WO2017073890A1 - 원전연료의 시뮬레이션을 위한 컴퓨터 프로그램 및 이에 적용된 원전연료의 시뮬레이션 방법 - Google Patents

원전연료의 시뮬레이션을 위한 컴퓨터 프로그램 및 이에 적용된 원전연료의 시뮬레이션 방법 Download PDF

Info

Publication number
WO2017073890A1
WO2017073890A1 PCT/KR2016/008452 KR2016008452W WO2017073890A1 WO 2017073890 A1 WO2017073890 A1 WO 2017073890A1 KR 2016008452 W KR2016008452 W KR 2016008452W WO 2017073890 A1 WO2017073890 A1 WO 2017073890A1
Authority
WO
WIPO (PCT)
Prior art keywords
nuclear fuel
fuel
nuclear
data
simulating
Prior art date
Application number
PCT/KR2016/008452
Other languages
English (en)
French (fr)
Inventor
정성인
박찬연
이택윤
고병길
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to US15/771,611 priority Critical patent/US20180315515A1/en
Priority to CN201680062712.3A priority patent/CN108352204A/zh
Priority to EP16860074.0A priority patent/EP3370237A4/en
Publication of WO2017073890A1 publication Critical patent/WO2017073890A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • G21D3/004Fuel shuffle simulation; fuel shuffle optimisation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/19Reactor parts specifically adapted to facilitate handling, e.g. to facilitate charging or discharging of fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • G21D3/002Core design; core simulations; core optimisation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • G21D3/06Safety arrangements responsive to faults within the plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a computer program for simulating nuclear fuel and a method of simulating nuclear fuel applied thereto, and more particularly, to a computer program and a simulation method for verifying a withdrawal and storage process of nuclear fuel.
  • Fuel from nuclear power plants is reloaded with some of the new and spent fuel.
  • the fuel is assigned a unique number and must be loaded at the correct location according to the nuclear design, such as concentration and burnup.
  • the storage location of the new fuel, the reloading fuel and the discharged fuel storage location of the spent fuel are made through planned execution.
  • the OPR1000 nuclear power plant 177 fuels are loaded in the reactor, and in the case of the APR1400 nuclear power plant, 241 fuels are loaded. There are about 1400 fuel storage racks in the fuel building.
  • Patent Document 1 Korean Registered Patent No. 1560488
  • the present invention is to provide a method and program capable of simulating all the fuel movement task for the extraction and loading of nuclear fuel in order to quickly and accurately perform the transfer verification of nuclear fuel.
  • the present invention provides a simulation method of nuclear fuel, comprising the steps of (a) receiving data relating to the movement order of nuclear fuel; (B) extracting the information of the nuclear fuel, the coordinates for the extraction region of the nuclear fuel, and the coordinates for the loading region of the nuclear fuel, from the data; And (c) simulating the information extracted in step (b) according to the flow chart of the data.
  • step (c) is a verification step of detecting a draw error of nuclear fuel in the simulation process; And verifying two steps of detecting a loading error of nuclear fuel in a simulation process.
  • step (c) further includes a verification step of detecting an error that may occur during the movement of nuclear fuel in a simulation process, wherein the verification step 3 includes examining a master direction of the reactor reload crane. It is possible to detect the interference between the wall and the wall.
  • step (c) according to the present invention may further include verification step 4 for detecting a single upright state in which the nuclear fuel is not loaded in contact with a wall or other fuel in a simulation process.
  • the present invention is a computer program in which the nuclear fuel simulation is performed, the database having a database for storing the data on the movement order of the nuclear fuel, a processor for simulating the data stored in the database, and a computer with a display unit for displaying the simulation, the database (A) receiving data in which a movement order of nuclear fuel is set in the; (B) extracting, by the processor, the data of the nuclear fuel information, the coordinates for the extraction target of the nuclear fuel and the coordinates for the loading target of the nuclear fuel from the data; (C) the processor simulating the information extracted in step (b) according to the flowchart of the data; And (d) causing the display unit to display the results and errors of the simulation.
  • the present invention by receiving data on a large amount of nuclear fuel movement sequence to systematically verify the errors that can occur during the simulation according to the flow chart, all fuel movement tasks that require the withdrawal and loading of nuclear fuel are required. There is an advantage that can be verified quickly. This enables about 3Man-day of work required for each cycle, and 3Man-hour can significantly reduce the working time of mobile verification.
  • the application of the present invention eliminates human error during the movement verification of nuclear fuel, and can manage the fuel status plate, which is an existing hardware structure, by software, and automate the fuel movement status created by hand. Convenience can be increased.
  • FIG. 1 shows a flowchart of a nuclear fuel simulation method according to an embodiment of the present invention.
  • step (a) illustrates an embodiment of data relating to a nuclear fuel movement sequence received in step (a) according to the present embodiment.
  • 3A to 3C show diagrams where the nuclear fuel is located according to the present embodiment.
  • 5 shows exemplary coding of verification step 2 according to the present embodiment.
  • FIG. 6 shows exemplary coding of verification step 3 according to the present embodiment.
  • FIG 7 shows an example of a stand up state according to the present embodiment.
  • FIG. 9 shows an embodiment of the operation module UI according to the present embodiment.
  • step (d) 10 shows an exemplary view of displaying a fuel movement simulation in step (d) according to the present embodiment.
  • the nuclear fuel simulation method includes (a) step (S10) of receiving data, (b) step (S30) of extracting coordinates, (c) step (S50) of simulating movement of nuclear fuel, And (d) step S70 of displaying the simulation result.
  • step (A) step (S10) may receive data regarding the movement order of nuclear fuel.
  • Figure 2 shows an embodiment of the data relating to the nuclear fuel movement order received in step (a) (S10).
  • data such as the order in which the fuel is moved, the nuclear power fuel number, the information on the withdrawal, the information on the loading, the time, and the like are recorded.
  • Figures 3a to 3c In order to help the understanding of the description, where the nuclear fuel is located can be represented as shown in Figures 3a to 3c.
  • the movement of nuclear fuel is stored in the new fuel in NFS
  • used fuel transfer storage from Rx to SFPR, insert exchange, SFPR From Rx to Rx can be done in the same flow as new fuel and reload fuel transfer.
  • Nuclear fuel can be largely divided into new fuel and used fuel, and the movement order must be accurately followed according to the type of fuel and the type of storage rack.
  • the movement flow chart shown in FIG. 2 is prepared for each type of nuclear power plant, and the quantity is large in general.
  • the data on the movement order of nuclear fuel is about 60 pages for the OPR1000 nuclear power plant and about 80 pages for the APR14000.
  • step (a) step the data received in step (S10) Analyze by BY STEP and express animations of fuel movement on the coordinates of nuclear reactors, transportation vehicles, spent fuel storage racks, new fuel lifts, and new fuel storage, and verify movement errors.
  • step (B) step (S30) may extract the coordinates of the nuclear fuel information, the region of the nuclear fuel withdrawal region and the nuclear fuel loading region from the data of the movement flow chart input in the step (a) (S10).
  • the information on nuclear fuel may be information on new fuel or stored fuel. Referring to FIG. 2, such nuclear fuel information may be classified by being labeled with a unique number relating to the fuel.
  • the coordinates for the fuel extraction area of the nuclear power plant are information on the object to be withdrawn and the equipment to be used for the extraction of the fuel, including core, new fuel storage, spent fuel storage tank, containment building upright, fuel building upright and new Location information relating to the fuel lift.
  • the coordinates for the loading area of nuclear fuel are information about the fuel used and the equipment to be used for loading the fuel, including core, new fuel storage, spent fuel storage tank, containment building upright, fuel building upright and new fuel lift. It may include location information regarding.
  • Step (c) (S50) may simulate the information extracted in step (b) (S30) according to the flow chart of the data.
  • step S50 may simulate various fuel movement situations, such as new fuel advancement, withdrawal, insert replacement, and loading, using the extracted flow sequence data.
  • step (c) (S50) examines the withdrawal and loading by sequentially reading the order items from the data of the movement flowchart.
  • step (c) (S50) may perform four mobile verification steps.
  • Step S50 may include a verification step S501, a verification step S503, a verification step S505, and a verification step S507.
  • the verification step S501 may detect a drawing error of nuclear fuel in the simulation process.
  • 4 shows an exemplary coding of verification step 1 (S501).
  • the verification step S501 checks whether fuel is indicated in the flow chart when the fuel is drawn out, and displays an error message if there is no fuel or other fuel.
  • the verification step S503 may detect a loading error of the nuclear fuel in the simulation process.
  • 5 shows an exemplary coding of verification step 2 (S503).
  • the verification step S503 determines whether storage is possible in the loading coordinates of the fuel and displays an error message when the loading position is not empty.
  • Verification step (S505) may detect an error during the movement of nuclear fuel in the simulation process.
  • An error that may occur during the movement of nuclear fuel may be interference between the crane and the wall.
  • 6 shows an exemplary coding of verification step 3 (S505).
  • the verification step S505 may display a warning message after determining whether interference between the crane and the wall is expected by examining the master direction of the reactor reload crane.
  • the verification step 4 (S507) may detect a single upright state in which the nuclear fuel is not loaded in contact with the wall or other fuel during the simulation process. 7 shows an example of a stand-alone state, and FIG. 8 shows an exemplary coding of verification step 4 (S507).
  • the verification step 4 may determine in advance the state of the reactor that is difficult to withdraw or load fuel.
  • step (c) the selection of the flowchart, the simulation speed, and the like may be adjusted through the operation module.
  • 9 illustrates an embodiment of an operation module UI.
  • Step (d) (S70) may display the simulation performed in step (c) (S50) in real time.
  • step (S70) may display the marking items such as STEP, fuel number, withdrawal position, loading position, panel in the current flow chart.
  • the real-time display of nuclear fuel transfer verification ensures the visibility of information transmission to the workers during the fuel transfer operation, and it can be used as a mobile status board, so the task of handwriting is not required.
  • FIG. 10 shows the embodiment of displaying a fuel movement simulation in step (d) (S70).
  • the above-described simulation method of nuclear fuel may be implemented by a computer program.
  • the computer program in which nuclear fuel simulation is performed is performed on a computer having a database storing data on the movement order of nuclear fuel, a processor for simulating data stored in the database, and a display unit for displaying the simulation.
  • Each execution step of the program means that the simulation method described above with reference to FIG. 1 is executed in association with hardware, and thus detailed description of each step is omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)

Abstract

본 발명은, 원전연료의 시뮬레이션 방법에 있어서, 원전연료의 이동순서에 관한 데이터를 입력받는 (a)단계; 데이터에서 원전연료의 정보와 원전연료의 인출 지역에 대한 좌표와 원전연료의 장전 지역에 대한 좌표를 추출하는 (b)단계; 및 (b)단계에서 추출된 정보를 데이터의 순서도에 따라 시뮬레이션하는 (c)단계를 포함한다. 본 발명에 따르면, 방대한 양의 원전연료 이동순서에 관한 데이터를 입력받아 순서도에 따른 시뮬레이션 중 발생될 수 있는 오류를 시스템적으로 검증하여, 원전연료의 인출 및 장전이 요구되는 모든 연료 이동업무를 정확하고 신속하게 검증할 수 있는 이점이 있다. 이는 호기별 주기마다 약 3Man-day의 업무량을 3Man-hour로 가능하게 하여 이동검증의 작업시간을 현저히 절감시킬 수 있다.

Description

원전연료의 시뮬레이션을 위한 컴퓨터 프로그램 및 이에 적용된 원전연료의 시뮬레이션 방법
본 발명은 원전연료의 시뮬레이션을 위한 컴퓨터 프로그램 및 이에 적용된 원전연료의 시뮬레이션 방법에 관한 것으로서, 특히 원전연료의 인출 및 저장 과정을 검증하는 컴퓨터 프로그램 및 시뮬레이션 방법에 관한 것이다.
원자력 발전소의 운영에는 원전연료의 안전한 이동과 연료 장전의 정확성이 필수적으로 요구된다. 이에 따라 작업자들은, 연료 건물의 저장랙 또는 원자로에 저장되는 원전연료의 인출, 이동, 장전 과정에서 순서, 대상, 연료의 종류 등 작성된 이동순서도에 오류가 없는지 세밀한 검증 작업을 수행해야 한다. 잘못된 검증이나 에러는 발전소의 임계사고, 출력 불균형, 원자로 불시 정지를 야기할 수 있으며, 최악의 경우 방사성 물질 누출사고로 까지 이어질 수 있다.
원자력 발전소의 연료는 신연료와 사용후연료 중 일부가 재장전 된다. 연료는 고유번호가 부여되어 있으며 농축도, 연소도 등 핵설계에 따른 정확한 위치에 장전되어야 한다. 이를 위하여 신연료의 저장위치, 사용후연료의 재장전 연료와 방출연료 저장위치는 계획적 수행을 통하여 이루어진다. 예시를 통하여 보다 상세히 설명하면, OPR1000 원전의 경우 원자로에는 177다발의 연료가, APR1400 원전의 경우 원자로에는 241다발의 연료가 장전된다. 연료 건물의 연료 저장랙은 약 1400개가 구비된다. 원전연료를 원자로에 재장전 할 경우 신연료를 인수하여 연료건물에 저장하거나, 원자로의 연료를 인출하여 연료건물에 저장하거나, 연료건물의 신연료와 재사용 연료를 원자로에 장전하는 등 원전연료의 이동 순서도를 작성해야 한다.
OPR1000 원전의 경우 약 484회의 연료 이동이, APR1400의 경우 약 642회의 연료이동이 발생하기 때문에 원전연료 이동순서도 작성 및 검증에는 많은 시간과 노력이 소모된다. 종래의 경우 원전연료의 이동검증은 수작업으로 이루어졌다. 종래에는 사람이 수작업으로 원전연료 이동을 검증함에 따라 인적실수의 가능성이 내재됨과 동시에 막대한 소요시간이 요구되었다. 따라서, 원자력발전소는 경수로 원전의 안전하고 효율적인 원전연료 이동관리를 위한 방법이 요구되고 있는 실정이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국등록특허 제1560488호
본 발명은 원전연료의 이동검증을 신속하고 정확하게 수행할 수 있도록 원전연료의 인출 및 장전을 위한 모든 연료 이동업무를 시뮬레이션 할 수 있는 방법 및 프로그램을 제공하고자 한다.
상기 목적을 달성하기 위하여 본 발명은, 원전연료의 시뮬레이션 방법에 있어서, 원전연료의 이동순서에 관한 데이터를 입력받는 (a)단계; 데이터에서 원전연료의 정보와 원전연료의 인출 지역에 대한 좌표와 원전연료의 장전 지역에 대한 좌표를 추출하는 (b)단계; 및 (b)단계에서 추출된 정보를 데이터의 순서도에 따라 시뮬레이션하는 (c)단계를 포함한 것을 일 특징으로 한다.
바람직하게, 본 발명에 따른 (c)단계는 시뮬레이션 과정에서 원전연료의 인출 오류를 검출하는 검증 1단계; 및 시뮬레이션 과정에서 원전연료의 장전 오류를 검출하는 검증 2단계를 포함할 수 있다.
바람직하게, 본 발명에 따른 (c)단계는 시뮬레이션 과정에서 원전연료의 이동중 발생될 수 있는 오류를 검출하는 검증 3단계를 더 포함하고, 검증 3단계는 원자로 재장전 기중기의 마스터 방향을 검토하여 기중기와 벽면의 간섭 여부를 검출할 수 있다.
바람직하게, 본 발명에 따른 (c)단계는 시뮬레이션 과정에서 원전연료가 벽면이나 다른 연료에 접하여 장전되어 있지 않은 단독직립상태를 검출하는 검증 4단계를 더 포함할 수 있다.
또한, 본 발명은 원전연료 시뮬레이션이 수행되는 컴퓨터 프로그램에 있어서, 원전연료의 이동순서에 관한 데이터가 저장되는 데이터베이스와 데이터베이스에 저장된 데이터를 시뮬레이션하는 프로세서와 시뮬레이션을 디스플레이하는 표시부가 구비된 컴퓨터에, 데이터베이스에 원전연료의 이동순서를 설정한 데이터를 입력받는 (a)단계; 프로세서가 데이터에서 원전연료의 정보와 원전연료의 인출 대상에 대한 좌표와 원전연료의 장전 대상에 대한 좌표를 추출하는 (b)단계; 프로세서가 (b)단계에서 추출된 정보를 데이터의 순서도에 따라 시뮬레이션하는 (c)단계; 및 표시부가 시뮬레이션의 결과 및 오류를 디스플레이하는 (d)단계를 실행시키는 것을 다른 특징으로 한다.
본 발명에 따르면, 방대한 양의 원전연료 이동순서에 관한 데이터를 입력받아 순서도에 따른 시뮬레이션 중 발생될 수 있는 오류를 시스템적으로 검증하여, 원전연료의 인출 및 장전이 요구되는 모든 연료 이동업무를 정확하고 신속하게 검증할 수 있는 이점이 있다. 이는 호기별 주기마다 요구되는 약 3Man-day의 업무량을 3Man-hour로 가능하게 하여 이동검증의 작업시간을 현저히 절감시킬 수 있다.
또한, 본 발명의 적용으로 원전연료의 이동검증시 인적실수가 배제되며, 기존의 하드웨어적인 구조물인 연료현황판을 소프트웨어적으로 관리할 수 있고, 수기로 작성했던 연료 이동현황을 자동화함으로써 전달 및 보고의 편의성이 증대될 수 있다.
도 1은 본 발명의 실시예에 따른 원전연료 시뮬레이션 방법의 순서도를 나타낸다.
도 2는 본 실시예에 따른 (a)단계에서 입력받는 원전연료 이동순서에 관한 데이터의 일 실시예를 나타낸다.
도 3a 내지 도 3c는 본 실시예에 따른 원전연료가 위치하는 곳을 도식화한 도면을 나타낸다.
도 4는 본 실시예에 따른 검증 1단계의 예시적 코딩을 나타낸다.
도 5는 본 실시예에 따른 검증 2단계의 예시적 코딩을 나타낸다.
도 6은 본 실시예에 따른 검증 3단계의 예시적 코딩을 나타낸다.
도 7은 본 실시예에 따른 단독직립상태의 예시를 나타낸다.
도 8은 본 실시예에 따른 검증 4단계의 예시적 코딩을 나타낸다.
도 9는 본 실시예에 따른 조작 모듈 UI의 실시예를 나타낸다.
도 10은 본 실시예에 따른 (d)단계에서 연료이동 시뮬레이션을 디스플레이한 예시도를 나타낸다.
이하, 첨부된 도면들에 기재된 내용들을 참조하여 본 발명을 상세히 설명한다. 다만, 본 발명이 예시적 실시 예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일 참조부호는 실질적으로 동일한 기능을 수행하는 부재를 나타낸다.
본 발명의 목적 및 효과는 하기의 설명에 의해서 자연스럽게 이해되거나 보다 분명해 질 수 있으며, 하기의 기재만으로 본 발명의 목적 및 효과가 제한되는 것은 아니다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다.
도 1은 본 발명의 실시예에 따른 원전연료 시뮬레이션 방법의 순서도를 나타낸다. 도 1을 참조하면, 원전연료 시뮬레이션 방법은 데이터를 입력 받는 (a)단계(S10), 좌표를 추출하는 (b)단계(S30), 원전연료의 이동을 시뮬레이션하는 (c)단계(S50), 및 시뮬레이션 결과를 디스플레이 하는 (d)단계(S70)를 포함할 수 있다.
(a)단계(S10)는 원전연료의 이동순서에 관한 데이터를 입력받을 수 있다. 도 2는 (a)단계(S10)에서 입력받는 원전연료 이동순서에 관한 데이터의 일 실시예를 나타낸다. 도 2를 참조하면, 데이터에는 연료가 이동되는 순서, 원전연료 번호, 인출에 관한 정보, 장전에 관한 정보, 시간 등의 정보가 기록된다. 설명의 이해를 돕기 위해 원전연료가 위치하는 곳을 도식화하면 도 3a 내지 도 3c에 도시된 바와 같이 표현할 수 있다.
도 3a 내지 도 3c를 참조하면, 본 실시예로 원전연료의 이동은 NFS에 신연료 저장, NFS에 저장된 신연료를 SFPR에 이동저장, Rx에서 SFPR로 사용후연료 이동저장, 삽입체 교환, SFPR에서 Rx로 신연료와 재장전연료 이동 장전과 같은 흐름으로 이루어질 수 있다. 원전연료는 크게 신연료, 사용후연료로 분리될 수 있으며 연료의 종류와 저장 랙의 종류에 따라 이동 순서를 정확하게 준수해야 한다.
모든 연료의 이동은 원전연료의 이동순서도를 사전에 작성하고 검토한 후 수행된다. 도 2와 같은 이동순서도는 원전의 종류마다 작성되며 일반적으로는 그 양이 방대하다. 예시로서, 원전연료의 이동순서에 관한 데이터는 OPR1000 원전의 경우 약 60페이지의 분량이고, APR14000의 경우 약 80페이지의 분량에 이른다.
연료이동 순서도는 작업자 및 관리자에 의해 연료 이동전 세밀히 검토된다. 후술하게 될 시뮬레이션의 각 단계는 원전연료의 이동검증에 원자로와 사용후연료 저장랙의 각 좌표별 검증시 막대한 시간이 소요되는 어려움을 해결하고자, (a)단계(S10)에서 입력받은 데이터를 STEP BY STEP으로 분석하며, 원자로, 수송차, 사용후연료 저장랙, 신연료 승강기, 신연료 저장고 등의 좌표에 연료이동을 애니메이션으로 표현하고, 이동오류 유무를 검증한다.
(b)단계(S30)는 (a)단계(S10)에서 입력받은 이동순서도의 데이터에서 원전연료의 정보와 원전연료의 인출 지역에 대한 좌표와 원전연료의 장전 지역에 대한 좌표를 추출할 수 있다. 원전연료의 정보는 신연료 또는 저장후연료에 관한 정보일 수 있다. 도 2를 참조할 때 이러한 원전연료의 정보는 연료에 관한 고유번호로 표기되어 분류될 수 있다.
원전연료의 인출 지역에 대한 좌표란, 연료를 인출하고자 하는 대상 및 연료의 인출시 사용될 장비에 관한 정보로서, 노심, 신연료저장고, 사용후 연료 저장조, 격납건물 직립기, 연료건물 직립기, 신연료 승강기에 관한 위치 정보일 수 있다. 원전연료의 장전 지역에 대한 좌표란, 연료를 장전 및 연료의 장전시 사용될 장비에 관한 정보로서, 노심, 신연료저장고, 사용후 연료 저장조, 격납건물 직립기, 연료건물 직립기, 신연료 승강기에 관한 위치 정보를 포함할 수 있다.
(c)단계(S50)는 (b)단계(S30)에서 추출된 정보를 데이터의 순서도에 따라 시뮬레이션할 수 있다. (c)단계(S50)는 추출된 이동순서도의 데이터를 이용하여 신연료 전진배치, 인출, 삽입체 교환, 장전 등의 다양한 연료이동 상황을 시뮬레이션할 수 있다.
연료 이동의 기본 단위는 인출과 장전으로 분류되며, (c)단계(S50)는 이동순서도의 데이터에서 순서 항목을 순차적으로 읽으면서 인출 및 장전 사항을 검토한다. 이 경우, (c)단계(S50)는 4가지의 이동검증 단계를 수행할 수 있다.
(c)단계(S50)는 검증 1단계(S501), 검증 2단계(S503), 검증 3단계(S505), 검증 4단계(S507)를 포함할 수 있다.
검증 1단계(S501)는 시뮬레이션 과정에서 원전연료의 인출 오류를 검출할 수 있다. 도 4는 검증 1단계(S501)의 예시적 코딩을 나타낸다.
도 4에 도시된 바와 같이 검증 1단계(S501)는 연료의 인출시 순서도에 표기된 연료의 존재유무를 체크하고, 해당 연료가 없거나 다른 연료가 있으면 오류 메시지를 표시한다.
검증 2단계(S503)는 시뮬레이션 과정에서 원전연료의 장전 오류를 검출할 수 있다. 도 5는 검증 2단계(S503)의 예시적 코딩을 나타낸다.
도 5에 도시된 바와 같이, 검증 2단계(S503)는 연료의 장전좌표에서 저장이 가능한지 판단하며 장전 위치가 비어있지 않으면 오류 메시지를 표시한다.
검증 3단계(S505)는 시뮬레이션 과정에서 원전연료의 이동중 오류를 검출할 수 있다. 원전연료의 이동중 발생할 수 있는 오류의 사항으로 기중기와 벽면의 간섭 여부가 될 수 있다. 도 6은 검증 3단계(S505)의 예시적 코딩을 나타낸다.
도 6에 도시된 바와 같이 검증 3단계(S505)는 원자로 재장전 기중기의 마스터 방향을 검토하여 기중기와 벽면의 간섭이 예상되는지 판단한 후 경고 메시지를 표시할 수 있다.
검증 4단계(S507)는 시뮬레이션 과정에서 원전연료가 벽면이나 다른 연료에 접하여 장전되어 있지 않은 단독직립상태를 검출할 수 있다. 도 7은 단독직립상태의 예시를 나타내며, 도 8은 검증 4단계(S507)의 예시적 코딩을 나타낸다.
도 7 및 도 8에 도시된 같이 검증 4단계(S507)는 연료의 인출 또는 장전이 어려운 원자로의 상태를 사전에 판단할 수 있다.
(c)단계(S50)는 조작 모듈을 통하여 순서도의 선택, 시뮬레이션 속도 등을 조정할 수 있다. 도 9는 조작 모듈 UI의 실시예를 나타낸다.
(d)단계(S70)는 (c)단계(S50)에서 수행되는 시뮬레이션을 실시간으로 디스플레이 할 수 있다. (d)단계(S70)는 현재 진행중인 순서도의 STEP와 연료번호, 인출위치, 장전위치, 판넬 등의 표기항목을 표시할 수 있다. 원전연료 이동검증의 실시간 표기는 연료이동 작업시 작업자에게 정보 전달의 가시성을 확보하며, 이를 이동현황판으로 이용할 수 있어 수기 작성의 업무가 요구되지 않는다. 도 10은 (d)단계(S70)에서 연료이동 시뮬레이션을 디스플레이한 실시예의 모습을 나타낸다.
본 실시예의 다른 태양으로 전술한 원전연료의 시뮬레이션 방법은 컴퓨터 프로그램으로 구현될 수 있다. 원전연료 시뮬레이션이 수행되는 컴퓨터 프로그램은, 원전연료의 이동순서에 관한 데이터가 저장되는 데이터베이스와 데이터베이스에 저장된 데이터를 시뮬레이션하는 프로세서와 시뮬레이션을 디스플레이하는 표시부가 구비된 컴퓨터에, 데이터베이스에 원전연료의 이동순서를 설정한 데이터를 입력받는 (a)단계(S10); 프로세서가 데이터에서 원전연료의 정보와 원전연료의 인출 대상에 대한 좌표와 원전연료의 장전 대상에 대한 좌표를 추출하는 (b)단계(S30); 프로세서가 (b)단계(S30)에서 추출된 정보를 데이터의 순서도에 따라 시뮬레이션하는 (c)단계(S50); 및 표시부가 시뮬레이션의 결과 및 오류를 디스플레이하는 (d)단계(S70)를 실행할 수 있다. 프로그램의 각 수행 단계는 도 1에서 전술한 시뮬레이션 방법이 하드웨어와 연계되어 실행됨을 의미하여 각 단계의 자세한 설명은 중복되는 바 생략한다.
이상에서 대표적인 실시예를 통하여 본 발명을 상세하게 설명하였으나, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리 범위는 설명한 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태에 의하여 정해져야 한다.
[부호의 설명]
S10: 데이터 입력 단계
S30: 좌표 추출 단계
S50: 시뮬레이션 단계
S501: 검증 1단계
S503: 검증 2단계
S505: 검증 3단계
S507: 검증 4단계
S70: 디스플레이 단계

Claims (5)

  1. (a) 원전연료의 이동순서에 관한 데이터를 입력받는 단계;
    (b) 상기 데이터에서 상기 원전연료의 정보와 상기 원전연료의 인출 지역에 대한 좌표와 상기 원전연료의 장전 지역에 대한 좌표를 추출하는 단계; 및
    (c) 상기 (b)단계에서 추출된 정보를 상기 데이터의 순서도에 따라 시뮬레이션하는 단계를 포함한 것을 특징으로 하는 원전연료의 시뮬레이션 방법.
  2. 제 1 항에 있어서,
    상기 (c)단계는,
    시뮬레이션 과정에서 상기 원전연료의 인출 오류를 검출하는 검증 1단계; 및
    시뮬레이션 과정에서 상기 원전연료의 장전 오류를 검출하는 검증 2단계를 포함한 것을 특징으로 하는 원전연료의 시뮬레이션 방법.
  3. 제 1 항에 있어서,
    상기 (c)단계는,
    시뮬레이션 과정에서 상기 원전연료의 이동중 발생될 수 있는 오류를 검출하는 검증 3단계를 포함하고,
    상기 검증 3단계는,
    원자로 재장전 기중기의 마스터 방향을 검토하여 기중기와 벽면의 간섭 여부를 검출하는 것을 특징으로 하는 원전연료의 시뮬레이션 방법.
  4. 제 1 항에 있어서,
    상기 (c)단계는,
    시뮬레이션 과정에서 원전연료가 벽면이나 다른 연료에 접하여 장전되어 있지 않은 단독직립상태를 검출하는 검증 4단계를 포함한 것을 특징으로 하는 원전연료의 시뮬레이션 방법.
  5. 원전연료의 이동순서에 관한 데이터가 저장되는 데이터베이스와 상기 데이터베이스에 저장된 데이터를 시뮬레이션하는 프로세서와 시뮬레이션을 디스플레이하는 표시부가 구비된 컴퓨터에,
    (a) 상기 데이터베이스에 원전연료의 이동순서를 설정한 데이터를 입력받는 단계;
    (b) 상기 프로세서가 상기 데이터에서 상기 원전연료의 정보와 상기 원전연료의 인출 대상에 대한 좌표와 상기 원전연료의 장전 대상에 대한 좌표를 추출하는 단계;
    (c) 상기 프로세서가 상기 (b)단계에서 추출된 정보를 상기 데이터의 순서도에 따라 시뮬레이션하는 단계; 및
    (d) 상기 표시부가 시뮬레이션의 결과 및 오류를 디스플레이하는 단계를 실행시키기 위하여 매체에 저장된 컴퓨터 프로그램.
PCT/KR2016/008452 2015-10-28 2016-08-01 원전연료의 시뮬레이션을 위한 컴퓨터 프로그램 및 이에 적용된 원전연료의 시뮬레이션 방법 WO2017073890A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/771,611 US20180315515A1 (en) 2015-10-28 2016-08-01 Computer Program for Simulating Nuclear Fuels and Nuclear Fuel Simulation Method Applied Thereto
CN201680062712.3A CN108352204A (zh) 2015-10-28 2016-08-01 用于模拟核燃料的计算机程序及应用于该计算机程序的核燃料模拟方法
EP16860074.0A EP3370237A4 (en) 2015-10-28 2016-08-01 COMPUTER PROGRAM FOR SIMULATING NUCLEAR FUELS AND METHOD FOR SIMULATING NUCLEAR FUELS USED THEREIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0150230 2015-10-28
KR1020150150230A KR101698335B1 (ko) 2015-10-28 2015-10-28 원전연료의 시뮬레이션을 위한 컴퓨터 프로그램 및 이에 적용된 원전연료의 시뮬레이션 방법

Publications (1)

Publication Number Publication Date
WO2017073890A1 true WO2017073890A1 (ko) 2017-05-04

Family

ID=57989839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008452 WO2017073890A1 (ko) 2015-10-28 2016-08-01 원전연료의 시뮬레이션을 위한 컴퓨터 프로그램 및 이에 적용된 원전연료의 시뮬레이션 방법

Country Status (5)

Country Link
US (1) US20180315515A1 (ko)
EP (1) EP3370237A4 (ko)
KR (1) KR101698335B1 (ko)
CN (1) CN108352204A (ko)
WO (1) WO2017073890A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101896248B1 (ko) 2018-07-03 2018-09-07 주식회사 바론시스템 원자력발전소의 재난 대응 모의훈련 시나리오 편집 시스템
KR20200062681A (ko) 2018-11-27 2020-06-04 (주)아레스 재난대응 훈련체계에 사용되는 모의객체 심벌 표준화시스템
KR102191793B1 (ko) 2020-01-07 2020-12-16 (주)아레스 방사능 재난 대응 모의 훈련 시스템
CN113433849A (zh) * 2021-06-04 2021-09-24 中国核电工程有限公司 一种应用于装卸料机的运行数据采集系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040220787A1 (en) * 2003-03-31 2004-11-04 Russell William Earl Method and arrangement for developing core loading patterns in nuclear reactors
JP2006010344A (ja) * 2004-06-22 2006-01-12 Toshiba Corp 燃料取替機制御装置および燃料取替機制御方法
JP2009156632A (ja) * 2007-12-25 2009-07-16 Global Nuclear Fuel-Japan Co Ltd 炉心燃料移動支援装置
JP2010112928A (ja) * 2008-11-10 2010-05-20 Global Nuclear Fuel-Japan Co Ltd 原子炉の燃料移動計画評価システム及び燃料移動計画評価方法
KR20120034975A (ko) * 2010-10-04 2012-04-13 한전케이피에스 주식회사 핵연료 취급 기중기 시뮬레이터

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923717A (en) * 1996-01-29 1999-07-13 General Electric Company Method and system for determining nuclear core loading arrangements
US6748348B1 (en) * 1999-12-30 2004-06-08 General Electric Company Design method for nuclear reactor fuel management
US6931090B2 (en) * 2003-02-25 2005-08-16 Westinghouse Electric Company Llc Method of establishing a nuclear reactor core fuel assembly loading pattern
KR101560488B1 (ko) 2014-07-22 2015-10-15 한전케이피에스 주식회사 원전연료 사면 검사장비용 셋업장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040220787A1 (en) * 2003-03-31 2004-11-04 Russell William Earl Method and arrangement for developing core loading patterns in nuclear reactors
JP2006010344A (ja) * 2004-06-22 2006-01-12 Toshiba Corp 燃料取替機制御装置および燃料取替機制御方法
JP2009156632A (ja) * 2007-12-25 2009-07-16 Global Nuclear Fuel-Japan Co Ltd 炉心燃料移動支援装置
JP2010112928A (ja) * 2008-11-10 2010-05-20 Global Nuclear Fuel-Japan Co Ltd 原子炉の燃料移動計画評価システム及び燃料移動計画評価方法
KR20120034975A (ko) * 2010-10-04 2012-04-13 한전케이피에스 주식회사 핵연료 취급 기중기 시뮬레이터

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3370237A4 *

Also Published As

Publication number Publication date
EP3370237A1 (en) 2018-09-05
EP3370237A4 (en) 2019-06-12
US20180315515A1 (en) 2018-11-01
KR101698335B1 (ko) 2017-01-23
CN108352204A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2017073890A1 (ko) 원전연료의 시뮬레이션을 위한 컴퓨터 프로그램 및 이에 적용된 원전연료의 시뮬레이션 방법
CN102799529B (zh) 一种动态的二进制代码测试用例生成方法
CN100583920C (zh) 测试脚本的生成方法及装置和测试方法及装置及系统
CN106325970A (zh) 编译方法和编译系统
CN101968770A (zh) 一种可复用的嵌入式软件测试开发方法和系统
CN106201882A (zh) 基于Jenkins的操作系统自动化测试方法及系统
CN103389705A (zh) 操作监控系统和操作监控方法
CN103631573A (zh) 可迁移函数执行时间的获得方法及系统
CN112732567B (zh) 基于ip的mock数据测试方法、装置、电子设备及存储介质
EP3907680A1 (en) Material assignment method and system, and computer device readable storage medium
WO2020032320A1 (ko) 원자력 발전소 지능형 일반기기 배치 도면 표현 및 활용 장치
WO2017073886A1 (ko) 원전연료의 이동 관리를 위한 프로그램 및 이에 적용된 원전연료의 이동 관리 방법
CN106817469A (zh) 一种模拟人工操作的终端软件测试方法及系统
CN104834586A (zh) 安卓界面自动化测试方法、装置及系统
CN113805861B (zh) 基于机器学习的代码生成方法、代码编辑系统及存储介质
WO2019230997A1 (ko) 창 세트의 열 관류율 시뮬레이션 자동화 평가를 위한 개방형 bim 정보의 자동 가공 시스템 및 방법
CN111666216B (zh) 一种智能合约分析方法及装置
CN103955424B (zh) 一种虚拟化嵌入式二进制软件缺陷检测系统
CN113868137A (zh) 埋点数据的处理方法、装置、系统和服务器
CN111400190A (zh) 自动化测试流程生成方法、装置及计算机可读存储介质
CN101510241A (zh) 整形溢出漏洞的二进制检测定位装置
WO2023075027A1 (ko) 전자도면자동생성장치 및 방법, 그리고 그 방법이 기록된 컴퓨터 판독매체
WO2022086081A1 (ko) 원전 설비용 시공 시뮬레이션 시스템 및 방법
CN111026307B (zh) 一种用于快速关联图形组态工具中图元的方法及装置
Valkama et al. On design and development of additional End-Effectors for the Cassette Multifunctional Mover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15771611

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016860074

Country of ref document: EP