WO2017074048A1 - Light-transmissive substrate manufacturing method and light-transmissive substrate manufactured using same - Google Patents

Light-transmissive substrate manufacturing method and light-transmissive substrate manufactured using same Download PDF

Info

Publication number
WO2017074048A1
WO2017074048A1 PCT/KR2016/012137 KR2016012137W WO2017074048A1 WO 2017074048 A1 WO2017074048 A1 WO 2017074048A1 KR 2016012137 W KR2016012137 W KR 2016012137W WO 2017074048 A1 WO2017074048 A1 WO 2017074048A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent conductive
conductive layer
light
substrate
Prior art date
Application number
PCT/KR2016/012137
Other languages
French (fr)
Korean (ko)
Inventor
유영조
최윤수
Original Assignee
덕산하이메탈(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산하이메탈(주) filed Critical 덕산하이메탈(주)
Publication of WO2017074048A1 publication Critical patent/WO2017074048A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing a light-transmissive substrate and a light-transmissive substrate produced through the same.
  • the present invention also relates to a display device, a lighting device, and the like to which a translucent substrate is applied.
  • the light transmissive substrate is a substrate including a transparent conductive layer having both electrical conductivity and light transparency.
  • the light transmissive substrate provided in the light emitting device is configured to minimize the loss of generated light.
  • an organic light-emitting diode OLED
  • Such translucent substrates include liquid crystal displays, electrochromic displays (ECDs), organic electroluminescent devices, solar cells, plasma display panels, flexible displays, electronic papers, It can be applied to display devices such as touch panels, lighting devices, or solar cells.
  • the light transmissive substrate includes a base substrate and a light transmissive electrode that performs an electrode function of a light emitting element attached to the substrate.
  • the translucent electrode is mainly formed in a thin film form using a conductive material such as tin-doped indium oxide (ITO) on a base substrate made of plastic, but recently, carbon that can replace ITO containing indium, which is an unstable supply and demand, is used.
  • ITO tin-doped indium oxide
  • CNT nanotubes
  • metal nanostructures etc.
  • the present invention relates to a method of manufacturing a light-transmissive substrate including a first transparent conductive layer, a second transparent conductive layer, and a light extraction layer, and a light-transmissive substrate prepared through the same, and an organic light emitting device including the same.
  • a process for manufacturing a light transmissive substrate which is more simplified and reduced in cost.
  • the present invention provides a method of manufacturing a light-transmitting substrate comprising a first transparent conductive layer and a base polymer layer, comprising: a first step of preparing a release layer; Forming a first transparent conductive layer on the release layer; Forming a base polymer layer on the first transparent conductive layer; And a fourth step of separating the release layer from the first transparent conductive layer to obtain a light-transmissive substrate including a first transparent conductive layer and a base polymer layer.
  • the release layer provides a light-transmitting substrate manufacturing method comprising a substrate, a buffer substrate or a substrate including a buffer layer on one surface.
  • the fourth step provides a method of manufacturing a light-transmitting substrate, which is a step of separating the release layer from the first transparent conductive layer by changing the properties of materials constituting the release layer by irradiating light energy to the release layer.
  • the substrate provides a method of manufacturing a light-transmitting substrate including a polytetrafluoroetylene substrate or a bulk polymerized polymethyl methacrylate (PMMA) substrate.
  • a light-transmitting substrate including a polytetrafluoroetylene substrate or a bulk polymerized polymethyl methacrylate (PMMA) substrate.
  • the buffer substrate provides a light-transmitting substrate manufacturing method which is a substrate formed by containing a carbon compound containing fluorine (F).
  • the carbon compound containing fluorine (F) is methyltrifluoropropyl siloxane (Methyltrifluoropropyl siloxane), methylfluoro (Methylfluoro), C 8 F 17 C 2 H 4 Si (NH) 3/2 , C 4 F 9 provides a C 2 H 4 Si (NH) 3/2 and a poly siloxane Southern any one method of manufacturing a transparent substrate a carbon compound selected from the group consisting of (poly siloxazane).
  • the buffer layer is a layer formed using any one or more selected from the group consisting of a first carbon compound, a second carbon compound and a metal oxide, the first carbon compound has a glass transition temperature (Tg) of 200 °C or less It includes a carbon compound, the second carbon compound provides a method for producing a light-transmitting substrate comprising a carbon compound that is decomposed by ultraviolet light.
  • Tg glass transition temperature
  • the first carbon compound includes at least one selected from the group consisting of polycarbonate (PC), polymethyl methacrylate (PMMA), polytetrafluoroethylene (PTFE), polyvinylchloride (PVC), polystyrene (PS), and polyethyl methacrylate (PEMA).
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • PTFE polytetrafluoroethylene
  • PVC polyvinylchloride
  • PS polystyrene
  • PEMA polyethyl methacrylate
  • the second carbon compound is a light-transmitting substrate including any one or more selected from the group consisting of a metal ion polymer, a vinyl-ketone copolymer and an ethylene-CO copolymer. It provides a manufacturing method.
  • the metal oxide is a group consisting of yttrium oxide (Y 2 O 3 ), zirconia (ZrO 2 ), alumina (Al 2 O 3 ), boron nitride (BN), titanium nitride (TiN) and silicon oxide (SiO 2 ). It provides a light-transmissive substrate manufacturing method comprising any one or more selected from.
  • the first step also provides a method of manufacturing a light-transmissive substrate, which is a step of preparing a release layer having a concave or convex surface pattern formed thereon.
  • the first step provides a method of manufacturing a light-transmitting substrate, the method including forming a surface pattern on the surface of the release layer through a mask etching using an oxygen plasma or a wet etching using an etching solution.
  • the present invention provides a method of manufacturing a light-transmissive substrate comprising a first transparent conductive layer, a second transparent conductive layer and a base polymer layer, the first step of preparing a release layer; Forming a first transparent conductive layer on the release layer; Forming a second transparent conductive layer on the first transparent conductive layer, the second transparent conductive layer including a conductor and a polymer coating layer covering the conductor; Forming a base polymer layer on the second transparent conductive layer; And a fourth step of separating the release layer from the first transparent conductive layer to obtain a light-transmissive substrate including a first transparent conductive layer and a base polymer layer.
  • the present invention also provides a method of manufacturing a light-transmitting substrate comprising a first transparent conductive layer, a second transparent conductive layer, a light extraction layer and a base polymer layer, the first step of preparing a release layer; Forming a first transparent conductive layer on the release layer; Forming a second transparent conductive layer on the first transparent conductive layer, the second transparent conductive layer including a conductor and a polymer coating layer covering the conductor; Forming a light extraction layer on the second transparent conductive layer; Forming a base polymer layer on the light extraction layer; And a fourth step of separating the release layer from the first transparent conductive layer to obtain a light-transmissive substrate including a first transparent conductive layer and a base polymer layer.
  • a light-transmitting substrate manufacturing method further comprising a fifth step of removing the remaining release layer components by plasma treatment on the separated first transparent conductive layer.
  • the present invention can provide a process for manufacturing a light-transmissive substrate, which is simpler and less costly, by forming and separating the first transparent conductive layer, the base polymer layer, and the like on the release layer in the reverse order.
  • a flexible plastic substrate or a buffer layer a flexible light-transmissive substrate that can be used for a flexible substrate may be manufactured, and each step process may be continuously performed in a roll to roll method to increase productivity, reliability, and economic efficiency. .
  • the first transparent conductive layer having excellent flatness can be formed, and it can be detached from the substrate without complicated energy or high energy due to the characteristics of the material of the buffer layer.
  • the surface shape of the first transparent conductive layer of the finally transferred light-transmitting substrate may be controlled through the light-transmissive substrate manufacturing method according to an embodiment of the present invention.
  • the organic light emitting device is manufactured by stacking a light emitting layer and a reflective electrode on a light transmissive substrate including a first transparent conductive layer having a concave or convex surface pattern, the surface roughness is increased to increase the light emitting area and to extract light.
  • a light extraction layer is formed on the second transparent conductive layer, so that light extraction through light absorption and reflection is possible, and thus the second transparent conductive layer mainly having a function of a conductor can be complemented in terms of function.
  • the metal nanowires included in the transparent conductive layer have an effect of being impregnated or coated by the light extraction layer, thereby solving the problem of reliability degradation caused by sulfation and oxidation between the metal nanowires.
  • 1, 2, 4, 6 to 8, 14, and 15 illustrate a method of manufacturing a light transmissive substrate according to an embodiment of the present invention.
  • 3, 5, 9, 10, and 16 illustrate a light-transmissive substrate manufactured by a light-transmissive substrate manufacturing method according to an embodiment of the present invention.
  • 11 to 13 and 20 show a second transparent conductive layer according to an embodiment of the present invention.
  • FIG. 17 is a SEM image photograph of scattering particles inserted as a light extraction layer on a second transparent conductive layer according to an embodiment of the present invention.
  • FIG. 18 illustrates a roll-to-roll manufacturing method of a light transmissive substrate according to an embodiment of the present invention.
  • FIG 19 illustrates an organic light emitting diode according to another embodiment of the present invention.
  • 21 is a photograph visually showing the flexibility of the light-transmissive substrate prepared according to the embodiment of the present invention.
  • FIG. 22 illustrates a surface optical image photograph taken in the direction of the first transparent conductive layer of the light transmissive substrate manufactured according to the embodiment of the present invention.
  • FIG. 23 shows SEM images of the metal nanowires of the second transparent conductive layer prepared according to the embodiment of the present invention.
  • FIG. 24 illustrates a SEM image photograph in which the surface shape of the first transparent conductive layer of the light transmissive substrate manufactured according to the embodiment of the present invention is controlled by a wave pattern.
  • FIG. 25 and FIG. 26 show XRD measurement data of a light transmissive substrate prepared according to an embodiment of the present invention.
  • Figure 27 shows the component analysis data through the EDX of the light-transmissive substrate prepared according to an embodiment of the present invention.
  • FIG. 29 shows an AFM image of a translucent electrode having a shape of a wave pattern manufactured according to an embodiment of the present invention.
  • FIG 30 shows optical performance and electrical conductivity data according to the average thickness of the light extracting layer of the translucent electrode manufactured according to the embodiment of the present invention.
  • the first step of preparing the release layer 10 is performed by using the first transparent conductive layer 20 on the release layer 10.
  • Translucent substrate manufacturing method by forming the first transparent conductive layer 20, the base polymer layer 50 and the like on the release layer 10 in the reverse order and then separated, more simplified and costly A process for manufacturing the reduced light transmissive substrate 100 may be provided.
  • the first step of manufacturing the light-transmissive substrate 100 is to prepare a release layer 10 that is easily separated from the first transparent conductive layer 20, the release layer 10 is A substrate 11, a buffer substrate 12, or a substrate 13 including a buffer layer on one surface thereof is included.
  • the substrate 11 may be a Teflon (polytetrafluoroetylene) substrate, a bulk polymerized polymethyl methacrylate (PMMA) substrate, and when using a flexible substrate, a flexible light-transmissive substrate may be manufactured.
  • Teflon (polytetrafluoroetylene) substrate a bulk polymerized polymethyl methacrylate (PMMA) substrate
  • PMMA polymethyl methacrylate
  • Each step process can be made in a continuous roll-to-roll method to increase productivity, reliability, and economics.
  • the substrate itself may be used as the release layer 10 without providing a separate buffer layer.
  • the buffer substrate 12 may use a substrate containing a carbon compound containing fluorine (F), and the carbon compound containing fluorine (F) may be methyltrifluoropropyl siloxane or methylfluoro. ), and the like C 8 F 17 C 2 H 4 Si (NH) 3/2, C 4 F 9 C 2 H 4 Si (NH) 3/2 or a poly siloxane Southern (poly siloxazane). Especially, it is preferable that it is a board
  • the buffer layer is a layer formed using various kinds of carbon compounds or metal oxides, and includes a first carbon compound, a second carbon compound, and a metal oxide. It can be formed on the substrate using any one or more materials selected from the group consisting of.
  • the first carbon compound includes a carbon compound having a glass transition temperature (Tg) of 200 ° C. or less
  • the second carbon compound includes a carbon compound decomposed by ultraviolet rays
  • the metal oxide includes a metal oxide having low adhesion.
  • the first carbon compound is composed of PC (Polycarbonate), PMMA (Polymethyl methacrylate) PTFE (Polytetrafluoroethylene), Polyvinylchloride (PVC), Polystyrene (PS) and Polyethyl methacrylate (PEMA) among carbon compounds having a glass transition temperature (Tg) of 200 ° C or less. It is preferable to include any one or more selected from the group to be. More preferably, the use of a carbon compound having a glass transition temperature (Tg) of 100 to 150 ° C, polymethylmethacrylate (PMMA), or polytetrafluoroethylene (PTFE) may lower the surface adhesion at the buffer layer interface.
  • PC Polycarbonate
  • PMMA Polymethyl methacrylate
  • PTFE Polytetrafluoroethylene
  • PMMA Polymethyl methacrylate
  • PTFE Polytetrafluoroethylene
  • the buffer layer includes a first carbon compound having a glass transition temperature (Tg) of 200 ° C. or lower
  • the buffer layer may be separated in the fourth step, which will be described later, in the separation process of the release layer 10 and the first transparent conductive layer 20.
  • Tg glass transition temperature
  • the glass transition temperature exceeds 200 °C there is a problem that a relatively high temperature and time is required during curing.
  • materials with low glass transition temperature are suitable for process price and yield during roll-to-roll and continuous process.
  • the second carbon compound is at least one selected from the group consisting of a metal ion polymer, a vinyl-ketone copolymer, and an ethylene-CO copolymer among the carbon compounds decomposed by ultraviolet rays. It is preferable to include.
  • the buffer layer contains a second carbon compound decomposed by ultraviolet light
  • the first transparent conductivity can be easily achieved by a simple treatment. There is an advantage in that the layer 20 can be separated.
  • the metal oxide has an advantage of easy control of surface tension and surface energy by atoms substituted at the interface, and can be easily controlled by UV / ozone and plasma treatment. Accordingly, the adhesiveness and adhesiveness of the interface can be controlled and exhibits the property of easily transferring different materials.
  • Metal oxides are thermodynamically very stable materials up to 2000 ° C in almost all low-adhesive atmospheres.
  • the present invention is a concave or convex surface pattern on the surface of the first transparent conductive layer 20 through the release layer 10 including the substrate (11, 12, 13) patterned on the surface as shown in FIG. Can be formed.
  • the surface of the first transparent conductive layer of the transmissive substrate finally transferred through the fourth step of the method of manufacturing a translucent substrate by controlling the surface shape when the buffer layer is formed on the substrate 13.
  • the shape can be controlled. For example, when a wave pattern is formed in the buffer layer to stack and separate the first transparent conductive layer or the like, the wave pattern is transferred to the first transparent conductive layer.
  • the organic light emitting device When the organic light emitting device is manufactured by stacking a light emitting layer and a reflective electrode on a light transmissive substrate including a first transparent conductive layer 20 having a concave or convex surface pattern as shown in FIG. Is increased to increase the light emitting area, and can also provide an effect of increasing the luminous efficiency by acting as a light extraction.
  • a photoactive layer and a metal electrode on the light-transmissive substrate it is possible to increase the light receiving area of the sunlight, and also provide a light collecting role to provide an effect of improving the power generation efficiency.
  • a method of etching using a mask using atmospheric pressure and an oxygen plasma on the surface and a method of wet etching using a chemical solution are used.
  • the thickness of the buffer substrate and the buffer layer is preferably formed to 100nm to 10 ⁇ m.
  • the buffer layer is formed below 100 nm, there is a problem of unstable chemical corrosion resistance and surface uniformity, and when the buffer layer is formed above 10 ⁇ m, surface unevenness and curing time are prolonged, thereby causing a process problem. More preferably, it is 400 nm-600 nm.
  • the first step of manufacturing a light-transmissive substrate according to an embodiment of the present invention is a bar coating, a slot die coating, a spray coating on the substrate 13 using a buffer solution.
  • Buffer layer sheets are formed separately using a coating method such as spin coating, spin coating, or the like, or when the flexible substrate is used as the substrate 13, a coating and heat treatment method using a buffer solution in a roll-to-roll process
  • the buffer layer can be formed, and the surface shape can be adjusted.
  • Step 2-1 of manufacturing the light transmissive substrate according to an embodiment of the present invention is a step of forming the first transparent conductive layer 20 on the release layer 10, the first according to an embodiment of the present invention
  • the transparent conductive layer 20 is not limited as long as it is a transparent and conductive material, but a transparent conductive oxide layer, a transparent conductive nitride layer, a transparent conductive sulfide layer, and a mixed layer thereof having excellent transparency, conductivity, and heat resistance are used. It is good.
  • ZnO Zinc Oxide
  • SnO 2 Tin Oxide
  • TiO 2 Al 2 O 3
  • solid solution thereof wherein F, Al, Ga, In , Si or the like is preferably used to form the first transparent conductive layer 20.
  • the thickness of the first transparent conductive layer 20 is preferably formed in 5nm to 100nm. If the thickness is less than 5nm, there is a problem in that the crystallinity of the thin film is inferior, and if the thickness is formed over 100nm, there is a problem in that surface cracks occur when folding or bending due to a decrease in flexibility. More preferably, it is 5 nm-20 nm.
  • the first transparent conductive layer 20 is formed on the release layer 10 by using spin coating, or the flexible substrate.
  • spin coating or the flexible substrate.
  • the first transparent conductive layer 20 is formed on the release layer 10 by using spin coating, or the flexible substrate.
  • spin coating or the flexible substrate.
  • deposition may be formed through deposition on a roll-to-roll process (deposition), but is not limited thereto.
  • the second transparent conductive layer 30 is formed on the first transparent conductive layer 20.
  • a light transmissive substrate including a first transparent conductive layer 20, a second transparent conductive layer 30, and a base polymer layer 50 can be manufactured, and an organic light emitting device, etc.
  • an organic light emitting device etc.
  • the polymer coating layer 32 covering the conductor 31 and the conductor 31 after forming the first transparent conductive layer 20 on the release layer 10 is provided. Since the conductor 31 is connected to the first transparent conductive layer 20 by forming a second transparent conductive layer 30 including a) to prepare a light-transmissive substrate 100 having excellent electrical conductivity and even light scattering effect Process can be provided.
  • the second transparent conductive layer 30 includes a metal nanowire 311 or a metal mesh pattern 312 as the conductor 31.
  • the metal nanowire 311 refers to a nano-sized structure having electrical conductivity.
  • the average diameter of the metal nanowires 311 is 30 nm to 80 nm, and the length is preferably 10 ⁇ m to 80 ⁇ m. If it is less than the size range, there is a problem that the electrical conductivity is lowered, and if it exceeds, there is a problem that the light transmittance is lowered.
  • the metal mesh pattern 312 means a pattern in the form of a mesh of metal.
  • the second transparent conductive layer 30 is formed by forming a metal nanowire 311 or a metal mesh pattern 312 on the first transparent conductive layer 20 and then coating the polymer with a polymer. More specifically, when the metal nanowires 311 are included, the ink composition containing the metal nanowires is coated on the first transparent conductive layer 20, dried and cured, and then coated with a polymer to form a metal mesh. When the pattern 312 is included, the metal mesh pattern 312 may be formed by printing the metal on the first transparent conductive layer 20 using a metal paste or ink and then baking the same to form a metal mesh pattern 312. Can be.
  • the transparent substrate according to the present invention may include a second transparent conductive layer 30 between the first transparent conductive layer 20 and the base polymer layer 50 to compensate for the conductivity of the first transparent conductive layer 20.
  • a light extraction function it is possible to provide a light-transmissive substrate that can be excellently used not only for display but also for illumination.
  • the second transparent conductive layer 30 may further include metal particles 313 to increase light extraction efficiency.
  • the metal particles 313 have a size of 100 to 600 nm. If it is less than 100nm, there is a problem that the scattering characteristics are lowered, and if it exceeds 600nm there is a problem of transmittance loss.
  • the metal particles 313 are not limited in shape, such as spherical, elliptical, and amorphous, and may have protrusions on their outer surfaces. When the projections are provided on the outer surface, the projections have a size of 10 to 300 nm. If it is less than 10nm there is a problem of light scattering degradation, if it exceeds 300nm there is a problem of transmittance loss.
  • the second transparent conductive layer 30 includes the metal nanowires 311 and the metal particles 313, an ink composition including the metal nanowires and the metal particles is coated on the first transparent conductive layer 20.
  • the second transparent conductive layer 30 as shown in FIG. 11 may be formed by coating with a polymer.
  • the metal mesh pattern 312 is formed on the first transparent conductive layer 20, and the metal mesh pattern (
  • the ink composition containing the metal particles 313 is coated on the first transparent conductive layer 20 having the 312 formed thereon, dried and cured, and then coated with a polymer to form the second transparent conductive layer 30 as shown in FIG. 12. ) Can be formed.
  • the metal mesh pattern 312 may be first coated with a paste in which metal particles or metal oxide particles are dispersed, and then the entire layer including the first coated metal mesh pattern may be secondarily coated with a polymer.
  • the second transparent conductive layer 30 as shown in 13 can be formed.
  • pores may be optionally formed in the paste to impart light extraction efficiency due to a change in scattering angle due to pores.
  • Light extraction nanoparticles, light scattering particles refers to metal particles or metal oxide particles.
  • the metal mesh pattern 312 may be coated using a paste without including the metal particles 313, but may have a light extraction function. That is, the light extraction effect can be provided by coating in a shape having irregularities on the surface.
  • the metal of the metal nanowires 311, the metal mesh pattern 312, and the metal particles 313 included in the second transparent conductive layer 30 may be any conductive material. More typically, silver (Ag), gold (Au), copper (Cu), platinum (Pt), iron (Fe), nickel (Ni), cobalt (Co), zinc (Zn), titanium (Ti), chromium And those selected from the group consisting of (Cr), aluminum (Al), palladium (Pd), and combinations thereof. Preferably silver (Ag) is used.
  • Silver (Ag) reflects light as a metal and has a low transmittance, but corresponds to a reflective electrode (for example, an aluminum (Al) metal electrode) when the translucent substrate according to the present invention is used as a translucent electrode of an organic light emitting element. Because it reflects light to each other, it actually reduces the light loss inside the device.
  • a reflective electrode for example, an aluminum (Al) metal electrode
  • the thickness of the second transparent conductive layer 30 is 100 nm to 10 ⁇ m. If it is less than 100nm, there is a problem of lowering the conductivity, and if it exceeds 10 ⁇ m, there is a problem of loss of transmittance.
  • the metal particles may have projections on the outer surface to scatter light having a wider band.
  • the adhesion to the first transparent conductive layer 20 on which the second transparent conductive layer 30 is formed can be improved.
  • the second transparent conductive layer 30 may be a layer including a metal mesh pattern having various patterns and line widths.
  • the metal mesh pattern it is a layer formed by arranging orthogonally using silver (Ag), copper (Cu), aluminum (Al), alloy, and the like. Therefore, it can be formed in various patterns and line widths. For example, when used in an organic light emitting device for illumination, forming with a line width of 100 nm to 10 ⁇ m is preferable because it exhibits a haze value of about 2% to 15% and a transmittance of about 70 to 90%.
  • the second transparent conductive layer 30 is formed on the first transparent conductive layer 20 by using spin coating.
  • an ink composition including metal nanowires or metal particles may be coated and dried on a roll-to-roll process, but is not limited thereto.
  • the metal mesh pattern may be formed as the second transparent conductive layer by using photolithography.
  • the first transparent conductive layer 20 is formed on the buffer layer, the second transparent conductive layer 30 sequentially on the first transparent conductive layer 20.
  • the metal nanowires 311 and the metal particles 313 of the second transparent conductive layer 30 is located closer to the first transparent conductive layer 20 by gravity, thereby improving electrical conductivity and light extraction.
  • the light transmissive electrode which is excellent in efficiency can be provided.
  • the method of manufacturing the light transmissive electrode according to the embodiment of the present invention further includes a step 2-3 of manufacturing the light extraction layer 40 on the second transparent conductive layer 30 as shown in FIGS. 14 and 15.
  • the light transmissive substrate 100 including the first transparent conductive layer 20, the second transparent conductive layer 30, the light extraction layer 40, and the base polymer layer 50 may be manufactured.
  • the light extraction function is possible, and thus the second transparent conductive layer 30 having a function of a conductor can be complemented in terms of function, and the metal included in the second transparent conductive layer 30
  • the nanowires 311, the metal mesh pattern 312 or the metal particles 313 may be impregnated or coated by the light extraction layer 40, thereby providing the metal nanowires 311, the metal mesh pattern 312 or the metal particles. It is possible to solve the problem of deterioration in reliability caused by sulfidation and oxidation of 313.
  • the light extraction layer 40 may be a layer 41 coated with an oxide, nitride or sulfide of a metal formed on the second transparent conductive layer 30, and includes a layer in which scattering particles having an average diameter of 50 nm to 500 nm are inserted. 42). In addition, they may be a layer coated with oxides, nitrides, sulfides, etc. of the metals in which they are complex, and also scattering particles inserted therein.
  • FIG. 17 shows a SEM image photograph in which scattering particles are inserted as a light extraction layer on the second transparent conductive layer.
  • the light extraction layer 40 may be formed on the metal mesh pattern 312 formed as the second transparent conductive layer 30, in this case, coated with an oxide, nitride or sulfide of a metal or the average diameter of 50 to 500nm It may be a layer in which the scattering particles of oxides, nitrides or sulfides of the metal of the compound are inserted. They can also be formed into a composite layer.
  • the light extraction layer 40 may have a protrusion shape or a pattern shape, and the thickness thereof is 100 nm to 600 nm. If it is less than 100nm there is a problem of low light scattering effect, if it is more than 600nm there is a problem of light transmittance reduction. More preferably, it is 100-300 nm.
  • the light extraction layer 40 is formed on the second transparent conductive layer 30 using spin coating,
  • an ink composition including an oxide, a nitride, a sulfide, or a mixture of metals may be applied and heat-treated in a roll-to-roll process, but is not limited thereto.
  • a third step of manufacturing a light transmissive substrate according to an embodiment of the present invention is the base polymer layer 50 on the first transparent conductive layer 20, the second transparent conductive layer 30 or the light extraction layer 40
  • a step of forming a flexible light-transmitting substrate 100 can be manufactured through a roll-to-roll (roll to roll) process that is more simplified and reduced cost.
  • the base polymer layer 50 may be formed of polyimide (PI), polyethylene terephthalate (PET), polycarbonate (PC), polyether sulfone (PES), polyethylene naphthalate (PEN), poly acrylate (PA), polyurethane acrylate (PUA), and PDMS (PDMS). polydimethyl siloxane) and a metal thin film. It is preferable to form using PI which is excellent in chemical resistance, heat resistance, etc.
  • the base polymer layer 50 may have a thickness of 0.1 mm to 3 mm. In the case of forming less than 0.1mm, there is a problem in that the bearing capacity is low as a mother substrate, and in the case of forming more than 3mm, flexibility is reduced. More preferably, it is 0.2 mm-0.5 mm.
  • the third step of manufacturing a light-transmissive substrate according to an embodiment of the present invention is the step of laminating using a polymer solution or applying a polymer composition, followed by drying and curing or screen printing
  • the polymer composition may be formed by applying and heat-treating the polymer composition in a roll-to-roll process, but is not limited thereto.
  • a fourth step of manufacturing a light transmissive substrate is a step of detaching the release layer 10, and separating the release layer 10 from the first transparent conductive layer 20 (
  • the light-transmitting substrate 100 including the first transparent conductive layer 20 and the base polymer layer 50, the first transparent conductive layer 20, the second transparent conductive layer 30 and the base polymer layer 50 are transferred to each other.
  • a transparent substrate 100 including a transparent substrate 100, a first transparent conductive layer 20, a second transparent conductive layer 30, a light extraction layer 40 and a base polymer layer 50 To provide.
  • the first transparent conductive layer 20 is transferred to the surface of the first transparent conductive layer 20 in the same manner as the surface of the buffer layer. Since the shape is transferred, the surface shape of the manufactured light-transmissive substrate 100 can be controlled.
  • the buffer layer according to an embodiment of the present invention is a material such as the first carbon compound, the second carbon compound, the metal oxide mentioned above, that is, the carbon compound having a glass transition temperature of 200 ° C. or less, the carbon compound decomposed by ultraviolet rays, and the adhesiveness. Due to the low metal oxides, there is an advantage that it can be easily separated (transferred) without complicated processes or using a lot of energy.
  • a xenon lamp As a light source that can be used for the light irradiation treatment, a xenon lamp, a halogen lamp, a HID lamp, a fluorescent lamp, a gas discharge lamp including a mercury lamp, or the like can be used, and it is possible to change the properties by applying heat above the glass transition temperature of the buffer layer. Any heat source can be used without limitation.
  • the use of xenon lamps is good for local energy transfer to form the light extraction layer without damaging the transparent conductive oxide layer and other materials.
  • FIG. 18 illustrates a roll-to-roll manufacturing method of a light transmissive substrate according to an embodiment of the present invention.
  • the method of manufacturing a light-transmitting substrate according to an embodiment of the present invention may further include a fifth step of removing the release layer component remaining in the separated first transparent conductive layer after the fourth step.
  • the buffer layer remaining on the translucent substrate surface including the separated first transparent conductive layer 20 may be removed by washing or plasma treatment using chemicals such as acetone and ethanol.
  • the light emitting substrate 100 is formed as a light transmitting electrode according to the method of manufacturing a light transmitting substrate according to the embodiment of the present invention. 1 may be manufactured by sequentially stacking the organic light emitting layer 200 and the reflective electrode 300 on the transparent conductive layer 20.
  • the organic light emitting layer 200 is not particularly limited in specific materials and formation methods, and materials and formation methods well known in the art may be used, and deposition methods, solvent processes such as spin coating using various polymer materials. , Dip coating, doctor blading, screen printing, inkjet printing or thermal transfer.
  • the reflective electrode 300 may be formed by sputtering, e-beam evaporation, thermal evaporation, laser molecular beam epitaxy (L-MBE), and pulsed laser evaporation ( Pulsed Laser Deposition (PLD), any one of the physical vapor deposition (Physical Vapor Deposition, PVD); Thermal Chemical Vapor Deposition, Plasma-Enhanced Chemical Vapor Deposition (PECVD), Light Chemical Vapor Deposition, Laser Chemical Vapor Deposition, Metal- Chemical Vapor Deposition selected from any one of an Organic Chemical Vapor Deposition (MOCVD) and a Hydride Vapor Phase Epitaxy (HVPE); Alternatively, the layer may be formed using atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • the reflective electrode 300 may be formed of one or more selected from magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, platinum, gold, tungsten, tantalum, copper, silver, tin, and lead. have.
  • the light transmissive substrate 100 includes a base polymer layer 50, a second transparent conductive layer 30 provided on the base polymer layer, and a first transparent conductive layer provided on the second transparent conductive layer. Layer 20.
  • the second transparent conductive layer 30 includes a conductor 31 and a polymer coating layer 32 covering the conductor, and the second transparent conductive layer 30 includes the first transparent conductive layer ( When the half adjacent to 20) is called the A region and the half adjacent to the base polymer layer 50 is called the B region, 60% or more of the conductors 31 are distributed in the A region. In particular, the conductor 31 is more preferably distributed in 70% or 80% or more depending on the manufacturing characteristics of the second transparent conductive layer 30.
  • the conductor 31 includes a metal nanowire 311 or a metal mesh pattern 312.
  • the second transparent conductive layer 30 may further include metal particles 313 disposed adjacent to the first transparent conductive layer 20.
  • the metal particles 313 are distributed at least 50% in region A of the second transparent conductive layer. More preferably, it may be formed to be distributed in 60% or 70% or more according to the manufacturing characteristics of the second transparent conductive layer.
  • the polymer coating layer 32 covering the conductor 31 may be formed using polyimide (PI), polyethylene terephthalate (PET), polydimethylsiloxane (PDMS), resin for UV curing, resin for thermal curing, epoxy resin, or the like. have.
  • the conductor 31 may be coated using a resin for curing UV light.
  • the translucent substrate 100 according to the embodiment of the present invention may include the second transparent conductive layer 30 to compensate for the conductivity of the first transparent conductive layer 20. 1 Since it is disposed adjacent to the transparent conductive layer 20, it is possible to exhibit better characteristics of the auxiliary electrode. This is possible because the second transparent conductive layer 30 is formed on the first transparent conductive layer 20 by the method of manufacturing a transparent substrate according to the embodiment of the present invention.
  • the second transparent conductive layer 30 may be a layer in which the metal mesh pattern 312 is double coated with a polymer having a light extraction shape.
  • the metal mesh pattern 312 joined on the first transparent conductive layer 20 is coated with a polymer having a light extraction shape, for example, a shape having irregularities on the surface thereof, and then double coated with a polymer coating layer 32. 2 form a transparent conductive layer.
  • the second transparent conductive layer 30 may be a layer in which the metal mesh pattern is double coated with a polymer including light extraction particles. Therefore, the metal mesh pattern 312 joined on the first transparent conductive layer 20 is coated with a polymer including metal particles 313, and then double coated with a polymer coating layer 32 to form a second transparent conductive layer. do.
  • the first transparent conductive layer 20 included in the light transmissive substrate 100 may have a concave or convex surface pattern on the surface thereof.
  • Liquid crystal display electrochromic display (ECD), plasma display panel, flexible display, electronic paper, touch panel, etc., including a transparent substrate according to an embodiment of the present invention It is possible to provide a display device.
  • the light transmissive substrate according to an embodiment of the present invention can be used in an organic light emitting device or an organic solar cell. That is, the organic light emitting device may be provided by stacking the light emitting material layer 200 and the reflective metal layer 300 on the first transparent conductive layer 20 of the light transmissive substrate 100 of the present invention.
  • An organic solar cell may be provided by stacking electrode layers.
  • the second transparent conductive layer 30 of the light transmissive substrate includes a structure for extracting light, for example, a shape including light scattering or extracting light may be included, including metal particles.
  • a shape including light scattering or extracting light may be included, including metal particles.
  • it contains a polymer containing it can be suitably used as an organic light emitting device for illumination.
  • a buffer solution on a 0.6 mm glass substrate to form a buffer layer of 400 nm, forming a 10 nm transparent oxide layer by physical vapor deposition on the buffer layer, and a polymer including silver nanowires (Ag NW) on the transparent oxide.
  • the ink composition is applied, dried and cured at 80 to 150 ° C. for 5 to 10 minutes to form an AgNW layer of 200 nm or less.
  • a polyimide (PI) solution or a UV resin to form a polymer layer
  • a light-transmissive substrate was prepared by separating from the transparent oxide layer by changing (melting) the properties of the buffer layer using latent heat by light.
  • a 0.2 mm 3 mm substrate film was wound on a roller to provide a continuous roll to roll process.
  • the buffer layer solution was coated on the flexible substrate film, followed by heat treatment to form a sacrificial layer.
  • the first transparent conductive layer was deposited, the silver nanowires were deposited and coated, and then dried at high temperature to form a second transparent conductive layer.
  • Coating and heat treatment formed a base polymer layer.
  • the flexible substrate was separated by melting the buffer layer to continuously prepare a light-transmissive substrate. 18 shows a roll-to-roll manufacturing process of this example.
  • a 0.5 mm 3 mm substrate film was wound on a roller to provide a continuous roll to roll process.
  • a buffer layer having a wave pattern is formed by centrifugal force by solution coating. 2
  • a transparent conductive layer was formed, and a polymer or UV resin solution was coated and a base polymer layer was formed by UV treatment.
  • the flexible substrate was separated by melting the buffer layer using a xenon lamp to continuously manufacture a light-transmissive substrate.
  • the prepared light-transmitting substrate exhibited the same wave pattern as the surface shape of the buffer layer, and FIG. 18 shows a roll-to-roll manufacturing process of this example.
  • PI polyimide
  • 21 is a photograph visually showing the flexibility of the light-transmissive substrate prepared according to the embodiment of the present invention.
  • Figure 22 is a surface optical image photograph taken in the direction of the first transparent conductive layer of the light-transmissive substrate prepared according to the embodiment of the present invention
  • Figure 23 is a SEM image photograph of the metal nanowires of the second transparent conductive layer can be confirmed Indicated.
  • FIG. 24 shows a SEM image photograph in which the surface shape of the first transparent conductive layer of the light transmissive substrate manufactured by controlling the surface shape of the buffer layer is controlled by a wave pattern.
  • FIG. 25 shows XRD measurement data of a light transmissive substrate including a first transparent conductive layer, a second transparent conductive layer, and a base polymer layer, and has a peak of ITO and a peak of Ag.
  • FIG. 26 shows XRD measurement data of a light transmissive substrate including a first transparent conductive layer, a second transparent conductive layer, a light extraction layer, and a base polymer layer.
  • the peak of ITO, ZnO peak, Ag peak, and CH peak Has
  • Figure 27 shows the component analysis data through the EDX of the light-transmissive substrate prepared according to an embodiment of the present invention, it can be seen that the components such as Si, C, O, Zn, Ag, In, Sn.
  • FIG. 29 shows an AFM image of a translucent electrode shape-controlled by a wave pattern.
  • the electrical conductivity was measured by measuring the surface resistance of the flexible light-transmitting substrate having various light extraction layer thicknesses prepared in Examples. ) was measured using an ESP type probe having an inter-pin spacing of 5 mm. The measurement results are shown in Table 1 below, and Table 2 and FIG. 30 show optical performance and electrical conductivity data according to the average thickness of the light extraction layer.

Abstract

The present invention relates to a light-transmissive substrate manufacturing method comprising: a first step of preparing a release layer; a (2-1)th step of forming a first transparent conductive layer on the release layer; a third step of forming a base polymer layer on the first transparent conductive layer; and a fourth step of separating the release layer from the first transparent conductive layer, and the present invention can provide a process for manufacturing a more simplified and cost-saving light-transmissive substrate by forming the first transparent conductive layer, the base polymer layer, and the like on the release layer in reverse order and then separating the release layer therefrom, wherein when a flexible plastic substrate or buffer layer is used, a flexible light-transmissive substrate usable for a flexible substrate can be manufactured, and each of the steps continue by a roll-to-roll scheme, thereby enabling high productivity, reliability, and economic feasibility to be provided.

Description

투광성 기판의 제조방법 및 이를 통해 제조된 투광성 기판Method for manufacturing light-transmissive substrate and light-transmissive substrate manufactured
본 발명은 투광성 기판의 제조방법 및 이를 통해 제조된 투광성 기판에 관한 것이다. 또한 투광성 기판이 적용되는 디스플레이 장치, 조명 장치 등에 관한 것이다.The present invention relates to a method of manufacturing a light-transmissive substrate and a light-transmissive substrate produced through the same. The present invention also relates to a display device, a lighting device, and the like to which a translucent substrate is applied.
투광성 기판은 전기 전도성과 광투과성을 동시에 갖춘 투명 전도층을 포함하는 기판으로서, 발광소자에 구비되는 투광성 기판은 발생된 광의 손실을 최소화하도록 구성된다. 예를 들면, 유기발광소자(Organic light-emitting diode, OLED)는 발광성 유기물로 구성된 소자로서 유기 발광층에서 발광된 광은 전극 및 투광성 기판을 거쳐 외부로 나오게 된다. 이러한 투광성 기판은 액정 표시 소자(liquid crystal display), 일렉트로크로믹 디스플레이(ECD), 유기 전계발광소자(electroluminescence), 태양 전지, 플라즈마 디스플레이 패널(plasma display panel), 플렉서블(flexible) 디스플레이, 전자페이퍼, 터치패널 등의 디스플레이 장치, 조명장치, 또는 태양전지 등에 응용될 수 있다. The light transmissive substrate is a substrate including a transparent conductive layer having both electrical conductivity and light transparency. The light transmissive substrate provided in the light emitting device is configured to minimize the loss of generated light. For example, an organic light-emitting diode (OLED) is a device composed of luminescent organic materials, and light emitted from the organic luminescent layer is emitted to the outside via an electrode and a light transmissive substrate. Such translucent substrates include liquid crystal displays, electrochromic displays (ECDs), organic electroluminescent devices, solar cells, plasma display panels, flexible displays, electronic papers, It can be applied to display devices such as touch panels, lighting devices, or solar cells.
투광성 기판은 기저 기판과 기판에 부착되는 발광소자의 전극기능을 수행하는 투광성 전극을 포함하여 구성된다. 투광성 전극은 플라스틱 소재의 기저 기판 상에 ITO(tin-doped indium oxide) 등 전도성 물질을 이용하여 박막 형태로 형성 되는 것이 주 이지만, 최근 수급이 불안정한 재료인 인듐을 포함하는 ITO를 대체할 수 있는 탄소나노튜브(CNT), 금속 나노 구조체 등에 대한 연구 개발이 활발하게 이루어지고 있다. The light transmissive substrate includes a base substrate and a light transmissive electrode that performs an electrode function of a light emitting element attached to the substrate. The translucent electrode is mainly formed in a thin film form using a conductive material such as tin-doped indium oxide (ITO) on a base substrate made of plastic, but recently, carbon that can replace ITO containing indium, which is an unstable supply and demand, is used. Research and development on nanotubes (CNT), metal nanostructures, etc. are being actively made.
한국공개특허 제10-2014-0089670호에 개시된 것과 같이 다른 굴절률을 갖는 투광성 기판을 적층하는 방법으로 투광성 기판에서의 광 손실을 최소화하거나, 한국공개특허 제10-2014-0076268호 에 개시된 것과 같이 형상기억고분자를 이용하여 플렉서블 디스플레이에 응용하는 방법으로 투광성 기판의 유연성을 향상시키기 위한 개발 등이 이루어지고 있다. As described in Korean Patent Application Laid-Open No. 10-2014-0089670, a method of stacking transmissive substrates having different refractive indices is used to minimize light loss in the transparent substrate, or as disclosed in Korean Patent Publication No. 10-2014-0076268. As a method of applying to a flexible display using a memory polymer, development for improving the flexibility of a light-transmissive substrate is being made.
본 발명은 제1 투명전도층, 제2 투명전도층 및 광추출층을 포함하는 투광성 기판의 제조방법 및 이를 통해 제조된 투광성 기판과 이를 포함한 유기발광소자에 관한 것으로서, 이형층 상에 제1 투명전도층, 기저 폴리머층 등을 형성한 후 분리함으로써, 보다 단순화되고 비용이 절감된 투광성 기판을 제조하는 공정을 제공하는 것이다. The present invention relates to a method of manufacturing a light-transmissive substrate including a first transparent conductive layer, a second transparent conductive layer, and a light extraction layer, and a light-transmissive substrate prepared through the same, and an organic light emitting device including the same. By forming and separating the conductive layer, the base polymer layer, and the like, there is provided a process for manufacturing a light transmissive substrate which is more simplified and reduced in cost.
그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명은 제1 투명전도층 및 기저 폴리머층을 포함하는 투광성 기판 제조방법으로서, 이형층을 준비하는 제1 단계; 상기 이형층 상에 제1 투명전도층을 형성하는 제2-1 단계; 상기 제1 투명전도층 상에 기저 폴리머층을 형성하는 제3 단계; 및 상기 이형층을 상기 제1 투명전도층으로부터 분리하여 제1 투명전도층 및 기저 폴리머층을 포함하는 투광성 기판을 얻는 제4 단계;를 포함하는 투광성 기판 제조방법을 제공한다. The present invention provides a method of manufacturing a light-transmitting substrate comprising a first transparent conductive layer and a base polymer layer, comprising: a first step of preparing a release layer; Forming a first transparent conductive layer on the release layer; Forming a base polymer layer on the first transparent conductive layer; And a fourth step of separating the release layer from the first transparent conductive layer to obtain a light-transmissive substrate including a first transparent conductive layer and a base polymer layer.
또한 상기 이형층은 기판, 버퍼 기판 또는 일면에 버퍼층을 포함하는 기판을 포함하는 투광성 기판 제조방법을 제공한다.In addition, the release layer provides a light-transmitting substrate manufacturing method comprising a substrate, a buffer substrate or a substrate including a buffer layer on one surface.
또한 상기 제4 단계는 상기 이형층에 광 에너지를 조사하여 상기 이형층을 이루는 물질의 성상을 변화시켜 상기 이형층을 상기 제1 투명전도층으로부터 분리하는 단계인 투광성 기판 제조방법을 제공한다.In addition, the fourth step provides a method of manufacturing a light-transmitting substrate, which is a step of separating the release layer from the first transparent conductive layer by changing the properties of materials constituting the release layer by irradiating light energy to the release layer.
또한 상기 기판은 테플론(polytetrafluoroetylene) 기판 또는 벌크중합(Bulk polymerization)된 폴리메틸메타크릴레이트(polymethyl methacrylate, PMMA) 기판을 포함하는 투광성 기판 제조방법을 제공한다.In addition, the substrate provides a method of manufacturing a light-transmitting substrate including a polytetrafluoroetylene substrate or a bulk polymerized polymethyl methacrylate (PMMA) substrate.
또한 상기 버퍼 기판은 불소(F)를 포함하는 탄소화합물을 포함하여 형성된 기판인 투광성 기판 제조방법을 제공한다.In addition, the buffer substrate provides a light-transmitting substrate manufacturing method which is a substrate formed by containing a carbon compound containing fluorine (F).
또한 상기 불소(F) 포함하는 탄소화합물은 메틸트리플루오로프로필 실록세인(Methyltrifluoropropyl siloxane), 메틸플루오로(Methylfluoro), C8F17C2H4Si(NH)3/2, C4F9C2H4Si(NH)3 / 2및 폴리 실록사잔(poly siloxazane)으로 구성되는 군에서 선택되는 어느 하나의 탄소화합물인 투광성 기판 제조방법을 제공한다.In addition, the carbon compound containing fluorine (F) is methyltrifluoropropyl siloxane (Methyltrifluoropropyl siloxane), methylfluoro (Methylfluoro), C 8 F 17 C 2 H 4 Si (NH) 3/2 , C 4 F 9 provides a C 2 H 4 Si (NH) 3/2 and a poly siloxane Southern any one method of manufacturing a transparent substrate a carbon compound selected from the group consisting of (poly siloxazane).
또한 상기 버퍼층은 제1 탄소화합물, 제2 탄소화합물 및 금속산화물로 구성되는 군에서 선택되는 어느 하나 이상을 사용하여 형성되는 층이고, 상기 제1 탄소화합물은 유리전이온도(Tg)가 200℃ 이하인 탄소화합물을 포함하며, 상기 제2 탄소화합물은 자외선에 의해 분해되는 탄소화합물을 포함하는 투광성 기판 제조방법을 제공한다.In addition, the buffer layer is a layer formed using any one or more selected from the group consisting of a first carbon compound, a second carbon compound and a metal oxide, the first carbon compound has a glass transition temperature (Tg) of 200 ℃ or less It includes a carbon compound, the second carbon compound provides a method for producing a light-transmitting substrate comprising a carbon compound that is decomposed by ultraviolet light.
또한 상기 제1 탄소화합물은 PC(Polycarbonate), PMMA(Polymethyl methacrylate) PTFE(Polytetrafluoroethylene), Polyvinylchloride(PVC), Polystyrene(PS) 및 Polyethyl methacrylate(PEMA)로 구성되는 군에서 선택되는 어느 하나 이상을 포함하는 투광성 기판 제조방법을 제공한다.In addition, the first carbon compound includes at least one selected from the group consisting of polycarbonate (PC), polymethyl methacrylate (PMMA), polytetrafluoroethylene (PTFE), polyvinylchloride (PVC), polystyrene (PS), and polyethyl methacrylate (PEMA). Provided is a method for manufacturing a light transmissive substrate.
*또한 상기 제2 탄소화합물은 금속이온계 폴리머, 비닐-케톤(Vinyl-ketone)계 공중합물 및 에틸렌-CO(Ethylene-CO) 공중합체로 구성되는 군에서 선택되는 어느 하나 이상을 포함하는 투광성 기판 제조방법을 제공한다.In addition, the second carbon compound is a light-transmitting substrate including any one or more selected from the group consisting of a metal ion polymer, a vinyl-ketone copolymer and an ethylene-CO copolymer. It provides a manufacturing method.
또한 상기 금속 산화물은 산화 이트륨(Y2O3), 지르코니아(ZrO2), 알루미나(Al2O3), 질화붕소(BN), 질화티타늄(TiN) 및 실리콘산화물(SiO2)로 구성되는 군에서 선택되는 어느 하나 이상을 포함하는 투광성 기판 제조방법을 제공한다.In addition, the metal oxide is a group consisting of yttrium oxide (Y 2 O 3 ), zirconia (ZrO 2 ), alumina (Al 2 O 3 ), boron nitride (BN), titanium nitride (TiN) and silicon oxide (SiO 2 ). It provides a light-transmissive substrate manufacturing method comprising any one or more selected from.
또한 상기 제1 단계는 오목 또는 볼록한 형상의 표면패턴이 형성된 이형층을 준비하는 단계인 투광성 기판 제조방법을 제공한다.The first step also provides a method of manufacturing a light-transmissive substrate, which is a step of preparing a release layer having a concave or convex surface pattern formed thereon.
또한 상기 제1 단계는 상기 이형층의 표면에 산소 플라즈마를 이용한 마스크 에칭 또는 에칭용액을 이용한 습식 에칭을 통하여 표면패턴을 형성하는 단계를 포함하는 단계인 투광성 기판 제조방법을 제공한다.In addition, the first step provides a method of manufacturing a light-transmitting substrate, the method including forming a surface pattern on the surface of the release layer through a mask etching using an oxygen plasma or a wet etching using an etching solution.
또한 본 발명은 제1 투명전도층, 제2 투명전도층 및 기저 폴리머층을 포함하는 투광성 기판 제조방법으로서, 이형층을 준비하는 제1 단계; 상기 이형층 상에 제1 투명전도층을 형성하는 제2-1 단계; 상기 제1 투명전도층 상에 도전체 및 상기 도전체를 피복하는 폴리머피복층을 포함하는 제2 투명전도층을 형성하는 제2-2 단계; 상기 제2 투명전도층 상에 기저 폴리머층을 형성하는 제3 단계; 및 상기 이형층을 상기 제1 투명전도층으로부터 분리하여 제1 투명전도층 및 기저 폴리머층을 포함하는 투광성 기판을 얻는 제4 단계;를 포함하는 투광성 기판 제조방법을 제공한다.In another aspect, the present invention provides a method of manufacturing a light-transmissive substrate comprising a first transparent conductive layer, a second transparent conductive layer and a base polymer layer, the first step of preparing a release layer; Forming a first transparent conductive layer on the release layer; Forming a second transparent conductive layer on the first transparent conductive layer, the second transparent conductive layer including a conductor and a polymer coating layer covering the conductor; Forming a base polymer layer on the second transparent conductive layer; And a fourth step of separating the release layer from the first transparent conductive layer to obtain a light-transmissive substrate including a first transparent conductive layer and a base polymer layer.
또한 본 발명은 제1 투명전도층, 제2 투명전도층, 광추출층 및 기저 폴리머층을 포함하는 투광성 기판 제조방법으로서, 이형층을 준비하는 제1 단계; 상기 이형층 상에 제1 투명전도층을 형성하는 제2-1 단계; 상기 제1 투명전도층 상에 도전체 및 상기 도전체를 피복하는 폴리머피복층을 포함하는 제2 투명전도층을 형성하는 제2-2 단계; 상기 제2 투명전도층 상에 광추출층을 형성하는 제2-3 단계; 상기 광추출층 상에 기저 폴리머층을 형성하는 제3 단계; 및 상기 이형층을 상기 제1 투명전도층으로부터 분리하여 제1 투명전도층 및 기저 폴리머층을 포함하는 투광성 기판을 얻는 제4 단계;를 포함하는 투광성 기판 제조방법을 제공한다. The present invention also provides a method of manufacturing a light-transmitting substrate comprising a first transparent conductive layer, a second transparent conductive layer, a light extraction layer and a base polymer layer, the first step of preparing a release layer; Forming a first transparent conductive layer on the release layer; Forming a second transparent conductive layer on the first transparent conductive layer, the second transparent conductive layer including a conductor and a polymer coating layer covering the conductor; Forming a light extraction layer on the second transparent conductive layer; Forming a base polymer layer on the light extraction layer; And a fourth step of separating the release layer from the first transparent conductive layer to obtain a light-transmissive substrate including a first transparent conductive layer and a base polymer layer.
또한 상기 제4 단계 이후에, 상기 분리된 제1 투명전도층에 플라즈마 처리하여 잔존하는 이형층 성분을 제거하는 제5 단계를 더 포함하는 투광성 기판 제조방법을 제공한다. In addition, after the fourth step, there is provided a light-transmitting substrate manufacturing method further comprising a fifth step of removing the remaining release layer components by plasma treatment on the separated first transparent conductive layer.
본 발명은 이형층 상에 제1 투명전도층, 기저 폴리머층 등을 역순으로 형성한 후 분리함으로써, 보다 단순화되고 비용이 절감된 투광성 기판을 제조하는 공정을 제공할 수 있다. 이때 플렉서블한 플라스틱 기판 또는 버퍼층을 사용하는 경우 유연기판에 사용 가능한 플렉서블 투광성 기판을 제조할 수 있으며, 각 단계 공정은 롤투롤(Roll to Roll) 방식으로 연속적으로 이루어져 생산성, 신뢰성, 경제성을 높일 수 있다. The present invention can provide a process for manufacturing a light-transmissive substrate, which is simpler and less costly, by forming and separating the first transparent conductive layer, the base polymer layer, and the like on the release layer in the reverse order. In this case, when a flexible plastic substrate or a buffer layer is used, a flexible light-transmissive substrate that can be used for a flexible substrate may be manufactured, and each step process may be continuously performed in a roll to roll method to increase productivity, reliability, and economic efficiency. .
또한 이형층 상에 제1 투명전도층을 형성함으로써 평탄도가 우수한 제1 투명전도층을 형성하고, 버퍼층을 이루는 물질의 특성상 복잡한 공정을 거치거나 많은 에너지를 들이지 않고도 기판으로부터 분리(detach)가 가능하여, 보다 단순화되고 제조 비용이 절감되는 투광성 기판을 제조하는 공정을 제공할 수 있다. Also, by forming the first transparent conductive layer on the release layer, the first transparent conductive layer having excellent flatness can be formed, and it can be detached from the substrate without complicated energy or high energy due to the characteristics of the material of the buffer layer. Thus, it is possible to provide a process for manufacturing a light-transmissive substrate that is more simplified and the manufacturing cost is reduced.
또한 이형층 형성 시 표면 형상을 제어하여 본 발명의 일실시예에 따른 투광성 기판 제조방법을 통해 최종적으로 전사된 투광성 기판의 제1 투명전도층의 표면 형상을 제어할 수 있다. 오목 또는 볼록한 형상의 표면패턴이 구비되는 제1 투명전도층을 포함하는 투광성 기판상에 발광층 및 반사 전극을 적층하여 유기발광소자를 제조하는 경우, 표면 조도가 높아져 발광면적을 높여 주고, 또한 광추출 역할을 하여 발광효율을 높여 주는 효과를 제공할 수 있고, 이 투광성 기판 상에 광활성층 및 금속 전극을 적층하여 유기태양전지를 제조하는 경우, 태양광의 수광면적을 높여주고, 또한 광포집 역할을 하여 발전효율을 높여 주는 효과를 제공할 수 있다. In addition, by controlling the surface shape when forming the release layer, the surface shape of the first transparent conductive layer of the finally transferred light-transmitting substrate may be controlled through the light-transmissive substrate manufacturing method according to an embodiment of the present invention. When the organic light emitting device is manufactured by stacking a light emitting layer and a reflective electrode on a light transmissive substrate including a first transparent conductive layer having a concave or convex surface pattern, the surface roughness is increased to increase the light emitting area and to extract light. It can provide the effect of improving the luminous efficiency by the role, when the organic solar cell is manufactured by stacking a photoactive layer and a metal electrode on the light-transmissive substrate, increases the light receiving area of the sunlight, and also acts as a light collection It can provide the effect of improving the power generation efficiency.
또한 제1 투명전도층 상에 순차적으로 제2 투명전도층을 형성시킴으로써, 제2 투명전도층의 금속 나노와이어가 제1 투명전도층에 더욱 인접하여 위치하기 때문에 전기 전도성 향상된 투광성 기판 및 이를 포함하는 유기발광소자를 제조하는 공정을 제공할 수 있다.In addition, by sequentially forming a second transparent conductive layer on the first transparent conductive layer, since the metal nanowires of the second transparent conductive layer is located more adjacent to the first transparent conductive layer, an electrically conductive improved light-transmitting substrate and comprising the same It is possible to provide a process for manufacturing an organic light emitting device.
또한 제2 투명전도층 상에 광추출층을 형성하는 단계를 포함하여 광흡수 및 반사를 통한 광추출이 가능하여 주로 전도체의 기능을 갖는 제2 투명전도층을 기능적 측면에서 보완 가능하며, 제2 투명전도층에 포함되는 금속 나노와이어가 광추출층에 의해 함침 또는 코팅되는 효과가 있어 금속 나노와이어 간의 황화 및 산화로 일어나는 신뢰성 저하의 문제점을 해결할 수 있다. In addition, a light extraction layer is formed on the second transparent conductive layer, so that light extraction through light absorption and reflection is possible, and thus the second transparent conductive layer mainly having a function of a conductor can be complemented in terms of function. The metal nanowires included in the transparent conductive layer have an effect of being impregnated or coated by the light extraction layer, thereby solving the problem of reliability degradation caused by sulfation and oxidation between the metal nanowires.
도 1, 도 2, 도 4, 도 6 내지 도 8, 도 14, 도 15 에 본 발명의 일실시예에 따른 투광성 기판 제조방법을 나타내었다. 1, 2, 4, 6 to 8, 14, and 15 illustrate a method of manufacturing a light transmissive substrate according to an embodiment of the present invention.
도 3, 도 5, 도 9, 도 10, 도 16 에 본 발명의 일실시예에 따른 투광성 기판 제조방법에 의해 제조된 투광성 기판을 나타내었다. 3, 5, 9, 10, and 16 illustrate a light-transmissive substrate manufactured by a light-transmissive substrate manufacturing method according to an embodiment of the present invention.
도 11 내지 13, 도 20에 본 발명의 일실시예에 따른 제2 투명전도층을 나타내었다. 11 to 13 and 20 show a second transparent conductive layer according to an embodiment of the present invention.
도 17에 본 발명의 일실시예에 따른 제2 투명전도층 상에 광추출층으로서 산란 입자가 삽입된 SEM 이미지 사진을 나타내었다.FIG. 17 is a SEM image photograph of scattering particles inserted as a light extraction layer on a second transparent conductive layer according to an embodiment of the present invention.
도 18에 본 발명의 일실시예에 따른 투광성 기판의 롤투롤 방식 제조방법을 나타내었다. 18 illustrates a roll-to-roll manufacturing method of a light transmissive substrate according to an embodiment of the present invention.
도 19에 본 발명의 또 다른 일실시예에 따른 유기발광소자를 나타내었다. 19 illustrates an organic light emitting diode according to another embodiment of the present invention.
도 21에 본 발명의 실시예에 따라 제조된 투광성 기판의 유연성을 시각적으로 나타내는 사진을 도시하였다. 21 is a photograph visually showing the flexibility of the light-transmissive substrate prepared according to the embodiment of the present invention.
도 22에 본 발명의 실시예에 따라 제조된 투광성 기판의 제1 투명전도층 방향에서 촬영한 표면 광학 이미지 사진을 나타내었다.22 illustrates a surface optical image photograph taken in the direction of the first transparent conductive layer of the light transmissive substrate manufactured according to the embodiment of the present invention.
도 23에 본 발명의 실시예에 따라 제조된 제2 투명전도층의 금속 나노와이어를 확인 가능한 SEM 이미지 사진을 나타내었다.FIG. 23 shows SEM images of the metal nanowires of the second transparent conductive layer prepared according to the embodiment of the present invention.
도 24에 본 발명의 실시예에 따라 제조된 투광성 기판의 제1 투명전도층의 표면 형상이 물결 무늬로 제어된 SEM 이미지 사진을 나타내었다.24 illustrates a SEM image photograph in which the surface shape of the first transparent conductive layer of the light transmissive substrate manufactured according to the embodiment of the present invention is controlled by a wave pattern.
도 25, 도 26에 본 발명의 실시예에 따라 제조된 투광성 기판의 XRD 측정 데이터를 나타내었다.FIG. 25 and FIG. 26 show XRD measurement data of a light transmissive substrate prepared according to an embodiment of the present invention.
도 27에 본 발명의 일실시예에 따라 제조된 투광성 기판의 EDX 를 통한 성분분석 데이터를 나타내었다.Figure 27 shows the component analysis data through the EDX of the light-transmissive substrate prepared according to an embodiment of the present invention.
도 28에 본 발명의 일실시예에 따라 제조된 투광성 기판의 제1 투명전도층의 표면 AFM profile을 나타내었다.28 illustrates the surface AFM profile of the first transparent conductive layer of the light transmissive substrate prepared according to the embodiment of the present invention.
도 29에 본 발명의 일실시예에 따라 제조된 물결무늬로 형상제어된 투광성 전극의 AFM 이미지를 나타내었다.29 shows an AFM image of a translucent electrode having a shape of a wave pattern manufactured according to an embodiment of the present invention.
도 30에 본 발명의 일실시예에 따라 제조된 투광성 전극의 광추출층의 평균 두께에 따른 광학적 성능 및 전기전도성 데이터를 나타내었다.30 shows optical performance and electrical conductivity data according to the average thickness of the light extracting layer of the translucent electrode manufactured according to the embodiment of the present invention.
이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.Prior to describing the present invention in detail below, it is understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the invention, which is limited only by the scope of the appended claims. shall. All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise indicated.
본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.Throughout this specification and claims, unless otherwise indicated, the termcomprise, constitutes, and configure means to include the referenced article, step, or group of articles, and step, and any other article It is not intended to exclude a stage or group of things or groups of stages.
또한 본 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Also throughout this specification, when a member is located “on” another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다. On the other hand, various embodiments of the present invention can be combined with any other embodiment unless clearly indicated to the contrary. Any feature indicated as particularly preferred or advantageous may be combined with any other feature and features indicated as preferred or advantageous. Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention and the effects thereof.
본 발명의 일실시예에 따른 투광성 기판 제조방법은 도 1 및 도 2에 나타낸 것과 같이 이형층(10)을 준비하는 제1 단계, 이형층(10) 상에 제1 투명전도층(20)을 형성하는 제2-1 단계, 제2 투명전도층(30) 상에 기저 폴리머층(50)을 형성하는 제3 단계 및 이형층(10)과 제1 투명전도층(20)을 분리하는 제4 단계를 포함하여, 도 3에 나타낸 것과 같은 기저 폴리머층(50) 및 기저 폴리머층(50) 상에 구비되는 제1 투명전도층(20)을 포함하는 투광성 기판(100)을 제조할 수 있다. In the method of manufacturing a light-transmissive substrate according to an embodiment of the present invention, as shown in FIGS. 1 and 2, the first step of preparing the release layer 10 is performed by using the first transparent conductive layer 20 on the release layer 10. Step 2-1 to form, the third step of forming the base polymer layer 50 on the second transparent conductive layer 30 and the fourth step of separating the release layer 10 and the first transparent conductive layer 20 Including the step, the light-transmissive substrate 100 including the base polymer layer 50 and the first transparent conductive layer 20 provided on the base polymer layer 50 as shown in FIG. 3 may be manufactured.
본 발명의 일실시예에 따른 투광성 기판 제조방법은 이형층(10) 상에 제1 투명전도층(20), 기저 폴리머층(50) 등을 역순으로 형성한 후 분리함으로써, 보다 단순화되고 비용이 절감된 투광성 기판(100)을 제조하는 공정을 제공할 수 있다. Translucent substrate manufacturing method according to an embodiment of the present invention by forming the first transparent conductive layer 20, the base polymer layer 50 and the like on the release layer 10 in the reverse order and then separated, more simplified and costly A process for manufacturing the reduced light transmissive substrate 100 may be provided.
본 발명의 일실시예에 따른 투광성 기판(100)을 제조하는 제1 단계는 제1 투명전도층(20)과의 분리가 용이한 이형층(10)을 준비하는 것으로서, 이형층(10)은 기판(11), 버퍼 기판(12), 또는 일면에 버퍼층을 포함하는 기판(13)을 포함한다. The first step of manufacturing the light-transmissive substrate 100 according to an embodiment of the present invention is to prepare a release layer 10 that is easily separated from the first transparent conductive layer 20, the release layer 10 is A substrate 11, a buffer substrate 12, or a substrate 13 including a buffer layer on one surface thereof is included.
기판(11)은 테플론(polytetrafluoroetylene) 기판, 벌크중합(Bulk polymerization)된 폴리메틸메타크릴레이트(polymethyl methacrylate, PMMA) 기판을 이용할 수 있으며, 플렉서블한 기판을 사용하는 경우, 플렉서블한 투광성 기판을 제조할 수 있으며, 각 단계 공정은 롤투롤(Roll to Roll) 방식으로 연속적으로 이루어져 생산성, 신뢰성, 경제성을 높일 수 있다. 또한 테플론(polytetrafluoroetylene) 기판을 이용하는 경우 별도의 버퍼층을 구비하지 않고 기판 자체로써 이형층(10)으로 사용될 수 있다. The substrate 11 may be a Teflon (polytetrafluoroetylene) substrate, a bulk polymerized polymethyl methacrylate (PMMA) substrate, and when using a flexible substrate, a flexible light-transmissive substrate may be manufactured. Each step process can be made in a continuous roll-to-roll method to increase productivity, reliability, and economics. In addition, in the case of using a polytetrafluoroetylene substrate, the substrate itself may be used as the release layer 10 without providing a separate buffer layer.
버퍼 기판(12)은 불소(F)가 포함된 탄소화합물을 포함하는 기판을 이용할 수 있으며, 불소(F) 포함하는 탄소화합물은 메틸트리플루오로프로필 실록세인(Methyltrifluoropropyl siloxane), 메틸플루오로(Methylfluoro), C8F17C2H4Si(NH)3/2, C4F9C2H4Si(NH)3 /2 또는 폴리 실록사잔(poly siloxazane) 등을 포함한다. 그 중에서도 테트라플루오르에틸렌(Tetrafluoroetylene)을 포함하는 기판인 것이 바람직하다. The buffer substrate 12 may use a substrate containing a carbon compound containing fluorine (F), and the carbon compound containing fluorine (F) may be methyltrifluoropropyl siloxane or methylfluoro. ), and the like C 8 F 17 C 2 H 4 Si (NH) 3/2, C 4 F 9 C 2 H 4 Si (NH) 3/2 or a poly siloxane Southern (poly siloxazane). Especially, it is preferable that it is a board | substrate containing tetrafluoroethylene.
일면에 버퍼층을 포함하는 기판(13)을 이형층(10)으로 사용하는 경우, 버퍼층은 다양한 종류의 탄소화합물 또는 금속산화물을 이용하여 형성된 층으로서, 제1 탄소화합물, 제2 탄소화합물 및 금속산화물로 구성되는 군에서 선택되는 어느 하나 이상의 물질을 사용하여 기판 상에 형성될 수 있다. 제1 탄소화합물은 유리전이온도(Tg)가 200℃ 이하인 탄소화합물을 포함하며, 제2 탄소화합물은 자외선에 의해 분해되는 탄소화합물을 포함하고, 금속산화물은 점착성이 낮은 금속산화물을 포함한다. When the substrate 13 including the buffer layer on one surface is used as the release layer 10, the buffer layer is a layer formed using various kinds of carbon compounds or metal oxides, and includes a first carbon compound, a second carbon compound, and a metal oxide. It can be formed on the substrate using any one or more materials selected from the group consisting of. The first carbon compound includes a carbon compound having a glass transition temperature (Tg) of 200 ° C. or less, the second carbon compound includes a carbon compound decomposed by ultraviolet rays, and the metal oxide includes a metal oxide having low adhesion.
제1 탄소화합물은 유리전이온도(Tg)가 200℃ 이하인 탄소화합물 중에서도 PC(Polycarbonate), PMMA(Polymethyl methacrylate) PTFE(Polytetrafluoroethylene), Polyvinylchloride(PVC), Polystyrene(PS) 및 Polyethyl methacrylate(PEMA) 로 구성되는 군에서 선택되는 어느 하나 이상을 포함하는 것이 바람직하다. 더욱 바람직하게는 유리전이온도(Tg)가 100 내지 150 ℃인 탄소화합물, PMMA(Polymethylmethacrylate), PTFE(Polytetrafluoroethylene)를 사용하는 것이 버퍼층 계면에서의 표면 점착성이 낮아 좋다. The first carbon compound is composed of PC (Polycarbonate), PMMA (Polymethyl methacrylate) PTFE (Polytetrafluoroethylene), Polyvinylchloride (PVC), Polystyrene (PS) and Polyethyl methacrylate (PEMA) among carbon compounds having a glass transition temperature (Tg) of 200 ° C or less. It is preferable to include any one or more selected from the group to be. More preferably, the use of a carbon compound having a glass transition temperature (Tg) of 100 to 150 ° C, polymethylmethacrylate (PMMA), or polytetrafluoroethylene (PTFE) may lower the surface adhesion at the buffer layer interface.
버퍼층이 유리전이온도(Glass transition temperature, Tg)가 200℃ 이하인 제1 탄소화합물을 포함함으로써 후술할 제4 단계에서 이형층(10)과 제1 투명전도층(20)의 분리 공정에 있어서 버퍼층의 성질 및 형상을 변화시키기에 좋다. 유리전이온도가 200℃를 초과하는 경우 상대적으로 경화 시 높은 온도와 시간이 요구되는 문제점이 있다. 또한 롤투롤 및 연속공정 진행 시, 공정가격 및 수율을 위해 낮은 유리전이온도를 가지는 재료가 적합하다. Since the buffer layer includes a first carbon compound having a glass transition temperature (Tg) of 200 ° C. or lower, the buffer layer may be separated in the fourth step, which will be described later, in the separation process of the release layer 10 and the first transparent conductive layer 20. Good for changing properties and shapes. If the glass transition temperature exceeds 200 ℃ there is a problem that a relatively high temperature and time is required during curing. In addition, materials with low glass transition temperature are suitable for process price and yield during roll-to-roll and continuous process.
제2 탄소화합물은 자외선에 의해 분해되는 탄소화합물 중에서도 금속이온계 폴리머, 비닐-케톤(Vinyl-ketone)계 공중합물 및 에틸렌-CO(Ethylene-CO) 공중합체로 구성되는 군에서 선택되는 어느 하나 이상을 포함하는 것이 바람직하다. The second carbon compound is at least one selected from the group consisting of a metal ion polymer, a vinyl-ketone copolymer, and an ethylene-CO copolymer among the carbon compounds decomposed by ultraviolet rays. It is preferable to include.
버퍼층이 자외선에 의해 분해되는 제2 탄소화합물을 포함함으로써 후술할 제4 단계에서 이형층(10)과 제1 투명전도층(20)의 분리 공정에 있어서, 간단한 처리에 의해서도 용이하게 제1 투명전도층(20)을 분리할 수 있는 장점이 있다. In the separation process of the release layer 10 and the first transparent conductive layer 20 in the fourth step, which will be described later, the buffer layer contains a second carbon compound decomposed by ultraviolet light, the first transparent conductivity can be easily achieved by a simple treatment. There is an advantage in that the layer 20 can be separated.
금속산화물은 계면에 치환된 원자에 의해 표면장력 및 표면에너지의 컨트롤이 용이하며, 자외선/오존(UV/ozone), 플라즈마 처리(Plasma treatment) 방법에 의해 쉽게 컨트롤 할 수 있는 장점이 있다. 그에 따라, 계면의 점착성 및 접착성을 조절할 수 있고 이종재료를 쉽게 전사할 수 있는 특성을 나타낸다.The metal oxide has an advantage of easy control of surface tension and surface energy by atoms substituted at the interface, and can be easily controlled by UV / ozone and plasma treatment. Accordingly, the adhesiveness and adhesiveness of the interface can be controlled and exhibits the property of easily transferring different materials.
금속산화물은 점착성이 낮은 거의 모든 분위기에서 2000℃에 이르기까지 열역학적으로 매우 높은 안정성을 가지는 물질로 산화 이트륨(Y2O3), 지르코니아(ZrO2), 알루미나(Al2O3), 질화붕소(BN), 질화티타늄(TiN) 및 실리콘산화물(SiO2)로 구성되는 군에서 선택되는 어느 하나 이상을 포함하는 것이 바람직하다.Metal oxides are thermodynamically very stable materials up to 2000 ° C in almost all low-adhesive atmospheres. Yttrium oxide (Y 2 O 3 ), zirconia (ZrO 2 ), alumina (Al 2 O 3 ), and boron nitride ( It is preferable to include any one or more selected from the group consisting of BN), titanium nitride (TiN) and silicon oxide (SiO 2 ).
또한 본 발명은 도 4에 나타낸 것과 같이 표면에 패턴이 형성된 기판(11, 12, 13)을 포함하는 이형층(10) 통해 제1 투명전도층(20)의 표면에 오목 또는 볼록한 형상의 표면패턴을 형성할 수 있다. 예를 들어, 기판(13) 상에 버퍼층 형성 시 표면 형상을 제어하여 본 발명의 일실시예에 따른 투광성 기판 제조방법의 제4 단계를 통해 최종적으로 전사된 투광성 기판의 제1 투명전도층의 표면 형상을 제어할 수 있다. 예를 들어, 버퍼층에 물결무늬를 형성하여 제1 투명전도층 등을 적층하고 분리시키면, 제1 투명전도층에 물결무늬가 전사된다. In addition, the present invention is a concave or convex surface pattern on the surface of the first transparent conductive layer 20 through the release layer 10 including the substrate (11, 12, 13) patterned on the surface as shown in FIG. Can be formed. For example, the surface of the first transparent conductive layer of the transmissive substrate finally transferred through the fourth step of the method of manufacturing a translucent substrate by controlling the surface shape when the buffer layer is formed on the substrate 13. The shape can be controlled. For example, when a wave pattern is formed in the buffer layer to stack and separate the first transparent conductive layer or the like, the wave pattern is transferred to the first transparent conductive layer.
도 5에 나타낸 것과 같이 표면에 오목 또는 볼록한 형상의 표면패턴을 구비하는 제1 투명전도층(20)을 포함하는 투광성 기판상에 발광층 및 반사 전극을 적층하여 유기발광소자를 제조하는 경우, 표면 조도가 높아져 발광면적을 높여 주고, 또한 광추출 역할을 하여 발광효율을 높여 주는 효과를 제공할 수 있다. 또한 이 투광성 기판 상에 광활성층 및 금속 전극을 적층하여 유기태양전지를 제조하는 경우, 태양광의 수광면적을 높여주고, 또한 광포집 역할을 하여 발전효율을 높여 주는 효과를 제공할 수 있다. When the organic light emitting device is manufactured by stacking a light emitting layer and a reflective electrode on a light transmissive substrate including a first transparent conductive layer 20 having a concave or convex surface pattern as shown in FIG. Is increased to increase the light emitting area, and can also provide an effect of increasing the luminous efficiency by acting as a light extraction. In addition, when manufacturing an organic solar cell by stacking a photoactive layer and a metal electrode on the light-transmissive substrate, it is possible to increase the light receiving area of the sunlight, and also provide a light collecting role to provide an effect of improving the power generation efficiency.
기판 또는 버퍼층에 요철을 형성하는 방법으로는, 표면에 대기압 및 산소 플라즈마를 이용하여 마스크를 사용하여 에칭하는 방법과 화학용액을 이용하여 습식 에칭하는 방법을 사용한다.As a method of forming the irregularities on the substrate or the buffer layer, a method of etching using a mask using atmospheric pressure and an oxygen plasma on the surface and a method of wet etching using a chemical solution are used.
버퍼 기판 및 버퍼층의 두께는 100nm 내지 10μm로 형성하는 것이 좋다. 100nm 미만으로 버퍼층을 형성하는 경우 화학적 내식성 및 표면 균일도가 불안정한 문제점이 있으며, 10μm 초과하여 버퍼층을 형성하는 경우 표면 요철 및 경화시간이 연장되어 공정상 문제점이 있다. 더욱 바람직하게는 400nm 내지 600nm인 것이 좋다. The thickness of the buffer substrate and the buffer layer is preferably formed to 100nm to 10μm. When the buffer layer is formed below 100 nm, there is a problem of unstable chemical corrosion resistance and surface uniformity, and when the buffer layer is formed above 10 μm, surface unevenness and curing time are prolonged, thereby causing a process problem. More preferably, it is 400 nm-600 nm.
본 발명의 일실시예에 따른 투광성 기판을 제조하는 제1 단계는 버퍼 용액을 이용하여 기판(13)상에 바 코팅(bar coating), 슬롯다이 코팅(slot die coating), 스프레이 코팅(spray coating), 스핀 코팅(spin coating) 등의 코팅 방식을 이용하여 버퍼층 시트를 별도로 형성하여 기판 상에 접착시키거나, 기판(13)으로 플렉서블 기판을 사용하는 경우 롤투롤 공정 상에서 버퍼 용액을 이용한 코팅 및 열처리 방식으로 버퍼층을 형성할 수 있고, 표면 형상을 조절할 수 있다.The first step of manufacturing a light-transmissive substrate according to an embodiment of the present invention is a bar coating, a slot die coating, a spray coating on the substrate 13 using a buffer solution. Buffer layer sheets are formed separately using a coating method such as spin coating, spin coating, or the like, or when the flexible substrate is used as the substrate 13, a coating and heat treatment method using a buffer solution in a roll-to-roll process The buffer layer can be formed, and the surface shape can be adjusted.
본 발명의 일실시예에 따른 투광성 기판을 제조하는 제2-1 단계는 이형층(10) 상에 제1 투명전도층(20)을 형성하는 단계로서, 본 발명의 일실시예에 따른 제1 투명전도층(20)은 투명하고 전도성을 부여할 수 있는 물질이라면 제한이 없으나, 투명성, 전도성 및 내열성 등이 우수한 투명 전도성 산화물층, 투명 전도성 질화물층, 투명 전도성 황화물층 및 이들의 혼합층을 사용하는 것이 좋다. 바람직하게는 ZnO(Zinc Oxide), SnO2(Tin Oxide), TiO2, Al2O3 및 이들의 고용체에서 선택되는 어느 하나 이상을 사용하여 형성될 수 있으며, 여기에 F, Al, Ga, In, Si 등이 도핑 또는 고용된 것을 사용하여 제1 투명전도층(20)을 형성하는 것이 좋다.Step 2-1 of manufacturing the light transmissive substrate according to an embodiment of the present invention is a step of forming the first transparent conductive layer 20 on the release layer 10, the first according to an embodiment of the present invention The transparent conductive layer 20 is not limited as long as it is a transparent and conductive material, but a transparent conductive oxide layer, a transparent conductive nitride layer, a transparent conductive sulfide layer, and a mixed layer thereof having excellent transparency, conductivity, and heat resistance are used. It is good. Preferably it may be formed using any one or more selected from ZnO (Zinc Oxide), SnO 2 (Tin Oxide), TiO 2 , Al 2 O 3 and a solid solution thereof, wherein F, Al, Ga, In , Si or the like is preferably used to form the first transparent conductive layer 20.
제1 투명전도층(20)의 두께는 5nm 내지 100nm로 형성하는 것이 좋다. 5nm 미만으로 형성하는 경우 박막의 결정성이 떨어지는 문제점이 있으며, 100nm를 초과하여 형성하는 경우 유연성(Flexibility)의 저하로 접거나 휠 때 표면 크랙이 발생하는 문제점이 있다. 더욱 바람직하게는 5nm 내지 20nm인 것이 좋다.The thickness of the first transparent conductive layer 20 is preferably formed in 5nm to 100nm. If the thickness is less than 5nm, there is a problem in that the crystallinity of the thin film is inferior, and if the thickness is formed over 100nm, there is a problem in that surface cracks occur when folding or bending due to a decrease in flexibility. More preferably, it is 5 nm-20 nm.
본 발명의 일실시예에 따른 투광성 기판을 제조하는 제2-1 단계는 스핀 코팅(spin coating)을 이용하여 상기 이형층(10) 상에 제1 투명전도층(20)을 형성하거나, 플렉서블 기판을 사용하는 경우 롤투롤 공정 상에서 증착(Deposition)을 통해 형성할 수 있으나 이에 제한되는 것은 아니다.In the second step of manufacturing the light transmissive substrate according to the embodiment of the present invention, the first transparent conductive layer 20 is formed on the release layer 10 by using spin coating, or the flexible substrate. When using may be formed through deposition on a roll-to-roll process (deposition), but is not limited thereto.
본 발명의 일실시예에 따른 투광성 기판 제조방법은 도 6 내지 도 8에 나타낸 것과 같이 제1 투명전도층(20) 상에 제2 투명전도층(30)을 형성하는 제2-2 단계를 더 포함하여 도 9 및 도 10에 나타낸 것과 같이 제1 투명전도층(20), 제2 투명전도층(30) 및 기저 폴리머층(50)을 포함하는 투광성 기판을 제조할 수 있으며, 유기발광소자 등의 투광성 전극으로 사용될 경우 전기전도성 향상 및 광 산란 효과를 갖는다. In the method of manufacturing a light-transmitting substrate according to the embodiment of the present invention, as shown in FIGS. 6 to 8, the second transparent conductive layer 30 is formed on the first transparent conductive layer 20. 9 and 10, a light transmissive substrate including a first transparent conductive layer 20, a second transparent conductive layer 30, and a base polymer layer 50 can be manufactured, and an organic light emitting device, etc. When used as a light-transmitting electrode of the electrical conductivity and light scattering effect.
본 발명의 일실시예에 따른 투광성 기판 제조방법은 이형층(10) 상에 제1 투명전도층(20)을 형성한 후 도전체(31) 및 도전체(31)를 피복하는 폴리머피복층(32)을 포함하는 제2 투명전도층(30)을 형성함으로써 제1 투명전도층(20)에 도전체(31)가 연접하기 때문에 우수한 전기전도성 및 광 산란 효과까지 갖는 투광성 기판(100)을 제조하는 공정을 제공할 수 있다.In the method of manufacturing a light-transmissive substrate according to an embodiment of the present invention, the polymer coating layer 32 covering the conductor 31 and the conductor 31 after forming the first transparent conductive layer 20 on the release layer 10 is provided. Since the conductor 31 is connected to the first transparent conductive layer 20 by forming a second transparent conductive layer 30 including a) to prepare a light-transmissive substrate 100 having excellent electrical conductivity and even light scattering effect Process can be provided.
제2 투명전도층(30)은 도전체(31)로서 금속 나노와이어(311) 또는 메탈 메쉬 패턴(312)을 포함한다. 금속 나노와이어(311)는 전기적으로 도전성을 갖는 나노 사이즈의 구조체를 의미한다. 금속 나노와이어(311) 평균직경은 30nm 내지 80nm 이며, 길이는 10μm 내지 80μm 인 것을 사용하는 것이 좋다. 상기 크기 범위에 미만 하는 경우 전기전도도가 저하되는 문제점이 있고, 초과하는 경우 투광성이 저하되는 문제점이 있다. 메탈 메쉬 패턴(312)은 금속으로 된 그물망 형태의 패턴을 의미한다.The second transparent conductive layer 30 includes a metal nanowire 311 or a metal mesh pattern 312 as the conductor 31. The metal nanowire 311 refers to a nano-sized structure having electrical conductivity. The average diameter of the metal nanowires 311 is 30 nm to 80 nm, and the length is preferably 10 μm to 80 μm. If it is less than the size range, there is a problem that the electrical conductivity is lowered, and if it exceeds, there is a problem that the light transmittance is lowered. The metal mesh pattern 312 means a pattern in the form of a mesh of metal.
제2 투명전도층(30)은 제1 투명전도층(20) 상에 금속 나노와이어(311)나 메탈 메쉬 패턴(312)를 형성한 후 폴리머로 피복함으로써 형성된다. 더욱 구체적으로 금속 나노와이어(311)를 포함하는 경우, 금속 나노와이어가 포함된 잉크 조성물을 제1 투명전도층(20) 상에 도포하고 건조 및 경화시킨 후, 폴리머로 피복하여 형성하고, 메탈 메쉬 패턴(312)을 포함하는 경우, 제1 투명전도층(20) 상에 금속 페이스트 또는 잉크를 이용하여 메쉬 형태로 인쇄한 후 소성하여 메탈 메쉬 패턴(312)을 형성한 후 폴리머로 피복하여 형성할 수 있다. The second transparent conductive layer 30 is formed by forming a metal nanowire 311 or a metal mesh pattern 312 on the first transparent conductive layer 20 and then coating the polymer with a polymer. More specifically, when the metal nanowires 311 are included, the ink composition containing the metal nanowires is coated on the first transparent conductive layer 20, dried and cured, and then coated with a polymer to form a metal mesh. When the pattern 312 is included, the metal mesh pattern 312 may be formed by printing the metal on the first transparent conductive layer 20 using a metal paste or ink and then baking the same to form a metal mesh pattern 312. Can be.
본 발명에 따른 투광성 기판은 제1 투명전도층(20)과 기저 폴리머층(50) 사이에 제2 투명전도층(30)을 포함하여 제1 투명전도층(20)의 전도성을 보완할 수 있고, 광 추출 기능을 가짐으로써 디스플레이용뿐만 아니라 조명용으로도 우수하게 사용될 수 있는 투광성 기판을 제공할 수 있다.The transparent substrate according to the present invention may include a second transparent conductive layer 30 between the first transparent conductive layer 20 and the base polymer layer 50 to compensate for the conductivity of the first transparent conductive layer 20. By having a light extraction function, it is possible to provide a light-transmissive substrate that can be excellently used not only for display but also for illumination.
또한 제2 투명전도층(30)은 금속 입자(313)를 더 포함하여 광추출 효율을 높일 수 있다. 금속 입자(313)의 크기는 100 내지 600nm이다. 100nm 미만인 경우 산란특성이 저하되는 문제점이 있고, 600nm 초과하는 경우 투과율 손실의 문제점이 있다. 금속 입자(313)는 구형, 타원형, 무정형 등 그 형태에 제한이 없으며, 외면에 돌기를 구비할 수 있다. 외면에 돌기를 구비하는 경우 돌기의 크기는 10 내지 300nm이다. 10nm 미만인 경우 광 산란 저하 문제점이 있고, 300nm 초과하는 경우 투과율 손실 문제점이 있다. In addition, the second transparent conductive layer 30 may further include metal particles 313 to increase light extraction efficiency. The metal particles 313 have a size of 100 to 600 nm. If it is less than 100nm, there is a problem that the scattering characteristics are lowered, and if it exceeds 600nm there is a problem of transmittance loss. The metal particles 313 are not limited in shape, such as spherical, elliptical, and amorphous, and may have protrusions on their outer surfaces. When the projections are provided on the outer surface, the projections have a size of 10 to 300 nm. If it is less than 10nm there is a problem of light scattering degradation, if it exceeds 300nm there is a problem of transmittance loss.
제2 투명전도층(30)이 금속 나노와이어(311) 및 금속 입자(313)를 포함하는 경우, 금속 나노와이어 및 금속 입자가 포함된 잉크 조성물을 제1 투명전도층(20) 상에 도포하고 건조 및 경화시킨 후, 폴리머로 피복하여 도 11에 나타낸 것과 같은 제2 투명전도층(30)을 형성할 수 있다. When the second transparent conductive layer 30 includes the metal nanowires 311 and the metal particles 313, an ink composition including the metal nanowires and the metal particles is coated on the first transparent conductive layer 20. After drying and curing, the second transparent conductive layer 30 as shown in FIG. 11 may be formed by coating with a polymer.
제2 투명전도층(30)이 메탈 메쉬 패턴(312) 및 금속 입자(313)를 포함하는 경우, 제1 투명전도층(20) 상에 메탈 메쉬 패턴(312)을 형성하고, 메탈 메쉬 패턴(312)이 형성된 제1 투명전도층(20) 상에 금속 입자(313)가 포함된 잉크 조성물을 도포하고 건조 및 경화시킨 후, 폴리머로 피복하여 도 12에 나타낸 것과 같은 제2 투명전도층(30)을 형성할 수 있다. When the second transparent conductive layer 30 includes the metal mesh pattern 312 and the metal particles 313, the metal mesh pattern 312 is formed on the first transparent conductive layer 20, and the metal mesh pattern ( The ink composition containing the metal particles 313 is coated on the first transparent conductive layer 20 having the 312 formed thereon, dried and cured, and then coated with a polymer to form the second transparent conductive layer 30 as shown in FIG. 12. ) Can be formed.
*또는 금속 입자 또는 금속 산화물 입자가 분산된 페이스트를 이용하여 메탈 메쉬 패턴(312) 부분을 1차 피복한 후, 1차 피복된 메탈 메쉬 패턴을 포함하는 층 전체를 폴리머로 다시 2차 피복하여 도 13에 나타낸 것과 같은 제2 투명전도층(30)을 형성할 수 있다. 또한 메탈 메쉬 패턴(312)에 피복 시, 임의적으로 페이스트에 기공을 형성하여 기공에 의한 산란각 변화로 광추출 효율을 부여할 수 있다. 또, 페이스트에 임의의 광추출 나노파티클을 삽입하여 메탈 메쉬 패턴(312) 주위에 광산란 입자들을 배치 함으로써, 내부 산란에 의한 광추출 효율을 증가시키는 방법이 가능하다. 광추출 나노파티클, 광산란 입자는 금속 입자 또는 금속 산화물 입자를 의미한다. Alternatively, the metal mesh pattern 312 may be first coated with a paste in which metal particles or metal oxide particles are dispersed, and then the entire layer including the first coated metal mesh pattern may be secondarily coated with a polymer. The second transparent conductive layer 30 as shown in 13 can be formed. In addition, when the metal mesh pattern 312 is coated, pores may be optionally formed in the paste to impart light extraction efficiency due to a change in scattering angle due to pores. In addition, by inserting the light extraction nanoparticles into the paste to place the light scattering particles around the metal mesh pattern 312, it is possible to increase the light extraction efficiency by the internal scattering. Light extraction nanoparticles, light scattering particles refers to metal particles or metal oxide particles.
제2 투명전도층(30)이 메탈 메쉬 패턴(312)를 포함하는 경우, 금속 입자(313)를 포함하지 않고도 페이스트를 이용하여 메탈 메쉬 패턴(312)을 피복하되, 광추출 기능이 가능한 형상, 즉 표면에 요철을 갖는 형상으로 피복함으로써 광추출 효과를 제공할 수 있다. When the second transparent conductive layer 30 includes the metal mesh pattern 312, the metal mesh pattern 312 may be coated using a paste without including the metal particles 313, but may have a light extraction function. That is, the light extraction effect can be provided by coating in a shape having irregularities on the surface.
또한, 제논광을 이용하여 메탈 메쉬 패턴(312) 표면에 금속산화물을 이용하여 선택적으로 코팅하여, ZnO, TiO2, SiO2, SnO2, Al2O3 등 다양한 산화물을 피복함으로써 광추출 효과를 제공할 수 있다. In addition, by selectively coating the surface of the metal mesh pattern 312 using a metal oxide using xenon light, ZnO, TiO 2 , SiO 2 , SnO 2 , Al 2 O 3 It is possible to provide a light extraction effect by coating various oxides.
제2 투명전도층(30)에 포함되는 금속 나노와이어(311)와 메탈 메쉬 패턴(312), 금속 입자(313)의 금속은 임의의 도전성 물질일 수 있다. 보다 통상적으로, 은(Ag), 금(Au), 구리(Cu), 백금(Pt), 철(Fe), 니켈(Ni), 코발트(Co), 아연(Zn), 티탄(Ti), 크롬(Cr), 알루미늄(Al), 팔라듐(Pd) 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것이나 이에 제한되지 않는다. 바람직하게는 은(Ag)을 사용한다. 은(Ag)의 경우 금속으로서 빛을 반사시키고, 투과율이 낮지만 본 발명에 따른 투광성 기판이 유기발광소자의 투광성 전극으로 사용되는 경우 반사 전극(예를 들면, 알루미늄(Al) 금속 전극)과 상응하여 서로 빛을 반사하므로 실제로 소자 내부에서의 광손실을 적게 하기 때문이다.The metal of the metal nanowires 311, the metal mesh pattern 312, and the metal particles 313 included in the second transparent conductive layer 30 may be any conductive material. More typically, silver (Ag), gold (Au), copper (Cu), platinum (Pt), iron (Fe), nickel (Ni), cobalt (Co), zinc (Zn), titanium (Ti), chromium And those selected from the group consisting of (Cr), aluminum (Al), palladium (Pd), and combinations thereof. Preferably silver (Ag) is used. Silver (Ag) reflects light as a metal and has a low transmittance, but corresponds to a reflective electrode (for example, an aluminum (Al) metal electrode) when the translucent substrate according to the present invention is used as a translucent electrode of an organic light emitting element. Because it reflects light to each other, it actually reduces the light loss inside the device.
제2 투명전도층(30)의 두께는 100nm 내지 10μm 이다. 100nm 미만인 경우 전기전도도 저하 문제점이 있고, 10μm 초과하는 경우 투과율 손실 문제점이 있다. 금속 나노와이어 및 금속 입자의 표면에 빛이 도달하면 금속 나노와이어 및 금속입자를 통해 빛을 산란시킬 수 있으므로 유기발광소자의 투광성 전극으로 사용되는 경우, 광 추출 효율을 높일 수 있다. 특히 금속 입자는 외면에 돌기를 구비하여 더 넓은 영역대를 가지는 파장의 빛을 산란시킬 수 있다. 또한 제2 투명전도층(30)이 형성되는 제1 투명전도층(20)과의 접합성을 높일 수 있다. The thickness of the second transparent conductive layer 30 is 100 nm to 10 μm. If it is less than 100nm, there is a problem of lowering the conductivity, and if it exceeds 10μm, there is a problem of loss of transmittance. When light reaches the surface of the metal nanowires and metal particles, the light may be scattered through the metal nanowires and the metal particles, so that when used as a light transmitting electrode of the organic light emitting device, the light extraction efficiency may be increased. In particular, the metal particles may have projections on the outer surface to scatter light having a wider band. In addition, the adhesion to the first transparent conductive layer 20 on which the second transparent conductive layer 30 is formed can be improved.
또한 제2 투명전도층(30)은 다양한 패턴 및 선폭을 갖는 메탈 메쉬(metal mesh) 패턴을 포함하는 층 일 수 있다. 메탈 메쉬 패턴을 포함하는 경우 은(Ag), 구리(Cu), 알루미늄(Al), 합금 등을 이용하여 직교형식으로 배열 형성한 층이며, 이용되는 장치에 따른 적절한 헤이즈값 및 시인성 등의 요구에 따라 다양한 패턴 및 선폭으로 형성될 수 있다. 예를 들어, 조명용의 유기발광소자에 사용되는 경우 100nm 내지 10μm의 선폭으로 형성하는 것이, 2% 내지 15% 정도의 헤이즈값 및 70 내지 90% 정도의 투과율을 나타내기 때문에 바람직하다. In addition, the second transparent conductive layer 30 may be a layer including a metal mesh pattern having various patterns and line widths. In the case of including the metal mesh pattern, it is a layer formed by arranging orthogonally using silver (Ag), copper (Cu), aluminum (Al), alloy, and the like. Therefore, it can be formed in various patterns and line widths. For example, when used in an organic light emitting device for illumination, forming with a line width of 100 nm to 10 μm is preferable because it exhibits a haze value of about 2% to 15% and a transmittance of about 70 to 90%.
본 발명의 일실시예에 따른 투광성 기판을 제조하는 제2-2 단계는 스핀 코팅(spin coating)을 이용하여 상기 제1 투명전도층(20) 상에 제2 투명전도층(30)을 형성하거나, 플렉서블 기판을 사용하는 경우 롤투롤 공정 상에서 금속 나노와이어 또는 금속 입자를 포함하는 잉크 조성물을 도포하고 건조하여 형성할 수 있으나 이에 제한되는 것은 아니다. 또한 포토리소그래피(photolithography) 등을 이용하여 제2 투명전도층으로서 메탈 메쉬 패턴을 형성할 수 있다. In the second step of manufacturing the light transmissive substrate according to the embodiment of the present invention, the second transparent conductive layer 30 is formed on the first transparent conductive layer 20 by using spin coating. In the case of using a flexible substrate, an ink composition including metal nanowires or metal particles may be coated and dried on a roll-to-roll process, but is not limited thereto. In addition, the metal mesh pattern may be formed as the second transparent conductive layer by using photolithography.
본 발명의 일실시예에 따른 투광성 기판 제조방법에 의하면, 버퍼층 상에 제1 투명전도층(20)이 형성되고, 제1 투명전도층(20) 상에 순차적으로 제2 투명전도층(30)을 형성시킴으로써, 제2 투명전도층(30)의 금속 나노와이어(311) 및 금속 입자(313)가 중력에 의해 제1 투명전도층(20)에 더욱 인접하여 위치하기 때문에 전기 전도성 향상 및 광 추출 효율이 우수한 투광성 전극을 제공할 수 있다. According to the method of manufacturing a light transmissive substrate according to an embodiment of the present invention, the first transparent conductive layer 20 is formed on the buffer layer, the second transparent conductive layer 30 sequentially on the first transparent conductive layer 20. By forming the metal nanowires 311 and the metal particles 313 of the second transparent conductive layer 30 is located closer to the first transparent conductive layer 20 by gravity, thereby improving electrical conductivity and light extraction. The light transmissive electrode which is excellent in efficiency can be provided.
본 발명의 일실시예에 따른 투광성 전극 제조방법은 도 14 및 도 15에 나타낸 것과 같이 제2 투명전도층(30) 상에 광추출층(40)을 제조하는 제2-3 단계를 더 포함하여 도 16에 나타낸 것과 같이 제1 투명전도층(20), 제2 투명전도층(30), 광추출층(40) 및 기저 폴리머층(50)을 포함하는 투광성 기판(100)을 제조할 수 있으며, 유기발광소자의 투광성 기판 등에 사용될 경우 광추출 기능이 가능하여 주로 전도체의 기능을 갖는 제2 투명전도층(30)을 기능적 측면에서 보완 가능하며, 제2 투명전도층(30)에 포함되는 금속 나노와이어(311), 메탈 메쉬 패턴(312) 또는 금속 입자(313)가 광추출층(40)에 의해 함침 또는 코팅되는 효과가 있어 금속 나노와이어(311), 메탈 메쉬 패턴(312) 또는 금속 입자(313) 간의 황화 및 산화로 일어나는 신뢰성 저하의 문제점을 해결할 수 있다.The method of manufacturing the light transmissive electrode according to the embodiment of the present invention further includes a step 2-3 of manufacturing the light extraction layer 40 on the second transparent conductive layer 30 as shown in FIGS. 14 and 15. As shown in FIG. 16, the light transmissive substrate 100 including the first transparent conductive layer 20, the second transparent conductive layer 30, the light extraction layer 40, and the base polymer layer 50 may be manufactured. When used in a light-transmitting substrate of an organic light emitting device, the light extraction function is possible, and thus the second transparent conductive layer 30 having a function of a conductor can be complemented in terms of function, and the metal included in the second transparent conductive layer 30 The nanowires 311, the metal mesh pattern 312 or the metal particles 313 may be impregnated or coated by the light extraction layer 40, thereby providing the metal nanowires 311, the metal mesh pattern 312 or the metal particles. It is possible to solve the problem of deterioration in reliability caused by sulfidation and oxidation of 313.
광추출층(40)은 제2 투명전도층(30) 상에 형성된 금속의 산화물, 질화물 또는 황화물 등으로 코팅된 층(41)일 수 있고, 평균직경 50nm 내지 500nm의 산란 입자가 삽입된 층(42)일 수 있다. 또한 이들이 복합된 금속의 산화물, 질화물 또는 황화물 등으로 코팅되고 산란 입자 역시 삽입된 층일 수 있다. 도 17에 제2 투명전도층 상에 광추출층으로서 산란 입자가 삽입된 SEM 이미지 사진을 나타내었다. The light extraction layer 40 may be a layer 41 coated with an oxide, nitride or sulfide of a metal formed on the second transparent conductive layer 30, and includes a layer in which scattering particles having an average diameter of 50 nm to 500 nm are inserted. 42). In addition, they may be a layer coated with oxides, nitrides, sulfides, etc. of the metals in which they are complex, and also scattering particles inserted therein. FIG. 17 shows a SEM image photograph in which scattering particles are inserted as a light extraction layer on the second transparent conductive layer.
또한 광추출층(40)은 제2 투명전도층(30)으로서 형성된 메탈 메쉬 패턴(312) 상에 형성될 수 있으며, 이 경우, 금속의 산화물, 질화물 또는 황화물 등으로 코팅되거나 평균직경 50 내지 500nm의 금속의 산화물, 질화물 또는 황화물의 산란 입자가 삽입된 층일 수 있다. 또한 이들이 복합된 층으로 형성될 수 있다. In addition, the light extraction layer 40 may be formed on the metal mesh pattern 312 formed as the second transparent conductive layer 30, in this case, coated with an oxide, nitride or sulfide of a metal or the average diameter of 50 to 500nm It may be a layer in which the scattering particles of oxides, nitrides or sulfides of the metal of the compound are inserted. They can also be formed into a composite layer.
광추출층(40)은 돌기 형태를 갖거나 패턴 형상을 가질 수 있으며 그 두께는 100nm 내지 600nm이다. 100nm 미만인 경우 광산란 효과가 낮은 문제점이 있고, 600nm 초과인 경우 광투과도 감소의 문제점이 있다. 더욱 바람직하게는 100 내지 300nm인 것이 좋다. The light extraction layer 40 may have a protrusion shape or a pattern shape, and the thickness thereof is 100 nm to 600 nm. If it is less than 100nm there is a problem of low light scattering effect, if it is more than 600nm there is a problem of light transmittance reduction. More preferably, it is 100-300 nm.
*본 발명의 일실시예에 따른 투광성 기판을 제조하는 제2-3 단계는 스핀 코팅(spin coating)을 이용하여 상기 제2 투명전도층(30) 상에 광추출층(40)을 형성하거나, 플렉서블 기판을 사용하는 경우 롤투롤 공정 상에서 금속의 산화물, 질화물, 황화물 또는 이의 혼합물을 포함하는 잉크 조성물을 도포하고 열처리하여 형성할 수 있으나 이에 제한되는 것은 아니다. In the second to third steps of manufacturing the light transmissive substrate according to the embodiment of the present invention, the light extraction layer 40 is formed on the second transparent conductive layer 30 using spin coating, In the case of using the flexible substrate, an ink composition including an oxide, a nitride, a sulfide, or a mixture of metals may be applied and heat-treated in a roll-to-roll process, but is not limited thereto.
본 발명의 일실시예에 따른 투광성 기판을 제조하는 제3 단계는 상기 제1 투명전도층(20), 제2 투명전도층(30) 또는 광추출층(40) 상에 기저 폴리머층(50)을 형성하는 단계로서 보다 단순화되고 비용이 절감되는 롤투롤(roll to roll) 공정을 통해 플렉서블한 투광성 기판(100)을 제조할 수 있다.A third step of manufacturing a light transmissive substrate according to an embodiment of the present invention is the base polymer layer 50 on the first transparent conductive layer 20, the second transparent conductive layer 30 or the light extraction layer 40 As a step of forming a flexible light-transmitting substrate 100 can be manufactured through a roll-to-roll (roll to roll) process that is more simplified and reduced cost.
기저 폴리머층(50)은 PI(polyimide), PET(polyethylene terephthalate), PC(poly carbonate), PES(polyether sulfone), PEN(polyethylene naphthalate), PA(poly acrylate), PUA(polyurethane acrylate), PDMS(polydimethyl siloxane) 및 금속 박막으로 이루어진 군에서 선택된 적어도 1종 이상을 포함하여 형성될 수 있다. 내화학성, 내열성 등이 우수한 PI를 이용하여 형성하는 것이 바람직하다.The base polymer layer 50 may be formed of polyimide (PI), polyethylene terephthalate (PET), polycarbonate (PC), polyether sulfone (PES), polyethylene naphthalate (PEN), poly acrylate (PA), polyurethane acrylate (PUA), and PDMS (PDMS). polydimethyl siloxane) and a metal thin film. It is preferable to form using PI which is excellent in chemical resistance, heat resistance, etc.
기저 폴리머층(50)의 두께는 0.1mm 내지 3mm로 형성하는 것이 좋다. 0.1mm 미만으로 형성하는 경우 모기판으로써 지지력이 낮은 문제점이 있으며, 3mm 초과하여 형성하는 경우 유연성(Flexibility)이 감소하는 문제점이 있다. 더욱 바람직하게는 0.2mm 내지 0.5mm인 것이 좋다. The base polymer layer 50 may have a thickness of 0.1 mm to 3 mm. In the case of forming less than 0.1mm, there is a problem in that the bearing capacity is low as a mother substrate, and in the case of forming more than 3mm, flexibility is reduced. More preferably, it is 0.2 mm-0.5 mm.
본 발명의 본 발명의 일실시예에 따른 투광성 기판을 제조하는 제3 단계는 단계는 폴리머 용액을 이용하여 라미네이팅(laminating)하거나 폴리머 조성물을 도포한 후 건조 및 경화시키거나 스크린 프린팅(screen printing)하여 기저 폴리머층(50)을 형성하거나, 플렉서블 기판을 사용하는 경우 롤투롤 공정 상에서 폴리머 조성물을 도포하고 열처리하여 형성할 수 있으나 이에 제한되는 것은 아니다. The third step of manufacturing a light-transmissive substrate according to an embodiment of the present invention is the step of laminating using a polymer solution or applying a polymer composition, followed by drying and curing or screen printing When the base polymer layer 50 is formed or a flexible substrate is used, the polymer composition may be formed by applying and heat-treating the polymer composition in a roll-to-roll process, but is not limited thereto.
본 발명의 일실시예에 따른 투광성 기판을 제조하는 제4 단계는 이형층(10)을 디태칭(detaching)하는 단계로서, 이형층(10)과 제1 투명전도층(20) 사이를 분리(전사)하여 제1 투명전도층(20) 및 기저 폴리머층(50)을 포함하는 투광성 기판(100), 제1 투명전도층(20), 제2 투명전도층(30) 및 기저 폴리머층(50)을 포함하는 투광성 기판(100), 제1 투명전도층(20), 제2 투명전도층(30), 광추출층(40) 및 기저 폴리머층(50)을 포함하는 투광성 기판(100)을 제공하는 단계이다. A fourth step of manufacturing a light transmissive substrate according to an embodiment of the present invention is a step of detaching the release layer 10, and separating the release layer 10 from the first transparent conductive layer 20 ( The light-transmitting substrate 100 including the first transparent conductive layer 20 and the base polymer layer 50, the first transparent conductive layer 20, the second transparent conductive layer 30 and the base polymer layer 50 are transferred to each other. A transparent substrate 100 including a transparent substrate 100, a first transparent conductive layer 20, a second transparent conductive layer 30, a light extraction layer 40 and a base polymer layer 50 To provide.
또한 이형층(10)으로서 기판 상에 버퍼층 형성 시 표면에 형상을 갖도록 제조하고 제1 투명전도층(20)을 전사한 경우, 버퍼층 표면 형상과 같이 제1 투명전도층(20) 표면에 버퍼층의 형상이 전사되므로 제조된 투광성 기판(100)의 표면 형상을 제어할 수 있다.In addition, when the buffer layer is formed on the substrate as the release layer 10, the first transparent conductive layer 20 is transferred to the surface of the first transparent conductive layer 20 in the same manner as the surface of the buffer layer. Since the shape is transferred, the surface shape of the manufactured light-transmissive substrate 100 can be controlled.
본 발명의 일실시예에 따른 투광성 기판을 제조하는 제4 단계는 버퍼층에 광원을 통한 광조사 처리하여 성상을 선택적으로 변화시켜 제1 투명전도층(20)과의 접착력을 낮추어 안정적으로 분리할 수 있으나 이에 제한되는 것은 아니다. 본 발명의 일실시예에 따른 버퍼층은 상기 언급한 제1 탄소화합물, 제2 탄소화합물, 금속산화물 등의 물질 즉, 유리전이온도가 200℃ 이하인 탄소화합물, 자외선에 의해 분해되는 탄소화합물, 점착성이 낮은 금속산화물 때문에 복잡한 공정을 거치거나 많은 에너지를 들이지 않고도 용이하게 분리(전사)가 가능한 장점이 있다. In the fourth step of manufacturing a light-transmissive substrate according to an embodiment of the present invention can be stably separated by lowering the adhesive strength with the first transparent conductive layer 20 by selectively changing the properties by light irradiation treatment to the buffer layer through a light source. However, it is not limited thereto. The buffer layer according to an embodiment of the present invention is a material such as the first carbon compound, the second carbon compound, the metal oxide mentioned above, that is, the carbon compound having a glass transition temperature of 200 ° C. or less, the carbon compound decomposed by ultraviolet rays, and the adhesiveness. Due to the low metal oxides, there is an advantage that it can be easily separated (transferred) without complicated processes or using a lot of energy.
광조사 처리에 이용될 수 있는 광원으로는 제논 램프, 할로겐 램프, HID 램프, 형광 램프, 수은 램프를 포함하는 가스 방전 램프 등을 사용할 수 있으며, 버퍼층의 유리전이온도 이상의 열을 가하여 성상을 변화시킬 수 있는 열원이라면 제한없이 사용 가능하다. 바람직하게는 제논 렘프를 사용하는 것이 투명 전도성 산화층과 타 재료에 손상을 주지 않으면서 광추출층 형성을 위한 국부적인 에너지 전달에 좋다. As a light source that can be used for the light irradiation treatment, a xenon lamp, a halogen lamp, a HID lamp, a fluorescent lamp, a gas discharge lamp including a mercury lamp, or the like can be used, and it is possible to change the properties by applying heat above the glass transition temperature of the buffer layer. Any heat source can be used without limitation. Preferably, the use of xenon lamps is good for local energy transfer to form the light extraction layer without damaging the transparent conductive oxide layer and other materials.
본 발명의 일실시예에 따른 투광성 기판의 롤투롤 방식 제조방법을 도 18에 나타내었다. 18 illustrates a roll-to-roll manufacturing method of a light transmissive substrate according to an embodiment of the present invention.
또한 본 발명의 일실시예에 따른 투광성 기판 제조방법은, 제4 단계 이후에, 상기 분리된 제1 투명전도층에 잔존하는 이형층 성분을 제거하는 제5 단계를 더 포함할 수 있다. 분리된 제1 투명전도층(20)을 포함하는 투광성 기판 표면에 잔존하는 버퍼층은 아세톤, 에탄올과 같은 화학약품을 이용하여 세척하여 제거하거나 플라즈마 처리하여 제거할 수 있다.In addition, the method of manufacturing a light-transmitting substrate according to an embodiment of the present invention may further include a fifth step of removing the release layer component remaining in the separated first transparent conductive layer after the fourth step. The buffer layer remaining on the translucent substrate surface including the separated first transparent conductive layer 20 may be removed by washing or plasma treatment using chemicals such as acetone and ethanol.
본 발명의 또 다른 일실시예에 따른 유기발광소자(1000)는 도 19에 나타낸 것과 같이 본 발명의 일실시예에 따른 투광성 기판 제조방법에 따라 투광성 기판(100)을 투광성 전극으로서 형성 후, 제1 투명전도층(20) 상에 유기발광층(200) 적층, 반사 전극(300)을 차례로 적층하여 제조할 수 있다. In the organic light emitting device 1000 according to another embodiment of the present invention, as shown in FIG. 19, the light emitting substrate 100 is formed as a light transmitting electrode according to the method of manufacturing a light transmitting substrate according to the embodiment of the present invention. 1 may be manufactured by sequentially stacking the organic light emitting layer 200 and the reflective electrode 300 on the transparent conductive layer 20.
유기발광층(200)은 구체적인 물질, 형성방법이 특별히 제한되지 않고, 당 기술분야에 널리 알려진 물질 및 형성방법을 이용할 수 있으며, 다양한 고분자 소재를 사용하여 증착법, 용매 공정(solvent process), 예컨대 스핀코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 형성될 수 있다. The organic light emitting layer 200 is not particularly limited in specific materials and formation methods, and materials and formation methods well known in the art may be used, and deposition methods, solvent processes such as spin coating using various polymer materials. , Dip coating, doctor blading, screen printing, inkjet printing or thermal transfer.
반사 전극(300)은 스퍼터링(Sputtering)법, 전자-빔 증착법(E-beam evaporation), 열 증착법(Thermal evaporation), 레이저 분자 빔 증착법(Laser Molecular Beam Epitaxy, L-MBE), 및 펄스 레이저 증착법(Pulsed Laser Deposition, PLD) 중에서 선택된 어느 하나의 물리 기상 증착법(Physical Vapor Deposition, PVD); 열 화학 기상 증착법(Thermal Chemical Vapor Deposition), 플라즈마 화학 기상 증착법(Plasma-Enhanced Chemical Vapor Deposition, PECVD), 광 화학 기상 증착법(Light Chemical Vapor Deposition), 레이저 화학 기상 증착법(Laser Chemical Vapor Deposition), 금속-유기 화학 기상 증착법(Metal-Organic Chemical Vapor Deposition, MOCVD), 및 수소화물 기상 증착법(Hydride Vapor Phase Epitaxy, HVPE) 중에서 선택된 어느 하나의 화학 기상 증착법(Chemical Vapor Deposition); 또는 원자층 증착법(Atomic Layer Deposition, ALD)을 이용하여 형성될 수 있다.The reflective electrode 300 may be formed by sputtering, e-beam evaporation, thermal evaporation, laser molecular beam epitaxy (L-MBE), and pulsed laser evaporation ( Pulsed Laser Deposition (PLD), any one of the physical vapor deposition (Physical Vapor Deposition, PVD); Thermal Chemical Vapor Deposition, Plasma-Enhanced Chemical Vapor Deposition (PECVD), Light Chemical Vapor Deposition, Laser Chemical Vapor Deposition, Metal- Chemical Vapor Deposition selected from any one of an Organic Chemical Vapor Deposition (MOCVD) and a Hydride Vapor Phase Epitaxy (HVPE); Alternatively, the layer may be formed using atomic layer deposition (ALD).
반사 전극(300)은 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 백금, 금, 텅스텐, 탄탈륨, 구리, 은, 주석 및 납 중에서 선택된 1종 이상으로 형성될 수 있다.The reflective electrode 300 may be formed of one or more selected from magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, platinum, gold, tungsten, tantalum, copper, silver, tin, and lead. have.
본 발명의 일실시예에 따른 투광성 기판(100)은 기저 폴리머층(50), 기저 폴리머층 상에 구비되는 제2 투명전도층(30) 및 제2 투명전도층 상에 구비되는 제1 투명전도층(20) 을 포함한다. The light transmissive substrate 100 according to the embodiment of the present invention includes a base polymer layer 50, a second transparent conductive layer 30 provided on the base polymer layer, and a first transparent conductive layer provided on the second transparent conductive layer. Layer 20.
도 20에 나타나는 것과 같이 제2 투명전도층(30)은 도전체(31) 및 도전체를 피복하는 폴리머피복층(32)을 포함하고, 제2 투명전도층(30)이 제1 투명전도층(20)에 인접하는 절반을 A영역이라 하고, 기저 폴리머층(50)에 인접하는 절반을 B영역이라고 할 때, 도전체(31)의 60% 이상이 A영역에 분포한다. 특히 도전체(31)는 제2투명전도층(30)의 제조 특성에 따라 70% 또는 80% 이상으로 분포하는 것이 보다 바람직하다. As shown in FIG. 20, the second transparent conductive layer 30 includes a conductor 31 and a polymer coating layer 32 covering the conductor, and the second transparent conductive layer 30 includes the first transparent conductive layer ( When the half adjacent to 20) is called the A region and the half adjacent to the base polymer layer 50 is called the B region, 60% or more of the conductors 31 are distributed in the A region. In particular, the conductor 31 is more preferably distributed in 70% or 80% or more depending on the manufacturing characteristics of the second transparent conductive layer 30.
도전체(31)는 금속 나노와이어(311) 또는 메탈 메쉬 패턴(312)을 포함한다. 또한 제2 투명전도층(30)은 제1 투명전도층(20)에 인접하여 분포하는 금속 입자(313)를 더 포함할 수 있다. 금속 입자(313)는 제2 투명전도층의 A 영역에 50% 이상 분포한다. 보다 바람직하게는 제2 투명전도층의 제조 특성에 따라 60% 또는 70% 이상으로 분포하도록 형성하는 것이 좋다. The conductor 31 includes a metal nanowire 311 or a metal mesh pattern 312. In addition, the second transparent conductive layer 30 may further include metal particles 313 disposed adjacent to the first transparent conductive layer 20. The metal particles 313 are distributed at least 50% in region A of the second transparent conductive layer. More preferably, it may be formed to be distributed in 60% or 70% or more according to the manufacturing characteristics of the second transparent conductive layer.
도전체(31)를 피복하는 폴리머피복층(32)은 PI(Polyimide), PET(Polyethylene terephthalate), PDMS(Polydimethylsiloxane), UV 경화용 Resin 수지, 열 경화용 Resin 수지, 에폭시 등을 이용하여 형성될 수 있다. 바람직하게는 자외선(UV) 경화용 수지(Resin)를 이용하여 도전체(31)가 피복된 것이 좋다. The polymer coating layer 32 covering the conductor 31 may be formed using polyimide (PI), polyethylene terephthalate (PET), polydimethylsiloxane (PDMS), resin for UV curing, resin for thermal curing, epoxy resin, or the like. have. Preferably, the conductor 31 may be coated using a resin for curing UV light.
본 발명의 일실시예에 따른 투광성 기판(100)은 제2 투명전도층(30)을 구비하여 제1 투명전도층(20)의 도전성을 보완할 수 있으며, 특히, 도전체(31)가 제1 투명전도층(20)과 인접하여 분포하기 때문에 더욱 우수한 보조 전극의 특성을 나타낼 수 있다. 이는 본 발명의 일실시예에 따른 투광성 기판 제조방법에 의해 제1 투명전도층(20) 상에 제2 투명전도층(30)을 형성하기 때문에 가능한 구조이다. The translucent substrate 100 according to the embodiment of the present invention may include the second transparent conductive layer 30 to compensate for the conductivity of the first transparent conductive layer 20. 1 Since it is disposed adjacent to the transparent conductive layer 20, it is possible to exhibit better characteristics of the auxiliary electrode. This is possible because the second transparent conductive layer 30 is formed on the first transparent conductive layer 20 by the method of manufacturing a transparent substrate according to the embodiment of the present invention.
또한 제2 투명전도층(30)은 메탈 메쉬 패턴(312)이 광추출 형상을 갖는 폴리머에 의해 이중 피복된 층일 수 있다. 제1 투명전도층(20) 상에 연접한 메탈 메쉬 패턴(312)이 광추출 형상, 예를 들면 표면에 요철을 갖는 형상을 갖는 폴리머로 피복되고, 다시 폴리머피복층(32)으로 이중 피복되어 제2 투명전도층을 형성한다.In addition, the second transparent conductive layer 30 may be a layer in which the metal mesh pattern 312 is double coated with a polymer having a light extraction shape. The metal mesh pattern 312 joined on the first transparent conductive layer 20 is coated with a polymer having a light extraction shape, for example, a shape having irregularities on the surface thereof, and then double coated with a polymer coating layer 32. 2 form a transparent conductive layer.
또한 제2 투명전도층(30)은 상기 메탈 메쉬 패턴이 광추출 입자를 포함하는 폴리머에 의해 이중 피복된 층일 수 있다. 따라서 제1 투명전도층(20) 상에 연접한 메탈 메쉬 패턴(312)이 금속 입자(313)를 포함하는 폴리머로 피복되고, 다시 폴리머피복층(32)으로 이중 피복되어 제2 투명전도층을 형성한다.  In addition, the second transparent conductive layer 30 may be a layer in which the metal mesh pattern is double coated with a polymer including light extraction particles. Therefore, the metal mesh pattern 312 joined on the first transparent conductive layer 20 is coated with a polymer including metal particles 313, and then double coated with a polymer coating layer 32 to form a second transparent conductive layer. do.
본 발명의 일실시예에 따른 투광성 기판(100)에 포함되는 제1 투명전도층(20)은 그 표면에 오목 또는 볼록한 표면 패턴을 구비할 수 있다. The first transparent conductive layer 20 included in the light transmissive substrate 100 according to an embodiment of the present invention may have a concave or convex surface pattern on the surface thereof.
본 발명의 일실시예에 따른 투광성 기판을 포함한 액정 표시 소자(liquid crystal display), 일렉트로크로믹 디스플레이(ECD), 플라즈마 디스플레이 패널(plasma display panel), 플렉서블(flexible) 디스플레이, 전자페이퍼, 터치패널 등의 디스플레이 장치를 제공할 수 있다. Liquid crystal display, electrochromic display (ECD), plasma display panel, flexible display, electronic paper, touch panel, etc., including a transparent substrate according to an embodiment of the present invention It is possible to provide a display device.
또한 본 발명의 일실시예에 따른 투광성 기판은 유기발광소자나 유기태양전지에 이용될 수 있다. 즉, 본 발명의 투광성 기판(100)의 제1 투명전도층(20) 상에 발광물질층(200) 및 반사 금속층(300)을 적층하여 유기발광소자를 제공할 수 있고, 또한 광활성층 및 금속전극층을 적층하여 유기태양전지를 제공할 수 있다. In addition, the light transmissive substrate according to an embodiment of the present invention can be used in an organic light emitting device or an organic solar cell. That is, the organic light emitting device may be provided by stacking the light emitting material layer 200 and the reflective metal layer 300 on the first transparent conductive layer 20 of the light transmissive substrate 100 of the present invention. An organic solar cell may be provided by stacking electrode layers.
본 발명의 일실시예에 따른 투광성 기판의 제2 투명전도층(30)이 광 추출 기능을 하는 구조를 포함하는 경우, 예를 들면, 금속 입자를 포함하여 광 산란을 일으키거나 광추출이 가능한 형상을 포함하는 폴리머를 포함하는 경우, 조명용 유기발광소자로 적합하게 이용될 수 있다. When the second transparent conductive layer 30 of the light transmissive substrate according to the embodiment of the present invention includes a structure for extracting light, for example, a shape including light scattering or extracting light may be included, including metal particles. When it contains a polymer containing, it can be suitably used as an organic light emitting device for illumination.
실시예Example
실시예 1Example 1
0.6mm 글래스 기판 위에 버퍼 용액을 스핀 코팅하여 400nm의 버퍼층을 형성하고, 버퍼층 상에 물리기상증착 방식으로 10nm의 투명산화물층을 형성하고, 투명산화물 상에 은 나노와이어(Ag NW)를 포함하는 고분자 잉크 조성물을 도포하고 80~150℃에서 5분~10분 건조 및 경화시켜 200nm이하의 AgNW층을 형성한다. 폴리이미드(PI) 용액 또는 UV resin을 도포 및 건조시켜 폴리머층을 형성한 후, 광에 의한 잠열을 이용하여 버퍼층의 성상을 변화시킴(녹임)으로써 투명 산화물층과 분리하여 투광성 기판을 제조하였다. Spin coating a buffer solution on a 0.6 mm glass substrate to form a buffer layer of 400 nm, forming a 10 nm transparent oxide layer by physical vapor deposition on the buffer layer, and a polymer including silver nanowires (Ag NW) on the transparent oxide. The ink composition is applied, dried and cured at 80 to 150 ° C. for 5 to 10 minutes to form an AgNW layer of 200 nm or less. After coating and drying a polyimide (PI) solution or a UV resin to form a polymer layer, a light-transmissive substrate was prepared by separating from the transparent oxide layer by changing (melting) the properties of the buffer layer using latent heat by light.
실시예 2Example 2
0.2mm의 3mm 기판 필름을 롤러에 감아 연속적으로 제공하며 롤투롤 공정을 실시하였다. 먼저 유연 기판 필름에 버퍼층 용액을 코팅하고 열처리하여 희생층을 형성하였으며, 제1 투명전도층을 증착시키고 은 나노와이어를 증착시켜 코팅한 후 고온 건조시켜 제2 투명전도층을 형성하고, 폴리머 용액을 코팅하고 열처리하여 기저 폴리머층을 형성하였다. 여기에 광을 조사하여 버퍼층을 녹임으로써 유연 기판을 분리하여 투광성 기판을 연속적으로 제조하였다. 도 18에 본 실시예의 롤투롤 제조공정을 나타내었다. A 0.2 mm 3 mm substrate film was wound on a roller to provide a continuous roll to roll process. First, the buffer layer solution was coated on the flexible substrate film, followed by heat treatment to form a sacrificial layer. The first transparent conductive layer was deposited, the silver nanowires were deposited and coated, and then dried at high temperature to form a second transparent conductive layer. Coating and heat treatment formed a base polymer layer. By irradiating light thereto, the flexible substrate was separated by melting the buffer layer to continuously prepare a light-transmissive substrate. 18 shows a roll-to-roll manufacturing process of this example.
실시예 3Example 3
0.5mm의 3mm기판 필름을 롤러에 감아 연속적으로 제공하며 롤투롤 공정을 실시하였다. 먼저 유연 기판 필름에 버퍼 용액을 코팅하고 열처리 할 때, 용액코팅에 의한 원심력으로 물결무늬를 가지는 버퍼층을 형성하였으며, 제1 투명전도층을 증착시키고 은 나노와이어를 성장시켜 코팅한 후 고온 건조시켜 제2 투명전도층을 형성하고, 폴리머 또는 UV resin 용액을 코팅하고 UV처리에 의해 기저 폴리머층을 형성하였다. 여기에 제논 램프를 이용하여 버퍼층을 녹임으로써 유연 기판을 분리하여 투광성 기판을 연속적으로 제조하였다. 제조된 투광성 기판은 버퍼층의 표면형상과 동일한 물결무늬를 나타내며, 도 18에 본 실시예의 롤투롤 제조공정을 나타내었다. A 0.5 mm 3 mm substrate film was wound on a roller to provide a continuous roll to roll process. First, when the buffer solution is coated on the flexible substrate film and subjected to heat treatment, a buffer layer having a wave pattern is formed by centrifugal force by solution coating. 2, a transparent conductive layer was formed, and a polymer or UV resin solution was coated and a base polymer layer was formed by UV treatment. Here, the flexible substrate was separated by melting the buffer layer using a xenon lamp to continuously manufacture a light-transmissive substrate. The prepared light-transmitting substrate exhibited the same wave pattern as the surface shape of the buffer layer, and FIG. 18 shows a roll-to-roll manufacturing process of this example.
비교예Comparative example
캐리어 글래스에 폴리이미드(PI) 용액을 도포 건조시켜 PI 필름을 제조한 후, 그 위에 배리어 코팅막을 형성하고 ITO 투명전극 제조 공정을 진행시켜 디바이스를 만든 다음 캐리어 글래스에서 분리시켜 투광성 전극을 제조하였다. After coating and drying a polyimide (PI) solution on a carrier glass to prepare a PI film, a barrier coating film was formed thereon, and an ITO transparent electrode manufacturing process was performed to make a device, and then separated from the carrier glass to prepare a translucent electrode.
실험예Experimental Example
(1) 이미지 측정(1) image measurement
도 21에 본 발명의 실시예에 따라 제조된 투광성 기판의 유연성을 시각적으로 나타내는 사진을 도시하였다. 21 is a photograph visually showing the flexibility of the light-transmissive substrate prepared according to the embodiment of the present invention.
도 22에 본 발명의 실시예에 따라 제조된 투광성 기판의 제1 투명전도층 방향에서 촬영한 표면 광학 이미지 사진을 나타내었으며, 도 23에 제2 투명전도층의 금속 나노와이어를 확인 가능한 SEM 이미지 사진을 나타내었다. 22 is a surface optical image photograph taken in the direction of the first transparent conductive layer of the light-transmissive substrate prepared according to the embodiment of the present invention, Figure 23 is a SEM image photograph of the metal nanowires of the second transparent conductive layer can be confirmed Indicated.
도 24에 버퍼층의 표면 형상을 제어함으로써 제조된 투광성 기판의 제1 투명전도층의 표면 형상이 물결 무늬로 제어된 SEM 이미지 사진을 나타내었다.FIG. 24 shows a SEM image photograph in which the surface shape of the first transparent conductive layer of the light transmissive substrate manufactured by controlling the surface shape of the buffer layer is controlled by a wave pattern.
(2) X-선 회절 패턴(XRD) 및 EDX 측정 (2) X-ray diffraction pattern (XRD) and EDX measurement
도 25에 제1 투명전도층, 제2 투명전도층 및 기저 폴리머층을 포함하는 투광성 기판의 XRD 측정 데이터를 나타내었으며, ITO의 피크, Ag의 피크를 갖는다. FIG. 25 shows XRD measurement data of a light transmissive substrate including a first transparent conductive layer, a second transparent conductive layer, and a base polymer layer, and has a peak of ITO and a peak of Ag.
도 26에 제1 투명전도층, 제2 투명전도층, 광추출층 및 기저 폴리머층을 포함하는 투광성 기판의 XRD 측정 데이터를 나타내었으며, ITO의 피크, ZnO의 피크, Ag의 피크 및 C-H의 피크를 갖는다. FIG. 26 shows XRD measurement data of a light transmissive substrate including a first transparent conductive layer, a second transparent conductive layer, a light extraction layer, and a base polymer layer. The peak of ITO, ZnO peak, Ag peak, and CH peak Has
도 27에 본 발명의 일실시예에 따라 제조된 투광성 기판의 EDX 를 통한 성분분석 데이터를 나타내었으며, Si, C, O, Zn, Ag, In, Sn 등의 성분이 존재하는 것을 알 수 있다. Figure 27 shows the component analysis data through the EDX of the light-transmissive substrate prepared according to an embodiment of the present invention, it can be seen that the components such as Si, C, O, Zn, Ag, In, Sn.
(3) 평탄도(표면 거칠기) 측정(3) Flatness (surface roughness) measurement
실시예에서 제조된 투광성 기판의 제1 투명전도층의 표면거칠기를 AFM(Atomic Force Microscope)을 이용하여 10μm×10μm의 스캔 범위로 관측할 때, RPV 및 RMS를 측정하였다. 측정결과는 하기 표 1에 나타내었으며, 도 28에 표면 AFM profile을 나타내었다. 또한 도 29에 물결무늬로 형상제어된 투광성 전극의 AFM 이미지를 나타내었다. R PV and R MS were measured when the surface roughness of the first transparent conductive layer of the light-transmissive substrate prepared in Example was observed in a scan range of 10 μm × 10 μm using AFM (Atomic Force Microscope). The measurement results are shown in Table 1 below, and the surface AFM profiles are shown in FIG. 28. In addition, FIG. 29 shows an AFM image of a translucent electrode shape-controlled by a wave pattern.
(4) 투과율 및 전기전도성 측정 (4) Transmittance and Electrical Conductivity Measurement
실시예에서 제조된 다양한 광추출층 두께를 갖는 플렉서블 투광성 기판의 표면 저항을 측정하여 전기전도성을 측정하였으며, 표면 저항 측정 시에 통상적으로 사용되는 4 포인트 프로브(기기명: MCP-T610, 제조사: MITSUBISHI CHEMICAL)를 사용하고, 핀간 간격이 5 mm인 ESP 타입의 프로브를 이용하여 측정하였다. 측정결과는 하기 표 1에 나타내었으며, 표 2 및 도 30에 광추출층의 평균 두께에 따른 광학적 성능 및 전기전도성 데이터를 나타내었다. The electrical conductivity was measured by measuring the surface resistance of the flexible light-transmitting substrate having various light extraction layer thicknesses prepared in Examples. ) Was measured using an ESP type probe having an inter-pin spacing of 5 mm. The measurement results are shown in Table 1 below, and Table 2 and FIG. 30 show optical performance and electrical conductivity data according to the average thickness of the light extraction layer.
RPV(nm)R PV (nm) RMS(nm)R MS (nm) 면저항(Ω/□)Sheet resistance (Ω / □)
실시예 1Example 1 5.7695.769 0.62170.6217 3.093.09
실시예 2Example 2 31.931.9 2.0082.008 8.778.77
PropertyProperty 광추출층 두께Light extraction layer thickness
AverageThickness(nm)AverageThickness (nm) 124124 186186 214214 256256
Transmittance(%)Transmittance (%) 77.977.9 70.870.8 70.370.3 69.869.8
Haze(%)Haze (%) 10.310.3 4747 49.849.8 54.654.6
SheetResistance(Ω/□)SheetResistance (Ω / □) 5.885.88 55.3555.35 30.430.4 13.913.9
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Features, structures, effects, and the like illustrated in the above-described embodiments may be combined or modified with respect to other embodiments by those skilled in the art to which the embodiments belong. Therefore, contents related to such combinations and modifications should be construed as being included in the scope of the present invention.

Claims (15)

  1. 제1 투명전도층 및 기저 폴리머층을 포함하는 투광성 기판 제조방법으로서,A method of manufacturing a light transmissive substrate comprising a first transparent conductive layer and a base polymer layer,
    이형층을 준비하는 제1 단계;A first step of preparing a release layer;
    상기 이형층 상에 제1 투명전도층을 형성하는 제2-1 단계;Forming a first transparent conductive layer on the release layer;
    상기 제1 투명전도층 상에 기저 폴리머층을 형성하는 제3 단계; 및Forming a base polymer layer on the first transparent conductive layer; And
    상기 이형층을 상기 제1 투명전도층으로부터 분리하여 제1 투명전도층 및 기저 폴리머층을 포함하는 투광성 기판을 얻는 제4 단계;를 포함하는 투광성 기판 제조방법.And a fourth step of separating the release layer from the first transparent conductive layer to obtain a light transmissive substrate including a first transparent conductive layer and a base polymer layer.
  2. 제1항에 있어서,The method of claim 1,
    상기 이형층은 기판, 버퍼 기판 또는 일면에 버퍼층을 포함하는 기판을 포함하는 투광성 기판 제조방법.The release layer is a transparent substrate manufacturing method comprising a substrate, a buffer substrate or a substrate including a buffer layer on one surface.
  3. 제2항에 있어서,The method of claim 2,
    상기 제4 단계는 상기 이형층에 광 에너지를 조사하여 상기 이형층을 이루는 물질의 성상을 변화시켜 상기 이형층을 상기 제1 투명전도층으로부터 분리하는 단계인 투광성 기판 제조방법.The fourth step is a step of separating the release layer from the first transparent conductive layer by changing the properties of the material constituting the release layer by irradiating light energy to the release layer.
  4. 제2항에 있어서,The method of claim 2,
    상기 기판은 테플론(polytetrafluoroetylene) 기판 또는 벌크중합(Bulk polymerization)된 폴리메틸메타크릴레이트(polymethyl methacrylate, PMMA) 기판을 포함하는 투광성 기판 제조방법.The substrate is a method of manufacturing a light-transmitting substrate comprising a polytetrafluoroetylene substrate or a bulk polymerized polymethyl methacrylate (PMMA) substrate.
  5. 제2항에 있어서,The method of claim 2,
    상기 버퍼 기판은 불소(F)를 포함하는 탄소화합물을 포함하여 형성된 기판인 투광성 기판 제조방법.The buffer substrate is a light-transmissive substrate manufacturing method of a substrate formed by containing a carbon compound containing fluorine (F).
  6. 제5항에 있어서,The method of claim 5,
    상기 불소(F) 포함하는 탄소화합물은 메틸트리플루오로프로필 실록세인(Methyltrifluoropropyl siloxane), 메틸플루오로(Methylfluoro), C8F17C2H4Si(NH)3/2, C4F9C2H4Si(NH)3 / 2및 폴리 실록사잔(poly siloxazane)으로 구성되는 군에서 선택되는 어느 하나의 탄소화합물인 투광성 기판 제조방법.The carbon compound containing fluorine (F) is methyltrifluoropropyl siloxane (Methyltrifluoropropyl siloxane), methylfluoro (Methylfluoro), C 8 F 17 C 2 H 4 Si (NH) 3/2 , C 4 F 9 C 2 H 4 Si (NH) 3 /2 and a poly siloxane Southern any one method of manufacturing a transparent substrate a carbon compound selected from the group consisting of (poly siloxazane).
  7. 제2항에 있어서,The method of claim 2,
    상기 버퍼층은 제1 탄소화합물, 제2 탄소화합물 및 금속산화물로 구성되는 군에서 선택되는 어느 하나 이상을 사용하여 형성되는 층이고,The buffer layer is a layer formed using any one or more selected from the group consisting of a first carbon compound, a second carbon compound, and a metal oxide,
    상기 제1 탄소화합물은 유리전이온도(Tg)가 200℃ 이하인 탄소화합물을 포함하며,The first carbon compound includes a carbon compound having a glass transition temperature (Tg) of 200 ° C. or less,
    상기 제2 탄소화합물은 자외선에 의해 분해되는 탄소화합물을 포함하는 투광성 기판 제조방법. The second carbon compound is a method of manufacturing a light-transmitting substrate comprising a carbon compound decomposed by ultraviolet light.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 제1 탄소화합물은 PC(Polycarbonate), PMMA(Polymethyl methacrylate) PTFE(Polytetrafluoroethylene), Polyvinylchloride(PVC), Polystyrene(PS) 및 Polyethyl methacrylate(PEMA)로 구성되는 군에서 선택되는 어느 하나 이상을 포함하는 투광성 기판 제조방법.The first carbon compound is a light transmitting material including any one or more selected from the group consisting of polycarbonate (PC), polymethyl methacrylate (PMMA) polytetrafluoroethylene (PTFE), polyvinylchloride (PVC), polystyrene (PS), and polyethyl methacrylate (PEMA) Substrate manufacturing method.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 제2 탄소화합물은 금속이온계 폴리머, 비닐-케톤(Vinyl-ketone)계 공중합물 및 에틸렌-CO(Ethylene-CO) 공중합체로 구성되는 군에서 선택되는 어느 하나 이상을 포함하는 투광성 기판 제조방법.The second carbon compound is a method of manufacturing a light-transmitting substrate comprising at least one selected from the group consisting of a metal ion polymer, a vinyl-ketone copolymer and an ethylene-CO copolymer. .
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 금속 산화물은 산화 이트륨(Y2O3), 지르코니아(ZrO2), 알루미나(Al2O3), 질화붕소(BN), 질화티타늄(TiN) 및 실리콘산화물(SiO2)로 구성되는 군에서 선택되는 어느 하나 이상을 포함하는 투광성 기판 제조방법.The metal oxide is in the group consisting of yttrium oxide (Y 2 O 3 ), zirconia (ZrO 2 ), alumina (Al 2 O 3 ), boron nitride (BN), titanium nitride (TiN) and silicon oxide (SiO 2 ) Translucent substrate manufacturing method comprising any one or more selected.
  11. 제1항에 있어서,The method of claim 1,
    상기 제1 단계는 오목 또는 볼록한 형상의 표면패턴이 형성된 이형층을 준비하는 단계인 투광성 기판 제조방법.The first step is to prepare a release layer having a concave or convex surface pattern formed method.
  12. 제1항에 있어서,The method of claim 1,
    상기 제1 단계는 상기 이형층의 표면에 산소 플라즈마를 이용한 마스크 에칭 또는 에칭용액을 이용한 습식 에칭을 통하여 표면패턴을 형성하는 단계를 포함하는 단계인 투광성 기판 제조방법.Wherein the first step comprises the step of forming a surface pattern on the surface of the release layer through a mask etching using an oxygen plasma or a wet etching using an etching solution.
  13. 제1 투명전도층, 제2 투명전도층 및 기저 폴리머층을 포함하는 투광성 기판 제조방법으로서,A method of manufacturing a light transmissive substrate comprising a first transparent conductive layer, a second transparent conductive layer, and a base polymer layer,
    이형층을 준비하는 제1 단계;A first step of preparing a release layer;
    상기 이형층 상에 제1 투명전도층을 형성하는 제2-1 단계;Forming a first transparent conductive layer on the release layer;
    상기 제1 투명전도층 상에 도전체 및 상기 도전체를 피복하는 폴리머피복층을 포함하는 제2 투명전도층을 형성하는 제2-2 단계; Forming a second transparent conductive layer on the first transparent conductive layer, the second transparent conductive layer including a conductor and a polymer coating layer covering the conductor;
    상기 제2 투명전도층 상에 기저 폴리머층을 형성하는 제3 단계; 및Forming a base polymer layer on the second transparent conductive layer; And
    상기 이형층을 상기 제1 투명전도층으로부터 분리하여 제1 투명전도층 및 기저 폴리머층을 포함하는 투광성 기판을 얻는 제4 단계;를 포함하는 투광성 기판 제조방법.And a fourth step of separating the release layer from the first transparent conductive layer to obtain a light transmissive substrate including a first transparent conductive layer and a base polymer layer.
  14. 제1 투명전도층, 제2 투명전도층, 광추출층 및 기저 폴리머층을 포함하는 투광성 기판 제조방법으로서,A method of manufacturing a light transmissive substrate comprising a first transparent conductive layer, a second transparent conductive layer, a light extraction layer, and a base polymer layer,
    이형층을 준비하는 제1 단계;A first step of preparing a release layer;
    상기 이형층 상에 제1 투명전도층을 형성하는 제2-1 단계;Forming a first transparent conductive layer on the release layer;
    상기 제1 투명전도층 상에 도전체 및 상기 도전체를 피복하는 폴리머피복층을 포함하는 제2 투명전도층을 형성하는 제2-2 단계; Forming a second transparent conductive layer on the first transparent conductive layer, the second transparent conductive layer including a conductor and a polymer coating layer covering the conductor;
    상기 제2 투명전도층 상에 광추출층을 형성하는 제2-3 단계; Forming a light extraction layer on the second transparent conductive layer;
    상기 광추출층 상에 기저 폴리머층을 형성하는 제3 단계; 및Forming a base polymer layer on the light extraction layer; And
    상기 이형층을 상기 제1 투명전도층으로부터 분리하여 제1 투명전도층 및 기저 폴리머층을 포함하는 투광성 기판을 얻는 제4 단계;를 포함하는 투광성 기판 제조방법.And a fourth step of separating the release layer from the first transparent conductive layer to obtain a light-transmissive substrate including a first transparent conductive layer and a base polymer layer.
  15. 제1항, 제13항 또는 제14항에 있어서,The method according to claim 1, 13 or 14,
    상기 제4 단계 이후에, 상기 분리된 제1 투명전도층에 플라즈마 처리하여 잔존하는 이형층 성분을 제거하는 제5 단계를 더 포함하는 투광성 기판 제조방법. And a fifth step of removing the remaining release layer components by plasma treatment on the separated first transparent conductive layer after the fourth step.
PCT/KR2016/012137 2015-10-28 2016-10-27 Light-transmissive substrate manufacturing method and light-transmissive substrate manufactured using same WO2017074048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0150437 2015-10-28
KR1020150150437A KR101862760B1 (en) 2015-10-28 2015-10-28 Method for manufacturing composite substrate and composite substrate manufactured using thereof

Publications (1)

Publication Number Publication Date
WO2017074048A1 true WO2017074048A1 (en) 2017-05-04

Family

ID=58630557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012137 WO2017074048A1 (en) 2015-10-28 2016-10-27 Light-transmissive substrate manufacturing method and light-transmissive substrate manufactured using same

Country Status (2)

Country Link
KR (1) KR101862760B1 (en)
WO (1) WO2017074048A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102324666B1 (en) * 2019-09-23 2021-11-11 김효성 method of manufacturing a transparent electrode using electro spinning and transparent electrode manufactured by the method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080066658A (en) * 2005-08-12 2008-07-16 캄브리오스 테크놀로지즈 코포레이션 Nanowires-based transparent conductors
KR100902561B1 (en) * 2008-01-04 2009-06-11 한국기계연구원 Method for manufacturing transparent electrode
KR101293647B1 (en) * 2012-07-27 2013-08-13 삼성코닝정밀소재 주식회사 Transparent conductive oxide thin film layer substrate, method of fabricating thereof, oled and photovoltaic including the same
KR101383488B1 (en) * 2012-09-24 2014-04-08 공주대학교 산학협력단 High Quality Flexible Transparent Electrodes and Fabricating Method Thereof
KR20140118513A (en) * 2013-03-29 2014-10-08 삼성전기주식회사 flexible/stretchable transparent film having conductivity and manufacturing method thereof
WO2017074049A1 (en) * 2015-10-28 2017-05-04 덕산하이메탈(주) Method for manufacturing light-transmissive substrate and light-transmissive substrate manufactured by using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856498B2 (en) * 2005-08-26 2012-01-18 三井化学株式会社 Electrode substrate for flexible display
KR101191865B1 (en) * 2011-04-20 2012-10-16 한국기계연구원 Fabrication method of flexible substrate having buried metal electrode and the flexible substrate thereby

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080066658A (en) * 2005-08-12 2008-07-16 캄브리오스 테크놀로지즈 코포레이션 Nanowires-based transparent conductors
KR100902561B1 (en) * 2008-01-04 2009-06-11 한국기계연구원 Method for manufacturing transparent electrode
KR101293647B1 (en) * 2012-07-27 2013-08-13 삼성코닝정밀소재 주식회사 Transparent conductive oxide thin film layer substrate, method of fabricating thereof, oled and photovoltaic including the same
KR101383488B1 (en) * 2012-09-24 2014-04-08 공주대학교 산학협력단 High Quality Flexible Transparent Electrodes and Fabricating Method Thereof
KR20140118513A (en) * 2013-03-29 2014-10-08 삼성전기주식회사 flexible/stretchable transparent film having conductivity and manufacturing method thereof
WO2017074049A1 (en) * 2015-10-28 2017-05-04 덕산하이메탈(주) Method for manufacturing light-transmissive substrate and light-transmissive substrate manufactured by using same

Also Published As

Publication number Publication date
KR20170049262A (en) 2017-05-10
KR101862760B1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
Azani et al. Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)‐free flexible solar cells
US9253890B2 (en) Patterned conductive film, method of fabricating the same, and application thereof
US8795462B2 (en) Transparent conductive coating with filler material
JP5397376B2 (en) Transparent electrode, organic electroluminescence element, and method for producing transparent electrode
US8754407B2 (en) Gas barrier film, method of manufacturing gas barrier film, and organic photoelectric conversion element
CN111240532B (en) Silver nanostructure-based optical stack with UV protection and touch sensor
JP5397377B2 (en) Transparent electrode, organic electroluminescence element, and method for producing transparent electrode
WO2015016598A1 (en) Transparent conductive laminate, transparent electrode including transparent conductive laminate, and method for manufacturing transparent conductive laminate
WO2015109464A1 (en) Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures
EP2610013A1 (en) Method for manufacturing gas barrier film, and organic photoelectric conversion element
WO2017074049A1 (en) Method for manufacturing light-transmissive substrate and light-transmissive substrate manufactured by using same
JP2011143577A (en) Method for manufacturing gas barrier film, gas barrier film, and organic photoelectric conversion element
WO2012002723A2 (en) Transparent conductive film, method for manufacturing same, and transparent electrode and device using same
TW201440203A (en) Method for fabricating electronic device and laminate for fabricating method
WO2017217727A1 (en) Organic solar cell and method for manufacturing same
TWI757255B (en) Transparent conductive layer lamination film, method for producing the same, and transparent conductive film
WO2017074048A1 (en) Light-transmissive substrate manufacturing method and light-transmissive substrate manufactured using same
WO2017074051A1 (en) Light-transmissive substrate and manufacturing method therefor
WO2015009059A1 (en) Method for manufacturing ultrathin organic light-emitting device
WO2017074047A1 (en) Light-transmissive substrate and manufacturing method therefor
KR101463227B1 (en) Apparatus for manufacturing the flexible substrate with buried metal trace
JP5594099B2 (en) Method for producing gas barrier film
WO2021187888A1 (en) Transparent conductor comprising nanostructure, and manufacturing method therefor
KR101823367B1 (en) Method for manufacturing light-transmitting substrate comprising graphene layer and light-transmitting substrate manufactured using thereof
KR102389501B1 (en) Patterned transparent conductors comprising nanostructures and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16860231

Country of ref document: EP

Kind code of ref document: A1