WO2017073814A1 - 자속집중형 회전자 및 그를 갖는 전동기 - Google Patents

자속집중형 회전자 및 그를 갖는 전동기 Download PDF

Info

Publication number
WO2017073814A1
WO2017073814A1 PCT/KR2015/011534 KR2015011534W WO2017073814A1 WO 2017073814 A1 WO2017073814 A1 WO 2017073814A1 KR 2015011534 W KR2015011534 W KR 2015011534W WO 2017073814 A1 WO2017073814 A1 WO 2017073814A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnetic flux
motor
iron core
permanent magnet
Prior art date
Application number
PCT/KR2015/011534
Other languages
English (en)
French (fr)
Inventor
이정종
서정무
유세현
정인성
홍정표
정재식
Original Assignee
전자부품연구원
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원, 한양대학교 산학협력단 filed Critical 전자부품연구원
Publication of WO2017073814A1 publication Critical patent/WO2017073814A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a magnetic flux concentrated motor, and more particularly, to a magnetic flux concentrated rotor and an electric motor having the improved torque density by increasing the magnetic flux of the rotor.
  • an electric vehicle that supplies electrical energy and an electric motor that converts electrical energy supplied from the battery into mechanical energy for driving.
  • a permanent magnet electric motor is used as an electric motor of an electric vehicle together with an induction motor.
  • the flux-focused motor has a structure in which a permanent magnet is radially inserted into the rotor core around a rotating shaft.
  • an object of the present invention is to provide a magnetic flux-focused rotor and an electric motor having the same, which has improved torque density by increasing the magnetic flux of the rotor in a limited rotor size.
  • the present invention provides a rotor of a magnetic flux concentrated motor including a rotor iron core and a plurality of permanent magnets.
  • the rotor iron core is inserted into the rotation axis in the center.
  • the plurality of permanent magnets may be radially inserted into the rotor iron core about the rotating shaft, and have a trapezoidal shape inserted into the rotor iron core obliquely with respect to the axial direction of the rotating shaft.
  • each of the plurality of permanent magnets one side close to the rotation axis is located in parallel to the long side of the neighboring permanent magnet, the other side is the circle of the rotor core It can be located close to the main surface.
  • the plurality of permanent magnets, the other side may be located on the circumferential surface of the rotor core.
  • the plurality of permanent magnets may be inserted in the rotor iron core obliquely at an angle between 60 and 80 degrees with respect to the axial direction of the rotating shaft.
  • the plurality of permanent magnets may be permanent magnets of ferrite material.
  • the present invention provides a magnetic flux-focused electric motor including the above-described rotor, and a rotor insertion hole in which the rotor is inserted in the center portion, the stator is wound around the inner peripheral surface of the rotor insertion hole do.
  • the trapezoidal permanent magnet into the rotor iron core obliquely to the axial direction of the rotation axis, it is possible to increase the thickness and length of the permanent magnet inserted into the rotor iron core to improve the torque density.
  • the torque density can be improved by increasing the magnetic flux of the rotor in the limited rotor size.
  • the permanent magnet of the magnetic flux-focused rotor according to the present invention is located on one side close to the rotation axis parallel to the long side of the neighboring magnet, and the other side is located close to the circumferential surface of the rotor core, the rotor core It can maximize the thickness and length of the permanent magnet inserted into the.
  • 1 is a graph showing a change in no-load counter electromotive force according to a change in thickness of a permanent magnet in a flux-intensive motor.
  • FIG. 2 is a graph showing a change in no-load counter electromotive force according to a change in cross-sectional area of a permanent magnet in a flux-intensive motor.
  • FIG. 3 is a graph showing a change in no-load counter electromotive force according to a change in the pore cross-sectional area of a permanent magnet in a flux-intensive motor.
  • Figure 4 is a plan view showing a rotor of the flux-intensive motor according to an embodiment of the present invention.
  • FIG. 5 is a plan view illustrating a flux-intensive motor including the rotor of FIG. 4.
  • FIG. 6 is a view illustrating a flux concentration type motor according to a comparative example and an embodiment.
  • FIG. 7 is a graph showing counter electromotive force measured when driving the flux-intensive motor of FIG. 6.
  • the mechanical output of the motor is determined by the amount of magnetic flux generated by the rotor and the amount of magnetic flux generated by the stator.
  • a method of increasing the thickness of the permanent magnet, increasing the cross-sectional area, and increasing the void cross-sectional area may be used as a design direction of the rotor structure for increasing the amount of linkage flux per pole.
  • the rare earth permanent magnet can be replaced by the ferrite permanent magnet as a permanent magnet.
  • the no-load counter electromotive force of the flux-intensive motor can be estimated from Equation 1 below.
  • 1 is a graph showing a change in no-load counter electromotive force according to a change in thickness of a permanent magnet in a flux-intensive motor.
  • 2 is a graph showing a change in no-load counter electromotive force according to a change in cross-sectional area of a permanent magnet in a flux-intensive motor.
  • 3 is a graph showing a change in no-load counter electromotive force according to a change in the pore cross-sectional area of a permanent magnet in a flux-intensive motor.
  • the no-load counter electromotive force is increased by increasing the thickness, the cross-sectional area, or the void cross-sectional area of the permanent magnet.
  • the no-load counter electromotive force is more strongly related to the cross-sectional area of the permanent magnet than the thickness or pore cross-sectional area of the permanent magnet.
  • the magnetic flux concentrated rotor 20 and the magnetic flux having the increased cross-sectional area of the permanent magnet 22 inserted into the rotor core 21 Provided is a concentrated electric motor 100.
  • FIG. 4 is a plan view showing the rotor 20 of the flux-intensive motor according to an embodiment of the present invention.
  • FIG. 5 is a plan view illustrating a magnetic flux concentrated electric motor 100 including the rotor 20 of FIG. 4.
  • the magnetic flux-focused electric motor 100 includes a rotor 20 and a stator 10 to which the rotor 20 is rotatably inserted.
  • a rotor insertion hole 18 is formed in a central portion thereof, and a coil 16 is wound around an inner circumferential surface of the rotor insertion hole 18.
  • the rotor 20 is inserted into the rotor insertion hole 18 of the stator 10 and is rotatably installed.
  • the stator 10 includes a stator iron core 11 having a rotor insertion hole 18 and a coil 16 wound along an inner circumferential surface of the rotor insertion hole 18 of the stator iron core 11.
  • the inner diameter of the rotor insertion hole 18 is formed larger than the outer diameter of the rotor 20, the difference between the inner diameter of the rotor insertion hole 18 and the outer diameter of the rotor 20 forms a void.
  • the stator core 11 may be formed by stacking a plurality of stator iron plates 12 having the same shape in the axial direction.
  • the stator iron core 11 has a rotor insertion hole 18 in which a rotor 20 can be inserted and positioned.
  • the stator iron core 11 is formed with a plurality of teeth 14 at regular intervals along the inner circumferential surface.
  • the plurality of teeth 14 protrude from the inner circumferential surface of the stator iron core 11 toward the central axis of the stator iron core 11 and are disposed close to the outer circumferential surface of the rotor 20 inserted and installed in the rotor insertion hole 18. do.
  • a silicon iron plate may be used as the stator plate 12.
  • the inside of the virtual surface formed by the end of the tooth 14 inside the stator iron core 11 forms the rotor insertion hole 18.
  • the coil 16 is wound around the plurality of teeth 14, and when AC power is applied, the coil 16 generates a rotating magnetic flux due to the structure of the stator 10.
  • the rotating shaft 30 is rotatably installed in the casing (shell) or shell (shell) forming the case of the magnetic flux-intensive motor 100 via a bearing.
  • the rotor 20 is a rotor 20 of the magnetic flux concentrated electric motor 100 which is inserted into the rotor insertion hole 18 of the stator 10 and is rotatably installed.
  • the rotor core 21 and the rotor It includes a plurality of permanent magnets 22 inserted into the electron core 21.
  • the rotor core 21 has a rotating shaft insertion hole 25 in which the rotating shaft 30 is inserted in the center portion, and a plurality of permanent magnet insertion holes 26 are formed around the rotating shaft insertion hole 25. have.
  • the plurality of permanent magnets 22 are inserted into the plurality of permanent magnet insertion holes 26 to form the N pole and the S pole, respectively.
  • the plurality of permanent magnets 22 are inserted into the rotor iron core 21 radially about the rotation shaft 30, and are inserted into the rotor iron core 21 obliquely with respect to the axial direction of the rotation shaft 30.
  • Each of the plurality of permanent magnets 22 has a trapezoidal cross section.
  • the cross section means a surface perpendicular to the axial direction of the rotation shaft 30. That is, the permanent magnet 22 includes a lower side 23, an upper side 27, both sides connecting the lower side 23 and the upper side 27. Both sides of the permanent magnet 22 correspond to one side 28 near the rotating shaft 30 and the other side 29 near the circumferential surface of the rotor core 21.
  • Each of the plurality of permanent magnets 22 has one side surface 28 adjacent to the rotation shaft 30 parallel to the long side of the neighboring permanent magnet 22, that is, the lower side 23, and the other side surface 29 is It is located close to the circumferential surface of the rotor iron core (21). The reason why the plurality of permanent magnets 22 are inserted into the rotor iron core 21 is to maximize the cross-sectional area occupied by the plurality of permanent magnets 22 in the rotor iron core 21.
  • the material of the permanent magnets 22 can be replaced with a ferrite material instead of the rare earth generally used.
  • the permanent magnet 22 can be used as a rare earth permanent magnet.
  • the permanent magnet 22 may be inserted into the rotor core 21 obliquely at an angle between 0 and 90 degrees with respect to the axial direction of the rotation shaft 30.
  • the permanent magnet 22 is inserted into the rotor iron core 21 obliquely at an angle between 60 and 80 degrees.
  • the distance between the permanent magnets 22 becomes farther away from the center of the rotor 20 toward the outside of the rotor 20
  • the cross-sectional area occupied by the permanent magnets 22 may be wider than that of the rectangular shape.
  • the permanent magnet inserted into the rotor iron core 21 ( The torque density can be improved by increasing the thickness and length of 22).
  • the torque density can be improved by increasing the amount of magnetic flux of the rotor 20 in the limited rotor 20 size.
  • the permanent magnet 22 of the magnetic flux-focused rotor 20 is located in parallel with the lower side 23 of the neighboring permanent magnet 22, one side adjacent to the rotating shaft 21, the other side Since it is located close to the circumferential surface of the rotor core 21, it is possible to maximize the thickness and length of the permanent magnet 22 inserted into the rotor core 21.
  • FIG. 6 is a view showing a magnetic flux concentrated electric motor according to a comparative example and an embodiment.
  • FIG. 7 is a graph showing counter electromotive force measured when driving the flux-intensive motor of FIG. 6.
  • Comparative Example 2 includes a rotor to increase the thickness of the permanent magnet on the basis of Comparative Example 1.
  • Comparative Example 2 is equipped with a rotor to increase the length of the permanent magnet on the basis of Comparative Example 1.
  • the permanent magnet is divided into two parts and the structure is inserted into the rotor core in an L shape.
  • the magnetic flux-intensive motor according to the present embodiment has a larger cross-sectional area increase of the permanent magnet compared to Comparative Examples 2 and 3, and therefore, it is determined that the counter electromotive force is the best in this embodiment.
  • stator 11 stator iron core
  • stator plate 14 tooth

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

본 발명은 자속집중형 회전자 및 그를 갖는 전동기에 관한 것으로, 회전자의 자속량 증가를 통해 토크밀도를 향상시키기 위한 것이다. 본 발명에 따른 자속집중형 전동기는 회전자와, 중심 부분에서 회전자가 삽입 설치되는 회전자 삽입구멍이 형성되어 있고, 회전자 삽입구멍의 내주면에 코일이 권선된 고정자를 포함한다. 이때 회전자는 중심에 회전축이 삽입되는 회전자 철심과, 회전축을 중심으로 방사형으로 회전자 철심에 삽입되되 회전축의 축 방향에 대해서 비스듬하게 회전자 철심에 삽입되는 사다리꼴 형태의 복수의 영구자석을 포함한다.

Description

자속집중형 회전자 및 그를 갖는 전동기
본 발명은 자속집중형 전동기에 관한 것으로, 더욱 상세하게는 회전자의 자속량 증가를 통해 토크밀도를 향상시킨 자속집중형 회전자 및 그를 갖는 전동기에 관한 것이다.
최근 화석연료의 고갈과, 화석연료의 사용에 따른 환경 문제가 부각됨에 따라 전기자동차에 대한 관심 및 수요가 증가하고 있다. 전기자동차의 상용화를 위해 중요한 기술적 요소는 전기에너지를 공급하는 배터리와, 배터리로부터 공급되는 전기에너지를 구동을 위한 기계적에너지로 전환시키는 전동기가 있다.
전동기를 전기자동차에 사용하기 위해서는 고효률화와 고출력화가 필요하다. 이때 전기자동차의 전동기로는 유도전동기와 함께 영구자석형 전동기가 사용되고 있다.
영구자석형 전동기 중 회전자 내에 영구자석이 삽입(매립)되는 매립형 영구자석 전동기(Interior Permanent Magnet Motor)가 있다. 매립형 영구자석 전동기 중 자속집중형 전동기는 회전축을 중심으로 영구자석이 방사형으로 회전자 철심에 삽입된 구조를 갖는다.
이러한 자속집중형 전동기에 있어서, 토크밀도를 향상시키기 위한 다양한 구조가 연구 및 소개되고 있다.
[선행기술문헌]
[특허문헌]
한국등록특허공보 제10-1244574호(2013.03.11.)
따라서 본 발명의 목적은 제한된 회전자 크기에서 회전자의 자속량 증가를 통해 토크밀도를 향상시킨 자속집중형 회전자 및 그를 갖는 전동기를 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 회전자 철심 및 복수의 영구자석을 포함하는 자속집중형 전동기의 회전자를 제공한다. 상기 회전자 철심은 중심에 회전축이 삽입된다. 상기 복수의 영구자석은 상기 회전축을 중심으로 방사형으로 상기 회전자 철심에 삽입되되, 상기 회전축의 축 방향에 대해서 비스듬하게 상기 회전자 철심에 삽입되는 사다리꼴 형태의 형태를 갖는다.
본 발명에 따른 자속집중형 전동기의 회전자에 있어서, 상기 복수의 영구자석은 각각, 상기 회전축에 근접한 일측면이 이웃하는 영구자석의 장변에 평행하게 위치하며, 타측면이 상기 회전자 철심의 원주면에 근접하게 위치할 수 있다.
본 발명에 따른 자속집중형 전동기의 회전자에 있어서, 상기 복수의 영구자석은 각각, 상기 타측면이 회전자 철심의 원주면 상에 위치할 수 있다.
본 발명에 따른 자속집중형 전동기의 회전자에 있어서, 상기 복수의 영구자석은 각각, 상기 회전축의 축 방향에 대해서 60 내지 80도 사이의 각도로 비스듬하게 상기 회전자 철심에 삽입될 수 있다.
본 발명에 따른 자속집중형 전동기의 회전자에 있어서, 상기 복수의 영구자석은 페라이트 소재의 영구자석일 수 있다.
그리고 본 발명은 전술된 회전자와, 중심 부분에서 상기 회전자가 삽입 설치되는 회전자 삽입구멍이 형성되어 있고, 상기 회전자 삽입구멍의 내주면에 코일이 권선된 고정자를 포함하는 자속집중형 전동기를 제공한다.
본 발명에 따르면, 사다리꼴 형태의 영구자석을 회전축의 축 방향에 대해서 비스듬하게 회전자 철심에 삽입함으로써, 회전자 철심에 삽입되는 영구자석의 두께와 길이를 증가시켜 토크밀도를 향상시킬 수 있다.
이로 인해 제한된 회전자 크기에서 회전자의 자속량 증가를 통해서 토크밀도를 향상시킬 수 있다.
또한 본 발명에 따른 자속집중형 회전자의 영구자석은 회전축에 근접한 일측면이 이웃하는 영자석의 장변에 평행하게 위치하고, 타측면이 회전자 철심의 원주면에 근접하게 위치하기 때문에, 회전자 철심에 삽입되는 영구자석의 두께와 길이를 최대화할 수 있다.
도 1은 자속집중형 전동기에 있어서, 영구자석의 두께 변화에 따른 무부하 역기전력의 변화를 보여주는 그래프이다.
도 2는 자속집중형 전동기에 있어서, 영구자석의 단면적 변화에 따른 무부하 역기전력의 변화를 보여주는 그래프이다.
도 3은 자속집중형 전동기에 있어서, 영구자석의 공극 단면적 변화에 따른 무부하 역기전력의 변화를 보여주는 그래프이다.
도 4는 본 발명의 실시예에 따른 자속집중형 전동기의 회전자를 보여주는 평면도이다.
도 5는 도 4의 회전자를 포함하는 자속집중형 전동기를 보여주는 평면도이다.
도 6은 비교예 및 실시예에 따른 자속집중형 전동기를 보여주는 도면이다.
도 7은 도 6의 자속집중형 전동기의 구동 시 측정한 역기전력을 보여주는 그래프이다.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.
전동기의 회전자에서 발생하는 자속량과 고정자에서 발생하는 자속량으로 전동기의 기계적인 출력이 결정된다.
일반적으로 자속집중형 전동기에 있어서, 극당 쇄교자속량 증가를 위한 회전자 구조의 설계 방향으로는 영구자석의 두께 증가, 단면적 증가 및 공극 단면적을 증가시키는 방법이 사용될 수 있다.
따라서 동일 출력에서 회전자의 자속량을 극대화시킴으로써, 동일한 입력전류일 때 턴 수를 줄일 수 있으므로 효율 상승의 효과를 기대할 수 있다. 또한 토크밀도를 높일 수 있으므로, 영구자석으로 희토류 영구자석을 페라이트 영구자석으로 대체할 수도 있다.
자속집중형 전동기의 무부하 역기전력은 아래의 수학식 1로부터 예측할 수 있다.
수학식 1
Figure PCTKR2015011534-appb-M000001
도 1은 자속집중형 전동기에 있어서, 영구자석의 두께 변화에 따른 무부하 역기전력의 변화를 보여주는 그래프이다. 도 2는 자속집중형 전동기에 있어서, 영구자석의 단면적 변화에 따른 무부하 역기전력의 변화를 보여주는 그래프이다. 도 3은 자속집중형 전동기에 있어서, 영구자석의 공극 단면적 변화에 따른 무부하 역기전력의 변화를 보여주는 그래프이다.
수학식 1과, 도 1 내지 도 3을 참조하면, 무부하 역기전력은 영구자석의 두께, 단면적 또는 공극 단면적을 증가시킴으로써 증가하는 것을 확인할 수 있다. 특히 도 2에 도시된 바와 같이, 무부하 역기전력은 영구자석의 단면적이 영구자석의 두께 또는 공극 단면적에 비해서 더 크게 관계되고 있음을 알 수 있다.
따라서 본 발명의 실시예에서는, 도 4 및 도 5에 도시된 바와 같이, 회전자 철심(21)에 삽입되는 영구자석(22)의 단면적을 증가시킨 자속집중형 회전자(20) 및 그를 갖는 자속집중형 전동기(100)를 제공한다.
도 4는 본 발명의 실시예에 따른 자속집중형 전동기의 회전자(20)를 보여주는 평면도이다. 도 5는 도 4의 회전자(20)를 포함하는 자속집중형 전동기(100)를 보여주는 평면도이다.
도 4 및 도 5를 참조하면, 본 발명의 실시예에 따른 자속집중형 전동기(100)는 회전자(20)와, 회전자(20)가 회전 가능하게 삽입 설치되는 고정자(10)를 포함한다. 고정자(10)는 중심 부분에 회전자 삽입구멍(18)이 형성되어 있으며, 회전자 삽입구멍(18)의 내주면에 코일(16)이 권선되어 있다. 그리고 회전자(20)는 고정자(10)의 회전자 삽입구멍(18)에 삽입되어 회전 가능하게 설치된다.
고정자(10)는 회전자 삽입구멍(18)이 형성된 고정자 철심(11)과, 고정자 철심(11)의 회전자 삽입구멍(18)의 내주면을 따라서 권선된 코일(16)을 포함한다. 이때 회전자 삽입구멍(18)의 내경은 회전자(20)의 외경보다는 크게 형성되며, 회전자 삽입구멍(18)의 내경과 회전자(20)의 외경의 차이가 공극을 형성한다.
고정자 철심(11)은 동일한 형상의 고정자 철판(12) 복수 개를 축방향으로 적층하여 형성할 수 있다. 고정자 철심(11)은 내측에 회전자(20)가 삽입되어 위치할 수 있는 회전자 삽입구멍(18)이 형성되어 있다. 고정자 철심(11)은 내주면을 따라서 일정 간격으로 복수의 투스(14)가 형성되어 있다. 복수의 투스(14)는 고정자 철심(11)의 내주면에서 고정자 철심(11)의 중심축을 향하여 돌출되며, 회전자 삽입구멍(18)에 삽입되어 설치되는 회전자(20)의 외주면에 근접하게 배치된다. 이때 고정자 철판(12)으로는 규소 철판이 사용될 수 있다. 고정자 철심(11)의 안쪽의 투스(14)의 끝단이 형성하는 가상면 안쪽이 회전자 삽입구멍(18)을 형성한다.
그리고 코일(16)은 복수의 투스(14)에 각각 권선됨으로써, 교류 전원이 인가되면 고정자(10)의 구조로 인해 회전 자속을 발생시킨다.
한편 도시하진 않았지만, 회전축(30)은 자속집중형 전동기(100)의 케이스를 이루는 케이싱(casing)이나 쉘(shell)에 베어링을 매개로 회전 가능하게 설치된다.
회전자(20)는 고정자(10)의 회전자 삽입구멍(18)에 삽입되어 회전 가능하게 설치되는 자속집중형 전동기(100)의 회전자(20)로서, 회전자 철심(21)과, 회전자 철심(21)에 삽입된 복수의 영구자석(22)을 포함한다.
회전자 철심(21)은 중심 부분에 회전축(30)이 삽입 설치되는 회전축 삽입구멍(25)이 형성되어 있고, 회전축 삽입구멍(25)의 둘레에 복수의 영구자석 삽입구멍(26)이 형성되어 있다.
그리고 복수의 영구자석(22)은 복수의 영구자석 삽입구멍(26)에 각각 삽입되어 N극과 S극을 형성한다.
이때 복수의 영구자석(22)은 회전축(30)을 중심으로 방사형으로 회전자 철심(21)에 삽입되되, 회전축(30)의 축 방향에 대해서 비스듬하게 회전자 철심(21)에 삽입된다. 복수의 영구자석(22)은 각각 단면이 사다리꼴 형태를 갖는다. 이때 단면은 회전축(30)의 축 방향에 대해서 수직한 면을 의미한다. 즉 영구자석(22)은 아랫변(23), 윗변(27), 아랫변(23)과 윗변(27)을 잇는 양측변을 포함한다. 영구자석(22)의 양측변은 회전축(30)에 근접한 일측면(28)과, 회전자 철심(21)의 원주면에 근접한 타측면(29)에 대응된다.
복수의 영구자석(22)은 각각, 회전축(30)에 근접한 일측면(28)이 이웃하는 영구자석(22)의 장변 즉, 아랫변(23)에 평행하게 위치하며, 타측면(29)이 회전자 철심(21)의 원주면에 근접하게 위치한다. 이와 같이 복수의 영구자석(22)을 회전자 철심(21)에 삽입하는 이유는, 회전자 철심(21)에서 복수의 영구자석(22)이 차지하는 단면적을 극대화하기 위해서이다.
이와 같이 회전자 철심(21)에서 복수의 영구자석(22)이 차지하는 단면적을 극대화할 수 있기 때문에, 영구자석(22)의 소재는 일반적으로 사용되는 희토류 대신에 페라이트 소재로 대체할 수 있다. 물론 영구자석(22)으로 희토류 영구자석을 사용할 수 있다.
예컨대 영구자석(22)은 회전축(30)의 축 방향에 대해서 0 내지 90도 사이의 각도로 비스듬하게 회전자 철심(21)에 삽입될 수 있다. 바람직하게는 영구자석(22)은 60 내지 80도 사이의 각도로 비스듬하게 회전자 철심(21)에 삽입하는 것이다.
한편 복수의 영구자석을 직사각형 형태로 형성하고, 회전축의 축 방향에 대해서 비스듬하게 삽입할 수 있지만, 이 경우 회전자 철심에서 복수의 영구자석이 차지하는 단면적을 증가시키는 데 한계가 있다. 즉 회전자의 중심에서 회전자의 외곽으로 갈수록 영구자석들 사이의 간격이 멀어지기 때문에, 회전자 철심에서 복수의 영구자석이 차지하는 단면적이 줄어들게 된다.
반면에 본 실시예에서와 같이 사다리꼴 형태의 영구자석(22)을 사용할 경우, 회전자(20)의 중심에서 회전자(20)의 외곽으로 갈수록 영구자석들(22) 사이의 간격이 일부 멀어지기는 하지만, 직사각형 형태에 비해서 영구자석들(22)이 차지하는 단면적을 넓힐 수 있다.
이와 같인 본 실시예에 따르면, 사다리꼴 형태의 영구자석(22)을 회전축(30)의 축 방향에 대해서 비스듬하게 회전자 철심(21)에 삽입함으로써, 회전자 철심(21)에 삽입되는 영구자석(22)의 두께와 길이를 증가시켜 토크밀도를 향상시킬 수 있다.
이로 인해 제한된 회전자(20) 크기에서 회전자(20)의 자속량 증가를 통해서 토크밀도를 향상시킬 수 있다.
또한 본 실시예에 따른 자속집중형 회전자(20)의 영구자석(22)은 회전축(21)에 근접한 일측면이 이웃하는 영구자석(22)의 아랫변(23)에 평행하게 위치하고, 타측면이 회전자 철심(21)의 원주면에 근접하게 위치하기 때문에, 회전자 철심(21)에 삽입되는 영구자석(22)의 두께와 길이를 최대화할 수 있다.
이와 같은 본 실시예에 따른 회전자(20)를 구비한 자속집중형 전동기(100)가 다른 회전자 구조의 자속집중형 전동기에 비해서 역기전력이 증가된 것을 확인하기 위해서 도 6과 같은 비교예 및 실시예에 따른 자속집중형 전동기를 통하여 역기전력을 측정하였다. 측정된 역기전력은 도 7의 그래프로 표시하였다. 여기서 도 6은 비교예 및 실시예에 따른 자속집중형 전동기를 보여주는 도면이다. 도 7은 도 6의 자속집중형 전동기의 구동 시 측정한 역기전력을 보여주는 그래프이다.
도 6을 참조하면, (a)는 비교예 1, (b)는 비교예 2, (c)는 비교예 3, 그리고 (d)는 실시예에 따른 자속집중형 전동기를 도시하였다.
비교예 2는 비교예 1을 기준으로 영구자석의 두께를 증가시킨 회전자를 구비한다.
비교예 2는 비교예 1을 기준으로 영구자석의 길이를 증가시킨 회전자를 구비한다. 영구자석의 길이를 증가시키기 위해서, 영구자석이 두 부분으로 분리되어 L 자형으로 회전자 철심에 삽입된 구조를 개시한다.
도 7을 참조하면, 비교예 1을 기준으로 해서, 두께를 증가시킨 비교예 2와, 길이를 증가시킨 비교예 3의 자속집중형 전동기의 경우, 각각 역기전력이 25.8%, 25.5% 증가한 것을 확인할 수 있다. 즉 영구자석의 단면적 증가 측면에서 보면, 비교예 2 및 비교예 3은 거의 비슷한 것을 알 수 있다. 이로 인해 비교예 1을 기준으로 역기전력의 증가가 비슷하게 나타난 것으로 판단된다.
하지만 본 실시예의 경우, 비교예 1을 기준으로 40.4%로 증가한 것을 확인할 수 있다. 즉 본 실시예에 따른 자속집중형 전동기가 비교예 2 및 3에 비해서 영구자석의 단면적 증가가 더 많고, 이로 인해 본 실시예에서 역기전력이 가장 우수하게 나타난 것으로 판단된다.
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.
[부호의 설명]
10 : 고정자 11 : 고정자 철심
12 : 고정자 철판 14 : 투스
16 : 코일 18 : 회전자 삽입구멍
20 : 회전자 21 : 회전자 철심
22 : 영구자석 23 : 아랫변
24 : 회전자 철판 25 : 회전축 삽입구멍
26 : 영구자석 삽입구멍 27 : 윗변
28 : 일측면 29 : 타측면
30 : 회전축 100 : 자속집중형 모터

Claims (8)

  1. 중심에 회전축이 삽입되는 회전자 철심;
    상기 회전축을 중심으로 방사형으로 상기 회전자 철심에 삽입되되, 상기 회전축의 축 방향에 대해서 비스듬하게 상기 회전자 철심에 삽입되는 사다리꼴 형태의 복수의 영구자석;
    을 포함하는 자속집중형 전동기의 회전자.
  2. 제1항에 있어서, 상기 복수의 영구자석은 각각,
    상기 회전축에 근접한 일측면이 이웃하는 영구자석의 장변에 평행하게 위치하며, 타측면이 상기 회전자 철심의 원주면에 근접하게 위치하는 것을 특징으로 하는 자속집중형 전동기의 회전자.
  3. 제2항에 있어서, 상기 복수의 영구자석은 각각,
    상기 타측면이 회전자 철심의 원주면 상에 위치하는 것을 특징으로 하는 자속집중형 전동기의 회전자.
  4. 제2항에 있어서, 상기 복수의 영구자석은 각각,
    상기 회전축의 축 방향에 대해서 60 내지 80도 사이의 각도로 비스듬하게 상기 회전자 철심에 삽입되는 것을 특징으로 하는 자속집중형 전동기의 회전자.
  5. 제1항에 있어서,
    상기 복수의 영구자석은 페라이트 소재의 영구자석인 것을 특징으로 하는 자속집중형 전동기의 회전자.
  6. 회전자와;
    중심 부분에서 상기 회전자가 삽입 설치되는 회전자 삽입구멍이 형성되어 있고, 상기 회전자 삽입구멍의 내주면에 코일이 권선된 고정자;를 포함하며,
    상기 회전자는,
    중심에 회전축이 삽입되는 회전자 철심;
    상기 회전축을 중심으로 방사형으로 상기 회전자 철심에 삽입되되, 상기 회전축의 축 방향에 대해서 비스듬하게 상기 회전자 철심에 삽입되는 사다리꼴 형태의 복수의 영구자석;
    을 포함하는 자속집중형 전동기.
  7. 제6항에 있어서, 상기 복수의 영구자석은 각각,
    상기 회전축에 근접한 일측면이 이웃하는 영구자석의 장변에 평행하게 위치하며, 타측면이 상기 회전자 철심의 원주면에 근접하게 위치하는 것을 특징으로 하는 자속집중형 전동기
  8. 제8항에 있어서,
    상기 복수의 영구자석은 페라이트 소재의 영구자석인 것을 특징으로 하는 자속집중형 전동기.
PCT/KR2015/011534 2015-10-29 2015-10-30 자속집중형 회전자 및 그를 갖는 전동기 WO2017073814A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0150771 2015-10-29
KR1020150150771A KR20170051568A (ko) 2015-10-29 2015-10-29 자속집중형 회전자 및 그를 갖는 전동기

Publications (1)

Publication Number Publication Date
WO2017073814A1 true WO2017073814A1 (ko) 2017-05-04

Family

ID=58630316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011534 WO2017073814A1 (ko) 2015-10-29 2015-10-30 자속집중형 회전자 및 그를 갖는 전동기

Country Status (2)

Country Link
KR (1) KR20170051568A (ko)
WO (1) WO2017073814A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050001504A1 (en) * 2002-01-07 2005-01-06 Industrial Technology Research Institute Motor of rotor with built-in permanent magnet
JP2006081377A (ja) * 2004-09-13 2006-03-23 Nissan Motor Co Ltd 回転電機のロータ
JP2009268204A (ja) * 2008-04-23 2009-11-12 Toyota Motor Corp Ipmモータ用ロータとipmモータ
WO2013085231A1 (ko) * 2011-12-05 2013-06-13 전자부품연구원 두께가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터
KR20150095556A (ko) * 2012-04-05 2015-08-21 로베르트 보쉬 게엠베하 전기 구동식 모터사이클

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050001504A1 (en) * 2002-01-07 2005-01-06 Industrial Technology Research Institute Motor of rotor with built-in permanent magnet
JP2006081377A (ja) * 2004-09-13 2006-03-23 Nissan Motor Co Ltd 回転電機のロータ
JP2009268204A (ja) * 2008-04-23 2009-11-12 Toyota Motor Corp Ipmモータ用ロータとipmモータ
WO2013085231A1 (ko) * 2011-12-05 2013-06-13 전자부품연구원 두께가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터
KR20150095556A (ko) * 2012-04-05 2015-08-21 로베르트 보쉬 게엠베하 전기 구동식 모터사이클

Also Published As

Publication number Publication date
KR20170051568A (ko) 2017-05-12

Similar Documents

Publication Publication Date Title
WO2013133474A1 (ko) 매립형 영구자석 전동기
WO2016148541A1 (ko) 회전자코어를 포함하는 모터의 회전자 및 그 제조 방법
WO2016060311A1 (ko) 평판형 모터의 고정자 및 이를 이용한 평판형 모터
WO2012039545A1 (en) Electric motor-driven compressor for vehicle
WO2011021769A1 (ko) 발전기
WO2014046348A1 (ko) 발전기
KR20120014883A (ko) 브러시리스 모터
WO2017111267A1 (en) Motor having stator with coupled teeth
WO2013073756A1 (ko) 영구자석 매입형 전동기
WO2016182117A1 (en) Stack structure of rotor core
CN113691041A (zh) 转子铁芯
WO2016003014A1 (ko) 복합 자속을 이용한 모터
WO2020138583A1 (ko) 자기부상 회전체를 포함하는 축방향 모터
WO2017069488A1 (ko) 로터 코어, 로터 및 이를 포함하는 모터
WO2020032600A1 (ko) 회전축 이용을 위한 발전기의 스테이터와 인너로터 제조방법
WO2020027557A1 (ko) 발전기의 스테이터와 인너로터 제조방법
WO2015170805A1 (ko) 플럭스 필터링 기능을 갖는 회전자 및 그를 포함하는 동기형 모터
WO2013032122A1 (ko) 종축자속형 영구자석 동기발전기 및 모터
WO2018062656A1 (ko) Bldc 모터
WO2014061908A1 (ko) 이중 공극형 발전기
WO2017073814A1 (ko) 자속집중형 회전자 및 그를 갖는 전동기
WO2023063740A1 (ko) 역기전력 감소 효율이 향상된 발전장치
WO2020197138A1 (ko) 모터
WO2012015209A2 (ko) 분할형 전기자 형태의 전동기
WO2014010978A1 (ko) 전기자유닛 및 이를 구비한 회전기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907359

Country of ref document: EP

Kind code of ref document: A1