WO2017073695A1 - Thermoplastic elastomer composition, member, weather seal, and corner member for weather seal - Google Patents

Thermoplastic elastomer composition, member, weather seal, and corner member for weather seal Download PDF

Info

Publication number
WO2017073695A1
WO2017073695A1 PCT/JP2016/081960 JP2016081960W WO2017073695A1 WO 2017073695 A1 WO2017073695 A1 WO 2017073695A1 JP 2016081960 W JP2016081960 W JP 2016081960W WO 2017073695 A1 WO2017073695 A1 WO 2017073695A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic elastomer
elastomer composition
block copolymer
mass
hydrogenated
Prior art date
Application number
PCT/JP2016/081960
Other languages
French (fr)
Japanese (ja)
Inventor
小西 大輔
佐々木 啓光
陽介 上原
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2017547868A priority Critical patent/JP6867034B2/en
Publication of WO2017073695A1 publication Critical patent/WO2017073695A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a thermoplastic elastomer composition, a member, a weather seal, and a weather seal corner member.
  • thermoplastic elastomers In addition to vulcanized rubber that has been used for automotive parts, dynamic crosslinked thermoplastic elastomers (TPV) are also attracting attention, and are currently widely used in automotive applications and the like.
  • TPV dynamic crosslinked thermoplastic elastomers
  • One of the parts for automobiles is a weather seal.
  • As a material for the weather seal vulcanized rubber having a small compression set and excellent flexibility has been used so far.
  • a weather seal for an automobile usually has a straight portion and a corner portion. Industrially, the straight part is manufactured by extrusion molding, but the corner part is manufactured by injection molding.
  • a material capable of injection molding as the material of the corner part.
  • a TPV having better moldability than vulcanized rubber cannot be said to have sufficient moldability, and there is room for further improvement.
  • vulcanized rubber or TPV is used as the material for the straight portion of the weather seal, but it is desirable to use another material that is excellent in molding processability while maintaining various characteristics as the material for the corner portion. .
  • thermoplastic elastomer composition having excellent agent retention is known (Patent Document 1).
  • the thermoplastic elastomer composition described in Patent Document 1 is derived from olefin rubber (I), a polymer block (A) composed of structural units derived from an aromatic vinyl compound, and isoprene or a mixture of isoprene and butadiene.
  • a hydrogenated block copolymer having a structural unit and a polymer block (B) having a total content of 3,4-bond units and 1,2-bond units of 45% or more A hydrogenated block copolymer (II) having a peak top molecular weight (Mp) of 250,000 to 500,000 determined by gel permeation chromatography in terms of standard polystyrene, a polyolefin resin other than the above (I) (III ) And a softening agent (IV) comprising a olefinic rubber (I) and a hydrogenated block co-polymer
  • thermoplastic elastomer composition described in Patent Document 1 has room for further improvement in molding processability, and as a material for the corner portion of the weather seal, a better material has been developed. It has been demanded. Furthermore, when the material of the straight part of the weather seal is TPV, if the thermoplastic elastomer composition described in Patent Document 1 is used as the material of the corner part, there is room for further improvement in the adhesion with the straight part. It has been found.
  • an object of the present invention is to provide a thermoplastic elastomer having high adhesive strength to vulcanized rubber and dynamically cross-linked thermoplastic elastomer (TPV), and being excellent in moldability as well as flexibility and weather resistance. It is to provide a composition. Furthermore, it is providing the member which has a site
  • the inventors of the present invention made extensive studies to solve the above-mentioned problems.
  • the olefin rubber (I), the specific hydrogenated block copolymer (II), the polyolefin resin (III), and the softener ( IV) a thermoplastic elastomer composition comprising the olefin rubber (I) and the hydrogenated block copolymer (II) in a specific range, and a polyolefin resin (III). It has been found that the above-mentioned problems can be solved if the thermoplastic elastomer composition has a content of the softening agent (IV) within a specific range, and the present invention has been achieved.
  • the present invention relates to the following [1] to [18].
  • Olefin rubber (I) The following hydrogenated block copolymer (II), Polyolefin resin (III) and softener (IV)
  • a thermoplastic elastomer composition comprising: The content ratio [(I) / (II)] of the olefin rubber (I) and the hydrogenated block copolymer (II) is 90/10 to 10/90 by mass ratio, The content of polyolefin resin (III) is 10 to 200 parts by mass and the content of softener (IV) is 100 parts by mass in total of olefin rubber (I) and hydrogenated block copolymer (II).
  • thermoplastic elastomer composition having a content of 15 to 300 parts by mass.
  • Hydrogenated block copolymer (II) mainly from a polymer block (A) mainly composed of a structural unit derived from an aromatic vinyl compound and a structural unit derived from at least one selected from the group consisting of isoprene and butadiene. And a hydrogenated product of a block copolymer having a polymer block (B) having a total content of 3,4-bond units and 1,2-bond units of 45% or more, Water having a peak top molecular weight of 50,000 to 200,000 determined by standard polystyrene conversion by an association chromatography and hydrogenated 70 mol% or more of the carbon-carbon double bonds in the polymer block (B).
  • thermoplastic elastomer composition according to the above [1], wherein the hydrogenated block copolymer (II) has a glass transition temperature of ⁇ 45 to 0 ° C.
  • thermoplastic elastomer composition according to any one of the above [1] to [4], which is a hydrogenated product of the triblock copolymer [A1-B-A2].
  • thermoplastic elastomer composition according to the above [5], wherein the ratio [Mp (A1) / Mp (A2)] of the Mp (A1) to the Mp (A2) satisfies 1/10 to 8/10.
  • thermoplastic elastomer according to any one of [1] to [6] above, wherein the olefin rubber (I) and the polymer block (B) of the hydrogenated block copolymer (II) are crosslinked. Composition.
  • the olefin rubber (I) is a copolymer rubber of (I-1) ethylene and one or more ⁇ -olefins having 3 to 20 carbon atoms, or a crosslinked product thereof, and (I-2) ethylene. And at least one selected from the group consisting of a copolymer rubber of at least one ⁇ -olefin having 3 to 20 carbon atoms and at least one non-conjugated polyene or a crosslinked product thereof [1]
  • the thermoplastic elastomer composition according to any of [7].
  • the polyolefin resin (III) is at least one selected from the group consisting of polyethylene resin, polypropylene resin, poly (1-butene) and poly (4-methyl-1-pentene).
  • the thermoplastic elastomer composition according to any one of the above [1] to [8].
  • the member according to the above [10] which has a portion (Y1) made of a material different from the thermoplastic elastomer composition according to any one of the above [1] to [9] in addition to the portion (X1).
  • thermoplastic elastomer composition according to any one of the above [1] to [9] (provided that the thermoplastic elastomer composition is the same as the thermoplastic elastomer composition forming the part (X1)).
  • thermoplastic elastomer composition which has a portion (X2) consisting of the same.
  • [15] A weather seal containing the member according to any one of [10] to [14].
  • It has a portion (X1) made of the thermoplastic elastomer composition according to any one of [1] to [9], and In addition to the part (X1), it has a part (Y1) made of a material different from the thermoplastic elastomer composition of any one of the above [1] to [9], or in addition to the part (X1) A part comprising the thermoplastic elastomer composition according to any one of the above [1] to [9] (however, it may be the same as or different from the thermoplastic elastomer composition forming the part (X1)).
  • thermoplastic elastomer composition having high adhesive strength to vulcanized rubber and dynamically cross-linked thermoplastic elastomer (TPV), and having excellent flexibility and weather resistance as well as excellent moldability. can do. Furthermore, the member which has a site
  • thermoplastic elastomer composition comprises: Olefin rubber (I), The following hydrogenated block copolymer (II), Polyolefin resin (III) and softener (IV)
  • a thermoplastic elastomer composition comprising: The content ratio [(I) / (II)] of the olefin rubber (I) and the hydrogenated block copolymer (II) is 90/10 to 10/90 by mass ratio, The content of polyolefin resin (III) is 10 to 200 parts by mass and the content of softener (IV) is 100 parts by mass in total of olefin rubber (I) and hydrogenated block copolymer (II).
  • Hydrogenated block copolymer (II) mainly from a polymer block (A) mainly composed of a structural unit derived from an aromatic vinyl compound and a structural unit derived from at least one selected from the group consisting of isoprene and butadiene. And a hydrogenated product of a block copolymer having a polymer block (B) having a total content of 3,4-bond units and 1,2-bond units of 45% or more, Water having a peak top molecular weight of 50,000 to 200,000 determined by standard polystyrene conversion by an association chromatography and hydrogenated 70 mol% or more of the carbon-carbon double bonds in the polymer block (B).
  • a block copolymer mainly from a polymer block (A) mainly composed of a structural unit derived from an aromatic vinyl compound and a structural unit derived from at least one selected from the group consisting of isoprene and butadiene.
  • (Olefin rubber (I)) As the olefin rubber (I), (I-1) a copolymer rubber of ethylene and one or more ⁇ -olefins having 3 to 20 carbon atoms (hereinafter sometimes referred to as “ethylene / ⁇ -olefin copolymer rubber”) or a cross-linked product thereof; (I-2) Copolymer rubber of ethylene, one or more ⁇ -olefins having 3 to 20 carbon atoms and one or more non-conjugated polyenes (hereinafter referred to as “ethylene / ⁇ -olefin / non-conjugated polyene copolymer”) Rubber ”) or cross-linked products thereof. Etc.
  • Olefin rubber (I) may be used individually by 1 type, and may use 2 or more types together. When two or more kinds are used in combination, it is preferable to use a cross-linked product of the ethylene / ⁇ -olefin copolymer rubber and a cross-linked product of the ethylene / ⁇ -olefin / non-conjugated polyene copolymer rubber together.
  • the olefin rubber (I) is preferably an ethylene / ⁇ -olefin / non-conjugated polyene copolymer rubber or a cross-linked product thereof from the viewpoint of better strain recovery at high temperatures.
  • An ⁇ -olefin / non-conjugated polyene copolymer rubber or a cross-linked product of ethylene / ⁇ -olefin / non-conjugated polyene copolymer rubber may be used.
  • Examples of the ⁇ -olefin having 3 to 20 carbon atoms constituting the copolymer rubber or a crosslinked product thereof include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-octene, and the like. Examples include decene. These ⁇ -olefins may be used alone or in combination of two or more. Among these, at least one selected from the group consisting of propylene, 1-butene, 1-hexene and 1-octene is preferable, and at least one selected from the group consisting of propylene and 1-butene is preferable. More preferably, it is propylene.
  • the molar ratio of ethylene to ⁇ -olefin having 3 to 20 carbon atoms is high in mechanical strength and strain recovery at high temperature. From the viewpoint that the properties are maintained in a well-balanced manner, 40/60 to 93/7 is preferable, 50/50 to 85/15 is more preferable, and 60/40 to 80/20 is more preferable.
  • non-conjugated polyene constituting the ethylene / ⁇ -olefin / non-conjugated polyene copolymer rubber examples include, for example, 5-ethylidene-2-norbornene, dicyclopentadiene, 5-propylidene-2-norbornene, 5-vinyl- Cyclic polyenes such as 2-norbornene, 2,5-norbornadiene, 1,4-cyclohexadiene, 1,4-cyclooctadiene, 1,5-cyclooctadiene; 1,4-hexadiene, 4-methyl-1,4 -Hexadiene, 5-methyl-1,4-hexadiene, 5-methyl-1,5-heptadiene, 6-methyl-1,5-heptadiene, 6-methyl-1,6-octadiene, 7-methyl-1,6 -Octadiene, 5,7-dimethyl-1,6-octadiene, 7-methyl
  • cyclic polyenes and chain polyenes having 6 to 15 carbon atoms having an internal unsaturated bond are preferable.
  • 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5-methyl-1,4 -At least one selected from the group consisting of hexadiene and 7-methyl-1,6-octadiene is more preferable, and 5-ethylidene-2-norbornene, dicyclopentadiene and More preferred is at least one selected from the group consisting of 5-vinyl-2-norbornene.
  • the molar ratio of ethylene to the ⁇ -olefin having 3 to 20 carbon atoms and the non-conjugated polyene is preferably 90/10 to 40/60, particularly 80/20 to 50/50 from the viewpoint of flexibility and rubber elasticity.
  • the iodine value (iodine value before crosslinking) of the ethylene / ⁇ -olefin / non-conjugated polyene copolymer rubber is preferably 3 to 40, more preferably 5 to 25, from the viewpoint of mechanical strength and rubber elasticity. More preferably, it is 5-15. If the iodine value is 3 or more, the mechanical strength of the molded product obtained from the thermoplastic elastomer composition tends to be good, and if the iodine value is 40 or less, the rubber elasticity of the thermoplastic elastomer composition is impaired. It tends to be difficult.
  • “iodine value” refers to the iodine value measured by the method described in JIS K1525 (2005).
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the olefin rubber (I) is preferably 25 to 350, more preferably 40 to 300, and more preferably 60 to 150 from the viewpoint of moldability and mechanical strength. Further preferred.
  • Mooney viscosity (ML 1 + 4 , 100 ° C.) refers to a viscosity measured by the method described in JIS K6300-1 (2013).
  • the olefin rubber (I) may be pre-crosslinked, and the degree of crosslinking is not particularly limited, but when the crosslinked olefin rubber (I) is subjected to Soxhlet extraction treatment with cyclohexane for 10 hours.
  • the degree of crosslinking is such that the mass ratio (gel fraction) of the gel remaining without being dissolved in cyclohexane is 80% or more, particularly 95% or more with respect to the mass of the olefin rubber after crosslinking before the extraction treatment. Is preferable from the viewpoint of strain recovery at high temperatures.
  • the crosslinking agent and crosslinking adjuvant which can be used for the said crosslinking reaction can use the same thing as the crosslinking agent and crosslinking adjuvant which are mentioned later.
  • thermoplastic elastomer composition of the present invention needs to contain a hydrogenated block copolymer (II).
  • TPV dynamically cross-linked thermoplastic elastomer
  • the hydrogenated block copolymer (II) includes a polymer block (A) mainly composed of a structural unit derived from an aromatic vinyl compound, and a structural unit derived from at least one selected from the group consisting of isoprene and butadiene.
  • the peak top molecular weight determined by standard polystyrene conversion by permeation chromatography is 50,000 to 200,000, and 70 mol% or more of the carbon-carbon double bonds in the polymer block (B) are hydrogenated. It is a hydrogenated block copolymer.
  • vinyl bond units 3,4-bond units and 1,2-bond units in structural units derived from isoprene and 1,2-bond units in structural units derived from butadiene are collectively referred to as “vinyl bond units”.
  • the total amount may be referred to as “vinyl bond content”.
  • the polymer block (A) of the hydrogenated block copolymer (II) mainly comprises a structural unit derived from an aromatic vinyl compound (hereinafter sometimes abbreviated as an aromatic vinyl compound unit).
  • aromatic vinyl compound unit a structural unit derived from an aromatic vinyl compound (hereinafter sometimes abbreviated as an aromatic vinyl compound unit).
  • aromatic vinyl compound unit is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 100% by mass based on the mass of the polymer block (A).
  • Examples of the aromatic vinyl compound constituting the polymer block (A) include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene, Examples include 2,4-dimethylstyrene, 2,4,6-trimethylstyrene, monofluorostyrene, difluorostyrene, monochlorostyrene, dichlorostyrene, methoxystyrene, vinylnaphthalene, and vinylanthracene.
  • the polymer block (A) may contain only a structural unit derived from one kind of the above-described aromatic vinyl compound, or may contain a structural unit derived from two or more kinds. Especially, it is preferable that a polymer block (A) mainly consists of the structural unit derived from styrene.
  • the polymer block (A) may contain a small amount of a structural unit derived from another copolymerizable monomer together with a structural unit derived from an aromatic vinyl compound.
  • the proportion of the structural unit derived from the other copolymerizable monomer is preferably 10% by mass or less based on the mass of the polymer block (A), and more preferably 5% by mass or less. preferable.
  • examples of such other copolymerizable monomers include copolymerizable monomers capable of ion polymerization such as 1-butene, pentene, hexene, butadiene, isoprene, and methyl vinyl ether.
  • the content of the polymer block (A) is preferably 5 to 40% by mass, more preferably 5 to 30% by mass with respect to the hydrogenated block copolymer (II). 5 to 20% by mass is more preferable, and 5 to 18% by mass is particularly preferable. If the content of the polymer block (A) is 5% by mass or more, mechanical properties and flexibility tend to be good, and good strain recovery at high temperatures is obtained, and heat resistance is also good. It tends to be excellent. If the content of the polymer block (A) is 40% by mass or less, the melt viscosity of the hydrogenated block copolymer (II) does not become too high and melt mixing with other components tends to be easy. Furthermore, flexibility and adhesion to TPV and vulcanized rubber tend to be excellent. In addition, content of the polymer block (A) in hydrogenated block copolymer (II) is the value calculated
  • the polymer block (B) contained in the hydrogenated block copolymer (II) mainly comprises structural units derived from at least one selected from the group consisting of isoprene and butadiene.
  • the term “mainly” as used herein means that the structural unit derived from at least one selected from the group consisting of isoprene and butadiene based on the mass of the polymer block (B) is preferably 70% by mass or more, more preferably It means 90% by mass or more.
  • the polymer block (B) preferably mainly comprises a structural unit derived from isoprene or a structural unit derived from a mixture of isoprene and butadiene.
  • the vinyl bond content is more preferably 47% or more, and further preferably 50% or more. Although there is no restriction
  • the polymer block (B) is composed of a structural unit derived from a mixture of isoprene and butadiene
  • the structural unit is a 2-methyl-2-butene-1,4-diyl group, isopropenyl derived from isoprene.
  • the vinyl bond content is more preferably 47% or more, and further preferably 50% or more. Although there is no restriction
  • the bonding form of the structural unit derived from isoprene and the structural unit derived from butadiene may be random, block, or tapered.
  • the polymer block (B) is composed of a structural unit derived from a mixture of isoprene and butadiene
  • the structural unit derived from isoprene / the structural unit derived from butadiene (molar ratio) is 10 from the viewpoint of adhesive strength and flexibility.
  • / 90 to 99/1 is preferable, 30/70 to 99/1 is more preferable, 40/60 to 99/1 is further preferable, and 40/60 to 70/30 is preferable. Is particularly preferred, with 40/60 to 55/45 being most preferred.
  • the polymer block (B) may have a small amount of structural units derived from other copolymerizable monomers together with structural units derived from isoprene or structural units derived from isoprene and butadiene.
  • the proportion of the structural unit derived from the other copolymerizable monomer is preferably 30% by mass or less based on the mass of the polymer block (B), and more preferably 10% by mass or less. Preferably, it is 5 mass% or less.
  • copolymerizable monomers examples include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 1,3-dimethylstyrene, diphenylethylene, 1-vinylnaphthalene, Copolymerizable monomers capable of anion polymerization such as aromatic vinyl compounds such as 4-propylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene Is mentioned.
  • aromatic vinyl compounds such as 4-propylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene Is
  • copolymerizable monomers may be used individually by 1 type, and may use 2 or more types together.
  • the bonding form thereof May be either random or tapered.
  • the hydrogenated block copolymer (II) has one or more functional groups such as a carboxyl group, a hydroxyl group, an acid anhydride group, an amino group, and an epoxy group in the molecular chain and / or at the molecular end. It may be.
  • the hydrogenated block copolymer (II) particularly from the viewpoint of heat resistance and weather resistance, 70 mol% or more of unsaturated double bonds (carbon-carbon double bonds) in the polymer block (B) are hydrogenated. Need to be. From the same viewpoint, 80 mol% or more is more preferably hydrogenated, and 85 mol% or more is more preferably hydrogenated.
  • the hydrogenation rate of the carbon-carbon double bond in the polymer block (B) is determined by the content of the carbon-carbon double bond in the polymer block (B) before and after the hydrogenation. It can be determined from the iodine value measurement described in the examples.
  • the hydrogenated block copolymer (II) is a hydrogenated product of a block copolymer containing at least one polymer block (A) and each polymer block (B).
  • the hydrogenated block copolymer (II) is a hydrogenated product of a block copolymer containing two or more polymer blocks (A) and one or more polymer blocks (B).
  • the bonding form of the polymer block (A) and the polymer block (B) is not particularly limited, and may be linear, branched, radial, or a combination of two or more of these. In addition, a linearly bonded form is preferable.
  • each polymer block (A) and each polymer block (A) may be a block having the same configuration or a block having a different configuration.
  • the two polymer blocks (A) in the triblock structure represented by [ABA] may have the same or different types of aromatic vinyl compounds constituting them. Good.
  • the peak top molecular weight (Mp) of the polymer block (A) is preferably 2,000 to 60,000, more preferably 2,500 to 30,000, still more preferably. 3,000 to 20,000.
  • the peak top molecular weight of the polymer block (B) is preferably 130,000 to 190,000, more preferably 50,000 to 180,000 in the state before hydrogenation.
  • the polymer block (A) in the hydrogenated block copolymer (II) has two polymer blocks (A1) and (A2) having the same or different peak top molecular weights determined in terms of standard polystyrene by gel permeation chromatography.
  • the hydrogenated block copolymer (II) is composed of the polymer block (A1), the polymer block (B), and the polymer block (A2).
  • a hydrogenated product of the polymer [A1-B-A2] is preferable.
  • the hydrogenated block copolymer (II) is a peak obtained by converting the polymer block (A) mainly from a structural unit derived from an aromatic vinyl compound, and in terms of standard polystyrene by gel permeation chromatography.
  • a peak top molecular weight mainly composed of a polymer block (A1) having a top molecular weight of Mp (A1) and a structural unit derived from an aromatic vinyl compound and determined in terms of standard polystyrene by gel permeation chromatography is Mp (A2
  • Mp (A1) / Mp (A2)] satisfies 1/10 to 8/10.
  • the ratio [Mp (A1) / Mp (A2)] indicates that Mp (A1) is smaller than Mp (A2). From the same viewpoint, it is more preferably 3/10 to 7/10.
  • the hydrogenated product of the triblock copolymer [A1-B-A2] is an apparently asymmetric triblock copolymer because Mp (A1) and Mp (A2) are different as described above. It can be said.
  • a hydrogenated block copolymer (II) in which Mp (A1) and Mp (A2) are substantially equal is also preferable.
  • “substantially equal” means that [Mp (A1) / Mp (A2)] is approximately 1/1 or close to 1/1, and more specifically, 9/10 to 11 / It means being in the range of 10.
  • Mp (A1) and Mp (A2) are each preferably 1,000 to 30,000, more preferably 2,000 to 20,000, and still more preferably 2,000 to 15,000.
  • Mp (A1) is particularly preferably 3,000 to 10,000
  • Mp (A2) is particularly preferably 4,000 to 14,000.
  • the total peak top molecular weight (Mp) of the hydrogenated block copolymer (II) is 50,000 to 200,000, preferably 70,000 to 200,000, after hydrogenation. Preferably, it is 100,000 to 200,000. If the peak top molecular weight (Mp) of the hydrogenated block copolymer (II) is within the above range, the powdered hydrogenated block copolymer (II) having a bulk density of 0.10 to 0.40 g / ml is obtained. It tends to be easily obtained, and tends to be excellent in moldability, flexibility and strain recovery at high temperatures. In addition, this peak top molecular weight (Mp) is the value calculated
  • the glass transition temperature (Tg) of the hydrogenated block copolymer (II) is preferably ⁇ 45 to 0 ° C., more preferably ⁇ 45 to ⁇ 5 ° C., and further preferably ⁇ 45 to ⁇ from the viewpoint of vibration damping properties. It is 10 ° C., particularly preferably ⁇ 40 to ⁇ 10 ° C.
  • Examples of the method for producing the hydrogenated block copolymer (II) include ionic polymerization methods such as anionic polymerization and cation polymerization, polymerization methods such as single site polymerization method and radical polymerization method.
  • anionic polymerization method for example, an alkyl lithium compound or the like is used as a polymerization initiator and is selected from the group consisting of an aromatic vinyl compound, isoprene and butadiene in an inert organic solvent such as n-hexane or cyclohexane.
  • the block copolymer is produced by sequentially polymerizing at least one of the above to produce a block copolymer having a desired molecular structure and molecular weight, and then adding an active hydrogen compound such as alcohols, carboxylic acids and water to stop the polymerization. Copolymers can be produced.
  • the hydrogenated block copolymer (II) can be obtained by conducting a hydrogenation reaction in the presence of a hydrogenation catalyst in an inert organic solvent without preferably isolating the obtained block copolymer. it can.
  • alkyl lithium compound examples include alkyl lithium compounds having 1 to 10 carbon atoms in the alkyl residue, and methyl lithium, ethyl lithium, butyl lithium, and pentyl lithium are particularly preferable.
  • the amount of the initiator such as an alkyl lithium compound is appropriately determined depending on the peak top molecular weight (Mp) of the hydrogenated block copolymer (II). On the other hand, 0.01 to 0.2 parts by mass are preferably used.
  • the polymerization is usually preferably carried out at 0 to 80 ° C., preferably 0.5 to 50 hours.
  • the structural unit derived from at least one selected from the group consisting of isoprene and butadiene has a vinyl bond content of 45% or more.
  • a Lewis base as a cocatalyst during the polymerization.
  • the Lewis base include ethers such as dimethyl ether, diethyl ether, and tetrahydrofuran; glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; triethylamine, N, N, N ′, N′-tetramethylenediamine, and N-methylmorpholine.
  • amine compounds such as The amount of the Lewis base used is preferably 0.1 to 1000 moles per 1 mole of lithium atoms in the alkyllithium compound used as the initiator.
  • an unhydrogenated block copolymer is dissolved in an inert organic solvent such as n-hexane or cyclohexane which is inert to the reaction and the hydrogenation catalyst in the presence of a hydrogenation catalyst.
  • an inert organic solvent such as n-hexane or cyclohexane which is inert to the reaction and the hydrogenation catalyst in the presence of a hydrogenation catalyst.
  • a method of reacting molecular hydrogen is preferably used.
  • hydrogenation catalysts examples include Raney nickel; heterogeneous catalysts such as Pt, Pd, Ru, Rh, Ni and other metals supported on carbon, alumina, diatomaceous earth, etc .; transition metal compounds and alkylaluminum compounds, alkyllithiums
  • a Ziegler-based catalyst composed of a combination of compounds is used.
  • the reaction is usually carried out under conditions of a hydrogen pressure of preferably 0.1 to 20 MPa, a reaction temperature of preferably 20 ° C. to 250 ° C., and a reaction time of preferably 0.1 to 100 hours.
  • the hydrogenated block copolymer (II) in the form of powder having a bulk density of 0.10 to 0.40 g / ml can be produced by the following method.
  • the bulk density referred to in this specification is a value calculated by putting a weighed powdered hydrogenated block polymer (II) into a graduated cylinder and measuring its volume, and dividing the mass of the polymer by the volume. is there.
  • the reaction solution from which the hydrogenation catalyst has been removed by filtration after the above hydrogenation reaction is heated to 40 to 150 ° C., preferably 60 to 150 ° C., and a surfactant such as a fatty acid salt or a polyoxyalkylene derivative is mixed as necessary.
  • a desired moisture content of 0.1% by mass / WB or less is obtained by drying at 60 to 100 ° C. using a screw extruder type dryer, an expander dryer, a conduction heat transfer type dryer, a hot air dryer or the like.
  • a powdered hydrogenated block copolymer (II) can be produced.
  • the content ratio [(I) / (II)] of the olefin rubber (I) and the hydrogenated block copolymer (II) is 90/10 to 10 by mass ratio. / 90, preferably 90/10 to 50/50, more preferably 80/20 to 20/80, and still more preferably 80/20 to 60/40. Within this range, the moldability, flexibility and strain recovery at high temperatures are excellent.
  • Polyolefin resin (III) examples of the polyolefin resin (III) used in the present invention include polyethylene resin, polypropylene resin, poly (1-butene), poly (4-methyl-1-pentene) and the like.
  • Polyolefin resin (III) may be used individually by 1 type, and may use 2 or more types together. Among these, from the viewpoint of moldability, at least one selected from the group consisting of polyethylene resins and polypropylene resins is preferable, and polypropylene resins are more preferable.
  • the polyethylene-based resin refers to a polymer having a content of structural units derived from ethylene (hereinafter sometimes abbreviated as ethylene content) of 60 mol% or more, and the ethylene content is Preferably it is 70 mol% or more, More preferably, it is 80 mol% or more.
  • the polypropylene resin refers to a polymer in which the content of structural units derived from propylene (hereinafter sometimes abbreviated as propylene content) is 60 mol% or more, and the propylene content is preferably Is 70 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more.
  • the polyolefin resin (III) is distinguished from the olefin rubber (I) which is “rubber”.
  • polyethylene resins include ethylene homopolymers such as high density polyethylene, medium density polyethylene, and low density polyethylene; ethylene / butene-1 copolymer, ethylene / hexene copolymer, ethylene / heptene copolymer, Ethylene / octene copolymer, ethylene / 4-methylpentene-1 copolymer, ethylene / vinyl acetate copolymer, ethylene / acrylic acid copolymer, ethylene / acrylic acid ester copolymer, ethylene / methacrylic acid copolymer And ethylene-based copolymers such as ethylene / methacrylic acid ester copolymers.
  • at least one selected from the group consisting of high density polyethylene, medium density polyethylene, and low density polyethylene is preferable.
  • polypropylene resins examples include propylene homopolymer, ethylene / propylene random copolymer, ethylene / propylene block copolymer, propylene / butene-1 copolymer, propylene / ethylene / butene-1 copolymer, propylene / 4-methylpentene-1 copolymer and the like.
  • propylene homopolymer ethylene / propylene random copolymer
  • ethylene / propylene block copolymer examples include polypropylene resins.
  • propylene homopolymer ethylene / propylene random copolymer, ethylene / propylene block copolymer, propylene / butene-1 copolymer, propylene / 4-methylpentene-1 copolymer and the like.
  • the melt flow rate (MFR) measured under the conditions of 230 ° C. and 2.16 kg of the polyolefin resin (III) is preferably 0.1 g / 10 min or more from the viewpoint of moldability. It is more preferably 1 to 50 g / 10 minutes, further preferably 1 to 40 g / 10 minutes, and particularly preferably 5 to 40 g / 10 minutes.
  • the MFR is a value measured according to JIS K7210-1 (2014).
  • the content of the polyolefin resin (III) is 10 to 200 parts by weight, preferably 10 to 100 parts by weight, based on a total of 100 parts by weight of the olefin rubber (I) and the hydrogenated block copolymer (II). 15 to 100 parts by mass is more preferable, 20 to 80 parts by mass is more preferable, and 30 to 70 parts by mass is still more preferable. If it is less than 10 parts by mass with respect to 100 parts by mass in total of the olefin rubber (I) and the hydrogenated block copolymer (II), molding processability is poor, whereas if it exceeds 200 parts by mass, flexibility and rubber Elasticity decreases.
  • the polyolefin resin (III) forms a continuous phase in the thermoplastic elastomer composition by adjusting the content of the polyolefin resin (III) in the above range.
  • the olefin rubber (I) and the hydrogenated block copolymer (II) have a dispersed morphology in the form of fine particles, and this is an adhesive force, flexibility, and flexibility to the vulcanized rubber and the dynamically crosslinked thermoplastic elastomer (TPV). It is presumed to have a good influence on the weather resistance and molding processability.
  • Softener (IV) examples include petroleum-based process oils such as paraffinic process oil and naphthenic process oil; aromatic process oils; phthalic acid derivatives such as dioctyl phthalate and dibutyl phthalate; white oil; mineral oil; Vegetable oil-based softeners such as oil and rosin; liquid paraffin; liquid co-oligomer of ethylene and ⁇ -olefin, liquid polybutene, liquid polybutadiene, liquid polyisoprene, liquid polyisoprene / butadiene copolymer, liquid styrene / butadiene copolymer And synthetic softeners such as liquid styrene / isoprene copolymer.
  • petroleum-based process oils such as paraffinic process oil and naphthenic process oil; aromatic process oils; phthalic acid derivatives such as dioctyl phthalate and dibutyl phthalate; white oil; mineral oil; Vegetable oil-based softeners such as
  • the kinematic viscosity at 40 ° C. is 20 to 800 mm 2 / s (preferably 40 to 600 mm 2 / s, more preferably 60 to 400 mm 2 / s, and further preferably 60 to 200 mm 2 / s. Particularly preferred is a softening agent of 70 to 120 mm 2 / s).
  • the kinematic viscosity is a value measured according to JIS K2283 (2000).
  • the pour point of the softening agent (IV) is preferably ⁇ 40 to 0 ° C., more preferably ⁇ 30 to 0 ° C.
  • the flash point (COC method) of the softening agent (IV) is preferably 200 to 400 ° C., more preferably 250 to 350 ° C.
  • softening agent (IV) petroleum process oil, liquid co-oligomer of ethylene and ⁇ -olefin, and liquid paraffin are preferable, petroleum process oil is more preferable, and paraffin process oil is more preferable.
  • the softener (IV) may be used alone or in combination of two or more. Examples of commercially available softeners (IV) include paraffinic process oil and naphthenic process oil (preferably paraffinic process oil) in the “Diana Process Oil” series marketed by Idemitsu Kosan Co., Ltd. it can.
  • the content of the softening agent (IV) is 15 to 300 parts by weight, preferably 15 to 150 parts by weight, based on 100 parts by weight in total of the olefin rubber (I) and the hydrogenated block copolymer (II). It is more preferably 20 to 120 parts by mass, and further preferably 20 to 100 parts by mass.
  • the total amount of the olefin rubber (I) and the hydrogenated block copolymer (II) exceeds 100 parts by mass, the mechanical properties are deteriorated and the molded product obtained from the thermoplastic elastomer composition is used.
  • the softening agent (IV) tends to bleed out and the mechanical strength is lowered.
  • thermoplastic elastomer composition of the present invention has the advantage of having sufficient flexibility and moldability even if the content of the softening agent (IV) is reduced.
  • the content of the softening agent (IV) for imparting the same or higher flexibility and molding processability is small. .
  • the upper limit of the content of the softening agent (IV) may be 60 parts by mass or 50 parts by mass in any of the above numerical ranges. It may be 40 parts by mass or 30 parts by mass.
  • thermoplastic elastomer composition of the present invention may be obtained by crosslinking the olefin rubber (I) and the polymer block (B) of the hydrogenated block copolymer (II). By crosslinking in this way, the morphology tends to be easily formed.
  • Crosslinking agent (V) examples include radical generators, sulfur and sulfur compounds.
  • the radical generator include dialkyl monoperoxides such as dicumyl peroxide, di-t-butyl peroxide, and t-butylcumyl peroxide; 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, , 5-Dimethyl-2,5-di (t-butylperoxy) hexyne-3, 1,3-bis (t-butylperoxyisopropyl) benzene, 1,1-bis (t-butylperoxy) -3,3 Diperoxides such as 5-trimethylcyclohexane and n-butyl-4,4-bis (t-butylperoxy) valerate; Diacyl peroxides such as benzoyl peroxide, p-chlorobenzoyl peroxide and 2,4-dichloro
  • the content thereof is preferably 0.01 to 15 parts by mass, more preferably 100 parts by mass relative to the total of 100 parts by mass of the olefin rubber (I) and the hydrogenated block copolymer (II). 0.05 to 10 parts by mass.
  • sulfur compound examples include sulfur monochloride and sulfur dichloride.
  • sulfur or a sulfur compound the content thereof is preferably 0.1 to 20 parts by mass, more preferably 100 parts by mass relative to the total of 100 parts by mass of the olefin rubber (I) and the hydrogenated block copolymer (II). Is 0.5 to 10 parts by mass, more preferably 1 to 10 parts by mass.
  • crosslinking agents (V) include phenolic resins such as alkylphenol resins and brominated alkylphenol resins; combinations of p-quinonedioxime and lead dioxide, p, p'-dibenzoylquinonedioxime and trilead tetroxide Etc. can also be used.
  • Crosslinking aid (VI) As the crosslinking aid (VI), a known crosslinking aid can be used. For example, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, trimellitic acid triallyl ester, 1,2,4-benzenetricarboxylic acid triallyl ester, triallyl isocyanurate, 1,6-hexanediol dimethacrylate, 1, 9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, polyethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, divinylbenzene, glycerol dimethacrylate, 2-hydroxy-3-acryloyl Polyfunctional monomers such as oxypropyl methacrylate; stannous chloride, ferric chloride, organic sulfonic acid, polychloropropyl E
  • the crosslinking aid (VI) may be used by impregnating diatomaceous earth, white carbon or the like.
  • the polyfunctional monomer (and triallyl isocyanurate) is preferably impregnated in diatomaceous earth or white carbon, and more preferably impregnated in white carbon.
  • the crosslinking aid (VI) one kind may be used alone, or two or more kinds may be used in combination.
  • the content thereof is preferably 0.1 to 40 parts by mass with respect to a total of 100 parts by mass of the olefin rubber (I) and the hydrogenated block copolymer (II). More preferred is 0.5 to 20 parts by mass, and further preferred is 2 to 20 parts by mass.
  • Crosslinking accelerator (VII) examples include thiazoles such as N, N-diisopropyl-2-benzothiazole-sulfenamide, 2-mercaptobenzothiazole, 2- (4-morpholinodithio) benzothiazole; diphenylguanidine, Guanidines such as triphenylguanidine; aldehyde-amine reactants such as butyraldehyde-aniline reactant, hexamethylenetetramine-acetaldehyde reactant or aldehyde-ammonia reactants; imidazolines such as 2-mercaptoimidazoline; thiocarbanilide, diethyl Thioureas such as urea, dibutylthiourea, trimethylthiourea, diorthotolylthiourea; dibenzothiazyl disulfide; tetramethylthiuram monosulfide, tetra
  • thermoplastic elastomer composition of the present invention may further contain another thermoplastic polymer.
  • Other thermoplastic polymers include, for example, polyphenylene ether resins; polyamide 6, polyamide 6 ⁇ 6, polyamide 6 ⁇ 10, polyamide 11, polyamide 12, polyamide 6 ⁇ 12, polyhexamethylenediamine terephthalamide, polyhexamethylene Polyamide resins such as diamine isophthalamide and xylene group-containing polyamide; Polyester resins such as polyethylene terephthalate and polybutylene terephthalate; Acrylic resins such as polymethyl acrylate and polymethyl methacrylate; Polyoxymethylene homopolymer, Polyoxymethylene Polyoxymethylene resins such as copolymers; Styrene resins such as styrene homopolymers, acrylonitrile-styrene resins, acrylonitrile-butadiene-styrene resins; Bonate resin; Styrenic elastomers such as styrene
  • the content when other thermoplastic polymers are contained, the content may be used within a range that does not impair the flexibility and mechanical strength of the thermoplastic elastomer composition, and before adding the other thermoplastic polymers.
  • the amount is preferably 200 parts by mass or less, more preferably 100 parts by mass or less, and still more preferably 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic elastomer composition.
  • thermoplastic elastomer composition of the present invention may further contain various additives as long as the effects of the present invention are not impaired.
  • additives include lubricants, foaming agents, nucleating agents, antioxidants, heat stabilizers, light resistance agents, weathering agents, metal deactivators, ultraviolet absorbers, light stabilizers, copper damage prevention agents, and fillers.
  • Reinforcing agents, antistatic agents, antibacterial agents, fungicides, dispersants, coloring agents and the like One of these may be contained alone, or two or more may be contained.
  • a lubricant is preferable because it improves the fluidity of the thermoplastic elastomer composition and suppresses thermal degradation.
  • the lubricant include silicone oils; hydrocarbon lubricants such as paraffin wax, microwax and polyethylene wax; butyl stearate, stearic acid monoglyceride, pentaerythritol tetrastearate, stearyl stearate, unsaturated fatty acid monoamide, and the like. It is done. These may be used individually by 1 type and may use 2 or more types together.
  • the content thereof is preferably 0.01 to 3 parts by weight, more preferably 0.05 to 1 part by weight, and still more preferably 100 parts by weight of the thermoplastic elastomer composition excluding the lubricant. 0.1 to 0.8 part by mass.
  • the foaming agent may be used in the production of a weather seal.
  • the foaming agent include inorganic foaming agents such as ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, and azides; N, N′-dinitrosopentamethylenetetramine, N, N ′ -N-nitroso compounds such as dimethyl-N, N'-dinitrosotephthalamide; azo compounds such as azobisisobutyronitrile, azodicarbonamide, barium azodicarboxylate; trichloromonofluoromethane, dichloromonofluoro Fluorinated alkanes such as methane; sulfonylhydrazine compounds such as paratoluenesulfonyl hydrazide, diphenylsulfone-3,3′-disulfonylhydrazide, 4,4′-oxybis (benzenes
  • Sulfonyl semicarbazide compounds such as p-toluylenesulfonyl semicarbazide and 4,4′-oxybis (benzenesulfonyl semicarbazide); organic foams such as triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole Agents: Thermally expandable fine particles encapsulated in microcapsules in which a heat-expandable compound such as isobutane and pentane is made of a thermoplastic resin such as vinylidene chloride, acrylonitrile, acrylic acid ester, and methacrylic acid ester. These may be used individually by 1 type and may use 2 or more types together.
  • nucleating agent when making a weather seal into a foam, you may contain a nucleating agent as needed.
  • the nucleating agent include metal oxides, composite oxides, metal carbonates such as talc, silica, alumina, mica, titania, zinc oxide, zeolite, calcium carbonate, magnesium carbonate, barium sulfate, and aluminum hydroxide.
  • a metal sulfate, a metal hydroxide, etc. can be used.
  • Crosslinking method As described above, the polymer block (B) portion of the olefin rubber (I) and the hydrogenated block copolymer (II) may be crosslinked.
  • a crosslinking method a method in which a crosslinking agent (V), a crosslinking assistant (VI) and a crosslinking accelerator (VII) are appropriately added to the olefin rubber (I) and the hydrogenated block copolymer (II) and kneaded.
  • Crosslinking method 1 resin crosslinking method
  • crosslinking method 3 quinoid crosslinking method
  • methods using active energy rays crosslinking method 4
  • thermoplastic elastomer composition of the present invention a crosslinking agent (V), a crosslinking assistant (VI) and a crosslinking accelerator (VII) are appropriately added to the olefin rubber (I) and the hydrogenated block copolymer (II). Then, the polymer block (B) of the olefin rubber (I) and the hydrogenated block copolymer (II) can be crosslinked.
  • a crosslinking aid (VI) such as the polyfunctional monomer, dibenzothiazyl disulfide and tetramethylthiuram disulfide (so-called disulfide type) as necessary together with the crosslinking agent (V) such as the radical generator.
  • a crosslinking accelerator (VII) such as a compound
  • a method of melt-kneading a thermoplastic elastomer composition containing a radical generator and, if necessary, another thermoplastic resin, under heating can be mentioned.
  • the heating temperature is preferably 140 to 230 ° C.
  • Melt-kneading can be carried out batchwise or continuously with an apparatus such as an extruder, kneader, roll, plastograph or the like.
  • the crosslinking reaction proceeds by such a melt-kneading process.
  • crosslinking agent (V) When sulfur or a sulfur compound is used as the crosslinking agent (V), crosslinking accelerators such as thiazoles, guanidines, butyraldehyde-aniline reactants, hexamethylenetetramine-acetaldehyde reactants, aldehyde-amine reactants ( It is highly preferred to use VII) together.
  • the cross-linking agent (V), the cross-linking accelerator (VII) and the like are preferably used at 50 to 250 ° C. (more preferably 80 to 200 ° C.) using a mixer such as a roll or a Banbury mixer. After kneading, crosslinking can be formed by maintaining the temperature at 60 ° C. or higher (more preferably 90 to 250 ° C.), usually for 1 minute to 2 hours (more preferably 5 minutes to 1 hour).
  • phenolic resins such as alkylphenol resins and brominated alkylphenol resins are used as the crosslinking agent (V), and stannous chloride, ferric chloride, organic sulfonic acid, Polychloroprene or chlorosulfonated polyethylene is used.
  • the crosslinking temperature is preferably 100 to 250 ° C, more preferably 130 to 220 ° C.
  • a crosslinking accelerator (VII) in combination.
  • ⁇ About crosslinking method 3> In the crosslinking method by the quinoid crosslinking method, a combination of p-quinonedioxime and lead dioxide, p, p′-dibenzoylquinonedioxime and trilead tetroxide, or the like is used as the crosslinking agent (V).
  • the crosslinking temperature is preferably 90 to 250 ° C, more preferably 110 to 220 ° C.
  • a crosslinking accelerator (VII) in combination.
  • Examples of active energy rays that can be used in the crosslinking method using active energy rays include particle rays, electromagnetic waves, and combinations thereof.
  • Examples of the particle beam include an electron beam (EB) and an ⁇ ray
  • examples of the electromagnetic wave include an ultraviolet ray (UV), a visible ray, an infrared ray, a ⁇ ray, and an X ray.
  • an electron beam (EB) or an ultraviolet ray (UV) is preferable.
  • thermoplastic elastomer composition containing olefin rubber (I), hydrogenated block copolymer (II), polyolefin resin (III) and softener (IV) in specific proportions.
  • a mixture of olefin rubber (I), polyolefin resin (III) and softening agent (IV) which has been previously cross-linked is prepared, to which hydrogenated block copolymer (II) and polyolefin resin (III) are prepared.
  • any of melt-kneading devices capable of uniformly mixing each component can be used, for example, a single screw extruder, a twin screw extruder, or the like.
  • a twin screw extruder that has a large shearing force during kneading and can be operated continuously.
  • a weather seal can be obtained from the obtained thermoplastic elastomer composition by a known molding method, preferably extrusion molding or injection molding. In particular, when forming a corner portion of a weather seal, injection molding is used.
  • extrusion molding is preferably used.
  • foam molding is performed.
  • the foam molding method includes a chemical method of foaming by decomposition or reaction of the foaming agent, the chemical method and supercritical foaming. Or the method of using together with physical methods, such as water foaming, is mentioned.
  • foam molding can be performed by a method usually used for foam molding, such as injection foam molding and extrusion foam molding.
  • a foam for forming a corner portion of a weather seal is obtained by injection-foaming a thermoplastic elastomer composition dry blended with a foaming agent into a mold having a cavity having a desired shape. It is done.
  • thermoplastic elastomer composition of the present invention has a hardness (JIS-A) measured according to the method described in the examples of 30 to 90, specifically 40 to 80, and has a flexibility suitable as a weather seal.
  • the upper limit of hardness is preferably 80 or less, more preferably 76 or less, and for a door seal corner, the upper limit of hardness is preferably 57 or less, more preferably 52 or less. preferable.
  • the adhesive strength to vulcanized rubber measured according to the method described in the examples is 100 to 300 N / cm 2 and the adhesive strength to TPV is 100 to 400 N / cm 2 , the adhesive strength to vulcanized rubber and TPV Excellent power.
  • adhesion to TPV is preferably 250 N / cm 2 or more, more preferably 310N / cm 2 or more, adhesion to vulcanized EPDM is 220 N / cm 2 or more, 240 N / cm 2 or more is more preferable (see Table 3).
  • adhesion to TPV is preferably 110N / cm 2 or more, more preferably 140 N / cm 2 or more, adhesion to vulcanized EPDM is 100 N / cm 2 or more, 115 N / cm 2 or more is more preferable (see Table 4).
  • the thermoplastic elastomer composition of the present invention is also excellent in weather resistance and moldability.
  • This invention provides the member which has the site
  • Part (X1) may be a part of the member or the whole. That is, this invention also provides the member which has the site
  • site (Y1) There are no particular restrictions on the material of the site (Y1), but in the case of weather seal applications, vulcanized rubber, dynamic cross-linked thermoplastic elastomer (TPV), and the like can be mentioned.
  • the vulcanized rubber includes (1) a cross-linked product of ethylene and one or more ⁇ -olefins having 3 to 20 carbon atoms, and (2) ethylene and one ⁇ -olefin having 3 to 20 carbon atoms.
  • examples thereof include a cross-linked product of a copolymer of the above and one or more non-conjugated polyenes.
  • the vulcanized rubber is preferably a cross-linked product of a copolymer of ethylene, one or more ⁇ -olefins having 3 to 20 carbon atoms and one or more nonconjugated polyenes. More preferred is a crosslinked product of the above copolymer.
  • the TPV is preferably an olefinic TPV containing an olefinic resin and an olefinic rubber, and more preferably an olefinic TPV containing a polypropylene resin and an olefinic rubber.
  • the olefin-based rubber is preferably a cross-linked product of ethylene, one or more ⁇ -olefins having 3 to 20 carbon atoms and one or more nonconjugated polyenes, and includes ethylene, propylene and nonconjugated polyenes.
  • a cross-linked product of a copolymer (EPDM) is more preferred.
  • TPV TPV
  • commercially available products such as “Excellink 1303B” and “Excellink 1703B” (both manufactured by JSR Corporation) can also be used.
  • the “alpha-olefin having 3 to 20 carbon atoms” and “non-conjugated polyene” are the same as those described in the olefin rubber (I), and the preferred ones are also the same.
  • Vulcanized rubber and TPV contain various additives such as vulcanization aids, vulcanization accelerators, softeners, anti-aging agents, carbon black, zinc oxide, and lubricants as necessary. May be.
  • the present invention also provides a member having a part (X2) made of the thermoplastic elastomer composition of the present invention in addition to the part (X1).
  • the material of the part (X2) may be the same as or different from the thermoplastic elastomer composition forming the part (X1).
  • the material of the part (X2) is different from the thermoplastic elastomer composition forming the part (X1), it becomes a member using two or more thermoplastic elastomer compositions of the present invention.
  • the part (X1) made of the thermoplastic elastomer composition of the present invention is preferably a part obtained by injection molding.
  • the present invention also provides a weather seal containing the member. More specifically, a weather seal having a corner portion made of the portion (X1) and a straight portion made of the portion (X2) or (Y1) is provided.
  • the weather seal is useful for automobiles, ships or aircraft. Since the part (X1) is excellent in flexibility and molding processability, it is particularly useful as a corner member and is useful as a weather seal corner member. For example, if it is used for automobiles, it is useful as a corner member of a glass run, a corner member of a door seal or the like.
  • Peak top molecular weight (Mp) According to gel permeation chromatography (GPC) measurement under the following conditions, peaks in terms of polystyrene in the polymer blocks (A1) and (A2) before hydrogenation and in the hydrogenated block copolymer (II) after hydrogenation The top molecular weight (Mp) was determined.
  • the Mp (A2) of the polymer block (A2) is obtained by subtracting the Mp of the polymer block [A1-B] before hydrogenation from the Mp of the hydrogenated block copolymer (II) after hydrogenation. Asked.
  • Mw / Mn The weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) were determined by gel permeation chromatography (GPC) in terms of standard polystyrene. The measurement apparatus and conditions were the same as the GPC measurement apparatus and measurement conditions in the measurement of the peak top molecular weight (Mp).
  • a reaction solution containing a styrene- (butadiene / isoprene) -styrene block copolymer was obtained.
  • 5% by mass of palladium carbon (palladium supported amount: 5% by mass) as a hydrogenation catalyst was added to the block copolymer, and the reaction was performed for 10 hours under conditions of a hydrogen pressure of 2 MPa and 150 ° C. .
  • the palladium carbon is removed by filtration, the filtrate is concentrated, and further dried under vacuum to obtain a hydrogenated styrene- (butadiene / isoprene) -styrene block copolymer (hydrogenated block copolymer).
  • Compound (II) -1) was obtained.
  • the amount of each component used and the measurement results of the physical properties of the hydrogenated block copolymer (II) -1 are shown in Table 1.
  • thermoplastic elastomer composition obtained in each example were injection molded at a cylinder temperature of 230 ° C. with an injection molding machine “EC75SX” (manufactured by Toshiba Machine Co., Ltd.), 100 mm long, 35 mm wide, A sheet having a thickness of 2 mm was prepared, and the sheet was cut into a length of 50 mm and a width of 35 mm to prepare a test piece. The presence or absence of a flow mark in the test piece was visually observed, and molding processability was evaluated according to the following criteria. A: No flow mark B: Low flow mark C: Many flow marks
  • Adhesive strength with an adherend made of a dynamically crosslinked thermoplastic elastomer (TPV) or an adherend made of vulcanized rubber was measured by the following method.
  • Adherent consisting of TPV TPV-1: Using a pellet of “Excelin 1703B” (manufactured by JSR Corporation), a test piece having a length of 50 mm, a width of 35 mm, and a thickness of 2 mm was prepared according to the method described in “(8) Moldability”, This was designated as an adherend “TPV-1.” The hardness of the TPV-1 measured according to the method described in “(7) Hardness” was 71.
  • TPV-2 A test piece was prepared in the same manner as TPV-1 except that pellets of “Excelin 1303B” (manufactured by JSR Corporation) were used, and this was used as an adherend “TPV-2”.
  • the hardness of the TPV-2 measured according to the method described in “(7) Hardness” was 42.
  • Vulcanized EPDM-3 Ethylene / propylene / diene copolymer rubber “EPT4045” (Mitsui Chemicals Co., Ltd.), carbon black “Diablack H” (Mitsubishi Chemical Co., Ltd.) in the blending amounts shown in Table 2 below.
  • Anti-aging agent “NOCRACK 6C” (manufactured by Ouchi Shinko Chemical Co., Ltd.), stearic acid “LUNAC S-20” (manufactured by Kao Corporation) and zinc white “Zinc Oxide” (manufactured by Sakai Chemical Industry Co., Ltd.)
  • the mixture was kneaded for 6 minutes at 150 ° C. using a Banbury mixer (first kneading stage).
  • a vulcanizing agent “sulfur” fine sulfur, 200 mesh, manufactured by Tsurumi Chemical Co., Ltd.
  • a vulcanization accelerator (1) were blended in the amounts shown in Table 2 below.
  • a test piece was prepared by punching out 50 mm in length, 35 mm in width, and 2 mm in thickness from this sheet, and this was used as an adherend “vulcanized EPDM-3”.
  • the hardness of this vulcanized EPDM-3 measured according to the method described in “(7) Hardness” was 70.
  • ⁇ Measurement method of adhesive strength> Each adherend (50 mm long ⁇ 35 mm wide ⁇ 2 mm thick) obtained as described above is mounted in a cavity of 100 mm long ⁇ 35 mm wide ⁇ 2 mm thick, and injection molding machine “EC75SX” is provided there. (Manufactured by Toshiba Machine Co., Ltd.), a thermoplastic elastomer was injection molded at 230 ° C.
  • thermoplastic elastomer composition a thermoplastic elastomer composition.
  • a thing is the state which adhere
  • the obtained composite molded sheet (length 100 mm ⁇ width 35 mm ⁇ thickness 2 mm) was cut into length 100 mm ⁇ width 10 mm ⁇ thickness 2 mm, and Instron universal under a temperature condition of 23 ° C. and a tensile speed condition of 200 mm / min.
  • the adhesion between the thermoplastic elastomer composition and the adherend was measured using a tester “Instron 5566” (manufactured by Instron Japan).
  • thermoplastic elastomer compositions of the examples all have high adhesion to TPV-1, TPV-2 and vulcanized EPDM-3, and have flexibility and weather resistance. It can be seen that the moldability is also excellent. Further, when Example 6 and Example 8 are compared, the ratio of the peak top molecular weight (Mp) in the polymer blocks (A1) and (A2) in the hydrogenated block copolymer (II) [Mp (A1) / It can be seen that Example 8 in which Mp (A2)] satisfies 1/10 to 8/10 is more excellent in moldability.
  • the thermoplastic elastomer compositions obtained in Examples 1 to 8 are particularly useful for glass run corners in automobiles.
  • thermoplastic elastomer compositions obtained in Examples 9 to 16 are particularly useful for corner portions of door seals in automobiles.
  • Comparative Examples 1, 2, 8 and 9 using a hydrogenated block copolymer having a low hydrogenation rate the adhesive strength to TPV may be insufficient (see Comparative Example 2), and the weather resistance is also low. It turns out that it is insufficient (refer comparative examples 1, 2, 8, and 9).
  • Comparative Examples 3, 4, 10 and 11 using a hydrogenated block copolymer in which the vinyl bond content of the polymer block (B) is less than 45% the flexibility may be insufficient (Comparative Example). 3 and 10), and the adhesive strength to TPV and vulcanized rubber may be poor (see Comparative Examples 4 and 11).
  • thermoplastic elastomer composition of the present invention has high adhesion to vulcanized rubber and dynamically cross-linked thermoplastic elastomer (TPV), and is excellent in molding processability as well as flexibility and weather resistance. It is useful for weather seals, particularly for corners of weather seals.
  • TPV dynamically cross-linked thermoplastic elastomer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

Provided is a thermoplastic elastomer composition which has high adhesion to vulcanized rubber and dynamically crosslinked thermoplastic elastomers (TPVs), and has excellent flexibility, weather resistance and moldability. Further provided are a member having a portion made of the thermoplastic elastomer composition, a weather seal comprising the member and a corner member for a weather seal having a portion made of the thermoplastic elastomer composition. The thermoplastic elastomer composition is, specifically, a thermoplastic elastomer composition comprising an olefin-based rubber (I), a hydrogenated block copolymer (II) described below, a polyolefin-based resin (III), and a softening agent (IV). The content ratio of the olefin-based rubber (I) and hydrogenated block copolymer (II) [(I)/(II)] is 90/10 to 10/90 (mass ratio). With respect to a total of 100 parts by mass of the olefin-based rubber (I) and the hydrogenated block copolymer (II), the content of the polyolefin-based resin (III) is 10 to 200 parts by mass, and the content of the softening agent (IV) is 15 to 300 parts by mass. The hydrogenated block copolymer (II) comprises: a polymer block (A), primarily comprising structural units derived from an aromatic vinyl compound; and a polymer block (B) primarily comprising structural units derived from at least one substance selected from the group consisting of isoprene and butadiene, in which the total content of 3,4-bond units and 1,2-bond units is 45% or more. The peak top molecular weight of the hydrogenated block copolymer (II) is 50,000 to 200,000, and 70 mol% or more of the carbon-carbon double bonds in the polymer block (B) are hydrogenated.

Description

熱可塑性エラストマー組成物、部材、ウェザーシール、ウェザーシール用コーナー部材Thermoplastic elastomer composition, member, weather seal, corner member for weather seal
 本発明は、熱可塑性エラストマー組成物、部材、ウェザーシールおよびウェザーシール用コーナー部材に関する。 The present invention relates to a thermoplastic elastomer composition, a member, a weather seal, and a weather seal corner member.
 これまで自動車用部品に用いられてきた加硫ゴムと共に、動的架橋型熱可塑性エラストマー(Thermoplastic Vulcanizates:TPV)も注目を浴びている材料であり、現在、自動車用途等で広く用いられている。
 自動車用部品の1つとしてウェザーシールが挙げられる。該ウェザーシールの材料としては、これまでは、圧縮永久歪が小さく、且つ柔軟性に優れる加硫ゴムが用いられてきた。しかし、昨今の二酸化炭素の排出量削減に向けた規制に伴い、より成形加工性が良好であり、且つ比重が軽いTPVに置き換わる傾向にある(非特許文献1参照)。
 自動車用のウェザーシールは、通常、ストレート部とコーナー部とを有する。工業的には、ストレート部は押出し成形によって製造されるが、コーナー部は射出成形によって製造されるため、コーナー部の材料としては、射出成形が可能なものを選択する必要がある。しかし、加硫ゴムよりも成形加工性が良好なTPVであっても、十分な成形加工性であるとは言えず、更なる改善の余地がある。そのため、ウェザーシールのストレート部の材料としては加硫ゴムまたはTPVが用いられるが、コーナー部の材料としては、諸特性を維持しながら成形加工性にも優れる別の材料を使用することが望まれる。
In addition to vulcanized rubber that has been used for automotive parts, dynamic crosslinked thermoplastic elastomers (TPV) are also attracting attention, and are currently widely used in automotive applications and the like.
One of the parts for automobiles is a weather seal. As a material for the weather seal, vulcanized rubber having a small compression set and excellent flexibility has been used so far. However, with recent regulations for reducing carbon dioxide emissions, there is a tendency to replace TPV with better molding processability and light specific gravity (see Non-Patent Document 1).
A weather seal for an automobile usually has a straight portion and a corner portion. Industrially, the straight part is manufactured by extrusion molding, but the corner part is manufactured by injection molding. Therefore, it is necessary to select a material capable of injection molding as the material of the corner part. However, even a TPV having better moldability than vulcanized rubber cannot be said to have sufficient moldability, and there is room for further improvement. For this reason, vulcanized rubber or TPV is used as the material for the straight portion of the weather seal, but it is desirable to use another material that is excellent in molding processability while maintaining various characteristics as the material for the corner portion. .
 ここで、制振部材;パッキンなどの建材用途;バンパー部品、エアバッグカバーなどの自動車内外装部品用途などとして有用な、成形加工性、柔軟性、制振性、高温での歪み回復性および軟化剤の保持性に優れた熱可塑性エラストマー組成物が知られている(特許文献1)。
 該特許文献1に記載の熱可塑性エラストマー組成物は、オレフィン系ゴム(I)、芳香族ビニル化合物に由来する構造単位からなる重合体ブロック(A)と、イソプレンまたはイソプレンおよびブタジエンの混合物に由来する構造単位を含有し、3,4-結合単位および1,2-結合単位の含有量の合計が45%以上である重合体ブロック(B)とを有するブロック共重合体の水素添加物であって、ゲルパーミエーションクロマトグラフィーにより標準ポリスチレン換算で求めたピークトップ分子量(Mp)が250,000~500,000である水添ブロック共重合体(II)、前記(I)以外のポリオレフィン系樹脂(III)および軟化剤(IV)を含有する熱可塑性エラストマー組成物であって、オレフィン系ゴム(I)と水添ブロック共重合体(II)をオレフィン系ゴム(I):水添ブロック共重合体(II)=90:10~10:90(質量比)の割合で含有し、かつオレフィン系ゴム(I)と水添ブロック共重合体(II)の合計100質量部に対して、ポリオレフィン系樹脂(III)を10~200質量部、軟化剤(IV)を10~300質量部の割合で含有する、熱可塑性エラストマー組成物である。
Damping members; building materials such as packing; automotive interior / exterior components such as bumper parts and airbag covers; molding processability, flexibility, vibration damping, strain recovery at high temperatures, and softening A thermoplastic elastomer composition having excellent agent retention is known (Patent Document 1).
The thermoplastic elastomer composition described in Patent Document 1 is derived from olefin rubber (I), a polymer block (A) composed of structural units derived from an aromatic vinyl compound, and isoprene or a mixture of isoprene and butadiene. A hydrogenated block copolymer having a structural unit and a polymer block (B) having a total content of 3,4-bond units and 1,2-bond units of 45% or more, A hydrogenated block copolymer (II) having a peak top molecular weight (Mp) of 250,000 to 500,000 determined by gel permeation chromatography in terms of standard polystyrene, a polyolefin resin other than the above (I) (III ) And a softening agent (IV) comprising a olefinic rubber (I) and a hydrogenated block co-polymer The blend (II) is contained in a ratio of olefinic rubber (I): hydrogenated block copolymer (II) = 90: 10 to 10:90 (mass ratio), and the olefinic rubber (I) and hydrogenated block Thermoplastic elastomer composition containing 10 to 200 parts by mass of polyolefin resin (III) and 10 to 300 parts by mass of softener (IV) with respect to 100 parts by mass of copolymer (II) It is.
特開2014-080488号公報JP 2014-080488 A
 本発明者等の検討により、特許文献1に記載の熱可塑性エラストマー組成物は成形加工性にさらなる改良の余地があることがわかり、ウェザーシールのコーナー部の材料としては、より良い材料の開発が求められている。さらに、ウェザーシールのストレート部の材料がTPVである場合には、コーナー部の材料として特許文献1に記載の熱可塑性エラストマー組成物を使用すると、ストレート部との接着性にさらなる改善の余地があることが判明した。
 そこで、本発明の課題は、加硫ゴムおよび動的架橋型熱可塑性エラストマー(TPV)に対して高い接着力を有し、且つ、柔軟性および耐候性と共に、成形加工性にも優れる熱可塑性エラストマー組成物を提供することにある。さらに、該熱可塑性エラストマー組成物からなる部位を有する部材、該部材を含有するウェザーシール、前記熱可塑性エラストマー組成物からなる部位を有するウェザーシール用コーナー部材を提供することにある。
As a result of studies by the present inventors, it has been found that the thermoplastic elastomer composition described in Patent Document 1 has room for further improvement in molding processability, and as a material for the corner portion of the weather seal, a better material has been developed. It has been demanded. Furthermore, when the material of the straight part of the weather seal is TPV, if the thermoplastic elastomer composition described in Patent Document 1 is used as the material of the corner part, there is room for further improvement in the adhesion with the straight part. It has been found.
Accordingly, an object of the present invention is to provide a thermoplastic elastomer having high adhesive strength to vulcanized rubber and dynamically cross-linked thermoplastic elastomer (TPV), and being excellent in moldability as well as flexibility and weather resistance. It is to provide a composition. Furthermore, it is providing the member which has a site | part which consists of this thermoplastic elastomer composition, the weather seal containing this member, and the corner member for weather seals which has a site | part which consists of the said thermoplastic elastomer composition.
 本発明者らは、上記課題を解決すべく、鋭意検討を行ったところ、オレフィン系ゴム(I)、特定の水添ブロック共重合体(II)、ポリオレフィン系樹脂(III)、および軟化剤(IV)を含有してなる熱可塑性エラストマー組成物であって、オレフィン系ゴム(I)と水添ブロック共重合体(II)との含有割合が特定範囲内であり、且つポリオレフィン系樹脂(III)および軟化剤(IV)の含有量が特定範囲内である熱可塑性エラストマー組成物であれば、前記課題を解決し得ることが判明し、本発明に至った。 The inventors of the present invention made extensive studies to solve the above-mentioned problems. As a result, the olefin rubber (I), the specific hydrogenated block copolymer (II), the polyolefin resin (III), and the softener ( IV) a thermoplastic elastomer composition comprising the olefin rubber (I) and the hydrogenated block copolymer (II) in a specific range, and a polyolefin resin (III). It has been found that the above-mentioned problems can be solved if the thermoplastic elastomer composition has a content of the softening agent (IV) within a specific range, and the present invention has been achieved.
 本発明は、下記[1]~[18]に関する。
[1]オレフィン系ゴム(I)、
 下記水添ブロック共重合体(II)、
 ポリオレフィン系樹脂(III)、および
 軟化剤(IV)
を含有してなる熱可塑性エラストマー組成物であって、
 オレフィン系ゴム(I)と水添ブロック共重合体(II)との含有割合[(I)/(II)]が質量比で90/10~10/90であり、
 オレフィン系ゴム(I)と水添ブロック共重合体(II)の合計100質量部に対して、ポリオレフィン系樹脂(III)の含有量が10~200質量部、軟化剤(IV)の含有量が15~300質量部である、熱可塑性エラストマー組成物。
 水添ブロック共重合体(II):芳香族ビニル化合物に由来する構造単位から主としてなる重合体ブロック(A)と、イソプレンおよびブタジエンからなる群から選択される少なくとも1種に由来する構造単位から主としてなり、かつ3,4-結合単位および1,2-結合単位の含有量の合計が45%以上である重合体ブロック(B)とを有するブロック共重合体の水素添加物であって、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めたピークトップ分子量が50,000~200,000であり、重合体ブロック(B)中の炭素-炭素二重結合の70モル%以上が水素添加されている水添ブロック共重合体。
[2]前記水添ブロック共重合体(II)のガラス転移温度が-45~0℃である、上記[1]の熱可塑性エラストマー組成物。
[3]前記水添ブロック共重合体(II)において、重合体ブロック(A)の含有量が5~40質量%である、上記[1]または[2]の熱可塑性エラストマー組成物。
[4]水添ブロック共重合体(II)において、重合体ブロック(A)の含有量が5~18質量%である、上記[1]~[3]のいずれかの熱可塑性エラストマー組成物。
[5]前記水添ブロック共重合体(II)における前記重合体ブロック(A)が、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めたピークトップ分子量が同一または異なる2つの重合体ブロック(A1)と(A2)とを含有し、且つ、該水添ブロック共重合体(II)が、前記重合体ブロック(A1)、前記重合体ブロック(B)および前記重合体ブロック(A2)から構成されるトリブロック共重合体[A1-B-A2]の水素添加物である、上記[1]~[4]のいずれかの熱可塑性エラストマー組成物。
[6]前記水添ブロック共重合体(II)において、
 前記重合体ブロック(A)が、芳香族ビニル化合物に由来する構造単位から主としてなり、且つゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めたピークトップ分子量がMp(A1)である重合体ブロック(A1)と、芳香族ビニル化合物に由来する構造単位から主としてなり、且つゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めたピークトップ分子量がMp(A2)である重合体ブロック(A2)とを有し、
 前記Mp(A1)と前記Mp(A2)との比[Mp(A1)/Mp(A2)]が1/10~8/10を満たす、上記[5]の熱可塑性エラストマー組成物。
[7]前記オレフィン系ゴム(I)と前記水添ブロック共重合体(II)の重合体ブロック(B)とが架橋されてなる、上記[1]~[6]のいずれかの熱可塑性エラストマー組成物。
[8]前記オレフィン系ゴム(I)が、(I-1)エチレンと、炭素数3~20のα-オレフィン1種以上との共重合体ゴムまたはその架橋物、並びに(I-2)エチレンと、炭素数3~20のα-オレフィン1種以上と、非共役ポリエン1種以上との共重合体ゴムまたはその架橋物、からなる群から選択される少なくとも1種である、上記[1]~[7]のいずれかの熱可塑性エラストマー組成物。
[9]前記ポリオレフィン系樹脂(III)が、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリ(1-ブテン)およびポリ(4-メチル-1-ペンテン)からなる群から選択される少なくとも1種である、上記[1]~[8]のいずれかの熱可塑性エラストマー組成物。
[10]上記[1]~[9]のいずれかの熱可塑性エラストマー組成物からなる部位(X1)を有する部材。
[11]前記部位(X1)の他に、上記[1]~[9]のいずれかの熱可塑性エラストマー組成物とは異なる材料からなる部位(Y1)を有する、上記[10]の部材。
[12]前記部位(Y1)の材料が、加硫ゴムまたは動的架橋型オレフィン系熱可塑性エラストマー(TPV)である、上記[11]の部材。
[13]前記部位(X1)の他に、上記[1]~[9]のいずれかの熱可塑性エラストマー組成物(但し、前記部位(X1)を形成する熱可塑性エラストマー組成物と同一であっても異なっていてもよい。)からなる部位(X2)を有する、上記[10]の部材。
[14]前記部位(X1)が射出成形により得られた部位である、上記[10]~[13]のいずれかの部材。
[15]上記[10]~[14]のいずれかの部材を含有するウェザーシール。
[16]上記[1]~[9]のいずれかの熱可塑性エラストマー組成物からなる部位(X1)を有し、且つ、
 前記部位(X1)の他に、上記[1]~[9]のいずれかの熱可塑性エラストマー組成物とは異なる材料からなる部位(Y1)を有するか、または、前記部位(X1)の他に、上記[1]~[9]のいずれかの熱可塑性エラストマー組成物(但し、前記部位(X1)を形成する熱可塑性エラストマー組成物と同一であっても異なっていてもよい。)からなる部位(X2)を有する部材を含有するウェザーシールであって、
 前記部位(X1)からなるコーナー部と、前記部位(X2)または(Y1)からなるストレート部とを有するウェザーシール。
[17]自動車用、船舶用または航空機用である、上記[15]または[16]のウェザーシール。
[18]上記[1]~[9]のいずれかの熱可塑性エラストマー組成物からなる部位(X1)を有する、ウェザーシール用コーナー部材。
The present invention relates to the following [1] to [18].
[1] Olefin rubber (I),
The following hydrogenated block copolymer (II),
Polyolefin resin (III) and softener (IV)
A thermoplastic elastomer composition comprising:
The content ratio [(I) / (II)] of the olefin rubber (I) and the hydrogenated block copolymer (II) is 90/10 to 10/90 by mass ratio,
The content of polyolefin resin (III) is 10 to 200 parts by mass and the content of softener (IV) is 100 parts by mass in total of olefin rubber (I) and hydrogenated block copolymer (II). A thermoplastic elastomer composition having a content of 15 to 300 parts by mass.
Hydrogenated block copolymer (II): mainly from a polymer block (A) mainly composed of a structural unit derived from an aromatic vinyl compound and a structural unit derived from at least one selected from the group consisting of isoprene and butadiene. And a hydrogenated product of a block copolymer having a polymer block (B) having a total content of 3,4-bond units and 1,2-bond units of 45% or more, Water having a peak top molecular weight of 50,000 to 200,000 determined by standard polystyrene conversion by an association chromatography and hydrogenated 70 mol% or more of the carbon-carbon double bonds in the polymer block (B). A block copolymer.
[2] The thermoplastic elastomer composition according to the above [1], wherein the hydrogenated block copolymer (II) has a glass transition temperature of −45 to 0 ° C.
[3] The thermoplastic elastomer composition according to the above [1] or [2], wherein the content of the polymer block (A) in the hydrogenated block copolymer (II) is 5 to 40% by mass.
[4] The thermoplastic elastomer composition according to any one of the above [1] to [3], wherein the content of the polymer block (A) in the hydrogenated block copolymer (II) is 5 to 18% by mass.
[5] Two polymer blocks (A1) in which the polymer block (A) in the hydrogenated block copolymer (II) has the same or different peak top molecular weight determined in terms of standard polystyrene by gel permeation chromatography And (A2), and the hydrogenated block copolymer (II) is composed of the polymer block (A1), the polymer block (B), and the polymer block (A2). The thermoplastic elastomer composition according to any one of the above [1] to [4], which is a hydrogenated product of the triblock copolymer [A1-B-A2].
[6] In the hydrogenated block copolymer (II),
The polymer block (A1) in which the polymer block (A) is mainly composed of a structural unit derived from an aromatic vinyl compound and has a peak top molecular weight of Mp (A1) determined in terms of standard polystyrene by gel permeation chromatography. And a polymer block (A2) having a peak top molecular weight of Mp (A2), which is mainly composed of a structural unit derived from an aromatic vinyl compound, and calculated in terms of standard polystyrene by gel permeation chromatography,
The thermoplastic elastomer composition according to the above [5], wherein the ratio [Mp (A1) / Mp (A2)] of the Mp (A1) to the Mp (A2) satisfies 1/10 to 8/10.
[7] The thermoplastic elastomer according to any one of [1] to [6] above, wherein the olefin rubber (I) and the polymer block (B) of the hydrogenated block copolymer (II) are crosslinked. Composition.
[8] The olefin rubber (I) is a copolymer rubber of (I-1) ethylene and one or more α-olefins having 3 to 20 carbon atoms, or a crosslinked product thereof, and (I-2) ethylene. And at least one selected from the group consisting of a copolymer rubber of at least one α-olefin having 3 to 20 carbon atoms and at least one non-conjugated polyene or a crosslinked product thereof [1] The thermoplastic elastomer composition according to any of [7].
[9] The polyolefin resin (III) is at least one selected from the group consisting of polyethylene resin, polypropylene resin, poly (1-butene) and poly (4-methyl-1-pentene). The thermoplastic elastomer composition according to any one of the above [1] to [8].
[10] A member having a portion (X1) made of the thermoplastic elastomer composition according to any one of [1] to [9].
[11] The member according to the above [10], which has a portion (Y1) made of a material different from the thermoplastic elastomer composition according to any one of the above [1] to [9] in addition to the portion (X1).
[12] The member according to [11] above, wherein the material of the part (Y1) is vulcanized rubber or a dynamically crosslinked olefin-based thermoplastic elastomer (TPV).
[13] In addition to the part (X1), the thermoplastic elastomer composition according to any one of the above [1] to [9] (provided that the thermoplastic elastomer composition is the same as the thermoplastic elastomer composition forming the part (X1)). The member according to [10] above, which has a portion (X2) consisting of the same.
[14] The member according to any one of [10] to [13], wherein the part (X1) is a part obtained by injection molding.
[15] A weather seal containing the member according to any one of [10] to [14].
[16] It has a portion (X1) made of the thermoplastic elastomer composition according to any one of [1] to [9], and
In addition to the part (X1), it has a part (Y1) made of a material different from the thermoplastic elastomer composition of any one of the above [1] to [9], or in addition to the part (X1) A part comprising the thermoplastic elastomer composition according to any one of the above [1] to [9] (however, it may be the same as or different from the thermoplastic elastomer composition forming the part (X1)). A weather seal containing a member having (X2),
A weather seal having a corner portion made of the portion (X1) and a straight portion made of the portion (X2) or (Y1).
[17] The weather seal according to [15] or [16], which is for automobiles, ships, or aircraft.
[18] A weather seal corner member having a portion (X1) made of the thermoplastic elastomer composition according to any one of [1] to [9].
 本発明により、加硫ゴムおよび動的架橋型熱可塑性エラストマー(TPV)に対して高い接着力を有し、且つ、柔軟性および耐候性と共に、成形加工性にも優れる熱可塑性エラストマー組成物を提供することができる。さらに、該熱可塑性エラストマー組成物からなる部位を有する部材を提供することができる。
 また、本発明の熱可塑性エラストマー組成物は、ウェザーシール用、特にウェザーシールのコーナー部用として適しているため、本発明の熱可塑性エラストマー組成物からなる部位を有する部材を含有するウェザーシール、本発明の熱可塑性エラストマー組成物からなる部位を有するウェザーシール用コーナー部材をも提供することができる。
According to the present invention, there is provided a thermoplastic elastomer composition having high adhesive strength to vulcanized rubber and dynamically cross-linked thermoplastic elastomer (TPV), and having excellent flexibility and weather resistance as well as excellent moldability. can do. Furthermore, the member which has a site | part which consists of this thermoplastic elastomer composition can be provided.
Further, since the thermoplastic elastomer composition of the present invention is suitable for weather seals, particularly for corner portions of weather seals, a weather seal containing a member having a portion made of the thermoplastic elastomer composition of the present invention, the present A corner member for a weather seal having a portion made of the thermoplastic elastomer composition of the invention can also be provided.
[熱可塑性エラストマー組成物]
 本発明の熱可塑性エラストマー組成物は、
 オレフィン系ゴム(I)、
 下記水添ブロック共重合体(II)、
 ポリオレフィン系樹脂(III)、および
 軟化剤(IV)
を含有してなる熱可塑性エラストマー組成物であって、
 オレフィン系ゴム(I)と水添ブロック共重合体(II)との含有割合[(I)/(II)]が質量比で90/10~10/90であり、
 オレフィン系ゴム(I)と水添ブロック共重合体(II)の合計100質量部に対して、ポリオレフィン系樹脂(III)の含有量が10~200質量部、軟化剤(IV)の含有量が15~300質量部の熱可塑性エラストマー組成物である。
 水添ブロック共重合体(II):芳香族ビニル化合物に由来する構造単位から主としてなる重合体ブロック(A)と、イソプレンおよびブタジエンからなる群から選択される少なくとも1種に由来する構造単位から主としてなり、かつ3,4-結合単位および1,2-結合単位の含有量の合計が45%以上である重合体ブロック(B)とを有するブロック共重合体の水素添加物であって、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めたピークトップ分子量が50,000~200,000であり、重合体ブロック(B)中の炭素-炭素二重結合の70モル%以上が水素添加されている水添ブロック共重合体。
 以下、各成分について順に詳細に説明する。
[Thermoplastic elastomer composition]
The thermoplastic elastomer composition of the present invention comprises:
Olefin rubber (I),
The following hydrogenated block copolymer (II),
Polyolefin resin (III) and softener (IV)
A thermoplastic elastomer composition comprising:
The content ratio [(I) / (II)] of the olefin rubber (I) and the hydrogenated block copolymer (II) is 90/10 to 10/90 by mass ratio,
The content of polyolefin resin (III) is 10 to 200 parts by mass and the content of softener (IV) is 100 parts by mass in total of olefin rubber (I) and hydrogenated block copolymer (II). 15 to 300 parts by mass of a thermoplastic elastomer composition.
Hydrogenated block copolymer (II): mainly from a polymer block (A) mainly composed of a structural unit derived from an aromatic vinyl compound and a structural unit derived from at least one selected from the group consisting of isoprene and butadiene. And a hydrogenated product of a block copolymer having a polymer block (B) having a total content of 3,4-bond units and 1,2-bond units of 45% or more, Water having a peak top molecular weight of 50,000 to 200,000 determined by standard polystyrene conversion by an association chromatography and hydrogenated 70 mol% or more of the carbon-carbon double bonds in the polymer block (B). A block copolymer.
Hereinafter, each component will be described in detail in order.
(オレフィン系ゴム(I))
 オレフィン系ゴム(I)としては、
(I-1)エチレンと、炭素数3~20のα-オレフィン1種以上との共重合体ゴム(以下、「エチレン/α-オレフィン共重合体ゴム」ということがある)またはその架橋物、
(I-2)エチレンと、炭素数3~20のα-オレフィン1種以上と、非共役ポリエン1種以上との共重合体ゴム(以下、「エチレン/α-オレフィン/非共役ポリエン共重合体ゴム」ということがある)またはその架橋物、
などが挙げられる。オレフィン系ゴム(I)は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 2種以上を併用する場合、前記エチレン/α-オレフィン共重合体ゴムの架橋物と、前記エチレン/α-オレフィン/非共役ポリエン共重合体ゴムの架橋物を併用することが好ましい。
 中でも、オレフィン系ゴム(I)としては、エチレン/α-オレフィン/非共役ポリエン共重合体ゴムまたはその架橋物であることが、高温での歪み回復性がより良好になる点から好ましく、エチレン/α-オレフィン/非共役ポリエン共重合体ゴムであってもよいし、エチレン/α-オレフィン/非共役ポリエン共重合体ゴムの架橋物であってもよい。
(Olefin rubber (I))
As the olefin rubber (I),
(I-1) a copolymer rubber of ethylene and one or more α-olefins having 3 to 20 carbon atoms (hereinafter sometimes referred to as “ethylene / α-olefin copolymer rubber”) or a cross-linked product thereof;
(I-2) Copolymer rubber of ethylene, one or more α-olefins having 3 to 20 carbon atoms and one or more non-conjugated polyenes (hereinafter referred to as “ethylene / α-olefin / non-conjugated polyene copolymer”) Rubber ”) or cross-linked products thereof.
Etc. Olefin rubber (I) may be used individually by 1 type, and may use 2 or more types together.
When two or more kinds are used in combination, it is preferable to use a cross-linked product of the ethylene / α-olefin copolymer rubber and a cross-linked product of the ethylene / α-olefin / non-conjugated polyene copolymer rubber together.
Among them, the olefin rubber (I) is preferably an ethylene / α-olefin / non-conjugated polyene copolymer rubber or a cross-linked product thereof from the viewpoint of better strain recovery at high temperatures. An α-olefin / non-conjugated polyene copolymer rubber or a cross-linked product of ethylene / α-olefin / non-conjugated polyene copolymer rubber may be used.
 前記共重合体ゴムまたはその架橋物を構成する炭素数3~20のα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン等が挙げられる。これらのα-オレフィンは1種を単独で、または2種以上を併用してもよい。中でも、プロピレン、1-ブテン、1-ヘキセンおよび1-オクテンからなる群から選択される少なくとも1種であることが好ましく、プロピレンおよび1-ブテンからなる群から選択される少なくとも1種であることがより好ましく、プロピレンであることがさらに好ましい。 Examples of the α-olefin having 3 to 20 carbon atoms constituting the copolymer rubber or a crosslinked product thereof include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-octene, and the like. Examples include decene. These α-olefins may be used alone or in combination of two or more. Among these, at least one selected from the group consisting of propylene, 1-butene, 1-hexene and 1-octene is preferable, and at least one selected from the group consisting of propylene and 1-butene is preferable. More preferably, it is propylene.
 エチレン/α-オレフィン共重合体ゴムでは、エチレンと炭素数3~20のα-オレフィンとのモル比(エチレン/炭素数3~20のα-オレフィン)は、機械的強度および高温での歪み回復性がバランス良く維持されるという観点から、40/60~93/7が好ましく、50/50~85/15がより好ましく、60/40~80/20がより好ましい。 In ethylene / α-olefin copolymer rubber, the molar ratio of ethylene to α-olefin having 3 to 20 carbon atoms (ethylene / α-olefin having 3 to 20 carbon atoms) is high in mechanical strength and strain recovery at high temperature. From the viewpoint that the properties are maintained in a well-balanced manner, 40/60 to 93/7 is preferable, 50/50 to 85/15 is more preferable, and 60/40 to 80/20 is more preferable.
 また、エチレン/α-オレフィン/非共役ポリエン共重合体ゴムを構成する非共役ポリエンとしては、例えば、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、5-プロピリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、2,5-ノルボルナジエン、1,4-シクロヘキサジエン、1,4-シクロオクタジエン、1,5-シクロオクタジエン等の環状ポリエン;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、5-メチル-1,5-ヘプタジエン、6-メチル-1,5-ヘプタジエン、6-メチル-1,6-オクタジエン、7-メチル-1,6-オクタジエン、5,7-ジメチル-1,6-オクタジエン、7-メチル-1,7-ノナジエン、8-メチル-1,7-ノナジエン、8-メチル-1,8-デカジエン、9-メチル-1,8-デカジエン、4-エチリデン-1,6-オクタジエン、7-メチル-4-エチリデン-1,6-オクタジエン、7-メチル-4-エチリデン-1,6-ノナジエン、7-エチル-4-エチリデン-1,6-ノナジエン、6,7-ジメチル-4-エチリデン-1,6-オクタジエン、6,7-ジメチル-4-エチリデン-1,6-ノナジエン等の、内部不飽和結合を有する炭素数6~15の鎖状ポリエン;1,5-ヘキサジエン、1,6-ヘプタジエン、1,7-オクタジエン、1,8-ノナジエン、1,9-デカジエン、1,10-ウンデカジエン、1,11-ドデカジエン、1,12-トリデカジエン、1,13-テトラデカジエン等のα,ω-ジエンなどが挙げられる。
 中でも、環状ポリエン、内部不飽和結合を有する炭素数6~15の鎖状ポリエンが好ましく、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、5-ビニル-2-ノルボルネン、5-メチル-1,4-ヘキサジエンおよび7-メチル-1,6-オクタジエンからなる群から選択される少なくとも1種がより好ましく、架橋剤との反応性に優れるという観点から、5-エチリデン-2-ノルボルネン、ジシクロペンタジエンおよび5-ビニル-2-ノルボルネンからなる群から選択される少なくとも1種がさらに好ましい。
Examples of the non-conjugated polyene constituting the ethylene / α-olefin / non-conjugated polyene copolymer rubber include, for example, 5-ethylidene-2-norbornene, dicyclopentadiene, 5-propylidene-2-norbornene, 5-vinyl- Cyclic polyenes such as 2-norbornene, 2,5-norbornadiene, 1,4-cyclohexadiene, 1,4-cyclooctadiene, 1,5-cyclooctadiene; 1,4-hexadiene, 4-methyl-1,4 -Hexadiene, 5-methyl-1,4-hexadiene, 5-methyl-1,5-heptadiene, 6-methyl-1,5-heptadiene, 6-methyl-1,6-octadiene, 7-methyl-1,6 -Octadiene, 5,7-dimethyl-1,6-octadiene, 7-methyl-1,7-nonadiene, 8-methyl-1,7- Nadiene, 8-methyl-1,8-decadiene, 9-methyl-1,8-decadiene, 4-ethylidene-1,6-octadiene, 7-methyl-4-ethylidene-1,6-octadiene, 7-methyl- 4-ethylidene-1,6-nonadiene, 7-ethyl-4-ethylidene-1,6-nonadiene, 6,7-dimethyl-4-ethylidene-1,6-octadiene, 6,7-dimethyl-4-ethylidene- C6-C15 chain polyene having an internal unsaturated bond, such as 1,6-nonadiene; 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, 1,8-nonadiene, 1, Examples include α, ω-dienes such as 9-decadiene, 1,10-undecadiene, 1,11-dodecadiene, 1,12-tridecadiene, 1,13-tetradecadiene, and the like.
Among these, cyclic polyenes and chain polyenes having 6 to 15 carbon atoms having an internal unsaturated bond are preferable. 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5-methyl-1,4 -At least one selected from the group consisting of hexadiene and 7-methyl-1,6-octadiene is more preferable, and 5-ethylidene-2-norbornene, dicyclopentadiene and More preferred is at least one selected from the group consisting of 5-vinyl-2-norbornene.
 エチレン/α-オレフィン/非共役ポリエン共重合体ゴムでは、エチレンと、炭素数3~20のα-オレフィンおよび非共役ポリエンとのモル比[エチレン/(炭素数3~20のα-オレフィンおよび非共役ポリエン)]が90/10~40/60、特に80/20~50/50であることが、柔軟性およびゴム弾性の観点から好ましい。 In the ethylene / α-olefin / non-conjugated polyene copolymer rubber, the molar ratio of ethylene to the α-olefin having 3 to 20 carbon atoms and the non-conjugated polyene [ethylene / (α-olefin having 3 to 20 carbon atoms and The conjugated polyene) is preferably 90/10 to 40/60, particularly 80/20 to 50/50 from the viewpoint of flexibility and rubber elasticity.
 また、エチレン/α-オレフィン/非共役ポリエン共重合体ゴムのヨウ素価(架橋前のヨウ素価)は、機械的強度およびゴム弾性の観点から、好ましくは3~40、より好ましくは5~25、さらに好ましくは5~15である。ヨウ素価が3以上であれば、熱可塑性エラストマー組成物から得られる成形体の機械的強度が良好となる傾向にあり、ヨウ素価が40以下であれば、熱可塑性エラストマー組成物のゴム弾性が損なわれ難い傾向にある。なお、本明細書でいう「ヨウ素価」とは、JIS K1525(2005年)に記載の方法により測定したヨウ素価をいう。 The iodine value (iodine value before crosslinking) of the ethylene / α-olefin / non-conjugated polyene copolymer rubber is preferably 3 to 40, more preferably 5 to 25, from the viewpoint of mechanical strength and rubber elasticity. More preferably, it is 5-15. If the iodine value is 3 or more, the mechanical strength of the molded product obtained from the thermoplastic elastomer composition tends to be good, and if the iodine value is 40 or less, the rubber elasticity of the thermoplastic elastomer composition is impaired. It tends to be difficult. As used herein, “iodine value” refers to the iodine value measured by the method described in JIS K1525 (2005).
 また、オレフィン系ゴム(I)のムーニー粘度(ML1+4,100℃)は、成形加工性および機械的強度の観点から、25~350が好ましく、40~300がより好ましく、60~150がさらに好ましい。
 なお、本明細書でいう「ムーニー粘度(ML1+4,100℃)」とは、JIS K6300-1(2013年)に記載の方法で測定した粘度をいう。
The Mooney viscosity (ML 1 + 4 , 100 ° C.) of the olefin rubber (I) is preferably 25 to 350, more preferably 40 to 300, and more preferably 60 to 150 from the viewpoint of moldability and mechanical strength. Further preferred.
In this specification, “Mooney viscosity (ML 1 + 4 , 100 ° C.)” refers to a viscosity measured by the method described in JIS K6300-1 (2013).
 オレフィン系ゴム(I)は、予め架橋したものを用いてもよく、その架橋度に特に制限はないが、架橋後のオレフィン系ゴム(I)を、シクロヘキサンを用いて10時間ソックスレー抽出処理した時に、シクロヘキサンに溶解せずに残留するゲルの質量割合(ゲル分率)が抽出処理前の架橋後のオレフィン系ゴムの質量に対して80%以上、特に95%以上となるような架橋度であることが、高温での歪み回復性の観点から好ましい。
 なお、上記架橋反応に使用し得る架橋剤および架橋助剤は、後述する架橋剤および架橋助剤と同じものを使用することができる。
The olefin rubber (I) may be pre-crosslinked, and the degree of crosslinking is not particularly limited, but when the crosslinked olefin rubber (I) is subjected to Soxhlet extraction treatment with cyclohexane for 10 hours. The degree of crosslinking is such that the mass ratio (gel fraction) of the gel remaining without being dissolved in cyclohexane is 80% or more, particularly 95% or more with respect to the mass of the olefin rubber after crosslinking before the extraction treatment. Is preferable from the viewpoint of strain recovery at high temperatures.
In addition, the crosslinking agent and crosslinking adjuvant which can be used for the said crosslinking reaction can use the same thing as the crosslinking agent and crosslinking adjuvant which are mentioned later.
(水添ブロック共重合体(II))
 本発明の熱可塑性エラストマー組成物は、水添ブロック共重合体(II)を含有してなるものである必要がある。該水添ブロック共重合体(II)を含有しない場合、加硫ゴムおよび動的架橋型熱可塑性エラストマー(TPV)に対して高い接着力を有し、且つ、柔軟性および耐候性と共に、成形加工性にも優れるという課題のうちの少なくとも1つを解決することができなくなる。特に、成形加工性、並びにTPVおよび加硫ゴムに対する接着力の影響が大きい。
 水添ブロック共重合体(II)は、芳香族ビニル化合物に由来する構造単位から主としてなる重合体ブロック(A)と、イソプレンおよびブタジエンからなる群から選択される少なくとも1種に由来する構造単位から主としてなり、かつ3,4-結合単位および1,2-結合単位の含有量の合計が45%以上である重合体ブロック(B)とを有するブロック共重合体の水素添加物であって、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めたピークトップ分子量が50,000~200,000であり、重合体ブロック(B)中の炭素-炭素二重結合の70モル%以上が水素添加されている水添ブロック共重合体である。
 本明細書では、イソプレンに由来する構造単位における3,4-結合単位および1,2-結合単位並びにブタジエンに由来する構造単位における1,2-結合単位を「ビニル結合単位」と総称し、その合計量を「ビニル結合含有量」と称することがある。
(Hydrogenated block copolymer (II))
The thermoplastic elastomer composition of the present invention needs to contain a hydrogenated block copolymer (II). When it does not contain the hydrogenated block copolymer (II), it has high adhesion to vulcanized rubber and dynamically cross-linked thermoplastic elastomer (TPV), and is molded with flexibility and weather resistance. It becomes impossible to solve at least one of the problems of excellent performance. In particular, the influence of molding processability and adhesive strength on TPV and vulcanized rubber is great.
The hydrogenated block copolymer (II) includes a polymer block (A) mainly composed of a structural unit derived from an aromatic vinyl compound, and a structural unit derived from at least one selected from the group consisting of isoprene and butadiene. A hydrogenated product of a block copolymer having a polymer block (B) mainly comprising a 3,4-bond unit and a 1,2-bond unit content of 45% or more, comprising a gel The peak top molecular weight determined by standard polystyrene conversion by permeation chromatography is 50,000 to 200,000, and 70 mol% or more of the carbon-carbon double bonds in the polymer block (B) are hydrogenated. It is a hydrogenated block copolymer.
In this specification, 3,4-bond units and 1,2-bond units in structural units derived from isoprene and 1,2-bond units in structural units derived from butadiene are collectively referred to as “vinyl bond units”. The total amount may be referred to as “vinyl bond content”.
 水添ブロック共重合体(II)の重合体ブロック(A)は、芳香族ビニル化合物に由来する構造単位(以下、芳香族ビニル化合物単位と略称することがある。)から主としてなる。ここで、「主として」とは、重合体ブロック(A)の質量に基づいて、芳香族ビニル化合物単位が好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは100質量%であることを意味する。 The polymer block (A) of the hydrogenated block copolymer (II) mainly comprises a structural unit derived from an aromatic vinyl compound (hereinafter sometimes abbreviated as an aromatic vinyl compound unit). Here, “mainly” means that the aromatic vinyl compound unit is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 100% by mass based on the mass of the polymer block (A). Means that.
 該重合体ブロック(A)を構成する芳香族ビニル化合物としては、例えばスチレン、α-メチルスチレン、β-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン、2,4-ジメチルスチレン、2,4,6-トリメチルスチレン、モノフルオロスチレン、ジフルオロスチレン、モノクロロスチレン、ジクロロスチレン、メトキシスチレン、ビニルナフタレン、ビニルアントラセンなどが挙げられる。該重合体ブロック(A)は、前記した芳香族ビニル化合物の1種に由来する構造単位のみを含んでいてもよいし、2種以上に由来する構造単位を含んでいてもよい。中でも、重合体ブロック(A)は、スチレンに由来する構造単位から主としてなることが好ましい。 Examples of the aromatic vinyl compound constituting the polymer block (A) include styrene, α-methylstyrene, β-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene, Examples include 2,4-dimethylstyrene, 2,4,6-trimethylstyrene, monofluorostyrene, difluorostyrene, monochlorostyrene, dichlorostyrene, methoxystyrene, vinylnaphthalene, and vinylanthracene. The polymer block (A) may contain only a structural unit derived from one kind of the above-described aromatic vinyl compound, or may contain a structural unit derived from two or more kinds. Especially, it is preferable that a polymer block (A) mainly consists of the structural unit derived from styrene.
 重合体ブロック(A)は、芳香族ビニル化合物に由来する構造単位と共に、他の共重合性単量体に由来する構造単位を少量含有していてもよい。このとき、他の共重合性単量体に由来する構造単位の割合は、重合体ブロック(A)の質量に基づいて10質量%以下であることが好ましく、5質量%以下であることがより好ましい。かかる他の共重合性単量体としては、例えば1-ブテン、ペンテン、ヘキセン、ブタジエン、イソプレン、メチルビニルエーテルなどの、イオン重合し得る共重合性単量体が挙げられる。芳香族ビニル化合物に由来する構造単位と共に他の共重合性単量体に由来する構造単位を含有する場合、それらの結合形態は、ランダム状、テーパード状などのいずれであってもよい。 The polymer block (A) may contain a small amount of a structural unit derived from another copolymerizable monomer together with a structural unit derived from an aromatic vinyl compound. At this time, the proportion of the structural unit derived from the other copolymerizable monomer is preferably 10% by mass or less based on the mass of the polymer block (A), and more preferably 5% by mass or less. preferable. Examples of such other copolymerizable monomers include copolymerizable monomers capable of ion polymerization such as 1-butene, pentene, hexene, butadiene, isoprene, and methyl vinyl ether. When a structural unit derived from another copolymerizable monomer is contained together with a structural unit derived from an aromatic vinyl compound, the bonding form thereof may be random or tapered.
 水添ブロック共重合体(II)において、重合体ブロック(A)の含有量は、水添ブロック共重合体(II)に対して5~40質量%が好ましく、5~30質量%がより好ましく、5~20質量%がさらに好ましく、5~18質量%が特に好ましい。重合体ブロック(A)の含有量が5質量%以上であれば、機械的特性および柔軟性が良好となる傾向にあり、また、高温での良好な歪み回復性が得られ、耐熱性にも優れる傾向にある。重合体ブロック(A)の含有量が40質量%以下であれば、水添ブロック共重合体(II)の溶融粘度が高くなり過ぎず、他の成分との溶融混合が容易となる傾向にあり、さらに、柔軟性、並びにTPVおよび加硫ゴムとの接着性が優れる傾向にある。なお、水添ブロック共重合体(II)における重合体ブロック(A)の含有量は、実施例に記載した方法により求めた値である。 In the hydrogenated block copolymer (II), the content of the polymer block (A) is preferably 5 to 40% by mass, more preferably 5 to 30% by mass with respect to the hydrogenated block copolymer (II). 5 to 20% by mass is more preferable, and 5 to 18% by mass is particularly preferable. If the content of the polymer block (A) is 5% by mass or more, mechanical properties and flexibility tend to be good, and good strain recovery at high temperatures is obtained, and heat resistance is also good. It tends to be excellent. If the content of the polymer block (A) is 40% by mass or less, the melt viscosity of the hydrogenated block copolymer (II) does not become too high and melt mixing with other components tends to be easy. Furthermore, flexibility and adhesion to TPV and vulcanized rubber tend to be excellent. In addition, content of the polymer block (A) in hydrogenated block copolymer (II) is the value calculated | required by the method described in the Example.
 水添ブロック共重合体(II)が有する重合体ブロック(B)は、イソプレンおよびブタジエンからなる群から選択させる少なくとも1種に由来する構造単位から主としてなる。ここでいう「主として」とは、重合体ブロック(B)の質量に基づいて、イソプレンおよびブタジエンからなる群から選択させる少なくとも1種に由来する構造単位が、好ましくは70質量%以上、より好ましくは90質量%以上であることを意味する。
 なお、重合体ブロック(B)は、イソプレンに由来する構造単位、またはイソプレンとブタジエンの混合物に由来する構造単位から主としてなることが好ましい。
The polymer block (B) contained in the hydrogenated block copolymer (II) mainly comprises structural units derived from at least one selected from the group consisting of isoprene and butadiene. The term “mainly” as used herein means that the structural unit derived from at least one selected from the group consisting of isoprene and butadiene based on the mass of the polymer block (B) is preferably 70% by mass or more, more preferably It means 90% by mass or more.
The polymer block (B) preferably mainly comprises a structural unit derived from isoprene or a structural unit derived from a mixture of isoprene and butadiene.
 重合体ブロック(B)がイソプレンに由来する構造単位のみからなる場合は、その構造単位は2-メチル-2-ブテン-1,4-ジイル基[-CH-C(CH)=CH-CH-;1,4-結合単位]、イソプロペニルエチレン基[-CH(C(CH)=CH)-CH-;3,4-結合単位]および1-メチル-1-ビニルエチレン基[-C(CH)(CH=CH)-CH-;1,2-結合単位]からなり、本発明においては、そのビニル結合含有量は45%(モル%)以上である。ビニル結合含有量は、47%以上であることがより好ましく、50%以上であることがさらに好ましい。ビニル結合含有量の上限に特に制限はないが、通常、好ましくは95%以下、より好ましくは90%以下、さらに好ましくは80%以下である。 When the polymer block (B) is composed only of a structural unit derived from isoprene, the structural unit is a 2-methyl-2-butene-1,4-diyl group [—CH 2 —C (CH 3 ) ═CH— CH 2- ; 1,4-bonding unit], isopropenylethylene group [-CH (C (CH 3 ) = CH 2 ) -CH 2- ; 3,4-bonding unit] and 1-methyl-1-vinylethylene It consists of a group [—C (CH 3 ) (CH═CH 2 ) —CH 2 —; 1,2-bond units], and in the present invention, the vinyl bond content is 45% (mol%) or more. The vinyl bond content is more preferably 47% or more, and further preferably 50% or more. Although there is no restriction | limiting in particular in the upper limit of vinyl bond content, Usually, it is preferably 95% or less, More preferably, it is 90% or less, More preferably, it is 80% or less.
 また、重合体ブロック(B)がイソプレンとブタジエンの混合物に由来する構造単位からなる場合は、その構造単位は、イソプレンに由来する2-メチル-2-ブテン-1,4-ジイル基、イソプロペニルエチレン基および1-メチル-1-ビニルエチレン基、ならびにブタジエンに由来する2-ブテン-1,4-ジイル基[-CH-CH=CH-CH-;1,4-結合単位]およびビニルエチレン基[-CH(CH=CH)-CH-;1,2-結合単位]からなっており、ビニル結合含有量が45%(モル%)以上である。ビニル結合含有量は、47%以上であることがより好ましく、50%以上であることがさらに好ましい。ビニル結合含有量の上限に特に制限はないが、通常、好ましくは95%以下、より好ましくは90%以下、さらに好ましくは80%以下である。
 該共重合体ブロックでは、イソプレンに由来する構造単位とブタジエンに由来する構造単位の結合形態は、ランダム状、ブロック状、テーパード状のいずれであってもよい。
When the polymer block (B) is composed of a structural unit derived from a mixture of isoprene and butadiene, the structural unit is a 2-methyl-2-butene-1,4-diyl group, isopropenyl derived from isoprene. Ethylene group and 1-methyl-1-vinylethylene group, and 2-butene-1,4-diyl group derived from butadiene [—CH 2 —CH═CH—CH 2 —; 1,4-bond unit] and vinyl It consists of an ethylene group [—CH (CH═CH) —CH 2 —; 1,2-bond unit] and has a vinyl bond content of 45% (mol%) or more. The vinyl bond content is more preferably 47% or more, and further preferably 50% or more. Although there is no restriction | limiting in particular in the upper limit of vinyl bond content, Usually, it is preferably 95% or less, More preferably, it is 90% or less, More preferably, it is 80% or less.
In the copolymer block, the bonding form of the structural unit derived from isoprene and the structural unit derived from butadiene may be random, block, or tapered.
 重合体ブロック(B)がイソプレンとブタジエンの混合物に由来する構造単位からなる場合は、接着力および柔軟性の観点から、イソプレンに由来する構造単位/ブタジエンに由来する構造単位(モル比)は10/90~99/1であることが好ましく、30/70~99/1であることがより好ましく、40/60~99/1であることがさらに好ましく、40/60~70/30であることが特に好ましく、40/60~55/45であることが最も好ましい。 When the polymer block (B) is composed of a structural unit derived from a mixture of isoprene and butadiene, the structural unit derived from isoprene / the structural unit derived from butadiene (molar ratio) is 10 from the viewpoint of adhesive strength and flexibility. / 90 to 99/1 is preferable, 30/70 to 99/1 is more preferable, 40/60 to 99/1 is further preferable, and 40/60 to 70/30 is preferable. Is particularly preferred, with 40/60 to 55/45 being most preferred.
 該重合体ブロック(B)は、イソプレンに由来する構造単位またはイソプレンとブタジエンに由来する構造単位と共に、他の共重合性単量体に由来する構造単位を少量有していてもよい。このとき、他の共重合性単量体に由来する構造単位の割合は、重合体ブロック(B)の質量に基づいて30質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。
 かかる他の共重合性単量体としては、例えばスチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、1,3-ジメチルスチレン、ジフェニルエチレン、1-ビニルナフタレン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレンなどの芳香族ビニル化合物などの、アニオン重合可能な共重合性単量体が挙げられる。これら他の共重合性単量体は、1種を単独で使用してもよいし、2種以上を併用してもよい。重合体ブロック(B)がイソプレンに由来する構造単位またはイソプレンとブタジエンの混合物に由来する構造単位以外に、上記した他の共重合性単量体に由来する構造単位を有する場合、それらの結合形態は、ランダム状、テーパード状のいずれでもよい。
The polymer block (B) may have a small amount of structural units derived from other copolymerizable monomers together with structural units derived from isoprene or structural units derived from isoprene and butadiene. At this time, the proportion of the structural unit derived from the other copolymerizable monomer is preferably 30% by mass or less based on the mass of the polymer block (B), and more preferably 10% by mass or less. Preferably, it is 5 mass% or less.
Examples of such other copolymerizable monomers include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 1,3-dimethylstyrene, diphenylethylene, 1-vinylnaphthalene, Copolymerizable monomers capable of anion polymerization such as aromatic vinyl compounds such as 4-propylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene Is mentioned. These other copolymerizable monomers may be used individually by 1 type, and may use 2 or more types together. In the case where the polymer block (B) has a structural unit derived from other copolymerizable monomer as described above in addition to a structural unit derived from isoprene or a structural unit derived from a mixture of isoprene and butadiene, the bonding form thereof May be either random or tapered.
 水添ブロック共重合体(II)は、分子鎖中および/または分子末端に、カルボキシル基、水酸基、酸無水物基、アミノ基、エポキシ基などの官能基の1種または2種以上を有していてもよい。 The hydrogenated block copolymer (II) has one or more functional groups such as a carboxyl group, a hydroxyl group, an acid anhydride group, an amino group, and an epoxy group in the molecular chain and / or at the molecular end. It may be.
 水添ブロック共重合体(II)は、特に耐熱性および耐候性の観点から、その重合体ブロック(B)における不飽和二重結合(炭素-炭素二重結合)の70モル%以上が水素添加されている必要がある。同様の観点から、80モル%以上が水素添加されていることがより好ましく、85モル%以上が水素添加されていることがさらに好ましい。
 なお、重合体ブロック(B)中の炭素-炭素二重結合の水素添加率は、重合体ブロック(B)中の炭素-炭素二重結合の含有量を、水素添加の前後において、後述する実施例に記載されたヨウ素価測定から求めることができる。
In the hydrogenated block copolymer (II), particularly from the viewpoint of heat resistance and weather resistance, 70 mol% or more of unsaturated double bonds (carbon-carbon double bonds) in the polymer block (B) are hydrogenated. Need to be. From the same viewpoint, 80 mol% or more is more preferably hydrogenated, and 85 mol% or more is more preferably hydrogenated.
The hydrogenation rate of the carbon-carbon double bond in the polymer block (B) is determined by the content of the carbon-carbon double bond in the polymer block (B) before and after the hydrogenation. It can be determined from the iodine value measurement described in the examples.
 水添ブロック共重合体(II)は、重合体ブロック(A)および重合体ブロック(B)をそれぞれ少なくとも1個含むブロック共重合体の水素添加物である。好ましくは、水添ブロック共重合体(II)は、重合体ブロック(A)を2個以上および重合体ブロック(B)を1個以上含むブロック共重合体の水素添加物である。重合体ブロック(A)および重合体ブロック(B)の結合形態は特に制限されず、直線状、分岐状、放射状、またはこれらの2つ以上が組み合わさった結合形態のいずれであってもよいが、直線状に結合した形態が好ましい。特に、重合体ブロック(A)を‘A’、重合体ブロック(B)を‘B'で表したときに、(A-B)l、A-(B-A)m、B-(A-B)n(式中、l、mおよびnはそれぞれ独立して1以上の整数を表す)の結合形態であるのが好ましく、ゴム弾性、機械的強度および取り扱い容易性などの観点から、(A-B)lまたはA-(B-A)mで表される結合形態であるのがより好ましく、A-Bで表されるジブロック構造またはA-B-Aで表されるトリブロック構造の結合形態であるのがさらに好ましく、A-B-Aで表されるトリブロック構造の結合形態であるのが特に好ましい。
 また、水添ブロック共重合体(II)が重合体ブロック(A)を2個以上または重合体ブロック(B)を2個以上有する場合には、それぞれの重合体ブロック(A)およびそれぞれの重合体ブロック(B)は互いに同じ構成のブロックであっても異なる構成のブロックであってもよい。例えば、〔A-B-A〕で表されるトリブロック構造における2個の重合体ブロック(A)は、それらを構成する芳香族ビニル化合物の種類が、それぞれ同じであっても異なっていてもよい。
The hydrogenated block copolymer (II) is a hydrogenated product of a block copolymer containing at least one polymer block (A) and each polymer block (B). Preferably, the hydrogenated block copolymer (II) is a hydrogenated product of a block copolymer containing two or more polymer blocks (A) and one or more polymer blocks (B). The bonding form of the polymer block (A) and the polymer block (B) is not particularly limited, and may be linear, branched, radial, or a combination of two or more of these. In addition, a linearly bonded form is preferable. In particular, when the polymer block (A) is represented by 'A' and the polymer block (B) is represented by 'B', (AB) 1, A- (BA) m, B- (A- B) n (wherein l, m and n each independently represents an integer of 1 or more) is preferably a bonded form, and from the viewpoint of rubber elasticity, mechanical strength and ease of handling, (A -B) A bond form represented by 1 or A- (BA) m is more preferred, and a diblock structure represented by AB or a triblock structure represented by ABA The bonding form is more preferable, and the bonding form of the triblock structure represented by ABA is particularly preferable.
When the hydrogenated block copolymer (II) has two or more polymer blocks (A) or two or more polymer blocks (B), each polymer block (A) and each polymer block (A) The combined block (B) may be a block having the same configuration or a block having a different configuration. For example, the two polymer blocks (A) in the triblock structure represented by [ABA] may have the same or different types of aromatic vinyl compounds constituting them. Good.
 水添ブロック共重合体(II)において、重合体ブロック(A)のピークトップ分子量(Mp)は、好ましくは2,000~60,000、より好ましくは2,500~30,000、さらに好ましくは3,000~20,000である。重合体ブロック(B)のピークトップ分子量は、水素添加前の状態で、好ましくは130,000~190,000、より好ましくは50,000~180,000である。 In the hydrogenated block copolymer (II), the peak top molecular weight (Mp) of the polymer block (A) is preferably 2,000 to 60,000, more preferably 2,500 to 30,000, still more preferably. 3,000 to 20,000. The peak top molecular weight of the polymer block (B) is preferably 130,000 to 190,000, more preferably 50,000 to 180,000 in the state before hydrogenation.
 前記水添ブロック共重合体(II)における前記重合体ブロック(A)が、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めたピークトップ分子量が同一または異なる2つの重合体ブロック(A1)と(A2)とを含有し、且つ、該水添ブロック共重合体(II)が、前記重合体ブロック(A1)、前記重合体ブロック(B)および前記重合体ブロック(A2)から構成されるトリブロック共重合体[A1-B-A2]の水素添加物であることが好ましい。
 この場合、水添ブロック共重合体(II)は、前記重合体ブロック(A)が、芳香族ビニル化合物に由来する構造単位から主としてなり、且つゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めたピークトップ分子量がMp(A1)である重合体ブロック(A1)と、芳香族ビニル化合物に由来する構造単位から主としてなり、且つゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めたピークトップ分子量がMp(A2)である重合体ブロック(A2)とを有し、前記Mp(A1)と前記Mp(A2)との比[Mp(A1)/Mp(A2)]が1/10~8/10を満たすことが、成形加工性の観点からは好ましい。該比[Mp(A1)/Mp(A2)]は、Mp(A1)がMp(A2)より小さいことを示しており、同様の観点から、より好ましくは3/10~7/10である。該トリブロック共重合体[A1-B-A2]の水素添加物は、Mp(A1)とMp(A2)が上記の通りに異なるため、見かけ上、左右が非対称のトリブロック共重合体であるといえる。
 なお、Mp(A1)とMp(A2)とが略等しい水添ブロック共重合体(II)も好ましい。ここで、略等しいとは、[Mp(A1)/Mp(A2)]がおおよそ1/1であるか、または1/1に近いことであり、より具体的には、9/10~11/10の範囲にあることをいう。
 また、Mp(A1)、Mp(A2)は、それぞれ、好ましくは1,000~30,000、より好ましくは2,000~20,000、さらに好ましくは2,000~15,000である。前記数値範囲の中でも、Mp(A1)としては、特に好ましくは3,000~10,000であり、Mp(A2)としては、特に好ましくは4,000~14,000である。
The polymer block (A) in the hydrogenated block copolymer (II) has two polymer blocks (A1) and (A2) having the same or different peak top molecular weights determined in terms of standard polystyrene by gel permeation chromatography. And the hydrogenated block copolymer (II) is composed of the polymer block (A1), the polymer block (B), and the polymer block (A2). A hydrogenated product of the polymer [A1-B-A2] is preferable.
In this case, the hydrogenated block copolymer (II) is a peak obtained by converting the polymer block (A) mainly from a structural unit derived from an aromatic vinyl compound, and in terms of standard polystyrene by gel permeation chromatography. A peak top molecular weight mainly composed of a polymer block (A1) having a top molecular weight of Mp (A1) and a structural unit derived from an aromatic vinyl compound and determined in terms of standard polystyrene by gel permeation chromatography is Mp (A2 And the ratio of Mp (A1) to Mp (A2) [Mp (A1) / Mp (A2)] satisfies 1/10 to 8/10. However, it is preferable from the viewpoint of moldability. The ratio [Mp (A1) / Mp (A2)] indicates that Mp (A1) is smaller than Mp (A2). From the same viewpoint, it is more preferably 3/10 to 7/10. The hydrogenated product of the triblock copolymer [A1-B-A2] is an apparently asymmetric triblock copolymer because Mp (A1) and Mp (A2) are different as described above. It can be said.
A hydrogenated block copolymer (II) in which Mp (A1) and Mp (A2) are substantially equal is also preferable. Here, “substantially equal” means that [Mp (A1) / Mp (A2)] is approximately 1/1 or close to 1/1, and more specifically, 9/10 to 11 / It means being in the range of 10.
Mp (A1) and Mp (A2) are each preferably 1,000 to 30,000, more preferably 2,000 to 20,000, and still more preferably 2,000 to 15,000. Among the numerical ranges, Mp (A1) is particularly preferably 3,000 to 10,000, and Mp (A2) is particularly preferably 4,000 to 14,000.
 また、水添ブロック共重合体(II)の全体のピークトップ分子量(Mp)は、水素添加後の状態で、50,000~200,000であり、好ましくは70,000~200,000、より好ましくは100,000~200,000である。水添ブロック共重合体(II)のピークトップ分子量(Mp)が上記の範囲内であれば、嵩密度が0.10~0.40g/mlの粉末の水添ブロック共重合体(II)が容易に得られる傾向にあり、成形加工性、柔軟性および高温での歪み回復性に優れる傾向にある。
 なお、該ピークトップ分子量(Mp)は、実施例に記載の方法によって求めた値である。
The total peak top molecular weight (Mp) of the hydrogenated block copolymer (II) is 50,000 to 200,000, preferably 70,000 to 200,000, after hydrogenation. Preferably, it is 100,000 to 200,000. If the peak top molecular weight (Mp) of the hydrogenated block copolymer (II) is within the above range, the powdered hydrogenated block copolymer (II) having a bulk density of 0.10 to 0.40 g / ml is obtained. It tends to be easily obtained, and tends to be excellent in moldability, flexibility and strain recovery at high temperatures.
In addition, this peak top molecular weight (Mp) is the value calculated | required by the method as described in an Example.
 水添ブロック共重合体(II)のガラス転移温度(Tg)は、制振性の観点から、好ましくは-45~0℃、より好ましくは-45~-5℃、さらに好ましくは-45~-10℃、特に好ましくは-40~-10℃である。 The glass transition temperature (Tg) of the hydrogenated block copolymer (II) is preferably −45 to 0 ° C., more preferably −45 to −5 ° C., and further preferably −45 to −− from the viewpoint of vibration damping properties. It is 10 ° C., particularly preferably −40 to −10 ° C.
<水添ブロック共重合体(II)の製造方法>
 水添ブロック共重合体(II)の製造方法は、例えば、アニオン重合やカチオン重合などのイオン重合法、シングルサイト重合法、ラジカル重合法などの重合方法が挙げられる。アニオン重合法による場合は、例えば、アルキルリチウム化合物などを重合開始剤として用いて、n-ヘキサンやシクロヘキサンなどの不活性有機溶媒中で、芳香族ビニル化合物と、イソプレンおよびブタジエンからなる群から選択される少なくとも1種とを逐次重合させ、所望の分子構造および分子量を有するブロック共重合体を製造した後、アルコール類、カルボン酸類、水などの活性水素化合物を添加して重合を停止させることによりブロック共重合体を製造することができる。そして得られたブロック共重合体を好ましくは単離せずに引き続き不活性有機溶媒中で水素添加触媒の存在下に水素添加反応を行うことにより、水添ブロック共重合体(II)を得ることができる。
<Method for producing hydrogenated block copolymer (II)>
Examples of the method for producing the hydrogenated block copolymer (II) include ionic polymerization methods such as anionic polymerization and cation polymerization, polymerization methods such as single site polymerization method and radical polymerization method. In the case of the anionic polymerization method, for example, an alkyl lithium compound or the like is used as a polymerization initiator and is selected from the group consisting of an aromatic vinyl compound, isoprene and butadiene in an inert organic solvent such as n-hexane or cyclohexane. The block copolymer is produced by sequentially polymerizing at least one of the above to produce a block copolymer having a desired molecular structure and molecular weight, and then adding an active hydrogen compound such as alcohols, carboxylic acids and water to stop the polymerization. Copolymers can be produced. The hydrogenated block copolymer (II) can be obtained by conducting a hydrogenation reaction in the presence of a hydrogenation catalyst in an inert organic solvent without preferably isolating the obtained block copolymer. it can.
 アルキルリチウム化合物の例としては、アルキル残基の炭素原子数が1~10のアルキルリチウム化合物が挙げられるが、特にメチルリチウム、エチルリチウム、ブチルリチウム、ペンチルリチウムが好ましい。これらのアルキルリチウム化合物などの開始剤の使用量は、水添ブロック共重合体(II)のピークトップ分子量(Mp)により適宜決定されるものであるが、重合に用いられる全モノマー100質量部に対し、好ましくは0.01~0.2質量部用いられる。重合は、通常、好ましくは0~80℃で、好ましくは0.5~50時間行われる。 Examples of the alkyl lithium compound include alkyl lithium compounds having 1 to 10 carbon atoms in the alkyl residue, and methyl lithium, ethyl lithium, butyl lithium, and pentyl lithium are particularly preferable. The amount of the initiator such as an alkyl lithium compound is appropriately determined depending on the peak top molecular weight (Mp) of the hydrogenated block copolymer (II). On the other hand, 0.01 to 0.2 parts by mass are preferably used. The polymerization is usually preferably carried out at 0 to 80 ° C., preferably 0.5 to 50 hours.
 水添ブロック共重合体(II)の重合体ブロック(B)において、イソプレンおよびブタジエンからなる群から選択される少なくとも1種に由来する構造単位が、45%以上のビニル結合含有量となるためには、重合の際に共触媒としてルイス塩基を用いる。ルイス塩基としては、例えば、ジメチルエーテル、ジエチルエーテル、テトラヒドロフランなどのエーテル類;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなどのグリコールエーテル類;トリエチルアミン、N,N,N’,N’-テトラメチレンジアミン、N-メチルモルホリンなどのアミン系化合物が挙げられる。該ルイス塩基の使用量は、開始剤として用いるアルキルリチウム化合物のリチウム原子1モルに対して、好ましくは0.1~1000モルである。 In the polymer block (B) of the hydrogenated block copolymer (II), the structural unit derived from at least one selected from the group consisting of isoprene and butadiene has a vinyl bond content of 45% or more. Uses a Lewis base as a cocatalyst during the polymerization. Examples of the Lewis base include ethers such as dimethyl ether, diethyl ether, and tetrahydrofuran; glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; triethylamine, N, N, N ′, N′-tetramethylenediamine, and N-methylmorpholine. And amine compounds such as The amount of the Lewis base used is preferably 0.1 to 1000 moles per 1 mole of lithium atoms in the alkyllithium compound used as the initiator.
 水素添加反応としては、水添触媒の存在下、反応および水添触媒に対して不活性な、n-ヘキサンまたはシクロヘキサンなどの不活性有機溶媒に未水添のブロック共重合体を溶解させた状態で、分子状水素を反応させる方法が好ましく用いられる。なお、芳香族ビニル化合物と、イソプレンおよびブタジエンからなる群から選択される少なくとも1種とを逐次共重合させて得られた反応液をそのまま水添反応に付すことも可能である。
 水添触媒としては、ラネーニッケル;Pt、Pd、Ru、Rh、Niなどの金属をカーボン、アルミナ、珪藻土などの単体に担持させたものなどの不均一触媒;遷移金属化合物とアルキルアルミニウム化合物、アルキルリチウム化合物などの組み合わせからなるチーグラー系触媒などが用いられる。
 反応は、通常、水素圧力が好ましくは0.1~20MPa、反応温度が好ましくは20℃~250℃、反応時間が好ましくは0.1~100時間の条件で行われる。
In the hydrogenation reaction, an unhydrogenated block copolymer is dissolved in an inert organic solvent such as n-hexane or cyclohexane which is inert to the reaction and the hydrogenation catalyst in the presence of a hydrogenation catalyst. Thus, a method of reacting molecular hydrogen is preferably used. In addition, it is also possible to subject the reaction liquid obtained by sequentially copolymerizing an aromatic vinyl compound and at least one selected from the group consisting of isoprene and butadiene to a hydrogenation reaction as it is.
Examples of hydrogenation catalysts include Raney nickel; heterogeneous catalysts such as Pt, Pd, Ru, Rh, Ni and other metals supported on carbon, alumina, diatomaceous earth, etc .; transition metal compounds and alkylaluminum compounds, alkyllithiums A Ziegler-based catalyst composed of a combination of compounds is used.
The reaction is usually carried out under conditions of a hydrogen pressure of preferably 0.1 to 20 MPa, a reaction temperature of preferably 20 ° C. to 250 ° C., and a reaction time of preferably 0.1 to 100 hours.
 なお、例えば以下の方法により、嵩密度0.10~0.40g/mlの粉末の水添ブロック共重合体(II)を製造できる。なお、本明細書でいう嵩密度は、秤量した粉末の水添ブロック重合体(II)をメスシリンダーに入れてその容積を測定し、重合体の質量を容積で除することにより算出した値である。
 上記の水素添加反応後に濾過により水添触媒を除去した反応溶液を40~150℃、好ましくは60~150℃に加熱し、必要に応じて脂肪酸塩やポリオキシアルキレン誘導体などの界面活性剤を混和した状態で、100質量部/時間の速度で80~130℃の熱水中に供給する。同時に、1MPaのスチームを40~60質量部/時間の速度で供給し、飽和炭化水素などの不活性有機溶媒の沸点または不活性有機溶媒と水とが共沸する場合はその共沸温度以上から150℃以下の温度でスチームストリッピングした後、圧縮水絞機で含水率55質量%/WB(ウェットベース、以下同じ)以下、好ましくは45質量%/WB以下まで脱水する。次いで、スクリュー押出機型乾燥機、エキスパンダー乾燥機、伝導伝熱型乾燥機、熱風乾燥機などを用いて60~100℃で乾燥することにより、含水率0.1質量%/WB以下の所望の粉末の水添ブロック共重合体(II)を製造できる。
For example, the hydrogenated block copolymer (II) in the form of powder having a bulk density of 0.10 to 0.40 g / ml can be produced by the following method. The bulk density referred to in this specification is a value calculated by putting a weighed powdered hydrogenated block polymer (II) into a graduated cylinder and measuring its volume, and dividing the mass of the polymer by the volume. is there.
The reaction solution from which the hydrogenation catalyst has been removed by filtration after the above hydrogenation reaction is heated to 40 to 150 ° C., preferably 60 to 150 ° C., and a surfactant such as a fatty acid salt or a polyoxyalkylene derivative is mixed as necessary. In this state, it is fed into hot water at 80 to 130 ° C. at a rate of 100 parts by mass / hour. At the same time, steam of 1 MPa is supplied at a rate of 40 to 60 parts by mass / hour, and when the boiling point of an inert organic solvent such as a saturated hydrocarbon or the inert organic solvent and water azeotrope, the azeotropic temperature is exceeded. After steam stripping at a temperature of 150 ° C. or less, the water content is dehydrated to 55% by mass / WB (wet base, the same applies hereinafter), preferably 45% by mass / WB or less, using a compressed water squeezer. Next, a desired moisture content of 0.1% by mass / WB or less is obtained by drying at 60 to 100 ° C. using a screw extruder type dryer, an expander dryer, a conduction heat transfer type dryer, a hot air dryer or the like. A powdered hydrogenated block copolymer (II) can be produced.
(オレフィン系ゴム(I)と水添ブロック共重合体(II)との含有割合)
 本発明の熱可塑性エラストマー組成物において、オレフィン系ゴム(I)と水添ブロック共重合体(II)との含有割合[(I)/(II)]は、質量比で、90/10~10/90であり、好ましくは90/10~50/50、より好ましくは80/20~20/80、さらに好ましくは80/20~60/40である。この範囲であれば、成形加工性、柔軟性および高温での歪み回復性に優れる。
(Content ratio of olefin rubber (I) and hydrogenated block copolymer (II))
In the thermoplastic elastomer composition of the present invention, the content ratio [(I) / (II)] of the olefin rubber (I) and the hydrogenated block copolymer (II) is 90/10 to 10 by mass ratio. / 90, preferably 90/10 to 50/50, more preferably 80/20 to 20/80, and still more preferably 80/20 to 60/40. Within this range, the moldability, flexibility and strain recovery at high temperatures are excellent.
(ポリオレフィン系樹脂(III))
 本発明で用いるポリオレフィン系樹脂(III)としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリ(1-ブテン)、ポリ(4-メチル-1-ペンテン)等が挙げられる。ポリオレフィン系樹脂(III)は、1種を単独で使用してもよいし、2種以上を併用してもよい。中でも、成形加工性の観点から、ポリエチレン系樹脂およびポリプロピレン系樹脂からなる群から選択される少なくとも1種が好ましく、ポリプロピレン系樹脂がより好ましい。
 ここで、ポリエチレン系樹脂とは、エチレンに由来する構造単位の含有量(以下、エチレン含有量と略称することがある。)が60モル%以上である重合体を言い、該エチレン含有量は、好ましくは70モル%以上、より好ましくは80モル%以上である。また、ポリプロピレン系樹脂とは、プロピレンに由来する構造単位の含有量(以下、プロピレン含有量と略称することがある。)が60モル%以上である重合体を言い、該プロピレン含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、特に好ましくは90モル%以上である。
 なお、言うまでもなく、ポリオレフィン系樹脂(III)は、「ゴム」であるオレフィン系ゴム(I)とは区別される。
(Polyolefin resin (III))
Examples of the polyolefin resin (III) used in the present invention include polyethylene resin, polypropylene resin, poly (1-butene), poly (4-methyl-1-pentene) and the like. Polyolefin resin (III) may be used individually by 1 type, and may use 2 or more types together. Among these, from the viewpoint of moldability, at least one selected from the group consisting of polyethylene resins and polypropylene resins is preferable, and polypropylene resins are more preferable.
Here, the polyethylene-based resin refers to a polymer having a content of structural units derived from ethylene (hereinafter sometimes abbreviated as ethylene content) of 60 mol% or more, and the ethylene content is Preferably it is 70 mol% or more, More preferably, it is 80 mol% or more. The polypropylene resin refers to a polymer in which the content of structural units derived from propylene (hereinafter sometimes abbreviated as propylene content) is 60 mol% or more, and the propylene content is preferably Is 70 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more.
Needless to say, the polyolefin resin (III) is distinguished from the olefin rubber (I) which is “rubber”.
 ポリエチレン系樹脂としては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレンなどのエチレンの単独重合体;エチレン/ブテン-1共重合体、エチレン/ヘキセン共重合体、エチレン/ヘプテン共重合体、エチレン/オクテン共重合体、エチレン/4-メチルペンテン-1共重合体、エチレン/酢酸ビニル共重合体、エチレン/アクリル酸共重合体、エチレン/アクリル酸エステル共重合体、エチレン/メタクリル酸共重合体、エチレン/メタクリル酸エステル共重合体などのエチレン系共重合体が挙げられる。中でも、高密度ポリエチレン、中密度ポリエチレンおよび低密度ポリエチレンからなる群から選択される少なくとも1種が好ましい。 Examples of polyethylene resins include ethylene homopolymers such as high density polyethylene, medium density polyethylene, and low density polyethylene; ethylene / butene-1 copolymer, ethylene / hexene copolymer, ethylene / heptene copolymer, Ethylene / octene copolymer, ethylene / 4-methylpentene-1 copolymer, ethylene / vinyl acetate copolymer, ethylene / acrylic acid copolymer, ethylene / acrylic acid ester copolymer, ethylene / methacrylic acid copolymer And ethylene-based copolymers such as ethylene / methacrylic acid ester copolymers. Among these, at least one selected from the group consisting of high density polyethylene, medium density polyethylene, and low density polyethylene is preferable.
 ポリプロピレン系樹脂としては、例えば、プロピレン単独重合体、エチレン/プロピレンランダム共重合体、エチレン/プロピレンブロック共重合体、プロピレン/ブテン-1共重合体、プロピレン/エチレン/ブテン-1共重合体、プロピレン/4-メチルペンテン-1共重合体などが挙げられる。中でも、成形加工性の観点から、プロピレン単独重合体、エチレン/プロピレンランダム共重合体およびエチレン/プロピレンブロック共重合体からなる群から選択される少なくとも1種が好ましい。 Examples of polypropylene resins include propylene homopolymer, ethylene / propylene random copolymer, ethylene / propylene block copolymer, propylene / butene-1 copolymer, propylene / ethylene / butene-1 copolymer, propylene / 4-methylpentene-1 copolymer and the like. Among these, from the viewpoint of moldability, at least one selected from the group consisting of a propylene homopolymer, an ethylene / propylene random copolymer, and an ethylene / propylene block copolymer is preferable.
 ポリオレフィン系樹脂(III)の230℃、2.16kgの条件下で測定されるメルトフローレート(MFR)は、成形加工性の観点から、0.1g/10分以上であることが好ましく、0.1~50g/10分であることがより好ましく、1~40g/10分であることがさらに好ましく、5~40g/10分であることが特に好ましい。なお、当該MFRは、JIS K7210-1(2014年)に準拠して測定した値である。 The melt flow rate (MFR) measured under the conditions of 230 ° C. and 2.16 kg of the polyolefin resin (III) is preferably 0.1 g / 10 min or more from the viewpoint of moldability. It is more preferably 1 to 50 g / 10 minutes, further preferably 1 to 40 g / 10 minutes, and particularly preferably 5 to 40 g / 10 minutes. The MFR is a value measured according to JIS K7210-1 (2014).
 ポリオレフィン系樹脂(III)の含有量は、オレフィン系ゴム(I)と水添ブロック共重合体(II)の合計100質量部に対して10~200質量部であり、10~100質量部が好ましく、15~100質量部がより好ましく、20~80質量部がより好ましく、30~70質量部がさらに好ましい。オレフィン系ゴム(I)と水添ブロック共重合体(II)の合計100質量部に対して10質量部未満では、成形加工性が乏しくなり、一方、200質量部を超えると、柔軟性およびゴム弾性が低下する。
 本発明の熱可塑性エラストマー組成物において、ポリオレフィン系樹脂(III)の含有量を上記範囲とすることによって、熱可塑性エラストマー組成物中でポリオレフィン系樹脂(III)が連続相をなし、その連続相中に、オレフィン系ゴム(I)と水添ブロック共重合体(II)が微粒子状で分散したモルフォロジーとなり、これが、加硫ゴムおよび動的架橋型熱可塑性エラストマー(TPV)に対する接着力、柔軟性、耐候性および成形加工性に良好な影響を与えているものと推測される。
The content of the polyolefin resin (III) is 10 to 200 parts by weight, preferably 10 to 100 parts by weight, based on a total of 100 parts by weight of the olefin rubber (I) and the hydrogenated block copolymer (II). 15 to 100 parts by mass is more preferable, 20 to 80 parts by mass is more preferable, and 30 to 70 parts by mass is still more preferable. If it is less than 10 parts by mass with respect to 100 parts by mass in total of the olefin rubber (I) and the hydrogenated block copolymer (II), molding processability is poor, whereas if it exceeds 200 parts by mass, flexibility and rubber Elasticity decreases.
In the thermoplastic elastomer composition of the present invention, the polyolefin resin (III) forms a continuous phase in the thermoplastic elastomer composition by adjusting the content of the polyolefin resin (III) in the above range. In addition, the olefin rubber (I) and the hydrogenated block copolymer (II) have a dispersed morphology in the form of fine particles, and this is an adhesive force, flexibility, and flexibility to the vulcanized rubber and the dynamically crosslinked thermoplastic elastomer (TPV). It is presumed to have a good influence on the weather resistance and molding processability.
(軟化剤(IV))
 軟化剤(IV)としては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル等の石油系プロセスオイル;芳香族系プロセスオイル;ジオクチルフタレート、ジブチルフタレートなどのフタル酸誘導体;ホワイトオイル;ミネラルオイル;落花生油、ロジンなどの植物油系軟化剤;流動パラフィン;エチレンとα-オレフィンとの液状コオリゴマー、液状ポリブテン、液状ポリブタジエン、液状ポリイソプレン、液状ポリイソプレン/ブタジエン共重合体、液状スチレン/ブタジエン共重合体、液状スチレン/イソプレン共重合体などの合成軟化剤などが挙げられる。
 軟化剤(IV)としては、特に40℃における動粘度が20~800mm/s(好ましくは40~600mm/s、より好ましくは60~400mm/s、さらに好ましくは60~200mm/s、特に好ましくは70~120mm/s)である軟化剤が好ましい。なお、動粘度はJIS K2283(2000年)に準拠して測定した値である。
 軟化剤(IV)の流動点は、好ましくは-40~0℃、より好ましくは-30~0℃である。また、軟化剤(IV)の引火点(COC法)は、好ましくは200~400℃、より好ましくは250~350℃である。
(Softener (IV))
Examples of the softener (IV) include petroleum-based process oils such as paraffinic process oil and naphthenic process oil; aromatic process oils; phthalic acid derivatives such as dioctyl phthalate and dibutyl phthalate; white oil; mineral oil; Vegetable oil-based softeners such as oil and rosin; liquid paraffin; liquid co-oligomer of ethylene and α-olefin, liquid polybutene, liquid polybutadiene, liquid polyisoprene, liquid polyisoprene / butadiene copolymer, liquid styrene / butadiene copolymer And synthetic softeners such as liquid styrene / isoprene copolymer.
As the softener (IV), the kinematic viscosity at 40 ° C. is 20 to 800 mm 2 / s (preferably 40 to 600 mm 2 / s, more preferably 60 to 400 mm 2 / s, and further preferably 60 to 200 mm 2 / s. Particularly preferred is a softening agent of 70 to 120 mm 2 / s). The kinematic viscosity is a value measured according to JIS K2283 (2000).
The pour point of the softening agent (IV) is preferably −40 to 0 ° C., more preferably −30 to 0 ° C. The flash point (COC method) of the softening agent (IV) is preferably 200 to 400 ° C., more preferably 250 to 350 ° C.
 軟化剤(IV)としては、石油系プロセスオイル、エチレンとα-オレフィンとの液状コオリゴマー、流動パラフィンが好ましく、石油系プロセスオイルがより好ましく、パラフィン系プロセスオイルがさらに好ましい。
 軟化剤(IV)は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 軟化剤(IV)の市販品としては、例えば出光興産株式会社が上市している商品名「ダイアナプロセスオイル」シリーズにおけるパラフィン系プロセスオイルおよびナフテン系プロセスオイル(好ましくはパラフィン系プロセスオイル)などを使用できる。
As the softening agent (IV), petroleum process oil, liquid co-oligomer of ethylene and α-olefin, and liquid paraffin are preferable, petroleum process oil is more preferable, and paraffin process oil is more preferable.
The softener (IV) may be used alone or in combination of two or more.
Examples of commercially available softeners (IV) include paraffinic process oil and naphthenic process oil (preferably paraffinic process oil) in the “Diana Process Oil” series marketed by Idemitsu Kosan Co., Ltd. it can.
 軟化剤(IV)の含有量は、オレフィン系ゴム(I)と水添ブロック共重合体(II)の合計100質量部に対して15~300質量部であり、15~150質量部が好ましく、20~120質量部がより好ましく、20~100質量部がさらに好ましい。オレフィン系ゴム(I)と水添ブロック共重合体(II)の合計100質量部に対して300質量部を超えると、機械的特性が低下するほか、熱可塑性エラストマー組成物より得られる成形体から軟化剤(IV)がブリードアウトし易くなり、且つ機械的強度が低下する。一方、15質量部未満であると、熱可塑性エラストマー組成物の柔軟性および成形加工性が不足する。
 なお、本発明の熱可塑性エラストマー組成物であれば、該軟化剤(IV)の含有量を少なくしても、十分な柔軟性および成形加工性を有するという利点がある。例えば特開2014-080488号公報(特許文献1)に記載の熱可塑性エラストマー組成物と比較して、同等以上の柔軟性および成形加工性を付与するための軟化剤(IV)の含有量は少ない。そのため、本発明の熱可塑性エラストマー組成物においては、前記軟化剤(IV)の含有量の上限値は、上記いずれの数値範囲においても、60質量部であってもよいし、50質量部であってもよいし、40質量部であってもよいし、30質量部であってもよい。
The content of the softening agent (IV) is 15 to 300 parts by weight, preferably 15 to 150 parts by weight, based on 100 parts by weight in total of the olefin rubber (I) and the hydrogenated block copolymer (II). It is more preferably 20 to 120 parts by mass, and further preferably 20 to 100 parts by mass. When the total amount of the olefin rubber (I) and the hydrogenated block copolymer (II) exceeds 100 parts by mass, the mechanical properties are deteriorated and the molded product obtained from the thermoplastic elastomer composition is used. The softening agent (IV) tends to bleed out and the mechanical strength is lowered. On the other hand, if it is less than 15 parts by mass, the flexibility and moldability of the thermoplastic elastomer composition will be insufficient.
In addition, the thermoplastic elastomer composition of the present invention has the advantage of having sufficient flexibility and moldability even if the content of the softening agent (IV) is reduced. For example, compared with the thermoplastic elastomer composition described in JP-A-2014-080488 (Patent Document 1), the content of the softening agent (IV) for imparting the same or higher flexibility and molding processability is small. . Therefore, in the thermoplastic elastomer composition of the present invention, the upper limit of the content of the softening agent (IV) may be 60 parts by mass or 50 parts by mass in any of the above numerical ranges. It may be 40 parts by mass or 30 parts by mass.
 前記オレフィン系ゴム(I)と前記水添ブロック共重合体(II)の重合体ブロック(B)を架橋させる場合は、後述する架橋剤(V)、架橋助剤(VI)および架橋促進剤(VII)を必要に応じて含有させることができる。つまり、本発明の熱可塑性エラストマー組成物は、前記オレフィン系ゴム(I)と前記水添ブロック共重合体(II)の重合体ブロック(B)とが架橋されてなるものであってもよい。このように架橋させることによって、前記モルフォロジーを形成し易くなる傾向にある。 When the olefin rubber (I) and the polymer block (B) of the hydrogenated block copolymer (II) are crosslinked, a crosslinking agent (V), a crosslinking aid (VI) and a crosslinking accelerator (described later) VII) can be included as required. That is, the thermoplastic elastomer composition of the present invention may be obtained by crosslinking the olefin rubber (I) and the polymer block (B) of the hydrogenated block copolymer (II). By crosslinking in this way, the morphology tends to be easily formed.
(架橋剤(V))
 架橋剤(V)としては、例えばラジカル発生剤、硫黄および硫黄化合物などが挙げられる。
 ラジカル発生剤としては、例えば、ジクミルペルオキシド、ジt-ブチルペルオキシド、t-ブチルクミルペルオキシドなどのジアルキルモノペルオキシド;2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキシン-3、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(t-ブチルペルオキシ)バレレートなどのジペルオキシド;ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシドなどのジアシルペルオキシド;t-ブチルペルオキシベンゾエートなどのモノアシルアルキルペルオキシド;t-ブチルペルオキシイソプロピルカーボネートなどの過炭酸;ジアセチルペルオキシド、ラウロイルペルオキシドなどのジアシルペルオキシドなどの有機過酸化物が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。中でも、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、ジクミルペルオキシドが反応性の観点から好ましい。
 ラジカル発生剤を用いる場合、その含有量は、オレフィン系ゴム(I)と水添ブロック共重合体(II)の合計100質量部に対して、好ましくは0.01~15質量部、より好ましくは0.05~10質量部である。
(Crosslinking agent (V))
Examples of the crosslinking agent (V) include radical generators, sulfur and sulfur compounds.
Examples of the radical generator include dialkyl monoperoxides such as dicumyl peroxide, di-t-butyl peroxide, and t-butylcumyl peroxide; 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, , 5-Dimethyl-2,5-di (t-butylperoxy) hexyne-3, 1,3-bis (t-butylperoxyisopropyl) benzene, 1,1-bis (t-butylperoxy) -3,3 Diperoxides such as 5-trimethylcyclohexane and n-butyl-4,4-bis (t-butylperoxy) valerate; Diacyl peroxides such as benzoyl peroxide, p-chlorobenzoyl peroxide and 2,4-dichlorobenzoyl peroxide; t-butyl Monoacyl alkyl pens such as peroxybenzoate Oxide; percarbonate such as t- butyl peroxy isopropyl carbonate; diacetyl peroxide, organic peroxides such as diacyl peroxides such as lauroyl peroxide. These may be used individually by 1 type and may use 2 or more types together. Of these, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane and dicumyl peroxide are preferable from the viewpoint of reactivity.
When a radical generator is used, the content thereof is preferably 0.01 to 15 parts by mass, more preferably 100 parts by mass relative to the total of 100 parts by mass of the olefin rubber (I) and the hydrogenated block copolymer (II). 0.05 to 10 parts by mass.
 硫黄化合物としては、例えば、一塩化硫黄、二塩化硫黄などが挙げられる。
 硫黄または硫黄化合物を用いる場合、その含有量は、オレフィン系ゴム(I)と水添ブロック共重合体(II)の合計100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.5~10質量部、さらに好ましくは1~10質量部である。
Examples of the sulfur compound include sulfur monochloride and sulfur dichloride.
When sulfur or a sulfur compound is used, the content thereof is preferably 0.1 to 20 parts by mass, more preferably 100 parts by mass relative to the total of 100 parts by mass of the olefin rubber (I) and the hydrogenated block copolymer (II). Is 0.5 to 10 parts by mass, more preferably 1 to 10 parts by mass.
 架橋剤(V)としては、その他に、アルキルフェノール樹脂、臭素化アルキルフェノール樹脂などのフェノール系樹脂;p-キノンジオキシムと二酸化鉛、p,p’-ジベンゾイルキノンジオキシムと四酸化三鉛の組み合わせなども使用することができる。 Other crosslinking agents (V) include phenolic resins such as alkylphenol resins and brominated alkylphenol resins; combinations of p-quinonedioxime and lead dioxide, p, p'-dibenzoylquinonedioxime and trilead tetroxide Etc. can also be used.
(架橋助剤(VI))
 架橋助剤(VI)としては、公知の架橋助剤を使用することができる。例えば、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、トリメリット酸トリアリルエステル、1,2,4-ベンゼントリカルボン酸トリアリルエステル、トリアリルイソシアヌレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ポリエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ジビニルベンゼン、グリセロールジメタクリレート、2-ヒドロキシ-3-アクリロイルオキシプロピルメタクリレートなどの多官能性単量体;塩化第一錫、塩化第二鉄、有機スルホン酸、ポリクロロプレン、クロルスルホン化ポリエチレンなどが挙げられる。中でも、トリアリルイソシアヌレートが好ましい。
 架橋助剤(VI)は、珪藻土、ホワイトカーボンなどに含浸させて用いてもよい。特に、前記多官能性単量体(さらにはトリアリルイソシアヌレート)は、珪藻土またはホワイトカーボンに含浸されていることが好ましく、ホワイトカーボンに含浸されていることがより好ましい。
 架橋助剤(VI)は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 架橋助剤(VI)を用いる場合、その含有量は、オレフィン系ゴム(I)と水添ブロック共重合体(II)の合計100質量部に対して、好ましくは0.1~40質量部、より好ましくは0.5~20質量部、さらに好ましくは2~20質量部である。
(Crosslinking aid (VI))
As the crosslinking aid (VI), a known crosslinking aid can be used. For example, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, trimellitic acid triallyl ester, 1,2,4-benzenetricarboxylic acid triallyl ester, triallyl isocyanurate, 1,6-hexanediol dimethacrylate, 1, 9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, polyethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, divinylbenzene, glycerol dimethacrylate, 2-hydroxy-3-acryloyl Polyfunctional monomers such as oxypropyl methacrylate; stannous chloride, ferric chloride, organic sulfonic acid, polychloropropyl Emissions, and the like chlorosulfonated polyethylene. Of these, triallyl isocyanurate is preferable.
The crosslinking aid (VI) may be used by impregnating diatomaceous earth, white carbon or the like. In particular, the polyfunctional monomer (and triallyl isocyanurate) is preferably impregnated in diatomaceous earth or white carbon, and more preferably impregnated in white carbon.
As the crosslinking aid (VI), one kind may be used alone, or two or more kinds may be used in combination.
When the crosslinking aid (VI) is used, the content thereof is preferably 0.1 to 40 parts by mass with respect to a total of 100 parts by mass of the olefin rubber (I) and the hydrogenated block copolymer (II). More preferred is 0.5 to 20 parts by mass, and further preferred is 2 to 20 parts by mass.
(架橋促進剤(VII))
 架橋促進剤(VII)としては、例えば、N,N-ジイソプロピル-2-ベンゾチアゾール-スルフェンアミド、2-メルカプトベンゾチアゾール、2-(4-モルホリノジチオ)ベンゾチアゾールなどのチアゾール類;ジフェニルグアニジン、トリフェニルグアニジンなどのグアニジン類;ブチルアルデヒド-アニリン反応物、ヘキサメチレンテトラミン-アセトアルデヒド反応物などのアルデヒド-アミン系反応物またはアルデヒド-アンモニア系反応物;2-メルカプトイミダゾリンなどのイミダゾリン類;チオカルバニリド、ジエチルウレア、ジブチルチオウレア、トリメチルチオウレア、ジオルソトリルチオウレアなどのチオウレア類;ジベンゾチアジルジスルフィド;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、ペンタメチレンチウラムテトラスルフィドなどのチウラムモノスルフィド類またはチウラムポリスルフィド類;ジメチルジチオカルバミン酸亜鉛、エチルフェニルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸セレン、ジエチルジチオカルバミン酸テルルなどのチオカルバミン酸塩類;ジブチルキサントゲン酸亜鉛などのキサントゲン酸塩類;亜鉛華などが挙げられる。架橋促進剤(VII)は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(Crosslinking accelerator (VII))
Examples of the crosslinking accelerator (VII) include thiazoles such as N, N-diisopropyl-2-benzothiazole-sulfenamide, 2-mercaptobenzothiazole, 2- (4-morpholinodithio) benzothiazole; diphenylguanidine, Guanidines such as triphenylguanidine; aldehyde-amine reactants such as butyraldehyde-aniline reactant, hexamethylenetetramine-acetaldehyde reactant or aldehyde-ammonia reactants; imidazolines such as 2-mercaptoimidazoline; thiocarbanilide, diethyl Thioureas such as urea, dibutylthiourea, trimethylthiourea, diorthotolylthiourea; dibenzothiazyl disulfide; tetramethylthiuram monosulfide, tetramethylthiuramdi Thiuram monosulfides or thiuram polysulfides such as luffide, pentamethylenethiuram tetrasulfide; thiocarbamates such as zinc dimethyldithiocarbamate, zinc ethylphenyldithiocarbamate, sodium dimethyldithiocarbamate, selenium dimethyldithiocarbamate, tellurium diethyldithiocarbamate; Xanthates such as zinc dibutylxanthate; zinc white and the like. Crosslinking accelerator (VII) may be used individually by 1 type, and may use 2 or more types together.
[その他の成分]
 本発明の熱可塑性エラストマー組成物は、さらに他の熱可塑性重合体を含有してなるものであってもよい。他の熱可塑性重合体としては、例えば、ポリフェニレンエーテル系樹脂;ポリアミド6、ポリアミド6・6、ポリアミド6・10、ポリアミド11、ポリアミド12、ポリアミド6・12、ポリヘキサメチレンジアミンテレフタルアミド、ポリヘキサメチレンジアミンイソフタルアミド、キシレン基含有ポリアミドなどのポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂;ポリアクリル酸メチル、ポリメタクリル酸メチルなどのアクリル系樹脂;ポリオキシメチレンホモポリマー、ポリオキシメチレンコポリマーなどのポリオキシメチレン系樹脂;スチレン単独重合体、アクリロニトリル-スチレン樹脂、アクリロニトリル-ブタジエン-スチレン樹脂などのスチレン系樹脂;ポリカーボネート樹脂;スチレン/ブタジエン共重合体ゴム、スチレン/イソプレン共重合体ゴムなどのスチレン系エラストマーおよびその水素添加物またはその変性物(但し、液状のものを除く。);天然ゴム;クロロプレンゴム;アクリルゴム;アクリロニトリル・ブタジエンゴム;エピクロロヒドリンゴム;シリコーンゴム;クロロスルホン化ポリエチレン;ウレタンゴム;ポリウレタン系エラストマー;ポリアミド系エラストマー;ポリエステル系エラストマー;軟質塩化ビニル樹脂などが挙げられる。
 なお、他の熱可塑性重合体を含有する場合、その含有量は、熱可塑性エラストマー組成物の柔軟性および機械的強度が損なわれない範囲で用いればよく、他の熱可塑性重合体を添加する前の熱可塑性エラストマー組成物100質量部に対して、好ましくは200質量部以下、より好ましくは100質量部以下、さらに好ましくは50質量部以下である。
[Other ingredients]
The thermoplastic elastomer composition of the present invention may further contain another thermoplastic polymer. Other thermoplastic polymers include, for example, polyphenylene ether resins; polyamide 6, polyamide 6 · 6, polyamide 6 · 10, polyamide 11, polyamide 12, polyamide 6 · 12, polyhexamethylenediamine terephthalamide, polyhexamethylene Polyamide resins such as diamine isophthalamide and xylene group-containing polyamide; Polyester resins such as polyethylene terephthalate and polybutylene terephthalate; Acrylic resins such as polymethyl acrylate and polymethyl methacrylate; Polyoxymethylene homopolymer, Polyoxymethylene Polyoxymethylene resins such as copolymers; Styrene resins such as styrene homopolymers, acrylonitrile-styrene resins, acrylonitrile-butadiene-styrene resins; Bonate resin; Styrenic elastomers such as styrene / butadiene copolymer rubber and styrene / isoprene copolymer rubber and hydrogenated products or modified products thereof (except liquid ones); natural rubber; chloroprene rubber; acrylic Examples thereof include rubber, acrylonitrile / butadiene rubber, epichlorohydrin rubber, silicone rubber, chlorosulfonated polyethylene, urethane rubber, polyurethane elastomer, polyamide elastomer, polyester elastomer, and soft vinyl chloride resin.
In addition, when other thermoplastic polymers are contained, the content may be used within a range that does not impair the flexibility and mechanical strength of the thermoplastic elastomer composition, and before adding the other thermoplastic polymers. The amount is preferably 200 parts by mass or less, more preferably 100 parts by mass or less, and still more preferably 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic elastomer composition.
 本発明の熱可塑性エラストマー組成物は、本発明の効果を損なわない範囲内であれば、さらに各種添加剤を含有させてなるものであってもよい。かかる添加剤としては、例えば滑剤、発泡剤、造核剤、酸化防止剤、熱安定剤、耐光剤、耐候剤、金属不活性剤、紫外線吸収剤、光安定剤、銅害防止剤、充填剤、補強剤、帯電防止剤、防菌剤、防かび剤、分散剤、着色剤などが挙げられる。これらのうちの1種を単独で含有させてもよいし、2種以上を含有させてもよい。 The thermoplastic elastomer composition of the present invention may further contain various additives as long as the effects of the present invention are not impaired. Examples of such additives include lubricants, foaming agents, nucleating agents, antioxidants, heat stabilizers, light resistance agents, weathering agents, metal deactivators, ultraviolet absorbers, light stabilizers, copper damage prevention agents, and fillers. , Reinforcing agents, antistatic agents, antibacterial agents, fungicides, dispersants, coloring agents and the like. One of these may be contained alone, or two or more may be contained.
 中でも、滑剤は熱可塑性エラストマー組成物の流動性を向上させると共に、熱劣化を抑制する作用を有するため好ましい。該滑剤としては、例えば、シリコンオイル;パラフィンワックス、マイクロワックス、ポリエチレンワックスなどの炭化水素系滑剤;ステアリン酸ブチル、ステアリン酸モノグリセリド、ペンタエリスリトールテトラステアレート、ステアリン酸ステアリル、不飽和脂肪酸モノアマイドなどが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 滑剤を含有する場合、その含有量は、滑剤を除く熱可塑性エラストマー組成物100質量部に対して、好ましくは0.01~3質量部、より好ましくは0.05~1質量部、さらに好ましくは、0.1~0.8質量部である。
Among these, a lubricant is preferable because it improves the fluidity of the thermoplastic elastomer composition and suppresses thermal degradation. Examples of the lubricant include silicone oils; hydrocarbon lubricants such as paraffin wax, microwax and polyethylene wax; butyl stearate, stearic acid monoglyceride, pentaerythritol tetrastearate, stearyl stearate, unsaturated fatty acid monoamide, and the like. It is done. These may be used individually by 1 type and may use 2 or more types together.
When the lubricant is contained, the content thereof is preferably 0.01 to 3 parts by weight, more preferably 0.05 to 1 part by weight, and still more preferably 100 parts by weight of the thermoplastic elastomer composition excluding the lubricant. 0.1 to 0.8 part by mass.
 また、発泡剤は、ウェザーシールの製造の際に使用されることがある。発泡剤としては、例えば、炭酸アンモニウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水素化ホウ素ナトリウム、アジド類などの無機系発泡剤;N,N’-ジニトロソペンタメチレンテトラミン、N,N’-ジメチル-N,N’-ジニトロソテレフタルアミドなどのN-ニトロソ系化合物;アゾビスイソブチロニトリル、アゾジカルボンアミド、バリウムアゾジカルボキシレートなどのアゾ系化合物;トリクロロモノフルオロメタン、ジクロロモノフルオロメタンなどのフッ化アルカン;パラトルエンスルホニルヒドラジド、ジフェニルスルホン-3,3’-ジスルホニルヒドラジド、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)、アリルビス(スルホニルヒドラジド)などのスルホニルヒドラジン系化合物;p-トルイレンスルホニルセミカルバジド、4,4’-オキシビス(ベンゼンスルホニルセミカルバジド)などのスルホニルセミカルバジド系化合物;5-モルホリル-1,2,3,4-チアトリアゾールなどのトリアゾール系化合物などの有機系発泡剤;イソブタン、ペンタンなどの加熱膨張性化合物が、塩化ビニリデン、アクロニトリル、アクリル酸エステル、メタクリル酸エステルなどの熱可塑性樹脂からなるマイクロカプセルに封入された熱膨張性微粒子などを挙げることができる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 このように、ウェザーシールを発泡体とする場合には、必要に応じて造核剤を含有させてもよい。造核剤としては、例えば、タルク、シリカ、アルミナ、マイカ、チタニア、酸化亜鉛、ゼオライト、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウムなどの、金属酸化物、複合酸化物、金属炭酸塩、金属硫酸塩、金属水酸化物などを用いることができる。造核剤を用いることにより、発泡体の発泡セルのセル径の調整が容易となる傾向にあり、適度な柔軟性を有する発泡体を得易い。
In addition, the foaming agent may be used in the production of a weather seal. Examples of the foaming agent include inorganic foaming agents such as ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, and azides; N, N′-dinitrosopentamethylenetetramine, N, N ′ -N-nitroso compounds such as dimethyl-N, N'-dinitrosotephthalamide; azo compounds such as azobisisobutyronitrile, azodicarbonamide, barium azodicarboxylate; trichloromonofluoromethane, dichloromonofluoro Fluorinated alkanes such as methane; sulfonylhydrazine compounds such as paratoluenesulfonyl hydrazide, diphenylsulfone-3,3′-disulfonylhydrazide, 4,4′-oxybis (benzenesulfonylhydrazide), allylbis (sulfonylhydrazide), etc. Sulfonyl semicarbazide compounds such as p-toluylenesulfonyl semicarbazide and 4,4′-oxybis (benzenesulfonyl semicarbazide); organic foams such as triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole Agents: Thermally expandable fine particles encapsulated in microcapsules in which a heat-expandable compound such as isobutane and pentane is made of a thermoplastic resin such as vinylidene chloride, acrylonitrile, acrylic acid ester, and methacrylic acid ester. These may be used individually by 1 type and may use 2 or more types together.
Thus, when making a weather seal into a foam, you may contain a nucleating agent as needed. Examples of the nucleating agent include metal oxides, composite oxides, metal carbonates such as talc, silica, alumina, mica, titania, zinc oxide, zeolite, calcium carbonate, magnesium carbonate, barium sulfate, and aluminum hydroxide. A metal sulfate, a metal hydroxide, etc. can be used. By using the nucleating agent, the cell diameter of the foam cell of the foam tends to be easily adjusted, and it is easy to obtain a foam having appropriate flexibility.
[架橋方法について]
 前述のとおり、オレフィン系ゴム(I)と水添ブロック共重合体(II)の重合体ブロック(B)の部分が架橋されていてもよい。架橋方法としては、オレフィン系ゴム(I)および水添ブロック共重合体(II)に、架橋剤(V)、架橋助剤(VI)および架橋促進剤(VII)を適宜添加して混練する方法(架橋方法1)、樹脂架橋法(架橋方法2)、キノイド架橋法(架橋方法3)、活性エネルギー線などを用いる方法(架橋方法4)などが挙げられる。以下、これらの架橋方法について順に説明する。
[Crosslinking method]
As described above, the polymer block (B) portion of the olefin rubber (I) and the hydrogenated block copolymer (II) may be crosslinked. As a crosslinking method, a method in which a crosslinking agent (V), a crosslinking assistant (VI) and a crosslinking accelerator (VII) are appropriately added to the olefin rubber (I) and the hydrogenated block copolymer (II) and kneaded. (Crosslinking method 1), resin crosslinking method (crosslinking method 2), quinoid crosslinking method (crosslinking method 3), methods using active energy rays (crosslinking method 4), and the like. Hereinafter, these crosslinking methods will be described in order.
<架橋方法1について>
 本発明の熱可塑性エラストマー組成物では、オレフィン系ゴム(I)および水添ブロック共重合体(II)に、架橋剤(V)、架橋助剤(VI)および架橋促進剤(VII)を適宜添加して混練することで、オレフィン系ゴム(I)と水添ブロック共重合体(II)の重合体ブロック(B)を架橋できる。
 例えば、前記ラジカル発生剤などの架橋剤(V)と共に、必要に応じて、前記多官能性単量体などの架橋助剤(VI)と、ジベンゾチアジルジスルフィドおよびテトラメチルチウラムジスルフィド(いわゆるジスルフィド系化合物)などの架橋促進剤(VII)を用いてもよい。
 かかる方法で架橋を行う場合、例えば、ラジカル発生剤および必要に応じて他の熱可塑性樹脂を含有する熱可塑性エラストマー組成物を、加熱下で溶融混練する方法などが挙げられる。加熱温度は、好ましくは140~230℃である。溶融混練は、押出機、ニーダー、ロール、プラストグラフなどの装置でバッチ式または連続式で行うことができる。かかる溶融混練工程により架橋反応が進行する。
<About crosslinking method 1>
In the thermoplastic elastomer composition of the present invention, a crosslinking agent (V), a crosslinking assistant (VI) and a crosslinking accelerator (VII) are appropriately added to the olefin rubber (I) and the hydrogenated block copolymer (II). Then, the polymer block (B) of the olefin rubber (I) and the hydrogenated block copolymer (II) can be crosslinked.
For example, a crosslinking aid (VI) such as the polyfunctional monomer, dibenzothiazyl disulfide and tetramethylthiuram disulfide (so-called disulfide type) as necessary together with the crosslinking agent (V) such as the radical generator. A crosslinking accelerator (VII) such as a compound) may be used.
In the case of performing crosslinking by such a method, for example, a method of melt-kneading a thermoplastic elastomer composition containing a radical generator and, if necessary, another thermoplastic resin, under heating can be mentioned. The heating temperature is preferably 140 to 230 ° C. Melt-kneading can be carried out batchwise or continuously with an apparatus such as an extruder, kneader, roll, plastograph or the like. The crosslinking reaction proceeds by such a melt-kneading process.
 また、架橋剤(V)として硫黄または硫黄化合物を用いる場合は、チアゾール類、グアニジン類、ブチルアルデヒド-アニリン反応物、ヘキサメチレンテトラミン-アセトアルデヒド反応物、アルデヒド-アミン系反応物などの架橋促進剤(VII)を併用するのが極めて好ましい。
 かかる方法で架橋を行う場合、架橋剤(V)、架橋促進剤(VII)などをロール、バンバリーミキサーなどのミキサー類を用いて、好ましくは50~250℃(より好ましくは80~200℃)で混練後、好ましくは60℃以上(より好ましくは90~250℃)で通常1分~2時間(より好ましくは5分~1時間)維持することによって架橋を形成することができる。
When sulfur or a sulfur compound is used as the crosslinking agent (V), crosslinking accelerators such as thiazoles, guanidines, butyraldehyde-aniline reactants, hexamethylenetetramine-acetaldehyde reactants, aldehyde-amine reactants ( It is highly preferred to use VII) together.
When cross-linking is carried out by such a method, the cross-linking agent (V), the cross-linking accelerator (VII) and the like are preferably used at 50 to 250 ° C. (more preferably 80 to 200 ° C.) using a mixer such as a roll or a Banbury mixer. After kneading, crosslinking can be formed by maintaining the temperature at 60 ° C. or higher (more preferably 90 to 250 ° C.), usually for 1 minute to 2 hours (more preferably 5 minutes to 1 hour).
<架橋方法2について>
 樹脂架橋法による架橋方法では、架橋剤(V)としてアルキルフェノール樹脂、臭素化アルキルフェノール樹脂などのフェノール系樹脂を用い、架橋助剤(VI)として塩化第一錫、塩化第二鉄、有機スルホン酸、ポリクロロプレンまたはクロルスルホン化ポリエチレンなどを用いる。
 かかる方法で架橋を行う場合、架橋温度については、100~250℃であるのが好ましく、より好ましくは130~220℃である。樹脂架橋を行う場合は、架橋促進剤(VII)を併用するのが極めて好ましい。
<About crosslinking method 2>
In the crosslinking method by the resin crosslinking method, phenolic resins such as alkylphenol resins and brominated alkylphenol resins are used as the crosslinking agent (V), and stannous chloride, ferric chloride, organic sulfonic acid, Polychloroprene or chlorosulfonated polyethylene is used.
When crosslinking is carried out by such a method, the crosslinking temperature is preferably 100 to 250 ° C, more preferably 130 to 220 ° C. When resin crosslinking is performed, it is extremely preferable to use a crosslinking accelerator (VII) in combination.
<架橋方法3について>
 キノイド架橋法による架橋方法では、架橋剤(V)としてp-キノンジオキシムと二酸化鉛、p,p’-ジベンゾイルキノンジオキシムと四酸化三鉛の組み合わせなどを用いる。
 かかる方法で架橋を行う場合、架橋温度については、90~250℃であるのが好ましく、より好ましくは110~220℃である。キノイド架橋を行う場合は、架橋促進剤(VII)を併用するのが好ましい。
<About crosslinking method 3>
In the crosslinking method by the quinoid crosslinking method, a combination of p-quinonedioxime and lead dioxide, p, p′-dibenzoylquinonedioxime and trilead tetroxide, or the like is used as the crosslinking agent (V).
When crosslinking is carried out by such a method, the crosslinking temperature is preferably 90 to 250 ° C, more preferably 110 to 220 ° C. When performing quinoid crosslinking, it is preferable to use a crosslinking accelerator (VII) in combination.
<架橋方法4について>
 活性エネルギー線による架橋方法で使用し得る活性エネルギー線としては、例えば、粒子線、電磁波、およびこれらの組み合わせが挙げられる。粒子線としては、電子線(EB)、α線などが挙げられ、電磁波としては、紫外線(UV)、可視光線、赤外線、γ線、X線などが挙げられる。これらの中でも、電子線(EB)または紫外線(UV)が好ましい。
 照射時間および照射量に特に制限はなく、架橋の程度に合わせて任意に選択できる。
<About crosslinking method 4>
Examples of active energy rays that can be used in the crosslinking method using active energy rays include particle rays, electromagnetic waves, and combinations thereof. Examples of the particle beam include an electron beam (EB) and an α ray, and examples of the electromagnetic wave include an ultraviolet ray (UV), a visible ray, an infrared ray, a γ ray, and an X ray. Among these, an electron beam (EB) or an ultraviolet ray (UV) is preferable.
There is no restriction | limiting in particular in irradiation time and irradiation amount, According to the grade of bridge | crosslinking, it can select arbitrarily.
(熱可塑性エラストマー組成物の製造方法)
 本発明の熱可塑性エラストマー組成物の製造方法に特に制限はない。
 例えば、[1]オレフィン系ゴム(I)、水添ブロック共重合体(II)、ポリオレフィン系樹脂(III)および軟化剤(IV)を特定の割合で含有してなる熱可塑性エラストマー組成物を製造する場合、予め架橋処理したオレフィン系ゴム(I)、ポリオレフィン系樹脂(III)および軟化剤(IV)の混合物を準備し、これに水添ブロック共重合体(II)、ポリオレフィン系樹脂(III)および軟化剤(IV)の混合物をさらに添加してから溶融混合する方法が挙げられる。
 また、[2]オレフィン系ゴム(I)、ポリオレフィン系樹脂(III)、軟化剤(IV)、並びに必要に応じて、架橋剤(V)、架橋助剤(VI)および架橋促進剤(VII)などを混合した後、水添ブロック共重合体(II)、または水添ブロック共重合体(II)および軟化剤(IV)を添加して、その混合物を溶融条件下に動的架橋する方法が、オレフィン系ゴム(I)を架橋すると同時に各成分を均一に混合できる点で好ましい。
 ここで、本明細書における「溶融条件下に動的架橋する」とは、溶融状態にした前記混合物に、混練によって剪断応力をかけながら架橋することを意味する。
(Method for producing thermoplastic elastomer composition)
There is no restriction | limiting in particular in the manufacturing method of the thermoplastic elastomer composition of this invention.
For example, [1] Manufacture a thermoplastic elastomer composition containing olefin rubber (I), hydrogenated block copolymer (II), polyolefin resin (III) and softener (IV) in specific proportions. A mixture of olefin rubber (I), polyolefin resin (III) and softening agent (IV) which has been previously cross-linked is prepared, to which hydrogenated block copolymer (II) and polyolefin resin (III) are prepared. And a method of melt-mixing after further adding a mixture of the softening agent (IV).
[2] Olefin rubber (I), polyolefin resin (III), softener (IV), and, if necessary, crosslinking agent (V), crosslinking aid (VI) and crosslinking accelerator (VII) Etc., and then adding hydrogenated block copolymer (II), or hydrogenated block copolymer (II) and softener (IV), and dynamically crosslinking the mixture under melting conditions. The olefin-based rubber (I) is preferably cross-linked at the same time that each component can be mixed uniformly.
Here, “dynamically cross-linking under melting conditions” in the present specification means cross-linking while applying a shear stress to the mixture in a molten state by kneading.
 本発明の熱可塑性エラストマー組成物を製造するための、動的架橋を行う装置としては、各成分を均一に混合し得る溶融混練装置のいずれもが使用でき、例えば単軸押出機、二軸押出機、ニーダー、バンバリーミキサーなどが挙げられる。中でも、混練中の剪断力が大きく連続運転が可能な二軸押出機を使用するのが好ましい。
 得られた熱可塑性エラストマー組成物を、公知の成形方法、好ましくは押出成形または射出成形によって、ウェザーシールを得ることができる。特に、ウェザーシールのコーナー部を形成する場合には、射出成形が利用される。ウェザーシールのストレート部を形成する場合には、押出成形が好ましく利用される。
 また、発泡剤を含有する熱可塑性エラストマー組成物の場合、発泡成形を行なうが、発泡成形する方法としては、発泡剤の分解または反応により発泡させる化学的方法と、前記化学的方法と超臨界発泡または水発泡などの物理的方法とを併用する方法などが挙げられる。これらの方法を利用し、射出発泡成形、押出発泡成形など、発泡成形に通常用いられる方法によって発泡成形することができる。例えば、ウェザーシールのコーナー部を形成するための発泡体は、発泡剤をドライブレンドした熱可塑性エラストマー組成物を、所望の形状をしたキャビティーを備えた金型内に射出発泡成形することにより得られる。
As a device for performing dynamic crosslinking for producing the thermoplastic elastomer composition of the present invention, any of melt-kneading devices capable of uniformly mixing each component can be used, for example, a single screw extruder, a twin screw extruder, or the like. Machine, kneader, Banbury mixer, etc. Among them, it is preferable to use a twin screw extruder that has a large shearing force during kneading and can be operated continuously.
A weather seal can be obtained from the obtained thermoplastic elastomer composition by a known molding method, preferably extrusion molding or injection molding. In particular, when forming a corner portion of a weather seal, injection molding is used. When forming the straight portion of the weather seal, extrusion molding is preferably used.
In the case of a thermoplastic elastomer composition containing a foaming agent, foam molding is performed. The foam molding method includes a chemical method of foaming by decomposition or reaction of the foaming agent, the chemical method and supercritical foaming. Or the method of using together with physical methods, such as water foaming, is mentioned. Using these methods, foam molding can be performed by a method usually used for foam molding, such as injection foam molding and extrusion foam molding. For example, a foam for forming a corner portion of a weather seal is obtained by injection-foaming a thermoplastic elastomer composition dry blended with a foaming agent into a mold having a cavity having a desired shape. It is done.
(熱可塑性エラストマー組成物の物性および特性)
 本発明の熱可塑性エラストマー組成物は、実施例に記載の方法に従って測定した硬度(JIS-A)が30~90となり、詳細には40~80となり、ウェザーシールとして相応しい柔軟性を有する。特に、グラスランのコーナー部用であれば、硬度の上限値は80以下が好ましく、76以下がより好ましく、ドアシールのコーナー部用であれば、硬度の上限値は57以下が好ましく、52以下がより好ましい。
 また、実施例に記載の方法に従って測定した加硫ゴムに対する接着力が、100~300N/cmであり、TPVに対する接着力が100~400N/cmであるため、加硫ゴムおよびTPVに対する接着力に優れる。特に、グラスランのコーナー部用であれば、TPVに対する接着力は、250N/cm以上が好ましく、310N/cm以上がより好ましく、加硫EPDMに対する接着力は、220N/cm以上が好ましく、240N/cm以上がより好ましい(表3参照)。また、ドアシールのコーナー部用であれば、TPVに対する接着力は、110N/cm以上が好ましく、140N/cm以上がより好ましく、加硫EPDMに対する接着力は、100N/cm以上が好ましく、115N/cm以上がより好ましい(表4参照)。
 さらに、本発明の熱可塑性エラストマー組成物は、耐候性および成形加工性にも優れている。
(Physical properties and properties of thermoplastic elastomer composition)
The thermoplastic elastomer composition of the present invention has a hardness (JIS-A) measured according to the method described in the examples of 30 to 90, specifically 40 to 80, and has a flexibility suitable as a weather seal. In particular, for a glass run corner, the upper limit of hardness is preferably 80 or less, more preferably 76 or less, and for a door seal corner, the upper limit of hardness is preferably 57 or less, more preferably 52 or less. preferable.
Further, since the adhesive strength to vulcanized rubber measured according to the method described in the examples is 100 to 300 N / cm 2 and the adhesive strength to TPV is 100 to 400 N / cm 2 , the adhesive strength to vulcanized rubber and TPV Excellent power. In particular, if a corner portion of the glass run, adhesion to TPV is preferably 250 N / cm 2 or more, more preferably 310N / cm 2 or more, adhesion to vulcanized EPDM is 220 N / cm 2 or more, 240 N / cm 2 or more is more preferable (see Table 3). Further, if a corner portion of the door seal, adhesion to TPV is preferably 110N / cm 2 or more, more preferably 140 N / cm 2 or more, adhesion to vulcanized EPDM is 100 N / cm 2 or more, 115 N / cm 2 or more is more preferable (see Table 4).
Furthermore, the thermoplastic elastomer composition of the present invention is also excellent in weather resistance and moldability.
[部材、ウェザーシール、ウェザーシール用コーナー部材]
 本発明は、本発明の熱可塑性エラストマー組成物からなる部位(X1)を有する部材を提供する。部位(X1)は、部材の一部であってもよいし、全体であってもよい。つまり、本発明は、部位(X1)の他に、本発明の熱可塑性エラストマー組成物とは異なる材料からなる部位(Y1)を有する部材も提供する。
 部位(Y1)の材料に特に制限はないが、ウェザーシール用途の場合、加硫ゴム、動的架橋型熱可塑性エラストマー(TPV)などが挙げられる。
 加硫ゴムとしては、(1)エチレンと、炭素数3~20のα-オレフィン1種以上との共重合体の架橋物、(2)エチレンと、炭素数3~20のα-オレフィン1種以上と、非共役ポリエン1種以上との共重合体の架橋物、などが挙げられる。特に、加硫ゴムとしては、エチレンと、炭素数3~20のα-オレフィン1種以上と、非共役ポリエン1種以上との共重合体の架橋物が好ましく、エチレンとプロピレンと非共役ポリエンとの共重合体の架橋物がより好ましい。
 TPVとしては、オレフィン系樹脂とオレフィン系ゴムとを含有してなるオレフィン系TPVが好ましく、ポリプロピレン樹脂とオレフィン系ゴムとを含有してなるオレフィン系TPVがより好ましい。該オレフィン系ゴムとしては、エチレンと、炭素数3~20のα-オレフィン1種以上と、非共役ポリエン1種以上との共重合体の架橋物が好ましく、エチレンとプロピレンと非共役ポリエンとの共重合体(EPDM)の架橋物がより好ましい。TPVとしては、「Excelink 1303B」、「Excelink 1703B」(いずれもJSR株式会社製)などの市販品を使用することもできる。
 なお、「炭素数3~20のα-オレフィン」および「非共役ポリエン」については、前記オレフィン系ゴム(I)における説明と同じものが挙げられ、好ましいものも同じである。
 加硫ゴムおよびTPVは、必要に応じて、例えば加硫助剤、加硫促進剤、軟化剤、老化防止剤、カーボンブラック、酸化亜鉛、滑剤などの各種添加剤を含有してなるものであってもよい。
[Members, weather seals, weather seal corner members]
This invention provides the member which has the site | part (X1) which consists of a thermoplastic elastomer composition of this invention. Part (X1) may be a part of the member or the whole. That is, this invention also provides the member which has the site | part (Y1) which consists of a material different from the thermoplastic elastomer composition of this invention other than a site | part (X1).
There are no particular restrictions on the material of the site (Y1), but in the case of weather seal applications, vulcanized rubber, dynamic cross-linked thermoplastic elastomer (TPV), and the like can be mentioned.
The vulcanized rubber includes (1) a cross-linked product of ethylene and one or more α-olefins having 3 to 20 carbon atoms, and (2) ethylene and one α-olefin having 3 to 20 carbon atoms. Examples thereof include a cross-linked product of a copolymer of the above and one or more non-conjugated polyenes. In particular, the vulcanized rubber is preferably a cross-linked product of a copolymer of ethylene, one or more α-olefins having 3 to 20 carbon atoms and one or more nonconjugated polyenes. More preferred is a crosslinked product of the above copolymer.
The TPV is preferably an olefinic TPV containing an olefinic resin and an olefinic rubber, and more preferably an olefinic TPV containing a polypropylene resin and an olefinic rubber. The olefin-based rubber is preferably a cross-linked product of ethylene, one or more α-olefins having 3 to 20 carbon atoms and one or more nonconjugated polyenes, and includes ethylene, propylene and nonconjugated polyenes. A cross-linked product of a copolymer (EPDM) is more preferred. As the TPV, commercially available products such as “Excellink 1303B” and “Excellink 1703B” (both manufactured by JSR Corporation) can also be used.
The “alpha-olefin having 3 to 20 carbon atoms” and “non-conjugated polyene” are the same as those described in the olefin rubber (I), and the preferred ones are also the same.
Vulcanized rubber and TPV contain various additives such as vulcanization aids, vulcanization accelerators, softeners, anti-aging agents, carbon black, zinc oxide, and lubricants as necessary. May be.
 また、本発明は、前記部位(X1)の他に、本発明の熱可塑性エラストマー組成物からなる部位(X2)を有する部材も提供する。該部位(X2)の材料は、部位(X1)を形成する熱可塑性エラストマー組成物と同一であっても異なっていてもよい。部位(X2)の材料が、部位(X1)を形成する熱可塑性エラストマー組成物と異なるとき、本発明の熱可塑性エラストマー組成物を2種以上用いた部材となる。 The present invention also provides a member having a part (X2) made of the thermoplastic elastomer composition of the present invention in addition to the part (X1). The material of the part (X2) may be the same as or different from the thermoplastic elastomer composition forming the part (X1). When the material of the part (X2) is different from the thermoplastic elastomer composition forming the part (X1), it becomes a member using two or more thermoplastic elastomer compositions of the present invention.
 本発明の熱可塑性エラストマー組成物は成形加工性にも優れるため、本発明の熱可塑性エラストマー組成物からなる部位(X1)は、好ましくは、射出成形して得られた部位である。 Since the thermoplastic elastomer composition of the present invention is excellent in molding processability, the part (X1) made of the thermoplastic elastomer composition of the present invention is preferably a part obtained by injection molding.
 本発明は、前記部材を含有するウェザーシールをも提供する。より具体的には、前記部位(X1)からなるコーナー部と、前記部位(X2)または(Y1)からなるストレート部とを有するウェザーシールを提供する。
 該ウェザーシールは、自動車用、船舶用または航空機用として有用である。
 前記部位(X1)は、柔軟性および成形加工性に優れるため、特にコーナー部材として有用であり、ウェザーシール用コーナー部材として有用である。例えば、自動車用途であれば、グラスランのコーナー部材、ドアシールのコーナー部材などとして有用である。
The present invention also provides a weather seal containing the member. More specifically, a weather seal having a corner portion made of the portion (X1) and a straight portion made of the portion (X2) or (Y1) is provided.
The weather seal is useful for automobiles, ships or aircraft.
Since the part (X1) is excellent in flexibility and molding processability, it is particularly useful as a corner member and is useful as a weather seal corner member. For example, if it is used for automobiles, it is useful as a corner member of a glass run, a corner member of a door seal or the like.
 本明細書の記載事項は、いずれも任意に採用することができる。つまり、好ましいとされる事項を1つ採用するのみならず、好ましいとされる事項と、その他の好ましいとされる事項とを組み合わせて採用することもできる。 Any of the items described in this specification can be adopted arbitrarily. That is, not only one preferable item but also a preferable item and other preferable items can be used in combination.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、物性測定は、以下に示す方法で行った。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The physical properties were measured by the following methods.
(1)ピークトップ分子量(Mp)
 下記条件のゲルパーミエーションクロマトグラフィー(GPC)測定により、水素添加前の重合体ブロック(A1)および(A2)と、水素添加後の水添ブロック共重合体(II)とにおいて、ポリスチレン換算のピークトップ分子量(Mp)を求めた。なお、重合体ブロック(A2)のMp(A2)は、水素添加後の水添ブロック共重合体(II)のMpから、水素添加前の重合体ブロック[A1-B]のMpを差し引くことによって求めた。
(GPC測定装置および測定条件)
・装置    :GPC装置「HLC-8320」(東ソー株式会社製)
・分離カラム :カラム「TSKgelSuperHZM-M」(東ソー株式会社製)
・溶離液   :テトラヒドロフラン
・溶離液流量 :0.7ml/min
・サンプル濃度:5mg/10mL
・カラム温度 :40℃
・検出器:示差屈折率(RI)検出器
・検量線:標準ポリスチレンを用いて作成
(1) Peak top molecular weight (Mp)
According to gel permeation chromatography (GPC) measurement under the following conditions, peaks in terms of polystyrene in the polymer blocks (A1) and (A2) before hydrogenation and in the hydrogenated block copolymer (II) after hydrogenation The top molecular weight (Mp) was determined. The Mp (A2) of the polymer block (A2) is obtained by subtracting the Mp of the polymer block [A1-B] before hydrogenation from the Mp of the hydrogenated block copolymer (II) after hydrogenation. Asked.
(GPC measurement equipment and measurement conditions)
・ Device: GPC device “HLC-8320” (manufactured by Tosoh Corporation)
Separation column: Column “TSKgelSuperHZM-M” (manufactured by Tosoh Corporation)
・ Eluent: Tetrahydrofuran ・ Eluent flow rate: 0.7 ml / min
Sample concentration: 5 mg / 10 mL
-Column temperature: 40 ° C
-Detector: Differential refractive index (RI) detector-Calibration curve: Created using standard polystyrene
(2)重合体ブロック(A)の含有量
 水素添加後のブロック共重合体(II)をCDClに溶解してH-NMRスペクトルを測定[装置:JNM-Lambda 500(日本電子株式会社製)、測定温度:50℃]し、スチレンに由来するピーク強度から重合体ブロック(A)の含有量を算出した。
(2) Content of polymer block (A) The hydrogenated block copolymer (II) was dissolved in CDCl 3 and 1 H-NMR spectrum was measured [apparatus: JNM-Lambda 500 (manufactured by JEOL Ltd.) ), Measurement temperature: 50 ° C.], and the content of the polymer block (A) was calculated from the peak intensity derived from styrene.
(3)水添ブロック共重合体(II)の水素添加率
 水素添加前後におけるブロック共重合体のヨウ素価を測定し、その測定値を用いて、下記式により水添ブロック共重合体(II)の水素添加率(%)を算出した。
 水素添加率(%)={1-(水素添加後のブロック共重合体のヨウ素価/水素添加前のブロック共重合体のヨウ素価)}×100
(ヨウ素価の測定方法)
 水素添加前後におけるブロック共重合体のシクロヘキサン溶液を用いて、ウィイス法によってヨウ素価を測定した。
(3) Hydrogenation rate of hydrogenated block copolymer (II) Measure the iodine value of the block copolymer before and after hydrogenation, and use the measured value to determine the hydrogenated block copolymer (II) according to the following formula: The hydrogenation rate (%) of was calculated.
Hydrogenation rate (%) = {1− (iodine value of block copolymer after hydrogenation / iodine value of block copolymer before hydrogenation)} × 100
(Iodine number measurement method)
The iodine value was measured by the Wiis method using a cyclohexane solution of the block copolymer before and after hydrogenation.
(4)重合体ブロック(B)のビニル結合含有量
 水素添加前のブロック共重合体をCDClに溶解してH-NMRスペクトルを測定[装置:JNM-Lambda 500(日本電子株式会社製)、測定温度:50℃]し、イソプレンおよび/またはブタジエン由来の構造単位の全ピーク面積と、イソプレン構造単位における3,4-結合単位および1,2-結合単位、ブタジエン構造単位における1,2-結合単位、または、イソプレンとブタジエンの混合物に由来する構造単位の場合はそれぞれの前記結合単位に対応するピーク面積の比からビニル結合含有量(3,4-結合単位と1,2-結合単位の含有量の合計)を算出した。
(4) Vinyl bond content of polymer block (B) The block copolymer before hydrogenation was dissolved in CDCl 3 and 1 H-NMR spectrum was measured [apparatus: JNM-Lambda 500 (manufactured by JEOL Ltd.) , Measurement temperature: 50 ° C.], the total peak area of the structural unit derived from isoprene and / or butadiene, the 3,4-bond unit and 1,2-bond unit in the isoprene structural unit, and 1,2- in the butadiene structural unit In the case of a bond unit or a structural unit derived from a mixture of isoprene and butadiene, the vinyl bond content (of 3,4-bond units and 1,2-bond units is determined from the ratio of peak areas corresponding to each of the bond units. The total content) was calculated.
(5)分子量分布(Mw/Mn)
 重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、ゲル浸透クロマトグラフィー(GPC)により標準ポリスチレン換算で求めた。
 測定装置および条件は、前記ピークトップ分子量(Mp)の測定におけるGPC測定装置および測定条件と同様とした。
(5) Molecular weight distribution (Mw / Mn)
The weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) were determined by gel permeation chromatography (GPC) in terms of standard polystyrene.
The measurement apparatus and conditions were the same as the GPC measurement apparatus and measurement conditions in the measurement of the peak top molecular weight (Mp).
(6)ガラス転移温度(℃)
 示差走査型熱量計「DSC6200」(セイコーインスツル株式会社製)を用い、水添ブロック共重合体(II)を精秤し、10℃/分の昇温速度にて-120℃から100℃まで昇温し、測定曲線の変曲点の温度を読みとり、ガラス転移温度とした。
(6) Glass transition temperature (° C)
Using a differential scanning calorimeter “DSC6200” (manufactured by Seiko Instruments Inc.), the hydrogenated block copolymer (II) is precisely weighed, and from −120 ° C. to 100 ° C. at a heating rate of 10 ° C./min. The temperature was raised, the temperature at the inflection point of the measurement curve was read and taken as the glass transition temperature.
[実施例で使用した各成分]
 以下に、実施例および比較例で用いた各成分の詳細または製造方法を示す。
[Each component used in Examples]
Below, the detail or manufacturing method of each component used by the Example and the comparative example is shown.
〔オレフィン系ゴム(I)〕
オレフィン系ゴム(I):エチレン/プロピレン/5-エチリデン-2-ノルボルネン共重合体ゴム「JSR EP37F」(JSR株式会社製、ヨウ素価=8、ムーニー粘度(ML1+4,100℃)=100、エチレン含有量54モル%)
[Olefin rubber (I)]
Olefin rubber (I): ethylene / propylene / 5-ethylidene-2-norbornene copolymer rubber “JSR EP37F” (manufactured by JSR Corporation, iodine value = 8, Mooney viscosity (ML 1 + 4 , 100 ° C.) = 100 , Ethylene content 54 mol%)
〔水添ブロック共重合体(II)〕
(II)-1:スチレン-(ブタジエン/イソプレン)-スチレンブロック共重合体の水素添加物(製造例1および表1参照)
(II)-2:スチレン-ブタジエン-スチレンブロック共重合体の水素添加物(製造例2および表1参照)
(II)-3:スチレン-イソプレン-スチレンブロック共重合体の水素添加物(製造例3および表1参照)
(II)-4:スチレン-イソプレン-スチレンブロック共重合体の水素添加物(製造例4および表1参照)
[Hydrogenated block copolymer (II)]
(II) -1: Hydrogenated product of styrene- (butadiene / isoprene) -styrene block copolymer (see Production Example 1 and Table 1)
(II) -2: Hydrogenated product of styrene-butadiene-styrene block copolymer (see Production Example 2 and Table 1)
(II) -3: Hydrogenated product of styrene-isoprene-styrene block copolymer (see Production Example 3 and Table 1)
(II) -4: Hydrogenated product of styrene-isoprene-styrene block copolymer (see Production Example 4 and Table 1)
〔水添ブロック共重合体(比較用)〕
(II')-5:スチレン-(ブタジエン/イソプレン)-スチレンブロック共重合体の水素添加物(製造例5および表1参照)
(II')-6:スチレン-イソプレン-スチレンブロック共重合体の水素添加物(製造例6および表1参照)
(II')-7:スチレン-イソプレン-スチレンブロック共重合体の水素添加物(製造例7および表1参照)
[Hydrogenated block copolymer (for comparison)]
(II ′)-5: Hydrogenated product of styrene- (butadiene / isoprene) -styrene block copolymer (see Production Example 5 and Table 1)
(II ′)-6: Hydrogenated product of styrene-isoprene-styrene block copolymer (see Production Example 6 and Table 1)
(II ′)-7: Hydrogenated product of styrene-isoprene-styrene block copolymer (see Production Example 7 and Table 1)
[製造例1]水添ブロック共重合体(II)-1の製造
 窒素置換し、乾燥させた耐圧容器に、表1に示す使用量にて、溶媒としてシクロヘキサン、アニオン重合開始剤としてsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)を仕込み、ルイス塩基としてテトラヒドロフランを仕込んだ。60℃に昇温した後、スチレン(A1)を加えて1時間重合させ、引き続いてブタジエンおよびイソプレンの混合物を加えて2時間重合を行い、さらにスチレン(A2)を加えて1時間重合することにより、スチレン-(ブタジエン/イソプレン)-スチレンブロック共重合体を含む反応液を得た。
 この反応液に、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を前記ブロック共重合体に対して5質量%添加し、水素圧力2MPa、150℃の条件で10時間反応を行った。
 放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、スチレン-(ブタジエン/イソプレン)-スチレンブロック共重合体の水素添加物(水添ブロック共重合体(II)-1と称する)を得た。各成分の使用量および水添ブロック共重合体(II)-1の各物性の測定結果を表1に示す。
[Production Example 1] Production of hydrogenated block copolymer (II) -1 In a pressure-resistant container purged with nitrogen and dried, in a use amount shown in Table 1, cyclohexane as a solvent and sec-butyl as an anionic polymerization initiator Lithium (10.5 mass% cyclohexane solution) was charged, and tetrahydrofuran was charged as a Lewis base. After the temperature was raised to 60 ° C., styrene (A1) was added and polymerized for 1 hour, followed by adding a mixture of butadiene and isoprene for 2 hours, and further adding styrene (A2) and polymerizing for 1 hour. A reaction solution containing a styrene- (butadiene / isoprene) -styrene block copolymer was obtained.
To this reaction solution, 5% by mass of palladium carbon (palladium supported amount: 5% by mass) as a hydrogenation catalyst was added to the block copolymer, and the reaction was performed for 10 hours under conditions of a hydrogen pressure of 2 MPa and 150 ° C. .
After allowing to cool and release the pressure, the palladium carbon is removed by filtration, the filtrate is concentrated, and further dried under vacuum to obtain a hydrogenated styrene- (butadiene / isoprene) -styrene block copolymer (hydrogenated block copolymer). Compound (II) -1) was obtained. The amount of each component used and the measurement results of the physical properties of the hydrogenated block copolymer (II) -1 are shown in Table 1.
[製造例2]水添ブロック共重合体(II)-2の製造
 窒素置換し、乾燥させた耐圧容器に、表1に示す使用量にて、溶媒としてシクロヘキサン、アニオン重合開始剤としてsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)を仕込み、ルイス塩基としてN,N,N’,N’-テトラメチルエチレンジアミンを仕込んだ。40℃に昇温した後、スチレン(A1)を加えて1時間重合させ、引き続いてブタジエンを加えて2時間重合を行い、さらにスチレン(A2)を加えて1時間重合することにより、スチレン-ブタジエン-スチレンブロック共重合体を含む反応液を得た。
 この反応液に、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を前記ブロック共重合体に対して5質量%添加し、水素圧力2MPa、150℃の条件で10時間反応を行った。
 放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物(水添ブロック共重合体(II)-2と称する)を得た。各成分の使用量および水添ブロック共重合体(II)-2の各物性の測定結果を表1に示す。
[Production Example 2] Production of hydrogenated block copolymer (II) -2 In a pressure-resistant vessel purged with nitrogen and dried, in a use amount shown in Table 1, cyclohexane as a solvent and sec-butyl as an anionic polymerization initiator Lithium (10.5 mass% cyclohexane solution) was charged, and N, N, N ′, N′-tetramethylethylenediamine was charged as a Lewis base. After the temperature was raised to 40 ° C., styrene (A1) was added for polymerization for 1 hour, butadiene was subsequently added for polymerization for 2 hours, and styrene (A2) was further added for polymerization for 1 hour. -A reaction solution containing a styrene block copolymer was obtained.
To this reaction solution, 5% by mass of palladium carbon (palladium supported amount: 5% by mass) as a hydrogenation catalyst was added to the block copolymer, and the reaction was performed for 10 hours under conditions of a hydrogen pressure of 2 MPa and 150 ° C. .
After allowing to cool and release the pressure, palladium carbon is removed by filtration, the filtrate is concentrated, and further dried under vacuum to give a hydrogenated styrene-butadiene-styrene block copolymer (hydrogenated block copolymer (II)). -2). Table 1 shows the amount of each component used and the measurement results of the physical properties of the hydrogenated block copolymer (II) -2.
[製造例3]水添ブロック共重合体(II)-3の製造
 窒素置換し、乾燥させた耐圧容器に、表1に示す使用量にて、溶媒としてシクロヘキサン、アニオン重合開始剤としてsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)を仕込み、ルイス塩基としてテトラヒドロフランを仕込んだ。60℃に昇温した後、スチレン(A1)を加えて1時間重合させ、引き続いてイソプレンを加えて2時間重合を行い、さらにスチレン(A2)を加えて1時間重合することにより、スチレン-イソプレン-スチレンブロック共重合体を含む反応液を得た。
 この反応液に、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を前記ブロック共重合体に対して5質量%添加し、水素圧力2MPa、150℃の条件で10時間反応を行った。
 放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、スチレン-イソプレン-スチレンブロック共重合体の水素添加物(水添ブロック共重合体(II)-3と称する)を得た。各成分の使用量および水添ブロック共重合体(II)-3の各物性の測定結果を表1に示す。
[Production Example 3] Production of hydrogenated block copolymer (II) -3 In a pressure-resistant container purged with nitrogen and dried, in a use amount shown in Table 1, cyclohexane as a solvent and sec-butyl as an anionic polymerization initiator Lithium (10.5 mass% cyclohexane solution) was charged, and tetrahydrofuran was charged as a Lewis base. After the temperature was raised to 60 ° C., styrene (A1) was added and polymerized for 1 hour, then isoprene was added to conduct polymerization for 2 hours, and further styrene (A2) was added and polymerized for 1 hour to obtain styrene-isoprene. -A reaction solution containing a styrene block copolymer was obtained.
To this reaction solution, 5% by mass of palladium carbon (palladium supported amount: 5% by mass) as a hydrogenation catalyst was added to the block copolymer, and the reaction was performed for 10 hours under conditions of a hydrogen pressure of 2 MPa and 150 ° C. .
After allowing to cool and release the pressure, palladium carbon is removed by filtration, the filtrate is concentrated, and further dried under vacuum to obtain a hydrogenated styrene-isoprene-styrene block copolymer (hydrogenated block copolymer (II)). -3)). Table 1 shows the amount of each component used and the measurement results of the physical properties of the hydrogenated block copolymer (II) -3.
[製造例4]水添ブロック共重合体(II)-4の製造
 製造例3において、各成分の使用量を表1に記載のとおりに変更したこと以外は同様にして操作を行うことにより、スチレン-イソプレン-スチレンブロック共重合体の水素添加物(水添ブロック共重合体(II)-4と称する)を得た。各成分の使用量および水添ブロック共重合体(II)-4の各物性の測定結果を表1に示す。
[Production Example 4] Production of hydrogenated block copolymer (II) -4 By performing the same operation as in Production Example 3, except that the amount of each component used was changed as shown in Table 1, A hydrogenated product of styrene-isoprene-styrene block copolymer (referred to as hydrogenated block copolymer (II) -4) was obtained. The amount of each component used and the measurement results of the physical properties of the hydrogenated block copolymer (II) -4 are shown in Table 1.
[製造例5(比較用)]水添ブロック共重合体(II’)-5の製造
 製造例1において、各成分の使用量を表1に記載のとおりに変更したこと以外は同様にして操作を行うことにより、スチレン-(ブタジエン/イソプレン)-スチレンブロック共重合体の水素添加物(水添ブロック共重合体(II’)-5と称する)を得た。各成分の使用量および水添ブロック共重合体(II’)-5の各物性の測定結果を表1に示す。
[Production Example 5 (for comparison)] Production of hydrogenated block copolymer (II ')-5 The same operation as in Production Example 1 except that the amounts used of each component were changed as shown in Table 1. To obtain a hydrogenated product of styrene- (butadiene / isoprene) -styrene block copolymer (referred to as hydrogenated block copolymer (II ′)-5). Table 1 shows the amount of each component used and the measurement results of the physical properties of the hydrogenated block copolymer (II ′)-5.
[製造例6(比較用)]水添ブロック共重合体(II’)-6の製造
 製造例3において、各成分の使用量を表1に記載のとおりに変更したこと以外は同様にして操作を行うことにより、スチレン-イソプレン-スチレンブロック共重合体の水素添加物(水添ブロック共重合体(II’)-6と称する)を得た。各成分の使用量および水添ブロック共重合体(II’)-6の各物性の測定結果を表1に示す。
[Production Example 6 (for comparison)] Production of hydrogenated block copolymer (II ')-6 The same operation as in Production Example 3 except that the amount of each component used was changed as shown in Table 1. To obtain a hydrogenated product of styrene-isoprene-styrene block copolymer (referred to as hydrogenated block copolymer (II ′)-6). Table 1 shows the amount of each component used and the measurement results of the physical properties of the hydrogenated block copolymer (II ′)-6.
[製造例7(比較用)]水添ブロック共重合体(II’)-7の製造
 製造例3において、各成分の使用量を表1に記載のとおりに変更したこと以外は同様にして操作を行うことにより、スチレン-イソプレン-スチレンブロック共重合体の水素添加物(水添ブロック共重合体(II’)-7と称する)を得た。各成分の使用量および水添ブロック共重合体(II’)-7の各物性の測定結果を表1に示す。
[Production Example 7 (for comparison)] Production of hydrogenated block copolymer (II ')-7 The same operation as in Production Example 3 except that the amounts used of the respective components were changed as shown in Table 1. To obtain a hydrogenated product of styrene-isoprene-styrene block copolymer (referred to as hydrogenated block copolymer (II ′)-7). Table 1 shows the amount of each component used and the measurement results of the physical properties of the hydrogenated block copolymer (II ′)-7.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔ポリオレフィン系樹脂(III)〕
ポリオレフィン系樹脂(III):ランダムポリプロピレン(プロピレンエチレンランダム共重合体)「J226T」(MFR[230℃、荷重21.2N]=20g/10分、株式会社プライムポリマー製)
〔軟化剤(IV)〕
軟化剤(IV):パラフィン系プロセスオイル「ダイアナプロセスPW-90」(動粘度=95.54mm/s(40℃)、出光興産株式会社製)
〔架橋剤(V)〕
架橋剤(V):2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン/シリカ(質量比:40/60)「パーヘキサ(登録商標)25B-40」(日本油脂株式会社製)
〔架橋助剤(VI)〕
架橋助剤(VI):トリアリルイソシアヌレート/ホワイトカーボン(質量比:60/40)「タイク(登録商標)WH-60」(日本化成株式会社製)
〔滑剤〕
滑剤:不飽和脂肪酸モノアマイド「ダイヤミッド(登録商標)L-200」(日本化成株式会社製)
[Polyolefin resin (III)]
Polyolefin resin (III): Random polypropylene (propylene ethylene random copolymer) “J226T” (MFR [230 ° C., load 21.2 N] = 20 g / 10 min, manufactured by Prime Polymer Co., Ltd.)
[Softener (IV)]
Softener (IV): Paraffinic process oil “Diana Process PW-90” (kinematic viscosity = 95.54 mm 2 / s (40 ° C.), manufactured by Idemitsu Kosan Co., Ltd.)
[Crosslinking agent (V)]
Cross-linking agent (V): 2,5-dimethyl-2,5-di (t-butylperoxy) hexane / silica (mass ratio: 40/60) “Perhexa® 25B-40” (manufactured by NOF Corporation) )
[Crosslinking aid (VI)]
Crosslinking aid (VI): triallyl isocyanurate / white carbon (mass ratio: 60/40) “Tyke (registered trademark) WH-60” (manufactured by Nippon Kasei Co., Ltd.)
[Lubricant]
Lubricant: Unsaturated fatty acid monoamide “Diamid (registered trademark) L-200” (manufactured by Nippon Kasei Co., Ltd.)
[実施例1~16、比較例1~14]
 表3または表4に示す配合割合(単位:質量部)で全成分をスーパーミキサーV-20(株式会社カワタ製)を用いてドライブレンドにて予備混合した後、二軸押出機[株式会社日本製鋼所製「TEX-44XCT」、スクリュー長(L)/スクリュー径(D)=42]に供給して温度170~200℃、回転数300min-1で溶融混練し、ホットカットすることによって、ペレット状の熱可塑性エラストマー組成物を製造した。
 得られたペレット状の熱可塑性エラストマー組成物を用いて、各物性および特性を下記方法に従って測定または評価した。結果を表3および表4に示す。
[Examples 1 to 16, Comparative Examples 1 to 14]
All components were premixed by dry blending using a super mixer V-20 (manufactured by Kawata Co., Ltd.) at the blending ratio (unit: parts by mass) shown in Table 3 or Table 4, and then a twin screw extruder [Japan Co., Ltd. Pellets by supplying to steelworks “TEX-44XCT”, screw length (L) / screw diameter (D) = 42], melting and kneading at a temperature of 170 to 200 ° C. and a rotation speed of 300 min −1 and hot cutting. A thermoplastic elastomer composition was produced.
Each physical property and characteristic was measured or evaluated according to the following method using the obtained pellet-shaped thermoplastic elastomer composition. The results are shown in Table 3 and Table 4.
[物性および特性の測定方法または評価方法]
(7)硬度(JIS-A)
 各例で得られた熱可塑性エラストマー組成物のペレットを、射出成形機「EC75SX」(東芝機械株式会社製)によりシリンダー温度230℃で射出成形し、縦100mm、横35mm、厚み2mmのシートを作製した。次いで、JIS K6253-3(2012年)に準拠して、得られたシートを3枚重ねて厚み6mmの積層体とし、その硬度を測定した。硬度計はタイプAデュロメータを用い、測定値は瞬間の数値を記録した。
 硬度が小さいほど、得られる成形体は柔軟性に優れることを示す。
[Measurement or evaluation method of physical properties and characteristics]
(7) Hardness (JIS-A)
The pellets of the thermoplastic elastomer composition obtained in each example were injection molded at a cylinder temperature of 230 ° C. using an injection molding machine “EC75SX” (manufactured by Toshiba Machine Co., Ltd.) to produce a sheet having a length of 100 mm, a width of 35 mm, and a thickness of 2 mm. did. Next, according to JIS K6253-3 (2012), three sheets of the obtained sheets were stacked to form a 6 mm-thick laminate, and the hardness was measured. The hardness meter used was a type A durometer, and the measured value was recorded as an instantaneous value.
It shows that the molded object obtained is excellent in a softness | flexibility, so that hardness is small.
(8)成形加工性
 各例で得られた熱可塑性エラストマー組成物のペレットを、射出成形機「EC75SX」(東芝機械株式会社製)によりシリンダー温度230℃で射出成形し、縦100mm、横35mm、厚み2mmのシートを作製し、該シートを縦50mm、横35mmに切り取り、試験片を作製した。該試験片中のフローマークの有無を目視で観察し、下記の基準によって、成形加工性を評価した。
 A:フローマークが無い
 B:フローマークが少ない
 C:フローマークが多い
(8) Moldability The pellets of the thermoplastic elastomer composition obtained in each example were injection molded at a cylinder temperature of 230 ° C. with an injection molding machine “EC75SX” (manufactured by Toshiba Machine Co., Ltd.), 100 mm long, 35 mm wide, A sheet having a thickness of 2 mm was prepared, and the sheet was cut into a length of 50 mm and a width of 35 mm to prepare a test piece. The presence or absence of a flow mark in the test piece was visually observed, and molding processability was evaluated according to the following criteria.
A: No flow mark B: Low flow mark C: Many flow marks
(9)接着力
 下記方法によって、動的架橋型熱可塑性エラストマー(TPV)からなる被着体、または加硫ゴムからなる被着体との接着力を測定した。
(TPVからなる被着体)
 TPV-1:「Excelink 1703B」(JSR株式会社製)のペレットを用いて、前記「(8)成形加工性」に記載の方法に従って、縦50mm、横35mm、厚み2mmの試験片を作成し、これを被着体「TPV-1」とした。該TPV-1の前記「(7)硬度」に記載の方法に従って測定した硬度は71であった。
 TPV-2:「Excelink 1303B」(JSR株式会社製)のペレットを用いたこと以外は上記TPV-1と同様にして試験片を作成し、これを被着体「TPV-2」とした。該TPV-2の前記「(7)硬度」に記載の方法に従って測定した硬度は42であった。
(加硫ゴムからなる被着体)
 加硫EPDM-3:下記表2に示す配合量にて、エチレン/プロピレン/ジエン共重合体ゴム「EPT4045」(三井化学株式会社製)、カーボンブラック「ダイアブラックH」(三菱化学株式会社製)、老化防止剤「ノクラック6C」(大内進興化学工業株式会社製)、ステアリン酸「ルナックS-20」(花王株式会社製)および亜鉛華「酸化亜鉛」(堺化学工業株式会社製)を、バンバリーミキサーを用いて150℃で6分間混練した(混練第一ステージ)。次いで、得られた組成物を取り出して冷却した後、下記表2に示す配合量にて加硫剤「硫黄」(微粉硫黄、200メッシュ、鶴見化学工業株式会社製)並びに加硫促進剤(1)「ノクセラーTS」(大内進興化学工業株式会社製)および加硫促進剤(2)「ノクセラーM-P」(大内進興化学工業株式会社製)を加え、バンバリーミキサーを用いて温度50℃および圧力1MPaにて20分間混練し(混練第二ステージ)、混練物を得た。
 さらに圧縮成形機を用いて、下記表2に示す加硫条件にて圧縮成型し、シート(縦150mm×横150mm×厚さ2mm)を得た。このシートから縦50mm、横35mm、厚み2mmを打ち抜いて試験片を作成し、これを被着体「加硫EPDM-3」とした。この加硫EPDM-3の前記「(7)硬度」に記載の方法に従って測定した硬度は70であった。
Figure JPOXMLDOC01-appb-T000002
<接着力の測定方法>
 上記のようにして得られた各被着体(縦50mm×横35mm×厚み2mm)を、縦100mm×横35mm×厚み2mmのキャビティー内に装着して、そこへ、射出成形機「EC75SX」(東芝機械株式会社製)にて、熱可塑性エラストマーを230℃で射出成形し、複合成形体のシートを得た。なお、該複合成形体のシートは完全溶融して、2mm厚の1枚のシートとなり、つまり、それぞれの被着体(TPV-1、TPV-2または加硫EPDM-3)と熱可塑性エラストマー組成物とは、そのシートの側面において接着した状態である(接着面積:35mm×2mm)。
 得られた複合成形体のシート(縦100mm×横35mm×厚さ2mm)を縦100mm×横10mm×厚さ2mmに切り取り、23℃の温度条件および200mm/minの引張速度条件下でインストロン万能試験機「インストロン5566」(インストロンジャパン社製)を用いて、熱可塑性エラストマー組成物と被着体との間の接着力を測定した。
(9) Adhesive strength Adhesive strength with an adherend made of a dynamically crosslinked thermoplastic elastomer (TPV) or an adherend made of vulcanized rubber was measured by the following method.
(Adherent consisting of TPV)
TPV-1: Using a pellet of “Excelin 1703B” (manufactured by JSR Corporation), a test piece having a length of 50 mm, a width of 35 mm, and a thickness of 2 mm was prepared according to the method described in “(8) Moldability”, This was designated as an adherend “TPV-1.” The hardness of the TPV-1 measured according to the method described in “(7) Hardness” was 71.
TPV-2: A test piece was prepared in the same manner as TPV-1 except that pellets of “Excelin 1303B” (manufactured by JSR Corporation) were used, and this was used as an adherend “TPV-2”. The hardness of the TPV-2 measured according to the method described in “(7) Hardness” was 42.
(Adhered body made of vulcanized rubber)
Vulcanized EPDM-3: Ethylene / propylene / diene copolymer rubber “EPT4045” (Mitsui Chemicals Co., Ltd.), carbon black “Diablack H” (Mitsubishi Chemical Co., Ltd.) in the blending amounts shown in Table 2 below. Anti-aging agent “NOCRACK 6C” (manufactured by Ouchi Shinko Chemical Co., Ltd.), stearic acid “LUNAC S-20” (manufactured by Kao Corporation) and zinc white “Zinc Oxide” (manufactured by Sakai Chemical Industry Co., Ltd.) The mixture was kneaded for 6 minutes at 150 ° C. using a Banbury mixer (first kneading stage). Next, after the obtained composition was taken out and cooled, a vulcanizing agent “sulfur” (fine sulfur, 200 mesh, manufactured by Tsurumi Chemical Co., Ltd.) and a vulcanization accelerator (1) were blended in the amounts shown in Table 2 below. ) Add “Noxeller TS” (Ouchi Shinko Chemical Co., Ltd.) and vulcanization accelerator (2) “Noxeller MP” (Ouchi Shinko Chemical Co., Ltd.), and use a Banbury mixer to adjust the temperature. The mixture was kneaded at 50 ° C. and a pressure of 1 MPa for 20 minutes (kneading second stage) to obtain a kneaded product.
Further, using a compression molding machine, compression molding was carried out under the vulcanization conditions shown in Table 2 below to obtain a sheet (length 150 mm × width 150 mm × thickness 2 mm). A test piece was prepared by punching out 50 mm in length, 35 mm in width, and 2 mm in thickness from this sheet, and this was used as an adherend “vulcanized EPDM-3”. The hardness of this vulcanized EPDM-3 measured according to the method described in “(7) Hardness” was 70.
Figure JPOXMLDOC01-appb-T000002
<Measurement method of adhesive strength>
Each adherend (50 mm long × 35 mm wide × 2 mm thick) obtained as described above is mounted in a cavity of 100 mm long × 35 mm wide × 2 mm thick, and injection molding machine “EC75SX” is provided there. (Manufactured by Toshiba Machine Co., Ltd.), a thermoplastic elastomer was injection molded at 230 ° C. to obtain a composite molded sheet. The sheet of the composite molded body is completely melted into one sheet having a thickness of 2 mm, that is, each adherend (TPV-1, TPV-2 or vulcanized EPDM-3) and a thermoplastic elastomer composition. A thing is the state which adhere | attached in the side surface of the sheet | seat (adhesion area: 35 mm x 2 mm).
The obtained composite molded sheet (length 100 mm × width 35 mm × thickness 2 mm) was cut into length 100 mm × width 10 mm × thickness 2 mm, and Instron universal under a temperature condition of 23 ° C. and a tensile speed condition of 200 mm / min. The adhesion between the thermoplastic elastomer composition and the adherend was measured using a tester “Instron 5566” (manufactured by Instron Japan).
(10)耐候性
 前記「(8)成形加工性」の記載と同じ操作を行うことによりシート(縦100mm×横35mm×厚さ2mm)を得た。このシートを、「サンテストCPS+」(光源:キセノン、照射強度:550W/m、株式会社東洋精機製作所製)を用いて、24時間、光暴露試験を行った。試験前後の変化の触感を調査し、下記の基準に従って耐候性を評価した。
 A:変化が無い
 B:若干のべたつきがある
 C:べたつく
(10) Weather resistance A sheet (length 100 mm × width 35 mm × thickness 2 mm) was obtained by performing the same operation as described in “(8) Molding processability”. The sheet was subjected to a light exposure test for 24 hours using “Sun Test CPS +” (light source: xenon, irradiation intensity: 550 W / m 2 , manufactured by Toyo Seiki Seisakusho Co., Ltd.). The tactile sensation of the change before and after the test was investigated, and the weather resistance was evaluated according to the following criteria.
A: No change B: Some stickiness C: Stickiness
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3および表4より、実施例の熱可塑性エラストマー組成物はいずれも、TPV-1、TPV-2および加硫EPDM-3に対して高い接着力を有し、且つ、柔軟性および耐候性と共に、成形加工性にも優れていることがわかる。
 さらに、実施例6と実施例8とを対比すると、水添ブロック共重合体(II)中の重合体ブロック(A1)と(A2)におけるピークトップ分子量(Mp)の比[Mp(A1)/Mp(A2)]が1/10~8/10を満たしている実施例8の方が、より一層、成形加工性に優れていることが分かる。
 実施例1~8で得られた熱可塑性エラストマー組成物は、特に、自動車におけるグラスランのコーナー部用として有用である。また、実施例9~16で得られた熱可塑性エラストマー組成物は、特に、自動車におけるドアシールのコーナー部用として有用である。
 一方、水素添加率が低い水添ブロック共重合体を用いた比較例1、2、8および9では、TPVに対する接着力が不十分な場合があり(比較例2参照)、また、耐候性が不足している(比較例1、2、8および9参照)ことが分かる。重合体ブロック(B)のビニル結合含有量が45%未満である水添ブロック共重合体を用いた比較例3、4、10および11では、柔軟性が不足している場合があり(比較例3および10参照)、また、TPVおよび加硫ゴムに対する接着力に乏しい場合がある(比較例4および11参照)ことがわかる。ピークトップ分子量(Mp)が20万を超える水添ブロック共重合体を用いた比較例5、6、12および13では、成形加工性に乏しく、また、柔軟性が不足する場合もある(比較例12参照)ことが分かる。さらに、水添ブロック共重合体(II)を用いなかった比較例7および14では、成形加工性に乏しく、また、加硫ゴムに対する接着力が不足する場合もある(比較例14参照)ことが分かった。
From Table 3 and Table 4, the thermoplastic elastomer compositions of the examples all have high adhesion to TPV-1, TPV-2 and vulcanized EPDM-3, and have flexibility and weather resistance. It can be seen that the moldability is also excellent.
Further, when Example 6 and Example 8 are compared, the ratio of the peak top molecular weight (Mp) in the polymer blocks (A1) and (A2) in the hydrogenated block copolymer (II) [Mp (A1) / It can be seen that Example 8 in which Mp (A2)] satisfies 1/10 to 8/10 is more excellent in moldability.
The thermoplastic elastomer compositions obtained in Examples 1 to 8 are particularly useful for glass run corners in automobiles. In addition, the thermoplastic elastomer compositions obtained in Examples 9 to 16 are particularly useful for corner portions of door seals in automobiles.
On the other hand, in Comparative Examples 1, 2, 8 and 9 using a hydrogenated block copolymer having a low hydrogenation rate, the adhesive strength to TPV may be insufficient (see Comparative Example 2), and the weather resistance is also low. It turns out that it is insufficient (refer comparative examples 1, 2, 8, and 9). In Comparative Examples 3, 4, 10 and 11 using a hydrogenated block copolymer in which the vinyl bond content of the polymer block (B) is less than 45%, the flexibility may be insufficient (Comparative Example). 3 and 10), and the adhesive strength to TPV and vulcanized rubber may be poor (see Comparative Examples 4 and 11). In Comparative Examples 5, 6, 12 and 13 using a hydrogenated block copolymer having a peak top molecular weight (Mp) exceeding 200,000, molding processability is poor and flexibility may be insufficient (Comparative Example). 12). Further, in Comparative Examples 7 and 14 in which the hydrogenated block copolymer (II) was not used, the molding processability was poor and the adhesive strength to the vulcanized rubber may be insufficient (see Comparative Example 14). I understood.
 本発明の熱可塑性エラストマー組成物は、加硫ゴムおよび動的架橋型熱可塑性エラストマー(TPV)に対して高い接着力を有し、且つ、柔軟性および耐候性と共に、成形加工性にも優れるため、ウェザーシール用、特にウェザーシールのコーナー部用として有用である。 The thermoplastic elastomer composition of the present invention has high adhesion to vulcanized rubber and dynamically cross-linked thermoplastic elastomer (TPV), and is excellent in molding processability as well as flexibility and weather resistance. It is useful for weather seals, particularly for corners of weather seals.

Claims (18)

  1.  オレフィン系ゴム(I)、
     下記水添ブロック共重合体(II)、
     ポリオレフィン系樹脂(III)、および
     軟化剤(IV)
    を含有してなる熱可塑性エラストマー組成物であって、
     オレフィン系ゴム(I)と水添ブロック共重合体(II)との含有割合[(I)/(II)]が質量比で90/10~10/90であり、
     オレフィン系ゴム(I)と水添ブロック共重合体(II)の合計100質量部に対して、ポリオレフィン系樹脂(III)の含有量が10~200質量部、軟化剤(IV)の含有量が15~300質量部である、熱可塑性エラストマー組成物。
     水添ブロック共重合体(II):芳香族ビニル化合物に由来する構造単位から主としてなる重合体ブロック(A)と、イソプレンおよびブタジエンからなる群から選択される少なくとも1種に由来する構造単位から主としてなり、かつ3,4-結合単位および1,2-結合単位の含有量の合計が45%以上である重合体ブロック(B)とを有するブロック共重合体の水素添加物であって、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めたピークトップ分子量が50,000~200,000であり、重合体ブロック(B)中の炭素-炭素二重結合の70モル%以上が水素添加されている水添ブロック共重合体。
    Olefin rubber (I),
    The following hydrogenated block copolymer (II),
    Polyolefin resin (III) and softener (IV)
    A thermoplastic elastomer composition comprising:
    The content ratio [(I) / (II)] of the olefin rubber (I) and the hydrogenated block copolymer (II) is 90/10 to 10/90 by mass ratio,
    The content of polyolefin resin (III) is 10 to 200 parts by mass and the content of softener (IV) is 100 parts by mass in total of olefin rubber (I) and hydrogenated block copolymer (II). A thermoplastic elastomer composition having a content of 15 to 300 parts by mass.
    Hydrogenated block copolymer (II): mainly from a polymer block (A) mainly composed of a structural unit derived from an aromatic vinyl compound and a structural unit derived from at least one selected from the group consisting of isoprene and butadiene. And a hydrogenated product of a block copolymer having a polymer block (B) having a total content of 3,4-bond units and 1,2-bond units of 45% or more, Water having a peak top molecular weight of 50,000 to 200,000 determined by standard polystyrene conversion by an association chromatography and hydrogenated 70 mol% or more of the carbon-carbon double bonds in the polymer block (B). A block copolymer.
  2.  前記水添ブロック共重合体(II)のガラス転移温度が-45~0℃である、請求項1に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to claim 1, wherein the hydrogenated block copolymer (II) has a glass transition temperature of -45 to 0 ° C.
  3.  前記水添ブロック共重合体(II)において、重合体ブロック(A)の含有量が5~40質量%である、請求項1または2に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to claim 1 or 2, wherein the content of the polymer block (A) in the hydrogenated block copolymer (II) is 5 to 40% by mass.
  4.  水添ブロック共重合体(II)において、重合体ブロック(A)の含有量が5~18質量%である、請求項1~3のいずれか1項に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to any one of claims 1 to 3, wherein the content of the polymer block (A) in the hydrogenated block copolymer (II) is 5 to 18% by mass.
  5.  前記水添ブロック共重合体(II)における前記重合体ブロック(A)が、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めたピークトップ分子量が同一または異なる2つの重合体ブロック(A1)と(A2)とを含有し、且つ、該水添ブロック共重合体(II)が、前記重合体ブロック(A1)、前記重合体ブロック(B)および前記重合体ブロック(A2)から構成されるトリブロック共重合体[A1-B-A2]の水素添加物である、請求項1~4のいずれか1項に記載の熱可塑性エラストマー組成物。 The polymer block (A) in the hydrogenated block copolymer (II) has two polymer blocks (A1) and (A2) having the same or different peak top molecular weights determined in terms of standard polystyrene by gel permeation chromatography. And the hydrogenated block copolymer (II) is composed of the polymer block (A1), the polymer block (B), and the polymer block (A2). The thermoplastic elastomer composition according to any one of claims 1 to 4, which is a hydrogenated product of the polymer [A1-B-A2].
  6.  前記水添ブロック共重合体(II)において、
     前記重合体ブロック(A)が、芳香族ビニル化合物に由来する構造単位から主としてなり、且つゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めたピークトップ分子量がMp(A1)である重合体ブロック(A1)と、芳香族ビニル化合物に由来する構造単位から主としてなり、且つゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めたピークトップ分子量がMp(A2)である重合体ブロック(A2)とを有し、
     前記Mp(A1)と前記Mp(A2)との比[Mp(A1)/Mp(A2)]が1/10~8/10を満たす、請求項5に記載の熱可塑性エラストマー組成物。
    In the hydrogenated block copolymer (II),
    The polymer block (A1) in which the polymer block (A) is mainly composed of a structural unit derived from an aromatic vinyl compound and has a peak top molecular weight of Mp (A1) determined in terms of standard polystyrene by gel permeation chromatography. And a polymer block (A2) having a peak top molecular weight of Mp (A2), which is mainly composed of a structural unit derived from an aromatic vinyl compound, and calculated in terms of standard polystyrene by gel permeation chromatography,
    The thermoplastic elastomer composition according to claim 5, wherein a ratio [Mp (A1) / Mp (A2)] of the Mp (A1) to the Mp (A2) satisfies 1/10 to 8/10.
  7.  前記オレフィン系ゴム(I)と前記水添ブロック共重合体(II)の重合体ブロック(B)とが架橋されてなる、請求項1~6のいずれか1項に記載の熱可塑性エラストマー組成物。 The thermoplastic elastomer composition according to any one of claims 1 to 6, wherein the olefin rubber (I) and the polymer block (B) of the hydrogenated block copolymer (II) are crosslinked. .
  8.  前記オレフィン系ゴム(I)が、(I-1)エチレンと、炭素数3~20のα-オレフィン1種以上との共重合体ゴムまたはその架橋物、並びに(I-2)エチレンと、炭素数3~20のα-オレフィン1種以上と、非共役ポリエン1種以上との共重合体ゴムまたはその架橋物、からなる群から選択される少なくとも1種である、請求項1~7のいずれか1項に記載の熱可塑性エラストマー組成物。 The olefin rubber (I) is a copolymer rubber of (I-1) ethylene and one or more α-olefins having 3 to 20 carbon atoms or a cross-linked product thereof; and (I-2) ethylene and carbon 8. The system according to claim 1, which is at least one selected from the group consisting of a copolymer rubber of at least one α-olefin of 3 to 20 and at least one non-conjugated polyene or a crosslinked product thereof. The thermoplastic elastomer composition according to claim 1.
  9.  前記ポリオレフィン系樹脂(III)が、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリ(1-ブテン)およびポリ(4-メチル-1-ペンテン)からなる群から選択される少なくとも1種である、請求項1~8のいずれか1項に記載の熱可塑性エラストマー組成物。 The polyolefin resin (III) is at least one selected from the group consisting of a polyethylene resin, a polypropylene resin, poly (1-butene) and poly (4-methyl-1-pentene). 9. The thermoplastic elastomer composition according to any one of 1 to 8.
  10.  請求項1~9のいずれか1項に記載の熱可塑性エラストマー組成物からなる部位(X1)を有する部材。 A member having a portion (X1) made of the thermoplastic elastomer composition according to any one of claims 1 to 9.
  11.  前記部位(X1)の他に、請求項1~9のいずれか1項に記載の熱可塑性エラストマー組成物とは異なる材料からなる部位(Y1)を有する、請求項10に記載の部材。 The member according to claim 10, which has a part (Y1) made of a material different from the thermoplastic elastomer composition according to any one of claims 1 to 9, in addition to the part (X1).
  12.  前記部位(Y1)の材料が、加硫ゴムまたは動的架橋型オレフィン系熱可塑性エラストマー(TPV)である、請求項11に記載の部材。 The member according to claim 11, wherein the material of the part (Y1) is a vulcanized rubber or a dynamically crosslinked olefin-based thermoplastic elastomer (TPV).
  13.  前記部位(X1)の他に、請求項1~9のいずれか1項に記載の熱可塑性エラストマー組成物(但し、前記部位(X1)を形成する熱可塑性エラストマー組成物と同一であっても異なっていてもよい。)からなる部位(X2)を有する、請求項10に記載の部材。 The thermoplastic elastomer composition according to any one of claims 1 to 9, in addition to the part (X1) (provided that the thermoplastic elastomer composition forming the part (X1) is the same or different) The member according to claim 10, wherein the member has a portion (X2) made of.
  14.  前記部位(X1)が射出成形により得られた部位である、請求項10~13のいずれか1項に記載の部材。 The member according to any one of claims 10 to 13, wherein the part (X1) is a part obtained by injection molding.
  15.  請求項10~14のいずれか1項に記載の部材を含有するウェザーシール。 A weather seal containing the member according to any one of claims 10 to 14.
  16.  請求項1~9のいずれか1項に記載の熱可塑性エラストマー組成物からなる部位(X1)を有し、且つ、
     前記部位(X1)の他に、請求項1~9のいずれか1項に記載の熱可塑性エラストマー組成物とは異なる材料からなる部位(Y1)を有するか、または、前記部位(X1)の他に、請求項1~9のいずれか1項に記載の熱可塑性エラストマー組成物(但し、前記部位(X1)を形成する熱可塑性エラストマー組成物と同一であっても異なっていてもよい。)からなる部位(X2)を有する部材を含有するウェザーシールであって、
     前記部位(X1)からなるコーナー部と、前記部位(X2)または(Y1)からなるストレート部とを有するウェザーシール。
    Having a portion (X1) comprising the thermoplastic elastomer composition according to any one of claims 1 to 9, and
    In addition to the part (X1), it has a part (Y1) made of a material different from the thermoplastic elastomer composition according to any one of claims 1 to 9, or in addition to the part (X1) The thermoplastic elastomer composition according to any one of claims 1 to 9, which may be the same as or different from the thermoplastic elastomer composition forming the portion (X1). A weather seal containing a member having the site (X2),
    A weather seal having a corner portion made of the portion (X1) and a straight portion made of the portion (X2) or (Y1).
  17.  自動車用、船舶用または航空機用である、請求項15または16に記載のウェザーシール。 The weather seal according to claim 15 or 16, which is for automobiles, ships or aircraft.
  18.  請求項1~9のいずれか1項に記載の熱可塑性エラストマー組成物からなる部位(X1)を有する、ウェザーシール用コーナー部材。 A weather sealing corner member having a portion (X1) made of the thermoplastic elastomer composition according to any one of claims 1 to 9.
PCT/JP2016/081960 2015-10-30 2016-10-27 Thermoplastic elastomer composition, member, weather seal, and corner member for weather seal WO2017073695A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017547868A JP6867034B2 (en) 2015-10-30 2016-10-27 Thermoplastic elastomer composition, member, weather seal, corner member for weather seal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-214859 2015-10-30
JP2015214859 2015-10-30

Publications (1)

Publication Number Publication Date
WO2017073695A1 true WO2017073695A1 (en) 2017-05-04

Family

ID=58631720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081960 WO2017073695A1 (en) 2015-10-30 2016-10-27 Thermoplastic elastomer composition, member, weather seal, and corner member for weather seal

Country Status (3)

Country Link
JP (1) JP6867034B2 (en)
TW (1) TW201728733A (en)
WO (1) WO2017073695A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206550A (en) * 2017-06-30 2019-01-15 翁秋梅 A kind of hydridization supermolecular mechanism dynamic aggregation object
WO2019230872A1 (en) * 2018-05-31 2019-12-05 株式会社クラレ Block copolymer hydrogenate, resin composition, and various applications thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566129B2 (en) * 2019-11-06 2023-01-31 Kuraray Co., Ltd. Thermoplastic elastomer composition
US11458677B2 (en) 2019-12-26 2022-10-04 Industrial Technology Research Institute Selective laser sintering composition and selective laser sintering 3D printing method employing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112649A (en) * 1986-10-30 1988-05-17 Asahi Chem Ind Co Ltd Dynamically vulcanized hydrogenated block copolymer composition
JPH03292342A (en) * 1990-04-09 1991-12-24 Sumitomo Chem Co Ltd Thermoplastic elastomer composition
JPH0726105A (en) * 1993-07-08 1995-01-27 Mitsui Petrochem Ind Ltd Olefinic thermoplastic elastomer
JPH07286078A (en) * 1994-04-18 1995-10-31 Japan Synthetic Rubber Co Ltd Thermoplastic elastomer composition
JPH09316286A (en) * 1996-05-24 1997-12-09 Sumitomo Chem Co Ltd Thermoplastic elastomer composition and composite molding
JP2001131360A (en) * 1999-11-02 2001-05-15 Mitsubishi Chemicals Corp Olefin-based thermoplastic elastomer composition
JP2005281530A (en) * 2004-03-30 2005-10-13 Kuraray Co Ltd Thermoplastic elastomer composition
JP2005281373A (en) * 2004-03-29 2005-10-13 Kuraray Co Ltd Thermoplastic elastomer composition
JP2014080488A (en) * 2012-10-16 2014-05-08 Kuraray Co Ltd Thermoplastic elastomer composition and molded article formed from the composition
WO2016136760A1 (en) * 2015-02-24 2016-09-01 株式会社クラレ Hydrogenated block copolymer, resin composition, pressure-sensitive adhesive, adhesive, molded object, liquid-packaging container, medical tool, medical tube, corner member for weather seal, and weather seal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872556A (en) * 1994-09-05 1996-03-19 Toyoda Gosei Co Ltd Weather strip of solid rubber

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112649A (en) * 1986-10-30 1988-05-17 Asahi Chem Ind Co Ltd Dynamically vulcanized hydrogenated block copolymer composition
JPH03292342A (en) * 1990-04-09 1991-12-24 Sumitomo Chem Co Ltd Thermoplastic elastomer composition
JPH0726105A (en) * 1993-07-08 1995-01-27 Mitsui Petrochem Ind Ltd Olefinic thermoplastic elastomer
JPH07286078A (en) * 1994-04-18 1995-10-31 Japan Synthetic Rubber Co Ltd Thermoplastic elastomer composition
JPH09316286A (en) * 1996-05-24 1997-12-09 Sumitomo Chem Co Ltd Thermoplastic elastomer composition and composite molding
JP2001131360A (en) * 1999-11-02 2001-05-15 Mitsubishi Chemicals Corp Olefin-based thermoplastic elastomer composition
JP2005281373A (en) * 2004-03-29 2005-10-13 Kuraray Co Ltd Thermoplastic elastomer composition
JP2005281530A (en) * 2004-03-30 2005-10-13 Kuraray Co Ltd Thermoplastic elastomer composition
JP2014080488A (en) * 2012-10-16 2014-05-08 Kuraray Co Ltd Thermoplastic elastomer composition and molded article formed from the composition
WO2016136760A1 (en) * 2015-02-24 2016-09-01 株式会社クラレ Hydrogenated block copolymer, resin composition, pressure-sensitive adhesive, adhesive, molded object, liquid-packaging container, medical tool, medical tube, corner member for weather seal, and weather seal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206550A (en) * 2017-06-30 2019-01-15 翁秋梅 A kind of hydridization supermolecular mechanism dynamic aggregation object
WO2019230872A1 (en) * 2018-05-31 2019-12-05 株式会社クラレ Block copolymer hydrogenate, resin composition, and various applications thereof
CN112204059A (en) * 2018-05-31 2021-01-08 株式会社可乐丽 Hydrogenated product of block copolymer, resin composition, and various uses thereof
JPWO2019230872A1 (en) * 2018-05-31 2021-07-15 株式会社クラレ Hydrogenated block copolymers, resin compositions, and their various uses
US11492438B2 (en) 2018-05-31 2022-11-08 Kuraray Co., Ltd. Block copolymer hydrogenate, resin composition, and various applications thereof
CN112204059B (en) * 2018-05-31 2023-02-21 株式会社可乐丽 Hydrogenated product of block copolymer, resin composition, and various uses thereof

Also Published As

Publication number Publication date
TW201728733A (en) 2017-08-16
JP6867034B2 (en) 2021-04-28
JPWO2017073695A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
CN111333795B (en) Hydrogenated block copolymer, resin composition, and article obtained using same
KR100726276B1 (en) Resin composition for foam and use thereof
KR101572776B1 (en) Foam composition, method for producing same, and foam
KR100807766B1 (en) Rubber composition and use thereof
JP6962637B2 (en) Foam molded article, how to increase acoustic transmission loss
KR100660494B1 (en) Thermoplastic Elastomer Composition
JP6022296B2 (en) Thermoplastic elastomer composition and molded article comprising the composition
JP6867034B2 (en) Thermoplastic elastomer composition, member, weather seal, corner member for weather seal
JP2016113614A (en) Thermoplastic elastomer composition, crosslinked article, molded body, member, weather seal and corner member for weather seal
JP5680678B2 (en) Foaming agent and production method / former thereof, rubber composition, crosslinked foam and production method thereof, and rubber molded product
WO2010007984A1 (en) Thermoplastic elastomer composition for foaming, molded foam obtained therefrom, molded composite obtained therefrom, and instrument panel for motor vehicle
JP2014193969A (en) Thermoplastic elastomer composition
JP2006282827A (en) Thermoplastic elastomer composition, composite member using the same, and weatherstrip
JP5167900B2 (en) Thermoplastic elastomer composition, foam, and method for producing foam
JP2008024914A (en) Foamed molded product and process for its production
JP2010126577A (en) Method of molding foamed molded article and foamed molded article
JP4259295B2 (en) Hydrogenated diene copolymer, polymer composition, and molded article using the polymer composition
KR20230134147A (en) Thermoplastic elastomer composition
WO2022230785A1 (en) Resin composition, foamable composition, and crosslinked foam body
WO2019116669A1 (en) Polymer composition and use thereof
JPWO2020054757A1 (en) Shock absorbers and protective equipment
WO2002077097A1 (en) Thermoplastic elastomer composition and process for producing the same
KR20070017123A (en) Thermoplastic elastomer composition, formed article and sealing material having low hardness
JP6790634B2 (en) Method for manufacturing thermoplastic elastomer and weather strip
JP2023150375A (en) Ethylenic copolymer composition and railway product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859924

Country of ref document: EP

Kind code of ref document: A1