Du Pont De Nemours And Company Increased poly (alpha - 1, 3 - glucan) yield using tetraborate
WO2013096502A1 (en) 2011-12-19 2013-06-27 E. I. Du Pont De Nemours And Company INCREASED POLY (α 1, 3 GLUCAN) YIELD USING BORIC ACID
US9334584B2 (en) 2011-12-21 2016-05-10 E I Du Pont De Nemours And Company Process for preparing polysaccharide fibers from aqueous alkali metal hydroxide solution
US9212301B2 (en) 2011-12-21 2015-12-15 E I Du Pont De Nemours And Company Composition for preparing polysaccharide fibers
US9365955B2 (en) 2011-12-30 2016-06-14 Ei Du Pont De Nemours And Company Fiber composition comprising 1,3-glucan and a method of preparing same
US9096956B2 (en) 2012-02-17 2015-08-04 E I Du Pont De Nemours And Company Process for the production of carbon fibers from poly(α(1-→3) glucan) fibers
WO2013163230A2 (en) * 2012-04-24 2013-10-31 Midori Renewables, Inc. Bio-based polymers and methods of producing thereof
US9034092B2 (en) 2012-05-24 2015-05-19 E I Du Pont De Nemours And Company Composition for preparing polysaccharide fibers
EP2700657A1 (en) 2012-08-24 2014-02-26 aevotis GmbH Alternan-polysaccharide functionalised with protonisable nitrogen groups or permanently positively charged nitrogen groups
EP2700656A1 (en) 2012-08-24 2014-02-26 aevotis GmbH Carboxyl functionalised alternan
US20150299339A1 (en) 2012-11-14 2015-10-22 National Institute Of Advanced Industrial Science And Technology Beta-1,3-glucan derivative and method for producing beta-1,3-glucan derivative
EP2743091A1 (en) 2012-12-17 2014-06-18 Martinovic Zvonimir Improved transfer medium
US9139718B2 (en) 2012-12-20 2015-09-22 E I Du Pont De Nemours And Company Preparation of poly alpha-1,3-glucan ethers
CA2893950C (en) 2012-12-20 2020-10-20 E. I. Du Pont De Nemours And Company Preparation of poly alpha-1,3-glucan ethers
NZ708558A (en) 2012-12-27 2019-10-25 Du Pont Preparation of poly alpha-1,3-glucan esters and films therefrom
BR112015015609B1 (en) 2012-12-27 2021-04-06 Nutrition & Biosciences USA 4, Inc. FILMS AND METHOD FOR THE PREPARATION OF A POLY ALPHA-1,3-GLUCAN ESTER FILM
AT514137A1 (en) 2013-04-05 2014-10-15 Lenzing Akiengesellschaft Polysaccharide fiber and process for its preparation
AT514136A1 (en) 2013-04-05 2014-10-15 Lenzing Akiengesellschaft Polysaccharide fiber with increased fibrillation capability and process for its preparation
AT514123B1 (en) 2013-04-10 2015-06-15 Lenzing Akiengesellschaft Polysaccharide film and process for its preparation
AT514476A1 (en) 2013-06-17 2015-01-15 Lenzing Akiengesellschaft Polysaccharide fiber and process for its preparation
AT514475B1 (en) 2013-06-17 2016-11-15 Chemiefaser Lenzing Ag Polysaccharide fiber and process for its preparation
AT514468A1 (en) 2013-06-17 2015-01-15 Lenzing Akiengesellschaft High absorbency polysaccharide fiber and its use
AT514474B1 (en) 2013-06-18 2016-02-15 Chemiefaser Lenzing Ag Polysaccharide fiber and process for its preparation
AT514472B1 (en) 2013-06-19 2016-03-15 Lenzing Akiengesellschaft New environmentally friendly process for producing sponges and sponges from polysaccharides
AT514473B1 (en) 2013-06-19 2016-06-15 Chemiefaser Lenzing Ag New environmentally friendly process for producing sponges and sponges from polysaccharides
US20150126730A1 (en) 2013-11-07 2015-05-07 E I Du Pont De Nemours And Company Novel composition for preparing polysaccharide fibers
KR20160099629A (en) 2013-12-16 2016-08-22 이 아이 듀폰 디 네모아 앤드 캄파니 Use of poly alpha-1,3-glucan ethers as viscosity modifiers
US9957334B2 (en) * 2013-12-18 2018-05-01 E I Du Pont De Nemours And Company Cationic poly alpha-1,3-glucan ethers
KR102443837B1 (en) 2014-01-06 2022-09-19 뉴트리션 앤드 바이오사이언시스 유에스에이 4, 인크. Production of poly alpha-1,3-glucan films
CN105916922A (en) 2014-01-17 2016-08-31 纳幕尔杜邦公司 Production of a solution of cross-linked poly alpha-1,3-glucan and poly alpha-1,3-glucan film made therefrom
EP3094671B1 (en) 2014-01-17 2019-04-17 E. I. du Pont de Nemours and Company Production of gelled networks of poly alpha-1,3-glucan formate and films therefrom
US10106626B2 (en) 2014-01-17 2018-10-23 Ei Du Pont De Nemours And Company Production of poly alpha-1,3-glucan formate films
EP3105256A1 (en) 2014-02-14 2016-12-21 E. I. du Pont de Nemours and Company Poly-alpha-1,3-1,6-glucans for viscosity modification
CN105980413B (en) 2014-02-14 2020-11-10 纳幕尔杜邦公司 Glucosyltransferase enzymes for the preparation of dextran polymers
AU2015223025B2 (en) 2014-02-27 2018-09-20 Nutrition & Biosciences USA 4, Inc. Enzymatic hydrolysis of disaccharides and oligosaccharides using alpha-glucosidase enzymes
US9982284B2 (en) 2014-02-27 2018-05-29 E I Du Pont De Nemours And Company Enzymatic hydrolysis of disaccharides and oligosaccharides using alpha-glucosidase enzymes
CN106132997A (en) 2014-03-11 2016-11-16 纳幕尔杜邦公司 Poly-α 1,3 glucosan as the oxidation of detergent builders
PL3122887T3 (en) 2014-03-25 2018-11-30 E. I. Du Pont De Nemours And Company Production of glucan polymers from unrefined sucrose
US10907185B2 (en) 2014-05-29 2021-02-02 Dupont Industrial Biosciences Usa, Llc Enzymatic synthesis of soluble glucan fiber
CA2949289A1 (en) 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Enzymatic synthesis of soluble glucan fiber
US20170204442A1 (en) 2014-05-29 2017-07-20 E I Du Pont De Nemours And Company Enzymatic synthesis of soluble glucan fiber
WO2015183722A1 (en) 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Enzymatic synthesis of soluble glucan fiber
MX2016015605A (en) 2014-05-29 2017-03-10 Du Pont Enzymatic synthesis of soluble glucan fiber.
MX2016015612A (en) 2014-05-29 2017-03-13 Du Pont Enzymatic synthesis of soluble glucan fiber.
CN103992978B (en) 2014-06-11 2016-04-13 南京工业大学 The method of one strain leuconostoc pseudomesenteroides and coproduction dextran and N.F,USP MANNITOL
EP3158043B1 (en) 2014-06-19 2021-03-10 Nutrition & Biosciences USA 4, Inc. Compositions containing one or more poly alpha-1,3-glucan ether compounds
US9714403B2 (en) 2014-06-19 2017-07-25 E I Du Pont De Nemours And Company Compositions containing one or more poly alpha-1,3-glucan ether compounds
US20170198108A1 (en) 2014-06-26 2017-07-13 E I Du Pont De Nemours And Company Production of poly alpha-1,3-glucan films
JP2017519507A (en) 2014-06-26 2017-07-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Manufacture of poly α-1,3-glucan food casing
WO2015200590A1 (en) 2014-06-26 2015-12-30 E.I. Du Pont De Nemours And Company Poly alpha-1,3-glucan solution compositions
US20170196231A1 (en) 2014-06-26 2017-07-13 E I Du Pont De Nemours And Company Production of poly alpha-1,3-glucan formate food casings
WO2015200596A1 (en) 2014-06-26 2015-12-30 E. I. Du Pont De Nemours And Company Preparation of poly alpha-1,3-glucan ester films
US20170198109A1 (en) 2014-06-26 2017-07-13 E I Du Pont De Nemours And Company Production of poly alpha-1,3-glucan formate films
US10059779B2 (en) 2014-11-05 2018-08-28 E I Du Pont De Nemours And Company Enzymatically polymerized gelling dextrans
WO2016105971A1 (en) 2014-12-22 2016-06-30 E. I. Du Pont De Nemours And Company Polysaccharide compositions for absorbing aqueous liquid
AU2015369965B2 (en) 2014-12-23 2020-01-30 Nutrition & Biosciences USA 4, Inc. Enzymatically produced cellulose
AU2016215488B2 (en) 2015-02-06 2020-08-20 Nutrition & Biosciences USA 4, Inc. Colloidal dispersions of poly alpha-1,3-glucan based polymers
AT518612B1 (en) 2015-02-06 2019-03-15 Chemiefaser Lenzing Ag Polysaccharide suspension, process for its preparation and its use
US9644322B2 (en) 2015-02-06 2017-05-09 E I Du Pont De Nemours And Company Solid articles from poly alpha-1,3-glucan and wood pulp
WO2016133734A1 (en) 2015-02-18 2016-08-25 E. I. Du Pont De Nemours And Company Soy polysaccharide ethers
WO2016160740A1 (en) 2015-04-03 2016-10-06 E I Du Pont De Nemours And Company Oxidized soy polysaccharide
EP3277730B1 (en) 2015-04-03 2022-02-09 Nutrition & Biosciences USA 4, Inc. Gelling dextran ethers
AU2016243410A1 (en) 2015-04-03 2017-08-03 E I Du Pont De Nemours And Company Oxidized dextran
US9708417B2 (en) 2015-05-04 2017-07-18 The United States Of America, As Represented By The Secretary Of Agriculture Nanoparticles and films composed of water-insoluble glucan
JP6956013B2 (en) 2015-06-01 2021-10-27 ニュートリション・アンド・バイオサイエンシーズ・ユーエスエー・フォー,インコーポレイテッド Poly α-1,3-glucan fibrid and its use, and a method for producing poly α-1,3-glucan fibrid.
CN107995923B (en) 2015-06-01 2021-11-02 营养与生物科学美国4公司 Structured liquid compositions comprising colloidal dispersions of poly alpha-1, 3-glucan
PT3307549T (en) 2015-06-12 2020-10-26 Coldenhove Know How B V Improved transfer paper for inkjet printing
ES2753181T3 (en) 2015-08-28 2020-04-07 Du Pont Benzyl-alpha- (1,3) -glucan and fibers thereof
US11230812B2 (en) 2015-10-26 2022-01-25 Nutrition & Biosciences Usa 4, Inc Polysaccharide coatings for paper
SE540274C2 (en) 2015-11-27 2018-05-22 Stora Enso Oyj A ground cover mulch comprising a microfibrillated polysaccharide
US10895028B2 (en) 2015-12-14 2021-01-19 Dupont Industrial Biosciences Usa, Llc Nonwoven glucan webs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7000000B1 (en) 1999-01-25 2006-02-14 E. I. Du Pont De Nemours And Company Polysaccharide fibers
WO2008002618A2 (en) * 2006-06-27 2008-01-03 Lexmark International, Inc. Ink jet recording sheet for pigmented ink
US8871474B2 (en) 2012-09-25 2014-10-28 E. I. Du Pont De Nemours And Company Glucosyltransferase enzymes for production of glucan polymers
WO2015094402A1 (en) * 2013-12-20 2015-06-25 E. I. Du Pont De Nemours And Company Films of poly alpha-1,3-glucan esters and method for their preparation
WO2016106068A1 (en) * 2014-12-22 2016-06-30 E. I. Du Pont De Nemours And Company Polymeric blend containing poly alpha-1,3-glucan

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11230812B2 (en) 2015-10-26 2022-01-25 Nutrition & Biosciences Usa 4, Inc Polysaccharide coatings for paper
US10822574B2 (en) 2015-11-13 2020-11-03 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
US10844324B2 (en) 2015-11-13 2020-11-24 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
US10876074B2 (en) 2015-11-13 2020-12-29 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
US10895028B2 (en) 2015-12-14 2021-01-19 Dupont Industrial Biosciences Usa, Llc Nonwoven glucan webs
JP2020526605A (en) * 2017-06-30 2020-08-31 デュポン・インダストリアル・バイオサイエンシーズ・ユーエスエイ・エルエルシー Polysaccharide-elastomer masterbatch composition
JP7420561B2 (en) 2017-06-30 2024-01-23 ニュートリション・アンド・バイオサイエンシーズ・ユーエスエー・フォー,インコーポレイテッド Polysaccharide-elastomer masterbatch composition
JP2020532622A (en) * 2017-09-01 2020-11-12 デュポン・インダストリアル・バイオサイエンシーズ・ユーエスエイ・エルエルシー Latex composition containing polysaccharides
JP7295846B2 (en) 2017-09-01 2023-06-21 ニュートリション・アンド・バイオサイエンシーズ・ユーエスエー・フォー,インコーポレイテッド Latex composition containing polysaccharide
WO2019055397A1 (en) * 2017-09-13 2019-03-21 E. I. Du Pont De Nemours And Company Nonwoven webs comprising polysaccharides
US11591729B2 (en) 2017-09-13 2023-02-28 Nutrition & Biosciences USA 4, Inc. Nonwoven webs comprising polysaccharides
CN109505193A (en) * 2018-09-12 2019-03-22 华南理工大学 A kind of composite paper-plastic material water-soluble coating material and preparation method thereof that recyclable regenerative utilizes
WO2021030850A1 (en) * 2019-08-16 2021-02-25 Mondi Ag Transfer paper for dye sublimation printing processes, and method for producing transfer paper

Also Published As

Publication number Publication date
CA2998773C (en) 2022-05-03
AU2016347048A1 (en) 2018-04-12
RU2018119291A (en) 2019-11-29
CN108350660B (en) 2022-04-29
FI3368716T3 (en) 2023-02-22
US20200354895A1 (en) 2020-11-12
US10731297B2 (en) 2020-08-04
RU2018119291A3 (en) 2020-01-24
JP2019501044A (en) 2019-01-17
JP6975158B2 (en) 2021-12-01
EP3368716A1 (en) 2018-09-05
CA2998773A1 (en) 2017-05-04
US20180258590A1 (en) 2018-09-13
US11208765B2 (en) 2021-12-28
ES2937288T3 (en) 2023-03-27
EP3368716B1 (en) 2022-11-09
CN108350660A (en) 2018-07-31
KR20180074734A (en) 2018-07-03
AU2016347048B2 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
AU2016347048B2 (en) Water-insoluble alpha-(1,3->glucan) composition
US8092873B2 (en) Print medium for inkjet web press printing
EP3386745B1 (en) Barrier coatings
JP5570820B2 (en) Coating composition
US8449665B2 (en) Coating compositions including starch nanoparticles
US20100159164A1 (en) Inkjet printing paper
EP2493696A1 (en) Coated medium for inkjet printing
US10195888B2 (en) Print quality on thin coatings of cellulose nanocrystals
US20160075900A1 (en) Dextrin-based coating slips
US10272709B2 (en) Coated print media
US20050282026A1 (en) Porous coating compositions for printing applications
CN108349285B (en) Coated print media, printing systems, and methods of making coated print media
EP3458276B1 (en) Printable recording medium
NL2030551B1 (en) Printing primer composition for adjusting a substrate
JP6145182B2 (en) Print medium containing latex ink film-forming aid
Wild et al. A novel coating formulation for silica inkjet layer coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16788394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2998773

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016347048

Country of ref document: AU

Date of ref document: 20161024

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018541095

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187014311

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018119291

Country of ref document: RU