WO2017073670A1 - 光ファイバおよびそれを含むスラント型ファイバグレーティング - Google Patents

光ファイバおよびそれを含むスラント型ファイバグレーティング Download PDF

Info

Publication number
WO2017073670A1
WO2017073670A1 PCT/JP2016/081889 JP2016081889W WO2017073670A1 WO 2017073670 A1 WO2017073670 A1 WO 2017073670A1 JP 2016081889 W JP2016081889 W JP 2016081889W WO 2017073670 A1 WO2017073670 A1 WO 2017073670A1
Authority
WO
WIPO (PCT)
Prior art keywords
cladding region
refractive index
optical fiber
region
cladding
Prior art date
Application number
PCT/JP2016/081889
Other languages
English (en)
French (fr)
Inventor
重博 長能
学 塩崎
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2017073670A1 publication Critical patent/WO2017073670A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers

Definitions

  • the present invention relates to an optical fiber suitable for producing a grating, and a slanted fiber grating including the optical fiber (hereinafter referred to as “SFG: SlantedratingFiber Grating”).
  • SFG SlantedratingFiber Grating
  • an optical fiber in which erbium (Er) is added to the core region (hereinafter referred to as “EDF: Erbium-Doped optical”) is used as an optical amplifier that amplifies the signal light.
  • EDF Erbium-Doped optical
  • An erbium-doped optical fiber amplifier (hereinafter referred to as “EDFA: Erbium-Doped optical fiber amplifier”) is used.
  • the gain spectrum of EDF has a wavelength dependence with a peak in the vicinity of a wavelength of 1.53 ⁇ m, while having a relatively wide band.
  • GFF Gain Flattening Filter
  • the SFG has been developed as GFF.
  • the SFG includes an optical fiber and a slant Bragg grating provided in the optical fiber.
  • This slanted Bragg grating is defined by a refractive index modulation pattern in which a refractive index increasing surface inclined with respect to a plane perpendicular to the fiber axis (optical axis) of an optical fiber is periodically arranged along the fiber axis.
  • the SFG can give a loss to the waveguide mode light having a wavelength satisfying the Bragg diffraction condition in the slanted Bragg grating.
  • Patent Document 1 and Non-Patent Document 1 describe a method for producing SFG. Specifically, an optical fiber made of silica glass in which a photosensitive material (for example, GeO 2 , B 2 O 3 ) that causes an increase in the refractive index of the glass region by light irradiation is added to the core or the clad is prepared. By irradiating this optical fiber with ultraviolet light having a specific wavelength that is spatially intensity-modulated (for example, a second harmonic wave (244 nm) of argon ion laser light), it is defined by a periodic refractive index modulation pattern.
  • An SFG provided with a grating can be produced.
  • phase mask method There are a phase mask method, a direct exposure method, and a two-beam interference exposure method as a method of irradiating the optical fiber with spatially intensity-modulated light.
  • phase mask method interference fringes having a period corresponding to the period of the Bragg grating to be produced are formed by the phase mask.
  • direct exposure method a laser beam is directly applied to a portion in an optical fiber where the refractive index is desired to be increased.
  • two-beam interference exposure method laser light branched into two by a beam splitter is caused to interfere in an optical fiber.
  • the phase mask method can produce an SFG having the same loss spectrum with good reproducibility as compared with other methods, and is easy to align.
  • the inventor found the following problems. That is, in a long-haul optical transmission system such as submarine optical cable transmission, since a multistage optical amplifier is arranged on the transmission path, if the ripple width in the loss spectrum of SFG is large, Signal light reaching the receiver may be greatly distorted. Therefore, the ripple width in the loss spectrum of SFG is required to be small.
  • the ripple is a pulsation component superimposed on the desired loss spectrum of the SFG.
  • the ripple width represents the magnitude of the pulsation.
  • the ripple width is the maximum value of the pulsating component in the range of wavelength ⁇ 2 nm after smoothing the loss spectrum by taking the loss moving average in the range of wavelength ⁇ 0.6 nm for each wavelength of 0.2 nm. And the minimum value.
  • the present invention has been made to solve the above problems, and an object thereof is to provide an optical fiber suitable for producing an SFG having a loss spectrum with a small ripple width, and an SFG including the optical fiber.
  • the optical fiber according to the present embodiment includes an optical fiber made of silica glass.
  • the optical fiber includes a core region extending along a longitudinal direction thereof, a first cladding region surrounding the core region, a second cladding region surrounding the first cladding region, and a third cladding region surrounding the second cladding region, Is provided.
  • the first cladding region has a refractive index lower than that of the core region.
  • the second cladding region has a refractive index lower than that of the first cladding region.
  • the third cladding region has a refractive index lower than that of the core region and higher than that of the second cladding region.
  • At least a part of the first cladding region and at least a part of the second cladding region contain a photosensitive material, and the refractive index of the region including the photosensitive material is determined by irradiation with light of a specific wavelength. It rises by.
  • optical fiber according to the present embodiment makes it possible to produce an SFG having a loss spectrum with a small ripple width.
  • FIG. 4B is a cross-sectional view showing the structure of the SFG 3 according to the present embodiment, which corresponds to the cross section of the optical fiber 1 along the line II in FIG. 4B.
  • Is a diagram showing an outer diameter D ratio D / d is in the case of 3.0 the calculation result of the first cladding region 11 to the diameter d of the core region 10 (the relationship between the [Delta] n a and [Delta] n T).
  • Is a diagram showing an outer diameter D ratio D / d is in the case of 3.0 the calculation result of the first cladding region 11 to the diameter d of the core region 10 (the relationship between the [Delta] n a and [Delta] n T).
  • Is a diagram showing an outer diameter D ratio D / d is in the case of 3.5 the calculation result of the first cladding region 11 to the diameter d of the core region 10 (the relationship between the [Delta] n a and [Delta] n T).
  • Is a diagram showing an outer diameter D ratio D / d is in the case of 3.5 the calculation result of the first cladding region 11 to the diameter d of the core region 10 (the relationship between the [Delta] n a and [Delta] n T).
  • Is for a plurality of trench width W T is a graph showing the relationship between the sum and the trench depth [Delta] n d of the coupling coefficient from LP01 mode (fundamental mode) to the higher-order all modes. Is (100% loss of LP01 mode) when bound 100% LP01 mode to higher order multiple modes, with respect to the contribution of LP11 mode for 100% loss of LP01 mode, the trench depth [Delta] n d and the trench width W It is a figure which shows the relationship of T.
  • the optical fiber according to the present embodiment includes an optical fiber made of silica glass as one aspect thereof.
  • the optical fiber includes a core region extending along a longitudinal direction thereof, a first cladding region surrounding the core region, a second cladding region surrounding the first cladding region, and a third cladding region surrounding the second cladding region, Is provided.
  • the first cladding region has a refractive index lower than that of the core region.
  • the second cladding region has a refractive index lower than that of the first cladding region.
  • the third cladding region has a refractive index lower than that of the core region and higher than that of the second cladding region.
  • At least a part of the first cladding region and at least a part of the second cladding region contain a photosensitive material, and the refractive index of the region including the photosensitive material is determined by irradiation with light of a specific wavelength. It rises by.
  • the photosensitive material may include GeO 2 . Further, as one aspect of the present embodiment, the photosensitive material may include B 2 O 3 . The photosensitive material may include both GeO 2 and B 2 O 3 .
  • the Ge concentration contained in the first cladding region is derived from the contribution of GeO 2 in the relative refractive index difference of the first cladding region with respect to the refractive index of pure silica (derived from GeO 2 addition).
  • the relative refractive index difference is preferably 0.35% to 0.45%.
  • the Ge concentration contained in the second cladding region is determined by the contribution of GeO 2 in the relative refractive index difference of the second cladding region with respect to the refractive index of pure silica (relative refraction derived from GeO 2 addition).
  • the concentration is preferably such that the (rate difference) is less than 0.40%.
  • the relative refractive index difference of the third cladding region with respect to the refractive index of pure silica is preferably ⁇ 0.35% to ⁇ 0.25%.
  • the width of the second cladding region defined along the radial direction of the optical fiber is 1 ⁇ m to 10 ⁇ m. Preferably there is. More preferably, as an aspect of the present embodiment, the width of the second cladding region falls within a range of 3 ⁇ m to 7 ⁇ m (5 ⁇ 2 ⁇ m) centered on 5 ⁇ m. As one aspect of this embodiment, the relative refractive index difference of the second cladding region with respect to the refractive index of pure silica is preferably ⁇ 0 to 0.75% to ⁇ 0.35%.
  • the relative refractive index difference between the first cladding region and the second cladding region may be 0.15% or less.
  • each of the first cladding region and the second cladding region may include F.
  • One aspect of the SFG (slant fiber grating) according to the present embodiment is an SFG including an optical fiber having the above-described structure, and the SFG includes an optical fiber made of silica glass, an optical fiber A slanted Bragg grating provided in the fiber is provided.
  • the slanted Bragg grating is a refractive index in which an increasing refractive index surface inclined with respect to a plane perpendicular to the longitudinal direction, which is the propagation direction of guided light, is periodically arranged along the propagation direction of guided light in an optical fiber. It is defined by the modulation pattern.
  • the optical fiber includes a core region extending along a longitudinal direction thereof, a first cladding region surrounding the core region, a second cladding region surrounding the first cladding region, and a third cladding region surrounding the second cladding region.
  • the first cladding region has a refractive index lower than that of the core region.
  • the second cladding region has a refractive index lower than that of the first cladding region.
  • the third cladding region has a refractive index lower than that of the core region and higher than that of the second cladding region.
  • the slanted Bragg grating is provided in a region straddling the first cladding region and the second cladding region, and more specifically, at least one of the second cladding region and at least a part of the first cladding region. It is provided across the part.
  • the fiber grating having the above-described structure preferably has a loss spectrum with a ripple width of 0.08 dB or less.
  • each aspect listed in this [Description of Embodiments of the Invention] is applicable to each of all the remaining aspects or to all combinations of these remaining aspects. .
  • FIG. 1 is a refractive index profile of an optical fiber 2 according to a comparative example.
  • the optical fiber 2 is made of silica-based glass, and includes a core region 20, an optical cladding region 21 that surrounds the core region 20, and a jacket region 23 that surrounds the optical cladding region 21.
  • the refractive index of the optical cladding region 21 is lower than the refractive index of the core region 20.
  • the refractive index of the jacket region 23 is lower than the refractive index of the core region 20 and higher than the refractive index of the optical cladding region 21.
  • the core region 20 contains Cl.
  • the optical cladding region 21 contains GeO 2 and F.
  • the jacket region 23 includes F. Since only the optical cladding region 21 contains the photosensitive material GeO 2 , the optical fiber 2 is irradiated with spatially intensity-modulated ultraviolet light, thereby producing an SFG in which a grating is formed in the optical cladding region 21.
  • FIG. 2A is a refractive index profile of the optical fiber 2 according to the comparative example before the ultraviolet irradiation
  • FIG. 2B is a refractive index profile of the optical fiber 2 according to the comparative example after the ultraviolet irradiation.
  • the refractive index of the optical cladding region 21 is the lowest as shown in FIG. 2A.
  • the refractive index of the cladding region 21 is higher than the refractive index of the jacket region 23.
  • FIG. 3 is a graph showing the relationship between the LP11 cutoff wavelength ⁇ C and the ripple width in the SFG obtained by forming the slanted Bragg grating in the optical fiber 2 according to the comparative example.
  • the LP11 cutoff wavelength ⁇ C is a wavelength at which a higher-order mode than the LP11 mode does not propagate at a wavelength longer than the wavelength, assuming that an optical fiber including a portion where a grating is formed is linearly arranged. ⁇ C.
  • the relative refractive index difference ⁇ n object in this specification is a value based on the refractive index n pure-silica of pure silica (n object ⁇ n pure-silica ) / n, where n object is the refractive index of the target region. given in pure-silica .
  • FIG. 3 shows that in each group, there is a correlation between the cutoff wavelength ⁇ C and the ripple width, and the shorter the cutoff wavelength ⁇ C is, the smaller the ripple width is.
  • the ratio D / d is 2.5 to 3.5
  • an SFG with a ripple width of 0.08 dB or less can be manufactured with a high yield if the cutoff wavelength ⁇ C is 1.8 ⁇ m or less. .
  • FIG. 4A is a refractive index profile of the optical fiber 1 according to the present embodiment
  • FIG. 4B is a cross-sectional view showing the structure of the optical fiber 1.
  • 4B shows the structure of the optical fiber 1 perpendicular to the optical axis AX extending along the longitudinal direction of the optical fiber 1
  • the refractive index profile of FIG. 4A is the optical axis shown in FIG. 4B.
  • the refractive index of each part on the line L orthogonal to AX is shown.
  • the optical fiber 1 extends along the optical axis AX and is made of silica-based glass. As shown in FIGS.
  • the core region 10 a first cladding region 11 surrounding the core region 10
  • a second cladding region 12 surrounding the first cladding region 11 and a third cladding region 13 surrounding the second cladding region 12 are provided.
  • the refractive index of the first cladding region 11 is lower than the refractive index of the core region 10.
  • the refractive index of the second cladding region 12 is lower than the refractive index of the first cladding region 11.
  • the refractive index of the third cladding region 13 is lower than the refractive index of the core region 10 and higher than the refractive index of the second cladding region 12.
  • [Delta] n a is the relative refractive index difference of the first cladding region 11 with respect to the refractive index of pure silica
  • [Delta] n T is the relative refractive index difference of the second cladding region 12 with respect to the refractive index of pure silica
  • trench depth ⁇ n d is given by " ⁇ n a - ⁇ n T”.
  • Both the first cladding region 11 and the second cladding region 12 include GeO 2 , B 2 O 5 , or both as a photosensitive material whose refractive index increases by ultraviolet light irradiation. Further, both the first cladding region 11 and the second cladding region 12 contain F. Since the first cladding region 11 and the second cladding region 12 contain a photosensitive material, the refractive index is increased by irradiation with ultraviolet light. The degree of increase in the refractive index depends on the photosensitive material content and the ultraviolet light irradiation amount.
  • first cladding region 11 and the second cladding region 12 contain a photosensitive material, by irradiating the optical fiber 1 with spatially modulated ultraviolet light, the first cladding region 11 and the second cladding region 12 An SFG having a grating formed on both sides is produced.
  • FIG. 5 is a table showing the shape patterns of the contained regions (photosensitive regions including the photosensitive material) 50A to 50D.
  • the type-a containing region 50 ⁇ / b> A corresponds to the entire first cladding region 11 and the second cladding region 12.
  • the type-b containing region 50B includes a region inner periphery (having an inner diameter larger than the inner diameter of the first cladding region 11) separated from the inner periphery of the first cladding region 11, and an outer periphery of the second cladding region 12. Corresponds to a region sandwiched by the outer periphery of the region (having an outer diameter equal to the outer diameter of the second cladding region 12).
  • the type c-containing region 50C is separated from the inner periphery of the region (having an inner diameter equal to the outer diameter of the first cladding region 11) coincident with the inner periphery of the first cladding region 11 by a certain distance from the outer periphery of the second cladding region 12.
  • the type d-containing region 50D corresponds to a region sandwiched between the inner periphery of the region separated from the inner periphery of the first cladding region 11 by a certain distance and the outer periphery of the region separated from the outer periphery of the second cladding region 12 by a certain distance.
  • the width of the second cladding region 12 defined along the radial direction of the optical fiber is preferably 1 ⁇ m to 10 ⁇ m, more preferably about 5 ⁇ m. In the range of 3 ⁇ m to 7 ⁇ m (5 ⁇ 2 ⁇ m).
  • FIG. 6 is a table showing distribution patterns of the refractive index distribution of the optical fiber 1, the Ge concentration in the first and second cladding regions 11 and 12, and the F concentration in the first and second cladding regions 11 and 12, respectively.
  • a soot was formed while adding GeO 2 on the outer peripheral surface of the core preform to be the core region 10 after drawing. After (soot deposition), the soot body is sintered while adding F to the obtained soot body, so that an inner region to be the first cladding region 11 is formed.
  • the soot body is sintered while adding F to the obtained soot body, whereby the second cladding region An outer region to be 12 is formed.
  • the trench depth [Delta] n d is formed.
  • the second method As shown in FIG. 6, GeO 2 in each of the inner region to be the first cladding region 11 and the outer region to be the second cladding region 12 in the fiber preform manufacturing process.
  • the addition amount is controlled (Ge a > Ge T ), and the inner region and the outer region are sintered while the F concentration in the inner region and the F concentration in the outer region are adjusted to be the same.
  • the second method is effective because the manufacturing process of the fiber preform is simple.
  • Ge a indicating the Ge concentration in the first cladding region 11 means the contribution of GeO 2 in the relative refractive index difference of the first cladding region 11 with respect to the refractive index of pure silica.
  • Ge T indicating the Ge concentration in the second cladding region 12 means the contribution of GeO 2 in the relative refractive index difference of the second cladding region 12 to the refractive index of pure silica.
  • the Ge concentration (Ge a ) in the first cladding region 11 is within a range where the contribution of GeO 2 contained in the first cladding region 11 is within 0.35% to 0.45% in terms of the relative refractive index difference. is set to, Ge concentration in the second cladding region 12 (Ge T), the condition (Ge a> Ge T) that is established as a premise. Specifically, as the trench depth [Delta] n d is below 0.15%, Ge concentration in the second cladding region 12 (Ge T) is the contribution of GeO 2 in the second cladding region 12 is a relative refractive In terms of rate difference, it is set to less than 0.40%.
  • the F concentration in at least the first cladding region 11 and the second cladding region 12 is converted into a relative refractive index difference (the relative refractive index difference between the first and second cladding regions 11 and 12 with respect to the refractive index of pure silica.
  • the relative refractive index difference derived from the addition of F corresponding to the contribution of F is set to fall within the range of ⁇ 0.60% to ⁇ 0.75%.
  • F is also added to the third cladding region 13, and the relative refractive index difference of the third cladding region 13 with respect to the refractive index of pure silica (the relative refractive index difference resulting from the F addition). Is substantially in the range of ⁇ 0.35% to ⁇ 0.25%.
  • FIG. 7 is a cross-sectional view showing the structure of the SFG 3 according to the present embodiment, which coincides with the cross section of the optical fiber 1 taken along the line II in FIG. 4B.
  • the SFG 3 includes the optical fiber 1 and a slanted Bragg grating 60.
  • the optical fiber 1 includes the core region 10 extending along the optical axis AX, the first cladding region 11 surrounding the core region 10, the second cladding region 12 surrounding the first cladding region 11, and the second A third cladding region 13 surrounding the cladding region 12.
  • the refractive index of the first cladding region 11 is lower than the refractive index of the core region 10.
  • the refractive index of the second cladding region 12 is lower than the refractive index of the first cladding region 11.
  • the refractive index of the third cladding region 13 is lower than the refractive index of the core region 10 and higher than the refractive index of the second cladding region 12.
  • the entire region constituted by the first cladding region 11 and the second cladding region 12 of the optical fiber 1 contains GeO 2 as a photosensitive material, and the slanted Bragg grating 60 includes a region containing this photosensitive material. Formed inside.
  • a surface is defined by a refractive index modulation pattern periodically arranged along the optical axis AX.
  • the present embodiment in which both the first cladding region 11 and the second cladding region 12 include the photosensitive material has a loss spectrum with a small ripple width.
  • An SFG can be manufactured, the grating formation time can be shortened, and an SFG having a desired loss spectrum can be easily manufactured.
  • the parameters used in the calculation described below are as follows.
  • the diameter of the core region 10 is d
  • the outer diameter of the first cladding region 11 is D
  • the relative refractive index difference [Delta] n a and the relative refractive index difference [Delta] n T of the second cladding region 12 of the first cladding region 11 will vary depending on the optical loss at the wavelength of 1.55 ⁇ m band.
  • the diameter d of the core region 10 is 9 ⁇ m. Further, based on the refractive index of pure silica, the relative refractive index difference of the core region 10 is set to 0.07%, and the relative refractive index difference ⁇ n J of the third cladding region 13 is set to ⁇ 0.32%.
  • the relationship among the relative refractive index difference ⁇ n a of the first cladding region 11, the relative refractive index difference ⁇ n T of the second cladding region 12, the width W T of the second cladding region 12, and the cutoff wavelength ⁇ C is obtained by calculation. It was. The results of the calculation are shown in FIGS.
  • the horizontal axis is the relative refractive index difference [Delta] n T of the second cladding region 12, the vertical axis represents the relative refractive index difference [Delta] n a of the first cladding region 11.
  • Width W T of the second cladding region 12, 1 ⁇ m, 3 ⁇ m, 5 ⁇ m, is set to any value of 10 [mu] m, the cutoff wavelength ⁇ C, 1.4 ⁇ m, 1.6 ⁇ m, 1.8 ⁇ m , 2.0 ⁇ m, The value is set to either 2.2 ⁇ m or 2.4 ⁇ m.
  • the relative refractive index difference ⁇ n T of the second cladding region 12 is ⁇ 0.32%, which is the same as the relative refractive index difference ⁇ n J of the third cladding region 13. Since the optical fiber 1 (FIGS. 4A and 4B) of the configuration has the same refractive index profile as the optical fiber 2 (FIG. 1) according to the comparative example, the cutoff wavelength ⁇ C is the width W of the second cladding region 12 It is constant regardless of T. As can be seen from FIG. 8, the lower the relative refractive index difference ⁇ n T of the second cladding region 12, the shorter the cutoff wavelength ⁇ C. Further, as the width W T of the second cladding region 12 is large, the cutoff wavelength lambda C becomes shorter.
  • the cutoff wavelength ⁇ C is set to The thickness is preferably 1.8 ⁇ m or less.
  • ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ on the line A are the ripple widths of 0.23 dB ( ⁇ of SFG manufactured from the optical fiber 2 according to the comparative example described with reference to FIG. ), 0.18dB ( ⁇ ), 0.17dB ( ⁇ ), 0.10dB ( ⁇ ), represents the positions of the relative refractive index difference [Delta] n a of the first cladding region 11 corresponding to each 0.08 dB.
  • the ripple width of SFG made from an optical fiber 2 according to the comparative example is 0.23 dB (alpha)
  • the relative refractive index difference [Delta] n T is 10 ⁇ m width W T A -0.75% 2
  • the cutoff wavelength ⁇ C of the optical fiber 1 is not shorter than 1.8 ⁇ m, and the SFG having a ripple width of 0.08 dB or less is used. It cannot be produced from the optical fiber 1 with a high yield.
  • the ripple width of the SFG manufactured from the optical fiber 2 according to the comparative example is 0.18 dB or less
  • the second cladding region 12 having an appropriate relative refractive index difference ⁇ n T and a width W T is added to the optical fiber 2. imparting to it to the optical fiber 1 constituting the cutoff wavelength lambda C of the optical fiber 1 can be made shorter than 1.8 .mu.m, better yield SFG ripple width is less 0.08dB from the optical fiber 1 Can be produced.
  • the ripple width of SFG made from an optical fiber 2 according to the comparative examples is 0.18 dB (beta)
  • the relative refractive index difference [Delta] n T is the width equal to or smaller than -0.66% W T is at 10 ⁇ m or more
  • the cutoff wavelength ⁇ C of the optical fiber 1 can be made shorter than 1.8 ⁇ m, and the ripple width can be reduced.
  • An SFG of 0.08 dB or less can be manufactured from the optical fiber 1 with a high yield.
  • the relative refractive index difference [Delta] n T is the width equal to or less than -0.61% W T is at 3 ⁇ m or more second (see .gamma.1) cladding region 12, the second cladding region relative refractive index difference [Delta] n T is -0.53% or less was the width W T is 5 ⁇ m or more 12 (see .gamma.2), or the relative refractive index difference the second cladding region 12 [Delta] n T is not more than -0.46% width W T is 10 ⁇ m or more (see [gamma] 3), in the structure of the optical fiber 1 is applied to the optical fiber 2, an optical fiber 1 of the cut-off wavelength lambda C can be less than 1.8 .mu.m, the ripple width can be manufactured with high yield SFG is below 0.08dB from the optical fiber 1.
  • the relative refractive index difference [Delta] n T is the width equal to or less than -0.43% W T is at 1 ⁇ m or more second (see .delta.1) cladding region 12, the second cladding region relative refractive index difference [Delta] n T is -0.37% or less was the width W T is 3 ⁇ m or more 12 (see .delta.2), or the relative refractive index difference the second cladding region 12 [Delta] n T is not more than -0.35% width W T is 5 ⁇ m or more (see .delta.3), in the structure of the optical fiber 1 is applied to the optical fiber 2, an optical fiber 1 of the cut-off wavelength lambda C can be less than 1.8 .mu.m, the ripple width can be manufactured with high yield SFG is below 0.08dB from the optical fiber 1.
  • the ripple width of the SFG manufactured from the optical fiber 2 according to the comparative example is 0.08 dB ( ⁇ )
  • the cutoff wavelength ⁇ C is 1.8 ⁇ m without providing the second cladding region 12.
  • An SFG having a ripple width of 0.08 dB or less can be manufactured with a high yield.
  • the horizontal axis is the relative refractive index difference [Delta] n T of the second cladding region 12, the vertical axis represents the relative refractive index difference [Delta] n a of the first cladding region 11.
  • Width W T of the second cladding region 12, 1 [mu] m, 5 [mu] m, is set to any value of 10 [mu] m, the cutoff wavelength ⁇ C, 1.4 ⁇ m, 1.6 ⁇ m, 1.8 ⁇ m , 2.0 ⁇ m, 2.
  • the relative refractive index difference ⁇ n T of the second cladding region 12 is ⁇ 0.32%, which is the same as the relative refractive index difference ⁇ n J of the third cladding region 13, and this embodiment Since the optical fiber 1 (FIGS. 4A and 4B) of the configuration has the same refractive index profile as the optical fiber 2 (FIG. 1) according to the comparative example, the cutoff wavelength ⁇ C is the width W of the second cladding region 12 It is constant regardless of T. As can be seen from FIG. 10, the lower the relative refractive index difference ⁇ n T of the second cladding region 12, the shorter the cutoff wavelength ⁇ C. Further, as the width W T of the second cladding region 12 is large, the cutoff wavelength lambda C becomes shorter.
  • the conditions of the relative refractive index difference ⁇ n T and the width W T of the second cladding region 12 that can produce an SFG with a ripple width of 0.08 dB or less with a high yield will be described below using FIG.
  • ⁇ 3.5 , ⁇ 3.5 , and ⁇ 3.5 on line A are 0.25 dB ( ⁇ 3.5 ripple width of SFG produced from the optical fiber 2 according to the comparative example described with reference to FIG. ), 0.15dB ( ⁇ 3.5), representing each position of 0.08 dB (gamma 3.5) the relative refractive index difference [Delta] n a of the first cladding region 11 corresponding to each.
  • ripple width of SFG made from an optical fiber 2 according to the comparative example is 0.25dB ( ⁇ 3.5)
  • the relative refractive index difference [Delta] n T is a -0.75% width
  • W T is 10 ⁇ m
  • the cut-off wavelength ⁇ C of the optical fiber 1 is not shorter than 1.6 ⁇ m and the ripple width is 0.08 dB or less. Cannot be produced from the optical fiber 1 with a high yield.
  • the ripple width of the SFG manufactured from the optical fiber 2 according to the comparative example is 0.15 dB or less
  • the second cladding region 12 having an appropriate relative refractive index difference ⁇ n T and a width W T is provided in the optical fiber 2.
  • the cut-off wavelength ⁇ C of the optical fiber 1 can be made shorter than 1.6 ⁇ m, and the SFG having a ripple width of 0.08 dB or less can be obtained from the optical fiber 1 with a high yield. Can be produced.
  • the ripple width of SFG made from an optical fiber 2 according to the comparative example is 0.15dB ( ⁇ 3.5)
  • the relative refractive index difference [Delta] n T is -0.64% or less was the width W T is 10 ⁇ m or more
  • the cutoff wavelength ⁇ C of the optical fiber 1 can be made shorter than 1.6 ⁇ m, and the ripple An SFG having a width of 0.08 dB or less can be manufactured from the optical fiber 1 with a high yield.
  • the ripple width of the SFG manufactured from the optical fiber 2 according to the comparative example is 0.08 dB ( ⁇ 3.5 )
  • the cutoff wavelength ⁇ C is 1.6 ⁇ m even without providing the second cladding region 12.
  • An SFG having a ripple width of 0.08 dB or less can be manufactured with a high yield.
  • the relative refractive index difference ⁇ n T is ⁇ 0.75% to ⁇ 0.35%, more preferably ⁇ 0.64. % -0.35% (preferably the lower limit of the relative refractive index difference [Delta] n T is present between -0.75% and -0.64%) a, second width W T is 1 [mu] m-10 [mu] m It is preferable to provide the cladding region 12.
  • n 0 is the refractive index of pure silica
  • k 0 is the wave number at n 0
  • ⁇ n UV 1 is the increase in refractive index before and after writing
  • f is the photosensitivity of the region containing the photosensitive material along the radial direction
  • ⁇ ml is LP ml mode standardized field distribution
  • ⁇ m′l ′ is the standardized field distribution of LP m′l ′ mode
  • K gr is the component of the gradient wave vector in the x direction
  • r is the radial coordinate
  • is a declination angle.
  • the sum of the coupling coefficients between the LP01 mode and other higher-order modes when there is no trench structure is 100%.
  • the trench width W T is 5 ⁇ m ⁇ 2 ⁇ m (3 ⁇ m in the range of ⁇ 7 [mu] m)
  • the trench depth [Delta] n d is the sum of the coupling coefficient in comparison with no trench structure is 0.15% of 80% or more or less effective.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本実施形態は、リップル幅が小さい損失スペクトルを有するSFGを作製するのに好適な光ファイバ等に関し、当該光ファイバは、コア領域と、コア領域の屈折率より低い屈折率を有する第1クラッド領域と、第1クラッド領域の屈折率より低い屈折率を有する第2クラッド領域と、コア領域の屈折率より低くかつ第2クラッド領域の屈折率より高い屈折率を有する第3クラッド領域とを備え、第1クラッド領域の少なくとも一部と第2クラッド領域の少なくとも一部の双方には、感光性材料が含まれる。

Description

光ファイバおよびそれを含むスラント型ファイバグレーティング
 本発明は、グレーティングを作成するのに好適な光ファイバ、および、該光ファイバを含むスラント型ファイバグレーティング(以下、「SFG:Slanted Fiber Grating」と記す)に関するものである。
 CバンドまたはLバンドの信号光を伝送する長距離光通信システムにおいて、信号光を増幅する光増幅器として、コア領域にエルビウム(Er)が添加された光ファイバ(以下、「EDF:Erbium-Doped optical Fiber」と記す)を光増幅媒体として用いるエルビウム添加光ファイバ増幅器(以下、「EDFA:Erbium-Doped optical Fiber Amplifier」と記す)が使用されている。EDFの利得スペクトルは、比較的広帯域である一方で、波長1.53μm付近にピークがある波長依存性を有する。そこで、EDFAでは、利得等化器(以下、「GFF:Gain Flattening Filter」と記す)がEDFとともに用いられ、EDFの利得スペクトルとGFFの損失スペクトルとを総合した全体の利得スペクトルが平坦化される。
 GFFとして、SFGが開発されている。SFGは、光ファイバと、該光ファイバ内に設けられたスラント型ブラッググレーティングと、を備える。このスラント型ブラッググレーティングは、光ファイバのファイバ軸(光軸)に直交する面に対して傾斜した屈折率上昇面が該ファイバ軸に沿って周期的に配置された屈折率変調パターンにより規定される。SFGは、スラント型ブラッググレーティングにおいて、ブラッグ回折条件を満たす波長の導波モード光に対して損失を与えることができる。光ファイバの長手方向にグレーティング構造を適切に変化させることにより、CバンドやLバンドの信号波長帯域において所望の損失スペクトルを有するSFGの実現が可能になる。
 特許文献1および非特許文献1には、SFGの作製方法が記載されている。具体的には、光照射によりガラス領域の屈折率上昇を引き起こす感光性材料(例えば、GeO、B)がコアまたはクラッドに添加されたシリカ系ガラスからなる光ファイバが用意される。この光ファイバに対し、空間的に強度変調された特定波長の紫外光(例えば、アルゴンイオンレーザ光の2倍波(244nm)等)を照射することにより、周期的な屈折率変調パターンで規定されるグレーティングが設けられたSFGが作製され得る。
 空間的に強度変調された光を光ファイバに照射する方法としては、位相マスク法、直接露光法、および、2光束干渉露光法がある。位相マスク法は、作製すべきブラッググレーティングの周期に応じた周期の干渉縞を位相マスクにより形成する。直接露光法は、光ファイバ内の、屈折率を上昇させたい箇所に直接にレーザ光を照射する。2光束干渉露光法は、ビームスプリッタにより2分岐したレーザ光を光ファイバにおいて干渉させる。特に、位相マスク法は、他の方法と比較して、同一の損失スペクトルを有するSFGを再現性よく作製することができ、また、アラインメントが容易である。
国際公開第2003/093887号
丹羽敦彦、他、「スラント型ファイバグレーティングを用いた利得等化器」、フジクラ技報、第103号、2002年10月
 発明者は、従来のSFGについて検討した結果、以下のような課題を発見した。すなわち、海底光ケーブル伝送等の長距離光通信システム(long-haul optical transmission system)においては、伝送路上に多段構成の光増幅器が配置されることから、SFGの損失スペクトルにおけるリップル幅が大きいと、光受信器に到達する信号光が大きく歪む場合がある。そのため、SFGの損失スペクトルにおけるリップル幅は小さいことが要求される。
 なお、リップルは、SFGの所望の損失スペクトルに重畳している脈動の成分である。リップル幅は、その脈動の大きさを表す。リップル幅は、波長0.2nm毎に波長±0.6nmの範囲で損失の移動平均をとることにより損失スペクトルに対して平滑化処理をした後、波長±2nmの範囲での脈動成分の最大値と最小値との差で定義される。
 本発明は、上記問題点を解消する為になされたものであり、リップル幅が小さい損失スペクトルを有するSFGを作製するのに好適な光ファイバ、および該光ファイバを含むSFGを提供することを目的とする。
 本実施形態に係る光ファイバは、シリカ系ガラスからなる光ファイバを含む。当該光ファイバは、その長手方向に沿って延びるコア領域と、コア領域を取り囲む第1クラッド領域と、第1クラッド領域を取り囲む第2クラッド領域と、第2クラッド領域を取り囲む第3クラッド領域と、を備える。なお、第1クラッド領域は、コア領域の屈折率より低い屈折率を有する。第2クラッド領域は、第1クラッド領域の屈折率より低い屈折率を有する。第3クラッド領域は、コア領域の屈折率より低くかつ第2クラッド領域の屈折率より高い屈折率を有する。特に、第1クラッド領域の少なくとも一部と第2クラッド領域の少なくとも一部の双方には感光性材料が含まれており、この感光性材料を含む領域の屈折率は、特定波長の光の照射により上昇する。
 本実施形態に係る光ファイバの利用により、リップル幅が小さい損失スペクトルを有するSFGの作製が可能になる。
は、比較例に係る光ファイバ2の屈折率プロファイルである。 は、比較例に係る光ファイバ2の、紫外線照射前の屈折率プロファイルである。 は、比較例に係る光ファイバ2の、紫外線照射後の屈折率プロファイルである。 は、比較例に係る光ファイバ2にスラント型ブラッググレーティングを形成することにより得られたSFGにおいて、LP11カットオフ波長λとリップル幅との関係を示すグラフである。 は、本実施形態に係る光ファイバ1の屈折率プロファイルである。 は、本実施形態に係る光ファイバ1の構造を示す断面図である。 は、感光性領域(感光性材料を含む領域であって、以下、「含有領域」と記す)の形状パターンを示す表である。 は、本実施形態に係る光ファイバ1の屈折率分布、第1および第2クラッド領域におけるGeOの添加濃度(以下、「Ge濃度」と記す)、および第1および第2クラッド領域におけるFの添加濃度(以下、「F濃度」と記す)それぞれの分布パターンを示す表である。 は、図4B中のI-I線に沿った光ファイバ1の断面に一致した、本実施形態に係るSFG3の構造を示す断面図である。 は、コア領域10の直径dに対する第1クラッド領域11の外径Dの比D/dが3.0の場合の計算結果(ΔnとΔnとの関係)を示す図である。 は、コア領域10の直径dに対する第1クラッド領域11の外径Dの比D/dが3.0の場合の計算結果(ΔnとΔnとの関係)を示す図である。 は、コア領域10の直径dに対する第1クラッド領域11の外径Dの比D/dが3.5の場合の計算結果(ΔnとΔnとの関係)を示す図である。 は、コア領域10の直径dに対する第1クラッド領域11の外径Dの比D/dが3.5の場合の計算結果(ΔnとΔnとの関係)を示す図である。 は、複数のトレンチ幅Wに関して、LP01モード(基底モード)から高次の全モードへの結合係数の総和とトレンチ深さΔnの関係を示すグラフである。 は、LP01モードを高次の複数モードに100%結合させたときの(LP01モードの100%ロス)、LP01モードの100%ロスに対するLP11モードの寄与率に関して、トレンチ深さΔnとトレンチ幅Wの関係を示す図である。
 [本願発明の実施形態の説明]
  最初に本願発明の実施形態の内容をそれぞれ個別に列挙して説明する。
 (1) 本実施形態に係る光ファイバは、その一態様として、シリカ系ガラスからなる光ファイバを含む。当該光ファイバは、その長手方向に沿って延びるコア領域と、コア領域を取り囲む第1クラッド領域と、第1クラッド領域を取り囲む第2クラッド領域と、第2クラッド領域を取り囲む第3クラッド領域と、を備える。なお、第1クラッド領域は、コア領域の屈折率より低い屈折率を有する。第2クラッド領域は、第1クラッド領域の屈折率より低い屈折率を有する。第3クラッド領域は、コア領域の屈折率より低くかつ第2クラッド領域の屈折率より高い屈折率を有する。特に、第1クラッド領域の少なくとも一部と第2クラッド領域の少なくとも一部の双方には感光性材料が含まれており、この感光性材料を含む領域の屈折率は、特定波長の光の照射により上昇する。
 (2)本実施形態の一態様として、感光性材料は、GeOを含んでもよい。また、本実施形態の一態様として、感光性材料は、Bを含んでもよい。感光性材料は、GeOとBの双方を含んでもよい。
 (3)本実施形態の一態様として、第1クラッド領域に含まれるGe濃度は、純シリカの屈折率に対する第1クラッド領域の比屈折率差のうちGeOの寄与分(GeO添加に由来する比屈折率差)が0.35%~0.45%となる濃度であるのが好ましい。本実施形態の一態様として、第2クラッド領域に含まれるGe濃度は、純シリカの屈折率に対する第2クラッド領域の比屈折率差のうちGeOの寄与分(GeO添加に由来する比屈折率差)が0.40%未満となる濃度であることが好ましい。本実施形態の一態様として、純シリカの屈折率に対する第3クラッド領域の比屈折率差は、-0.35%~-0.25%であるのが好ましい。
 (4)更に、本実施形態の一態様として、その長手方向に直交する当該光ファイバの断面において、当該光ファイバの半径方向に沿って規定される第2クラッド領域の幅は、1μm~10μmであるのが好ましい。より好ましくは、本実施形態の一態様として、第2クラッド領域の幅は、5μmを中心とした3μm~7μmの範囲(5±2μm)に収まる。本実施形態の一態様として、純シリカの屈折率に対する第2クラッド領域の比屈折率差は、-0 .75%~-0.35%であるのが好ましい。なお、本実施形態の一態様として、第1クラッド領域と第2クラッド領域の比屈折率差は、0.15%以下であってもよい。また、本実施形態の一態様として、第1クラッド領域および第2クラッド領域それぞれは、Fを含んでもよい。
 (5)本実施形態に係るSFG(スラント型ファイバグレーティング)の一態様は、上述のような構造を有する光ファイバを含むSFGであって、当該SFGは、シリカ系ガラスからなる光ファイバと、光ファイバ内に設けられたスラント型ブラッググレーティングを備える。スラント型ブラッググレーティングは、光ファイバ内において、導波光の伝搬方向である長手方向に直交する面に対して傾斜した屈折率上昇面が導波光の伝搬方向に沿って周期的に配置された屈折率変調パターンにより規定される。光ファイバは、その長手方向に沿って延びるコア領域と、コア領域を取り囲む第1クラッド領域と、第1クラッド領域を取り囲む第2クラッド領域と、第2クラッド領域を取り囲む第3クラッド領域と、を備える。第1クラッド領域は、コア領域の屈折率より低い屈折率を有する。第2クラッド領域は、第1クラッド領域の屈折率より低い屈折率を有する。第3クラッド領域は、コア領域の屈折率より低く、かつ、第2クラッド領域の屈折率より高い屈折率を有する。また、スラント型ブラッググレーティングは、第1クラッド領域と第2クラッド領域に跨った領域内に設けられており、より具体的には、第1クラッド領域の少なくとも一部から第2クラッド領域の少なくとも一部に跨って設けられている。
 (6)本実施形態の一態様として、上述のような構造を有するファイバグレーティングは、リップル幅が0.08dB 以下である損失スペクトルを有するのが好ましい。
 以上、この[本願発明の実施形態の説明]の欄に列挙された各態様は、残りの全ての態様のそれぞれに対して、または、これら残りの態様の全ての組み合わせに対して適用可能である。
 [本願発明の実施形態の詳細]
  以下、本実施形態に係る光ファイバおよびSFGの具体的な構造を、添付図面を参照しながら詳細に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。また、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。
 図1は、比較例に係る光ファイバ2の屈折率プロファイルである。この光ファイバ2は、シリカ系ガラスからなり、コア領域20と、コア領域20を取り囲む光学クラッド領域21と、光学クラッド領域21を取り囲むジャケット領域23と、を備える。グレーティング形成前において、光学クラッド領域21の屈折率はコア領域20の屈折率より低い。また、ジャケット領域23の屈折率は、コア領域20の屈折率より低く、光学クラッド領域21の屈折率より高い。コア領域20はClを含む。光学クラッド領域21はGeOおよびFを含む。ジャケット領域23はFを含む。光学クラッド領域21のみが感光性材料GeOを含むので、空間的に強度変調された紫外光を光ファイバ2に照射することにより、光学クラッド領域21にグレーティングが形成されたSFGが作製される。
 また、図2Aは、比較例に係る光ファイバ2の、紫外線照射前の屈折率プロファイルであり、図2Bは、比較例に係る光ファイバ2の、紫外線照射後の屈折率プロファイルである。紫外光照射前では、図2Aに示されたように光学クラッド領域21の屈折率が最も低い。これに対して、紫外光照射後では、所望する波長1.55μm帯における光損失量にもよるが、例えば5dB以上の損失が生じるようにSFGを形成した場合、図2Bに示されるように光学クラッド領域21の屈折率はジャケット領域23の屈折率より高くなる場合がある。
 更に、図3は、比較例に係る光ファイバ2にスラント型ブラッググレーティングを形成することにより得られたSFGにおいて、LP11カットオフ波長λとリップル幅との関係を示すグラフである。LP11カットオフ波長λは、グレーティングが形成された部分を含む光ファイバを直線状に配置した状態を想定して、LP11モードより高次のモードが、当該波長より長波長では伝搬しないような波長λである。本明細書における比屈折率差Δnobjectとは、対象領域の屈折率をnobjectとするとき、純シリカの屈折率npure-silicaを基準とした値(nobject-npure-silica)/npure-silicaで与えられる。
 図3では、コア領域20の直径をdとし、光学クラッド領域21の外径をDとして、比D/dが2.5~3.5である場合と、比D/dが3.5~4.5である場合とに、グループ分けしている。図3から、各グループにおいて、カットオフ波長λとリップル幅との間に相関関係があり、カットオフ波長λが短いほどリップル幅が小さいことが分かる。例えば、比D/dが2.5~3.5である場合、カットオフ波長λを1.8μm以下とすれば、リップル幅が0.08dB以下であるSFGを歩留りよく作製することができる。また、比D/dが3.5~4.5である場合、カットオフ波長λを1.6μm以下とすれば、リップル幅が0.08dB以下であるSFGを歩留りよく作製することができる。なお、同一ファイバ構造(D/d値)であるにも拘らずリップル幅に差異があるが、これは、ファイバ構造の差異の他に、グレーティング書込みのための紫外線照射の条件(紫外光の不安定さや位相マスクの汚れ等)により影響を受ける光損失量のばらつきも関係しているためである。
 次に、図4Aは、本実施形態に係る光ファイバ1の屈折率プロファイルであり、図4Bは、光ファイバ1の構造を示す断面図である。図4Bの断面図は、光ファイバ1の長手方向に沿って延びる光軸AXに直交する該光ファイバ1の構造を示し、図4Aの屈折率プロファイルは、図4B中に示された、光軸AXに直交する線L上の各部の屈折率を示す。光ファイバ1は、光軸AXに沿って延びるとともにシリカ系ガラスからなり、これら図4Aおよび図4Bに示されたように、コア領域10と、コア領域10を取り囲む第1クラッド領域11と、第1クラッド領域11を取り囲む第2クラッド領域12と、第2クラッド領域12を取り囲む第3クラッド領域13と、を備える。第1クラッド領域11の屈折率はコア領域10の屈折率より低い。第2クラッド領域12の屈折率は第1クラッド領域11の屈折率より低い。第3クラッド領域13の屈折率は、コア領域10の屈折率より低く、第2クラッド領域12の屈折率より高い。なお、図4A中、Δnは、純シリカの屈折率に対する第1クラッド領域11の比屈折率差、Δnは、純シリカの屈折率に対する第2クラッド領域12の比屈折率差であり、トレンチ深さΔnは、「Δn-Δn」で与えられる。
 第1クラッド領域11および第2クラッド領域12の双方は、紫外光照射により屈折率が上昇する感光性材料としてGeO、B、またはこれら双方を含む。また、第1クラッド領域11および第2クラッド領域12の双方はFを含む。第1クラッド領域11および第2クラッド領域12は、感光性材料を含んでいるので、紫外光照射により屈折率が大きくなる。その屈折率の増加の程度は、感光性材料含有量および紫外光照射量に応じたものとなる。第1クラッド領域11および第2クラッド領域12が感光性材料を含むので、空間的に強度変調された紫外光を光ファイバ1に照射することにより、第1クラッド領域11および第2クラッド領域12の双方に亘ってグレーティングが形成されたSFGが作製される。
 なお、感光性材料は、必ずしも第1クラッド領域11および第2クラッド領域12により構成される領域全体に含まれる必要はなく、第1クラッド領域11から第2クラッド領域12へ跨る領域に含まれる。図5は、含有領域(感光性材料を含む感光性領域)50A~50Dの形状パターンを示す表である。図5において、タイプaの含有領域50Aは、第1クラッド領域11および第2クラッド領域12の全体に相当する。また、タイプbの含有領域50Bは、第1クラッド領域11の内周から一定距離離れた領域内周(第1クラッド領域11の内径よりも大きな内径を有する)と、第2クラッド領域12の外周に一致した領域外周(第2クラッド領域12の外径に等しい外径を有する)と、で挟まれた領域に相当する。タイプcの含有領域50Cは、第1クラッド領域11の内周に一致した領域内周(第1クラッド領域11の外径に等しい内径を有する)と、第2クラッド領域12の外周から一定距離離れた領域外周と(第2クラッド領域12の外径よりも小さい外径を有する)、で挟まれた領域に相当する。タイプdの含有領域50Dは、第1クラッド領域11の内周から一定距離離れた領域内周と、第2クラッド領域12の外周から一定距離離れた領域外周と、で挟まれた領域に相当する。なお、当該光ファイバの半径方向(図4B中の線Lに一致)に沿って規定される第2クラッド領域12の幅は、1μm~10μmであるのが好ましいく、より好ましくは、5μmを中心とした3μm~7μmの範囲(5±2μm)に収まる。
 図6は、光ファイバ1の屈折率分布、第1および第2クラッド領域11、12におけるGe濃度、および第1および第2クラッド領域11、12におけるF濃度それぞれの分布パターンを示す表である。図4Aに示されたようなトレンチ構造を造り込むには、二通りの方法がある。一つ目の方法では、ファイバ母材(fiber preform)の製造工程において、線引き後にコア領域10となるべきコア母材の外周面上にGeOを添加しながらスス体(soot)が形成された後(スス付け:soot deposition)、得られたスス体にFを供添加しながら該スス体を焼結(sinter)することで、第1クラッド領域11となるべき内側領域が形成される。続いて、得られた内側領域の外周面上にGeOを含まないスス体を形成した後、得られたスス体にFを添加しながら該スス体を焼結することで、第2クラッド領域12となるべき外側領域が形成される。これらの工程を経て、トレンチ深さΔnが形成される。
 二つ目の方法では、図6に示されたように、ファイバ母材の製造工程において第1クラッド領域11となるべき内側領域と第2クラッド領域12となるべき外側領域のそれぞれにおけるGeOの添加量が制御(Ge>Ge)され、内側領域におけるF濃度と外側領域におけるF濃度が同一に調整された状態で、これら内側領域と外側領域が焼結される。特に、二つ目の方法は、ファイバ母材の製造工程が簡便であるため、有効である。
 以下、図6に示された分布パターン(図4B中の線Lに沿った直径方向の濃度パターン)を構成するGe濃度およびF濃度の優位な範囲を示す。なお、図6において、第1クラッド領域11におけるGe濃度を示すGeは、純シリカの屈折率に対する第1クラッド領域11の比屈折率差のうちGeOの寄与分を意味する。また、第2クラッド領域12におけるGe濃度を示すGeは、純シリカの屈折率に対する第2クラッド領域12の比屈折率差のうちGeOの寄与分を意味する。したがって、第1クラッド領域11におけるGe濃度(Ge)は、第1クラッド領域11に含まれるGeOの寄与分が比屈折率差に換算して0.35%~0.45%に収まる範囲に設定され、第2クラッド領域12におけるGe濃度(Ge)は、条件(Ge>Ge)が成立することが前提となる。具体的には、トレンチ深さΔnが0.15%以下になるよう、第2クラッド領域12におけるGe濃度(Ge)は、第2クラッド領域12に含まれるGeOの寄与分が比屈折率差に換算して0.40%未満に設定される。なお、少なくとも第1クラッド領域11および第2クラッド領域12におけるF濃度は、比屈折率差に換算して(純シリカの屈折率に対する第1および第2クラッド領域11、12それぞれの比屈折率差のうちFの寄与分に相当するF添加に由来する比屈折率差)、-0.60%~-0.75%の範囲に収まるよう設定されている。図6には示されていないが、第3クラッド領域13にもFが添加されており、純シリカの屈折率に対する第3クラッド領域13の比屈折率差(F添加に由来する比屈折率差に実質的に一致)は、-0.35%~-0.25%の範囲に収まっている。
 図7は、図4B中のI-I線に沿った光ファイバ1の断面に一致した、本実施形態に係るSFG3の構造を示す断面図である。図7の例では、SFG3は、光ファイバ1と、スラント型ブラッググレーティング60と、を備える。光ファイバ1は、上述のように、光軸AXに沿って延びるコア領域10と、コア領域10を取り囲む第1クラッド領域11と、第1クラッド領域11を取り囲む第2クラッド領域12と、第2クラッド領域12を取り囲む第3クラッド領域13と、を有する。第1クラッド領域11の屈折率はコア領域10の屈折率より低い。第2クラッド領域12の屈折率は第1クラッド領域11の屈折率より低い。第3クラッド領域13の屈折率は、コア領域10の屈折率より低く、第2クラッド領域12の屈折率より高い。光ファイバ1の第1クラッド領域11および第2クラッド領域12により構成される領域全体には、感光性材料としてGeOが含まれており、スラント型ブラッググレーティング60は、この感光性材料を含む領域内に形成される。具体的に、スラント型ブラッググレーティング60は、光軸AXに直交する面(図7中、直交軸AYに一致する面)に対して角度θ(=1°~3°)だけ傾斜した屈折率上昇面が該光軸AXに沿って周期的に配置された屈折率変調パターンにより規定される。
 第1クラッド領域11のみが感光性材料を含む場合と比較して、第1クラッド領域11および第2クラッド領域12の双方が感光性材料を含む本実施形態では、リップル幅が小さい損失スペクトルを有するSFGを作製することができ、グレーティング形成時間の短縮が可能であり、また、所望の損失スペクトルを有するSFGを容易に作製することができる。
 以下に説明する計算において用いたパラメータは次のとおりである。コア領域10の直径をdとし、第1クラッド領域11の外径をDとし、第2クラッド領域12の半径方向の幅をWとする。純シリカの屈折率1.4571を基準として、第1クラッド領域11の比屈折率差をΔnとし、第2クラッド領域12の比屈折率差をΔnとする。第1クラッド領域11の比屈折率差Δnおよび第2クラッド領域12の比屈折率差Δnは、波長1.55μm帯における光損失量に応じて異なる。コア領域10の直径dを9μmとする。また、純シリカの屈折率を基準として、コア領域10の比屈折率差を0.07%とし、第3クラッド領域13の比屈折率差Δnを-0.32%とする。第1クラッド領域11の比屈折率差Δn、第2クラッド領域12の比屈折率差Δn、第2クラッド領域12の幅Wおよびカットオフ波長λの間の関係を、計算により求めた。その計算の結果が図8~図11に示されている。
 図8は、D/d=3.0の場合の計算結果(ΔnとΔnとの関係)を示す図である。横軸は第2クラッド領域12の比屈折率差Δnであり、縦軸は第1クラッド領域11の比屈折率差Δnである。第2クラッド領域12の幅Wは、1μm、3μm、5μm、10μmの何れかの値に設定され、カットオフ波長λは、1.4μm、1.6μm、1.8μm、2.0μm、2.2μm、2.4μmの何れかの値に設定される。図中の曲線は、Wおよびλについて特定の値の組合せを得ることができるΔnとΔnとの関係を示し、具体的には、カットオフ波長λの各値において、曲線aはW=1μmの時のΔnとΔnとの関係、曲線bはW=3μmの時のΔnとΔnとの関係、曲線cはW=5μmの時のΔnとΔnとの関係、曲線dはW=10μmの時のΔnとΔnとの関係を、それぞれ示す。また、図8のラインA(LineA)上では、第2クラッド領域12の比屈折率差Δnは第3クラッド領域13の比屈折率差Δnと同じ-0.32%であり、本実施形態の光ファイバ1(図4Aおよび図4B)は比較例に係る光ファイバ2(図1)と同じ屈折率プロファイルを有することになるので、カットオフ波長λは第2クラッド領域12の幅Wによらず一定である。図8から分るように、第2クラッド領域12の比屈折率差Δnが低いほど、カットオフ波長λは短くなる。また、第2クラッド領域12の幅Wが大きいほど、カットオフ波長λは短くなる。
 図9は、D/d=3.0の場合の計算結果(ΔnとΔnとの関係)を示す図である。この図は、図8中のλ=1.8μmの場合の曲線のみを示す。曲線a~dは、図8と同じである。図3を用いて説明されたとおり、比D/dが2.5~3.5である場合、リップル幅が0.08dB以下であるSFGを歩留りよく作製するには、カットオフ波長λを1.8μm以下とすることが好ましい。図9を用いて、リップル幅が0.08dB以下であるSFGを歩留りよく作製することができる第2クラッド領域12の比屈折率差Δnおよび幅Wの条件について以下に説明する。
 図9中において、ラインA(LineA)上のα、β、γ、δ、ηは、図3を用いて説明した比較例に係る光ファイバ2から作製されるSFGのリップル幅0.23dB(α)、0.18dB(β)、0.17dB(γ)、0.10dB(δ)、0.08dBそれぞれに対応する第1クラッド領域11の比屈折率差Δnの各位置を表す。例えば、αは、比較例に係る光ファイバ2から作製されるSFGのリップル幅0.23dBに対応する第1クラッド領域11の比屈折率差Δn=-0.16%の位置を表す。
 比較例に係る光ファイバ2から作製されるSFGのリップル幅が0.23dBである場合(α)、比屈折率差Δnが-0.75%であって幅Wが10μmである第2クラッド領域12を光ファイバ2に付与して光ファイバ1の構成としても、光ファイバ1のカットオフ波長λが1.8μmより短くなることはなく、リップル幅が0.08dB以下であるSFGを光ファイバ1から歩留りよく作製することはできない。
 一方、比較例に係る光ファイバ2から作製されるSFGのリップル幅が0.18dB以下である場合、適切な比屈折率差Δnおよび幅Wを有する第2クラッド領域12を光ファイバ2に付与して光ファイバ1の構成とすることで、光ファイバ1のカットオフ波長λを1.8μmより短くすることができ、リップル幅が0.08dB以下であるSFGを光ファイバ1から歩留りよく作製することができる。
 比較例に係る光ファイバ2から作製されるSFGのリップル幅が0.18dBである場合(β)、比屈折率差Δnが-0.66%以下であって幅Wが10μm以上である第2クラッド領域12(β1参照)を光ファイバ2に付与して光ファイバ1の構成とすることで、光ファイバ1のカットオフ波長λを1.8μmより短くすることができ、リップル幅が0.08dB以下であるSFGを光ファイバ1から歩留りよく作製することができる。
 比較例に係る光ファイバ2から作製されるSFGのリップル幅が0.17dBである場合(γ)、比屈折率差Δnが-0.61%以下であって幅Wが3μm以上である第2クラッド領域12(γ1参照)、比屈折率差Δnが-0.53%以下であって幅Wが5μm以上である第2クラッド領域12(γ2参照)、または、比屈折率差Δnが-0.46%以下であって幅Wが10μm以上である第2クラッド領域12(γ3参照)を、光ファイバ2に付与して光ファイバ1の構成とすることで、光ファイバ1のカットオフ波長λを1.8μmより短くすることができ、リップル幅が0.08dB以下であるSFGを光ファイバ1から歩留りよく作製することができる。
 比較例に係る光ファイバ2から作製されるSFGのリップル幅が0.10dBである場合(δ)、比屈折率差Δnが-0.43%以下であって幅Wが1μm以上である第2クラッド領域12(δ1参照)、比屈折率差Δnが-0.37%以下であって幅Wが3μm以上である第2クラッド領域12(δ2参照)、または、比屈折率差Δnが-0.35%以下であって幅Wが5μm以上である第2クラッド領域12(δ3参照)を、光ファイバ2に付与して光ファイバ1の構成とすることで、光ファイバ1のカットオフ波長λを1.8μmより短くすることができ、リップル幅が0.08dB以下であるSFGを光ファイバ1から歩留りよく作製することができる。
 比較例に係る光ファイバ2から作製されるSFGのリップル幅が0.08dBである場合(η)、第2クラッド領域12を付与しなくても、カットオフ波長λは1.8μmであり、リップル幅が0.08dB以下であるSFGを歩留りよく作製することができる。
 以上の結果から、リップル幅が0.08dB以下であるSFGを歩留りよく作製するためには、比屈折率差Δnが-0.66%~-0.35%であって幅Wが1μm~10μmである第2クラッド領域12を付与することが好ましい。
 図10は、D/d=3.5の場合の計算結果(ΔnとΔnとの関係)を示す図である。横軸は第2クラッド領域12の比屈折率差Δnであり、縦軸は第1クラッド領域11の比屈折率差Δnである。第2クラッド領域12の幅Wは、1μm、5μm、10μmの何れかの値に設定され、カットオフ波長λは、1.4μm、1.6μm、1.8μm、2.0μm、2.2μm、2.4μmの何れかに値に設定される。図10中の曲線は、Wおよびλについて特定の値の組合せを得ることができるΔnとΔnとの関係を示し、具体的には、カットオフ波長λの各値において、曲線aはW=1μmの時のΔnとΔnとの関係、曲線bはW=5μmの時のΔnとΔnとの関係、曲線cはW=10μmの時のΔnとΔnとの関係を、それぞれ示す。また、図10のラインA(LineA)上では、第2クラッド領域12の比屈折率差Δnは第3クラッド領域13の比屈折率差Δnと同じ-0.32%であり、本実施形態の光ファイバ1(図4Aおよび図4B)は比較例に係る光ファイバ2(図1)と同じ屈折率プロファイルを有することになるので、カットオフ波長λは第2クラッド領域12の幅Wによらず一定である。図10から分るように、第2クラッド領域12の比屈折率差Δnが低いほど、カットオフ波長λは短くなる。また、第2クラッド領域12の幅Wが大きいほど、カットオフ波長λは短くなる。
 図11は、D/d=3.5の場合の計算結果(ΔnとΔnとの関係)を示す図である。この図は、図10中のλ=1.6μmの場合の曲線のみを示す。曲線a~cは、図10と同じである。図3を用いて説明されたとおり、比D/dが3.5~4.5である場合、リップル幅が0.08dB以下であるSFGを歩留りよく作製するには、カットオフ波長λを1.6μm以下とすることが好ましい。図11を用いて、リップル幅が0.08dB以下であるSFGを歩留りよく作製することができる第2クラッド領域12の比屈折率差Δnおよび幅Wの条件について以下に説明する。
 図11中において、ラインA(LineA)上のα3.5、β3.5、γ3.5は、図3を用いて説明した比較例に係る光ファイバ2から作製されるSFGのリップル幅0.25dB(α3.5)、0.15dB(β3.5)、0.08dB(γ3.5)それぞれに対応する第1クラッド領域11の比屈折率差Δnの各位置を表す。例えば、α3.5は、比較例に係る光ファイバ2から作製されるSFGのリップル幅0.25dBに対応する第1クラッド領域11の比屈折率差Δn=-0.23%の位置を表す。
 比較例に係る光ファイバ2から作製されるSFGのリップル幅が0.25dBである場合(α3.5)、比屈折率差Δnが-0.75%であって幅Wが10μmである第2クラッド領域12を光ファイバ2に付与して光ファイバ1の構成としても、光ファイバ1のカットオフ波長λが1.6μmより短くなることはなく、リップル幅が0.08dB以下であるSFGを光ファイバ1から歩留りよく作製することはできない。
 一方、比較例に係る光ファイバ2から作製されるSFGのリップル幅が0.15dB以下である場合、適切な比屈折率差Δnおよび幅Wを有する第2クラッド領域12を光ファイバ2に付与して光ファイバ1の構成とすることで、光ファイバ1のカットオフ波長λを1.6μmより短くすることができ、リップル幅が0.08dB以下であるSFGを光ファイバ1から歩留りよく作製することができる。
 比較例に係る光ファイバ2から作製されるSFGのリップル幅が0.15dBである場合(β3.5)、比屈折率差Δnが-0.64%以下であって幅Wが10μm以上である第2クラッド領域12(β13.5参照)を光ファイバ2に付与して光ファイバ1の構成とすることで、光ファイバ1のカットオフ波長λを1.6μmより短くすることができ、リップル幅が0.08dB以下であるSFGを光ファイバ1から歩留りよく作製することができる。
 比較例に係る光ファイバ2から作製されるSFGのリップル幅が0.08dBである場合(γ3.5)、第2クラッド領域12を付与しなくても、カットオフ波長λは1.6μmであり、リップル幅が0.08dB以下であるSFGを歩留りよく作製することができる。
 以上の結果から、リップル幅が0.08dB以下であるSFGを歩留りよく作製するためには、比屈折率差Δnが-0.75%~-0.35%、より好ましくは-0.64%~-0.35%(比屈折率差Δnの好ましい下限値は-0.75%と-0.64%の間に存在)であって、幅Wが1μm~10μmである第2クラッド領域12を付与することが好ましい。
 なお、これまでに説明された計算結果は光ファイバ1の構造の一例を示すものであるが、一般に、適切な比屈折率差Δnおよび幅Wを有する第2クラッド領域12を備える光ファイバ1の構成とすることで、すなわち、第2クラッド領域12の比屈折率差Δnを小さくするとともに幅Wを大きくすることで、光ファイバ1のカットオフ波長λを短くすることができ、リップル幅が小さいFGを光ファイバ1から歩留りよく作製することができることが、本発明者により確認されている。
 LP01モードから各高次モードへの結合係数の総和(損失と等価)が大きい程、グレーティング書込みにおいて、ロス深さを増大させられる。また、LP01モードからLP11モード以外の高次モードへの結合の割合が小さい程、リップル抑制効果が期待される。これらの知見から、これまで述べてきたカットオフ波長の指標よりも、更に詳しく優位なトレンチ構造を設計することが可能となる。すなわち、結合係数の計算には、入射モードLPm1と、他のモードLPm’1’との結合係数を表す以下の式(1)を用いられた。
Figure JPOXMLDOC01-appb-M000001
  ただし、nは純シリカの屈折率、kはnにおける波数、ΔnUV1は書込み前後の屈折率増大分、fは半径方向に沿った感光性材料を含む領域の感光性、φmlはLPmlモードの規格化した界分布、φm’l’はLPm’l’モードの規格化した界分布、Kgrはグレーティング波数ベクトルの傾斜しているx方向の成分、rは動径座標、θは偏角である。
 図12は、複数のトレンチ幅W(=1μm、5μm、10μm)に関して、LP01モード(基底モード)から高次の全モードへの結合係数の総和とトレンチ深さΔnの関係を示すグラフである。この図12では、トレンチ構造が無い場合のLP01モードと他の高次モードとの結合係数の総和を100%としている。図12から分かるように、トレンチ構造の幅Wおよび深さΔnが増大するに伴い、結合係数の総和は減少し、ロスの書込み性能は低下する。トレンチ構造を規定するトレンチ深さΔn(=Δn-Δn)が付与されても、書込み特性の性能を良好に維持する為には、トレンチ幅Wが狭い方が有利である。
 また、図13は、LP01モードを高次の複数モードに100%結合させたときの(LP01モードの100%ロス)、LP01モードの100%ロスに対するLP11モードの寄与率(=1.4%、2.7%、4.1%、5.4%、6.7%、8.1%、9.4%、11%、12%)に関して、トレンチ深さΔnとトレンチ幅Wの関係を示す図である。
 この図13から分かるように、何れのトレンチ幅Wにおいてもトレンチ深さΔnが0.03%程度であれば6%以上である。中でもトレンチ幅Wが5μmの場合、トレンチ深さΔnが増大するにつれ、入射光のLP01モードから効率的にLP11モードへ結合できている。すなわち、図13に示されたトレンチ構造の中では、5μmのトレンチ幅Wがリップル抑制に有効であることが判る。以上の図12および図13に関する考察から、結合効率の総和が高く、LP11モードへの結合係数がその他の高次モードとの対比で優位なトレンチ構造は、トレンチ幅Wは5μm±2μm(3μm~7μmの範囲)であり、トレンチ深さΔnは、トレンチ無し構造との対比で結合係数の総和が80%以上となる0.15%以下が有効である。
 1、2…光ファイバ、3…SFG(スラント型ファイバグレーティング)、10…コア領域、11…第1クラッド領域、12…第2クラッド領域、13…第3クラッド領域、20…コア領域、21…光学クラッド領域、23…ジャケット領域、50A~50D…含有領域(感光性領域)、60…スラント型ブラッググレーティング。

Claims (13)

  1.  シリカ系ガラスからなる光ファイバであって、
     前記光ファイバの長手方向に沿って延びるコア領域と、
     前記コア領域を取り囲み、前記コア領域の屈折率より低い屈折率を有する第1クラッド領域と、
     前記第1クラッド領域を取り囲み、前記第1クラッド領域の屈折率より低い屈折率を有する第2クラッド領域と、
     前記第2クラッド領域を取り囲み、前記コア領域の屈折率より低く、かつ、前記第2クラッド領域の屈折率より高い屈折率を有する第3クラッド領域と、
    を備え、
     前記第1クラッド領域の少なくとも一部と前記第2クラッド領域の少なくとも一部の双方は、これら一部領域の屈折率を特定波長の光の照射によりそれぞれ上昇させる感光性材料を含む、
    光ファイバ。
  2.  前記感光性材料は、GeOを含むことを特徴とする請求項1に記載の光ファイバ。
  3.  前記第1クラッド領域において、GeO添加に由来する、純シリカの屈折率に対する比屈折率差は、0.35%~0.45%であることを特徴とする請求項2に記載の光ファイバ。
  4.  前記第2クラッド領域において、GeO添加に由来する、純シリカの屈折率に対する比屈折率差は、0.40%未満であることを特徴とする請求項2または3に記載の光ファイバ。
  5.  純シリカの屈折率に対する前記第3クラッド領域の比屈折率差は、-0.35%~-0.25%であることを特徴とする請求項1~4の何れか一項に記載の光ファイバ。
  6.  前記感光性材料は、Bを含むことを特徴とする請求項1~5の何れか一項に記載の光ファイバ。
  7.  前記長手方向に直交する当該光ファイバの断面において、当該光ファイバの半径方向に沿って規定される前記第2クラッド領域の幅は、1μm~10μmであることを特徴とする請求項1~6の何れか一項に記載の光ファイバ。
  8.  前記第2クラッド領域の幅は、5μmを中心とした3μm~7μmの範囲に収まることを特徴とする請求項7に記載の光ファイバ。
  9.  純シリカの屈折率に対する前記第2クラッド領域の比屈折率差は、-0.75%~-0.35%であることを特徴とする請求項1~8の何れか一項に記載の光ファイバ。
  10.  前記第1クラッド領域と前記第2クラッド領域の比屈折率差は、0.15%以下であることを特徴とする請求項1~9の何れか一項に記載の光ファイバ。
  11.  前記第1クラッド領域および前記第2クラッド領域それぞれは、Fを含むことを特徴とする請求項1~10の何れか一項に記載の光ファイバ。
  12.  シリカ系ガラスからなる光ファイバと、
     前記光ファイバ内に設けられ、その長手方向に直交する面に対して傾斜した屈折率上昇面が前記長手方向に沿って周期的に配置された屈折率変調パターンにより規定されるブラッググレーティングと、を備えたスラント型ファイバグレーティングであって、
     前記光ファイバは、
     前記長手方向に沿って延びるコア領域と、
    前記コア領域を取り囲み前記コア領域の屈折率より低い屈折率を有する第1クラッド領域と、
     前記第1クラッド領域を取り囲み前記第1クラッド領域の屈折率より低い屈折率を有する第2クラッド領域と、
     前記第2クラッド領域を取り囲み前記コア領域の屈折率より低く前記第2クラッド領域の屈折率より高い屈折率を有する第3クラッド領域を有する光ファイバと、を有し、
     前記ブラッググレーティングは、前記第1クラッド領域の少なくとも一部から前記第2クラッド領域の少なくとも一部に跨って設けられている、
    スラント型ファイバグレーティング。
  13.  リップル幅が0.08dB 以下である損失スペクトルを有することを特徴とする請求項12に記載のスラント型ファイバグレーティング。
PCT/JP2016/081889 2015-10-27 2016-10-27 光ファイバおよびそれを含むスラント型ファイバグレーティング WO2017073670A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015210989 2015-10-27
JP2015-210989 2015-10-27

Publications (1)

Publication Number Publication Date
WO2017073670A1 true WO2017073670A1 (ja) 2017-05-04

Family

ID=58630291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081889 WO2017073670A1 (ja) 2015-10-27 2016-10-27 光ファイバおよびそれを含むスラント型ファイバグレーティング

Country Status (1)

Country Link
WO (1) WO2017073670A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090450A1 (ja) * 2018-10-29 2020-05-07 住友電気工業株式会社 スラント型ファイバグレーティング
JPWO2021192783A1 (ja) * 2020-03-27 2021-09-30

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027401A1 (en) * 1997-11-21 1999-06-03 Minnesota Mining And Manufacturing Company Optical waveguide narrowband rejection filter
JPH11231138A (ja) * 1998-02-10 1999-08-27 Fujikura Ltd 光フィルタおよび光通信システム
JP2000009956A (ja) * 1998-06-02 2000-01-14 Alcatel Alsthom Co General Electricite 変更された感光性プロフィルを有するろ波光ファイバ
JP2003107268A (ja) * 2001-09-27 2003-04-09 Sumitomo Electric Ind Ltd 光ファイバおよび光ファイバ型フィルタ
JP2003131048A (ja) * 2001-10-26 2003-05-08 Sumitomo Electric Ind Ltd 光ファイバグレーティングおよびその製造用光ファイバ
JP2003255159A (ja) * 2002-03-04 2003-09-10 Sumitomo Electric Ind Ltd 光導波路型回折格子素子製造方法、光導波路型回折格子素子製造装置および光導波路型回折格子素子
JP2003302547A (ja) * 2002-02-05 2003-10-24 Fujikura Ltd 光ファイバ、スラント型光ファイバグレーティング、帯域阻止光フィルタ、光増幅器用利得等化光フィルタおよび光増幅器モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027401A1 (en) * 1997-11-21 1999-06-03 Minnesota Mining And Manufacturing Company Optical waveguide narrowband rejection filter
JPH11231138A (ja) * 1998-02-10 1999-08-27 Fujikura Ltd 光フィルタおよび光通信システム
JP2000009956A (ja) * 1998-06-02 2000-01-14 Alcatel Alsthom Co General Electricite 変更された感光性プロフィルを有するろ波光ファイバ
JP2003107268A (ja) * 2001-09-27 2003-04-09 Sumitomo Electric Ind Ltd 光ファイバおよび光ファイバ型フィルタ
JP2003131048A (ja) * 2001-10-26 2003-05-08 Sumitomo Electric Ind Ltd 光ファイバグレーティングおよびその製造用光ファイバ
JP2003302547A (ja) * 2002-02-05 2003-10-24 Fujikura Ltd 光ファイバ、スラント型光ファイバグレーティング、帯域阻止光フィルタ、光増幅器用利得等化光フィルタおよび光増幅器モジュール
JP2003255159A (ja) * 2002-03-04 2003-09-10 Sumitomo Electric Ind Ltd 光導波路型回折格子素子製造方法、光導波路型回折格子素子製造装置および光導波路型回折格子素子

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090450A1 (ja) * 2018-10-29 2020-05-07 住友電気工業株式会社 スラント型ファイバグレーティング
CN112840255A (zh) * 2018-10-29 2021-05-25 住友电气工业株式会社 倾斜光纤光栅
JPWO2020090450A1 (ja) * 2018-10-29 2021-09-16 住友電気工業株式会社 スラント型ファイバグレーティング
EP3876003A4 (en) * 2018-10-29 2021-12-22 Sumitomo Electric Industries, Ltd. SLOPING FIBER GRATING
US11448821B2 (en) 2018-10-29 2022-09-20 Sumitomo Electric Industries, Ltd. Slant-type fiber grating
CN112840255B (zh) * 2018-10-29 2022-11-25 住友电气工业株式会社 倾斜光纤光栅
JP7347441B2 (ja) 2018-10-29 2023-09-20 住友電気工業株式会社 スラント型ファイバグレーティング
JPWO2021192783A1 (ja) * 2020-03-27 2021-09-30
JP7268245B2 (ja) 2020-03-27 2023-05-02 株式会社フジクラ 活性元素添加光ファイバ、活性元素添加光ファイバ用母材、共振器、及び、ファイバレーザ装置

Similar Documents

Publication Publication Date Title
JP2020517997A5 (ja)
US6842566B2 (en) Optical fiber with built-in grating and optical fiber for forming grating therein
WO2017195673A1 (ja) マルチコア光ファイバ、ファイバ・ブラッグ・グレーティングおよびファイバ・ブラッグ・グレーティングの製造方法
WO2017073670A1 (ja) 光ファイバおよびそれを含むスラント型ファイバグレーティング
US7203399B2 (en) Optical fiber and fiber grating type filter including the same
US20160109650A1 (en) Optical fiber for fiber bragg grating
US10908353B2 (en) Optical fiber and slanted fiber grating
EP1333299B1 (en) Optical fiber and slanted optical fiber grating
JP2016081032A (ja) 光ファイバ
JP7347441B2 (ja) スラント型ファイバグレーティング
JP2015210315A (ja) グレーティング製造方法
US6915042B2 (en) Slanted Bragg grating optical fiber and process for manufacturing such a fiber
WO2021215232A1 (ja) 利得等化フィルタ及び利得等化フィルタの製造方法
JP7350714B2 (ja) 光ファイバおよび光ファイバグレーティング
JP2003302547A (ja) 光ファイバ、スラント型光ファイバグレーティング、帯域阻止光フィルタ、光増幅器用利得等化光フィルタおよび光増幅器モジュール
WO2022255261A1 (ja) 光導波路の作製方法、及び光導波路
JP2011091099A (ja) 蛍光ガラス体およびそれを導光部として有する増幅用光導波体
US20220196908A1 (en) Optical fiber and optical fiber filter
CN115097566A (zh) 弯曲敏感的受激拉曼散射抑制的环形结构光纤
JPH10332965A (ja) 薄膜導波路
KR20160076306A (ko) 광섬유, 광섬유 제조방법 및 광섬유를 이용한 레이저 전송방법
JP2003107268A (ja) 光ファイバおよび光ファイバ型フィルタ
JPH11258437A (ja) 平板導波路型ブラッググレーティング素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP