WO2017073600A1 - mRNA DESIGN METHOD - Google Patents

mRNA DESIGN METHOD Download PDF

Info

Publication number
WO2017073600A1
WO2017073600A1 PCT/JP2016/081692 JP2016081692W WO2017073600A1 WO 2017073600 A1 WO2017073600 A1 WO 2017073600A1 JP 2016081692 W JP2016081692 W JP 2016081692W WO 2017073600 A1 WO2017073600 A1 WO 2017073600A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirna
mrna
cells
cell
slot
Prior art date
Application number
PCT/JP2016/081692
Other languages
French (fr)
Japanese (ja)
Inventor
博英 齊藤
慧 遠藤
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2017547819A priority Critical patent/JP6944709B2/en
Publication of WO2017073600A1 publication Critical patent/WO2017073600A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a method for designing mRNA.
  • the tissues and organs of multicellular organisms are composed of many types of cells. Humans are composed of as many as 60 trillion (6 ⁇ 10 13 ) cells, and there are about 400 types of mature cells alone. For these cells, not only analyzing the functions of individual cells but also techniques for discriminating and identifying cell types in the preparation of cells for medical applications.
  • a technique for detecting a marker factor on a cell surface specifically expressed with an antibody is generally known.
  • a receptor capable of identifying a cell does not necessarily exist on the cell surface.
  • a method of classifying one factor into two, positive / negative (negative or positive), such as detection of a marker factor of a cell by an antibody is a method of qualitatively classifying a cell, and it is said that precise classification is difficult. There's a problem.
  • a method of classifying cells quantitatively for example, cell profiling based on multivariate measurement using a microarray or next-generation sequencing is known.
  • cell profiling based on multivariate measurement using a microarray or next-generation sequencing.
  • the measured cell is destroyed, there is a problem that it cannot be measured in a state where the cell is alive.
  • an appropriate miRNA for classifying the cell may not be selected, and an improvement of the system is desired.
  • the present inventors are able to detect a plurality of miRNAs in a countable manner with respect to mRNA containing two or more miRNA response sequences and a marker gene sequence operably linked thereto, and the detection sensitivity to each miRNA on the mRNA. It was found that the miRNA can be regulated by the position of the target sequence. That is, by summarizing information on multiple factors first, and then detecting the resulting synthesized parameters, even a limited number of signals that can be detected at the same time are derived from quantitative information on many factors in living cells. The present inventors have found that the synthesis parameter from which the essence is extracted can be directly detected, and have completed the present invention.
  • a method for designing mRNA containing two or more miRNA response elements comprising the following steps, wherein mRNA containing two or more miRNA response elements is functionally linked to two or more miRNA response elements A mRNA comprising a marker gene sequence obtained; (1) a step of measuring the translation inhibitory effect of mRNA having one miRNA response element in two or more target cells; (2) A step of calculating the translational suppression effect of mRNA containing two or more miRNA response sequences in each target cell based on the measurement result of the step (1), (3) A step of selecting mRNA containing two or more miRNA response elements that maximizes the difference in translational suppression effect between the two or more target cells based on the value calculated in the step (2).
  • the type of miRNA response element used for the calculation of the step (2) is determined using multivariate analysis.
  • the translation inhibitory effect of the step (2) is obtained by adding the translation inhibitory effect -log ( ⁇ ) of each of the two or more miRNA response elements by the number of miRNAs.
  • the step (3) includes the step of selecting mRNA containing two or more miRNA response elements that maximizes the distribution of the translation amount of the marker gene in each target cell. The method according to any one of the above.
  • [5] Designing mRNA by the method according to any one of [1] to [4]; A method for producing mRNA containing two or more miRNA response elements, comprising a step of synthesizing the designed mRNA by a genetic engineering technique.
  • [6] A method of separating two or more target cells using the mRNA designed by the method according to any one of [1] to [4], using the translation amount of the marker gene as an index.
  • the mRNAs are four types of mRNAs, which are designed by the method according to any one of [1] to [4] and have different marker gene sequences and 5 ′ UTR sequences, respectively [6] The method described in 1.
  • a method for designing an mRNA containing two or more miRNA response elements which can separate desired cells with higher accuracy.
  • the mRNA functions as a probe that responds to a large number of miRNAs per molecule and can arbitrarily adjust the degree of response to individual miRNAs (detection sensitivity). That is, according to the present invention, intracellular multifactor information was successfully extracted with a linear model.
  • the number of signals that can be detected simultaneously in a non-invasive manner (without killing cells) is limited, and cannot be handled by a detection probe corresponding to one-to-one. Even with a limited number of signals that can be detected at the same time, it is now possible to directly detect the synthetic parameters from which the essences are derived, derived from quantitative information on a large number of living intracellular factors.
  • FIG. 1 shows a scheme for performing multivariate calculations in living cells.
  • FIG. 1a shows that in the conventional method (left), individual intracellular information (in this case, miRNA information) is individually detected, and then information is extracted by multivariate analysis. (Right) shows that multivariate calculation is performed in advance in the cell and the result is detected directly.
  • FIG. 1b shows a linear multivariate calculation using mRNAs that respond to multiple miRNAs. It suffices that the mRNA responds independently to a plurality of miRNA activities and can regulate the response performance to each miRNA. If the ratio is calculated using two mRNAs, a linear calculation with an arbitrary specific gravity can be realized for many miRNAs.
  • FIG. 2 shows that synthetic mRNA can achieve a regulatable response independent of multiple miRNAs.
  • FIG. 2a shows the 5'UTR design of mRNA with 5 slots. Each slot inserts a sequence complementary to the miRNA. AUG is the start codon of marker protein (hmAG1). The lower part is an mRNA series that responds to four types of miRNAs. Response sequences to gray, miR-34a-5p; bitumen, miR-17-5p; green, miR-21-5p; red, miR-92a-3p.
  • FIG. 2b shows examples of mRNAs that respond to miR-17-5p and miR-92a-3p. The design of 5 ’UTR is shown at the top. Relative expression is expressed as a ratio to the average expression level of the marker in the presence of both.
  • FIG. 2c shows a comparison of experimentally measured Relative expression values (Observed relative expression) and Estimated Expression. The results of three independent experiments were plotted for 12 randomly designed types.
  • FIG. 2d shows a series of mRNAs containing multiple response elements to the same miRNA. Each mRNA contains a miRNA response element at 1 to 5 sites. The expression level of mRNA is predicted to be the integrated value of the suppression effect ( ⁇ , rho) in each slot.
  • FIG. 2e shows a comparison of experimentally measured Relative expression values (Observed relative expression) and estimated values. Four types of miRNA were compared.
  • FIG. 3 shows the classification of living cells based on a linear calculation of multiple miRNA activities.
  • FIG. 3a shows the screening scheme. Three types of mRNA (1-slot s mRNA) ⁇ ⁇ that expresses different fluorescent proteins (hmAG1, tagBFP, hdKRed) ⁇ ⁇ in response to different miRNA (a, b, c), and hmKO2 1-slot control mRNA that does not respond to miRNA At the same time introduced.
  • FIG. 3b shows a comparison of two independent screening results using human iPS cells (hiPS). The expression level of mRNA using green, hmAG1; bitumen, tagBFP; purple, hdKRed as marker proteins is shown.
  • FIG. 3c shows a cell-to-cell comparison of the normalized data set. A comparison between normal human dermal fibroblast (NHDF) and hiPSC is shown as an example.
  • FIG. 3d shows cell classification by principal component analysis. The results of performing principal component analysis by standardizing the results of screening for 8 types of cells and conditions are shown.
  • FIG. 3e shows a set of mRNAs that maximizes intercellular dispersion. Based on the standardized data set, the mRNA set that maximizes the dispersion between cells was calculated and designed using the ratio of hmAG1 and hmKO2 and the ratio of tagBFP and hdKRed as parameters.
  • FIG. 3f shows the computational classification of the five types of cells according to the mRNA set of FIG.
  • FIG. 3g shows the classification of living cells by mRNA set. Flow cytometry results are shown as a two-dimensional density plot of fluorescence ratio. Cells shown in red are red, and the other four types of cells are shown as black density.
  • FIG. 4 shows the tracking of changes in hiPS cells based on linear calculations of multiple miRNA activity.
  • FIG. 4a shows the secondary screening scheme. From the screening results shown in FIG. 3, 54 miRNA having a large difference between hiPSC and hiPSC (14d) was selected and used as a secondary screening for 24 transfections.
  • FIG. 4b shows a tracking scheme over time. hiPSCs were naturally (randomly) differentiated in the absence of bFGF, losing pluripotency. After the indicated number of days of culture, the mRNA set was transfected and analyzed 24 hours later by flow cytometry.
  • FIG. 4c shows a comparison of changes over time in miRNA activity. For the measured fluorescence ratio, a comparison between day 1 and day 3 is shown as an example.
  • FIG. 4a shows the secondary screening scheme. From the screening results shown in FIG. 3, 54 miRNA having a large difference between hiPSC and hiPSC (14d) was selected and used as a secondary screening for 24 transfections.
  • FIG. 4d shows the result of the principal component analysis of the screening result.
  • the plot with the first component (Component 1) and the second component (Component 2) is shown.
  • cells cultured for 1-3 days in the presence of bFGFb are shown in blue.
  • FIG. 4e shows a set of mRNA that maximizes cell-to-cell dispersion when hiPSCs are differentiated by losing pluripotency in the absence of bFGF.
  • An mRNA set that maximizes cell-to-cell dispersion was calculated and designed.
  • FIG. 4f shows the computational classification of cells according to the mRNA set of FIG. 4e.
  • FIG. 4g is a classification of living cells by mRNA set. Flow cytometry results are shown as a two-dimensional density plot of fluorescence ratio.
  • FIG. 5 shows the effect of miRNA inhibitor on miRNA activity measurement.
  • FIG. 5a shows the results of confirming the independence of miRNA inhibitors used in this example. For each mRNA that responds to miRNA, five miRNA inhibitors were introduced into the cells. The expression level in each condition is shown as a ratio based on the expression level in the presence of the miRNA inhibitor to which mRNA responds. Error bars indicate the mean ⁇ standard deviation of 3 experiments. It was confirmed that each miRNA inhibitor did not crosstalk.
  • FIG. 5b shows the results of confirming the effect of the total amount of miRNA inhibitor introduced. The same experiment as in FIG.
  • FIG. 6 shows the difference in miRNA detectability depending on the position of the target sequence.
  • FIG. 6a shows the structure of s5 ′ UTR of 5-slot mRNA and 1-slot mRNA.
  • FIG. 6b shows the suppression effect in each slot.
  • Each miRNA was calculated from the data in FIG. Error bars indicate the mean ⁇ standard deviation of three analysis results.
  • the right panel shows 1-slot mRNA results.
  • 1-slot mRNA behaves like slot-5.
  • FIG. 7 shows the standardization of the screening results.
  • the upper figure shows the results of HeLa cells and normal human lung fibroblast cells (NHLF), and the lower diagram shows the comparison results of HeLa cells and human iPS cell cells (hiPSC).
  • the green plot shows hmAG1, the blue plot shows tagBFP, and the purple plot shows the expression level of mRNA when hdKRed is used as a marker protein.
  • FIG. 7a shows a comparison of the observed expression values. There is a cell-by-cell bias.
  • FIG. 7b shows the normalization of the bias between cells. The difference in expression fluorescence between cells for each fluorescent protein was normalized based on the results of HeLa cells. However, the distribution position is different for each fluorescent protein.
  • FIG. 7c shows the normalization of bias between fluorescent proteins.
  • FIG. 8 shows the results of cell classification by different mRNA sets. Experiments similar to FIG. 3g were performed with different mRNA sets. Flow cytometry results are shown as a two-dimensional density plot of fluorescence ratio. Cells shown in red are red, and the other four types of cells are shown as black density.
  • FIG. 8a shows the results using a set of control mRNAs that do not respond to miRNA.
  • FIG. 8b shows the results using a set of 1-slot mRNAs that responded to miRNAs with large variations in activity.
  • FIG. 8 c shows the results using the mRNA set (FIG. 4 e) when tracking changes in hiPSC.
  • FIG. 9 shows the results of tracking hiPSC with different mRNA sets.
  • FIG. 9a shows the results of other culture conditions. Cells of different culture conditions were isolated using the mRNA set of FIGS.
  • FIG. 9b shows the results of experiments using other mRNA sets. The mRNA set ⁇ (Fig. 3e) ⁇ when the cell types were classified was used.
  • the present invention is a method for designing mRNA containing two or more miRNA response elements, wherein the mRNA containing two or more miRNA response elements has two or more miRNA response elements and a function thereof.
  • the present invention relates to a method, wherein the mRNA comprises an operably linked marker gene sequence.
  • the method according to the present embodiment includes the following steps.
  • (1) a step of measuring the inhibitory effect of mRNA having one miRNA response element in two or more target cells; (2) a step of calculating the translational inhibitory effect of mRNA containing two or more miRNA response elements in each cell from the measurement result of the step (1), (3) A step of selecting mRNA containing two or more miRNA response elements that maximizes the difference in translational suppression effect between two or more target cells from the value calculated in the step (2).
  • miRNA response sequences two or more miRNA response sequences (hereinafter also referred to as miRNA response sequences or miRNA target sequences) and a messenger RNA (mRNA) that includes a marker gene operably linked thereto are provided for each miRNA response sequence.
  • mRNA messenger RNA
  • the integrated value of the translational suppression effect has a translational suppression effect, and the translational suppression effect of each miRNA response element is based on the discovery that it is inversely proportional to the distance from the start codon of each miRNA response element.
  • two or more miRNA response elements and a marker gene are operably linked to each other in the 5′UTR of the open reading frame (including the start codon) encoding the marker gene.
  • Such mRNA can be used to separate cell types using the expression of the corresponding miRNA in the cell as an index. More specifically, when the corresponding miRNA is expressed in the cell, the translation of the marker gene is suppressed depending on the expression level.
  • miRNA expression refers to the presence of miRNA in a state in which a mature miRNA interacts with a predetermined plurality of proteins to form an RNA-induced silencing complex (RISC). Shall.
  • RISC RNA-induced silencing complex
  • “Mature miRNA” is a single-stranded RNA (20-25 bases), and is generated from pre-miRNA by cleavage by Dicer outside the nucleus, and “pre-miRNA” is obtained by partial cleavage by a nuclear enzyme called Drosha, It originates from pri-mRNA, a single-stranded RNA transcribed from DNA.
  • the miRNA in the present invention can be selected from at least 10,000 miRNAs. Specifically, miRNA registered in database information (for example, http://www.mirbase.org/ or http://www.microrna.org/) and / or literature information described in the database Or can be selected from commercially available miRNAs from libraries. That is, in the present invention, the miRNA serving as an index is not limited to a specific miRNA.
  • An mRNA containing two or more miRNA response elements as described above used in the design method according to this embodiment is an miRNA-responsive mRNA, an n-slot mRNA (n is an integer of 2 or more), or a reporter mRNA. Also referred to. The basic structure of such miRNA-responsive mRNA will be described.
  • the schematic structure of mRNA designed in this embodiment is illustrated in the upper diagram of FIG.
  • the mRNA shown in FIG. 2a encodes a marker gene from the 5 ′ end in a 5 ′ to 3 ′ direction, a Cap structure (7 methylguanosine 5 ′ phosphate), 5 slots into which miRNA response elements can be inserted, and a marker gene. With open reading frame and poly A tail.
  • slot conceptually indicates a portion into which a miRNA target sequence can be inserted, and each slot is composed of a miRNA target sequence or a sequence that is not a miRNA target (also referred to as an empty slot). Is done. However, the same or different miRNA target sequences are inserted into two or more of the five slots.
  • the number of bases of the miRNA target sequence inserted into each slot or the non-miRNA target sequence may be the same or different, but is generally 20 to 25 bases. Any number of bases may or may not exist between the slots. In addition, in an mRNA containing three or more slots, the number of bases and the sequence between the slots may be the same or different.
  • the miRNA target sequence refers to a sequence that can specifically bind to an indicator miRNA.
  • the miRNA target sequence is preferably, for example, a sequence that is completely complementary to the indicator miRNA.
  • the miRNA target sequence may have a mismatch (mismatch) with a completely complementary sequence as long as it can be recognized in the miRNA.
  • the mismatch from the sequence that is completely complementary to the miRNA may be any mismatch that can be normally recognized by the miRNA in the desired cell, and the mismatch of about 40 to 50% in the original function in the cell in vivo. There is no problem.
  • mismatch is not particularly limited, but 1 base, 2 bases, 3 bases, 4 bases, 5 bases, 6 bases, 7 bases, 8 bases, 9 bases, or 10 bases or 1% of the total recognition sequence, 5% %, 10%, 20%, 30%, or 40% discrepancy.
  • the part other than the seed region that is, the 5 'side of the target sequence corresponding to about 3' side 16 base of the miRNA A region may contain a number of mismatches, and portions of the seed region may contain no mismatches, or may contain 1 base, 2 bases, or 3 bases mismatches.
  • non-target sequence The sequence that is not the target of miRNA that can be inserted into the slot (hereinafter also referred to as non-target sequence) is not particularly limited, but has low similarity to the miRNA target sequence and does not contain AUG as a sequence It is preferable that The low similarity may be, for example, 60% or more, 70% or more, or 80% or more of mismatched sequences, but is not limited thereto.
  • the non-target sequences into which the empty slots are inserted may be the same or different.
  • non-target sequences into which empty slots of different miRNA-responsive mRNAs are inserted may be the same or different.
  • the number of bases and the type of base between the Cap structure and the slot located at the most 5 ′ side do not include AUG as the start codon, and the stem structure
  • the number of bases between the Cap structure and the miRNA target sequence is not particularly limited, and can be designed to be the number of bases according to the purpose and application, for example, 1000 bases or less, preferably 500 bases In the following, it can be designed more preferably in the range of 250 bases or less.
  • the start codon may be arbitrary as long as they do not constitute a stem structure or a three-dimensional structure. Accordingly, there is no particular upper limit to the number of bases between the slot closest to the start codon and the start codon, for example, 1000 bases or less, preferably 500 bases or less, more preferably 250 bases or less, for example, 2 to It can be designed to be 20 bases, preferably 3 to 20 bases.
  • a marker gene is a gene that is translated in a cell, functions as a marker, and encodes an arbitrary protein that enables discrimination of a cell type.
  • proteins that can be translated into cells and function as markers include, for example, proteins that can be visualized and quantified by assisting fluorescence, luminescence, coloration, or fluorescence, luminescence, or coloration. It may be.
  • fluorescent proteins blue fluorescent proteins such as Sirius and EBFP; cyan fluorescent proteins such as mTurquoise, TagCFP, AmCyan, mTFP1, MidoriishiCyan, and CFP; TurboGFP, AcGFP, TagGFP, Azami-Green (for example, hmAG1), ZsGreen, EmGFP, Green fluorescent proteins such as EGFP, GFP2, and HyPer; Yellow fluorescent proteins such as TagYFP, EYFP, Venus, YFP, PhiYFP, PhiYFP-m, TurboYFP, ZsYellow, and mBanana; Orange fluorescent proteins such as KusabiraOrange (for example, hmKO2) and mOrange Red fluorescent proteins such as TurboRFP, DsRed-Express, DsRed2, TagRFP, DsRed-Monomer, AsRed2, mStrawberry, etc .; TurboFP602, mRFP1, JRed, KillerRed, mCherry, H
  • a photoprotein is aequorin, but is not limited thereto.
  • proteins that assist fluorescence, luminescence, or coloration include, but are not limited to, enzymes that decompose fluorescence, luminescence, or color precursors such as luciferase, phosphatase, peroxidase, and ⁇ -lactamase.
  • enzymes that decompose fluorescence, luminescence, or color precursors such as luciferase, phosphatase, peroxidase, and ⁇ -lactamase.
  • the corresponding precursor is brought into contact with the cell, or the precursor corresponding to the inside of the cell. Can be done by introducing.
  • a protein that can function as a marker in a cell is a protein that directly affects the function of the cell.
  • Cell growth protein, cell death protein, cell signal factor, drug resistance gene, transcription control factor, translation control factor, differentiation control factor, reprogramming induction factor, RNA binding protein factor, chromatin control factor, membrane protein can be exemplified However, it is not limited to these.
  • a cell growth protein functions as a marker by proliferating only cells that express it and specifying the proliferated cells.
  • the cell killing protein causes cell death of the cell expressing it, thereby killing the cell itself containing or not containing a specific miRNA, and functions as a marker indicating cell viability.
  • the cell signal factor functions as a marker by the cell that expresses it emits a specific biological signal and specifies this signal.
  • the marker gene may include a gene encoding a localization signal.
  • the localization signal include a nuclear localization signal, a cell membrane localization signal, a mitochondrial localization signal, a protein secretion signal, and the like.
  • a classical nuclear translocation sequence (NLS), M9 Examples include, but are not limited to, sequences, mitochondrial target sequences (MTS), and endoplasmic reticulum translocation sequences.
  • Such a localization signal is particularly advantageous when the discrimination step in the method of the present invention is performed on an image by imaging cytometry or the like described later.
  • the miRNA-responsive mRNA preferably contains a modified base such as pseudouridine or 5-methylcytidine instead of ordinary uridine and cytidine. This is to reduce cytotoxicity.
  • the positions of the modified bases can be all or part of the uridine and cytidine independently, and if they are part of the base, they can be random positions at an arbitrary ratio.
  • the total number of slots is 5, but the total number of slots may be 2 or more, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more. It may be.
  • miRNA-responsive mRNA having a total number of slots of 5 will be described as an example, but the present invention is not limited to this.
  • the mRNA having the basic structure shown in the upper diagram of FIG. 2a has the following characteristics (a) and (b).
  • (A) The translational suppression effect by mRNA containing two or more miRNA response elements is an integrated value of the translational suppression effect by the miRNA target sequence alone in each slot.
  • (B) The translational suppression effect of the miRNA target sequence alone in each slot is generally proportional to the constant power of the distance from the start codon to the miRNA target sequence, specifically to the power of -0.576, regardless of the type of miRNA.
  • miRNA response elements inserted into each slot are miRNA (1), miRNA (2), miRNA (3), miRNA (4), miRNA (5) in order from slot-1 respectively.
  • the translation suppression effect ( ⁇ slot-1 ) by miRNA (1) alone inserted in slot-1 is the measured translational suppression effect in the system to which inhibitors for all response elements including miRNA (1) were added. In the case of 1, it is represented by an actually measured translation suppression effect in a system to which inhibitors for all response elements other than miRNA (1) are added.
  • the translation suppression effect ( ⁇ slot- 2) for miRNA (2) inserted into slot-2 and the translation suppression effect ( ⁇ slot- 3) for miRNA (3) inserted into slot-3 should be obtained in the same way.
  • the distance d from the start codon (AUG) of each slot is the base from the A of the start codon AUG to the 5 ′ side to the base at the 3 ′ end of the miRNA response element constituting each slot. It shall be a number (nt). Also, ⁇ 0 is a virtual translation suppression effect value when the distance d is 0. Derivation of equations (a) and (b) and experimental support are shown in the examples.
  • the design method according to the present embodiment relates to a method of selecting the type and number (but 2 or more) of miRNA response sequences to be inserted into each slot with respect to the basic structure of miRNA responsive mRNA having the above characteristics.
  • a step of screening a candidate miRNA target sequence that can be inserted into the slot can be performed.
  • a miRNA response element that can be a candidate may be a response element for any miRNA as described above. Therefore, it is not limited to miRNA specified at the time of the present application, and includes any miRNA whose presence and function are specified in the future.
  • miRNA response sequence that does not have a similar sequence among a plurality of candidate miRNA target sequences and does not contain an AUG that can correspond to the start codon.
  • similar sequences refer to sequences having sequence homology of, for example, about 80% or more, about 85% or more, about 90% or more, or about 95% or more.
  • miRNA as an index can be appropriately selected according to the characteristics of the cell type to be separated using the separation method described later. In particular, among a plurality of cells to be separated, a combination of miRNAs that are highly expressed (high activity) in one cell and low expressed (low activity) in another cell can be selected. . This is to increase the accuracy of separation.
  • Step (1) is a step of measuring the inhibitory effect of mRNA having one miRNA response element in two or more target cells.
  • the mRNA having one miRNA response element used in step (1) is also referred to as 1-slot mRNA.
  • 1-slot mRNA corresponding to each of a plurality of types of candidate miRNA target sequences optionally selected in the previous step is synthesized.
  • the number of types of 1-slot mRNA that is measured for the translational suppression effect can be appropriately determined by those skilled in the art according to the purpose and application, and there is no theoretical upper and lower limit. For example, the effect of suppressing the translation of 20 or more, 50 or more, 70 or more, 100 or more 1-slot mRNAs can be measured.
  • Each 1-slot mRNA has a Cap structure (7-methyl guanosine 5 ′ phosphate), a response element of one miRNA, an open reading frame encoding a marker gene, in the 5 ′ to 3 ′ direction from the 5 ′ end, and , With poly A tail. That is, it can be said that the miRNA-responsive mRNA shown in FIG. 2a has only one slot, and if the translational inhibitory effect of 1-slot mRNA can be measured, the 5′UTR 5 ′ side and 3 ′ The number of bases and types of bases on the side may be arbitrary. This is because 1-slot mRNA is experimentally used to derive ⁇ 0 in the above equation (b).
  • the target cell is a cell that serves as an index for designing miRNA-responsive mRNA, and two or more types, for example, 3, 4, 5, 6, 7, or 8 There may be more than species, and theoretically, the types of target cells are not limited.
  • the target cell can refer to a plurality of cell types to be separated in the assumed use situation in the cell separation method described later, but is not limited thereto.
  • An example of cells to be separated may be a plurality of types of cells that are differentiated from the same pluripotent stem cell and have different degrees of differentiation.
  • cells collected from living organisms, organs, and tissues, or cultured cells thereof, including a group of cells containing a plurality of types of cells, or unwanted cell contamination is suspected. Examples include cells included in the cell group.
  • the target cell only needs to be an index for designing miRNA-responsive mRNA that reflects its intracellular characteristics (miRNA activity). It is not limited. Also, in any case, what indicators are effective depending on the purpose of separation, such as whether you want to roughly classify different cell types or whether you want to classify closely among similar cell types? It is different and can be appropriately determined by those skilled in the art.
  • the cell to be separated may be a cell contained in a cell group collected from a multicellular species, or may be a cell contained in a cell group obtained by culturing an isolated cell.
  • the cells are particularly cells collected from mammals (eg, humans, mice, monkeys, pigs, rats, etc.) or cells obtained by culturing cells isolated from mammals or mammalian cell lines. It may be.
  • somatic cells include keratinized epithelial cells (eg, keratinized epidermal cells), mucosal epithelial cells (eg, epithelial cells of the tongue surface), exocrine glandular epithelial cells (eg, mammary cells), hormone-secreting cells (eg, , Adrenal medullary cells), metabolism / storage cells (eg, hepatocytes), luminal epithelial cells that make up the interface (eg, type I alveolar cells), luminal epithelial cells of the inner chain (eg, blood vessels) Endothelial cells), ciliated cells with transport ability (eg, airway epithelial cells), cells for extracellular matrix secretion (eg, fibroblasts), contractile cells (eg, smooth muscle cells), blood and immune system Cells (eg, T lymphocytes), sensory cells (eg, sputum cells), autonomic nervous system neurons (eg, cholinergic neurons), sensory organs and peripheral neuron support cells
  • undifferentiated progenitor cells including somatic stem cells
  • terminally differentiated mature cells It can be used as the source of somatic cells in the invention.
  • undifferentiated progenitor cells include tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells.
  • tissue stem cells such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells.
  • the mammal individual from which somatic cells are collected is not particularly limited, but is preferably a human.
  • preferred cells are a group of cells that have been subjected to an artificial manipulation after collection of progenitor cells, and may include unwanted cells and / or may be heterogeneous.
  • a cell group comprising iPS cells prepared from the somatic cells, or a cell group obtained after differentiating pluripotent stem cells exemplified by ES sputum cells and iPS cells, and the desired cells It is a cell group which can contain the differentiated cell besides.
  • the cell group to be discriminated is in a living state.
  • the cell being in a viable state means a cell in a state where metabolic capacity is maintained.
  • the present invention can be used for subsequent applications in which cells are subjected to the method of the present invention and remain in a viable state, particularly while maintaining their mitogenic potential, without losing their natural properties even after the separation method is completed. This is advantageous.
  • the measurement of the translation inhibitory effect in the target cell can be carried out by introducing 1-slot mRNA into the cell and obtaining the translation inhibitory effect of 1-slot mRNA based on the translation amount of the marker gene.
  • the step of introducing 1-slot mRNA into cells is performed by lipofection method, liposome method, electroporation method, calcium phosphate coprecipitation method, DEAE dextran method, microinjection method, gene Using a gun method or the like, one or more 1-slot mRNAs are directly introduced into cells included in a cell group.
  • the introduction step is performed by lipofection method, liposome method, electroporation method, calcium phosphate coprecipitation method, DEAE dextran method, microinjection method, gene Using a gun method or the like.
  • Control mRNA refers to mRNA that does not have a miRNA target site and encodes a marker gene different from the marker gene encoded by 1-slot mRNA.
  • the activity ratio of marker proteins expressed from two or more co-introduced mRNAs is constant within the cell population.
  • the introduction amount at this time varies depending on the cell group to be introduced, the mRNA to be introduced, the introduction method and the kind of the introduction reagent, and those skilled in the art can appropriately select these in order to obtain a desired translation amount.
  • the amount of control mRNA introduced can also be appropriately selected by those skilled in the art to obtain a desired translation amount.
  • the translation amount of the marker gene encoded by the miRNA-responsive mRNA is controlled, for example, the amount of translation is suppressed, if a given miRNA exists as RISC in the cell. .
  • the translation amount is quantitatively controlled according to the miRNA activity.
  • the predetermined miRNA does not exist in the cell, or when the predetermined miRNA does not exist as RISC
  • the translation amount of the marker gene encoded by the miRNA-responsive mRNA is not suppressed. Therefore, the amount of translation of the marker gene differs between cells in which a given miRNA is present as RISC and cells that are not present.
  • the case where a predetermined miRNA is present as RISC is also referred to as “when miRNA activity is present”.
  • the control mRNA expresses the marker protein regardless of the miRNA activity. This is because even when introduced, the miRNA target sequence does not exist, and therefore translational control is not performed according to the miRNA expression level.
  • the translation suppression effect of 1-slot mRNA is measured in all of two or more target cells.
  • the translation amount of the marker gene can be obtained by detecting a signal from the marker protein using a predetermined detection device.
  • the detection device include, but are not limited to, a flow cytometer, an imaging cytometer, a fluorescence microscope, a light emission microscope, and a CCD camera.
  • a detection apparatus those suitable for those skilled in the art can be used depending on the marker protein and the mode of discrimination.
  • the marker protein when the marker protein is a fluorescent protein or a luminescent protein, the marker protein can be quantified using a detection device such as a flow cytometer, an imaging cytometer, a fluorescence microscope, or a CCD camera.
  • a marker protein quantification method using a detection device such as a luminescence microscope, a CCD camera, or a luminometer is possible.
  • a detection device such as a luminescence microscope, a CCD camera, or a luminometer
  • the marker protein is a membrane-localized protein
  • a cell surface protein-specific detection reagent such as an antibody and a marker protein quantification method using the above-described detection apparatus are possible.
  • the marker protein is a fluorescent protein, the intensity of light emitted from the fluorescent protein and the luminescent enzyme, which are marker proteins translated in individual cells, can be quantitatively obtained by using flow cytometry.
  • the method for measuring the effect of suppressing translation of 1-slot mRNA is not limited to the specific method described above, and can be performed by any other method.
  • the translational inhibitory effect of 1-slot mRNA can be measured by quantifying mRNA that interacts with miRNA using a method using microarrays or a method based on next-generation sequencing.
  • the present invention also constitutes a measurement using the method.
  • the principle of the above-described formula (b), that is, the translational suppression effect of the miRNA target sequence alone in each slot is generally a constant power of the distance from the start codon to the miRNA target sequence regardless of the miRNA type.
  • the invention relates to a method for adjusting the translation sensitivity of 1-slot mRNA based on the discovery that it is proportional to the power of -0.576. That is, by changing the distance from the start codon of an miRNA response element in an mRNA having one miRNA response element, the translation suppression efficiency is changed, that is, even if the mRNA has the same miRNA response element. Can do. By using such mRNA, it can be said that various cells can be separated.
  • Step (2) is a step of calculating the translational inhibitory effect of mRNA containing two or more miRNA response elements in each target cell based on the measurement result of step (1).
  • the translational inhibitory effect of mRNA containing two or more miRNA response elements in each cell is obtained by calculation based on the aforementioned characteristics (a) and (b). More specifically, a hypothetical translational inhibition rate obtained when d is 0, obtained from the measurement value in the step (1), raised to the power of d ⁇ 0.576 (d is the miRNA from the start codon of the marker gene Response element distance) is calculated by integrating the number of miRNA response elements.
  • an actual measurement value of the translational suppression effect ⁇ (d) at the distance d (nt) from the AUG can be obtained for each 1-slot mRNA.
  • ⁇ (0) that is a virtual mitigation effect of translation of a specific miRNA can be obtained from the actually measured value of ⁇ (d) and the tuning factor k value at the position d.
  • d may be the same or different between the 1-slot mRNAs designed in step (1), and the value of ⁇ (0) can be derived in the same way. is there.
  • the test conditions (design conditions for 1-slot mRNA, etc.) of step (1) Depending on the case, it may not be necessary to directly calculate the value of ⁇ (0) .
  • the translational suppression effect of a certain miRNA response element alone at a different distance d from AUG is expressed by ⁇ (0) ⁇ d ⁇ 0.576 .
  • the translation inhibition effect prediction value (calculated value) of mRNA is obtained by accumulating this value by the number of miRNA response elements.
  • the translation suppression effect of empty slots is 1 (translation is not suppressed). According to this method, the translation suppression effect of miRNA-responsive mRNA having 5 slots can be comprehensively calculated, for example, for all selected miRNA response sequences.
  • the slot cannot be designed at a position where the miRNA target sequence overlaps.
  • mRNAs containing 1 or less miRNA target sequences are not excluded in principle.
  • step (1) based on the measurement result of the step (1), the type of miRNA response element used for the calculation of the step (2) is changed to a multivariate.
  • a step of limiting using analysis for example, principal component analysis or cluster analysis may be further included. This process is also referred to herein as a “limiting process”.
  • 1-slot mRNA to be measured may be 100 or more and 200 or more.
  • all miRNAs searched in step (1) all combinations of mRNAs are designed and searched. Then, the combination may become enormous. Therefore, the miRNA activity profile for each cell obtained in step (1) can be subjected to multivariate analysis such as principal component analysis and cluster analysis to limit miRNA effective for cell separation.
  • miRNAs each having a high absolute value of the principal component loading amount with respect to the principal components having a high contribution rate can be selected as miRNAs useful for cell separation.
  • cluster analysis by selecting a representative miRNA from a group of miRNAs classified into the same cluster, other miRNAs that are expected to be less useful for cell separation can be excluded.
  • the step (2) is performed after narrowing down from 270 miRNA response elements to 26 miRNA response elements at this stage.
  • the step (2) is carried out by fixing the structure of 5-slot mRNA, the distance between slots of 2 nt, and the distance between the slot closest to the start codon and the start codon of 2 nt.
  • the positions and number of slots in the set of two or more miRNA-responsive mRNAs are the same.
  • the total length of the 5′UTR of the miRNA-responsive mRNA may be the same as or different from each other. Both can be designed appropriately at this stage.
  • This limiting process is not essential in principle when the comprehensive calculation can be performed in the process (2), and may be optionally performed.
  • Step (3) is a step of selecting mRNA containing two or more miRNA response elements that maximize the difference in translational suppression effect between two or more target cells, based on the value calculated in the step (2). In this step, an miRNA response element and a non-miRNA response element to be inserted into each slot are selected so that the difference in translation suppression effect is maximized.
  • step (2) it is possible to design an mRNA having an arbitrary number of slots at a position away from the AUG by an arbitrary number of bases, and each cell when the designed mRNA is introduced into a target cell.
  • the expression level in can be obtained by calculation. That is, the result of introducing arbitrarily designed mRNA into cells can be estimated. If you design many types of mRNA in step (2) and calculate the estimated value in each cell when it is introduced into the cell, you can set an arbitrary condition to obtain an mRNA that has an effect according to your purpose. be able to.
  • mRNA with high ability to separate cells when introduced into multiple types of target cells using the dispersion of expression level in each cell for each designed mRNA as an index, It can be selected as an mRNA expected to have the highest cell separation ability. Even when two or more types of designed mRNAs are simultaneously introduced into a cell, the expression level of each mRNA can be obtained by calculation. A combination can be obtained.
  • the expression level in each cell for each of the four types of mRNA is determined by the process (2 ).
  • the ratios can be calculated and two fluorescence ratios in each cell can be obtained as parameters for each set of four types of mRNA. Search for the mRNA set that maximizes the variation of the two parameters obtained, the difference between any two cells, or the integrated value of the difference for any mRNA set selected from four types of any mRNA. Can do.
  • the number of mRNAs to be searched in step (3) varies depending on the number of miRNA candidates to be inserted into slots and the number of slots to be narrowed in the limited step. For example, in a limited process, when the calculation is limited to a single mRNA or a set of 4 types of mRNA, the process (3) is substantially the same as the single that calculated the translational suppression effect in step (2). In some cases, it may be necessary to simply select one mRNA or a set of four mRNAs.
  • the final single mRNA or 2 to 2 based on the calculation result of the dispersion, the variation of multiple parameters, the difference between any two cells, or the integrated value of the difference.
  • step (3) dispersion in step (3), variation of multiple parameters, any two About mRNA which was narrowed down to some extent from the calculation result of the difference between cells or the integrated value of the difference
  • these mRNAs are actually prepared by genetic engineering techniques, introduced into target cells, and the separation method is tested.
  • the design of the present invention can be completed by actually selecting the mRNA that maximizes the dispersion of the target cells, the variation of multiple parameters, the difference between any two cells, or the integrated value of the difference. .
  • Process (1) Using 1-slot mRNA, the miRNA activity in each cell is specifically measured.
  • the expression level of miRNA-responsive mRNA since the expression level of miRNA-responsive mRNA is considered, the smaller the expression level, the higher the activity.
  • logarithm is considered for subsequent calculations. Therefore, 0 is the case where there is no activity, -1 is the case where the expression level is suppressed to 1/10, and -2 is the case where the expression level is suppressed to 1/100. Assume that cells A, B, C, and D are analyzed and the following results are obtained.
  • the expression level in each cell can be predicted when a certain mRNA containing a plurality of miRNA target sequences is produced and introduced into the cell.
  • the expected value is given by k x the sum of the logarithms.
  • k is given directly for the sake of simplicity (assuming an mRNA with a slot at such d).
  • mRNA containing 100 slots of miRNA and including 5 slots with fixed distance from AUG in advance (for example, the distance of 5 slots is 105 nt, 80 nt, 65 nt, 40 nt, 15 nt) )
  • Each slot can contain 100 miRNA target sequences or 101 empty sequences.
  • the distance between 5 slots is 106 nt, ⁇ ⁇ ⁇ ⁇ 80 nt, 65 nt, 40 nt, 15nt, there are 10,510,100,501 types, and 104 nt, 80 nt, 65 nt, 40 nt, 15nt is also 106 nt, 83 nt , 62 nt, 41 nt, 13nt can also be 10,510,100,501 types.
  • Step (3) The degree of cell separation when a certain mRNA is used is calculated using the logarithmic variance of the expression level of that mRNA when that mRNA is used as an index.
  • the slot configuration is mRNA of “empty / miR-1 / empty / miR-2 / empty” in order from the 5 ′ side
  • ⁇ A, B, C, D ⁇ ⁇ (-0.4, -1.85), (-0.09, -1.7), (-0.42, -0.94), (-0.28, -1.05) ⁇ Therefore, calculating the correlation coefficient of two variables yields -0.320.
  • the sample variance and the correlation coefficient can be used as an index of two-parameter variation.
  • the miRNA-responsive mRNA can be synthesized by a person skilled in the art by any method known in genetic engineering if the miRNA-responsive mRNA is designed according to the above steps (1) to (3) and the sequence thereof is determined. In particular, it can be obtained by an in vitro transcription synthesis method using a template DNA containing a promoter sequence as a template.
  • the present invention can also be regarded as an mRNA production method including a design process including the steps (1) to (3) and a synthesis process.
  • the produced mRNA can be suitably used in the separation method described in detail in the second embodiment.
  • the present invention relates to a method for separating two or more target cells according to the second embodiment.
  • the method uses the miRNA-responsive mRNA designed and synthesized by the method of the first embodiment to separate two or more target cells using the translation amount of the marker gene as an index.
  • Measurement with miRNA-responsive mRNA can be said to be an index that reflects the characteristics of the target cell used in the method of the first embodiment. It is also possible to introduce into the mixture. However, it is an index that attempts to classify the combination of target cells that was the basis when designing mRNA as much as possible.
  • mRNA synthesized and synthesized according to the first embodiment is used. Therefore, one type of miRNA-responsive mRNA designed and synthesized according to the first embodiment can be used, and two types, three types, four types or more of miRNA-responsive mRNAs can also be used.
  • two or more types of miRNA-responsive mRNA are used, according to the first embodiment, two or more types of miRNA responsiveness having different 5′UTR sequences and marker genes designed to maximize cell separation are used.
  • Use a set of mRNAs In particular, it is more preferable to use a set composed of four types of miRNA-responsive mRNAs having different 5 ′ UTR sequences and marker genes.
  • the target cell can be isolated using the translation amount of the marker gene as an index.
  • the measurement can be performed by various methods, but the case where the marker gene is a fluorescent protein gene and the measurement is performed by flow cytometry will be described as an example.
  • the fluorescence intensity measured from four types of miRNA-responsive mRNA is FL1, FL2, FL3, and FL4, and the fluorescence intensity ratio of FL1 / FL2 and FL3 / FL4 is the X-axis and Y-axis, respectively. Cells can be separated with a dot plot.
  • the fluorescence intensity measured from 6 types of miRNA-responsive mRNAs is similarly divided into 2 types of fluorescence intensity ratios, and the cells are separated by dot plots with the X-axis, Y-axis, and Z-axis, respectively. There is no theoretical upper limit.
  • Such separation can also be performed by imaging cytometry using an image analyzer.
  • the image analyzer can obtain information on changes in the amount of translation of marker genes in the cell over time, and is excellent in terms of imaging and visualization.
  • the plasmid DNA in the PCR product was digested with the restriction enzyme Dpn I (Toyobo) at 37 ° C. for 30 minutes and purified using the MinElute PCR purification kit (QIAGEN) according to the manufacturer's instructions.
  • the 3′UTR sequence was amplified by PCR using oligonucleotide temp3UTR (SEQ ID NO: 405) as a template and Fwd3UTR (SEQ ID NO: 403) and Rev3UTR (SEQ ID NO: 404) as primers.
  • the 5′UTR sequence of the control mRNA was PCR amplified using the oligonucleotide temp5UTR (SEQ ID NO: 402) as a template and T7Fwd5UTR (SEQ ID NO: 400) and Rev5UTR (SEQ ID NO: 401) as primers.
  • These PCR products were purified using MinElute PCR purification kit (QIAGEN) according to the manufacturer's instructions.
  • PCR amplification fragment of marker protein coding region (final concentration 0.2 ng / ⁇ L)
  • PCR amplification fragment of 3'UTR (final concentration 10 nM)
  • 5 'UTR sequence Were mixed with each other (final concentration 10 nM)
  • One oligonucleotide was used as a template for synthesis of 1-slot mRNA, and two oligonucleotides were used as a template for synthesis of 5-slot mRNA.
  • the purified PCR fragment was used at a final concentration of 10 nM instead of the oligonucleotide for the 5 ′ UTR sequence.
  • the PCR product was purified using MinElute PCR purification kit (QIAGEN) according to the manufacturer's instructions.
  • the 5 ′ UTR sequence of 5-slot mRNA finally synthesized is shown in Table 3, the 5 ′ UTR sequence of 1-slot mRNA is shown in Table 5, and the ORF sequences of fluorescent proteins (SEQ ID NOs: 117, 118, 119, 120, And the 3 ′ UTR sequence (SEQ ID NO: 121, common to all mRNAs) is shown in Table 4.
  • the 5′UTR sequence of 5-slot control mRNA (SEQ ID NO: 1) is shown in Table 3 and 5 of 1-slot control mRNA.
  • the 'UTR sequence (SEQ ID NO: 116) is shown in Table 4.
  • miRNA-responsive mRNA is prepared using the MegaScript T7 kit (Ambion) in a modified protocol (see reference [Miki, K., et al, Cell Stem Cell, 2015] below). did. In this reaction, pseudouridine-5′-triphosphate and 5-methylcytidine-5′-triphosphate (TriLink BioTechnologies) were used in place of uridine triphosphate and cytidine triphosphate, respectively. Prior to the IVT (mRNA synthesis) reaction, guanosine-5′-triphosphate was diluted 5-fold with Anti Reverse Cap Analog (New England Biolabs).
  • the reaction mixture was incubated at 37 degrees for 4 hours, TURBO DNase (Ambion) was added and then incubated at 37 degrees for an additional 30 minutes.
  • the obtained mRNA was purified by FavorPrep Blood / Cultured Cells total RNA extraction column (Favorgen Biotech) and incubated at 37 degrees for 30 minutes using Antarctic Phosphatase (New England Biolabs). Then, it further refine
  • hmAG1, hmKO2, tagBFP and hdKRed are blue laser (488 nm) and FITC filter (530/30 nm), green laser (561 nm) and PE filter (585/42 nm), purple laser (405 nm) and Pacific Blue Detection was performed with a filter (450 nm / 40 nm), and a violet laser (405 nm) and a Qdot 605 filter (610/20 nm), respectively. Dead cells and debris were excluded based on forward and side light scatter values.
  • the fluorescence intensity of hmAG1 expressed from the reporter mRNA is divided by the fluorescence intensity of tagBFP expressed from the co-introduced control mRNA, and the geometric mean value in the analyzed cell population is calculated as the reporter mRNA. It was set as the fluorescence ratio.
  • the relative ratio of the fluorescence ratio in the presence of the miR-1 inhibitor (target miRNA active state) is defined as “Relative expression” with reference to the fluorescence ratio in the presence of the miRNA inhibitor to which the reporter mRNA responds. Defined.
  • the “Relative expression” value was measured in the presence of one miRNA inhibitor, and the sum of the two measured values was defined as “Estimated expression”.
  • the “Relative expression” value is measured in the presence of two of the three miRNA inhibitors, and the sum of the measured three values is called “Estimated expression”. did.
  • RNA Synthetic Device is based on the control of mRNA and post-transcriptional / translational steps, miRNAs that act on mRNA are used as marker molecules inside cells.
  • RNA Synthetic Device is based on the control of mRNA and post-transcriptional / translational steps, miRNAs that act on mRNA are used as marker molecules inside cells.
  • high-throughput analysis such as microarray and next-generation sequencing, first, (1) comprehensive quantitative detection of miRNA, then (2) easy handling from a large number of variables such as multivariate analysis A large number of synthetic variables are extracted, and the state of the cells is distinguished based on the extracted variables (the left figure in FIG. 1a).
  • the number of signals that can be detected simultaneously non-invasively (without killing cells) is limited, and cannot be handled by a detection probe corresponding to one-to-one. Therefore, in order to detect multi-factor information in living cells, the multi-factor information is first summarized, and then the resulting synthesized parameter is detected (right diagram in FIG. 1a). Then, even with a limited number of signals that can be detected at the same time, it is possible to directly detect a synthetic parameter derived from the quantitative information of a large number of living cell factors and extracted from the essence thereof.
  • one mRNA can detect multiple miRNAs countably, and that the sensitivity to each miRNA can be adjusted by the position of the miRNA target sequence on the mRNA.
  • mRNA that previously contained miRNA target sequences at only one location (1-slot mRNA, Fig. 6a, Miki, K. et al , Cell Stem Cell, 2015, International Publication WO2015 / 105172)
  • 5 miRNA target sequence insertion sites were designed in succession in the 5 ′ UTR (5-slot mRNA, FIG. 2a).
  • Examples of intracellular factors include miR-34a-5p as an example of miRNA showing weak activity in HeLa cells, miR-17-5p and miR-92a-3p as examples of strong activity, and examples of very strong activity We selected four types of miR-21-5p.
  • Two or three different miRNA target sequences were inserted into five slots, and 12 kinds of mRNAs encoding hmAG1 as a marker protein were randomly designed to synthesize mRNAs (FIG. 2a, Table 3).
  • the synthesized 5-slot mRNA was transfected into HeLa cells together with an mRNA encoding a fluorescent protein tagBFP and an inhibitor against miRNA to which 5-slot mRNA responds (miRVana miRNA inhibitor, Invitrogen) as a control for mRNA introduction. 24 hours after transfection, the fluorescence intensity of the marker protein was quantified using a flow cytometer, and the Relative expression value was analyzed.
  • mRNA having the target sequence of miR-17-5p in slot-2 and the target sequence of miR-92a-3p in slot-4 (Fig. 2b)
  • miRNA inhibitor miR-17-5p or miR-92a-3p
  • the expression level is only the other miRNA activity mi (miR-92a-3p or miR-17-5p), respectively. Is considered to be reflected.
  • the expression level of in the absence of an miRNA inhibitor is considered to reflect the activities of both miRNAs.
  • the value of Relative expression reflecting both miRNA activities was close to the integrated value of Relative expression values in response to individual miRNA activities (this is the predicted expression level, estimated expression).
  • a series of 5-slot mRNAs in which one, two or three are occupied by the same miRNA target sequence are miR34a-5p, miR-92a-3p. , miR17-5p or miR-21-5p were designed and mRNA was synthesized (Fig 2d, Table 3).
  • the synthesized 5-slot mRNA was transfected into HeLa cells together with an inhibitor against miRNA to which the fluorescent protein tagBFP and 5-slot mRNA respond, respectively, as a control for mRNA introduction. 24 hours after transfection, the fluorescence intensity of the marker protein was quantified using a flow cytometer, and the Relative expression value was analyzed.
  • the expression level (Relative expression) of each 5-slot mRNA is considered to be an integrated value of miRNA responsiveness ( ⁇ ) in each slot (Fig. 2d, robot). Therefore, miRNA responsiveness ( ⁇ ) in each slot was calculated for each of the four types of miRNAs from the experimentally measured data set of Relative expression value (observed relative expression). The integrated value of miRNA responsiveness in each slot determined by this analysis was defined as the estimated expression level (estimated expression) 5- for each 5-slot mRNA.
  • 1-slot mRNA becomes slot-5 in any miRNA. Close values were shown (Fig. 6b).
  • the miRNA target sequence of 1-slot mRNA is located ⁇ 20 nt from the 5 'end of mRNA and AUG 23 nt (Fig. 6a). Therefore, this result indicates that the miRNA target sequence is not the 5' end. This suggests that the closer to the start codon, the higher the response sensitivity of mRNA, and the lower the response sensitivity depending on the distance from the start codon.
  • d is the distance ([nt]) from the start codon
  • ⁇ 0 is the virtual response sensitivity when the distance is 0 [nt] for each miRNA.
  • the miRNA translation suppression effect (local repression, -log ( ⁇ )) can be determined by using the distance ⁇ (d [nt]) from the start codon to the miRNA target sequence and the variable ⁇ regardless of the miRNA type. I was able to explain. In this analysis, ⁇ -0.576 was obtained as the value of the common variable ⁇ . In other words, when designing an mRNA containing a miRNA target sequence in the 5'UTR mi, the translation suppression effect by miRNA is generally considered to be proportional to the -0.576 power of the distance from the start codon to the miRNA target sequence, regardless of the type of miRNA. .
  • the miRNA activity for each cell type was quantified exploratoryly.
  • the miRNA not containing CAU was extracted from 270 (Fig. 3a, Table 4).
  • 90 were synthesized as hmAG1, another 90 as tagBFP, and the remaining 90 as 1-slot mRNA that encodes hdKRed as a marker fluorescent protein.
  • the 5 'UTR sequence of the prepared mRNA is shown in Table 5 IV.
  • Analysis target cells are mixed with 1 type of 1-slot mRNA encoding hmAG1, tagBFP, and hdKRed with different miRNA target sequences inserted, and a total of 4 types of hmKO2 mRNA used as mRNA transfer controls. Transfected. That is, 1-slot mRNA was transfected with a total of 90 combinations.
  • the expression level of fluorescent protein between cells was standardized using HeLa cells as a reference. Specifically, a scatter diagram of the fluorescence ratio of each cell and the fluorescence ratio of HeLa cells was created, linear regression was performed for each fluorescent protein, and linear correction was performed so that the slope became 1 (FIG. 7b). . As a result, the bias between cells was corrected, and each 1-slot mRNA was distributed diagonally when creating a scatter plot, but the distribution of fluorescence ratios of hmAG1, tagBFP and hdKRed did not match. This indicates that there is a bias due to the difference in the fluorescent protein used as a marker.
  • each fluorescence ratio was standardized to an average of 0.5 and a standard deviation of 0.15 (FIG. 7c).
  • a comparison of NHDF and hiPSC for the normalized fluorescence ratio is shown in FIG. 3c.
  • This correction value was used as a miRNA activity profile for each cell, and analyzed by principal component analysis as an example of a linear model. For the principal component analysis, the prcomp function of the statistical package R was used.
  • the eight cell conditions were classified (FIG. 3d). This indicates that these cells can be classified for statistical analysis according to the miRNA activity profile obtained by exploratory analysis using 1-slot mRNA.
  • Components obtained by principal component analysis are expressed as a linear combination of 270 miRNA activities.
  • multiple miRNA activities in cells could be measured quantitatively by one mRNA with multiple target sequences, and the detection sensitivity of miRNA activity could be controlled by the distance between the target sequence and the start codon . Therefore, taking the logarithm of the expression level of the marker protein, a plurality of miRNA activities are aggregated in a linear model (FIG. 1b).
  • any weight can be realized for each miRNA (FIG. 1b).
  • the multivariate miRNA activity profile in the cell can be aggregated as a ratio of one fluorescence value by designing two miRNA response mRNAs.
  • the target cells can be classified alive by using mRNA that maximizes the variance of the values measured in the target cells.
  • the predicted value of the expression level of 5-slot mRNA containing the target sequence of 26 miRNA was calculated in 8 types of cells, and mRNA (Estimated expression ⁇ 0.05) with extremely small expression level in any cell was excluded. For the remaining mRNA, the variance of the predicted expression level in 8 cells was calculated, and the mRNA that maximized the variance was defined as 5-slot mRNA # 1 (hmAG1). Next, the ratio of 5-slot mRNA # 1 to the predicted expression level was calculated, and the mRNA whose value maximizes the dispersion of 8 cells was defined as 5-slot mRNA # 2 (hmKO2).
  • the correlation coefficient between the ratio of 5-slot mRNA # 1 and 5-slot mRNA # 2 ⁇ and the predicted expression level of the new mRNA is less than 0.3 ⁇ ⁇ , and the dispersion of 8 cells is maximized in these two-dimensional data.
  • MRNA to be obtained was determined and designated as 5-slot mRNA # 3 (tagBFP).
  • 5-slot mRNA # 4 (hdKRed) ⁇ ⁇ that maximizes the dispersion of 8 cells in the two-dimensional data of 5-slot mRNA # 1 and # 2 ⁇ ratio and 5-slot mRNA # 3 and # 4 ⁇ ratio was obtained. .
  • a set of 5-slot mRNA obtained by a series of computational searches is shown in Fig. 3e.
  • FIG. 3f shows the estimation result of the distribution of 8 cells when this mRNA set was transfected.
  • the 4 designed 5-slot mRNAs were mixed and transfected into HeLa cells, NHEK, NHDF, hiPSC and hiPSC-14d, and flow cytometry was performed 24 hours later. After fluorescence correction, two fluorescence ratios of hmAG1 / hmKO2 and tagBFP / hdKRed were determined for each analyzed cell, and the cell distribution was shown in a density plot (FIG. 3g). These five types of cells were distributed in different locations using the same 5-slot mRNA set. Based on these results, two parameters extracted from 6 types of miRNA activity with a linear model were directly measured using 4 types of 5-slot mRNA, and 5 types of cells were isolated based on this parameter. It has become possible. In addition, similar experiments were performed with a set of mRNA that does not respond to miRNA and a set of 1-slot miRNA-responsive mRNA ⁇ , but these cell types could not be separated (Fig. 8).
  • hiPSC was cultured in the absence of bFGF, and on the day of culture start (day 0) and 1 (day 1), 3 (day 3), 6 (day 6), 9 (day 9), or 14 days later (day 14), One kind of 1-slot mRNA encoding hmAG1, tagBFP, and hdKRed each having a different miRNA target sequence inserted, and a total of four kinds of mRNAs, hmKO2 mRNA used as a control for mRNA introduction, were mixed and transfected. At this time, the same transfection as the six types of controls used in the primary search analysis (FIG. 3a) was performed. That is, 24 types of transfection were performed in each culture condition (FIG. 4a).
  • the dist function and hclust function of the statistical package R were used as before. Principal component analysis was performed again with only the selected 23 miRNAs, and 11 miRNAs with high contribution to the first component or the second component were selected. Using these 11 miRNAs, the 5-slot mRNA set obtained by performing the same calculation as the primary search analysis (Fig. 3e, f) is shown in Fig. 4e, and when this mRNA set is transfected.
  • FIG. 4f shows the estimation result of the cell distribution under each culture condition.
  • FIG. 4g shows the results of actually transfecting these four 5-slot mRNAs into cells of each culture condition and performing flow cytometry.
  • MicroRNA profiling reveals two distinct p53-related human pluripotent stemcell states. Neveu P., Kye MJ., Qi S., Buchholz DE., Clegg DO., Sahin M., Park IH., Kim KS., Daley GQ., Kornblum HI., Shraiman BI., Kosik KS. Cell Stem Cell, 7 (6): 671-81, 2010 Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches.

Abstract

The present invention is a method for designing mRNA which can be identified with a high degree of accuracy while the cell is still alive. The method is for designing mRNA comprising at least two miRNA response elements, wherein the mRNA comprises at least two miRNA response elements and marker gene elements functionally bonded to the at least two miRNA response elements. The method comprises the following steps: (1) a step in which the translation inhibiting effects of mRNA comprising one miRNA response element are measured in at least two target cells; (2) a step in which, on the basis of the measurement results from step (1), the translation inhibiting effects of mRNA comprising at least two miRNA response elements are calculated in each target cell; and (3) a step in which, on the basis of the values calculated in step (2), the mRNA comprising at least two miRNA response elements and exhibiting the largest difference, in terms of translation inhibiting effects, between the at least two target cells is selected.

Description

mRNAの設計方法mRNA design method
 本発明は、mRNAの設計方法に関する。 The present invention relates to a method for designing mRNA.
 多細胞生物の組織や器官は、多種類の細胞で構成されている。ヒトは、60兆(6x1013)個もの細胞から構成され、その種類は、成熟細胞だけでも約400種程度にも及ぶ。これらの細胞については、個々の細胞の機能を解析するだけでなくて、医療応用のための細胞調製において、細胞種を判別したり、同定したりする技術が重要になってきている。 The tissues and organs of multicellular organisms are composed of many types of cells. Humans are composed of as many as 60 trillion (6 × 10 13 ) cells, and there are about 400 types of mature cells alone. For these cells, not only analyzing the functions of individual cells but also techniques for discriminating and identifying cell types in the preparation of cells for medical applications.
 細胞を同定するためには、特異的に発現した細胞表面のマーカー因子を、抗体で検出する手法が一般的に知られている。しかし、抗体で細胞内の情報を検出するためには、対象細胞を固定・膜透過させる必要があり、生細胞の分取には応用することができないという問題があった。また、細胞表面に必ずしも細胞の特定が可能なレセプターが存在するものではない。また、抗体による細胞のマーカー因子検出のような、一因子を、positive/negative(陰性または陽性)の2つに分類する手法は、細胞を定性的に分類する手法となり、精密な分類が難しいという問題がある。 In order to identify a cell, a technique for detecting a marker factor on a cell surface specifically expressed with an antibody is generally known. However, in order to detect intracellular information with an antibody, it is necessary to fix the target cell and permeate the membrane, and there is a problem that it cannot be applied to sorting of living cells. In addition, a receptor capable of identifying a cell does not necessarily exist on the cell surface. In addition, a method of classifying one factor into two, positive / negative (negative or positive), such as detection of a marker factor of a cell by an antibody, is a method of qualitatively classifying a cell, and it is said that precise classification is difficult. There's a problem.
 細胞をより精密に分類する方法、すなわち細胞を定量的に分類する方法としては、例えば、マイクロアレイや次世代シーケンシングなどを用いた多変量の測定に基づく細胞のプロファイリングが知られている。これらの方法では、タンパク質やRNAなどの細胞内分子について、多種類の分子を同時に定量測定し、また多変量解析などの統計解析を用いるなどして、定量的に細胞を分類することが可能である。しかし、測定をなされた細胞は破壊されてしまうため、細胞を生存させた状態では測定できないという問題がある。 As a method of classifying cells more precisely, that is, a method of classifying cells quantitatively, for example, cell profiling based on multivariate measurement using a microarray or next-generation sequencing is known. With these methods, it is possible to classify cells quantitatively by simultaneously quantitatively measuring many types of intracellular molecules such as proteins and RNA, and using statistical analysis such as multivariate analysis. is there. However, since the measured cell is destroyed, there is a problem that it cannot be measured in a state where the cell is alive.
 そこで、所望の細胞に特異的に発現するマイクロRNA(以下、miRNAと指称する)を利用して、マーカーの遺伝子発現を抑制するという点に着目し、当該システムを利用した細胞分離方法が、提案されている(特許文献1)。 Therefore, focusing on the point of suppressing the gene expression of the marker using microRNA (hereinafter referred to as miRNA) specifically expressed in a desired cell, a cell separation method using the system is proposed. (Patent Document 1).
国際公開WO2015/105172International Publication WO2015 / 105172
 特許文献1の方法では、着目する所望の細胞によっては、細胞を分類するための適切なmiRNAが選択できないこともあり、当該システムの改良が望まれている。 In the method of Patent Document 1, depending on the desired target cell, an appropriate miRNA for classifying the cell may not be selected, and an improvement of the system is desired.
 本発明者らは、2以上のmiRNA応答配列とそれと機能的に連結したマーカー遺伝子配列を含むmRNAについて、1つのmRNAが複数のmiRNAを可算的に検出できること、各miRNAへの検出感度をmRNA上のmiRNA標的配列の位置で調節できることを発見した。すなわち、多因子の情報を先に要約してから、その結果合成されたパラメータを検出することで、同時に検出可能な、限られたシグナル数でも、多数の生細胞内因子の定量情報に由来し、そのエッセンスを抽出した合成パラメータを直接検出できることを見出し、本発明を完成するに至った。 The present inventors are able to detect a plurality of miRNAs in a countable manner with respect to mRNA containing two or more miRNA response sequences and a marker gene sequence operably linked thereto, and the detection sensitivity to each miRNA on the mRNA. It was found that the miRNA can be regulated by the position of the target sequence. That is, by summarizing information on multiple factors first, and then detecting the resulting synthesized parameters, even a limited number of signals that can be detected at the same time are derived from quantitative information on many factors in living cells. The present inventors have found that the synthesis parameter from which the essence is extracted can be directly detected, and have completed the present invention.
 したがって、本発明の課題は以下の手段により解決することができる。
 [1] 以下の工程を含む、miRNA応答配列を2以上含有するmRNAを設計する方法であって、当該miRNA応答配列を2以上含有するmRNAが、2以上のmiRNA応答配列とそれと機能的に連結したマーカー遺伝子配列を含むmRNAである、方法;
(1)1つのmiRNA応答配列を有するmRNAの翻訳抑制効果を2以上の対象細胞で測定する工程、
(2)前記工程(1)の測定結果に基づき、各対象細胞でのmiRNA応答配列を2以上含有するmRNAの翻訳抑制効果を算出する工程、
(3)前記工程(2)で算出された値に基づき、前記2以上の対象細胞間における翻訳抑制効果の差が最大になる、miRNA応答配列を2以上含有するmRNAを選択する工程。
 [2] 前記工程(1)と工程(2)の間に、前記工程(1)の測定結果に基づき、前記工程(2)の算出に使用するmiRNA応答配列の種類を、多変量解析を用いて限定する工程をさらに含む、[1]に記載の方法。
 [3] 前記工程(2)の翻訳抑制効果が、前記2以上のmiRNA応答配列のそれぞれの翻訳抑制効果-log(ρ)を、miRNAの数だけ合算して得られるものであり、前記それぞれの翻訳抑制効果-log(ρ)が、下記式
Figure JPOXMLDOC01-appb-M000002
 
(式中、ρは、miRNAによる翻訳抑制効果を表し、
 d [nt]は、開始コドンからmiRNA標的配列までの距離 を表し、
 ξは、-0.576を表し、
 ρ0 はそれぞれのmiRNAについて距離0 [nt] の時の仮想的な翻訳抑制効果を表す)
に基づいて算出される、[1]または[2]に記載の方法。
 [4] 前記工程(3)が、各対象細胞におけるマーカー遺伝子の翻訳量の分散を最大にする、miRNA応答配列を2以上含有するmRNAを選択する工程を含む、[1]~[3]のいずれか1項に記載の方法。
 [5] [1]~[4]のいずれか1項に記載の方法でmRNAを設計する工程と、
 前記設計されたmRNAを、遺伝子工学的手法により合成する工程と
を含む、miRNA応答配列を2以上含有するmRNAの製造方法。
 [6] [1]~[4]のいずれか1項に記載の方法で設計されたmRNAを用いて、マーカー遺伝子の翻訳量を指標として2以上の対象細胞を分離する方法。
 [7] 前記mRNAが、[1]~[4]のいずれか1項に記載の方法で設計された、マーカー遺伝子配列及び5’UTRの配列がそれぞれ異なる4種のmRNAである、[6]に記載の方法。
Therefore, the problems of the present invention can be solved by the following means.
[1] A method for designing mRNA containing two or more miRNA response elements, comprising the following steps, wherein mRNA containing two or more miRNA response elements is functionally linked to two or more miRNA response elements A mRNA comprising a marker gene sequence obtained;
(1) a step of measuring the translation inhibitory effect of mRNA having one miRNA response element in two or more target cells;
(2) A step of calculating the translational suppression effect of mRNA containing two or more miRNA response sequences in each target cell based on the measurement result of the step (1),
(3) A step of selecting mRNA containing two or more miRNA response elements that maximizes the difference in translational suppression effect between the two or more target cells based on the value calculated in the step (2).
[2] Based on the measurement result of the step (1) between the steps (1) and (2), the type of miRNA response element used for the calculation of the step (2) is determined using multivariate analysis. The method according to [1], further comprising a step of limiting.
[3] The translation inhibitory effect of the step (2) is obtained by adding the translation inhibitory effect -log (ρ) of each of the two or more miRNA response elements by the number of miRNAs. Translation suppression effect -log (ρ)
Figure JPOXMLDOC01-appb-M000002

(In the formula, ρ represents the translation suppression effect by miRNA,
d [nt] represents the distance from the start codon to the miRNA target sequence,
ξ represents -0.576,
ρ 0 represents the hypothetical translational suppression effect at a distance of 0 [nt] for each miRNA)
The method according to [1] or [2], which is calculated based on the above.
[4] The step (3) includes the step of selecting mRNA containing two or more miRNA response elements that maximizes the distribution of the translation amount of the marker gene in each target cell. The method according to any one of the above.
[5] Designing mRNA by the method according to any one of [1] to [4];
A method for producing mRNA containing two or more miRNA response elements, comprising a step of synthesizing the designed mRNA by a genetic engineering technique.
[6] A method of separating two or more target cells using the mRNA designed by the method according to any one of [1] to [4], using the translation amount of the marker gene as an index.
[7] The mRNAs are four types of mRNAs, which are designed by the method according to any one of [1] to [4] and have different marker gene sequences and 5 ′ UTR sequences, respectively [6] The method described in 1.
 本発明によれば、所望の細胞をより高精度で分離することが可能な、miRNA応答配列を2以上含有するmRNAを設計する方法が提供される。当該mRNAは、1分子で多数のmiRNAに応答し、かつ個々のmiRNAへの応答の程度(検出感度)を任意に調節可能なプローブとして機能する。すなわち、本発明により、細胞内の多因子情報を線形モデルで抽出することに成功した。従来技術では、非侵襲的に(細胞を殺さずに)同時に検出可能なシグナルの数は限られており、1対1に対応した検出プローブでは対応できなかったが、本発明の設計方法により、同時に検出可能な、限られたシグナル数でも、多数の生細胞内因子の定量情報に由来し、そのエッセンスを抽出した合成パラメータを直接検出することができるようになった。 According to the present invention, there is provided a method for designing an mRNA containing two or more miRNA response elements, which can separate desired cells with higher accuracy. The mRNA functions as a probe that responds to a large number of miRNAs per molecule and can arbitrarily adjust the degree of response to individual miRNAs (detection sensitivity). That is, according to the present invention, intracellular multifactor information was successfully extracted with a linear model. In the prior art, the number of signals that can be detected simultaneously in a non-invasive manner (without killing cells) is limited, and cannot be handled by a detection probe corresponding to one-to-one. Even with a limited number of signals that can be detected at the same time, it is now possible to directly detect the synthetic parameters from which the essences are derived, derived from quantitative information on a large number of living intracellular factors.
図1は、生細胞内で多変量計算を実行するスキームを示す。図1aは、旧来の方法(左)では、個々の細胞内情報(今回の場合はmiRNA情報)を個別に検出し、そのあとで多変量解析により情報を抽出していることを示し、本発明(右)ではあらかじめ細胞内で多変量の計算を行い、その結果を直接検出することを示す。図1bは、多数のmiRNAに応答するmRNAを用いた線形多変量計算を示す。mRNAが複数のmiRNA活性に対して独立に応答し、かつ個々のmiRNAへの応答性能を調節できればよい。2つのmRNAを用いて、その比率を算出すれば、多数のmiRNAに任意の比重をつけた線形計算を実現できる。FIG. 1 shows a scheme for performing multivariate calculations in living cells. FIG. 1a shows that in the conventional method (left), individual intracellular information (in this case, miRNA information) is individually detected, and then information is extracted by multivariate analysis. (Right) shows that multivariate calculation is performed in advance in the cell and the result is detected directly. FIG. 1b shows a linear multivariate calculation using mRNAs that respond to multiple miRNAs. It suffices that the mRNA responds independently to a plurality of miRNA activities and can regulate the response performance to each miRNA. If the ratio is calculated using two mRNAs, a linear calculation with an arbitrary specific gravity can be realized for many miRNAs. 図2は、合成mRNAは複数miRNAへ独立で、調節可能な応答を実現できることを示す。図2aは、5つのスロットを持つmRNAの5’UTRのデザインを示す。各スロットはmiRNAに相補的な配列を挿入する。AUGはマーカータンパク質 (hmAG1) の開始コドン。下部は4種類のmiRNAに応答するmRNAシリーズ。灰, miR-34a-5p; 青,miR-17-5p; 緑, miR-21-5p; 赤, miR-92a-3pへの応答配列を示す。図2bは、miR-17-5p とmiR-92a-3p に応答するmRNAの例を示す。上部に5’ UTR の設計を示す。Relative expression は双方の存在下のマーカーの平均発現量に対する比率で示す。一方のみのmiRNA阻害剤存在下での Relative expression の積をEstimated expression とした。図2cは、実験的に測定された Relative expression値(Observed relative expression) とEstimated Expression の比較を示す。ランダムに設計した12種類について、独立した3回の実験結果をプロットした。図2dは、同じmiRNAへの応答配列を複数含むmRNAシリーズを示す。各mRNAは1~5箇所に miRNA応答配列を含む。mRNAの発現量は各スロットにおける抑制効果 (ρ, rho) の積算値となると予測される。図2eは、実験的に測定された Relative expression値(Observed relative expression)と推測値の比較を示す。4種類のmiRNAについてそれぞれ比較した。図2fは、各スロットにおける抑制効果とスロットの開始コドンからの距離のプロットを示す。各スロットにおける抑制効果は、miRNAごとに e のデータから最小二乗法によるフィッティングで算出した。エラーバーは3回の解析結果の平均±標準偏差を示す。FIG. 2 shows that synthetic mRNA can achieve a regulatable response independent of multiple miRNAs. FIG. 2a shows the 5'UTR design of mRNA with 5 slots. Each slot inserts a sequence complementary to the miRNA. AUG is the start codon of marker protein (hmAG1). The lower part is an mRNA series that responds to four types of miRNAs. Response sequences to gray, miR-34a-5p; bitumen, miR-17-5p; green, miR-21-5p; red, miR-92a-3p. FIG. 2b shows examples of mRNAs that respond to miR-17-5p and miR-92a-3p. The design of 5 ’UTR is shown at the top. Relative expression is expressed as a ratio to the average expression level of the marker in the presence of both. The product of Relative expression in the presence of only one miRNA inhibitor was designated as Estimated expression. FIG. 2c shows a comparison of experimentally measured Relative expression values (Observed relative expression) and Estimated Expression. The results of three independent experiments were plotted for 12 randomly designed types. FIG. 2d shows a series of mRNAs containing multiple response elements to the same miRNA. Each mRNA contains a miRNA response element at 1 to 5 sites. The expression level of mRNA is predicted to be the integrated value of the suppression effect (ρ, rho) in each slot. FIG. 2e shows a comparison of experimentally measured Relative expression values (Observed relative expression) and estimated values. Four types of miRNA were compared. FIG. 2f shows a plot of the inhibitory effect in each slot and the distance of the slot from the start codon. The suppression effect in each slot was calculated by fitting by the least square method from the data of e for each miRNA. Error bars indicate the mean ± standard deviation of three analysis results. 図3は、複数miRNA活性の線形計算に基づく生細胞の分類を示す。図3aは、スクリーニングのスキームを示す。異なるmiRNA (a, b, c) に応答して異なる蛍光タンパク質 (hmAG1, tagBFP, hdKRed) を発現する 3 種類のmRNA (1-slot mRNA) と、miRNAに応答しないhmKO2の1-slot コントロールmRNAを同時に導入した。270種類のmiRNAはコントロールを含めて96種類のトランスフェクションになる。フローサイトメトリーで解析し、様々な細胞におけるmiRNA活性のプロファイルを得た。図3bは、ヒトiPS細胞(hiPS)を用いた、独立した2回のスクリーニング結果の比較を示す。緑, hmAG1; 青, tagBFP; 紫, hdKRed をマーカータンパク質として用いたmRNAの発現量を示す。図3cは、標準化したデータセットの細胞間比較を示す。正常ヒト皮膚線維芽細胞 (NHDF) と hiPSCの比較を例として示す。図3dは、主成分分析による細胞の分類。8種類の細胞と条件についてスクリーニングした結果を標準化して主成分分析を実施した結果を示す。第一成分(Component 1)と第二成分(Component 2) によるプロットを示した。図3eは、細胞間の分散を最大化するmRNAセットを示す。標準化後のデータセットをもとに、hmAG1 とhmKO2 の比率とtagBFP と hdKRed の比率をパラメータとして、細胞間の分散を最大化するmRNAセットを計算して設計した。図3fは、図3e のmRNAセットによる5種類の細胞の計算上の分類を示す。図3gは、mRNAセットによる生きた細胞の分類を示す。フローサイトメトリーの結果を、蛍光比率の2次元の密度プロットとして示した。赤字で示された細胞は赤の、その他の4種類の細胞を黒の密度として示した。FIG. 3 shows the classification of living cells based on a linear calculation of multiple miRNA activities. FIG. 3a shows the screening scheme. Three types of mRNA (1-slot s mRNA) 発 現 that expresses different fluorescent proteins (hmAG1, tagBFP, hdKRed) 応 答 in response to different miRNA (a, b, c), and hmKO2 1-slot control mRNA that does not respond to miRNA At the same time introduced. 270 miRNAs are 96 transfections including controls. Analyzed by flow cytometry, we obtained miRNA activity profiles in various cells. FIG. 3b shows a comparison of two independent screening results using human iPS cells (hiPS). The expression level of mRNA using green, hmAG1; bitumen, tagBFP; purple, hdKRed as marker proteins is shown. FIG. 3c shows a cell-to-cell comparison of the normalized data set. A comparison between normal human dermal fibroblast (NHDF) and hiPSC is shown as an example. FIG. 3d shows cell classification by principal component analysis. The results of performing principal component analysis by standardizing the results of screening for 8 types of cells and conditions are shown. The plot with the first component (Component 1) and the second component (Component 2) is shown. FIG. 3e shows a set of mRNAs that maximizes intercellular dispersion. Based on the standardized data set, the mRNA set that maximizes the dispersion between cells was calculated and designed using the ratio of hmAG1 and hmKO2 and the ratio of tagBFP and hdKRed as parameters. FIG. 3f shows the computational classification of the five types of cells according to the mRNA set of FIG. FIG. 3g shows the classification of living cells by mRNA set. Flow cytometry results are shown as a two-dimensional density plot of fluorescence ratio. Cells shown in red are red, and the other four types of cells are shown as black density. 図4は、複数miRNA活性の線形計算に基づくhiPS細胞の変化の追跡を示す。図4aは、二次スクリーニングのスキームを示す。図3のスクリーニングの結果から、hiPSC と hiPSC (14d) の差が大きかった54 miRNAを選び、24トランスフェクションの二次スクリーニングとした。図4bは、経時変化の追跡スキームを示す。hiPSCをbFGFの非存在下で多能性を失わせて自然に(ランダムに)分化させた。示された日数培養後、mRNAセットをトランスフェクションし、24時間後にフローサイトメトリーで解析した。図4cは、miRNA活性の経時的変化の比較を示す。測定した蛍光比率について、day 1 と day 3 の比較を例として示す。図4dは、スクリーニング結果の主成分分析の結果を示す。第一成分(Component 1)と第二成分(Component 2) によるプロットを示した。また、bFGF 存在下で 1-3 日培養した細胞を青で示した。図4eは、hiPSCをbFGFの非存在下で多能性を失わせて分化させた際の、細胞間の分散を最大化するmRNAセットを示す。細胞間の分散を最大化するmRNAセットを計算して設計した。図4fは、図4eのmRNAセットによる細胞の計算上の分類を示す。図4gは、mRNAセットによる生きた細胞の分類。フローサイトメトリーの結果を、蛍光比率の2次元の密度プロットとして示した。赤字で示された細胞は赤の、その他の4種類の細胞を黒の密度として示した。FIG. 4 shows the tracking of changes in hiPS cells based on linear calculations of multiple miRNA activity. FIG. 4a shows the secondary screening scheme. From the screening results shown in FIG. 3, 54 miRNA having a large difference between hiPSC and hiPSC (14d) was selected and used as a secondary screening for 24 transfections. FIG. 4b shows a tracking scheme over time. hiPSCs were naturally (randomly) differentiated in the absence of bFGF, losing pluripotency. After the indicated number of days of culture, the mRNA set was transfected and analyzed 24 hours later by flow cytometry. FIG. 4c shows a comparison of changes over time in miRNA activity. For the measured fluorescence ratio, a comparison between day 1 and day 3 is shown as an example. FIG. 4d shows the result of the principal component analysis of the screening result. The plot with the first component (Component 1) and the second component (Component 2) is shown. In addition, cells cultured for 1-3 days in the presence of bFGFb are shown in blue. FIG. 4e shows a set of mRNA that maximizes cell-to-cell dispersion when hiPSCs are differentiated by losing pluripotency in the absence of bFGF. An mRNA set that maximizes cell-to-cell dispersion was calculated and designed. FIG. 4f shows the computational classification of cells according to the mRNA set of FIG. 4e. FIG. 4g is a classification of living cells by mRNA set. Flow cytometry results are shown as a two-dimensional density plot of fluorescence ratio. Cells shown in red are red, and the other four types of cells are shown as black density. 図5は、miRNA 阻害剤によるmiRNA活性測定への影響を示す。図5aは、本実施例で使用したmiRNA阻害剤の独立性を確認した結果を示す。miRNAに応答するmRNAそれぞれについて、5種類のmiRNA阻害剤を細胞に導入した。各条件における発現量は、mRNAの応答するmiRNA阻害剤存在下での発現量を基準にした比率で示す。エラーバーは3回の実験の平均±標準偏差を示す。各miRNA阻害剤はクロストークしないことが確認された。図5bは、miRNA阻害剤の合計導入量の影響を確認した結果を示す。図5a と同様の実験を miR-1 阻害剤を 2 pmol または 4 pmol 加えて行った。 “w/o” の条件は図5a の “miR-1 (n.c.)” に相当する。当該条件では、無関係のmiRNA阻害剤の有無によって検出されるmiRNAの活性は変動しない。FIG. 5 shows the effect of miRNA inhibitor on miRNA activity measurement. FIG. 5a shows the results of confirming the independence of miRNA inhibitors used in this example. For each mRNA that responds to miRNA, five miRNA inhibitors were introduced into the cells. The expression level in each condition is shown as a ratio based on the expression level in the presence of the miRNA inhibitor to which mRNA responds. Error bars indicate the mean ± standard deviation of 3 experiments. It was confirmed that each miRNA inhibitor did not crosstalk. FIG. 5b shows the results of confirming the effect of the total amount of miRNA inhibitor introduced. The same experiment as in FIG. 5a was performed with the addition of miR-1 inhibitor 2 pmol or 4 pmol 実 験. The condition “/ w” corresponds to “miR-1 (n.c.)” in FIG. Under such conditions, the activity of miRNA detected does not vary depending on the presence or absence of an irrelevant miRNA inhibitor. 図6は、標的配列の位置によるmiRNA検出力の違いを示す。図6aは、5-slot mRNA と1-slot mRNAの 5’ UTR の構造を示す。図6bは、各スロットにおける抑制効果を示す。miRNAごとに 図3e のデータから最小二乗法によるフィッティングで算出した。エラーバーは3回の解析結果の平均±標準偏差を示す。右のパネルは 1-slot mRNAの結果。1-slot mRNA は slot-5 に近い挙動を示す。FIG. 6 shows the difference in miRNA detectability depending on the position of the target sequence. FIG. 6a shows the structure of s5 ′ UTR of 5-slot mRNA and 1-slot mRNA. FIG. 6b shows the suppression effect in each slot. Each miRNA was calculated from the data in FIG. Error bars indicate the mean ± standard deviation of three analysis results. The right panel shows 1-slot mRNA results. 1-slot mRNA behaves like slot-5. 図7は、スクリーニング結果の標準化を示す。上図は、HeLa 細胞と正常ヒト肺線維芽細胞 (NHLF)の結果を示し、下図は、 HeLa 細胞とヒトiPS細胞 (hiPSC) の比較結果を示す。緑色プロットはhmAG1、青色プロットはtagBFP、および紫色プロットはhdKRed をマーカータンパク質として用いた際のmRNAの発現量を示す。図7aは、観察されたexpression 値の比較を示す。細胞ごとのバイアスが見られる。図7bは、細胞間のバイアスの標準化を示す。蛍光タンパク質ごとの細胞間の発現蛍光の違いを、HeLa細胞の結果を基準にして標準化した。しかし、蛍光タンパク質ごとに分布する位置が異なっている。図7cは、蛍光タンパク質間のバイアスの標準化を示す。蛍光タンパク質ごとに分布を標準化した。FIG. 7 shows the standardization of the screening results. The upper figure shows the results of HeLa cells and normal human lung fibroblast cells (NHLF), and the lower diagram shows the comparison results of HeLa cells and human iPS cell cells (hiPSC). The green plot shows hmAG1, the blue plot shows tagBFP, and the purple plot shows the expression level of mRNA when hdKRed is used as a marker protein. FIG. 7a shows a comparison of the observed expression values. There is a cell-by-cell bias. FIG. 7b shows the normalization of the bias between cells. The difference in expression fluorescence between cells for each fluorescent protein was normalized based on the results of HeLa cells. However, the distribution position is different for each fluorescent protein. FIG. 7c shows the normalization of bias between fluorescent proteins. Distribution was normalized for each fluorescent protein. 図8は、異なるmRNAセットによる細胞の分類結果を示す。図3gと同様の実験を異なるmRNAセットで行った。フローサイトメトリーの結果を、蛍光比率の2次元の密度プロットとして示した。赤字で示された細胞は赤の、その他の4種類の細胞を黒の密度として示した。図8aは、miRNAに応答しないコントロールmRNAのセットを用いた結果を示す。図8bは、活性のばらつきが大きかったmiRNAに応答する1-slot mRNAのセットを用いた結果を示す。図8cは、hiPSCの変化を追跡した時のmRNAセット(図4e)を用いた結果を示す。FIG. 8 shows the results of cell classification by different mRNA sets. Experiments similar to FIG. 3g were performed with different mRNA sets. Flow cytometry results are shown as a two-dimensional density plot of fluorescence ratio. Cells shown in red are red, and the other four types of cells are shown as black density. FIG. 8a shows the results using a set of control mRNAs that do not respond to miRNA. FIG. 8b shows the results using a set of 1-slot mRNAs that responded to miRNAs with large variations in activity. FIG. 8 c shows the results using the mRNA set (FIG. 4 e) when tracking changes in hiPSC. 図9は、異なるmRNAセットによる hiPSC の追跡結果を示す。図4gと同様の実験を行い、フローサイトメトリーの結果を蛍光比率の2次元の密度プロットとして示した。赤字で示された細胞は赤の、その他の8種類の細胞を黒の密度として示した。図9aは、その他の培養条件の結果を示す。図4e~4g のmRNAセットを用いて、異なる培養条件の細胞を分離した。図9bは、他のmRNAセットを用いた実験の結果を示す。細胞種を分類した時のmRNAセット (図3e) を使用した。FIG. 9 shows the results of tracking hiPSC with different mRNA sets. The same experiment as in Fig. 4g was performed, and the results of flow cytometry were shown as a two-dimensional density plot of the fluorescence ratio. Cells shown in red are red, and the other eight types of cells are shown as black density. FIG. 9a shows the results of other culture conditions. Cells of different culture conditions were isolated using the mRNA set of FIGS. FIG. 9b shows the results of experiments using other mRNA sets. The mRNA set 時 (Fig. 3e) 時 when the cell types were classified was used.
 以下に、本発明を、実施形態を挙げて詳細に説明する。以下の実施形態は本発明を限定するものではない。 Hereinafter, the present invention will be described in detail with reference to embodiments. The following embodiments do not limit the present invention.
 本発明は、第1実施形態によれば、miRNA応答配列を2以上含有するmRNAを設計する方法であって、当該miRNA応答配列を2以上含有するmRNAが、2以上のmiRNA応答配列とそれと機能的に連結したマーカー遺伝子配列を含むmRNAである、方法に関する。本実施形態による方法は、以下の工程を含む。
(1)1つのmiRNA応答配列を有するmRNAの抑制効果を2以上の対象細胞で測定する工程、
(2)前記工程(1)の測定結果から、各細胞でのmiRNA応答配列を2以上含有するmRNAの翻訳抑制効果を算出する工程、
(3)前記工程(2)で算出された値より、2以上の対象細胞間における翻訳抑制効果の差が最大になるmiRNA応答配列を2以上含有するmRNAを選択する工程。
According to the first embodiment, the present invention is a method for designing mRNA containing two or more miRNA response elements, wherein the mRNA containing two or more miRNA response elements has two or more miRNA response elements and a function thereof. The present invention relates to a method, wherein the mRNA comprises an operably linked marker gene sequence. The method according to the present embodiment includes the following steps.
(1) a step of measuring the inhibitory effect of mRNA having one miRNA response element in two or more target cells;
(2) a step of calculating the translational inhibitory effect of mRNA containing two or more miRNA response elements in each cell from the measurement result of the step (1),
(3) A step of selecting mRNA containing two or more miRNA response elements that maximizes the difference in translational suppression effect between two or more target cells from the value calculated in the step (2).
 本発明は、2以上のmiRNAの応答配列(以下、miRNA応答配列、あるいはmiRNA標的配列ともいう)とこれに機能的に連結したマーカー遺伝子を含むメッセンジャーRNA(mRNA)が、各miRNA応答配列個別の翻訳抑制効果の積算値に翻訳抑制効果を備え、かつ、各miRNA応答配列個別の翻訳抑制効果は、各miRNA応答配列の開始コドンからの距離に反比例するという発見に基づく。 In the present invention, two or more miRNA response sequences (hereinafter also referred to as miRNA response sequences or miRNA target sequences) and a messenger RNA (mRNA) that includes a marker gene operably linked thereto are provided for each miRNA response sequence. The integrated value of the translational suppression effect has a translational suppression effect, and the translational suppression effect of each miRNA response element is based on the discovery that it is inversely proportional to the distance from the start codon of each miRNA response element.
 本発明において、2以上のmiRNAの応答配列とマーカー遺伝子が機能的に連結するとは、マーカー遺伝子をコードするオープンリーディングフレーム(ただし、開始コドンを含む。)の5’UTR内に、2以上のmiRNA応答配列を備えることを意味する。このようなmRNAは、細胞内での対応するmiRNAの発現を指標として、細胞種を分離することができる。さらに詳細には、細胞内に対応するmiRNAが発現していると、その発現量に応じて、マーカー遺伝子の翻訳が抑制される。ここでいう、「miRNAの発現」とは、成熟miRNAが、所定の複数の蛋白質と相互作用して、RNA-induced silencing complex(RISC)を形成した状態にあるmiRNAが存在していることをいうものとする。「成熟miRNA」は、一本鎖RNA(20~25塩基)であり、核外でDicerによる切断によってpre-miRNAから生じ、「pre-miRNA」は、Droshaと呼ばれる核内酵素による部分切断によって、DNAから転写された一本鎖RNAであるpri-mRNAから生じる。本発明におけるmiRNAとは、少なくとも10,000種類以上のmiRNAから選択することができる。詳細には、データベースの情報(例えば、http://www.mirbase.org/又はhttp://www.microrna.org/)に登録されたmiRNA、及び/または当該データベースに記載されている文献情報に記載されたmiRNAより選択することができ、市販のライブラリのmiRNAより選択することもできる。すなわち、本発明においては、指標となるmiRNAは特定のmiRNAに限定されるものではない。 In the present invention, two or more miRNA response elements and a marker gene are operably linked to each other in the 5′UTR of the open reading frame (including the start codon) encoding the marker gene. Means comprising a response sequence. Such mRNA can be used to separate cell types using the expression of the corresponding miRNA in the cell as an index. More specifically, when the corresponding miRNA is expressed in the cell, the translation of the marker gene is suppressed depending on the expression level. As used herein, “miRNA expression” refers to the presence of miRNA in a state in which a mature miRNA interacts with a predetermined plurality of proteins to form an RNA-induced silencing complex (RISC). Shall. “Mature miRNA” is a single-stranded RNA (20-25 bases), and is generated from pre-miRNA by cleavage by Dicer outside the nucleus, and “pre-miRNA” is obtained by partial cleavage by a nuclear enzyme called Drosha, It originates from pri-mRNA, a single-stranded RNA transcribed from DNA. The miRNA in the present invention can be selected from at least 10,000 miRNAs. Specifically, miRNA registered in database information (for example, http://www.mirbase.org/ or http://www.microrna.org/) and / or literature information described in the database Or can be selected from commercially available miRNAs from libraries. That is, in the present invention, the miRNA serving as an index is not limited to a specific miRNA.
 本実施形態による設計方法に用いる、上記のようなmiRNA応答配列を2以上含有するmRNAを本明細書中で、miRNA応答性mRNA、n-slot mRNA(nは2以上の整数)、あるいはレポーターmRNAとも指称する。このようなmiRNA応答性mRNAの基本的な構造について説明する。 An mRNA containing two or more miRNA response elements as described above used in the design method according to this embodiment is an miRNA-responsive mRNA, an n-slot mRNA (n is an integer of 2 or more), or a reporter mRNA. Also referred to. The basic structure of such miRNA-responsive mRNA will be described.
 本実施形態において設計するmRNAの模式的な構造を、図2aの上図に例示する。図2aに示すmRNAは、5’末端から、5’から3’の向きに、Cap構造(7メチルグアノシン5’リン酸)、miRNAの応答配列を挿入可能な5つのスロット、マーカー遺伝子をコードするオープンリーディングフレーム、並びに、ポリAテイルを備える。 The schematic structure of mRNA designed in this embodiment is illustrated in the upper diagram of FIG. The mRNA shown in FIG. 2a encodes a marker gene from the 5 ′ end in a 5 ′ to 3 ′ direction, a Cap structure (7 methylguanosine 5 ′ phosphate), 5 slots into which miRNA response elements can be inserted, and a marker gene. With open reading frame and poly A tail.
 ここで、「スロット」とは、miRNA標的配列を挿入可能な部分を概念的に示すものであって、各スロットは、miRNA標的配列、またはmiRNAの標的ではない配列(空スロットともいう)から構成される。ただし、5つのスロットのうち、2以上には、同一もしくは異なるmiRNA標的配列が挿入される。各スロットに挿入されるmiRNA標的配列、またはmiRNAの標的ではない配列の塩基数は、同一であってもよく異なっていてもよいが、概ね20~25塩基である。スロット間には、任意の数の塩基が存在してもよく、存在しなくてもよい。また、3以上のスロットを含むmRNAにおいては、各スロット間の塩基数及び配列が同じであっても異なっていてもよい。 Here, “slot” conceptually indicates a portion into which a miRNA target sequence can be inserted, and each slot is composed of a miRNA target sequence or a sequence that is not a miRNA target (also referred to as an empty slot). Is done. However, the same or different miRNA target sequences are inserted into two or more of the five slots. The number of bases of the miRNA target sequence inserted into each slot or the non-miRNA target sequence may be the same or different, but is generally 20 to 25 bases. Any number of bases may or may not exist between the slots. In addition, in an mRNA containing three or more slots, the number of bases and the sequence between the slots may be the same or different.
 miRNA標的配列は、指標となるmiRNAに特異的に結合可能な配列をいう。miRNA標的配列は、例えば、指標となるmiRNAに完全に相補的な配列であることが好ましい。あるいは、当該miRNA標的配列は、miRNAにおいて認識され得る限り、完全に相補的な配列との不一致(ミスマッチ)を有していても良い。当該miRNAに完全に相補的な配列からの不一致は、所望の細胞において、通常にmiRNAが認識し得る不一致であれば良く、生体内における細胞内の本来の機能では、40~50% 程度の不一致があっても良いとされている。このような不一致は、特に限定されないが、1塩基、2塩基、3塩基、4塩基、5塩基、6塩基、7塩基、8塩基、9塩基、若しくは10塩基又は全認識配列の1%、5%、10%、20%、30%、若しくは40%の不一致が例示される。また、特には、細胞が備えている mRNA 上の miRNA 標的配列のように、特に、シード領域以外の部分に、すなわち miRNA の 3’ 側 16 塩基程度に対応する、標的配列内の 5’ 側の領域に、多数の不一致を含んでもよく、シード領域の部分は、不一致を含まないか、1塩基、2塩基、若しくは3塩基の不一致を含んでもよい。また、開始コドンとなりうるAUG配列が含まれることのないように、miRNA標的配列を選択することが好ましい。 The miRNA target sequence refers to a sequence that can specifically bind to an indicator miRNA. The miRNA target sequence is preferably, for example, a sequence that is completely complementary to the indicator miRNA. Alternatively, the miRNA target sequence may have a mismatch (mismatch) with a completely complementary sequence as long as it can be recognized in the miRNA. The mismatch from the sequence that is completely complementary to the miRNA may be any mismatch that can be normally recognized by the miRNA in the desired cell, and the mismatch of about 40 to 50% in the original function in the cell in vivo. There is no problem. Such mismatch is not particularly limited, but 1 base, 2 bases, 3 bases, 4 bases, 5 bases, 6 bases, 7 bases, 8 bases, 9 bases, or 10 bases or 1% of the total recognition sequence, 5% %, 10%, 20%, 30%, or 40% discrepancy. In particular, like the miRNA target sequence on the mRNA provided by the cell, in particular, the part other than the seed region, that is, the 5 'side of the target sequence corresponding to about 3' side 16 base of the miRNA A region may contain a number of mismatches, and portions of the seed region may contain no mismatches, or may contain 1 base, 2 bases, or 3 bases mismatches. In addition, it is preferable to select the miRNA target sequence so that an AUG sequence that can serve as an initiation codon is not included.
 スロットに挿入され得るmiRNAの標的ではない配列(以下、非標的配列ともいう)は、特に限定されるものではないが、miRNA標的配列との類似性が低く、かつ、AUGを配列として含まないものであることが好ましい。類似性が低いとは、例えば、60%以上、70%以上、あるいは80%以上が不一致の配列であってもよいが、これらには限定されない。同一のmiRNA応答性mRNA上に、2以上の空スロットが存在する場合には、それぞれの空スロット挿入される非標的配列は、同一でも異なっていてもよい。また、特定の対象細胞の分離を指標に設計された複数種のmiRNA応答性mRNAのセットにおいて、異なるmiRNA応答性mRNAの空スロット挿入される非標的配列も、同一でも異なっていてもよい。 The sequence that is not the target of miRNA that can be inserted into the slot (hereinafter also referred to as non-target sequence) is not particularly limited, but has low similarity to the miRNA target sequence and does not contain AUG as a sequence It is preferable that The low similarity may be, for example, 60% or more, 70% or more, or 80% or more of mismatched sequences, but is not limited thereto. When two or more empty slots exist on the same miRNA-responsive mRNA, the non-target sequences into which the empty slots are inserted may be the same or different. Further, in a set of a plurality of types of miRNA-responsive mRNAs designed with the separation of specific target cells as an index, non-target sequences into which empty slots of different miRNA-responsive mRNAs are inserted may be the same or different.
 miRNA応答性mRNAにおいて、Cap構造と最も5’側に位置するスロット(図2においては、slot-1)と間の塩基数及び塩基の種類は、開始コドンとなるAUGを含まず、かつステム構造や立体構造を構成しない限り、任意であってよい。例えば、Cap構造とmiRNA標的配列と間の塩基数には、特に限定はなく、目的及び用途に合わせた塩基数となるように設計することができるが、例えば、1000塩基以下、好ましくは500塩基以下、さらに好ましくは250塩基以下の範囲で設計することができる。また、最も開始コドンに近接するスロット(図2においてはslot-5)と開始コドンと間の塩基数及び塩基の種類は、ステム構造や立体構造を構成しない限り、任意であってよい。したがって、最も開始コドンに近接するスロットと開始コドンと間の塩基数にも特に上限はなく、例えば、1000塩基以下、好ましくは500塩基以下、さらに好ましくは250塩基以下の範囲で、例えば、2~20塩基、好ましくは3~20塩基となるように設計することができる。 In miRNA-responsive mRNA, the number of bases and the type of base between the Cap structure and the slot located at the most 5 ′ side (slot-1 in FIG. 2) do not include AUG as the start codon, and the stem structure As long as a three-dimensional structure is not formed, it may be arbitrary. For example, the number of bases between the Cap structure and the miRNA target sequence is not particularly limited, and can be designed to be the number of bases according to the purpose and application, for example, 1000 bases or less, preferably 500 bases In the following, it can be designed more preferably in the range of 250 bases or less. The number of bases and the type of base between the slot closest to the start codon (slot-5 in FIG. 2) and the start codon may be arbitrary as long as they do not constitute a stem structure or a three-dimensional structure. Accordingly, there is no particular upper limit to the number of bases between the slot closest to the start codon and the start codon, for example, 1000 bases or less, preferably 500 bases or less, more preferably 250 bases or less, for example, 2 to It can be designed to be 20 bases, preferably 3 to 20 bases.
 マーカー遺伝子は、細胞内で翻訳されて、マーカーとして機能し、細胞種の判別を可能にする任意の蛋白質をコードする遺伝子である。細胞内で翻訳されてマーカーとして機能しうる蛋白質としては、一例としては、蛍光、発光、呈色、若しくは蛍光、発光又は呈色を補助することなどにより、視覚化し、定量化することができる蛋白質であってよい。蛍光蛋白質としては、Sirius、EBFPなどの青色蛍光蛋白質;mTurquoise、TagCFP、AmCyan、mTFP1、MidoriishiCyan、CFPなどのシアン蛍光蛋白質;TurboGFP、AcGFP、TagGFP、Azami-Green (例えば、hmAG1)、ZsGreen、EmGFP、EGFP、GFP2、HyPer、などの緑色蛍光蛋白質;TagYFP、EYFP、Venus、YFP、PhiYFP、PhiYFP-m、TurboYFP、ZsYellow、mBananaなどの黄色蛍光蛋白質;KusabiraOrange (例えば、hmKO2)、mOrangeなどの橙色蛍光蛋白質;TurboRFP、DsRed-Express、DsRed2、TagRFP、DsRed-Monomer、AsRed2、mStrawberry、などの赤色蛍光蛋白質;TurboFP602、mRFP1、JRed、KillerRed、mCherry、HcRed、KeimaRed(例えば、hdKeimaRed)、mRasberry、mPlumなどの近赤外蛍光蛋白質が挙げられるが、これらには限定されない。 A marker gene is a gene that is translated in a cell, functions as a marker, and encodes an arbitrary protein that enables discrimination of a cell type. Examples of proteins that can be translated into cells and function as markers include, for example, proteins that can be visualized and quantified by assisting fluorescence, luminescence, coloration, or fluorescence, luminescence, or coloration. It may be. As fluorescent proteins, blue fluorescent proteins such as Sirius and EBFP; cyan fluorescent proteins such as mTurquoise, TagCFP, AmCyan, mTFP1, MidoriishiCyan, and CFP; TurboGFP, AcGFP, TagGFP, Azami-Green (for example, hmAG1), ZsGreen, EmGFP, Green fluorescent proteins such as EGFP, GFP2, and HyPer; Yellow fluorescent proteins such as TagYFP, EYFP, Venus, YFP, PhiYFP, PhiYFP-m, TurboYFP, ZsYellow, and mBanana; Orange fluorescent proteins such as KusabiraOrange (for example, hmKO2) and mOrange Red fluorescent proteins such as TurboRFP, DsRed-Express, DsRed2, TagRFP, DsRed-Monomer, AsRed2, mStrawberry, etc .; TurboFP602, mRFP1, JRed, KillerRed, mCherry, HcRed, KeimaRed (eg, hdKeimaRed), mRasberry, mPlum Examples include but are not limited to infrared fluorescent proteins.
 発光蛋白質としては、イクオリンを例示することができるが、これに限定されない。また、蛍光、発光又は呈色を補助する蛋白質として、ルシフェラーゼ、ホスファターゼ、ペルオキシダーゼ、βラクタマーゼなどの蛍光、発光又は呈色前駆物質を分解する酵素を例示することができるが、これらには限定されない。ここで本発明において、蛍光、発光又は呈色を補助する蛋白質をマーカー遺伝子として使用する場合、所望の細胞の判別において、対応する前駆物質と細胞を接触させること、又は細胞内に対応する前駆物質を導入することによって行われ得る。 An example of a photoprotein is aequorin, but is not limited thereto. Examples of proteins that assist fluorescence, luminescence, or coloration include, but are not limited to, enzymes that decompose fluorescence, luminescence, or color precursors such as luciferase, phosphatase, peroxidase, and β-lactamase. Here, in the present invention, when a protein that assists fluorescence, luminescence, or color is used as a marker gene, in the discrimination of a desired cell, the corresponding precursor is brought into contact with the cell, or the precursor corresponding to the inside of the cell. Can be done by introducing.
 また、細胞内でマーカーとして機能しうる蛋白質の別の例としては、細胞の機能に直接影響を与える蛋白質類が挙げられる。細胞増殖蛋白質、細胞死滅蛋白質、細胞シグナル因子、薬剤耐性遺伝子、転写制御因子、翻訳制御因子、分化制御因子、リプログラミング誘導因子、RNA結合タンパク質因子、クロマチン制御因子、膜タンパク質を例示することができるが、これらには限定されない。例えば、細胞増殖蛋白質は、それを発現した細胞のみを増殖させ、増殖した細胞を特定することでマーカーとして機能する。細胞死滅蛋白質は、それを発現した細胞の細胞死を引き起こすことで、特定のmiRNAを含有、もしくは含有しない細胞自体を死滅させ、細胞の生死を示すマーカーとして機能する。細胞シグナル因子は、それを発現した細胞が、特定の生物学的信号を発し、この信号を特定することでマーカーとして機能する。 Further, another example of a protein that can function as a marker in a cell is a protein that directly affects the function of the cell. Cell growth protein, cell death protein, cell signal factor, drug resistance gene, transcription control factor, translation control factor, differentiation control factor, reprogramming induction factor, RNA binding protein factor, chromatin control factor, membrane protein can be exemplified However, it is not limited to these. For example, a cell growth protein functions as a marker by proliferating only cells that express it and specifying the proliferated cells. The cell killing protein causes cell death of the cell expressing it, thereby killing the cell itself containing or not containing a specific miRNA, and functions as a marker indicating cell viability. The cell signal factor functions as a marker by the cell that expresses it emits a specific biological signal and specifies this signal.
 本発明において、マーカー遺伝子は、局在化シグナルをコードする遺伝子を備えていてもよい。局在化シグナルとしては、核局在化シグナル、細胞膜局在化シグナル、ミトコンドリア局在化シグナル、タンパク質分泌シグナル等を挙げることができ、具体的には、古典的核移行配列(NLS)、M9配列、ミトコンドリア標的配列(MTS)、小胞体移行配列を挙げることができるが、これらには限定されない。このような局在化シグナルは、後述するイメージングサイトメトリー等で、本発明の方法における判別工程を、画像上で行うときに特に有利である。 In the present invention, the marker gene may include a gene encoding a localization signal. Examples of the localization signal include a nuclear localization signal, a cell membrane localization signal, a mitochondrial localization signal, a protein secretion signal, and the like. Specifically, a classical nuclear translocation sequence (NLS), M9 Examples include, but are not limited to, sequences, mitochondrial target sequences (MTS), and endoplasmic reticulum translocation sequences. Such a localization signal is particularly advantageous when the discrimination step in the method of the present invention is performed on an image by imaging cytometry or the like described later.
 miRNA応答性mRNAは、通常のウリジン、シチジンに替えて、シュードウリジン、5-メチルシチジンなどの修飾塩基を含んでいることが好ましい。細胞毒性を低減させるためである。修飾塩基の位置は、ウリジン、シチジンいずれの場合も、独立に、全てあるいは一部とすることができ、一部である場合には、任意の割合でランダムな位置とすることができる。 The miRNA-responsive mRNA preferably contains a modified base such as pseudouridine or 5-methylcytidine instead of ordinary uridine and cytidine. This is to reduce cytotoxicity. The positions of the modified bases can be all or part of the uridine and cytidine independently, and if they are part of the base, they can be random positions at an arbitrary ratio.
 図示する概念図においては、スロットの総数が5であるが、スロットの総数は2以上であればよく、例えば、2、3、4、5、6、7、8、9、10、あるいはそれ以上であってもよい。本実施形態においては、説明の簡略化のために、スロットの総数が5のmiRNA応答性mRNAを例示して説明するが、本発明はこれに限定されるものではない。 In the illustrated conceptual diagram, the total number of slots is 5, but the total number of slots may be 2 or more, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more. It may be. In the present embodiment, for simplification of description, miRNA-responsive mRNA having a total number of slots of 5 will be described as an example, but the present invention is not limited to this.
 図2a上図に示す基本的構造を備えるmRNAは、以下の特性(a)、(b)を備える。
(a)miRNA応答配列を2以上含有するmRNAによる翻訳抑制効果は、各スロットのmiRNA標的配列単独による翻訳抑制効果の積算値となる。
Figure JPOXMLDOC01-appb-M000003
 
(b)各スロットのmiRNA標的配列単独による翻訳抑制効果は、miRNAの種類に関わらず一般に、開始コドンからmiRNA標的配列までの距離の 定数乗、具体的には-0.576 乗に比例する。
Figure JPOXMLDOC01-appb-M000004
 
The mRNA having the basic structure shown in the upper diagram of FIG. 2a has the following characteristics (a) and (b).
(A) The translational suppression effect by mRNA containing two or more miRNA response elements is an integrated value of the translational suppression effect by the miRNA target sequence alone in each slot.
Figure JPOXMLDOC01-appb-M000003

(B) The translational suppression effect of the miRNA target sequence alone in each slot is generally proportional to the constant power of the distance from the start codon to the miRNA target sequence, specifically to the power of -0.576, regardless of the type of miRNA.
Figure JPOXMLDOC01-appb-M000004
 (a)の式において、各スロットに挿入されるmiRNA応答配列を、slot-1から順に、それぞれ、miRNA(1)、miRNA(2)、miRNA(3)、miRNA(4)、miRNA(5)とした場合について考える。slot-1に挿入されたmiRNA(1)単独による翻訳抑制効果(ρslot-1)は、miRNA(1)を含めた全ての応答配列に対する阻害剤を添加した系での実測の翻訳抑制効果を1とした場合の、miRNA(1)以外の全ての応答配列に対する阻害剤を添加した系での実測の翻訳抑制効果で表される。slot-2に挿入したmiRNA(2)についての翻訳抑制効果(ρslot-2)、slot-3に挿入したmiRNA(3)についての翻訳抑制効果(ρslot-3)についても同様にして得ることができ、それらの積算値が、複数のスロットを備えるmRNAの予測翻訳抑制効果となる。なお、上記数式のように、ρの対数で考える場合には、合算値が予測翻訳抑制効果の対数となる。 In the formula of (a), miRNA response elements inserted into each slot are miRNA (1), miRNA (2), miRNA (3), miRNA (4), miRNA (5) in order from slot-1 respectively. Think about the case. The translation suppression effect (ρ slot-1 ) by miRNA (1) alone inserted in slot-1 is the measured translational suppression effect in the system to which inhibitors for all response elements including miRNA (1) were added. In the case of 1, it is represented by an actually measured translation suppression effect in a system to which inhibitors for all response elements other than miRNA (1) are added. The translation suppression effect (ρ slot- 2) for miRNA (2) inserted into slot-2 and the translation suppression effect (ρ slot- 3) for miRNA (3) inserted into slot-3 should be obtained in the same way. These integrated values are the effect of suppressing the predicted translation of mRNA having a plurality of slots. In addition, when considering with the logarithm of (rho) like the said numerical formula, a total value becomes a logarithm of the prediction translation suppression effect.
 (b)の式において、各スロットの開始コドン(AUG)からの距離dとは、開始コドンAUGのAから5’側に、各スロットを構成するmiRNA応答配列の3’末端の塩基までの塩基数(nt)をいうものとする。また、ρは、距離dが0の場合の仮想的な翻訳抑制効果の値をいうものとする。(a)及び(b)式の導出及び実験によるサポートは、実施例に示す。 In the formula (b), the distance d from the start codon (AUG) of each slot is the base from the A of the start codon AUG to the 5 ′ side to the base at the 3 ′ end of the miRNA response element constituting each slot. It shall be a number (nt). Also, ρ 0 is a virtual translation suppression effect value when the distance d is 0. Derivation of equations (a) and (b) and experimental support are shown in the examples.
 本実施形態に係る設計方法は、上記特性を備えるmiRNA応答性mRNAの基本構造に対して、各スロットに挿入するmiRNA応答配列の種類及び数(ただし、2以上)を選択する方法に関する。上記工程(1)に先立って、任意選択的な前工程として、スロットに挿入しうる候補miRNA標的配列をスクリーニングする工程を実施することができる。候補となり得るmiRNA応答配列は、上述の通り、あらゆるmiRNAに対する応答配列であってよい。したがって、本出願時において特定されているmiRNAには限定されず、今後、その存在及び機能が特定されるあらゆるmiRNAを含むものとする。この中から、複数の候補miRNA標的配列間で、類似の配列がなく、また、開始コドンに相当しうるAUGを含まないmiRNA応答配列とすることが好ましい。ここで、類似の配列とは、例えば、約80%以上、約85%以上、約90%以上、約95%以上の配列相同性を有する配列をいうものとする。候補miRNA標的配列をスクリーニングする工程は、一例としては、後述する分離方法を用いて分離する細胞種の特性に応じて指標となるmiRNAを適宜選択することができる。また、特には、分離すべき複数の細胞中で、ある細胞では高発現(高活性)であり、別の細胞では低発現(低活性)であるような、miRNAの組み合わせを選択することができる。分離の精度をより高くするためである。 The design method according to the present embodiment relates to a method of selecting the type and number (but 2 or more) of miRNA response sequences to be inserted into each slot with respect to the basic structure of miRNA responsive mRNA having the above characteristics. Prior to the above step (1), as an optional pre-step, a step of screening a candidate miRNA target sequence that can be inserted into the slot can be performed. A miRNA response element that can be a candidate may be a response element for any miRNA as described above. Therefore, it is not limited to miRNA specified at the time of the present application, and includes any miRNA whose presence and function are specified in the future. Among these, it is preferable to use a miRNA response sequence that does not have a similar sequence among a plurality of candidate miRNA target sequences and does not contain an AUG that can correspond to the start codon. Here, similar sequences refer to sequences having sequence homology of, for example, about 80% or more, about 85% or more, about 90% or more, or about 95% or more. In the step of screening a candidate miRNA target sequence, as an example, miRNA as an index can be appropriately selected according to the characteristics of the cell type to be separated using the separation method described later. In particular, among a plurality of cells to be separated, a combination of miRNAs that are highly expressed (high activity) in one cell and low expressed (low activity) in another cell can be selected. . This is to increase the accuracy of separation.
 工程(1)は、1つのmiRNA応答配列を有するmRNAの抑制効果を、2以上の対象細胞で測定する工程である。工程(1)で用いる1つのmiRNA応答配列を有するmRNAを、1-slot mRNAとも指称する。この工程では、任意選択的に前工程で選択した、複数種類の候補miRNA標的配列にそれぞれ対応する、1-slot mRNAを合成する。何種類の1-slot mRNAの翻訳抑制効果を測定するかは、当業者が目的と用途に応じて適宜決定することができ、理論上の上限及び下限は存在しない。例えば、20種以上、50種以上、70種以上、100種以上の1-slot mRNAの翻訳抑制効果を測定することができる。 Step (1) is a step of measuring the inhibitory effect of mRNA having one miRNA response element in two or more target cells. The mRNA having one miRNA response element used in step (1) is also referred to as 1-slot mRNA. In this step, 1-slot mRNA corresponding to each of a plurality of types of candidate miRNA target sequences optionally selected in the previous step is synthesized. The number of types of 1-slot mRNA that is measured for the translational suppression effect can be appropriately determined by those skilled in the art according to the purpose and application, and there is no theoretical upper and lower limit. For example, the effect of suppressing the translation of 20 or more, 50 or more, 70 or more, 100 or more 1-slot mRNAs can be measured.
 各1-slot mRNAは、5’末端から、5’から3’の向きに、Cap構造(7メチルグアノシン5’リン酸)、1つのmiRNAの応答配列、マーカー遺伝子をコードするオープンリーディングフレーム、並びに、ポリAテイルを備える。すなわち、図2aに示すmiRNA応答性mRNAのスロットを1つだけにしたものといえ、1-slot mRNAの翻訳抑制効果を測定可能であれば、5'UTRにおける、スロットの5’側や3’側の塩基数や塩基の種類は、任意であってよい。1-slot mRNAは、実験的に上記(b)式における、ρを導出するために用いられるためである。 Each 1-slot mRNA has a Cap structure (7-methyl guanosine 5 ′ phosphate), a response element of one miRNA, an open reading frame encoding a marker gene, in the 5 ′ to 3 ′ direction from the 5 ′ end, and , With poly A tail. That is, it can be said that the miRNA-responsive mRNA shown in FIG. 2a has only one slot, and if the translational inhibitory effect of 1-slot mRNA can be measured, the 5′UTR 5 ′ side and 3 ′ The number of bases and types of bases on the side may be arbitrary. This is because 1-slot mRNA is experimentally used to derive ρ 0 in the above equation (b).
 対象細胞とは、本実施形態において、miRNA応答性mRNAを設計するための指標となる細胞であって、2種以上、例えば、3種、4種、5種、6種、7種、または8種以上であってもよく、理論上、対象細胞の種類は限定されるものではない。 In this embodiment, the target cell is a cell that serves as an index for designing miRNA-responsive mRNA, and two or more types, for example, 3, 4, 5, 6, 7, or 8 There may be more than species, and theoretically, the types of target cells are not limited.
 対象細胞は、後述する細胞の分離方法において、想定される使用状況において分離対象とする複数の細胞種をいうことができるが、これらには限定されない。分離の対象とする細胞の一例としては、同一の多能性幹細胞から分化した細胞であって、分化の程度が異なる複数種の細胞であってもよい。あるいは、別の例としては、生物個体、臓器、および組織から分取された細胞、あるいはその培養細胞であって、複数種類の細胞が含まれる細胞群、あるいは所望ではない細胞の混入が疑われる細胞群に含まれる細胞が挙げられる。しかしながら、対象細胞は、その細胞内の特徴(miRNA活性)を反映してmiRNA応答性mRNAを設計する指標になるものであればよく、使用状況において実際に分離する細胞と同一種の細胞には限定されない。また、いずれの場合であっても、異なる細胞の種類をおおまかに分類したいのか、類似した細胞の種類の中で細かく分類したいのかなど、分離の目的等によってどのような指標が有効になるのかは異なり、当業者が適宜決定することができる。 The target cell can refer to a plurality of cell types to be separated in the assumed use situation in the cell separation method described later, but is not limited thereto. An example of cells to be separated may be a plurality of types of cells that are differentiated from the same pluripotent stem cell and have different degrees of differentiation. Alternatively, as another example, cells collected from living organisms, organs, and tissues, or cultured cells thereof, including a group of cells containing a plurality of types of cells, or unwanted cell contamination is suspected. Examples include cells included in the cell group. However, the target cell only needs to be an index for designing miRNA-responsive mRNA that reflects its intracellular characteristics (miRNA activity). It is not limited. Also, in any case, what indicators are effective depending on the purpose of separation, such as whether you want to roughly classify different cell types or whether you want to classify closely among similar cell types? It is different and can be appropriately determined by those skilled in the art.
 分離対象とする細胞は、多細胞生物種から採取した細胞群に含まれる細胞であってもよく、単離された細胞を培養することによって得られる細胞群に含まれる細胞であってもよい。当該細胞は、特には、哺乳動物(例えば、ヒト、マウス、サル、ブタ、ラット等)採取した細胞、若しくは哺乳動物より単離された細胞又は哺乳動物細胞株を培養することによって得られる細胞であってよい。体細胞としては、例えば、角質化する上皮細胞(例、角質化表皮細胞)、粘膜上皮細胞(例、舌表層の上皮細胞)、外分泌腺上皮細胞(例、乳腺細胞)、ホルモン分泌細胞(例、副腎髄質細胞)、代謝・貯蔵用の細胞(例、肝細胞)、境界面を構成する内腔上皮細胞(例、I型肺胞細胞)、内鎖管の内腔上皮細胞(例、血管内皮細胞)、運搬能をもつ繊毛のある細胞(例、気道上皮細胞)、細胞外マトリックス分泌用細胞(例、線維芽細胞)、収縮性細胞(例、平滑筋細胞)、血液と免疫系の細胞(例、Tリンパ球)、感覚に関する細胞(例、桿細胞)、自律神経系ニューロン(例、コリン作動性ニューロン)、感覚器と末梢ニューロンの支持細胞(例、随伴細胞)、中枢神経系の神経細胞とグリア細胞(例、星状グリア細胞)、色素細胞(例、網膜色素上皮細胞)、およびそれらの前駆細胞 (組織前駆細胞) 等が挙げられる。細胞の分化の程度や細胞を採取する動物の齢などに特に制限はなく、未分化な前駆細胞 (体性幹細胞も含む) であっても、最終分化した成熟細胞であっても、同様に本発明における体細胞の起源として使用することができる。ここで未分化な前駆細胞としては、たとえば神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)が挙げられる。本発明において、体細胞を採取する由来となる哺乳動物個体は特に制限されないが、好ましくはヒトである。また、好ましい細胞は、前期体細胞を採取後に人為的な操作を加えた細胞群であり、所望しない細胞を含む可能性があり、及び/または不均質な可能性がある細胞群である。例えば、前記体細胞から調製したiPS細胞を含んでなる細胞群であり、あるいはES 細胞やiPS細胞などによって例示される多能性幹細胞を分化させた後に得られる細胞群であって、所望する細胞以外に分化された細胞を含み得る細胞群である。本実施形態において、判別対象の細胞群は、生存状態にあることが好ましい。本発明において、細胞が生存状態にあるとは、代謝能を維持した状態の細胞を意味する。本発明は、細胞を本発明の方法に供し、分離方法の終了後においても、その生来の特性を失うことなく、生存状態のまま、特に分裂能を維持したまま、続く用途に用いることができる点で有利である。 The cell to be separated may be a cell contained in a cell group collected from a multicellular species, or may be a cell contained in a cell group obtained by culturing an isolated cell. The cells are particularly cells collected from mammals (eg, humans, mice, monkeys, pigs, rats, etc.) or cells obtained by culturing cells isolated from mammals or mammalian cell lines. It may be. Examples of somatic cells include keratinized epithelial cells (eg, keratinized epidermal cells), mucosal epithelial cells (eg, epithelial cells of the tongue surface), exocrine glandular epithelial cells (eg, mammary cells), hormone-secreting cells (eg, , Adrenal medullary cells), metabolism / storage cells (eg, hepatocytes), luminal epithelial cells that make up the interface (eg, type I alveolar cells), luminal epithelial cells of the inner chain (eg, blood vessels) Endothelial cells), ciliated cells with transport ability (eg, airway epithelial cells), cells for extracellular matrix secretion (eg, fibroblasts), contractile cells (eg, smooth muscle cells), blood and immune system Cells (eg, T lymphocytes), sensory cells (eg, sputum cells), autonomic nervous system neurons (eg, cholinergic neurons), sensory organs and peripheral neuron support cells (eg, associated cells), central nervous system Neurons and glial cells (eg, astrocytes), pigment cells (eg Retinal pigment epithelial cells), and progenitor cells (tissue progenitor cells), etc. There is no particular limitation on the degree of cell differentiation and the age of the animal from which the cells are collected, and this is the same for both undifferentiated progenitor cells (including somatic stem cells) and terminally differentiated mature cells. It can be used as the source of somatic cells in the invention. Examples of undifferentiated progenitor cells include tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells. In the present invention, the mammal individual from which somatic cells are collected is not particularly limited, but is preferably a human. Further, preferred cells are a group of cells that have been subjected to an artificial manipulation after collection of progenitor cells, and may include unwanted cells and / or may be heterogeneous. For example, a cell group comprising iPS cells prepared from the somatic cells, or a cell group obtained after differentiating pluripotent stem cells exemplified by ES sputum cells and iPS cells, and the desired cells It is a cell group which can contain the differentiated cell besides. In the present embodiment, it is preferable that the cell group to be discriminated is in a living state. In the present invention, the cell being in a viable state means a cell in a state where metabolic capacity is maintained. The present invention can be used for subsequent applications in which cells are subjected to the method of the present invention and remain in a viable state, particularly while maintaining their mitogenic potential, without losing their natural properties even after the separation method is completed. This is advantageous.
 対象細胞における翻訳抑制効果の測定は、1-slot mRNAを細胞に導入する工程と、マーカー遺伝子の翻訳量に基づいて、1-slot mRNAの翻訳抑制効果を得る工程とにより実施することができる。 The measurement of the translation inhibitory effect in the target cell can be carried out by introducing 1-slot mRNA into the cell and obtaining the translation inhibitory effect of 1-slot mRNA based on the translation amount of the marker gene.
 本発明において、1-slot mRNAを細胞に導入する工程(以下、導入工程と指称する)は、リポフェクション法、リポソーム法、エレクトロポレーション法、リン酸カルシウム共沈殿法、DEAEデキストラン法、マイクロインジェクション法、遺伝子銃法などを用いて、1種以上の1-slot mRNAを直接、細胞群に含まれる細胞に導入する。場合により50以上、100以上、200以上の異なるmiRNA応答配列について、1-slot mRNAの抑制効果を測定する場合には、miRNA応答配列及びマーカー遺伝子が異なる2種、3種あるいは4種以上のmiRNA応答性mRNAと、コントロールmRNAを、対象細胞に共導入することができる。コントロールmRNAとは、miRNA標的部位を有さず、1-slot mRNAがコードするマーカー遺伝子とは異なるマーカー遺伝子をコードするmRNAをいう。共導入した2以上のmRNAから発現するマーカー蛋白質の活性比は、細胞集団内において一定である。また、この時の導入量は、導入される細胞群、導入するmRNA、導入方法および導入試薬の種類により異なり、所望の翻訳量を得るために当業者は適宜これらを選択することができる。コントロールmRNAの導入量もまた、所望の翻訳量を得るために当業者は適宜これらを選択することができる。 In the present invention, the step of introducing 1-slot mRNA into cells (hereinafter referred to as the introduction step) is performed by lipofection method, liposome method, electroporation method, calcium phosphate coprecipitation method, DEAE dextran method, microinjection method, gene Using a gun method or the like, one or more 1-slot mRNAs are directly introduced into cells included in a cell group. When measuring the inhibitory effect of 1-slot mRNA for 50 or more, 100 or more, or 200 or more different miRNA response elements, there are two, three or four or more miRNAs with different miRNA response elements and marker genes. Responsive mRNA and control mRNA can be co-introduced into the target cell. Control mRNA refers to mRNA that does not have a miRNA target site and encodes a marker gene different from the marker gene encoded by 1-slot mRNA. The activity ratio of marker proteins expressed from two or more co-introduced mRNAs is constant within the cell population. In addition, the introduction amount at this time varies depending on the cell group to be introduced, the mRNA to be introduced, the introduction method and the kind of the introduction reagent, and those skilled in the art can appropriately select these in order to obtain a desired translation amount. The amount of control mRNA introduced can also be appropriately selected by those skilled in the art to obtain a desired translation amount.
 miRNA応答性mRNAが細胞に導入されると、細胞内では、細胞に所定のmiRNAがRISCとして存在する場合、miRNA応答性mRNAがコードするマーカー遺伝子の翻訳量が制御、例えば翻訳量が抑制される。そして、翻訳量の制御は、miRNA活性に応じて定量的になされる。一方、細胞に所定のmiRNAが存在しない場合、もしくは所定のmiRNAがRISCとして存在しない場合、miRNA応答性mRNAがコードするマーカー遺伝子の翻訳量が抑制されることはない。したがって、所定のmiRNAがRISCとして存在する細胞と、存在しない細胞との間で、マーカー遺伝子の翻訳量が異なる。なお、本明細書において、所定のmiRNAがRISCとして存在する場合を、「miRNA活性が存在する場合」とも指称する。一方、コントロールmRNAは、miRNA活性に関係なくマーカー蛋白質を発現する。導入されても、miRNA標的配列が存在しないため、miRNA発現量に応じて翻訳制御されることがないためである。 When miRNA-responsive mRNA is introduced into a cell, the translation amount of the marker gene encoded by the miRNA-responsive mRNA is controlled, for example, the amount of translation is suppressed, if a given miRNA exists as RISC in the cell. . The translation amount is quantitatively controlled according to the miRNA activity. On the other hand, when the predetermined miRNA does not exist in the cell, or when the predetermined miRNA does not exist as RISC, the translation amount of the marker gene encoded by the miRNA-responsive mRNA is not suppressed. Therefore, the amount of translation of the marker gene differs between cells in which a given miRNA is present as RISC and cells that are not present. In the present specification, the case where a predetermined miRNA is present as RISC is also referred to as “when miRNA activity is present”. On the other hand, the control mRNA expresses the marker protein regardless of the miRNA activity. This is because even when introduced, the miRNA target sequence does not exist, and therefore translational control is not performed according to the miRNA expression level.
 本実施形態においては2以上の対象細胞の全てにおいて、1-slot mRNAの翻訳抑制効果を測定する。 In this embodiment, the translation suppression effect of 1-slot mRNA is measured in all of two or more target cells.
 マーカー遺伝子の翻訳量は、所定の検出装置を用いて、マーカー蛋白質からの信号を検出することにより得ることができる。検出装置としては、フローサイトメーター、イメージングサイトメーター、蛍光顕微鏡、発光顕微鏡、CCDカメラ等が挙げられるが、これらには限定
されない。このような検出装置は、マーカー蛋白質及び判別の態様により、当業者が適したものを用いることができる。例えば、マーカー蛋白質が、蛍光蛋白質又は発光蛋白質の場合には、フローサイトメーター、イメージングサイトメーター、蛍光顕微鏡、CCDカメラといった検出装置を用いてマーカー蛋白質の定量が可能であり、マーカー蛋白質が、蛍光、発光又は呈色を補助する蛋白質の場合には、発光顕微鏡、CCDカメラ、ルミノメーターといった検出装置を用いたマーカー蛋白質の定量方法が可能であり、マーカー蛋白質が、膜局在蛋白質の場合には、抗体などの細胞表面蛋白質特異的な検出試薬と、上記の検出装置を用いたマーカー蛋白質の定量方法が可能である。マーカー蛋白質が蛍光蛋白質の場合は、フローサイトメトリーを用いて、個々の細胞において翻訳されたマーカー蛋白質である、蛍光蛋白質、発光酵素が発する光の強度を定量的に得ることができるため好ましい。
The translation amount of the marker gene can be obtained by detecting a signal from the marker protein using a predetermined detection device. Examples of the detection device include, but are not limited to, a flow cytometer, an imaging cytometer, a fluorescence microscope, a light emission microscope, and a CCD camera. As such a detection apparatus, those suitable for those skilled in the art can be used depending on the marker protein and the mode of discrimination. For example, when the marker protein is a fluorescent protein or a luminescent protein, the marker protein can be quantified using a detection device such as a flow cytometer, an imaging cytometer, a fluorescence microscope, or a CCD camera. In the case of a protein that assists in luminescence or coloration, a marker protein quantification method using a detection device such as a luminescence microscope, a CCD camera, or a luminometer is possible. When the marker protein is a membrane-localized protein, A cell surface protein-specific detection reagent such as an antibody and a marker protein quantification method using the above-described detection apparatus are possible. When the marker protein is a fluorescent protein, the intensity of light emitted from the fluorescent protein and the luminescent enzyme, which are marker proteins translated in individual cells, can be quantitatively obtained by using flow cytometry.
 なお、1-slot mRNAの翻訳抑制効果の測定方法は、上記した特定の方法のみには限定されず、他の任意の方法で実施することができる。例えば、マイクロアレイを使用する方法や、次世代シーケンシングによる方法を用いて、miRNAと相互作用しているmRNAを定量することによる、1-slot mRNAの翻訳抑制効果の測定が可能であり、これらの方法を用いて測定した場合も本発明を構成するものとする。
 工程(1)は、前述の式(b)の原理、すなわち、各スロットのmiRNA標的配列単独による翻訳抑制効果は、miRNAの種類に関わらず一般に、開始コドンからmiRNA標的配列までの距離の 定数乗、具体的には-0.576 乗に比例する、という発見に基づき、1-slot mRNAの翻訳感度を調節する方法に関する発明ということもできる。すなわち、1つのmiRNA応答配列を有するmRNAにおいて、miRNA応答配列の開始コドンからの距離を変化させることにより、同じmiRNA応答配列を持つmRNAであっても、翻訳抑制効率を変化させる、すなわちチューニングすることができる。このようなmRNAを用いることにより、多様な細胞の分離が可能になるといえる。
The method for measuring the effect of suppressing translation of 1-slot mRNA is not limited to the specific method described above, and can be performed by any other method. For example, the translational inhibitory effect of 1-slot mRNA can be measured by quantifying mRNA that interacts with miRNA using a method using microarrays or a method based on next-generation sequencing. The present invention also constitutes a measurement using the method.
In step (1), the principle of the above-described formula (b), that is, the translational suppression effect of the miRNA target sequence alone in each slot is generally a constant power of the distance from the start codon to the miRNA target sequence regardless of the miRNA type. In particular, it can be said that the invention relates to a method for adjusting the translation sensitivity of 1-slot mRNA based on the discovery that it is proportional to the power of -0.576. That is, by changing the distance from the start codon of an miRNA response element in an mRNA having one miRNA response element, the translation suppression efficiency is changed, that is, even if the mRNA has the same miRNA response element. Can do. By using such mRNA, it can be said that various cells can be separated.
 工程(2)は、前記工程(1)の測定結果に基づき、各対象細胞でのmiRNA応答配列を2以上含有するmRNAの翻訳抑制効果を算出する工程である。この工程では、前述の特性(a)、(b)に基づき、各細胞でのmiRNA応答配列を2以上含有するmRNAの翻訳抑制効果を、計算により得る。より具体的には、前記工程(1)の測定値から得られる、dが0の際の仮想的な翻訳抑制率を、d-0.576乗したもの(dは、マーカー遺伝子の開始コドンからのmiRNA応答配列の距離)を、miRNA応答配列の数だけ積算することによって算出する。 Step (2) is a step of calculating the translational inhibitory effect of mRNA containing two or more miRNA response elements in each target cell based on the measurement result of step (1). In this step, the translational inhibitory effect of mRNA containing two or more miRNA response elements in each cell is obtained by calculation based on the aforementioned characteristics (a) and (b). More specifically, a hypothetical translational inhibition rate obtained when d is 0, obtained from the measurement value in the step (1), raised to the power of d −0.576 (d is the miRNA from the start codon of the marker gene Response element distance) is calculated by integrating the number of miRNA response elements.
 前記工程(1)の測定結果から、それぞれの1-slot mRNAについて、AUGからの距離d(nt)における翻訳抑制効果ρ(d)の実測値を得ることができる。そして、式(b)に基づき、ρ(d)の実測値、並びに位置dにおけるtuning factor k値から、特定のmiRNAの仮想の翻訳抑制効果であるρ(0)を得ることができる。なお、dは、工程(1)で設計したそれぞれの1-slot mRNAの間で、同一であってもよく、異なっていても、同じようにρ(0)の値を導出することが可能である。本発明においては、式(a)及び(b)の示す原理に基づいて所望の翻訳抑制効果を測定することができればよく、例えば工程(1)の試験条件(1-slot mRNAの設計条件等)によっては、ρ(0)の値を直接的に算出する必要が無い場合もある。 From the measurement result of the step (1), an actual measurement value of the translational suppression effect ρ (d) at the distance d (nt) from the AUG can be obtained for each 1-slot mRNA. Based on the equation (b), ρ (0) that is a virtual mitigation effect of translation of a specific miRNA can be obtained from the actually measured value of ρ (d) and the tuning factor k value at the position d. Note that d may be the same or different between the 1-slot mRNAs designed in step (1), and the value of ρ (0) can be derived in the same way. is there. In the present invention, it is only necessary to be able to measure a desired translational suppression effect based on the principle shown by the formulas (a) and (b). For example, the test conditions (design conditions for 1-slot mRNA, etc.) of step (1) Depending on the case, it may not be necessary to directly calculate the value of ρ (0) .
 そうすると、AUGから異なる距離dにある、あるmiRNA応答配列の単独で翻訳抑制効果は、ρ(0)^d-0.576で表される。そして、式(a)に基づいて、miRNA応答配列の数だけこの値を積算することで、mRNAの翻訳抑制効果予測値(計算値)が得られる。なお、式(a)において、空スロットの翻訳抑制効果は1である(翻訳抑制しない)。この方法によれば、5のスロットを備えるmiRNA応答性mRNAの翻訳抑制効果を、例えば選択したすべてのmiRNA応答配列について、網羅的に計算することができる。 Then, the translational suppression effect of a certain miRNA response element alone at a different distance d from AUG is expressed by ρ (0) ^ d −0.576 . Then, based on the formula (a), the translation inhibition effect prediction value (calculated value) of mRNA is obtained by accumulating this value by the number of miRNA response elements. In the formula (a), the translation suppression effect of empty slots is 1 (translation is not suppressed). According to this method, the translation suppression effect of miRNA-responsive mRNA having 5 slots can be comprehensively calculated, for example, for all selected miRNA response sequences.
 ただし、miRNA応答配列には20塩基程度の長さがあるため、miRNA標的配列が重なるような位置にスロットを設計することはできない。また、式(a)、(b)による計算上は、1以下のmiRNA標的配列を含むmRNAを原理的には排除しない。 However, since the miRNA response sequence has a length of about 20 bases, the slot cannot be designed at a position where the miRNA target sequence overlaps. Moreover, in the calculation by the formulas (a) and (b), mRNAs containing 1 or less miRNA target sequences are not excluded in principle.
 上記の工程(1)の後であって、(2)の前には、前記工程(1)の測定結果に基づき、前記工程(2)の算出に使用するmiRNA応答配列の種類を、多変量解析、例えば、主成分分析やクラスター分析を用いて限定する工程をさらに含んでもよい。この工程を本明細書で、「限定工程」とも指称する。前記工程(1)では、例えば測定する1-slot mRNAを、100種以上、200種以上とする場合があり、工程(1)で探索した全てのmiRNAについて、あらゆる組み合わせのmRNAを設計して探索すると、その組み合わせが膨大になることある。したがって、工程(1)で得られた細胞ごとのmiRNA活性のプロファイルを、主成分分析およびクラスター分析などの多変量解析を実施し、細胞の分離に有効なmiRNAを限定することができる。主成分分析においては、寄与率の高い主成分に対して、それぞれ主成分負荷量の絶対値が高いmiRNAを、細胞の分離に有用なmiRNAとして選択できる。またクラスター分析においては、同一クラスターに分類されるmiRNA群から代表的なmiRNAを選択することによって、細胞分離への有用性が低いと期待されるその他のmiRNAを排除することができる。本発明の実施例では、270種のmiRNA応答配列から、この段階で26miRNA応答配列にまで絞ってから、工程(2)を実施している。これらの多変量解析によって、工程(2)において算出するmRNAの構成を1、あるいはそれ以上の数に限定することができる。 After the above step (1) and before (2), based on the measurement result of the step (1), the type of miRNA response element used for the calculation of the step (2) is changed to a multivariate. A step of limiting using analysis, for example, principal component analysis or cluster analysis may be further included. This process is also referred to herein as a “limiting process”. In the step (1), for example, 1-slot mRNA to be measured may be 100 or more and 200 or more. For all miRNAs searched in step (1), all combinations of mRNAs are designed and searched. Then, the combination may become enormous. Therefore, the miRNA activity profile for each cell obtained in step (1) can be subjected to multivariate analysis such as principal component analysis and cluster analysis to limit miRNA effective for cell separation. In the principal component analysis, miRNAs each having a high absolute value of the principal component loading amount with respect to the principal components having a high contribution rate can be selected as miRNAs useful for cell separation. In cluster analysis, by selecting a representative miRNA from a group of miRNAs classified into the same cluster, other miRNAs that are expected to be less useful for cell separation can be excluded. In the example of the present invention, the step (2) is performed after narrowing down from 270 miRNA response elements to 26 miRNA response elements at this stage. By these multivariate analyses, the mRNA composition calculated in step (2) can be limited to one or more.
 また、この段階で、miRNA応答配列の種類のみならず、スロットの数や位置などを、ある程度固定したmRNAの構成を設計することができる。図2a及び後述する実施例では、5-slotのmRNA、slot間距離2nt、最も開始コドンに近いslotと開始コドンの距離2nt、という構成に固定して工程(2)を実施している。このようなslotの位置及び数構成は、当業者が適宜決定することができる。そして、このような設計において、細胞の分離のために2種以上のmiRNA応答性mRNAを設計しようとするとき、2種以上のmiRNA応答性mRNAのセットでは、スロットの位置や数が互いに同じであっても異なっていてもよく、miRNA応答性mRNAの5'UTRの全長も、互いに同じであっても異なっていてもよい。いずれもこの段階で適宜設計することができる。 Also, at this stage, it is possible to design an mRNA configuration in which not only the type of miRNA response element but also the number and position of slots are fixed to some extent. In FIG. 2a and the examples described later, the step (2) is carried out by fixing the structure of 5-slot mRNA, the distance between slots of 2 nt, and the distance between the slot closest to the start codon and the start codon of 2 nt. Those skilled in the art can appropriately determine the position and number structure of such slots. In such a design, when two or more miRNA-responsive mRNAs are designed for cell separation, the positions and number of slots in the set of two or more miRNA-responsive mRNAs are the same. The total length of the 5′UTR of the miRNA-responsive mRNA may be the same as or different from each other. Both can be designed appropriately at this stage.
 この限定工程は、工程(2)で網羅的な計算をすることが可能な場合は、原理的には必須ではなく、任意選択的に行ってよい工程である。 This limiting process is not essential in principle when the comprehensive calculation can be performed in the process (2), and may be optionally performed.
 工程(3)は、前記工程(2)で算出された値より、2以上の対象細胞間における翻訳抑制効果の差が最大になるmiRNA応答配列を2以上含有するmRNAを選択する工程である。この工程では、翻訳抑制効果の差が最大になるように、各スロットに挿入されるmiRNA応答配列及び非miRNA応答配列を選択する。 Step (3) is a step of selecting mRNA containing two or more miRNA response elements that maximize the difference in translational suppression effect between two or more target cells, based on the value calculated in the step (2). In this step, an miRNA response element and a non-miRNA response element to be inserted into each slot are selected so that the difference in translation suppression effect is maximized.
 工程(2)において、それぞれAUGから任意の塩基数離れた場所にある、任意の数のスロットをもつmRNAを設計することができ、設計されたmRNAを目的の細胞に導入したときの、各細胞における発現量は計算して得ることができる。すなわち、任意に設計したmRNAを細胞に導入した結果は推測することができる。工程(2)において多種類のmRNAを設計し、細胞に導入したときの各細胞における推測値を計算すれば、そのなかから、任意の条件を設定して目的に応じた効果を持つmRNAを得ることができる。例えば、対象とする複数種類の細胞に導入した場合に細胞を分離する能力の高いmRNAを得たい場合、設計したmRNAごとの各細胞における発現量の分散を指標として、最も分散が大きいmRNAを、細胞分離能が最も高いと期待されるmRNAとして選択することができる。2種類以上の設計mRNAを同時に細胞に導入した場合であっても、それぞれのmRNAの各細胞における発現量が計算で得られるため、任意の条件を設定して目的に応じた効果を持つmRNAの組み合わせを得ることができる。例えば、4種類のmRNAを細胞に導入して、2種類のmRNAずつの発現量の比率を指標にして細胞を分類しようとする場合、4種類のmRNAごとの各細胞における発現量が工程(2)で得られているため、それらの比率を計算し、4種類のmRNAひとセットごとに各細胞における2つの蛍光比率をパラメータとして得ることができる。任意のmRNAを4種類選んだ任意のmRNAセットについて、得られた2パラメータのばらつき、任意の2つの細胞間の差、あるいはその差の積算値が最大となるmRNAセットを計算結果から探索することができる。 In step (2), it is possible to design an mRNA having an arbitrary number of slots at a position away from the AUG by an arbitrary number of bases, and each cell when the designed mRNA is introduced into a target cell. The expression level in can be obtained by calculation. That is, the result of introducing arbitrarily designed mRNA into cells can be estimated. If you design many types of mRNA in step (2) and calculate the estimated value in each cell when it is introduced into the cell, you can set an arbitrary condition to obtain an mRNA that has an effect according to your purpose. be able to. For example, if you want to obtain mRNA with high ability to separate cells when introduced into multiple types of target cells, using the dispersion of expression level in each cell for each designed mRNA as an index, It can be selected as an mRNA expected to have the highest cell separation ability. Even when two or more types of designed mRNAs are simultaneously introduced into a cell, the expression level of each mRNA can be obtained by calculation. A combination can be obtained. For example, when four types of mRNA are introduced into a cell and the cells are classified using the ratio of the expression level of each of the two types of mRNA as an index, the expression level in each cell for each of the four types of mRNA is determined by the process (2 ), The ratios can be calculated and two fluorescence ratios in each cell can be obtained as parameters for each set of four types of mRNA. Search for the mRNA set that maximizes the variation of the two parameters obtained, the difference between any two cells, or the integrated value of the difference for any mRNA set selected from four types of any mRNA. Can do.
 工程(3)において探索の対象となるmRNAの数は、限定工程でどの程度まで、スロットに挿入するmiRNA候補数や、スロット数を絞るかにより異なる。例えば、限定工程で、計算により単一のmRNA、あるいは4種類のmRNAひとセットにまで絞った場合には、実質的に工程(3)は、工程(2)で翻訳抑制効果を計算した単一のmRNA、あるいは4種類のmRNAひとセットを、そのまま選択するだけとなる場合もある。 The number of mRNAs to be searched in step (3) varies depending on the number of miRNA candidates to be inserted into slots and the number of slots to be narrowed in the limited step. For example, in a limited process, when the calculation is limited to a single mRNA or a set of 4 types of mRNA, the process (3) is substantially the same as the single that calculated the translational suppression effect in step (2). In some cases, it may be necessary to simply select one mRNA or a set of four mRNAs.
 また、工程(3)においては、分散、複数パラメータのばらつき、任意の2つの細胞間の差、あるいはその差の積算値の計算結果のみに基づいて、最終的な単一のmRNA、あるいは2~4種類のmRNAひとセットを選択することもできるし、さらに実験的手法で翻訳抑制効果を測定し、分散、複数パラメータのばらつき、任意の2つの細胞間の差、あるいはその差の積算値の計算結果と合せて、最終的な単一のmRNA、あるいは2~4種類のmRNAひとセットを選択することもできる。すなわち、工程(2)で翻訳抑制効果を計算した全てのmRNAについて、あるいは工程(2)で翻訳抑制効果を計算したmRNAのうち、工程(3)で分散、複数パラメータのばらつき、任意の2つの細胞間の差、あるいはその差の積算値の計算結果からある程度絞り込んだmRNAについて、実際に遺伝子工学的手法により、これらのmRNAを調製し、対象細胞に導入して分離方法を試験する。その結果、実際に対象細胞の分散、複数パラメータのばらつき、任意の2つの細胞間の差、あるいはその差の積算値が最大となるmRNAを選択して、本発明の設計を完了することもできる。 In the step (3), the final single mRNA or 2 to 2 based on the calculation result of the dispersion, the variation of multiple parameters, the difference between any two cells, or the integrated value of the difference. You can select a set of 4 mRNAs, and measure the effect of translational suppression using an experimental method, and calculate the variance, the variation of multiple parameters, the difference between any two cells, or the integrated value of the difference. Combined with the results, the final single mRNA or a set of 2 to 4 mRNAs can be selected. That is, for all mRNAs for which the translational suppression effect was calculated in step (2), or among the mRNAs for which the translational suppression effect was calculated in step (2), dispersion in step (3), variation of multiple parameters, any two About mRNA which was narrowed down to some extent from the calculation result of the difference between cells or the integrated value of the difference, these mRNAs are actually prepared by genetic engineering techniques, introduced into target cells, and the separation method is tested. As a result, the design of the present invention can be completed by actually selecting the mRNA that maximizes the dispersion of the target cells, the variation of multiple parameters, the difference between any two cells, or the integrated value of the difference. .
 次に、工程(1)~(3)を例に基づき説明する。
 工程(1)
 1-slot mRNAを用いて、各細胞におけるmiRNA活性を具体的に測定する。ここではmiRNA応答mRNAの発現量として考えるため、発現量が小さいものほど活性は高くなる。また、以後の計算のため対数で考える。そのため、全く活性がない場合が0、発現量を1/10まで抑制する場合が-1、1/100まで抑制する場合が-2と負の数字が小さいほど抑制力が高い。細胞 A, B, C, D を対象に解析して、以下のような結果を得たとする。
Next, steps (1) to (3) will be described based on examples.
Process (1)
Using 1-slot mRNA, the miRNA activity in each cell is specifically measured. Here, since the expression level of miRNA-responsive mRNA is considered, the smaller the expression level, the higher the activity. In addition, logarithm is considered for subsequent calculations. Therefore, 0 is the case where there is no activity, -1 is the case where the expression level is suppressed to 1/10, and -2 is the case where the expression level is suppressed to 1/100. Assume that cells A, B, C, and D are analyzed and the following results are obtained.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 工程(2)
 上記工程で、それぞれの細胞ごとにmiRNAの活性がわかれば、複数のmiRNA標的配列を含むあるmRNAを作って細胞に導入した時に、各細胞における発現量を予想することができる。このとき、予想値は k x 上記対数の和で与えられる。kの値はスロットのAUGからの距離 (d[nt]) で決まり、k=d-0.576で求まる。ただし、以下の例では簡単のため直接 k を与える(そういうdのところにスロットがあるmRNAだとする)。
Process (2)
If the miRNA activity is known for each cell in the above step, the expression level in each cell can be predicted when a certain mRNA containing a plurality of miRNA target sequences is produced and introduced into the cell. At this time, the expected value is given by k x the sum of the logarithms. The value of k is determined by the distance (d [nt]) from the AUG of the slot, and is obtained by k = d -0.576 . However, in the following example, k is given directly for the sake of simplicity (assuming an mRNA with a slot at such d).
Figure JPOXMLDOC01-appb-T000006
 
 a = 0.1 x 0 + 0.4 x -1 = -0.4 (このmRNAの発現量は 10-0.4= 0.398 と計算される。)
 b = 0.1 x -0.5 + 0.4 x -0.1 = -0.09
 c = 0.1 x -1 + 0.4 x -0.8 = -0.42
 d = 0.1 x -2 + 0.4 x -0.2 = -0.28
Figure JPOXMLDOC01-appb-T000006

a = 0.1 x 0 + 0.4 x -1 = -0.4 (The expression level of this mRNA is calculated as 10 -0.4 = 0.398)
b = 0.1 x -0.5 + 0.4 x -0.1 = -0.09
c = 0.1 x -1 + 0.4 x -0.8 = -0.42
d = 0.1 x -2 + 0.4 x -0.2 = -0.28
 例えば、miRNA 100 個を解析対象としていて、あらかじめAUGからの距離が固定されている5つのスロットを含むmRNA(たとえば5つのスロットの距離を105 nt, 80 nt ,65 nt , 40 nt, 15ntとする)は、各スロットにはmiRNA標的配列100種類または空配列の101種類が入ることができる。作成可能な5-slot mRNAは 101 x 101 x 101 x 101 x 101 = 10,510,100,501 種類の mRNA(ただし、このうち1種類は全て空)を作ることができ、そのmRNAを各細胞に導入した場合の発現量が計算できる。このmRNAとはスロットの距離が違う値に固定されたmRNAも同様の計算で10,510,100,501種類設計できる。たとえば5つのスロットの距離が106 nt, 80 nt ,65 nt , 40 nt, 15ntのものも10,510,100,501 種類できるし、104 nt, 80 nt ,65 nt , 40 nt, 15nt のものも、106 nt, 83 nt ,62 nt , 41 nt, 13nt のものも10,510,100,501 種類できる。スロット数を5以外にした場合も同様で、それぞれAUGから任意の塩基数離れた場所にある、任意の数のスロットをもつmRNAを設計でき、そのmRNAをこれらの細胞に導入した場合の、各細胞における発現量を計算によって得ることができる。 For example, mRNA containing 100 slots of miRNA and including 5 slots with fixed distance from AUG in advance (for example, the distance of 5 slots is 105 nt, 80 nt, 65 nt, 40 nt, 15 nt) ) Each slot can contain 100 miRNA target sequences or 101 empty sequences. The 5-slot mRNA that can be created is 101 x 101 x 101 x 101 x 101 = 10,510,100,501 (however, one of them is all empty), and expression when that mRNA is introduced into each cell The amount can be calculated. With this calculation, 10,510,100,501 types of mRNAs that are fixed at different slot distances can be designed. For example, if the distance between 5 slots is 106 nt, ス ロ ッ ト 80 nt, 65 nt, 40 nt, 15nt, there are 10,510,100,501 types, and 104 nt, 80 nt, 65 nt, 40 nt, 15nt is also 106 nt, 83 nt , 62 nt, 41 nt, 13nt can also be 10,510,100,501 types. The same applies when the number of slots is other than 5, each of which can design an mRNA with an arbitrary number of slots at an arbitrary number of bases away from the AUG, and when the mRNA is introduced into these cells, The expression level in the cell can be obtained by calculation.
 工程(3)
 あるmRNAを使用した時の細胞の分離具合を、そのmRNAを使用した時のそのmRNAの発現量の対数の分散を指標として計算する。
 スロットの構成が、5’側から順に「空/miR-1/空/miR-2/空」のmRNAの場合、発現量の対数値は (A, B, C, D) = (-0.4, -0.09, -0.42, -0.28) なので、このmRNA(を用いた場合の対象細胞)の標本分散は 0.0172と計算できる。例えば、「空/miR-1/空/miR-2/空」と「miR-3/ miR-4/miR-4/空/miR-3」のmRNAを使った場合、「miR-3/ miR-4/miR-4/空/miR-3」の発現量は以下のとおり。
 e = (0.05+0.8) x -2 + (0.1+0.2) x -0.5 = -1.85
 f = (0.05+0.8) x -2 + (0.1+0.2) x -0 = -1.7
 g = (0.05+0.8) x -0.4 + (0.1+0.2) x -2 = -0.94
 h = (0.05+0.8) x -1.2 + (0.1+0.2) x -0.1 = -1.05
 このmRNAの標本分散は 0.156と計算できる。また、これら2つの値で細胞を分類しようとする場合、{A, B, C, D} = {(-0.4, -1.85), (-0.09,-1.7), (-0.42,-0.94), (-0.28,-1.05)} となる。そこで2変数の相関係数を計算すると -0.320 となる。例えば、標本分散および相関係数を2パラメータのばらつきの指標として用いることができる。
Step (3)
The degree of cell separation when a certain mRNA is used is calculated using the logarithmic variance of the expression level of that mRNA when that mRNA is used as an index.
When the slot configuration is mRNA of “empty / miR-1 / empty / miR-2 / empty” in order from the 5 ′ side, the logarithmic value of the expression level is (A, B, C, D) = (−0.4, -0.09, -0.42, -0.28) Therefore, the sample variance of this mRNA (the target cell when using) can be calculated as 0.0172. For example, when using mRNAs of “Sky / miR-1 / Sky / miR-2 / Sky” and “miR-3 / miR-4 / miR-4 / Sky / miR-3”, “miR-3 / miR -4 / miR-4 / empty / miR-3 "is expressed as follows.
e = (0.05 + 0.8) x -2 + (0.1 + 0.2) x -0.5 = -1.85
f = (0.05 + 0.8) x -2 + (0.1 + 0.2) x -0 = -1.7
g = (0.05 + 0.8) x -0.4 + (0.1 + 0.2) x -2 = -0.94
h = (0.05 + 0.8) x -1.2 + (0.1 + 0.2) x -0.1 = -1.05
The sample dispersion of this mRNA can be calculated as 0.156. In addition, when trying to classify cells by these two values, {A, B, C, D} = {(-0.4, -1.85), (-0.09, -1.7), (-0.42, -0.94), (-0.28, -1.05)} Therefore, calculating the correlation coefficient of two variables yields -0.320. For example, the sample variance and the correlation coefficient can be used as an index of two-parameter variation.
 miRNA応答性mRNAは、上記工程(1)~(3)に従って設計され、その配列が決定されれば、遺伝子工学的に既知の任意の方法により当業者が合成することができる。特には、プロモーター配列を含むテンプレートDNAを鋳型として用いたin vitro転写合成法により、得ることができる。 The miRNA-responsive mRNA can be synthesized by a person skilled in the art by any method known in genetic engineering if the miRNA-responsive mRNA is designed according to the above steps (1) to (3) and the sequence thereof is determined. In particular, it can be obtained by an in vitro transcription synthesis method using a template DNA containing a promoter sequence as a template.
 したがって、本発明は、上記工程(1)~(3)を含む設計の工程と、合成工程とを含む、mRNAの製造方法とも捉えることができる。製造したmRNAは、第2実施形態において詳述する分離方法において、好適に用いることができる。 Therefore, the present invention can also be regarded as an mRNA production method including a design process including the steps (1) to (3) and a synthesis process. The produced mRNA can be suitably used in the separation method described in detail in the second embodiment.
 本発明は、第2実施形態によれば、2以上の対象細胞を分離する方法に関する。当該方法は、第1実施形態の方法で設計され、合成されたmiRNA応答性mRNAを用いて、マーカー遺伝子の翻訳量を指標として2以上の対象細胞を分離する。miRNA応答性mRNAで測定するのは、第1実施形態の方法において用いた対象細胞内の特徴を反映したなにかしらの指標といえるので、設計したmRNAあるいはmRNAのセットをどのような細胞、細胞の混合物に導入することもできる。ただし、mRNAを設計したときに根拠となった対象細胞の組み合わせをなるべくよく分類しようとするような指標となっている。 The present invention relates to a method for separating two or more target cells according to the second embodiment. The method uses the miRNA-responsive mRNA designed and synthesized by the method of the first embodiment to separate two or more target cells using the translation amount of the marker gene as an index. Measurement with miRNA-responsive mRNA can be said to be an index that reflects the characteristics of the target cell used in the method of the first embodiment. It is also possible to introduce into the mixture. However, it is an index that attempts to classify the combination of target cells that was the basis when designing mRNA as much as possible.
 本実施形態による分離方法では、第1実施形態により設計され、合成されたmRNAを用いる。したがって、第1実施形態により設計され、合成された1種類のmiRNA応答性mRNAを用いることもでき、2種類、3種類、4種類以上のmiRNA応答性mRNAを用いることもできる。2種類以上のmiRNA応答性mRNAを用いる場合には、第1実施形態により、細胞の分離を最大にするように設計された5’UTRの配列及びマーカー遺伝子がそれぞれ異なる2種類以上のmiRNA応答性mRNAのセットを用いる。特には、5’UTRの配列及びマーカー遺伝子がそれぞれ異なる4種類のmiRNA応答性mRNAから構成されるセットを用いることがより好ましい。 In the separation method according to this embodiment, mRNA synthesized and synthesized according to the first embodiment is used. Therefore, one type of miRNA-responsive mRNA designed and synthesized according to the first embodiment can be used, and two types, three types, four types or more of miRNA-responsive mRNAs can also be used. When two or more types of miRNA-responsive mRNA are used, according to the first embodiment, two or more types of miRNA responsiveness having different 5′UTR sequences and marker genes designed to maximize cell separation are used. Use a set of mRNAs. In particular, it is more preferable to use a set composed of four types of miRNA-responsive mRNAs having different 5 ′ UTR sequences and marker genes.
 具体的な方法としては、4種類のmiRNA応答性mRNAを、対象細胞を含む細胞群に共導入し、マーカー遺伝子の翻訳量を指標として対象細胞を分離することができ、詳細な実験手順及び測定法は、第1実施形態の工程(1)と概ね同様である。したがって、測定は種々の方法で可能であるが、マーカー遺伝子が蛍光タンパク質遺伝子の場合であって、フローサイトメトリーで測定する場合を例として説明する。4種類のmiRNA応答性mRNAから測定される蛍光強度をそれぞれ、FL1、FL2、FL3、FL4とした場合に、FL1/FL2、FL3/FL4の蛍光強度比をそれぞれX軸、Y軸とした場合のドットプロットで、細胞を分離することができる。あるいは、6種類のmiRNA応答性mRNAから測定される蛍光強度を、同様にして、2種類ずつの蛍光強度比とし、それぞれX軸、Y軸、Z軸とした場合のドットプロットで、細胞を分離することもでき、理論上の上限はない。 As a specific method, four types of miRNA-responsive mRNA can be co-introduced into a cell group including the target cell, and the target cell can be isolated using the translation amount of the marker gene as an index. Detailed experimental procedures and measurements The method is substantially the same as step (1) of the first embodiment. Therefore, the measurement can be performed by various methods, but the case where the marker gene is a fluorescent protein gene and the measurement is performed by flow cytometry will be described as an example. When the fluorescence intensity measured from four types of miRNA-responsive mRNA is FL1, FL2, FL3, and FL4, and the fluorescence intensity ratio of FL1 / FL2 and FL3 / FL4 is the X-axis and Y-axis, respectively. Cells can be separated with a dot plot. Alternatively, the fluorescence intensity measured from 6 types of miRNA-responsive mRNAs is similarly divided into 2 types of fluorescence intensity ratios, and the cells are separated by dot plots with the X-axis, Y-axis, and Z-axis, respectively. There is no theoretical upper limit.
 このような分離はまた、イメージアナライザーを用いたイメージングサイトメトリーでも実施することができる。イメージアナライザーは、細胞内のマーカー遺伝子の翻訳量の経時変化の情報を得ることができ、また、画像化、視覚化の点で優れており、単位時間あたりの解析量を向上できるほか、細胞の形態情報や位置情報を包含した解析、培養容器に接着した状態の細胞や、平面的あるいは立体的に組織化された細胞群を対象にした細胞の同定といった応用が可能となる点で有利である。 Such separation can also be performed by imaging cytometry using an image analyzer. The image analyzer can obtain information on changes in the amount of translation of marker genes in the cell over time, and is excellent in terms of imaging and visualization. In addition to improving the amount of analysis per unit time, It is advantageous in that it can be applied to analysis including morphological information and positional information, identification of cells adhered to a culture vessel, and cells targeted for planar or three-dimensionally organized cells. .
 以下に、本発明を、実施例を用いてより詳細に説明する。以下の実施例は本発明を限定するものではない。 Hereinafter, the present invention will be described in more detail using examples. The following examples do not limit the invention.
 mRNAの配列
 本実施例で使用した5-slot mRNAの5’ UTR 配列は、表3の配列番号2~115に、1-slot mRNA の5’ UTR 配列は、表5の配列番号122~391に示す。
Sequence of mRNA The 5 ′ UTR sequence of 5-slot mRNA used in this example is shown in SEQ ID NOs: 2 to 115 in Table 3, and the 5 ′ UTR sequence of 1-slot mRNA is shown in SEQ ID NOs: 122 to 391 in Table 5. Show.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000016
 
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000016
 
 
Figure JPOXMLDOC01-appb-T000017
 
Figure JPOXMLDOC01-appb-T000018
 
 
Figure JPOXMLDOC01-appb-T000017
 
Figure JPOXMLDOC01-appb-T000018
 
 
Figure JPOXMLDOC01-appb-T000019
 
Figure JPOXMLDOC01-appb-T000020
 
Figure JPOXMLDOC01-appb-T000021
 
Figure JPOXMLDOC01-appb-T000022
 
Figure JPOXMLDOC01-appb-T000023
 
Figure JPOXMLDOC01-appb-T000024
 
Figure JPOXMLDOC01-appb-T000025
 
Figure JPOXMLDOC01-appb-T000026
 
Figure JPOXMLDOC01-appb-T000027
 
Figure JPOXMLDOC01-appb-T000028
 
Figure JPOXMLDOC01-appb-T000029
 
Figure JPOXMLDOC01-appb-T000030
 
Figure JPOXMLDOC01-appb-T000019
 
Figure JPOXMLDOC01-appb-T000020
 
Figure JPOXMLDOC01-appb-T000021
 
Figure JPOXMLDOC01-appb-T000022
 
Figure JPOXMLDOC01-appb-T000023
 
Figure JPOXMLDOC01-appb-T000024
 
Figure JPOXMLDOC01-appb-T000025
 
Figure JPOXMLDOC01-appb-T000026
 
Figure JPOXMLDOC01-appb-T000027
 
Figure JPOXMLDOC01-appb-T000028
 
Figure JPOXMLDOC01-appb-T000029
 
Figure JPOXMLDOC01-appb-T000030
 
 蛍光蛋白質コード領域及び3’UTR断片の構築
 蛍光蛋白質 hmAG1, hmKO2, hdKRed および tagBFP の蛋白質コード領域は、プラスミドDNA: pFucci-S/G2/M Green (Amargaam)、pFucci-G1 Orange (Amargaam)、pAM-tagBFP (参考文献 [Miki, K., et al, Cell Stem Cell, 2015])、およびpNP-hdKeima-Red (Amargaam)からそれぞれ表6に示す適当なプライマーセット(Fwd/Rev hmAG1 (配列番号392/393)、Fwd/Rev hmKO2 (配列番号394/395)、Fwd/Rev tagBFP (配列番号396/397)、Fwd/Rev hdKeimaRed (配列番号398/399))を用いて PCR 増幅した。PCR産物中のプラスミドDNAを制限酵素Dpn I (Toyobo)を用いて、37 °Cで30分消化し、MinElute PCR purification kit (QIAGEN)を用いて、製造者の指示に従って精製した。3’UTR配列はオリゴヌクレオチドtemp3UTR(配列番号 405)を鋳型にしてFwd3UTR(配列番号 403)及びRev3UTR(配列番号 404)をプライマーに用いてPCR増幅した。コントロールmRNAの5’UTR配列は、オリゴヌクレオチドtemp5UTR(配列番号 402)を鋳型にしてT7Fwd5UTR(配列番号 400)及びRev5UTR(配列番号 401)をプライマーに用いてPCR増幅した。これらのPCR産物は、MinElute PCR purification kit (QIAGEN)を用いて、製造者の指示に従って精製した。
Construction fluorescent protein fluorescence protein coding region and 3'UTR fragment hmAG1, hmKO2, protein coding region of hdKRed and tagBFP the plasmid DNA: pFucci-S / G2 / M Green (Amargaam), pFucci-G1 Orange (Amargaam), pAM Appropriate primer sets (Fwd / Rev hmAG1 (SEQ ID NO: 392) shown in Table 6 from -tagBFP (references [Miki, K., et al, Cell Stem Cell, 2015]) and pNP-hdKeima-Red (Amargaam), respectively. / 393), Fwd / Rev hmKO2 (SEQ ID NO: 394/395), Fwd / Rev tagBFP (SEQ ID NO: 396/397), Fwd / Rev hdKeimaRed (SEQ ID NO: 398/399))). The plasmid DNA in the PCR product was digested with the restriction enzyme Dpn I (Toyobo) at 37 ° C. for 30 minutes and purified using the MinElute PCR purification kit (QIAGEN) according to the manufacturer's instructions. The 3′UTR sequence was amplified by PCR using oligonucleotide temp3UTR (SEQ ID NO: 405) as a template and Fwd3UTR (SEQ ID NO: 403) and Rev3UTR (SEQ ID NO: 404) as primers. The 5′UTR sequence of the control mRNA was PCR amplified using the oligonucleotide temp5UTR (SEQ ID NO: 402) as a template and T7Fwd5UTR (SEQ ID NO: 400) and Rev5UTR (SEQ ID NO: 401) as primers. These PCR products were purified using MinElute PCR purification kit (QIAGEN) according to the manufacturer's instructions.
Figure JPOXMLDOC01-appb-T000031
 
Figure JPOXMLDOC01-appb-T000031
 
 mRNA合成鋳型DNAの構築
 mRNA合成鋳型を生成するために、マーカー蛋白質コード領域のPCR増幅断片(最終濃度 0.2 ng/μL)、3’UTRのPCR増幅断片(最終濃度 10 nM) および 5’ UTR配列を含むオリゴヌクレオチド(最終濃度 10 nM)を混合し、表7に示したT7Fwd及びRev120Aのプライマーセットを用いてPCR増幅して、連結した。1-slot mRNAの合成鋳型には1本の、5-slot mRNAの合成鋳型には2本のオリゴヌクレオチドを用いた。ただしコントロールmRNAを作成する場合には、5’UTR配列はオリゴヌクレオチドの代わりに、精製したPCR断片を最終濃度10 nM で用いた。PCR産物は、MinElute PCR purification kit (QIAGEN)を用いて、製造者の指示に従って精製した。最終的に合成される5-slot mRNAの5’UTR配列は表3に、1-slot mRNAの5’UTR配列は表5に、蛍光タンパク質のORF配列(配列番号117,118,119,120、及び3' UTR配列(配列番号121、すべてのmRNAに共通)は表4に示した。5-slot コントロールmRNAの5’UTR配列(配列番号1)は表3に、1-slotコントロールmRNAの5’UTR配列(配列番号116)は表4に示した。
Construction of mRNA synthesis template DNA To generate mRNA synthesis template, PCR amplification fragment of marker protein coding region (final concentration 0.2 ng / μL), PCR amplification fragment of 3'UTR (final concentration 10 nM) and 5 'UTR sequence Were mixed with each other (final concentration 10 nM), PCR amplified using the T7Fwd and Rev120A primer sets shown in Table 7, and ligated. One oligonucleotide was used as a template for synthesis of 1-slot mRNA, and two oligonucleotides were used as a template for synthesis of 5-slot mRNA. However, when preparing control mRNA, the purified PCR fragment was used at a final concentration of 10 nM instead of the oligonucleotide for the 5 ′ UTR sequence. The PCR product was purified using MinElute PCR purification kit (QIAGEN) according to the manufacturer's instructions. The 5 ′ UTR sequence of 5-slot mRNA finally synthesized is shown in Table 3, the 5 ′ UTR sequence of 1-slot mRNA is shown in Table 5, and the ORF sequences of fluorescent proteins (SEQ ID NOs: 117, 118, 119, 120, And the 3 ′ UTR sequence (SEQ ID NO: 121, common to all mRNAs) is shown in Table 4. The 5′UTR sequence of 5-slot control mRNA (SEQ ID NO: 1) is shown in Table 3 and 5 of 1-slot control mRNA. The 'UTR sequence (SEQ ID NO: 116) is shown in Table 4.
Figure JPOXMLDOC01-appb-T000032
 
Figure JPOXMLDOC01-appb-T000032
 
 mRNAの合成及び精製
 miRNA応答性mRNAは、修正されたプロトコル(下記の参考文献[Miki, K., et al, Cell Stem Cell, 2015]を参照)において、MegaScript T7 kit (Ambion)を用いて調製した。この反応にいて、ウリジン三リン酸及びシチジン三リン酸に替えて、シュードウリジン-5’-三リン酸及び5-メチルシチジン-5’-三リン酸(TriLink BioTechnologies)をそれぞれ用いた。IVT(mRNA合成)反応の前に、グアノシン-5’-三リン酸は、Anti Reverse Cap Analog (New England Biolabs)で5倍希釈した。反応混合液を37度で4時間インキュベートして、TURBO DNase (Ambion)を添加した後、37度でさらに30分インキュベートした。得られたmRNAは、FavorPrep Blood / Cultured Cells total RNA extraction column (Favorgen Biotech)で精製し、Antarctic Phosphatase (New England Biolabs)を用いて、37度で30分インキュベートした。その後、RNeasy MiniElute Cleanup Kit (QIAGEN)により、さらに精製した。
mRNA synthesis and purification miRNA-responsive mRNA is prepared using the MegaScript T7 kit (Ambion) in a modified protocol (see reference [Miki, K., et al, Cell Stem Cell, 2015] below). did. In this reaction, pseudouridine-5′-triphosphate and 5-methylcytidine-5′-triphosphate (TriLink BioTechnologies) were used in place of uridine triphosphate and cytidine triphosphate, respectively. Prior to the IVT (mRNA synthesis) reaction, guanosine-5′-triphosphate was diluted 5-fold with Anti Reverse Cap Analog (New England Biolabs). The reaction mixture was incubated at 37 degrees for 4 hours, TURBO DNase (Ambion) was added and then incubated at 37 degrees for an additional 30 minutes. The obtained mRNA was purified by FavorPrep Blood / Cultured Cells total RNA extraction column (Favorgen Biotech) and incubated at 37 degrees for 30 minutes using Antarctic Phosphatase (New England Biolabs). Then, it further refine | purified by RNeasy MiniElute Cleanup Kit (QIAGEN).
 mRNAトランスフェクション
 表8に記載の条件に従って、StemFect (Stemgent)を用いて、製造者の指示に従って 24-well フォーマットの培養プレートにて、リバーストランスフェクションを行った。ただし、ヒトiPS細胞の経時変化を追跡する場合には、フォワードトランスフェクションを行った。
In accordance with the conditions described in Table 8, reverse transfection was performed in 24-well format culture plates using StemFect (Stemgent) according to the manufacturer's instructions. However, forward transfection was performed when the time course of human iPS cells was followed.
Figure JPOXMLDOC01-appb-T000033
 
Figure JPOXMLDOC01-appb-T000033
 
 フローサイトメトリー
 トランスフェクションの24時間後に細胞を培養皿から分離し、メッシュを通して、FACSAria II (BD Biosciences) 用いたフローサイトメトリーにより分析した。hmAG1、hmKO2、tagBFP及びhdKRedは、青色レーザー(488 nm)とFITCフィルター(530/30 nm)、緑色レーザー(561 nm)とPE フィルター(585/42 nm)、紫色レーザー(405 nm)とPacific Blue フィルター(450nm/40 nm)、及び紫色レーザー(405 nm)とQdot 605 フィルター(610/20 nm)によりそれぞれ検出した。死細胞及びデブリは、前方及び側方光散乱の値に基づいて除外した。
Cells were detached from culture dishes 24 hours after flow cytometry transfection and analyzed by flow cytometry using a FACSAria II (BD Biosciences) through mesh. hmAG1, hmKO2, tagBFP and hdKRed are blue laser (488 nm) and FITC filter (530/30 nm), green laser (561 nm) and PE filter (585/42 nm), purple laser (405 nm) and Pacific Blue Detection was performed with a filter (450 nm / 40 nm), and a violet laser (405 nm) and a Qdot 605 filter (610/20 nm), respectively. Dead cells and debris were excluded based on forward and side light scatter values.
 フローサイトメトリーで検出した蛍光値の補正解析
 hmAG1、hmKO2、tagBFP及びhdKRedの4種類の蛍光蛋白質を同時に検出した場合には、同時に、hmAG1、hmKO2、tagBFPまたはhdKRedのmRNAのみをトランスフェクションした細胞を解析して、実際とは異なる蛍光蛋白質として検出される蛍光値を補正した(参考文献:[Endo, K. and Saito, H. Methods in Molecular Biology, 2014])。
Correction analysis of fluorescence values detected by flow cytometry When four types of fluorescent proteins hmAG1, hmKO2, tagBFP and hdKRed are detected at the same time, cells transfected with only hmAG1, hmKO2, tagBFP or hdKRed mRNA are simultaneously detected. Analysis was performed to correct the fluorescence value detected as a fluorescent protein different from the actual protein (reference: [Endo, K. and Saito, H. Methods in Molecular Biology, 2014]).
 Relative expressionの算出
 フローサイトメトリーの解析により、レポーター mRNA から発現するhmAG1の蛍光強度を、共導入したコントロールmRNAから発現する tagBFP の蛍光強度で割り、その解析した細胞集団における相乗平均値をレポーターmRNAの蛍光比率 (Fluorescence ratio) とした。各mRNA配列について、レポーターmRNAが応答するmiRNAの阻害剤存在下における蛍光比率を基準として、miR-1 の阻害剤存在下(目的のmiRNA活性状態)の蛍光比率の相対値を “Relative expression” として定義した。2種類のmiRNA応答配列を含む mRNA の場合は、一方のmiRNA阻害剤存在下で、それぞれ “Relative expression” 値を測定し、測定した2値を積算したものを “Estimated expression” とした。3種類のmiRNA応答配列を含む mRNA の場合は、3種類中2種類のmiRNA阻害剤存在下で、それぞれ “Relative expression” 値を測定し、測定した3値を積算したものを “Estimated expression” とした。
Calculation of Relative expression By flow cytometry analysis, the fluorescence intensity of hmAG1 expressed from the reporter mRNA is divided by the fluorescence intensity of tagBFP expressed from the co-introduced control mRNA, and the geometric mean value in the analyzed cell population is calculated as the reporter mRNA. It was set as the fluorescence ratio. For each mRNA sequence, the relative ratio of the fluorescence ratio in the presence of the miR-1 inhibitor (target miRNA active state) is defined as “Relative expression” with reference to the fluorescence ratio in the presence of the miRNA inhibitor to which the reporter mRNA responds. Defined. In the case of mRNA containing two types of miRNA response elements, the “Relative expression” value was measured in the presence of one miRNA inhibitor, and the sum of the two measured values was defined as “Estimated expression”. In the case of mRNA containing three miRNA response elements, the “Relative expression” value is measured in the presence of two of the three miRNA inhibitors, and the sum of the measured three values is called “Estimated expression”. did.
 結果
 1分子で多数のmiRNAに応答し、かつ個々のmiRNAへの応答の程度(検出感度)を任意に調節プローブ (= mRNA) の設計方法を開発し、細胞内の多因子情報を線形モデルで抽出することに成功した。RNA Synthetic Device はmRNAと転写後・翻訳段階の制御を基本としているため、mRNAに作用するmiRNA が細胞内部のマーカー分子として用いられている。マイクロアレイや次世代シーケンシングなどの high-throuput analysisの場合は、まず、(1) miRNA を網羅的に定量検出し、その後で、(2) 多変量解析などにより膨大な数の変数から取り扱いが容易な数の合成変数を抽出し、それに基づいて細胞の状態を区別している (図1a左図)。一方で、非侵襲的に(細胞を殺さずに)同時に検出可能なシグナルの数は限られており、1対1に対応した検出プローブでは対応できない。そこで、生細胞内の多因子の情報を検出するために、多因子の情報を先に要約してから、その結果合成されたパラメータを検出する戦略をとる (図1a右図)。すると、同時に検出可能な、限られたシグナル数でも、多数の生細胞内因子の定量情報に由来し、そのエッセンスを抽出した合成パラメータを直接検出できる。我々は、1つのmRNAが複数のmiRNAを可算的に検出できること、各miRNAへの検出感度をmRNA上のmiRNA標的配列の位置で調節できることを発見した。
Results Developed a design method for a probe (= mRNA) that responds to a large number of miRNAs with a single molecule and arbitrarily adjusts the degree of response to individual miRNAs (detection sensitivity). Successfully extracted. Since RNA Synthetic Device is based on the control of mRNA and post-transcriptional / translational steps, miRNAs that act on mRNA are used as marker molecules inside cells. For high-throughput analysis such as microarray and next-generation sequencing, first, (1) comprehensive quantitative detection of miRNA, then (2) easy handling from a large number of variables such as multivariate analysis A large number of synthetic variables are extracted, and the state of the cells is distinguished based on the extracted variables (the left figure in FIG. 1a). On the other hand, the number of signals that can be detected simultaneously non-invasively (without killing cells) is limited, and cannot be handled by a detection probe corresponding to one-to-one. Therefore, in order to detect multi-factor information in living cells, the multi-factor information is first summarized, and then the resulting synthesized parameter is detected (right diagram in FIG. 1a). Then, even with a limited number of signals that can be detected at the same time, it is possible to directly detect a synthetic parameter derived from the quantitative information of a large number of living cell factors and extracted from the essence thereof. We have found that one mRNA can detect multiple miRNAs countably, and that the sensitivity to each miRNA can be adjusted by the position of the miRNA target sequence on the mRNA.
 複数のmiRNA応答は積算される
 複数種類のmiRNAに応答するmRNAを作成するため、これまでは1カ所のみmiRNA標的配列を含んでいたmRNA (1-slot mRNA, 図6a, Miki, K. et al, Cell Stem Cell, 2015, 国際公開WO2015/105172) を拡張し、5’ UTR に連続に5カ所のmiRNA標的配列挿入部位 (スロット) を設計した (5-slot mRNA, 図2a)。細胞内因子の例としては、HeLa 細胞内で弱い活性を示すmiRNAの例として miR-34a-5p、強い活性の例として miR-17-5p と miR-92a-3p、さらに非常に強い活性の例として miR-21-5p の4種類を選んだ。5カ所のスロットに2 または3 種類の異なるmiRNA標的配列が挿入され、マーカー蛋白質としてhmAG1をコードするmRNAをランダムに12種類設計し、mRNAを合成した (図2a, 表3)。合成した 5-slot mRNAを、それぞれ、mRNA導入のコントロールとして蛍光蛋白質 tagBFPをコードした mRNAおよび 5-slot mRNAが応答するmiRNAに対する阻害剤 (miRVana miRNA inhibitor, Invitrogen) とともにHeLa細胞にトランスフェクションした。トランスフェクション24時間後に、フローサイトメーターを用いてマーカータンパク質の蛍光強度を定量し、Relative expression 値を解析した。
Since multiple miRNA responses create mRNAs that respond to multiple types of miRNAs that are accumulated, mRNA that previously contained miRNA target sequences at only one location (1-slot mRNA, Fig. 6a, Miki, K. et al , Cell Stem Cell, 2015, International Publication WO2015 / 105172), 5 miRNA target sequence insertion sites (slots) were designed in succession in the 5 ′ UTR (5-slot mRNA, FIG. 2a). Examples of intracellular factors include miR-34a-5p as an example of miRNA showing weak activity in HeLa cells, miR-17-5p and miR-92a-3p as examples of strong activity, and examples of very strong activity We selected four types of miR-21-5p. Two or three different miRNA target sequences were inserted into five slots, and 12 kinds of mRNAs encoding hmAG1 as a marker protein were randomly designed to synthesize mRNAs (FIG. 2a, Table 3). The synthesized 5-slot mRNA was transfected into HeLa cells together with an mRNA encoding a fluorescent protein tagBFP and an inhibitor against miRNA to which 5-slot mRNA responds (miRVana miRNA inhibitor, Invitrogen) as a control for mRNA introduction. 24 hours after transfection, the fluorescence intensity of the marker protein was quantified using a flow cytometer, and the Relative expression value was analyzed.
 例えば、miR-17-5p の標的配列を slot-2 に、miR-92a-3p の標的配列を slot-4 に持つmRNAの場合 (図2b)、両方のmiRNAに対する阻害剤を導入した時の 5-slot mRNA の発現量は、どちらのmiRNAの活性にも影響されていない場合の発現量を示すと考えられ、これを5-slot mRNAごとの発現量の基準値 (=1) とした。どちらか一方のmiRNA阻害剤 (miR-17-5p または miR-92a-3p) を導入した時の発現量は、それぞれ、もう一方のmiRNA活性 (miR-92a-3p または miR-17-5p) のみを反映していると考えられる。また、miRNA阻害剤の非存在下 (実際には、mock として用いたmiRNA-1 に対する inhibitor の存在下) の発現量は、両方のmiRNAの活性を反映していると考えられる。この両方のmiRNA活性を反映した Relative expression値は、個々のmiRNA活性への応答した Relative expression値の積算値(これを予測発現量, estimated expressionとする)に近い値を示した。 For example, in the case of mRNA having the target sequence of miR-17-5p in slot-2 and the target sequence of miR-92a-3p in slot-4 (Fig. 2b), 5 when inhibitors for both miRNAs are introduced The expression level of -slot mRNA is considered to indicate the expression level when not affected by the activity of either miRNA, and this was taken as the reference value (= 1) of the expression level for each 5-slot mRNA. When either miRNA inhibitor (miR-17-5p or miR-92a-3p) 導入 is introduced, the expression level is only the other miRNA activity mi (miR-92a-3p or miR-17-5p), respectively. Is considered to be reflected. In addition, the expression level of in the absence of an miRNA inhibitor (actually, in the presence of inhibitor with respect to miRNA-1 used as mock 考 え) is considered to reflect the activities of both miRNAs. The value of Relative expression reflecting both miRNA activities was close to the integrated value of Relative expression values in response to individual miRNA activities (this is the predicted expression level, estimated expression).
 そこで、ランダムに作成した12種類の 5-slot mRNA それぞれについて、miRNA阻害剤非存在下の Relative expression 値 (observed relative expression) と、応答する複数のmiRNAのうち1種類のみのmiRNA活性に応答したRelative expression値の積算値(estimated expression)を比較すると、非常に高い相関を示した (図2c)。このことは複数のmiRNA標的配列を持つ合成mRNAを用いることによって、複数のmiRNA活性を積算的に検出できることを示す。 Therefore, for each of 12 randomly generated 5-slot s mRNAs, Relative expression value (observed relative expression) 下 in the absence of miRNA inhibitors and Relative responsive to miRNA activity of only one of the responding miRNAs When the integrated values of expression values (estimated expression) were compared, showed a very high correlation (Fig. 2c). This indicates that a plurality of miRNA activities can be detected in an integrated manner by using a synthetic mRNA having a plurality of miRNA target sequences.
 miR34a-5p, miR-92a-3p, miR17-5p または miR-21-5p に応答する1-slot mRNAを合成し、mRNA導入のコントロールとなる tagBFP mRNA および 4種類のmiRNA阻害剤とともにHeLa 細胞に導入して Relative expression を求めたところ、mRNAが応答するmiRNA 以外のmiRNA阻害剤を導入しても Relative expression の値は影響を受けなかった。よって今回の実験条件においては、これらのmiRNA阻害剤は目的としない他の3種類のmiRNA活性を阻害しないことが確認された (図5a)。一方、複数のmiRNA阻害剤を挿入する場合には、細胞に導入するmiRNA阻害剤の総量が変動してしまう。ネガティブコントロールとして使用したmiR-1 に対するmiRNA阻害剤の量を増加させても、測定されるRelative expression の値は影響を受けなかったことから、今回の実験条件においては、miRNA inhibitor の導入総量の影響は無視できることが確認された。 Synthesize 1-slot mRNA that responds to miR34a-5p, miR-92a-3p, miR17-5p or miR-21-5p and introduce it into HeLa cells along with tagBFP mRNA and 4 miRNA inhibitors that control mRNA transfer When Relative expression was calculated, the value of 導入 Relative expression was not affected even when miRNA inhibitors other than miRNA to which mRNA responded were introduced. Therefore, it was confirmed that under these experimental conditions, these miRNA inhibitors do not inhibit other three types of miRNA activities that are not intended (FIG. 5a). On the other hand, when a plurality of miRNA inhibitors are inserted, the total amount of miRNA inhibitors introduced into cells varies. As the amount of miRNA inhibitor against miR-1 used as a negative control was increased, the measured Relative expression value was not affected, so the effect of the total amount of miRNA inhibitor introduced under the current experimental conditions Was confirmed to be negligible.
 スロットの位置により応答感度を調節できる
 5カ所のスロットのうち、1、2または3カ所が同一のmiRNA標的配列で占められている一連の 5-slot mRNAを、miR34a-5p, miR-92a-3p, miR17-5p または miR-21-5p の4種類のmiRNAについて、それぞれ設計し、mRNAを合成した (Fig 2d, 表3)。合成した5-slot mRNAを、それぞれ、mRNA導入のコントロールとして蛍光蛋白質 tagBFPをコードした mRNAおよび 5-slot mRNAが応答するmiRNAに対する阻害剤とともにHeLa細胞にトランスフェクションした。トランスフェクション24時間後に、フローサイトメーターを用いてマーカータンパク質の蛍光強度を定量し、Relative expression 値を解析した。ただし、miR-21-5p の解析においては、マーカー遺伝子の発現が強く抑制され、細胞の自家蛍光の影響が高くなるため、tagBFPの蛍光値が 10,000 以下の細胞を除去してmRNA導入量の高い細胞群で評価した。
Of the five slots whose response sensitivity can be adjusted depending on the slot position, a series of 5-slot mRNAs in which one, two or three are occupied by the same miRNA target sequence are miR34a-5p, miR-92a-3p. , miR17-5p or miR-21-5p were designed and mRNA was synthesized (Fig 2d, Table 3). The synthesized 5-slot mRNA was transfected into HeLa cells together with an inhibitor against miRNA to which the fluorescent protein tagBFP and 5-slot mRNA respond, respectively, as a control for mRNA introduction. 24 hours after transfection, the fluorescence intensity of the marker protein was quantified using a flow cytometer, and the Relative expression value was analyzed. However, in miR-21-5p analysis, the expression of the marker gene is strongly suppressed and the influence of the autofluorescence of the cells increases, so cells with tagBFP fluorescence values of 10,000 or less are removed and the amount of mRNA introduced is high. The cell group was evaluated.
 このとき、各 5-slot mRNAの発現量 (Relative expression) は、各スロットにおけるmiRNA応答性 (ρ) の積算値だと考えられる (Fig. 2d, bottom)。そこで、実験的に測定した Relative expression 値 (observed relative expression) のデータセットから、最小二乗法に基づいたフィッティングにより、各スロットにおけるmiRNA応答性 (ρ) を4種類のmiRNAそれぞれについて算出した。この解析で求められた各スロットにおけるmiRNA応答性の積算値を、5-slot mRNA それぞれの予測発現量 (estimated expression) とした。 At this time, the expression level (Relative expression) of each 5-slot mRNA is considered to be an integrated value of miRNA responsiveness (ρ) in each slot (Fig. 2d, robot). Therefore, miRNA responsiveness (ρ) in each slot was calculated for each of the four types of miRNAs from the experimentally measured data set of Relative expression value (observed relative expression). The integrated value of miRNA responsiveness in each slot determined by this analysis was defined as the estimated expression level (estimated expression) 5- for each 5-slot mRNA.
 4種類全てのmiRNAについて、予測発現量は、実験的に測定されたRelative expression 値 (observed relative expression) とよく一致した (Fig. 2e)。このことは、5-slot mRNAの挙動が各スロットにおけるmiRNA応答性 (Local relative expression, ρ) で説明できていることを示唆する。4種類のmiRNAのうちいずれにおいても、スロット番号の小さい5’側のslot ほど応答感度が低く、3’側のslot ほど応答感度が高かった (図2fおよび図6)。 For all four miRNAs, the predicted expression level was in good agreement with the experimentally measured Relative expression value (observed relative expression) (Fig. 2e). This suggests that the behavior of 5-slot mRNA can be explained by miRNA responsiveness (Local relative expression, ρ) in each slot. In any of the four types of miRNAs, the 5′-side slot ’with a smaller slot number had a lower response sensitivity and the 3′-side slot had a higher response sensitivity (FIGS. 2f and 6).
 一方、miR34a-5p, miR-92a-3p, miR17-5p または miR-21-5p に応答する1-slot mRNA についても Relative expression 値を解析すると、どのmiRNAにおいても 1-slot mRNA はslot-5 に近い値を示した(図6b)。1-slot mRNA のmiRNA標的配列は、mRNAの5’末端から~20 nt, AUG から23 nt に位置している (図6a) ことから、この結果は、miRNA標的配列が、5’末端ではなく開始コドンにより近いほど、mRNAの応答感度が高くなること、開始コドンからの距離に依存して応答感度が低くなることを示唆する。 On the other hand, when analyzing Relative expression values for 1-slot mRNA responding to miR34a-5p, miR-92a-3p, miR17-5p or miR-21-5p, 1-slot mRNA becomes slot-5 in any miRNA. Close values were shown (Fig. 6b). The miRNA target sequence of 1-slot mRNA is located ~ 20 nt from the 5 'end of mRNA and AUG 23 nt (Fig. 6a). Therefore, this result indicates that the miRNA target sequence is not the 5' end. This suggests that the closer to the start codon, the higher the response sensitivity of mRNA, and the lower the response sensitivity depending on the distance from the start codon.
 解析した4種類のmiRNAに固有のパラメータではなく、これらのmiRNAに共通するパラメータとして、miRNA標的配列の位置とmiRNA応答性の関係を求めるため、活性の異なる 4種類のmiRNAの解析で得られた各スロットの応答感度を、下記の指数関数モデルに同時にフィッティングした (図2f)。フィッティングは対数値に対して最小二乗法を用いて実施した。 It was obtained by analysis of 4 types of miRNAs with different activities in order to determine the relationship between the miRNA target sequence position and miRNA responsiveness as a parameter common to these miRNAs, not parameters unique to the four types of miRNAs analyzed The response sensitivity of each slot was simultaneously fitted to the following exponential function model (FIG. 2f). Fitting was performed using the method of least squares on logarithmic values.
Figure JPOXMLDOC01-appb-M000034
 
 このとき、d は開始コドンからの距離 ([nt]) を、ρ0 はそれぞれのmiRNAについて距離 0 [nt] の時の仮想的な応答感度を示す。ξ はmiRNAの種類に関わらず共通する変数を示す。(つまりρ(d) = {ρ0}k(d)= ρ0^dξ となる。)
Figure JPOXMLDOC01-appb-M000034

At this time, d is the distance ([nt]) from the start codon, and ρ 0 is the virtual response sensitivity when the distance is 0 [nt] for each miRNA. ξ represents a common variable regardless of the type of miRNA. (That is, ρ (d) = {ρ 0 } k (d) = ρ 0 ^ d ξ .)
 フィッティング解析の結果、miRNAによる翻訳抑制効果 (local repression, -log(ρ)) は、開始コドンからmiRNA標的配列までの距離 (d [nt]) と miRNAの種類に関わらない変数ξを用いてよく説明できた。今回の解析では、共通変数ξの値として -0.576 を得た。すなわち、5’UTR にmiRNA標的配列を含むmRNAを設計する場合、miRNAによる翻訳抑制効果は、miRNAの種類に関わらず一般に、開始コドンからmiRNA標的配列までの距離の -0.576 乗に比例すると考えられる。 As a result of the fitting analysis, the miRNA translation suppression effect (local repression, -log (ρ)) can be determined by using the distance 開始 (d [nt]) from the start codon to the miRNA target sequence and the variable ξ regardless of the miRNA type. I was able to explain. In this analysis, 共通 -0.576 was obtained as the value of the common variable ξ. In other words, when designing an mRNA containing a miRNA target sequence in the 5'UTR mi, the translation suppression effect by miRNA is generally considered to be proportional to the -0.576 power of the distance from the start codon to the miRNA target sequence, regardless of the type of miRNA. .
 多種類の細胞の分類 
 このモデルを実証するため、複数種類のヒト正常細胞を生きたまま、miRNA活性プロファイルに従って分類、分離することを試みた(図3)。
Classification of many types of cells
In order to demonstrate this model, we attempted to classify and isolate multiple types of normal human cells according to the miRNA activity profile while remaining alive (FIG. 3).
 まず細胞種ごとのmiRNA 活性を探索的に定量した。5’ UTR で標的配列が AUG になるのを防ぐため、CAUを含まないmiRNA を 270 抽出した(図3a、表4)。このとき、過去の文献から様々な細胞で比較的発現量の高いものを選別し(参考文献 [Neveu, P., et al, Cell Stem Cell, 2010])、かつ配列に類似性の高いmiRNAは除いた。選別した270のmiRNA のうち90はhmAG1を、別の90はtagBFPを、残る90はhdKRedをマーカーの蛍光蛋白質としてコードする1-slot mRNA を合成した。作成したmRNAの5’UTR配列を表5 に示す。異なるmiRNA標的配列が挿入されたhmAG1、tagBFP、およびhdKRedをコードする1-slot mRNAを各1種類と、mRNA導入のコントロールとして用いたhmKO2 mRNAの計4種類のmRNAを混合し、解析対象の細胞にトランスフェクションした。すなわち、計90種類の組み合わせで 1-slot mRNAをトランスフェクションした。また、解析上のコントロールとして、mRNAを含まない水、miRNAに応答しないコントロールのhmAG1、tagBFP、hdKRedおよびhmKO2の4種類のmRNAの混合、またはこれら4種類のmRNAのうちそれぞれ1種類のみ、の6種類のトランスフェクションを行った。すなわち、各細胞について96種類のトランスフェクションを実施して1セットの探索解析とした。解析対象の細胞としては、HeLa 細胞のほか、ヒト正常皮膚線維芽細胞(NHDF)、ヒト正常肺線維芽細胞(NHLF)、ヒト正常表皮ケラチノサイト(NHEK)、人腎臓上皮細胞(HRE)の初代培養細胞4種類、マウス線維芽細胞 (MEF) 、ヒト上皮線維芽細胞由来のiPS細胞(hiPSC)、およびhiPSCをbFGF非存在下で部分的に分化させた細胞 (hiPSC 14d) を用いた。 First, the miRNA activity for each cell type was quantified exploratoryly. In order to prevent the target sequence from becoming 5A UTR, the miRNA not containing CAU was extracted from 270 (Fig. 3a, Table 4). At this time, we selected cells with relatively high expression levels from the past literature (references [Neveu, P., et al, Cell Stem Cell, 2010]) and miRNAs with high sequence similarity Excluded. Of the 270 miRNAs selected, 90 were synthesized as hmAG1, another 90 as tagBFP, and the remaining 90 as 1-slot mRNA that encodes hdKRed as a marker fluorescent protein. The 5 'UTR sequence of the prepared mRNA is shown in Table 5 IV. Analysis target cells are mixed with 1 type of 1-slot mRNA encoding hmAG1, tagBFP, and hdKRed with different miRNA target sequences inserted, and a total of 4 types of hmKO2 mRNA used as mRNA transfer controls. Transfected. That is, 1-slot mRNA was transfected with a total of 90 combinations. In addition, as an analytical control, 6 kinds of water containing no mRNA, a mixture of four kinds of mRNAs, hmAG1, tagBFP, hdKRed, and hmKO2 that do not respond to miRNA, or only one of each of these four kinds of mRNAs. Different types of transfection were performed. That is, 96 types of transfection were performed for each cell, and one set of search analysis was performed. In addition to HeLa cells, primary cells of human normal skin fibroblasts (NHDF), human normal lung fibroblasts (NHLF), human normal epidermal keratinocytes (NHEK), and human kidney epithelial cells (HRE) are analyzed. Four types of cells, mouse fibroblast cell (MEF) cell, iPS cell derived from human epithelial fibroblasts (hiPSC), and cell cell (hiPSC®14d) cell that partially differentiated hiPSC in the absence of bFGF were used.
 フローサイトメトリー後、補正された蛍光強度を用いて、解析した細胞ごとにhmAG1、tagBFPおよびhdKRedの蛍光強度をhmKO2の蛍光強度で割り、蛍光比率を求め、解析した細胞における相乗平均をもとめて各1-slot mRNAの蛍光比率 (Fluorescence ratio) とした。探索解析を同じ細胞に対して2度実施し、得られた蛍光比率の比較を図3bに示す。これらの解析結果は高い相関を示したことから、この解析系は安定していることが示唆される。 After flow cytometry, using the corrected fluorescence intensity, divide the fluorescence intensity of hmAG1, tagBFP and hdKRed by the fluorescence intensity of hmKO2 for each analyzed cell to obtain the fluorescence ratio, and calculate the geometric mean of the analyzed cells. The fluorescence ratio of 1-slot mRNA was expressed as Fluorescence ratio. The search analysis was performed twice on the same cells and the resulting fluorescence ratio comparison is shown in FIG. 3b. These analysis results showed a high correlation, suggesting that this analysis system is stable.
 一般に、定量検出されるmiRNAのうち約1/3程度しか翻訳抑制活性を持たないことが知られている(参考文献[Mullokandov, G. et al, Nature Methods, 2013])。本解析で用いた270のmiRNAについても約2/3程度はmiRNA活性に左右されないと考えられるため、1-slot mRNAの蛍光比率は全体として対角線上に分布すると考えられる。しかし、細胞間の探索解析結果を比較すると、HeLa細胞とNHLFの比較では、観察された蛍光比率は対角線からずれてプロットされている(図7a)。これは細胞ごとに、蛍光蛋白質の合成効率や安定性などに違いがあるため、結果として発現量の分布にバイアスがかかっていると考えられる。そこで細胞間の蛍光蛋白質発現量を、HeLa細胞を基準に用いて標準化した。具体的には、各細胞の蛍光比率とHeLa細胞の蛍光比率の散布図を作成し、蛍光蛋白質ごとに直線回帰を行って、傾きが1となるようそれぞれに線形補正を実施
した (図7b)。これにより細胞間にあるバイアスは補正され、散布図を作成すると各1-slot mRNAは対角線上に分布したが、hmAG1、tagBFPおよびhdKRedの蛍光比率の分布は一致していない。これはマーカーとして用いた蛍光蛋白質の違いによるバイアスがあることを示す。そこでさらに、各蛍光比率の分布を平均0.5、標準偏差0.15に標準化した (図7c)。標準化した蛍光比率についてNHDFとhiPSCの比較を図3cに示す。これらの細胞間には大きなmiRNA活性の差があると期待されるが、実際に、miRNA活性を示す図中の各点は対角線に対して直行する方向に広がって分布しており、かつこの分布は用いた蛍光蛋白質によらず均等に分布している。この補正値を細胞ごとのmiRNA活性プロファイルとし、線形モデルの例として主成分分析により解析した。主成分分析には統計パッケージRのprcomp関数を用いた。第一主成分を横軸、第二主成分を縦軸にとると、8 種類の細胞条件は分類された(図3d)。このことは1-slot mRNA を用いた探索解析によって得られたmiRNA活性プロファイルに従って、これらの細胞を統計解析上は分類できることを示している。
In general, it is known that only about 1/3 of miRNA detected quantitatively has a translational inhibitory activity (reference document [Mullokandov, G. et al, Nature Methods, 2013]). Since about 2/3 of 270 miRNAs used in this analysis are considered not to be affected by miRNA activity, the fluorescence ratio of 1-slot mRNA is considered to be distributed diagonally as a whole. However, comparing the results of cell-to-cell search analysis, the observed fluorescence ratio is plotted off the diagonal line in the comparison between HeLa cells and NHLF (FIG. 7a). This is because there is a difference in the synthesis efficiency and stability of the fluorescent protein from cell to cell, and as a result, the distribution of the expression level is considered to be biased. Therefore, the expression level of fluorescent protein between cells was standardized using HeLa cells as a reference. Specifically, a scatter diagram of the fluorescence ratio of each cell and the fluorescence ratio of HeLa cells was created, linear regression was performed for each fluorescent protein, and linear correction was performed so that the slope became 1 (FIG. 7b). . As a result, the bias between cells was corrected, and each 1-slot mRNA was distributed diagonally when creating a scatter plot, but the distribution of fluorescence ratios of hmAG1, tagBFP and hdKRed did not match. This indicates that there is a bias due to the difference in the fluorescent protein used as a marker. Therefore, the distribution of each fluorescence ratio was standardized to an average of 0.5 and a standard deviation of 0.15 (FIG. 7c). A comparison of NHDF and hiPSC for the normalized fluorescence ratio is shown in FIG. 3c. Although it is expected that there is a large difference in miRNA activity between these cells, in fact, each point in the figure showing miRNA activity spreads in a direction perpendicular to the diagonal line, and this distribution Are evenly distributed regardless of the fluorescent protein used. This correction value was used as a miRNA activity profile for each cell, and analyzed by principal component analysis as an example of a linear model. For the principal component analysis, the prcomp function of the statistical package R was used. When the first principal component is plotted on the horizontal axis and the second principal component is plotted on the vertical axis, the eight cell conditions were classified (FIG. 3d). This indicates that these cells can be classified for statistical analysis according to the miRNA activity profile obtained by exploratory analysis using 1-slot mRNA.
 主成分分析で得られた成分は270のmiRNA活性の線形結合として表現される。一方、細胞内の複数のmiRNA活性は、複数の標的配列を持つ1つのmRNAにより、定量的に積算して測定でき、かつmiRNA活性の検出感度は標的配列と開始コドン間の距離によって調節できた。従ってマーカータンパク質の発現量の対数をとると、複数のmiRNA活性を線形モデルで集約されることになる (図1b)。ただし、miRNA活性にかかる係数 (k = d-0.576) は常に正になる。そこで、異なる蛍光タンパク質を発現する2 種類のmiRNA応答mRNAを用いて、2種類の蛍光値の比をとることによって、各miRNAに対して正負任意の重み付けを実現できる (図1b)。すなわち、細胞内の多種類のmiRNA活性プロファイルは、2種類のmiRNA応答mRNAを設計することによって、多変量を1つの蛍光値の比として集約できることになる。そこで、主成分分析と同様に、対象細胞で測定される値の分散が最大化されるようなmRNAを用いれば、対象の細胞を生きたまま分類することができると考えられる。 Components obtained by principal component analysis are expressed as a linear combination of 270 miRNA activities. On the other hand, multiple miRNA activities in cells could be measured quantitatively by one mRNA with multiple target sequences, and the detection sensitivity of miRNA activity could be controlled by the distance between the target sequence and the start codon . Therefore, taking the logarithm of the expression level of the marker protein, a plurality of miRNA activities are aggregated in a linear model (FIG. 1b). However, the coefficient for miRNA activity (k = d -0.576 ) is always positive. Thus, by using two types of miRNA-responsive mRNAs that express different fluorescent proteins and taking the ratio of the two types of fluorescence values, any weight can be realized for each miRNA (FIG. 1b). That is, the multivariate miRNA activity profile in the cell can be aggregated as a ratio of one fluorescence value by designing two miRNA response mRNAs. Thus, as in the case of the principal component analysis, it is considered that the target cells can be classified alive by using mRNA that maximizes the variance of the values measured in the target cells.
 ここでは簡単のため4種類の5-slot mRNAを用いることとした。異なる細胞の種類を分類するため、270のmiRNA活性プロファイルから、細胞の分離能の高いと考えられるmiRNAを選別した。スクリーニング解析で得たmiRNA活性プロファイルに対して主成分分析とクラスター分析(ウォード法)を行い 270 のmiRNAを49クラスターに分離し、各クラスターで第一成分または第二成分への寄与が最も高いmiRNAを選んだ。クラスター分析には統計パッケージRのdist関数及びhclust関数を用いた。選ばれた49 miRNAのみで再び主成分分析を行い、第一成分または第二成分への寄与が高い26のmiRNAを選別した。26 miRNAの標的配列を含む 5-slot mRNAの8種類の細胞における発現量の予測値を計算し、いずれかの細胞で発現量が極めて小さくなるmRNA(Estimated expression < 0.05) を除外した。残りのmRNAについて8細胞における予測発現量の分散を計算し、分散が最大化するmRNAを5-slot mRNA #1 (hmAG1) とした。次に、5-slot mRNA #1と予測発現量の比率を計算し、その値が8細胞の分散を最大化するmRNAを5-slot mRNA #2 (hmKO2) とした。さらに、5-slot mRNA #1 と 5-slot mRNA #2 の比率と、新たなmRNAの予測発現量の相関係数が 0.3 以下となり、かつこれらの2次元のデータにおいて8細胞の分散を最大化するmRNAを求め、5-slot mRNA #3 (tagBFP) とした。最後に 5-slot mRNA #1 と #2 の比率、5-slot mRNA #3 と #4 の比率の2次元データにおいて8細胞の分散を最大化する5-slot mRNA #4 (hdKRed) を求めた。一連の計算上の探索により得られた1 セットの 5-slot mRNA を図3eに示す。また、このmRNAセットをトランスフェクションした場合の、8細胞の分布の推測結果を図3fに示す。 Here, for simplicity, four types of 5-slot mRNA were used. In order to classify different cell types, miRNAs that were considered to have high cell separation ability were selected from 270 miRNA activity profiles. Principal component analysis and cluster analysis (Ward method) are performed on miRNA activity profile obtained by screening analysis, and 270 270 miRNA is separated into 49 clusters, and each cluster has the highest contribution to the first or second component. I chose. The dist function and hclust function of the statistical package R were used for cluster analysis. Principal component analysis was performed again using only the selected 49-miRNA, and 26 miRNAs that contributed to the first component or the second component were selected. The predicted value of the expression level of 5-slot mRNA containing the target sequence of 26 miRNA was calculated in 8 types of cells, and mRNA (Estimated expression <0.05) with extremely small expression level in any cell was excluded. For the remaining mRNA, the variance of the predicted expression level in 8 cells was calculated, and the mRNA that maximized the variance was defined as 5-slot mRNA # 1 (hmAG1). Next, the ratio of 5-slot mRNA # 1 to the predicted expression level was calculated, and the mRNA whose value maximizes the dispersion of 8 cells was defined as 5-slot mRNA # 2 (hmKO2). Furthermore, the correlation coefficient between the ratio of 5-slot mRNA # 1 and 5-slot mRNA # 2 と and the predicted expression level of the new mRNA is less than 0.3 か つ, and the dispersion of 8 cells is maximized in these two-dimensional data. MRNA to be obtained was determined and designated as 5-slot mRNA # 3 (tagBFP). Finally, 5-slot mRNA # 4 (hdKRed) す る that maximizes the dispersion of 8 cells in the two-dimensional data of 5-slot mRNA # 1 and # 2 比率 ratio and 5-slot mRNA # 3 and # 4 比率 ratio was obtained. . A set of 5-slot mRNA obtained by a series of computational searches is shown in Fig. 3e. In addition, FIG. 3f shows the estimation result of the distribution of 8 cells when this mRNA set was transfected.
 設計された4 本の5-slot mRNAを混合し、HeLa細胞、NHEK、NHDF、hiPSC及びhiPSC 14dにトランスフェクションし、24時間後にフローサイトメトリーを行った。蛍光補正後、解析された細胞ごとにhmAG1/hmKO2及びtagBFP/hdKRedの2つの蛍光比率を求め、細胞の分布を密度プロットで示した(図3g)。これらの5種類の細胞は、同一の5-slot mRNAセットを用いてそれぞれ異なる場所に分布した。この結果から、6 種類のmiRNA活性から線形モデルで抽出した 2 つのパラメータを、4 本の 5-slot mRNAを用いて直接測定し、これに基づいて5種類の細胞を生きたまま分離することが可能となった。また、miRNAに応答しないmRNAのセットや、1-slot のmiRNA-responsive mRNA のセットでも同様の実験を実施したが、これらの細胞種は分離できなかった (図8) 。 The 4 designed 5-slot mRNAs were mixed and transfected into HeLa cells, NHEK, NHDF, hiPSC and hiPSC-14d, and flow cytometry was performed 24 hours later. After fluorescence correction, two fluorescence ratios of hmAG1 / hmKO2 and tagBFP / hdKRed were determined for each analyzed cell, and the cell distribution was shown in a density plot (FIG. 3g). These five types of cells were distributed in different locations using the same 5-slot mRNA set. Based on these results, two parameters extracted from 6 types of miRNA activity with a linear model were directly measured using 4 types of 5-slot mRNA, and 5 types of cells were isolated based on this parameter. It has become possible. In addition, similar experiments were performed with a set of mRNA that does not respond to miRNA and a set of 1-slot miRNA-responsive mRNA 、, but these cell types could not be separated (Fig. 8).
 同一細胞(種)の時間変化の追跡
 さらに、ヒトiPS細胞が分化能を失う過程を経時的に追跡して、工程(1)で探索する細胞の違いにより、得られるmRNAセットの分離能の違いを検証した(図4)。まず、270のmiRNA活性を探索的に定量した結果(図3c)から hiPSC とbFGF非存在下で部分的に分化させた hiPSC (iPSC 14d) の間で差の大きかった 54 のmiRNAを選択した(図4a)。これらのmiRNAを対象として、hiPSCがbFGF非存在下で部分的に分化する過程におけるmiRNA活性の経時変化を追跡するため、二次的な探索解析を実施した (図4b)。hiPSCをbFGF非存在下で培養し、培養開始当日(day 0) および1(day 1)、3(day 3)、6(day 6)、9(day9 )、または14日後(day 14)に、異なるmiRNA標的配列が挿入されたhmAG1、tagBFP、およびhdKRedをコードする1-slot mRNAを各1種類と、mRNA導入のコントロールとして用いたhmKO2 mRNAの計4種類のmRNAを混合し、トランスフェクションした。このとき一次的な探索解析(図3a)で用いた6種類のコントロールと同一のトランスフェクションを実施した。すなわち、各培養条件において24種類のトランスフェクションを実施した(図4a)。
各培養条件の細胞はトランスフェクションから24時間にフローサイトメトリーで解析した。一時的な探索解析の結果(図7a)と異なり、これらの培養条件間では、蛍光比率に大きなバイアスは見られなかった(図4c)ことから、蛍光比率の値をそのまま以後の解析に用いた。miRNA活性のプロファイルを主成分分析し、第一主成分を横軸、第二主成分を縦軸にとって、これらの培養条件にある細胞を分類した(図4d)。
 測定された蛍光比率に対して主成分分析とクラスター分析(ウォード法)を行い54のmiRNAを23クラスターに分離し、各クラスターで第一成分または第二成分への寄与が最も高いmiRNAを選んだ。クラスター分析にはこれまでと同様に統計パッケージRのdist関数及びhclust関数を用いた。選ばれた23 miRNAのみで再び主成分分析を行い、第一成分または第二成分への寄与が高い11のmiRNAを選別した。これらの11 miRNAを用いて、一次的な探索解析(図3e, f)と同様の計算を実施して得られた5-slot mRNAのセットを図4eに、このmRNAセットをトランスフェクションした場合の、各培養条件の細胞の分布の推測結果を図4fに示す。また、実際にこの4 本の5-slot mRNAs を各培養条件の細胞にトランスフェクションし、フローサイトメトリーを実施した結果を図4gに示す。電子ティープロット上で細胞集団は時間変化にしたがって移動しており、8 種類のmiRNA活性から線形モデルで抽出した 2 つのパラメータを用いて、ヒトiPS細胞内部情報の経時的な変化を生きたまま追跡することができた。多種類の細胞を分類したプローブセット (図3e) と比べて、hiPSCの変化をより広い範囲に分離することができた (図9)。このことは細胞を分類している2つの合成パラメータを、mRNAのデザインにより任意に変更できることを示している。
Tracking changes in the same cell (species) over time In addition, the process of losing differentiation ability of human iPS cells is tracked over time, and the difference in the resolution of the resulting mRNA set depends on the difference in the cells searched in step (1). Was verified (FIG. 4). First, from the results of exploratory quantification of 270 miRNA activities (Fig. 3c), 54 miRNAs with a large difference between hiPSCs and hiPSCs (iPSC 14d) partially differentiated in the absence of bFGF were selected ( FIG. 4a). For these miRNAs, a secondary exploratory analysis was performed to track changes in miRNA activity over time during the process of partial differentiation of hiPSC in the absence of bFGF (FIG. 4b). hiPSC was cultured in the absence of bFGF, and on the day of culture start (day 0) and 1 (day 1), 3 (day 3), 6 (day 6), 9 (day 9), or 14 days later (day 14), One kind of 1-slot mRNA encoding hmAG1, tagBFP, and hdKRed each having a different miRNA target sequence inserted, and a total of four kinds of mRNAs, hmKO2 mRNA used as a control for mRNA introduction, were mixed and transfected. At this time, the same transfection as the six types of controls used in the primary search analysis (FIG. 3a) was performed. That is, 24 types of transfection were performed in each culture condition (FIG. 4a).
Cells under each culture condition were analyzed by flow cytometry 24 hours after transfection. Unlike the results of the temporary search analysis (FIG. 7a), there was no significant bias in the fluorescence ratio between these culture conditions (FIG. 4c), so the value of the fluorescence ratio was directly used for the subsequent analysis. . The miRNA activity profile was subjected to principal component analysis, and the cells under these culture conditions were classified with the first principal component as the horizontal axis and the second principal component as the vertical axis (FIG. 4d).
Principal component analysis and cluster analysis (Ward method) were performed on the measured fluorescence ratio, and 54 miRNAs were separated into 23 clusters, and miRNAs with the highest contribution to the first or second component were selected in each cluster. . In the cluster analysis, the dist function and hclust function of the statistical package R were used as before. Principal component analysis was performed again with only the selected 23 miRNAs, and 11 miRNAs with high contribution to the first component or the second component were selected. Using these 11 miRNAs, the 5-slot mRNA set obtained by performing the same calculation as the primary search analysis (Fig. 3e, f) is shown in Fig. 4e, and when this mRNA set is transfected. FIG. 4f shows the estimation result of the cell distribution under each culture condition. In addition, FIG. 4g shows the results of actually transfecting these four 5-slot mRNAs into cells of each culture condition and performing flow cytometry. On the electronic tea plot, the cell population moves with time, and the changes over time in human iPS cell information over time are tracked alive using two parameters extracted from eight miRNA activities using a linear model. We were able to. Compared with the probe set (Fig. 3e) in which many types of cells were classified, changes in hiPSC could be separated into a wider range (Fig. 9). This indicates that the two synthesis parameters that classify cells can be changed arbitrarily depending on the mRNA design.
 (参考文献)
MicroRNA profiling reveals two distinct p53-related human pluripotent stemcell states.
Neveu P., Kye MJ., Qi S., Buchholz DE., Clegg DO., Sahin M., Park IH., Kim KS., 
Daley GQ., Kornblum HI., Shraiman BI., Kosik KS.
Cell Stem Cell, 7(6):671-81, 2010
 
Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches.
Miki K., Endo K., Takahashi S., Funakoshi S., Takei I., Katayama S., Toyoda T., Kotaka M., Takaki T., Umeda M., Okubo C., Nishikawa M., Oishi A., Narita M., Miyashita I., Asano K., Hayashi K., Osafune K., Yamanaka S., Saito H., Yoshida Y.
Cell Stem Cell, 16(6):699-711, 2015
 
Engineering protein-responsive mRNA switch in Mammalian cells.
Endo K., Saito H.
Methods Mol Biol, 1111:183-96, 2014
 
High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries.
Mullokandov G., Baccarini A., Ruzo A., Jayaprakash AD., Tung N., Israelow B., Evans MJ., Sachidanandam R., Brown BD.
Nat Methods, 9(8):840-6, 2012
(References)
MicroRNA profiling reveals two distinct p53-related human pluripotent stemcell states.
Neveu P., Kye MJ., Qi S., Buchholz DE., Clegg DO., Sahin M., Park IH., Kim KS.,
Daley GQ., Kornblum HI., Shraiman BI., Kosik KS.
Cell Stem Cell, 7 (6): 671-81, 2010

Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches.
Miki K., Endo K., Takahashi S., Funakoshi S., Takei I., Katayama S., Toyoda T., Kotaka M., Takaki T., Umeda M., Okubo C., Nishikawa M., Oishi A ., Narita M., Miyashita I., Asano K., Hayashi K., Osafune K., Yamanaka S., Saito H., Yoshida Y.
Cell Stem Cell, 16 (6): 699-711, 2015

Engineering protein-responsive mRNA switch in Mammalian cells.
Endo K., Saito H.
Methods Mol Biol, 1111: 183-96, 2014

High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries.
Mullokandov G., Baccarini A., Ruzo A., Jayaprakash AD., Tung N., Israelow B., Evans MJ., Sachidanandam R., Brown BD.
Nat Methods, 9 (8): 840-6, 2012

Claims (7)

  1.  以下の工程を含む、miRNA応答配列を2以上含有するmRNAを設計する方法であって、当該miRNA応答配列を2以上含有するmRNAが、2以上のmiRNA応答配列とそれと機能的に連結したマーカー遺伝子配列を含むmRNAである、方法;
    (1)1つのmiRNA応答配列を有するmRNAの翻訳抑制効果を2以上の対象細胞で測定する工程、
    (2)前記工程(1)の測定結果に基づき、各対象細胞でのmiRNA応答配列を2以上含有するmRNAの翻訳抑制効果を算出する工程、
    (3)前記工程(2)で算出された値に基づき、前記2以上の対象細胞間における翻訳抑制効果の差が最大になる、miRNA応答配列を2以上含有するmRNAを選択する工程。
    A method for designing an mRNA containing two or more miRNA response elements, comprising the following steps, wherein an mRNA containing two or more miRNA response elements is operably linked to two or more miRNA response elements: A method comprising mRNA comprising a sequence;
    (1) a step of measuring the translation inhibitory effect of mRNA having one miRNA response element in two or more target cells;
    (2) A step of calculating the translational suppression effect of mRNA containing two or more miRNA response sequences in each target cell based on the measurement result of the step (1),
    (3) A step of selecting mRNA containing two or more miRNA response elements that maximizes the difference in translational suppression effect between the two or more target cells based on the value calculated in the step (2).
  2.  前記工程(1)と工程(2)の間に、前記工程(1)の測定結果に基づき、前記工程(2)の算出に使用するmiRNA応答配列の種類を、多変量解析を用いて限定する工程をさらに含む、請求項1に記載の方法。 Between the step (1) and the step (2), based on the measurement result of the step (1), the types of miRNA response elements used for the calculation of the step (2) are limited using multivariate analysis. The method of claim 1, further comprising a step.
  3.  前記工程(2)の翻訳抑制効果が、前記2以上のmiRNA応答配列のそれぞれの翻訳抑制効果-log(ρ)を、miRNAの数だけ合算して得られるものであり、前記それぞれの翻訳抑効果-log(ρ)が、下記式
    Figure JPOXMLDOC01-appb-M000001
     
    (式中、ρは、miRNAによる翻訳抑制効果を表し、
     d [nt]は、開始コドンからmiRNA標的配列までの距離 を表し、
     ξは、-0.576を表し、
     ρ0 はそれぞれのmiRNAについて距離0 [nt] の時の仮想的な翻訳抑制効果を表す)に基づいて算出される、請求項1または2に記載の方法。
    The translation suppression effect of the step (2) is obtained by adding the translation suppression effect -log (ρ) of each of the two or more miRNA response elements by the number of miRNAs. -log (ρ) is
    Figure JPOXMLDOC01-appb-M000001

    (In the formula, ρ represents the translation suppression effect by miRNA,
    d [nt] represents the distance from the start codon to the miRNA target sequence,
    ξ represents -0.576,
    The method according to claim 1 or 2, wherein ρ 0 is calculated based on a hypothetical translational suppression effect at a distance 0 [nt] for each miRNA.
  4.  前記工程(3)が、各対象細胞におけるマーカー遺伝子の翻訳量の分散を最大にする、
    miRNA応答配列を2以上含有するmRNAを選択する工程を含む、請求項1~3のいずれか1項に記載の方法。
    The step (3) maximizes the distribution of the translation amount of the marker gene in each target cell;
    The method according to any one of claims 1 to 3, comprising a step of selecting mRNA containing two or more miRNA response elements.
  5.  請求項1~4のいずれか1項に記載の方法でmRNAを設計する工程と、
     前記設計されたmRNAを、遺伝子工学的手法により合成する工程と
    を含む、miRNA応答配列を2以上含有するmRNAの製造方法。
    Designing mRNA by the method according to any one of claims 1 to 4,
    A method for producing mRNA containing two or more miRNA response elements, comprising a step of synthesizing the designed mRNA by a genetic engineering technique.
  6.  請求項1~4のいずれか1項に記載の方法で設計されたmRNAを用いて、マーカー遺伝子の翻訳量を指標として2以上の対象細胞を分離する方法。 A method for separating two or more target cells using the mRNA designed by the method according to any one of claims 1 to 4 and using the translation amount of the marker gene as an index.
  7.  前記mRNAが、請求項1~4のいずれか1項に記載の方法で設計された、マーカー遺伝子配列及び5’UTRの配列がそれぞれ異なる4種のmRNAである、請求項6に記載の方法。 The method according to claim 6, wherein the mRNAs are 4 types of mRNAs designed by the method according to any one of claims 1 to 4 and having different marker gene sequences and 5 'UTR sequences.
PCT/JP2016/081692 2015-10-28 2016-10-26 mRNA DESIGN METHOD WO2017073600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017547819A JP6944709B2 (en) 2015-10-28 2016-10-26 How to design mRNA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015212176 2015-10-28
JP2015-212176 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017073600A1 true WO2017073600A1 (en) 2017-05-04

Family

ID=58630444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081692 WO2017073600A1 (en) 2015-10-28 2016-10-26 mRNA DESIGN METHOD

Country Status (2)

Country Link
JP (1) JP6944709B2 (en)
WO (1) WO2017073600A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3653710A4 (en) * 2017-07-12 2021-04-14 Kyoto University HIGH EXPRESSION mRNA SWITCH

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405312B2 (en) * 2007-11-22 2014-02-05 独立行政法人科学技術振興機構 Translation control system in cell or artificial cell model with small RNA
WO2016114354A1 (en) * 2015-01-14 2016-07-21 国立大学法人京都大学 Method for selecting skeletal muscle progenitor cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405312B2 (en) * 2007-11-22 2014-02-05 独立行政法人科学技術振興機構 Translation control system in cell or artificial cell model with small RNA
WO2016114354A1 (en) * 2015-01-14 2016-07-21 国立大学法人京都大学 Method for selecting skeletal muscle progenitor cell

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ENDO K. ET AL.: "High-resolution Identification and Separation of Living Cell Types by Multiple microRNA-responsive Synthetic mRNAs", SCIENTIFIC REPORTS, vol. 6, no. 21991, February 2016 (2016-02-01), pages 1 - 8, XP055379535 *
KENJI MIKI ET AL.: "Efficient detection and purification of cells by synthetic microRNA switches", REGENERATIVE MEDICINE, vol. 14, pages 188, ISSN: 1347-7919 *
MIKI K. ET AL.: "Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches", CELL STEM CELL, vol. 16, pages 699 - 711, XP055225629 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3653710A4 (en) * 2017-07-12 2021-04-14 Kyoto University HIGH EXPRESSION mRNA SWITCH

Also Published As

Publication number Publication date
JP6944709B2 (en) 2021-10-06
JPWO2017073600A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6890846B2 (en) A method for discriminating a desired cell type using miRNA expression as an index
Walsh et al. Optical metabolic imaging quantifies heterogeneous cell populations
Schwalie et al. A stromal cell population that inhibits adipogenesis in mammalian fat depots
CN109072205A (en) The detection of nucleic acid
EP2551343B1 (en) Method for monitoring state of differentiation in a stem cell
US10604770B2 (en) Method for extracting differentiated cells
Galea et al. A high-content screening microscopy approach to dissect the role of Rab proteins in Golgi-to-ER retrograde trafficking
Lohoff et al. Highly multiplexed spatially resolved gene expression profiling of mouse organogenesis
Ofiteru et al. Qualifying osteogenic potency assay metrics for human multipotent stromal cells: TGF-β2 a telling eligible biomarker
JP6944709B2 (en) How to design mRNA
Shah et al. Autofluorescence flow sorting of breast cancer cell metabolism
Yeo et al. Chromatin accessibility dynamics of neurogenic niche cells reveal defects in neural stem cell adhesion and migration during aging
Anderson et al. Single cell transcriptional profiling of Phox2b-expressing geniculate ganglion neurons
WO2018003779A1 (en) Method for expressing protein gene in response to expression of mirna
Jia et al. A live cell protein complementation assay for ORFeome-wide probing of human HOX interactomes
Barrault et al. Expression of miRNAs from the imprinted DLK1/DIO3 locus signals the osteogenic potential of human pluripotent stem cells
Bianchi-Smiraglia et al. Assessment of intracellular GTP levels using genetically encoded fluorescent sensors
Appolloni et al. Role of Btg2 in the progression of a PDGF-induced oligodendroglioma model
Gomez et al. Developmental emergence of cortical neurogliaform cell diversity
Lee et al. Sequential events during the quiescence to proliferation transition establish patterns of follicle cell differentiation in the Drosophila ovary
Rodríguez-Fernández et al. Plasma membrane-associated superstructure: Have we overlooked a new type of organelle in eukaryotic cells?
Little et al. Integration of high-content fluorescence imaging into the metabolic flux assay reveals insights into mitochondrial properties and functions
US20210079440A1 (en) HIGH EXPRESSION mRNA SWITCH
Alroy et al. Targeting Translation Regulation for the Development of Novel Drugs
Li Mechanism of Non-Genetic Heterogeneity in Growth Rate and Stress Tolerance in Saccharomyces cerevisiae

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859830

Country of ref document: EP

Kind code of ref document: A1