WO2017073591A1 - Chromium-modified implant and method for manufacturing same - Google Patents

Chromium-modified implant and method for manufacturing same Download PDF

Info

Publication number
WO2017073591A1
WO2017073591A1 PCT/JP2016/081676 JP2016081676W WO2017073591A1 WO 2017073591 A1 WO2017073591 A1 WO 2017073591A1 JP 2016081676 W JP2016081676 W JP 2016081676W WO 2017073591 A1 WO2017073591 A1 WO 2017073591A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant
chromium
group
present
bone
Prior art date
Application number
PCT/JP2016/081676
Other languages
French (fr)
Japanese (ja)
Inventor
山本 修
勉 小口
Original Assignee
山本 修
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山本 修 filed Critical 山本 修
Priority to JP2016575692A priority Critical patent/JP6185679B1/en
Publication of WO2017073591A1 publication Critical patent/WO2017073591A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/64Treatment of refractory metals or alloys based thereon

Definitions

  • the present invention relates to an implant that is embedded in a living body for medical purposes, and whose surface is modified with a chromium group having a hydroxyl group.
  • chromium is gradually released as ions from the surface, thereby acting on the living body and promoting the binding of the implant to the living tissue.
  • the present invention also relates to an implant production method, an implant surface treatment method, and an implant surface treatment agent using a reaction solution containing chromium hydroxide ions.
  • Implant is a general term for instruments or biomaterials that are implanted in a living body for medical purposes.
  • Implants include dental implants (artificial roots) that are implanted in the jawbone of patients with lost roots, artificial joints that replace damaged knees and hips, bolts that fix broken bones, cardiac pacemakers, cochlear implants, etc. To do. Implants are intended to recover lost function by replacing or assisting in-vivo organs that have lost function.
  • a general treatment method using a dental implant is to cut the jaw bone, implant the implant into the jaw bone, and take 2-6 months to fully bond the implant and the bone. It is a method of forming artificial teeth.
  • an implant having a zinc functional group on the surface produced by immersing the base material of an implant made of titanium or an alloy thereof in an alkaline solution containing a zinc hydroxide complex (patent) Document 1, Non-Patent Document 1).
  • This implant having a zinc functional group on the surface can be bonded to bone with high strength comparable to that of an implant coated with hydroxyapatite when implanted in bone.
  • chromium is a metal used as a base material for implants as a cobalt-chromium alloy, and forms a chromium oxide (Cr 2 O 3 ) coating on the surface to prevent rust of the implant.
  • Cr chromium
  • Patent Document 2 discloses a strong and wear-resistant implant in which chromium nitride is formed on the surface by plasma treatment of a cobalt chromium alloy in a gas containing nitrogen gas. ing.
  • an oxide or mixed oxide layer is formed on a metal substrate by subjecting a metal substrate that is titanium or an alloy thereof to an electrolytic treatment in an electrolytic solution containing sulfuric acid, sulfate, carbonate, or the like. Further, there is disclosed an implant in which a coating layer containing hydroxyapatite is formed on the surface thereof.
  • a mixed oxide layer of titanium oxide impregnated with chromium is also exemplified. It is described that the oxide layer has a relatively good affinity in vivo and has sufficiently high corrosion resistance, so that it can be an implant that is stable and has almost no possibility of elution.
  • chromium used in conventional implants has been used to impart or enhance the corrosion resistance of implants.
  • chromium is also used as a chemical in the treatment of “skin tanning” for maintaining the flexibility of leather for a long time, and it is shown in Non-Patent Document 2 that chromium crosslinks collagen.
  • an object of the present invention is to develop an implant that acts on a living body by an unprecedented mechanism and can be firmly bonded to a living tissue.
  • the present inventors have conducted intensive research. As a result, in implants to be implanted in a living body for medical purposes, chromium ions are gradually released from the implant by modifying the surface with a chromium group having a hydroxyl group. Thus, the present inventors have found that this chromium ion acts on living tissue by promoting the cross-linking formation of collagen and the like, thereby promoting the strong bond between the implant and the living tissue, and completed the present invention.
  • the present invention relates to the following first invention relating to an implant, the following second invention relating to a method for producing an implant, the following third invention relating to a surface treatment method for an implant, and the following relating to a surface treatment agent for an implant.
  • the fourth invention is provided.
  • the base material of the implant in an implant that is embedded in a living body for medical purposes, is a metal, metal alloy, metal oxide, or ceramic, and the surface of the base material is modified with a chromium group having a hydroxyl group. It is related with the implant characterized by being.
  • the surface is preferably modified with a group represented by the following general formula (1) as a chromium group having a hydroxyl group. -O-Cr (OH) R (1)
  • R represents —OH or —O—.
  • the chromium group is preferably a chromium group having a trivalent oxidation number.
  • the implant is preferably a dental implant. 2nd invention immerses the base material selected from the group which consists of a metal, a metal alloy, a metal oxide, and a ceramic in the reaction solution containing a chromium hydroxide ion, and takes out a base material from a reaction solution.
  • the present invention relates to a method for manufacturing an implant.
  • the chromium hydroxide is a chromium hydroxide ion in which the ion valence of the chromium atom is trivalent.
  • 3rd invention is related with the surface treatment method of the implant for improving biocompatibility including making the reaction solution containing a chromium hydroxide ion contact an implant.
  • the chromium hydroxide is preferably a chromium hydroxide ion in which the ionic value of the chromium atom is trivalent.
  • a fourth invention relates to a surface treatment agent for an implant, which is a solution containing chromium hydroxide ions.
  • the chromium hydroxide is preferably a chromium hydroxide ion in which the ionic value of the chromium atom is trivalent.
  • the surface of the implant of the first invention is modified with a chromium group having a hydroxyl group, chromium ions are gradually released, and the released chromium ions act on the living body by promoting collagen cross-linking.
  • a substrate selected from the group consisting of metals, metal alloys, metal oxides, and ceramics is immersed in a reaction solution having chromium hydroxide ions.
  • the implant is improved in biocompatibility by the surface being modified with a chromium group having a hydroxyl group.
  • a reaction solution having chromium hydroxide ions is brought into contact with the surface of the implant, so that biocompatibility can be improved by simple treatment even for an already manufactured implant. There is an effect that can be done.
  • the implant surface treatment agent according to the fourth aspect of the present invention has an effect that biocompatibility can be enhanced by simple treatment even for an already manufactured implant.
  • FIG. 1 (A) shows a state immediately after implanting an implant in a living body
  • FIG. 1 (B) shows a state after time has elapsed after implanting the implant in the living body.
  • FIG. 2 (A) shows the state immediately after implanting the implant in the living body
  • FIG. 2 (B) shows the state after time has passed after implanting the implant in the living body
  • FIG. 3A shows a state in which the surface of the implant is modified with a group in which R is —OH in the general formula (1)
  • FIG. 3B shows a state in which R is —O— in the general formula (1)
  • FIG. 3 (C) shows a state in which the surface of the implant is modified with both groups shown in FIGS. 3 (A) and 3 (B).
  • SEM scanning electron microscope
  • FIG. 5 shows the analysis result of the titanium base material
  • the lower chart in FIG. 5 shows the analysis result of the implant manufactured in Example 1.
  • the photograph replaced with drawing which shows the result of having conducted the elemental analysis of the surface of the implant manufactured in Example 1 using SEM-EDS.
  • the upper photograph in FIG. 6 is a photograph of the shape of the implant surface taken with a scanning electron microscope (SEM), and the two lower photographs in FIG. 6 show EDS (energy dispersive type) for the same implant surface.
  • FIG. 6 It is a photograph which shows the result of having conducted elemental analysis by X-ray analysis.
  • the lower left photograph in FIG. 6 is a photograph showing the detection results of titanium atoms
  • the lower right photograph in FIG. 6 is a photograph showing the detection results of chromium atoms.
  • XPS X-ray photoelectron spectroscopy
  • narrow scan analysis high resolution analysis
  • XPS X-ray photoelectron spectroscopy
  • FIG. 8 is a chart showing the analysis result in the binding energy region (526 to 538 eV) in the vicinity where the O1s spectrum is detected in the wide scan analysis of FIG.
  • the upper right chart in FIG. 8 is a chart showing the analysis results in the vicinity of the binding energy region (452 to 474 eV) where the spectra of Ti2p 3/2 and Ti2p 1/2 were detected by the wide scan analysis of FIG.
  • the chart on the lower left of FIG. 8 is a chart showing the analysis results in the vicinity of the binding energy region (570 to 595 eV) where the Cr2p 3/2 and Cr2p 1/2 spectra were detected in the wide scan analysis of FIG.
  • FIG. 8 is a schematic diagram showing the chemical bonding state of the surface of the implant predicted from the XPS analysis result. It is a graph which shows the result of having conducted the test which immersed the implant manufactured in Example 1 in the physiological saline, and measured the chromium ion discharge
  • FIG. 14 is a photograph of the interface between the implant (CrTi) manufactured in Example 1 and the bone taken with an SEM (scanning electron microscope).
  • the lower right photograph in FIG. 14 is a photograph of the surface of the same implant (CrTi) taken with an SEM.
  • the upper left photograph in FIG. 14 is a photograph taken by SEM of an interface between a titanium rod (Ti) and a bone as a comparative example.
  • the upper right photograph in FIG. 14 is a photograph of the surface of the same titanium rod (Ti) taken with an SEM.
  • FIG. 15 is a chart showing the result of component analysis of a small piece formed on the surface of a titanium rod (Ti) as a comparative example, and the lower chart in FIG. It is a chart which shows the result of having performed the component analysis of the film-form product formed in the surface of (CrTi). It is a chart which shows the result of having performed the component analysis by XPS (X-ray photoelectron spectroscopy) about the film-form product formed in the surface of an implant (CrTi).
  • XPS X-ray photoelectron spectroscopy
  • FIG. 17 shows, as a comparative example, the result of observing a bone tissue around a titanium rod (Ti) embedded in a femur of a rabbit with HE (hematoxylin and eosin) and observing it with a biological microscope.
  • the lower photograph in FIG. 17 is a photograph showing the result of observation of the bone tissue around the implant (CrTi) by HE staining and observation with a biological microscope.
  • Implant of the present invention is an implant that is embedded in a living body for medical purposes, and is characterized in that the surface is modified with a chromium group having a hydroxyl group.
  • implant means a device that is implanted in a living body for medical purposes.
  • the “medical purpose” includes not only medical treatment for humans but also medical purposes for animals.
  • the “implant” of the present invention include, but are not limited to, dental implants (artificial dental roots), artificial joints, artificial bones, and screws, plates and rods for orthopedic surgery, brain surgery, or spinal surgery. Can be mentioned.
  • FIG. 1 is a schematic cross-sectional view showing an interface between an implant and a living tissue when the implant of the present invention is embedded in the living body.
  • FIG. 1 (A) shows a state immediately after implanting an implant in a living body
  • FIG. 1 (B) shows a state after time has elapsed after implanting the implant in the living body.
  • the implant (1) of the present invention includes a base material (2), and the surface (3) of the base material is modified with a chromium group (4) having a hydroxyl group.
  • the implant (1) of the present invention embedded in the living body is adjacent to the living tissue (5), and at least partially a gap (between the implant (1) and the living tissue (5) ( 6) exists.
  • the gap (6) is filled with a fluid such as a body fluid, and cells (7) are present in the living tissue (5).
  • the chromium group (4) which exists in the surface (3) of a base material is easy to ionize, as shown to FIG.
  • chromium ion (8) elutes in the liquid which fills a gap
  • FIG. 2 shows one mechanism by which the implant of the present invention is firmly bonded to living tissue.
  • FIG. 2 is a schematic cross-sectional view showing the interface between the implant and the living tissue when the implant of the present invention is embedded in the living body.
  • FIG. 2 (A) shows the state immediately after implanting the implant in the living body
  • FIG. 2 (B) shows the state after time has passed after implanting the implant in the living body
  • FIG. 2 (A) is the same view as FIG. 1 (A) described above, and the surface (3) of the base material of the implant (1) of the present invention is modified with a chromium group (4) having a hydroxyl group.
  • FIG. 2 (B) when time passes after the implant (1) is implanted in the living body, the chromium group (4) on the surface (3) of the substrate is ionized, and the implant ( The chromium ions (8) are eluted in the liquid that fills the gap (6) between 1) and the living tissue (5). Further, the cells (7) in the living tissue (5) move while proliferating and adhere to the surface of the implant (1). Cells (7) secrete collagen (9) into the liquid that fills the gap (6). When further time elapses, as shown in FIG. 2 (C), collagen (9) secreted by cells (7) is cross-linked by chromium ions (8) to form fibers. (1) and the biological tissue (5) are firmly bonded.
  • the implant of the present invention is preferably an intraosseous implant that is to be bonded to bone by being embedded in bone or brought into contact with bone.
  • the implant of the present invention gradually releases chromium ions, whereby collagen is cross-linked by chromium ions to form fibers, and the collagen and the living tissue are tightly bound to each other, so that the hydroxy promotes calcium deposition.
  • the effect of promoting bonding can be expected even when implanted in tissues other than bone.
  • a dental implant artificial tooth root
  • not only the connection with hard tissues such as alveolar bone but also the connection with soft tissues such as gingiva is promoted, and the effect of preventing gingival retraction can be expected.
  • the implant of the present invention includes a base material, and the surface of the base material is modified with a chromium group having a hydroxyl group. Since the base material of the implant of the present invention is modified with a chromium group having a hydroxyl group, it is necessary to use a metal, a metal alloy, a metal oxide, or a ceramic.
  • the metal, the metal alloy, and the metal oxide are not limited to these.
  • Ti-6Al-4V can be suitably used as the titanium alloy, and as the cobalt alloy, for example, a cobalt-chromium alloy, a cobalt-chromium-molybdenum alloy, or the like can be used.
  • the cobalt alloy for example, a cobalt-chromium alloy, a cobalt-chromium-molybdenum alloy, or the like can be used.
  • ceramic is used as the base material of the implant of the present invention, it is not limited to these. For example, hydroxyapatite, silicon carbide, silicon nitride, etc. can be used.
  • the “chromium group having a hydroxyl group” for modifying the surface of the implant of the present invention means a group having one or more hydroxyl groups (hydroxy groups) on the chromium atom.
  • This “chromium group having a hydroxyl group” can be bonded to a base material, but has a hydroxyl group, and thus has an effect of easily releasing chromium ions.
  • the oxidation number of the chromium atom in the “chromium group having a hydroxyl group” of the present invention can be divalent, trivalent, tetravalent or hexavalent. Since hexavalent chromium has strong oxidizing power, it is preferable to use divalent, trivalent or tetravalent chromium. More preferably, the most stable trivalent chromium is used.
  • the “chromium group having a hydroxyl group” for modifying the surface of the implant of the present invention can be a group represented by the following general formula (1).
  • -O-Cr (OH) R (1) (Wherein R represents —OH or —O—)
  • R represents —OH or —O—
  • the chromium group having a hydroxyl group becomes —O—Cr (OH) 2 and becomes a monovalent group.
  • R when R is —O—, the chromium group having a hydroxyl group is —O—Cr (OH) —O—, which is a divalent group.
  • monovalent or divalent is not a valence indicating the oxidation number of chromium but a valence indicating the number of sites where a chromium group having a hydroxyl group can be bonded to another atom.
  • FIG. 3 is a schematic cross-sectional view showing an implant whose surface is modified with a group represented by the general formula (1).
  • 3A shows a state in which the surface of the implant is modified with a group in which R is —OH in the general formula (1)
  • FIG. 3B shows a state in which R is —O— in the general formula (1)
  • FIG. 3 (C) shows a state in which the surface of the implant is modified with both groups shown in FIGS. 3 (A) and 3 (B). .
  • FIG. 3A shows the case where R is —OH in the general formula (1), and the chromium group having a hydroxyl group is —O—Cr (OH) 2 . Since this group is a monovalent group, it can be bonded to atoms (M) on the surface of the implant by a single bond to modify the surface of the implant.
  • the atom (M) on the surface of the implant may be modified with another functional group such as a hydroxyl group (—OH).
  • FIG. 3B shows the case where R in the general formula (1) is —O—, and the chromium group having a hydroxyl group is —O—Cr (OH) —O—. Since this group is a divalent group, as shown in FIG. 3B, it is possible to bond the two atoms (M) on the surface of the implant so as to cross-link and modify the surface of the implant.
  • FIG. 3C shows the case where the surface of the implant is modified with both —O—Cr (OH) 2 and —O—Cr (OH) —O— groups, as shown in FIG. As shown, the modification by both groups is mixed. Under the condition where the state shown in FIG. 3A and the state shown in FIG. 3B transition to each other, it is considered that the state shown in FIG.
  • the “chromium group having a hydroxyl group” for modifying the surface of the implant of the present invention is not limited to the above-described chromium group, but includes, for example, a —Cr (OH) 2 group, —Cr An (OH) —O— group, —O—Cr (ONa) 2 group, and the like may also be used.
  • the surface is modified means that an atom present on the surface of the implant is bonded to a chromium group having a hydroxyl group.
  • the bond form include covalent bond, coordination bond, ionic bond, hydrogen bond, etc., but in order to gradually release chromium ions, at least a part of the bond must be firmly bonded by covalent bond. preferable.
  • the surface of the implant of the present invention is modified with a chromium group having a hydroxyl group, but in order to enhance biocompatibility, other treatments such as roughening and hydroxyapatite coating are further performed. It may be used in combination. In this case, however, the coating is performed so that not all of the chromium groups having a hydroxyl group are removed by roughening, and the release of chromium ions is not completely inhibited.
  • the form of chromium ions released by the implant of the present invention can vary depending on the chromium group covering the surface of the implant.
  • the released chromium ions include, but are not limited to, ordinary chromium ions, chromium ions coordinated with water molecules, chromium ions coordinated with hydroxide ions (OH ⁇ ), Examples include chromium ions coordinated with Cl ⁇ , NH 3 , SO 4 2 ⁇ , or CrO 4 2 ⁇ (chromate ions), Cr 2 O 7 2 ⁇ (dichromate ions), and the like.
  • the released chromium ions can be ions in which the ionic valence of the chromium atom is divalent, trivalent, tetravalent or hexavalent.
  • ions with the valence of chromium atoms of trivalent ions are most easily released, and even when ions other than trivalent are released, they change to trivalent ions under normal conditions. Cheap.
  • the method for producing an implant of the present invention comprises immersing a substrate selected from the group consisting of metals, metal alloys, metal oxides and ceramics in a reaction solution containing chromium hydroxide ions. , A production method including removing the substrate from the reaction solution.
  • the “chromium hydroxide ion” used in the method for producing an implant of the present invention refers to a chromium ion coordinated with a hydroxide ion (OH ⁇ ), and is not limited thereto.
  • a hydroxide ion OH ⁇
  • [Cr (OH) 6 ] 3 ⁇ , [Cr (OH) 4 ] ⁇ , [Cr (H 2 O) 5 (OH)] 2+ , [CrNH 3 (OH) 5 ] 2 ⁇ , [CrO 4 (OH) 2 ] 4- etc. Can be used.
  • chromium hydroxide ion an ion with a chromium atom having a valence of 2, 3, 4, or 6 can be used, and a trivalent ion is stable and preferable.
  • examples of the chromium hydroxide ion whose valence of chromium atom is trivalent include, but are not limited to, for example, [Cr (OH) 6 ] 3 ⁇ , [Cr (OH) 4 ] ⁇ , [Cr ( H 2 O) 5 (OH)] 2+ and the like.
  • reaction solution containing chromium hydroxide ions water or a mixed solvent containing water and alcohol can be used.
  • the reaction solution may contain a pH adjuster, a pH buffer, an antioxidant, a stabilizer, and other agents that modify the surface of the implant.
  • the “base material” used in the production method of the present invention needs to use metal, metal alloy, metal oxide or ceramic. Specific examples of these base materials are as described above.
  • the “base material” used in the production method of the present invention may be molded into a finished product shape as an implant for implantation in a living body, or may be molded into a semi-finished product shape as a material. It may be of the shape. Moreover, the base material may be a finished product as an implant by being connected to another member. Further, the “base material” may be subjected to roughening or coating for improving biocompatibility. As a method for roughening the surface of the substrate, blasting, etching, or the like can be used. As the coating, titanium coating, hydroxyapatite coating, or the like can be used.
  • the concentration of chromium hydroxide ions in the reaction solution is preferably 0.0001 to 10 mol / L, more preferably 0.001 to 1 mol / L, still more preferably 0.01 to It is good to set it as 0.1 mol / L.
  • the time for immersing the substrate in the reaction solution is preferably 1 second to 5 days, more preferably 2 minutes to 10 hours, and even more preferably 10 minutes to 2 hours.
  • the temperature of the reaction solution when immersing the substrate is preferably 0 to 200 ° C., more preferably 40 to 80 ° C.
  • a substrate selected from the group consisting of metals, metal alloys, metal oxides, and ceramics is immersed in a reaction solution containing chromium hydroxide ions.
  • An effect of being able to produce an implant with improved biocompatibility is obtained by the reaction with chromium hydroxide ions and the modification of the surface with a chromium group having a hydroxyl group.
  • immersion the substrate includes not only immersing the entire substrate in the reaction solution, but also immersing a part of the substrate in the reaction solution.
  • the production method of the present invention includes a step of taking out the substrate in the reaction solution. After removing the substrate from the reaction solution, the reaction solution adhering to the surface of the substrate may be removed by washing or the like, but it is preferable to dry without washing. When the reaction solution adhering to the surface of the substrate is dried without washing, there will also be chromium hydroxide that does not covalently adhere to the substrate, and immediately after the implant is implanted in the living body. There is an effect that the amount of chromium ions released into the can be increased.
  • an implant After taking out a base material from a reaction solution, an implant can be further processed and it can sterilize and can be set as a finished product.
  • a sterilization method a dry heat sterilization method, a sterilization method by irradiating ultraviolet rays or radiation, and the like can be used.
  • the implant surface treatment method of the present invention is a method of improving the biocompatibility of an implant by including a step of bringing a reaction solution containing chromium hydroxide ions into contact with the implant.
  • the surface treatment method of an implant of the present invention has an effect that biocompatibility can be enhanced by simple treatment even for an already manufactured implant.
  • the surface treatment method of the present invention can be applied to an implant obtained by the production method of the present invention, that is, an implant whose surface is modified with a chromium group having a hydroxyl group. By performing the treatment, it is possible to further improve the biocompatibility.
  • reaction solution containing chromium hydroxide ions used in the implant surface treatment method of the present invention includes the above-mentioned 2. What has been described can be used.
  • a method of “contacting” the reaction solution with the implant a method of immersing the implant in the reaction solution or a method of applying the reaction solution to the surface of the implant can be used.
  • the concentration of chromium hydroxide ions in the reaction solution is preferably 0.0001 to 10 mol / L, more preferably 0.001 to 1 mol / L, and still more preferably 0.01. It is good to set it to 0.1 mol / L.
  • the time for contacting the substrate with the reaction solution is preferably 1 second to 5 days, more preferably 2 minutes to 10 hours, and even more preferably 10 minutes to 2 hours.
  • the temperature of the reaction solution when immersing the substrate is preferably 0 to 200 ° C., more preferably 40 to 80 ° C.
  • the surface treatment agent for implants of the present invention is a solution containing chromium hydroxide ions.
  • the “chromium hydroxide ion” contained in the surface treatment agent of the implant of the present invention refers to a chromium ion coordinated with a hydroxide ion (OH ⁇ ), and is not limited to these. Cr (OH) 6 ] 3 ⁇ , [Cr (OH) 4 ] ⁇ , [Cr (H 2 O) 5 (OH)] 2+ , [CrNH 3 (OH) 5 ] 2 ⁇ , [CrO 4 (OH) 2 4- etc. can be used.
  • chromium hydroxide ion an ion with a chromium atom having a valence of 2, 3, 4, or 6 can be used, and a trivalent ion is stable and preferable.
  • examples of the chromium hydroxide ion whose valence of chromium atom is trivalent include, but are not limited to, for example, [Cr (OH) 6 ] 3 ⁇ , [Cr (OH) 4 ] ⁇ , [Cr ( H 2 O) 5 (OH)] 2+ and the like.
  • the surface treatment agent for an implant of the present invention water or a mixed solvent containing water and alcohol can be used.
  • the solution may contain a pH adjuster, a pH buffer, an antioxidant, a stabilizer, and other agents that modify the surface of the implant.
  • the surface treatment agent for implants of the present invention has an effect that biocompatibility can be enhanced by simple treatment even for implants that have already been produced.
  • the surface treatment agent of the present invention can be applied to an implant obtained by the production method of the present invention, that is, an implant whose surface is modified with a chromium group having a hydroxyl group. By performing the treatment, it is possible to further improve the biocompatibility.
  • reaction solution As a reaction solution for immersing the base material of the implant, a reaction solution containing 0.05 mol / L of [Cr (OH) 6 ] 3- ion was prepared. This reaction solution was prepared by mixing an aqueous solution of 0.05 mol / L chromium (III) sulfate nonahydrate and an aqueous solution of 4 mol / L sodium hydroxide and carrying out the reaction represented by the following formula: did.
  • titanium molded into a rod shape was used as the base material of the implant.
  • This titanium substrate was immersed in the reaction solution prepared above. Immersion was performed in a reaction solution at 60 ° C. for 12 hours. As a result, the surface of the titanium substrate was modified with a chromium group having a hydroxyl group. After immersion, the titanium substrate was taken out from the reaction solution. Thereafter, titanium as a base material was allowed to stand at 70 ° C. for 20 minutes, and dried until the solvent on the surface of the base material was sufficiently evaporated. Furthermore, the implant was sterilized by dry heat by allowing it to stand at 180 ° C. for 2 hours. As described above, an implant with a modified surface was produced.
  • the surface roughness (Ra) of the titanium substrate (Ti) was 3.123 ⁇ 1.751, whereas the surface roughness (Ra) of the implant (CrTi) manufactured in Example 1 was 3.128 ⁇ 1.504. Thus, there is no significant difference in the surface roughness that can affect biocompatibility between the titanium substrate (Ti) and the implant manufactured in Example 1 (CrTi). It was.
  • Elemental analysis of the surface of the implant (CrTi) manufactured in Example 1 was performed using SEM-EDS. A photograph showing the result is shown in FIG.
  • the upper photograph in FIG. 6 is a photograph of the shape of the implant surface taken with a scanning electron microscope (SEM), and the two lower photographs in FIG. 6 show EDS (energy dispersive type) for the same implant surface. It is a photograph which shows the result of having conducted elemental analysis by X-ray analysis.
  • the lower left photograph in FIG. 6 is a photograph showing the detection results of titanium atoms
  • the lower right photograph in FIG. 6 is a photograph showing the detection results of chromium atoms. As shown in the results of FIG. 6, chromium atoms were detected on the surface of the implant manufactured in Example 1.
  • FIG. 7 is a chart showing a wide scan analysis result in the entire binding energy (0 to 1100 eV).
  • spectra of Ti2p 3/2 , Ti2p 1/2 , O1s, Cr2p 3/2 , and Cr2p 1/2 were detected so as to be displayed within a square frame. This indicated that Cr, O and Ti atoms were present on the surface of the modified implant.
  • FIG. 8 is a chart showing the results of XPS narrow scan analysis (high resolution analysis). The chart on the upper left of FIG.
  • FIG. 8 is a chart showing the analysis result in the binding energy region (526 to 538 eV) in the vicinity where the O1s spectrum is detected in the wide scan analysis of FIG. From this chart, one spectrum indicating the presence of Ti—OH chemical bond was detected.
  • the upper right chart in FIG. 8 is a chart showing the analysis results in the vicinity of the binding energy region (452 to 474 eV) where the spectra of Ti2p 3/2 and Ti2p 1/2 were detected by the wide scan analysis of FIG. From this chart, a spectrum indicating the presence of a chemical bond of TiO and a metal bond of Ti was detected in the spectra of Ti2p 3/2 and Ti2p 1/2 .
  • FIG. 8 is a chart showing the analysis results in the vicinity of the binding energy region (570 to 595 eV) where the Cr2p 3/2 and Cr2p 1/2 spectra were detected in the wide scan analysis of FIG. From this chart, a spectrum indicating the presence of a chemical bond of Cr—OH was detected in the Cr2p 3/2 and Cr2p 1/2 spectra.
  • the lower right diagram in FIG. 8 is a schematic diagram showing the state of chemical bonding on the surface of the implant identified from the XPS analysis result. It was revealed that —O—Cr (OH) 2 group and —OH group were bonded to titanium atoms on the surface of the implant.
  • Example 1 Ion release test The implant manufactured in Example 1 was immersed in physiological saline, and a test was performed to measure chromium ions released into the physiological saline.
  • the temperature of the physiological saline was 37 ° C. as in the living body, and the implant was immersed in the physiological saline while the flask containing the physiological saline was placed on a shaker and stirred to release chromium ions from the implant.
  • the detection of released chromium ions was measured by ICP-MS after 6 hours, 12 hours, 24 hours, 36 hours and 72 hours, respectively. The result is shown in FIG. As shown in the graph of FIG. 9, up to 2 hours, chromium ions were rapidly released from the implant, and then chromium ions were gradually released.
  • Example 1 Animal experiment The implant manufactured in Example 1 was embedded in the body of an experimental animal, and the bonding state with a living tissue was evaluated. As a laboratory animal, Japanese white rabbit (JW / CSK) was used. The right femur of the rabbit is filled with five rod-shaped implants (CrTi) manufactured in Example 1, and the left femur is a titanium rod whose surface is not modified as a comparative example. Five (Ti) were embedded. Three animal experiments with an implantation period of 4 weeks, 8 weeks and 12 weeks were conducted. FIG. 10 shows the operation of implanting an implant and a titanium rod in the experimental animal. As shown in FIG.
  • the left and right thighs of a rabbit are shaved (1), incised to expose the femur (2), and after drilling a 2 mm hole in the femur, the implant ( A CrTi) or titanium rod (Ti) was inserted into the femur (3). The incision was sutured with a thread and closed (4). After 4 weeks, 8 weeks, or 12 weeks from the implantation, the wound portion was again incised to cut out the femur, and the joint state of the implant with the femur was evaluated.
  • FIG. 11 shows an evaluation item of the bonded state between the implant implanted in the femur of the rabbit and the bone.
  • the femur was cut at the dotted line portion of the femur in which the implant was embedded, and a bone section was prepared. Then, using this bone section, i) shear strength measurement, ii) interface observation, iii) implant surface observation / component analysis, and iv) bone tissue observation around the implant (HE staining) were performed.
  • the results are as follows.
  • Table 1 shows the measurement results of shear strength and the standard deviation of the implant (CrTi) and titanium rod (Ti) manufactured in Example 1.
  • FIG. 12 is a bar graph showing the results of Table 1.
  • the implant (CrTi) produced in Example 1 showed significantly higher shear strength at 4th week, 8th week, and 12th week, and showed strong shear strength. It became clear that it bound to.
  • FIG. 13 is a chart showing the change over time when a load is applied to the implant (CrTi) or titanium rod (Ti) manufactured in Example 1. The upper chart is after 4 weeks of embedding, and the lower chart is after 8 weeks of embedding. In both the 4th and 8th week charts, the implant manufactured in Example 1 shows elastic behavior in response to changes in load, and elastic regions such as collagen fibers are formed between the bone and the bone. It was shown that
  • FIG. 14 shows the results of observation of the surface state and the state of the interface between the implant and the bone with an SEM (scanning electron microscope) for the 8th week implant implanted in the femur of a rabbit.
  • the lower left photograph in FIG. 14 is a photograph of the interface between the implant (CrTi) manufactured in Example 1 and the bone taken with an SEM (scanning electron microscope).
  • the lower right photograph in FIG. 14 is a photograph of the surface of the same implant (CrTi) taken with an SEM.
  • the upper left photograph in FIG. 14 is a photograph taken by SEM of an interface between a titanium rod (Ti) and a bone as a comparative example.
  • Example 14 is a photograph of the surface of the same titanium rod (Ti) taken with an SEM. As shown in the two photographs on the left, neither the titanium lot (Ti) nor the implant manufactured in Example 1 (CrTi) had any voids between the bones. Further, as shown in the two photographs on the right side, only small pieces were seen on the surface of the titanium rod (Ti), but the film was not formed on the surface of the implant (CrTi) manufactured in Example 1. A product was seen.
  • the implant, the implant production method, and the implant surface treatment method of the present invention are useful in the industry for producing medical implants.

Abstract

The purpose of the present invention is to develop an implant that acts on a living body through an unconventional mechanism and can strongly bond to a living tissue. Provided is an implant (1) to be embedded in a living body for a medical purpose, said implant (1) being characterized in that a base material (2) of the implant comprises a metal, a metal alloy, a metal oxide or a ceramic, and a surface (3) of the base material is modified with a chromium group (4) having a hydroxy group. The implant (1) according to the present invention can easily release chromium ion (8). The chromium ion (8) thus released acts on a living body and promotes tissue formation between the implant (1) and a living tissue (5) by, for example, promoting the crosslinking of collagen (9) secreted by a cell (7). As a result, the bond between the implant (1) and the living tissue (5) can be strengthened.

Description

クロム修飾型インプラント及びその製造方法Chromium-modified implant and method for producing the same
 本発明は、医療目的で生体内に埋め入れるインプラントであって、表面が水酸基を有するクロム基で修飾されているインプラントに関する。本発明のインプラントは、その表面からクロムがイオンとして徐々に放出されることで、生体に作用し、インプラントが生体組織に結合することが促進されるものである。また、本発明は、水酸化クロムイオンを含有する反応溶液を用いた、インプラントの製造方法、インプラントの表面処理方法及びインプラントの表面処理剤に関する。 The present invention relates to an implant that is embedded in a living body for medical purposes, and whose surface is modified with a chromium group having a hydroxyl group. In the implant of the present invention, chromium is gradually released as ions from the surface, thereby acting on the living body and promoting the binding of the implant to the living tissue. The present invention also relates to an implant production method, an implant surface treatment method, and an implant surface treatment agent using a reaction solution containing chromium hydroxide ions.
 インプラントとは、医療目的で生体内に埋め込まれる器具又は生体材料の総称である。インプラントとしては、歯根が失われた患者の顎骨に埋め込むデンタルインプラント(人工歯根)や、損傷した膝関節や股関節を置換する人工関節、折れた骨を固定するボルト、心臓ペースメーカー、人工内耳などが存在する。インプラントは、機能が失われた生体内の器官を置換したり、補助したりすることによって、失われた機能の回復を図るものである。 】 Implant is a general term for instruments or biomaterials that are implanted in a living body for medical purposes. Implants include dental implants (artificial roots) that are implanted in the jawbone of patients with lost roots, artificial joints that replace damaged knees and hips, bolts that fix broken bones, cardiac pacemakers, cochlear implants, etc. To do. Implants are intended to recover lost function by replacing or assisting in-vivo organs that have lost function.
 近年、デンタルインプラント(人工歯根)を使用した治療技術が大きく進歩し、広く歯科治療に用いられるようになっており、デンタルインプラントを単に「インプラント」と略称することも一般化している。
 デンタルインプラントを使用した一般的な治療方法は、顎骨を削ってインプラントを顎骨の中に埋め込み、2~6か月程の時間をかけて、インプラントと骨とを十分に結合させて、その上部に人工的な歯を形成する方法である。
In recent years, treatment techniques using dental implants (artificial dental roots) have greatly advanced and are widely used for dental treatment, and it is common to simply abbreviate dental implants as “implants”.
A general treatment method using a dental implant is to cut the jaw bone, implant the implant into the jaw bone, and take 2-6 months to fully bond the implant and the bone. It is a method of forming artificial teeth.
 デンタルインプラント等の骨内に埋め込むインプラント(骨内インプラント)による治療を成功させる一つの重要な要素は、インプラントと骨とを十分に結合させることである。スウェーデンのブローネマルク教授によって、チタンと骨の組織とが拒否反応を起こさずに結合する「オッセオインテグレーション(Osseointegration)」という現象が発見され、この発見に基づき、チタンがインプラントの材料として使用されるようになったことにより、インプラントの技術が大きく進歩した。
 また、インプラントの表面を粗面とする加工を施すことにより、骨に結合しやすくなることが実証されたことも、インプラントの技術進歩に大きく貢献した。
One important factor for successful treatment with an implant (intraosseous implant) that is implanted in the bone, such as a dental implant, is to sufficiently bond the implant and the bone. Sweden's professor Brunemark discovered a phenomenon called “Osseointegration” in which titanium and bone tissue combine without causing a rejection reaction. Based on this phenomenon, titanium is used as the material for implants. This has greatly improved implant technology.
In addition, the fact that it was easy to bond to bone by applying a process that roughened the surface of the implant also greatly contributed to the advancement of implant technology.
 しかし、「オッセオインテグレーション」によりチタンと骨とを結合させるためには、チタンと骨とができるだけ少ない間隙で隣接した状態とする必要があり、チタン製のインプラントを骨に埋め入れる際に高度の技術が必要となる。
 このため、インプラントと骨との接合部において骨の形成を誘導して両者を結合させる「バイオインテグレーション(Bio-integration)」を利用したインプラントが開発されている。例えば、表面にハイドロキシアパタイトをコーティングしたインプラントは、インプラントと骨との間にカルシウムを沈着させて、骨との間に隙間がある場合であっても骨と強固に結合することができるため、インプラントによる治療の成功率を高めることができ、臨床の現場で広く使用されている。
However, in order to connect titanium and bone by “Osseointegration”, it is necessary to keep titanium and bone adjacent to each other with as little gap as possible. Technology is required.
For this reason, implants utilizing “Bio-integration” have been developed in which bone formation is induced at the joint between the implant and bone, and the two are combined. For example, an implant coated with hydroxyapatite on the surface can deposit calcium between the implant and the bone, so that even if there is a gap between the bone, the implant can be firmly bonded to the bone. It can increase the success rate of treatment by and is widely used in clinical settings.
 このように、インプラントの生体適合性を高めるために、インプラントの表面をコーティングし、修飾し、又は粗面加工する技術が数多く開発されている。
 本発明者らは以前に、チタン又はその合金からなるインプラントの基材を、水酸化亜鉛錯体を含むアルカリ溶液に浸漬することにより製造される、表面に亜鉛官能基を有するインプラントを開発した(特許文献1、非特許文献1)。この表面に亜鉛官能基を有するインプラントは、骨内に埋め入れた場合に、ハイドロキシアパタイトをコーティングしたインプラントと比較しても、遜色ない高い強度で骨と結合できるものである。
Thus, in order to improve the biocompatibility of an implant, many techniques for coating, modifying, or roughening the surface of the implant have been developed.
The present inventors have previously developed an implant having a zinc functional group on the surface produced by immersing the base material of an implant made of titanium or an alloy thereof in an alkaline solution containing a zinc hydroxide complex (patent) Document 1, Non-Patent Document 1). This implant having a zinc functional group on the surface can be bonded to bone with high strength comparable to that of an implant coated with hydroxyapatite when implanted in bone.
 一方、クロム(Cr)は、コバルトクロム合金としてインプラントの基材にも使用されている金属であり、表面に酸化クロム(Cr)の被膜を形成して、インプラントの錆を防ぐことが知られている。
 クロムを含む他のインプラントとして、特許文献2には、窒素ガスを含む気体中で、コバルトクロム合金をプラズマ処理することにより、表面に窒化クロムを形成した、強固で耐摩耗性のインプラントが開示されている。
On the other hand, chromium (Cr) is a metal used as a base material for implants as a cobalt-chromium alloy, and forms a chromium oxide (Cr 2 O 3 ) coating on the surface to prevent rust of the implant. Are known.
As another implant containing chromium, Patent Document 2 discloses a strong and wear-resistant implant in which chromium nitride is formed on the surface by plasma treatment of a cobalt chromium alloy in a gas containing nitrogen gas. ing.
 特許文献3には、チタン又はその合金である金属基材を、硫酸、硫酸塩、炭酸塩などを含む電解液中で電解処理を行うことにより、金属基材上に酸化物又は混合酸化物層を形成し、さらにその表面にハイドロキシアパタイトを含む被覆層を形成したインプラントが開示されている。ここで、酸化物層としては、チタンの酸化物層の他に、クロムを含浸した酸化チタンの混合酸化物層も例示されている。酸化物層は、生体内で親和性が比較的良好であるとともに、耐食性が十分に大きいため、安定で溶出の可能性も殆どないインプラントとすることができることが記載されている。
 このように、従来のインプラントで使用されるクロムは、インプラントに耐食性を与え、あるいは強固にするために使用されるものであった。
In Patent Document 3, an oxide or mixed oxide layer is formed on a metal substrate by subjecting a metal substrate that is titanium or an alloy thereof to an electrolytic treatment in an electrolytic solution containing sulfuric acid, sulfate, carbonate, or the like. Further, there is disclosed an implant in which a coating layer containing hydroxyapatite is formed on the surface thereof. Here, as the oxide layer, in addition to the titanium oxide layer, a mixed oxide layer of titanium oxide impregnated with chromium is also exemplified. It is described that the oxide layer has a relatively good affinity in vivo and has sufficiently high corrosion resistance, so that it can be an implant that is stable and has almost no possibility of elution.
Thus, chromium used in conventional implants has been used to impart or enhance the corrosion resistance of implants.
 ところで、クロムは、皮革の柔軟性を長期に保つための「皮なめし」の処理にも薬剤として用いられており、クロムがコラーゲンを架橋することが非特許文献2に示されている。 By the way, chromium is also used as a chemical in the treatment of “skin tanning” for maintaining the flexibility of leather for a long time, and it is shown in Non-Patent Document 2 that chromium crosslinks collagen.
国際公開WO2010/150788号International Publication WO2010 / 150788 国際公開WO2005/070344号International Publication No. WO2005 / 070344 特開昭63-99868号公報JP-A-63-99868
 上記のように、生体適合性を高めるために、インプラントの表面をコーティングし、修飾し、又は粗面加工する技術が数多く開発されている。しかし、これらの技術を用いても、インプラント治療における失敗症例を根絶できることはできず、そもそもインプラント治療が不可能な症例が多いため、さらなる技術開発が必要であった。また、ハイドロキシアパタイトを用いたインプラントのように、カルシウムの沈着を促すことで骨の形成を誘導するインプラントでは、適用可能な治療部位や症例が限られるため、新しいメカニズムにより生体に作用するインプラントの開発が望まれていた。
 本発明は、上記従来の状況に鑑み、従来にないメカニズムにより生体に作用するインプラントであって、生体組織と強固に結合することができるインプラントを開発することを目的とする。
As described above, many techniques for coating, modifying, or roughening the surface of an implant have been developed to improve biocompatibility. However, even if these techniques are used, failure cases in implant treatment cannot be eradicated, and since there are many cases in which implant treatment is not possible in the first place, further technological development is necessary. In addition, implants that induce bone formation by promoting calcium deposition, such as implants using hydroxyapatite, are limited in the treatment sites and cases that can be applied. Was desired.
In view of the above-described conventional situation, an object of the present invention is to develop an implant that acts on a living body by an unprecedented mechanism and can be firmly bonded to a living tissue.
 上記課題を解決するために、本発明者らは鋭意研究した結果、医療目的で生体内に埋め入れるインプラントにおいて、水酸基を有するクロム基で表面を修飾することにより、インプラントからクロムイオンが徐々に放出され、このクロムイオンがコラーゲンの架橋形成を促進する等して、生体組織に作用し、インプラントと生体組織との強固な結合が促進されることを見出し、本発明を完成するに到った。 In order to solve the above problems, the present inventors have conducted intensive research. As a result, in implants to be implanted in a living body for medical purposes, chromium ions are gradually released from the implant by modifying the surface with a chromium group having a hydroxyl group. Thus, the present inventors have found that this chromium ion acts on living tissue by promoting the cross-linking formation of collagen and the like, thereby promoting the strong bond between the implant and the living tissue, and completed the present invention.
 すなわち、本発明は、インプラントに関する下記の第1の発明と、インプラントの製造方法に関する下記の第2の発明と、インプラントの表面処理方法に関する下記の第3の発明と、インプラントの表面処理剤に関する下記の第4の発明とを提供する。
 第1の発明は、医療目的で生体内に埋め入れるインプラントにおいて、インプラントの基材が、金属、金属合金、金属酸化物又はセラミックであり、基材の表面が水酸基を有するクロム基で修飾されていることを特徴とするインプラントに関する。
 第1の発明のインプラントにおいては、水酸基を有するクロム基として、下記一般式(1)で示される基で表面を修飾することが好ましい。
 -O-Cr(OH)R   ・・・(1)
 一般式(1)中、Rは-OH又は-O-を表す。
 第1の発明のインプラントにおいては、クロム基が、酸化数が3価のクロム基であることが好ましい。
 上記のインプラントの発明においては、インプラントがデンタルインプラントであることが好ましい。
 第2の発明は、水酸化クロムイオンを含有する反応溶液中に、金属、金属合金、金属酸化物及びセラミックからなる群から選択される基材を浸漬し、反応溶液中から基材を取り出すことを含む、インプラントの製造方法に関する。
 第2の発明のインプラントの製造方法においては、水酸化クロムが、クロム原子のイオン価が3価の水酸化クロムイオンであることが好ましい。
 第3の発明は、水酸化クロムイオンを含有する反応溶液をインプラントに接触させることを含む、生体適合性を向上させるためのインプラントの表面処理方法に関する。
 第3の発明のインプラントの表面処理方法においては、水酸化クロムが、クロム原子のイオン価が3価の水酸化クロムイオンであることが好ましい。
 第4の発明は、水酸化クロムイオンを含む溶液であることを特徴とする、インプラントの表面処理剤に関する。
 第4の発明のインプラントの表面処理剤においては、水酸化クロムが、クロム原子のイオン価が3価の水酸化クロムイオンであることが好ましい。
That is, the present invention relates to the following first invention relating to an implant, the following second invention relating to a method for producing an implant, the following third invention relating to a surface treatment method for an implant, and the following relating to a surface treatment agent for an implant. The fourth invention is provided.
In a first aspect of the present invention, in an implant that is embedded in a living body for medical purposes, the base material of the implant is a metal, metal alloy, metal oxide, or ceramic, and the surface of the base material is modified with a chromium group having a hydroxyl group. It is related with the implant characterized by being.
In the implant of the first invention, the surface is preferably modified with a group represented by the following general formula (1) as a chromium group having a hydroxyl group.
-O-Cr (OH) R (1)
In the general formula (1), R represents —OH or —O—.
In the implant of the first invention, the chromium group is preferably a chromium group having a trivalent oxidation number.
In the above-described implant invention, the implant is preferably a dental implant.
2nd invention immerses the base material selected from the group which consists of a metal, a metal alloy, a metal oxide, and a ceramic in the reaction solution containing a chromium hydroxide ion, and takes out a base material from a reaction solution. The present invention relates to a method for manufacturing an implant.
In the method for producing an implant of the second invention, it is preferable that the chromium hydroxide is a chromium hydroxide ion in which the ion valence of the chromium atom is trivalent.
3rd invention is related with the surface treatment method of the implant for improving biocompatibility including making the reaction solution containing a chromium hydroxide ion contact an implant.
In the implant surface treatment method according to the third aspect of the invention, the chromium hydroxide is preferably a chromium hydroxide ion in which the ionic value of the chromium atom is trivalent.
A fourth invention relates to a surface treatment agent for an implant, which is a solution containing chromium hydroxide ions.
In the implant surface treatment agent according to the fourth aspect of the invention, the chromium hydroxide is preferably a chromium hydroxide ion in which the ionic value of the chromium atom is trivalent.
 第1の発明のインプラントは、水酸基を有するクロム基で表面が修飾されているため、クロムイオンが徐々に放出され、放出されたクロムイオンがコラーゲンの架橋を促すなどして、生体に作用することにより、インプラントと生体組織との間の組織形成を促し、インプラントと生体組織との強固な結合を促進するという効果を奏する。
 第2の発明のインプラントの製造方法は、水酸化クロムイオンを有する反応溶液中に、金属、金属合金、金属酸化物及びセラミックからなる群から選択される基材を浸漬するため、基材の表面の分子と水酸化クロムイオンとが反応し、水酸基を有するクロム基で表面が修飾されることで生体適合性が高められたインプラントを製造することができるという効果を奏する。
 第3の発明のインプラントの表面処理方法は、水酸化クロムイオンを有する反応溶液をインプラントの表面に接触させるため、既に製造されたインプラントに対しても、簡便な処理で生体適合性を高めることができるという効果を奏する。
 第4の発明のインプラントの表面処理剤は、既に製造されたインプラントに対しても、簡便な処理で生体適合性を高めることができるという効果を奏する。
Since the surface of the implant of the first invention is modified with a chromium group having a hydroxyl group, chromium ions are gradually released, and the released chromium ions act on the living body by promoting collagen cross-linking. Thus, there is an effect that the tissue formation between the implant and the living tissue is promoted, and the strong bond between the implant and the living tissue is promoted.
In the method for producing an implant of the second invention, a substrate selected from the group consisting of metals, metal alloys, metal oxides, and ceramics is immersed in a reaction solution having chromium hydroxide ions. As a result, the implant is improved in biocompatibility by the surface being modified with a chromium group having a hydroxyl group.
In the surface treatment method for an implant of the third invention, a reaction solution having chromium hydroxide ions is brought into contact with the surface of the implant, so that biocompatibility can be improved by simple treatment even for an already manufactured implant. There is an effect that can be done.
The implant surface treatment agent according to the fourth aspect of the present invention has an effect that biocompatibility can be enhanced by simple treatment even for an already manufactured implant.
本発明のインプラントの1つの実施形態を示す模式断面図である。図1(A)は、インプラントを生体に埋め入れた直後の状態を示し、図1(B)は、インプラントを生体に埋め入れた後に時間が経過した状態を示す。It is a schematic cross section which shows one embodiment of the implant of this invention. FIG. 1 (A) shows a state immediately after implanting an implant in a living body, and FIG. 1 (B) shows a state after time has elapsed after implanting the implant in the living body. 本発明のインプラントが生体組織と強固に結合される1つのメカニズムを示す模式断面図である。図2(A)は、インプラントを生体に埋め入れた直後の状態を示し、図2(B)は、インプラントを生体に埋め入れた後に時間が経過した状態を示し、図2(C)は、さらに時間が経過して、インプラントと生体組織とが結合した状態を示す。It is a schematic cross section which shows one mechanism in which the implant of this invention is combined firmly with a biological tissue. FIG. 2 (A) shows the state immediately after implanting the implant in the living body, FIG. 2 (B) shows the state after time has passed after implanting the implant in the living body, and FIG. Furthermore, the state which the implant and the biological tissue couple | bonded with time passes is shown. 一般式(1)で示される基で表面が修飾されたインプラントを示す模式断面図である。図3(A)は、一般式(1)においてRが-OHである基でインプラントの表面が修飾された状態を示し、図3(B)は、一般式(1)においてRが-O-である基でインプラントの表面が修飾された状態を示し、図3(C)は、図3(A)と図3(B)に示される両方の基でインプラントの表面が修飾された状態を示す。It is a schematic cross section which shows the implant by which the surface was modified by the group shown by General formula (1). 3A shows a state in which the surface of the implant is modified with a group in which R is —OH in the general formula (1), and FIG. 3B shows a state in which R is —O— in the general formula (1). FIG. 3 (C) shows a state in which the surface of the implant is modified with both groups shown in FIGS. 3 (A) and 3 (B). . チタン製の基材の表面形状と、実施例1で製造したインプラントの表面形状を、走査型電子顕微鏡(SEM)により観察した結果を示す図面に代わる写真である。左側の写真は、チタン製の基材の表面形状を撮影した写真であり、右側の写真は、実施例1で製造したインプラントの表面形状を撮影した写真である。It is a photograph replaced with drawing which shows the result of having observed the surface shape of the base material made from titanium, and the surface shape of the implant manufactured in Example 1 with the scanning electron microscope (SEM). The photograph on the left is a photograph of the surface shape of the titanium base material, and the photograph on the right is a photograph of the surface shape of the implant manufactured in Example 1. チタン製の基材の結晶相と、実施例1で製造したインプラントの結晶相を、X線回析装置を用いて分析をした結果を示すチャートである。図5の上側のチャートは、チタン製の基材の分析結果を示し、図5の下側のチャートは、実施例1で製造したインプラントの分析結果を示す。It is a chart which shows the result of having analyzed the crystal phase of the base material made from titanium, and the crystal phase of the implant manufactured in Example 1 using the X-ray diffraction apparatus. The upper chart in FIG. 5 shows the analysis result of the titanium base material, and the lower chart in FIG. 5 shows the analysis result of the implant manufactured in Example 1. SEM-EDSを用いて、実施例1で製造したインプラントの表面の元素分析を行った結果を示す図面に代わる写真である。図6の上側の写真は、走査型電子顕微鏡(SEM)でインプラント表面の形状を撮影した写真であり、図6の下側の2つの写真は、同じインプラント表面に対して、EDS(エネルギー分散型X線分析)により、元素分析を行った結果を示す写真である。図6の左下の写真はチタン原子の検出結果を示す写真であり、図6の右下の写真はクロム原子の検出結果を示す写真である。It is the photograph replaced with drawing which shows the result of having conducted the elemental analysis of the surface of the implant manufactured in Example 1 using SEM-EDS. The upper photograph in FIG. 6 is a photograph of the shape of the implant surface taken with a scanning electron microscope (SEM), and the two lower photographs in FIG. 6 show EDS (energy dispersive type) for the same implant surface. It is a photograph which shows the result of having conducted elemental analysis by X-ray analysis. The lower left photograph in FIG. 6 is a photograph showing the detection results of titanium atoms, and the lower right photograph in FIG. 6 is a photograph showing the detection results of chromium atoms. 実施例1で製造したインプラントに対して、XPS(X線光電子分光法)により、ワイドスキャン分析を行った結果を示すチャートである。It is a chart which shows the result of having performed the wide scan analysis with respect to the implant manufactured in Example 1 by XPS (X-ray photoelectron spectroscopy). 実施例1で製造したインプラントに対して、XPS(X線光電子分光法)により、ナロースキャン分析(高分解能分析)を行った結果を示すチャートである。図8の左上のチャートは、図7のワイドスキャン分析でO1sのスペクトルが検出された近傍の結合エネルギー領域(526~538eV)における分析結果を示すチャートである。図8の右上のチャートは、図7のワイドスキャン分析でTi2p3/2及びTi2p1/2のスペクトルが検出された近傍の結合エネルギー領域(452~474eV)における分析結果を示すチャートである。図8の左下のチャートは、図7のワイドスキャン分析でCr2p3/2及びCr2p1/2のスペクトルが検出された近傍の結合エネルギー領域(570~595eV)における分析結果を示すチャートである。図8の右下の図は、XPSの分析結果から予測されたインプラントの表面の化学結合状態を示す模式図である。It is a chart which shows the result of having performed narrow scan analysis (high resolution analysis) by XPS (X-ray photoelectron spectroscopy) with respect to the implant manufactured in Example 1. FIG. The chart on the upper left of FIG. 8 is a chart showing the analysis result in the binding energy region (526 to 538 eV) in the vicinity where the O1s spectrum is detected in the wide scan analysis of FIG. The upper right chart in FIG. 8 is a chart showing the analysis results in the vicinity of the binding energy region (452 to 474 eV) where the spectra of Ti2p 3/2 and Ti2p 1/2 were detected by the wide scan analysis of FIG. The chart on the lower left of FIG. 8 is a chart showing the analysis results in the vicinity of the binding energy region (570 to 595 eV) where the Cr2p 3/2 and Cr2p 1/2 spectra were detected in the wide scan analysis of FIG. The lower right diagram of FIG. 8 is a schematic diagram showing the chemical bonding state of the surface of the implant predicted from the XPS analysis result. 実施例1で製造したインプラントを生理食塩水中に浸漬し、生理食塩水中に放出されるクロムイオンを測定する試験を行った結果を示すグラフである。It is a graph which shows the result of having conducted the test which immersed the implant manufactured in Example 1 in the physiological saline, and measured the chromium ion discharge | released in the physiological saline. 実験動物にインプラントとチタン製のロッドを埋め入れる手術の様子を示す図面に代わる写真である。It is the photograph replaced with drawing which shows the mode of the operation which embeds an implant and a titanium rod in a laboratory animal. ウサギの大腿骨に埋め入れたインプラントと骨との結合状態の評価項目を示す図である。It is a figure which shows the evaluation item of the coupling | bonding state of the implant embedded in the femur of a rabbit, and a bone. 実施例1で製造したインプラント(CrTi)と骨の結合力(剪断強度)と、比較例としてチタン製のロッド(Ti)と骨の結合力(剪断強度)を示すグラフである。It is a graph which shows the joint force (shear strength) of the implant (CrTi) manufactured in Example 1, and a bone, and the rod made from titanium (Ti) and the bone as a comparative example (shear strength). 実施例1で製造したインプラント(CrTi)とチタン製のロッド(Ti)に荷重を加えた場合の時間変化を示すチャートである。上側のチャートが埋め入れ4週後のものであり、下側のチャートが埋め入れ8週後のものである。It is a chart which shows the time change at the time of applying a load to the implant (CrTi) manufactured in Example 1, and the rod (Ti) made from titanium. The upper chart is after 4 weeks of embedding, and the lower chart is after 8 weeks of embedding. ウサギの大腿骨に埋め入れたインプラントについて、表面の状態と、インプラントと骨との界面の状態をSEM(走査型電子顕微鏡)で観察した結果を示す図面に代わる写真である。図14の左下の写真は、実施例1で製造したインプラント(CrTi)と骨との界面をSEM(走査型電子顕微鏡)で撮影した写真である。図14の右下の写真は、同じインプラント(CrTi)の表面をSEMで撮影した写真である。図14の左上の写真は、比較例として、チタン製のロッド(Ti)と骨との界面をSEMで撮影した写真である。図14の右上の写真は、同じチタン製のロッド(Ti)の表面をSEMで撮影した写真である。It is the photograph replaced with drawing which shows the result of having observed the surface state and the state of the interface of an implant and a bone with the SEM (scanning electron microscope) about the implant embedded in the femur of a rabbit. The lower left photograph in FIG. 14 is a photograph of the interface between the implant (CrTi) manufactured in Example 1 and the bone taken with an SEM (scanning electron microscope). The lower right photograph in FIG. 14 is a photograph of the surface of the same implant (CrTi) taken with an SEM. The upper left photograph in FIG. 14 is a photograph taken by SEM of an interface between a titanium rod (Ti) and a bone as a comparative example. The upper right photograph in FIG. 14 is a photograph of the surface of the same titanium rod (Ti) taken with an SEM. ウサギの大腿骨に埋め入れたインプラントについて、走査型電子顕微鏡及びレーザーラマン分光光度計を用いて、表面に形成された膜状生成物の成分分析を行った結果を示すチャートである。図15の上側のチャートは、比較例として、チタン製のロッド(Ti)の表面に形成された小片についての成分分析を行った結果を示すチャートであり、図15の下側のチャートは、インプラント(CrTi)の表面に形成された膜状生成物の成分分析を行った結果を示すチャートである。It is a chart which shows the result of having analyzed the component analysis of the membranous product formed in the surface using the scanning electron microscope and the laser Raman spectrophotometer about the implant embedded in the femur of a rabbit. The upper chart in FIG. 15 is a chart showing the result of component analysis of a small piece formed on the surface of a titanium rod (Ti) as a comparative example, and the lower chart in FIG. It is a chart which shows the result of having performed the component analysis of the film-form product formed in the surface of (CrTi). インプラント(CrTi)の表面に形成された膜状生成物について、XPS(X線光電子分光法)による成分分析を行った結果を示すチャートである。It is a chart which shows the result of having performed the component analysis by XPS (X-ray photoelectron spectroscopy) about the film-form product formed in the surface of an implant (CrTi). ウサギの大腿骨に埋め入れたインプラントについて、インプラント周囲の骨組織を生物顕微鏡により観察した結果を示す図面に代わる写真である。図17の上側の写真は、比較例として、ウサギの大腿骨に埋め入れたチタン製のロッド(Ti)の周囲の骨組織をHE(ヘマトキシリン・エオジン)で染色して生物顕微鏡により観察した結果を示す写真であり、図17の下側の写真は、インプラント(CrTi)の周囲の骨組織をHE染色して生物顕微鏡により観察した結果を示す写真である。It is the photograph replaced with drawing which shows the result of having observed the bone structure | tissue around an implant with a biological microscope about the implant embedded in the femur of a rabbit. The upper photograph in FIG. 17 shows, as a comparative example, the result of observing a bone tissue around a titanium rod (Ti) embedded in a femur of a rabbit with HE (hematoxylin and eosin) and observing it with a biological microscope. The lower photograph in FIG. 17 is a photograph showing the result of observation of the bone tissue around the implant (CrTi) by HE staining and observation with a biological microscope.
1.本発明のインプラント
 本発明のインプラントは、医療目的で生体に埋め入れるインプラントであり、水酸基を有するクロム基で表面が修飾されていることを特徴とする。
 本発明において、「インプラント」とは、医療目的で生体内に埋め入れる器具を意味する。ここで、「医療目的」とは、ヒトに対する医療のみならず、動物に対する医療の目的も含む。本発明の「インプラント」としては、これらに限定されるわけではないが、例えば、デンタルインプラント(人工歯根)、人工関節、人工骨、並びに整形外科、脳外科又は脊椎外科用のスクリュー、プレート及びロッド等を挙げることができる。
1. Implant of the present invention The implant of the present invention is an implant that is embedded in a living body for medical purposes, and is characterized in that the surface is modified with a chromium group having a hydroxyl group.
In the present invention, “implant” means a device that is implanted in a living body for medical purposes. Here, the “medical purpose” includes not only medical treatment for humans but also medical purposes for animals. Examples of the “implant” of the present invention include, but are not limited to, dental implants (artificial dental roots), artificial joints, artificial bones, and screws, plates and rods for orthopedic surgery, brain surgery, or spinal surgery. Can be mentioned.
 本発明のインプラントの1つの実施形態を図1に示す。
 図1は、本発明のインプラントを生体内に埋め入れた場合における、インプラントと生体組織との境界面を示す模式断面図である。図1(A)は、インプラントを生体に埋め入れた直後の状態を示し、図1(B)は、インプラントを生体に埋め入れた後に時間が経過した状態を示す。
One embodiment of the implant of the present invention is shown in FIG.
FIG. 1 is a schematic cross-sectional view showing an interface between an implant and a living tissue when the implant of the present invention is embedded in the living body. FIG. 1 (A) shows a state immediately after implanting an implant in a living body, and FIG. 1 (B) shows a state after time has elapsed after implanting the implant in the living body.
 図1(A)に示されるように、本発明のインプラント(1)は、基材(2)を含んでおり、基材の表面(3)が水酸基を有するクロム基(4)で修飾されている。そして、生体内に埋め入れられた本発明のインプラント(1)は、生体組織(5)と隣接しており、インプラント(1)と生体組織(5)との間には少なくとも部分的に間隙(6)が存在している。ここで、間隙(6)には体液などの液体が満たされることになり、また、生体組織(5)中には細胞(7)が存在する。
 そして、基材の表面(3)に存在するクロム基(4)はイオン化しやすいため、図1(B)に示すように、間隙(6)を満たす液体中にクロムイオン(8)が溶出する。そして、このクロムイオン(8)が生体に作用して、インプラント(1)と生体組織(5)とが強固に結合されることを促進する。
As shown in FIG. 1 (A), the implant (1) of the present invention includes a base material (2), and the surface (3) of the base material is modified with a chromium group (4) having a hydroxyl group. Yes. The implant (1) of the present invention embedded in the living body is adjacent to the living tissue (5), and at least partially a gap (between the implant (1) and the living tissue (5) ( 6) exists. Here, the gap (6) is filled with a fluid such as a body fluid, and cells (7) are present in the living tissue (5).
And since the chromium group (4) which exists in the surface (3) of a base material is easy to ionize, as shown to FIG. 1 (B), chromium ion (8) elutes in the liquid which fills a gap | interval (6). . And this chromium ion (8) acts on a biological body, and promotes that an implant (1) and a biological tissue (5) are couple | bonded firmly.
 図2に、本発明のインプラントが生体組織と強固に結合する1つのメカニズムを示す。
 図2は、本発明のインプラントを生体内に埋め入れた場合における、インプラントと生体組織との境界面を示す模式断面図である。図2(A)は、インプラントを生体に埋め入れた直後の状態を示し、図2(B)は、インプラントを生体に埋め入れた後に時間が経過した状態を示し、図2(C)は、さらに時間が経過して、インプラントと生体組織とが結合した状態を示す。
FIG. 2 shows one mechanism by which the implant of the present invention is firmly bonded to living tissue.
FIG. 2 is a schematic cross-sectional view showing the interface between the implant and the living tissue when the implant of the present invention is embedded in the living body. FIG. 2 (A) shows the state immediately after implanting the implant in the living body, FIG. 2 (B) shows the state after time has passed after implanting the implant in the living body, and FIG. Furthermore, the state which the implant and the biological tissue couple | bonded with time passes is shown.
 図2(A)は、前述した図1(A)と同一の図であり、本発明のインプラント(1)の基材の表面(3)は、水酸基を有するクロム基(4)で修飾されている。
 次に、図2(B)に示すように、インプラント(1)を生体内に埋め入れた後に時間が経過すると、基材の表面(3)のクロム基(4)がイオン化して、インプラント(1)と生体組織(5)との間の間隙(6)を満たす液体中にクロムイオン(8)が溶出する。また、生体組織(5)中の細胞(7)は増殖しつつ移動して、インプラント(1)の表面にも付着する。細胞(7)は、間隙(6)を満たす液体中にコラーゲン(9)を分泌する。
 そして、さらに時間が経過すると、図2(C)に示すように、細胞(7)が分泌したコラーゲン(9)は、クロムイオン(8)によって架橋されて線維を形成し、このコラーゲン線維によりインプラント(1)と生体組織(5)とが強固に結合する。
FIG. 2 (A) is the same view as FIG. 1 (A) described above, and the surface (3) of the base material of the implant (1) of the present invention is modified with a chromium group (4) having a hydroxyl group. Yes.
Next, as shown in FIG. 2 (B), when time passes after the implant (1) is implanted in the living body, the chromium group (4) on the surface (3) of the substrate is ionized, and the implant ( The chromium ions (8) are eluted in the liquid that fills the gap (6) between 1) and the living tissue (5). Further, the cells (7) in the living tissue (5) move while proliferating and adhere to the surface of the implant (1). Cells (7) secrete collagen (9) into the liquid that fills the gap (6).
When further time elapses, as shown in FIG. 2 (C), collagen (9) secreted by cells (7) is cross-linked by chromium ions (8) to form fibers. (1) and the biological tissue (5) are firmly bonded.
 ここで、生体組織(5)が骨であり、細胞(7)が骨芽細胞である場合には、骨芽細胞が分泌するハイドロキシアパタイトが、コラーゲン線維の周囲に析出し、石灰化が進行する。これにより、インプラント(1)と骨(5)との間隙(6)に骨組織が形成されて、インプラント(1)と骨(5)とが強固に結合することになる。
 本発明のインプラントとしては、骨の中に埋め入れ、又は骨と接触させることにより、骨と結合させるものである、骨内インプラントとすることが好ましい。
Here, when the living tissue (5) is a bone and the cell (7) is an osteoblast, hydroxyapatite secreted by the osteoblast is deposited around the collagen fiber, and calcification proceeds. . Thereby, a bone tissue is formed in the gap (6) between the implant (1) and the bone (5), and the implant (1) and the bone (5) are firmly bonded.
The implant of the present invention is preferably an intraosseous implant that is to be bonded to bone by being embedded in bone or brought into contact with bone.
 本発明のインプラントは、クロムイオンを徐々に放出することで、コラーゲンがクロムイオンにより架橋されて線維を形成し、このコラーゲンによりインプラントと生体組織とが強固に結合するので、カルシウムの沈着を促すハイドロキシアパタイトで修飾したインプラントとは異なり、骨以外の組織に埋め入れる場合でも結合が促進されるという効果が期待できる。また、デンタルインプラント(人工歯根)として用いる場合には、歯槽骨等の硬組織との結合だけでなく、歯肉等の軟組織との結合も促進され、歯肉の退縮を防ぐ効果が期待できる。 The implant of the present invention gradually releases chromium ions, whereby collagen is cross-linked by chromium ions to form fibers, and the collagen and the living tissue are tightly bound to each other, so that the hydroxy promotes calcium deposition. Unlike implants modified with apatite, the effect of promoting bonding can be expected even when implanted in tissues other than bone. In addition, when used as a dental implant (artificial tooth root), not only the connection with hard tissues such as alveolar bone but also the connection with soft tissues such as gingiva is promoted, and the effect of preventing gingival retraction can be expected.
 本発明のインプラントは基材を含むものであり、基材の表面が水酸基を有するクロム基で修飾されている。本発明のインプラントの基材としては、水酸基を有するクロム基で修飾するため、金属、金属合金、金属酸化物又はセラミックとする必要がある。
 ここで、金属、金属合金、金属酸化物としては、これらに限定されるわけではないが、例えば、チタン、チタン合金、コバルト合金、ジルコニア、ステンレス鋼、アルミナ、タンタル、タンタル合金、ジルコニウム合金、ニオブ合金等を用いることができる。
 さらにここで、チタン合金としては、例えば、Ti-6Al-4Vを好適に用いることができ、コバルト合金としては、例えば、コバルトークロム合金、コバルト-クロム-モリブデン合金等を用いることができる。
 本発明のインプラントの基材として、セラミックを使用する場合には、これらに限定されるわけではないが、例えば、ハイドロキシアパタイト、炭化ケイ素、窒化ケイ素等を用いることができる。
The implant of the present invention includes a base material, and the surface of the base material is modified with a chromium group having a hydroxyl group. Since the base material of the implant of the present invention is modified with a chromium group having a hydroxyl group, it is necessary to use a metal, a metal alloy, a metal oxide, or a ceramic.
Here, the metal, the metal alloy, and the metal oxide are not limited to these. For example, titanium, titanium alloy, cobalt alloy, zirconia, stainless steel, alumina, tantalum, tantalum alloy, zirconium alloy, niobium, and the like. An alloy or the like can be used.
Further, here, for example, Ti-6Al-4V can be suitably used as the titanium alloy, and as the cobalt alloy, for example, a cobalt-chromium alloy, a cobalt-chromium-molybdenum alloy, or the like can be used.
When ceramic is used as the base material of the implant of the present invention, it is not limited to these. For example, hydroxyapatite, silicon carbide, silicon nitride, etc. can be used.
 本発明のインプラントの表面を修飾する「水酸基を有するクロム基」とは、クロム原子に1つ以上の水酸基(ヒドロキシ基)を有する基を意味する。この「水酸基を有するクロム基」は、基材に結合することができるが、水酸基を有しているため、クロムイオンを放出しやすいという効果を奏する。
 本発明の「水酸基を有するクロム基」におけるクロム原子の酸化数は、2価、3価、4価又は6価とすることができる。6価のクロムは酸化力が強いため、2価、3価又は4価のクロムとすることが好ましい。より好ましくは、最も安定な3価のクロムとするのがよい。
The “chromium group having a hydroxyl group” for modifying the surface of the implant of the present invention means a group having one or more hydroxyl groups (hydroxy groups) on the chromium atom. This “chromium group having a hydroxyl group” can be bonded to a base material, but has a hydroxyl group, and thus has an effect of easily releasing chromium ions.
The oxidation number of the chromium atom in the “chromium group having a hydroxyl group” of the present invention can be divalent, trivalent, tetravalent or hexavalent. Since hexavalent chromium has strong oxidizing power, it is preferable to use divalent, trivalent or tetravalent chromium. More preferably, the most stable trivalent chromium is used.
 本発明のインプラントの表面を修飾する「水酸基を有するクロム基」としては、下記一般式(1)で示される基とすることができる。
 -O-Cr(OH)R   ・・・(1)
(式中、Rは-OH又は-O-を表す)
 一般式(1)において、Rを-OHとする場合には、水酸基を有するクロム基は、-O-Cr(OH)となり、1価の基となる。
 また、一般式(1)において、Rを-O-とする場合には、水酸基を有するクロム基は、-O-Cr(OH)-O-となり、2価の基となる。
 ここで、1価又は2価とは、クロムの酸化数を示す価数ではなく、水酸基を有するクロム基が他の原子と結合できる部位の数を示す価数である。
The “chromium group having a hydroxyl group” for modifying the surface of the implant of the present invention can be a group represented by the following general formula (1).
-O-Cr (OH) R (1)
(Wherein R represents —OH or —O—)
In the general formula (1), when R is —OH, the chromium group having a hydroxyl group becomes —O—Cr (OH) 2 and becomes a monovalent group.
In the general formula (1), when R is —O—, the chromium group having a hydroxyl group is —O—Cr (OH) —O—, which is a divalent group.
Here, monovalent or divalent is not a valence indicating the oxidation number of chromium but a valence indicating the number of sites where a chromium group having a hydroxyl group can be bonded to another atom.
 図3は、一般式(1)で示される基で表面が修飾されたインプラントを示す模式断面図である。図3(A)は、一般式(1)においてRが-OHである基でインプラントの表面が修飾された状態を示し、図3(B)は、一般式(1)においてRが-O-である基でインプラントの表面が修飾された状態を示し、図3(C)は、図3(A)と図3(B)に示される両方の基でインプラントの表面が修飾された状態を示す。 FIG. 3 is a schematic cross-sectional view showing an implant whose surface is modified with a group represented by the general formula (1). 3A shows a state in which the surface of the implant is modified with a group in which R is —OH in the general formula (1), and FIG. 3B shows a state in which R is —O— in the general formula (1). FIG. 3 (C) shows a state in which the surface of the implant is modified with both groups shown in FIGS. 3 (A) and 3 (B). .
 図3(A)に示されるように、インプラント(1)の基材(2)の表面(3)には、原子(M)が存在する。図3(A)は、一般式(1)においてRが-OHである場合であり、水酸基を有するクロム基は、-O-Cr(OH)となる。この基は1価の基であるので、単結合により、インプラントの表面の原子(M)と結合し、インプラントの表面を修飾することができる。ここで、インプラントの表面の原子(M)は、水酸基(-OH)のような別の官能基で修飾されていてもよい。また、-O-Cr(OH)からなる基からクロムイオンが放出された場合には、水酸基(-OH)が残されることもある。
 図3(B)は、一般式(1)においてRが-O-である場合であり、水酸基を有するクロム基は、-O-Cr(OH)-O-となる。この基は2価の基であるので、図3(B)に示されるように、インプラントの表面の2つの原子(M)を架橋するように結合し、インプラントの表面を修飾することができる。
 図3(C)は、-O-Cr(OH)と-O-Cr(OH)-O-の両方の基で、インプラントの表面が修飾される場合であり、図3(C)に示されるように、両者の基による修飾が混在している。図3(A)に示す状態と図3(B)に示す状態とが互いに遷移する条件下では、図3(C)のような状態になると考えられる。
As shown in FIG. 3A, atoms (M) are present on the surface (3) of the base material (2) of the implant (1). FIG. 3A shows the case where R is —OH in the general formula (1), and the chromium group having a hydroxyl group is —O—Cr (OH) 2 . Since this group is a monovalent group, it can be bonded to atoms (M) on the surface of the implant by a single bond to modify the surface of the implant. Here, the atom (M) on the surface of the implant may be modified with another functional group such as a hydroxyl group (—OH). In addition, when chromium ions are released from a group consisting of —O—Cr (OH) 2 , a hydroxyl group (—OH) may remain.
FIG. 3B shows the case where R in the general formula (1) is —O—, and the chromium group having a hydroxyl group is —O—Cr (OH) —O—. Since this group is a divalent group, as shown in FIG. 3B, it is possible to bond the two atoms (M) on the surface of the implant so as to cross-link and modify the surface of the implant.
FIG. 3C shows the case where the surface of the implant is modified with both —O—Cr (OH) 2 and —O—Cr (OH) —O— groups, as shown in FIG. As shown, the modification by both groups is mixed. Under the condition where the state shown in FIG. 3A and the state shown in FIG. 3B transition to each other, it is considered that the state shown in FIG.
 本発明のインプラントの表面を修飾する「水酸基を有するクロム基」としては、上記のクロム基の他に、これらに限定されるわけではないが、例えば、-Cr(OH)基や、-Cr(OH)-O-基、-O-Cr(ONa)基等とすることもできる。 The “chromium group having a hydroxyl group” for modifying the surface of the implant of the present invention is not limited to the above-described chromium group, but includes, for example, a —Cr (OH) 2 group, —Cr An (OH) —O— group, —O—Cr (ONa) 2 group, and the like may also be used.
 本発明のインプラントにおいて、「表面が修飾されている」とは、インプラントの表面に存在する原子と、水酸基を有するクロム基とが結合している状態を意味する。結合の形態としては、共有結合、配位結合、イオン結合、水素結合等が挙げられるが、クロムイオンを徐々に放出するためには、少なくとも一部が共有結合により強固に結合していることが好ましい。 In the implant of the present invention, “the surface is modified” means that an atom present on the surface of the implant is bonded to a chromium group having a hydroxyl group. Examples of the bond form include covalent bond, coordination bond, ionic bond, hydrogen bond, etc., but in order to gradually release chromium ions, at least a part of the bond must be firmly bonded by covalent bond. preferable.
 本発明のインプラントの表面は、水酸基を有するクロム基で表面が修飾されているものであるが、生体適合性を高めるために、さらに、粗面加工や、ハイドロキシアパタイトのコーティング等の他の処理が併用されたものであってもよい。ただし、この場合には、水酸基を有するクロム基の全てが粗面加工で除去されることがないようにし、また、クロムイオンの放出が完全に阻害されることがないようにコーティングを行う。 The surface of the implant of the present invention is modified with a chromium group having a hydroxyl group, but in order to enhance biocompatibility, other treatments such as roughening and hydroxyapatite coating are further performed. It may be used in combination. In this case, however, the coating is performed so that not all of the chromium groups having a hydroxyl group are removed by roughening, and the release of chromium ions is not completely inhibited.
 本発明のインプラントは、水酸基を有するクロム基で表面が修飾されているため、クロムイオンを徐々に放出するという効果を奏する。本発明のインプラントが放出するクロムイオンの形態は、インプラントの表面を覆うクロム基に応じて変化し得る。放出されるクロムイオンとしては、これらに限定されるわけではないが、例えば、通常のクロムイオンや、水分子が配位したクロムイオン、水酸化物イオン(OH)が配位したクロムイオン、Cl、NH、SO 2-等が配位したクロムイオン、あるいはCrO 2-(クロム酸イオン)、Cr 2-(二クロム酸イオン)等がある。放出されるクロムイオンは、クロム原子のイオン価が2価、3価、4価又は6価のイオンとなることができる。しかし、通常の条件では、クロム原子のイオン価が3価のイオンが最も安定に放出されやすく、また、3価以外のイオンが放出されても、通常の条件では、3価のイオンに変化しやすい。 Since the surface of the implant of the present invention is modified with a chromium group having a hydroxyl group, the effect of gradually releasing chromium ions is achieved. The form of chromium ions released by the implant of the present invention can vary depending on the chromium group covering the surface of the implant. Examples of the released chromium ions include, but are not limited to, ordinary chromium ions, chromium ions coordinated with water molecules, chromium ions coordinated with hydroxide ions (OH ), Examples include chromium ions coordinated with Cl , NH 3 , SO 4 2− , or CrO 4 2− (chromate ions), Cr 2 O 7 2− (dichromate ions), and the like. The released chromium ions can be ions in which the ionic valence of the chromium atom is divalent, trivalent, tetravalent or hexavalent. However, under normal conditions, ions with the valence of chromium atoms of trivalent ions are most easily released, and even when ions other than trivalent are released, they change to trivalent ions under normal conditions. Cheap.
2.本発明のインプラントの製造方法
 本発明のインプラントの製造方法は、水酸化クロムイオンを含有する反応溶液中に、金属、金属合金、金属酸化物及びセラミックからなる群から選択される基材を浸漬し、前記反応溶液中から前記基材を取り出すことを含む製造方法である。
2. The method for producing an implant of the present invention comprises immersing a substrate selected from the group consisting of metals, metal alloys, metal oxides and ceramics in a reaction solution containing chromium hydroxide ions. , A production method including removing the substrate from the reaction solution.
 本発明のインプラントの製造方法で使用する「水酸化クロムイオン」とは、水酸化物イオン(OH)が配位したクロムイオンをいい、これらに限定されるわけではないが、例えば、[Cr(OH)3-、[Cr(OH)、[Cr(HO)(OH)]2+、[CrNH(OH)2-、[CrO(OH)4-等を用いることができる。
 また、「水酸化クロムイオン」としては、クロム原子のイオン価が2価、3価、4価又は6価のイオンを使用することができるが、3価のイオンが安定で好ましい。
 クロム原子のイオン価が3価の水酸化クロムイオンとしては、これらに限定されるわけではないが、例えば、[Cr(OH)3-、[Cr(OH)、[Cr(HO)(OH)]2+等が挙げられる。
The “chromium hydroxide ion” used in the method for producing an implant of the present invention refers to a chromium ion coordinated with a hydroxide ion (OH ), and is not limited thereto. For example, [Cr (OH) 6 ] 3− , [Cr (OH) 4 ] , [Cr (H 2 O) 5 (OH)] 2+ , [CrNH 3 (OH) 5 ] 2− , [CrO 4 (OH) 2 ] 4- etc. Can be used.
Further, as the “chromium hydroxide ion”, an ion with a chromium atom having a valence of 2, 3, 4, or 6 can be used, and a trivalent ion is stable and preferable.
Examples of the chromium hydroxide ion whose valence of chromium atom is trivalent include, but are not limited to, for example, [Cr (OH) 6 ] 3− , [Cr (OH) 4 ] , [Cr ( H 2 O) 5 (OH)] 2+ and the like.
 本発明の製造方法で使用する「水酸化クロムイオンを含有する反応溶液」の溶媒としては、水や、水とアルコール等を含む混合溶媒を用いることができる。また、反応溶液中には、水酸化クロムイオンの他に、pH調整剤、pH緩衝剤、酸化防止剤、安定化剤や、インプラントの表面を修飾する他の薬剤等を含ませることもできる。 As the solvent of the “reaction solution containing chromium hydroxide ions” used in the production method of the present invention, water or a mixed solvent containing water and alcohol can be used. In addition to the chromium hydroxide ion, the reaction solution may contain a pH adjuster, a pH buffer, an antioxidant, a stabilizer, and other agents that modify the surface of the implant.
 本発明の製造方法で使用する「基材」は、金属、金属合金、金属酸化物又はセラミックを用いる必要がある。これら基材の具体的な例は、上述したとおりである。 The “base material” used in the production method of the present invention needs to use metal, metal alloy, metal oxide or ceramic. Specific examples of these base materials are as described above.
 本発明の製造方法で使用する「基材」は、生体内に埋め入れるためのインプラントとしての完成品の形状に成型したものでもよく、また、半完成品の形状に成型したものでも、素材としての形状のものであってもよい。また、基材は、他の部材と連結することによりインプラントとしての完成品となるものであってもよい。
 また、「基材」は、生体適合性を高めるための粗面加工やコーティング等が施されたものであってもよい。基材の表面を粗面化する方法としては、ブラスト処理やエッチング処理等を用いることができる。また、コーティングとしては、チタンによるコーティングやハイドロキシアパタイトによるコーティング等を用いることができる。
The “base material” used in the production method of the present invention may be molded into a finished product shape as an implant for implantation in a living body, or may be molded into a semi-finished product shape as a material. It may be of the shape. Moreover, the base material may be a finished product as an implant by being connected to another member.
Further, the “base material” may be subjected to roughening or coating for improving biocompatibility. As a method for roughening the surface of the substrate, blasting, etching, or the like can be used. As the coating, titanium coating, hydroxyapatite coating, or the like can be used.
 本発明の製造方法において、反応溶液中の水酸化クロムイオンの濃度は、好ましくは0.0001~10mol/Lであり、より好ましくは0.001~1mol/Lとし、さらに好ましくは0.01~0.1mol/Lとするのがよい。
 また、基材を反応溶液に浸漬する時間は、好ましくは1秒~5日であり、より好ましくは2分~10時間とし、さらに好ましくは10分~2時間とするのがよい。
 そして、基材を浸漬する際の反応溶液の温度は、好ましくは、0~200℃とし、より好ましくは40~80℃とするのがよい。
In the production method of the present invention, the concentration of chromium hydroxide ions in the reaction solution is preferably 0.0001 to 10 mol / L, more preferably 0.001 to 1 mol / L, still more preferably 0.01 to It is good to set it as 0.1 mol / L.
The time for immersing the substrate in the reaction solution is preferably 1 second to 5 days, more preferably 2 minutes to 10 hours, and even more preferably 10 minutes to 2 hours.
The temperature of the reaction solution when immersing the substrate is preferably 0 to 200 ° C., more preferably 40 to 80 ° C.
 本発明の製造方法では、水酸化クロムイオンを含有する反応溶液中に、金属、金属合金、金属酸化物及びセラミックからなる群から選択される基材を浸漬するので、基材の表面の原子と水酸化クロムイオンとが反応し、水酸基を有するクロム基で表面が修飾されることで生体適合性が高められたインプラントを製造することができるという効果を奏する。
 本発明の製造方法において、「基材を浸漬する」とは、反応溶液中の基材の全体を浸漬することだけでなく、基材の一部を反応溶液の中に浸漬することも含む。
In the production method of the present invention, a substrate selected from the group consisting of metals, metal alloys, metal oxides, and ceramics is immersed in a reaction solution containing chromium hydroxide ions. An effect of being able to produce an implant with improved biocompatibility is obtained by the reaction with chromium hydroxide ions and the modification of the surface with a chromium group having a hydroxyl group.
In the production method of the present invention, “immersing the substrate” includes not only immersing the entire substrate in the reaction solution, but also immersing a part of the substrate in the reaction solution.
 本発明の製造方法は、反応溶液中の基材を取り出す工程を含む。反応溶液から基材を取り出した後には、基材の表面に付着した反応溶液を洗浄するなどして取り除いてもよいが、洗浄せずに乾燥させることが好ましい。基材の表面に付着した反応溶液を洗浄せずに乾燥させた場合には、共有結合せずに基材に付着する水酸化クロムも存在することになり、インプラントを生体内に埋め入れた直後に放出するクロムイオンの量を高めることができるという効果を奏する。 The production method of the present invention includes a step of taking out the substrate in the reaction solution. After removing the substrate from the reaction solution, the reaction solution adhering to the surface of the substrate may be removed by washing or the like, but it is preferable to dry without washing. When the reaction solution adhering to the surface of the substrate is dried without washing, there will also be chromium hydroxide that does not covalently adhere to the substrate, and immediately after the implant is implanted in the living body. There is an effect that the amount of chromium ions released into the can be increased.
 反応溶液から基材を取り出した後には、生体適合性を高めるために、さらに、粗面加工や、ハイドロキシアパタイトのコーティング等の他の処理を行うこともできる。ただし、この場合には、水酸基を有するクロム基の全てが粗面加工で除去されることがないようにし、また、クロムイオンの放出が完全に阻害されることがないようにコーティングを行う。
 また、反応溶液から基材を取り出した後には、インプラントをさらに加工することができ、また、滅菌処理をして完成品とすることができる。滅菌処理する方法としては、乾熱滅菌する方法や、紫外線や放射線を照射して滅菌する方法等を用いることができる。
After the substrate is taken out from the reaction solution, other treatments such as roughening and hydroxyapatite coating can be further performed in order to improve biocompatibility. In this case, however, the coating is performed so that not all of the chromium groups having a hydroxyl group are removed by roughening, and the release of chromium ions is not completely inhibited.
Moreover, after taking out a base material from a reaction solution, an implant can be further processed and it can sterilize and can be set as a finished product. As a sterilization method, a dry heat sterilization method, a sterilization method by irradiating ultraviolet rays or radiation, and the like can be used.
3.本発明のインプラントの表面処理方法
 本発明のインプラントの表面処理方法は、水酸化クロムイオンを含有する反応溶液をインプラントに接触させる工程を含み、これによりインプラントの生体適合性を向上させる方法である。
 本発明のインプラントの表面処理方法は、既に製造されたインプラントに対しても、簡便な処理で生体適合性を高めることができるという効果を奏する。
 本発明の表面処理方法は、本発明の製造方法によって得られたインプラント、すなわち、表面が水酸基を有するクロム基で修飾されたインプラントに対しても施すことができ、生体内に埋め入れる直前に表面処理を行うことによって、生体適合性をさらに高めることも可能である。
3. The Implant Surface Treatment Method of the Present Invention The implant surface treatment method of the present invention is a method of improving the biocompatibility of an implant by including a step of bringing a reaction solution containing chromium hydroxide ions into contact with the implant.
The surface treatment method of an implant of the present invention has an effect that biocompatibility can be enhanced by simple treatment even for an already manufactured implant.
The surface treatment method of the present invention can be applied to an implant obtained by the production method of the present invention, that is, an implant whose surface is modified with a chromium group having a hydroxyl group. By performing the treatment, it is possible to further improve the biocompatibility.
 本発明のインプラントの表面処理方法で使用する「水酸化クロムイオンを含有する反応溶液」としては、上記2.説明したものを用いることができる。
 本発明の表面処理方法において、反応溶液をインプラントに「接触」させる方法としては、インプラントを反応溶液に浸漬させる方法や、反応溶液をインプラントの表面に塗布する方法を用いることができる。
The “reaction solution containing chromium hydroxide ions” used in the implant surface treatment method of the present invention includes the above-mentioned 2. What has been described can be used.
In the surface treatment method of the present invention, as a method of “contacting” the reaction solution with the implant, a method of immersing the implant in the reaction solution or a method of applying the reaction solution to the surface of the implant can be used.
 本発明の表面処理方法において、反応溶液中の水酸化クロムイオンの濃度は、好ましくは0.0001~10mol/Lであり、より好ましくは0.001~1mol/Lとし、さらに好ましくは0.01~0.1mol/Lとするのがよい。
 また、基材を反応溶液に接触させる時間は、好ましくは1秒~5日であり、より好ましくは2分~10時間とし、さらに好ましくは10分~2時間とするのがよい。
 そして、基材を浸漬する際の反応溶液の温度は、好ましくは、0~200℃とし、より好ましくは40~80℃とするのがよい。
In the surface treatment method of the present invention, the concentration of chromium hydroxide ions in the reaction solution is preferably 0.0001 to 10 mol / L, more preferably 0.001 to 1 mol / L, and still more preferably 0.01. It is good to set it to 0.1 mol / L.
The time for contacting the substrate with the reaction solution is preferably 1 second to 5 days, more preferably 2 minutes to 10 hours, and even more preferably 10 minutes to 2 hours.
The temperature of the reaction solution when immersing the substrate is preferably 0 to 200 ° C., more preferably 40 to 80 ° C.
4.本発明のインプラントの表面処理剤
 本発明のインプラントの表面処理剤は、水酸化クロムイオンを含む溶液であることを特徴とする。
 本発明のインプラントの表面処理剤に含まれる「水酸化クロムイオン」とは、水酸化物イオン(OH)が配位したクロムイオンをいい、これらに限定されるわけではないが、例えば、[Cr(OH)3-、[Cr(OH)、[Cr(HO)(OH)]2+、[CrNH(OH)2-、[CrO(OH)4-等を用いることができる。
 また、「水酸化クロムイオン」としては、クロム原子のイオン価が2価、3価、4価又は6価のイオンを使用することができるが、3価のイオンが安定で好ましい。
 クロム原子のイオン価が3価の水酸化クロムイオンとしては、これらに限定されるわけではないが、例えば、[Cr(OH)3-、[Cr(OH)、[Cr(HO)(OH)]2+等が挙げられる。
4). Surface Treatment Agent for Implants of the Present Invention The surface treatment agent for implants of the present invention is a solution containing chromium hydroxide ions.
The “chromium hydroxide ion” contained in the surface treatment agent of the implant of the present invention refers to a chromium ion coordinated with a hydroxide ion (OH ), and is not limited to these. Cr (OH) 6 ] 3− , [Cr (OH) 4 ] , [Cr (H 2 O) 5 (OH)] 2+ , [CrNH 3 (OH) 5 ] 2− , [CrO 4 (OH) 2 4- etc. can be used.
Further, as the “chromium hydroxide ion”, an ion with a chromium atom having a valence of 2, 3, 4, or 6 can be used, and a trivalent ion is stable and preferable.
Examples of the chromium hydroxide ion whose valence of chromium atom is trivalent include, but are not limited to, for example, [Cr (OH) 6 ] 3− , [Cr (OH) 4 ] , [Cr ( H 2 O) 5 (OH)] 2+ and the like.
 本発明のインプラントの表面処理剤で使用する溶媒としては、水や、水とアルコール等を含む混合溶媒を用いることができる。また、溶液中には、水酸化クロムイオンの他に、pH調整剤、pH緩衝剤、酸化防止剤、安定化剤や、インプラントの表面を修飾する他の薬剤等を含ませることもできる。
 本発明のインプラントの表面処理剤は、既に製造されたインプラントに対しても、簡便な処理で生体適合性を高めることができるという効果を奏する。
 本発明の表面処理剤は、本発明の製造方法によって得られたインプラント、すなわち、表面が水酸基を有するクロム基で修飾されたインプラントに対しても施すことができ、生体内に埋め入れる直前に表面処理を行うことによって、生体適合性をさらに高めることも可能である。
As a solvent used in the surface treatment agent for an implant of the present invention, water or a mixed solvent containing water and alcohol can be used. In addition to the chromium hydroxide ions, the solution may contain a pH adjuster, a pH buffer, an antioxidant, a stabilizer, and other agents that modify the surface of the implant.
The surface treatment agent for implants of the present invention has an effect that biocompatibility can be enhanced by simple treatment even for implants that have already been produced.
The surface treatment agent of the present invention can be applied to an implant obtained by the production method of the present invention, that is, an implant whose surface is modified with a chromium group having a hydroxyl group. By performing the treatment, it is possible to further improve the biocompatibility.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
(インプラントの製造)
 インプラントの基材を浸漬する反応溶液として、[Cr(OH)3-イオンを0.05mol/L含む反応溶液の調整を行った。この反応溶液は、0.05mol/Lの硫酸クロム(III)九水和物の水溶液と、4mol/Lの水酸化ナトリウムの水溶液とを混合し、次の式に示される反応を行うことにより調整した。
(Manufacture of implants)
As a reaction solution for immersing the base material of the implant, a reaction solution containing 0.05 mol / L of [Cr (OH) 6 ] 3- ion was prepared. This reaction solution was prepared by mixing an aqueous solution of 0.05 mol / L chromium (III) sulfate nonahydrate and an aqueous solution of 4 mol / L sodium hydroxide and carrying out the reaction represented by the following formula: did.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 インプラントの基材としては、ロッド状に成型されたチタンを使用した。このチタン製の基材を、上記で調整した反応溶液中に浸漬した。浸漬は60℃の反応溶液中で12時間行った。これにより、チタン製の基材の表面を、水酸基を有するクロム基で修飾した。
 浸漬を行った後、チタン製の基材を反応溶液中から取り出した。その後、基材であるチタンを70℃の条件下に20分間静置し、基材表面の溶媒が十分に蒸発するまで乾燥させた。
 さらに、180℃の条件下に2時間静置することにより、インプラントの乾熱滅菌を行った。
 以上のようにして、表面が修飾されたインプラントを製造した。
As the base material of the implant, titanium molded into a rod shape was used. This titanium substrate was immersed in the reaction solution prepared above. Immersion was performed in a reaction solution at 60 ° C. for 12 hours. As a result, the surface of the titanium substrate was modified with a chromium group having a hydroxyl group.
After immersion, the titanium substrate was taken out from the reaction solution. Thereafter, titanium as a base material was allowed to stand at 70 ° C. for 20 minutes, and dried until the solvent on the surface of the base material was sufficiently evaporated.
Furthermore, the implant was sterilized by dry heat by allowing it to stand at 180 ° C. for 2 hours.
As described above, an implant with a modified surface was produced.
(インプラントの材料評価)
(1)表面観察と表面粗さの測定
 実施例1で製造したインプラントの材料評価を行った。まず、走査型電子顕微鏡(SEM)にて、実施例1で製造したインプラント(CrTi)の表面形状の観察を行った。比較例として、反応溶液中での浸漬が行われる前のチタン製の基材(Ti)について、同様に表面形状の観察を行った。その結果を示す写真を図4に示す。
 図4の左側の写真は、チタン製の基材(Ti)の表面を撮影した写真であり、右側の写真は、実施例1で製造したインプラント(CrTi)の表面を撮影した写真である。図4の写真から把握できるように、両者の表面形状に特段の差異は観察されなかった。
 次に、共焦点レーザー顕微鏡(CLSM)を用いて、表面粗さの測定を行った。その結果を図4中のそれぞれの写真の下に示す。
 チタン製の基材(Ti)の表面粗さ(Ra)は、3.123±1.751であったのに対し、実施例1で製造されたインプラント(CrTi)の表面粗さ(Ra)は、3.128±1.504であった。このように、チタン製の基材(Ti)と、実施例1で製造されたインプラント(CrTi)との間で、生体適合性に影響を及ぼし得る表面粗さに、有意な差は見られなかった。
(Evaluation of implant material)
(1) Surface observation and measurement of surface roughness The material evaluation of the implant manufactured in Example 1 was performed. First, the surface shape of the implant (CrTi) manufactured in Example 1 was observed with a scanning electron microscope (SEM). As a comparative example, the surface shape of the titanium base material (Ti) before being immersed in the reaction solution was similarly observed. A photograph showing the results is shown in FIG.
The photograph on the left side of FIG. 4 is a photograph of the surface of the titanium substrate (Ti), and the photograph on the right is a photograph of the surface of the implant (CrTi) manufactured in Example 1. As can be understood from the photograph in FIG. 4, no particular difference was observed between the surface shapes of the two.
Next, the surface roughness was measured using a confocal laser microscope (CLSM). The result is shown under each photograph in FIG.
The surface roughness (Ra) of the titanium substrate (Ti) was 3.123 ± 1.751, whereas the surface roughness (Ra) of the implant (CrTi) manufactured in Example 1 was 3.128 ± 1.504. Thus, there is no significant difference in the surface roughness that can affect biocompatibility between the titanium substrate (Ti) and the implant manufactured in Example 1 (CrTi). It was.
(2)X線回析(XRD)
 X線回析装置を用いて、実施例1で製造したインプラントの結晶相と、チタン製の基材の結晶相の分析を行った。その分析結果を示すチャートを図5に示す。図5の上側のチャートは、表面が修飾されていないチタン製の基材(Ti)の分析結果を示し、図5の下側のチャートは、実施例1で製造したインプラント(CrTi)の分析結果を示す。
 図5に示されるように、実施例1で製造したインプラント(CrTi)のチャートから、TiとTiOの存在を示すスペクトルが検出された。これにより、実施例1で製造したインプラント(CrTi)の表面の結晶相はTi及びTiOであることが明らかとなった。
(2) X-ray diffraction (XRD)
Using the X-ray diffraction apparatus, the crystal phase of the implant manufactured in Example 1 and the crystal phase of the titanium base material were analyzed. A chart showing the analysis results is shown in FIG. The upper chart in FIG. 5 shows the analysis result of the titanium base material (Ti) whose surface is not modified, and the lower chart in FIG. 5 is the analysis result of the implant (CrTi) manufactured in Example 1. Indicates.
As shown in FIG. 5, a spectrum indicating the presence of Ti and TiO was detected from the chart of the implant (CrTi) manufactured in Example 1. Thereby, it became clear that the crystal phase of the surface of the implant (CrTi) manufactured in Example 1 was Ti and TiO.
(3)元素分析
 SEM-EDSを用いて、実施例1で製造したインプラント(CrTi)の表面の元素分析を行った。その結果を示す写真を図6に示す。図6の上側の写真は、走査型電子顕微鏡(SEM)でインプラント表面の形状を撮影した写真であり、図6の下側の2つの写真は、同じインプラント表面に対して、EDS(エネルギー分散型X線分析)により、元素分析を行った結果を示す写真である。図6の左下の写真はチタン原子の検出結果を示す写真であり、図6の右下の写真はクロム原子の検出結果を示す写真である。図6の結果に示されるように、実施例1で製造したインプラントの表面にクロム原子が検出された。
(3) Elemental analysis Elemental analysis of the surface of the implant (CrTi) manufactured in Example 1 was performed using SEM-EDS. A photograph showing the result is shown in FIG. The upper photograph in FIG. 6 is a photograph of the shape of the implant surface taken with a scanning electron microscope (SEM), and the two lower photographs in FIG. 6 show EDS (energy dispersive type) for the same implant surface. It is a photograph which shows the result of having conducted elemental analysis by X-ray analysis. The lower left photograph in FIG. 6 is a photograph showing the detection results of titanium atoms, and the lower right photograph in FIG. 6 is a photograph showing the detection results of chromium atoms. As shown in the results of FIG. 6, chromium atoms were detected on the surface of the implant manufactured in Example 1.
(4)XPS分析
 実施例1で製造したインプラント(CrTi)に対して、XPS(X線光電子分光法)による分析を行った。分析結果を示すチャートを図7及び8に示す。図7は、結合エネルギー全域(0~1100eV)におけるワイドスキャン分析結果を示すチャートである。図7中、四角の枠内に表示するように、Ti2p3/2、Ti2p1/2、O1s、Cr2p3/2、Cr2p1/2のスペクトルが検出された。これにより、修飾されたインプラントの表面には、Cr、O及びTiの原子が存在することが示された。
 図8は、XPSのナロースキャン分析(高分解能分析)の結果を示すチャートである。図8の左上のチャートは、図7のワイドスキャン分析でO1sのスペクトルが検出された近傍の結合エネルギー領域(526~538eV)における分析結果を示すチャートである。このチャートからTi-OHの化学結合の存在を示す1つのスペクトルが検出された。図8の右上のチャートは、図7のワイドスキャン分析でTi2p3/2及びTi2p1/2のスペクトルが検出された近傍の結合エネルギー領域(452~474eV)における分析結果を示すチャートである。このチャートから、Ti2p3/2及びTi2p1/2のスペクトルにおいて、TiOの化学結合とTiの金属結合の存在を示すスペクトルが検出された。図8の左下のチャートは、図7のワイドスキャン分析でCr2p3/2及びCr2p1/2のスペクトルが検出された近傍の結合エネルギー領域(570~595eV)における分析結果を示すチャートである。このチャートから、Cr2p3/2及びCr2p1/2のスペクトルにおいて、Cr-OHの化学結合の存在を示すスペクトルが検出された。図8の右下の図は、XPSの分析結果から同定したインプラントの表面の化学結合状態を示す模式図である。インプラントの表面のチタン原子には、-O-Cr(OH)からなる基及び-OH基が結合していることが明らかとなった。
(4) XPS analysis The implant (CrTi) manufactured in Example 1 was analyzed by XPS (X-ray photoelectron spectroscopy). Charts showing the analysis results are shown in FIGS. FIG. 7 is a chart showing a wide scan analysis result in the entire binding energy (0 to 1100 eV). In FIG. 7, spectra of Ti2p 3/2 , Ti2p 1/2 , O1s, Cr2p 3/2 , and Cr2p 1/2 were detected so as to be displayed within a square frame. This indicated that Cr, O and Ti atoms were present on the surface of the modified implant.
FIG. 8 is a chart showing the results of XPS narrow scan analysis (high resolution analysis). The chart on the upper left of FIG. 8 is a chart showing the analysis result in the binding energy region (526 to 538 eV) in the vicinity where the O1s spectrum is detected in the wide scan analysis of FIG. From this chart, one spectrum indicating the presence of Ti—OH chemical bond was detected. The upper right chart in FIG. 8 is a chart showing the analysis results in the vicinity of the binding energy region (452 to 474 eV) where the spectra of Ti2p 3/2 and Ti2p 1/2 were detected by the wide scan analysis of FIG. From this chart, a spectrum indicating the presence of a chemical bond of TiO and a metal bond of Ti was detected in the spectra of Ti2p 3/2 and Ti2p 1/2 . The chart on the lower left of FIG. 8 is a chart showing the analysis results in the vicinity of the binding energy region (570 to 595 eV) where the Cr2p 3/2 and Cr2p 1/2 spectra were detected in the wide scan analysis of FIG. From this chart, a spectrum indicating the presence of a chemical bond of Cr—OH was detected in the Cr2p 3/2 and Cr2p 1/2 spectra. The lower right diagram in FIG. 8 is a schematic diagram showing the state of chemical bonding on the surface of the implant identified from the XPS analysis result. It was revealed that —O—Cr (OH) 2 group and —OH group were bonded to titanium atoms on the surface of the implant.
(5)イオン放出試験
 実施例1で製造したインプラントを生理食塩水中に浸漬し、生理食塩水中に放出されるクロムイオンを測定する試験を行った。生理食塩水の温度は生体と同じく37℃とし、生理食塩水を入れたフラスコを振とう機に載せて撹拌しながら、生理食塩水中にインプラントを浸漬して、インプラントからクロムイオンを放出させた。放出されたクロムイオンの検出は、6時間、12時間、24時間、36時間及び72時間経過後に、それぞれICP-MSで測定した。その結果を図9に示す。図9のグラフに示されるように、2時間目まではインプラントからクロムイオンが急速に放出され、その後、クロムイオンが徐々に放出される結果が得られた。
(5) Ion release test The implant manufactured in Example 1 was immersed in physiological saline, and a test was performed to measure chromium ions released into the physiological saline. The temperature of the physiological saline was 37 ° C. as in the living body, and the implant was immersed in the physiological saline while the flask containing the physiological saline was placed on a shaker and stirred to release chromium ions from the implant. The detection of released chromium ions was measured by ICP-MS after 6 hours, 12 hours, 24 hours, 36 hours and 72 hours, respectively. The result is shown in FIG. As shown in the graph of FIG. 9, up to 2 hours, chromium ions were rapidly released from the implant, and then chromium ions were gradually released.
(動物実験によるインプラントの評価)
(1)動物実験
 実施例1で製造したインプラントを実験動物の体内に埋め入れて、生体組織との結合状態の評価を行った。
 実験動物としては、日本白色家兎(JW/CSK)を用いた。そして、このウサギの右大腿骨には、実施例1で製造したロッド状のインプラント(CrTi)を5本埋め入れ、左大腿骨には、比較例として、表面が修飾されていないチタン製のロッド(Ti)を5本埋め入れた。埋入期間が4週間、8週間及び12週間の3つの動物実験を行った。実験動物にインプラントとチタン製のロッドを埋め入れる手術の様子を図10に示す。図10に示されるように、ウサギの左右の大腿部を剃毛し(1)、切開して大腿骨を露出させ(2)、大腿骨にドリルで2mmの孔を形成した後に、インプラント(CrTi)又はチタン製のロッド(Ti)を大腿骨に挿入した(3)。そして、切開部を糸で縫合して閉創した(4)。
 埋め入れから4週間、8週間又は12週間経過後に、閉創部を再び切開して大腿骨を切り出し、インプラントの大腿骨との結合状態の評価を行った。
(Evaluation of implants by animal experiments)
(1) Animal experiment The implant manufactured in Example 1 was embedded in the body of an experimental animal, and the bonding state with a living tissue was evaluated.
As a laboratory animal, Japanese white rabbit (JW / CSK) was used. The right femur of the rabbit is filled with five rod-shaped implants (CrTi) manufactured in Example 1, and the left femur is a titanium rod whose surface is not modified as a comparative example. Five (Ti) were embedded. Three animal experiments with an implantation period of 4 weeks, 8 weeks and 12 weeks were conducted. FIG. 10 shows the operation of implanting an implant and a titanium rod in the experimental animal. As shown in FIG. 10, the left and right thighs of a rabbit are shaved (1), incised to expose the femur (2), and after drilling a 2 mm hole in the femur, the implant ( A CrTi) or titanium rod (Ti) was inserted into the femur (3). The incision was sutured with a thread and closed (4).
After 4 weeks, 8 weeks, or 12 weeks from the implantation, the wound portion was again incised to cut out the femur, and the joint state of the implant with the femur was evaluated.
(2)骨との結合状態の評価項目
 ウサギの大腿骨に埋め入れたインプラントと骨との結合状態の評価項目を図11に示す。図11の左上の写真に示すように、インプラントの埋め入れられた大腿骨の点線箇所で大腿骨を切断し、骨切片を作製した。そして、この骨切片を用いて、i)剪断強度測定、ii)界面観察、iii)インプラント表面の観察・成分分析、及びiv)インプラント周囲の骨組織観察(HE染色)を行った。
 その結果は以下のとおりである。
(2) Evaluation Item of Bonded State with Bone FIG. 11 shows an evaluation item of the bonded state between the implant implanted in the femur of the rabbit and the bone. As shown in the upper left photograph of FIG. 11, the femur was cut at the dotted line portion of the femur in which the implant was embedded, and a bone section was prepared. Then, using this bone section, i) shear strength measurement, ii) interface observation, iii) implant surface observation / component analysis, and iv) bone tissue observation around the implant (HE staining) were performed.
The results are as follows.
(3)剪断強度測定
 上記で作製した骨切片において、インプラントに荷重を加えていった場合の時間変化を測定するとともに、最大荷重(Fmax(N))を測定した。また、インプラント又はロッドの直径(D(mm))及び骨の厚さ(T(mm))についても測定し、剪断強度(σ(MPa))=Fmax/πDTの式から、剪断強度を算出した。比較例として、チタン製のロッドについても同じ測定を行い、両者の比較を行った。その結果を図12及び13並びに次の表1に示す。
(3) Shear strength measurement In the bone slice prepared above, the time change when a load was applied to the implant was measured, and the maximum load (Fmax (N)) was measured. In addition, the diameter of the implant or rod (D (mm)) and the bone thickness (T (mm)) were also measured, and the shear strength was calculated from the formula of shear strength (σ (MPa)) = Fmax / πDT. . As a comparative example, the same measurement was performed on a titanium rod, and the two were compared. The results are shown in FIGS. 12 and 13 and the following Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1は、実施例1で製造したインプラント(CrTi)とチタン製のロッド(Ti)について、剪断強度の計測結果とその標準偏差を示す。そして、図12は、表1の結果を棒グラフで示したものである。図12のグラフから明らかなように、4週目、8週目及び12週目のいずれにおいても、実施例1で製造したインプラント(CrTi)の方が有意に高い剪断強度を示し、骨と強固に結合することが明らかとなった。
 また、図13は、実施例1で製造したインプラント(CrTi)又はチタン製のロッド(Ti)に荷重を加えていった場合の時間変化を示すチャートである。上側のチャートが埋め入れ4週間後のものであり、下側のチャートが埋め入れ8週間後のものである。4週目及び8週目のいずれのチャートにおいても、実施例1で製造されたインプラントは荷重の変化に弾性的挙動を示し、骨との間にコラーゲン線維等の弾性的な領域が形成されていることが示された。
Table 1 shows the measurement results of shear strength and the standard deviation of the implant (CrTi) and titanium rod (Ti) manufactured in Example 1. FIG. 12 is a bar graph showing the results of Table 1. As is apparent from the graph of FIG. 12, the implant (CrTi) produced in Example 1 showed significantly higher shear strength at 4th week, 8th week, and 12th week, and showed strong shear strength. It became clear that it bound to.
FIG. 13 is a chart showing the change over time when a load is applied to the implant (CrTi) or titanium rod (Ti) manufactured in Example 1. The upper chart is after 4 weeks of embedding, and the lower chart is after 8 weeks of embedding. In both the 4th and 8th week charts, the implant manufactured in Example 1 shows elastic behavior in response to changes in load, and elastic regions such as collagen fibers are formed between the bone and the bone. It was shown that
(4)界面観察
 ウサギの大腿骨に埋め入れた8週目のインプラントについて、表面の状態と、インプラントと骨との界面の状態をSEM(走査型電子顕微鏡)で観察した結果を図14に示す。図14の左下の写真は、実施例1で製造したインプラント(CrTi)と骨との界面をSEM(走査型電子顕微鏡)で撮影した写真である。図14の右下の写真は、同じインプラント(CrTi)の表面をSEMで撮影した写真である。図14の左上の写真は、比較例として、チタン製のロッド(Ti)と骨との界面をSEMで撮影した写真である。図14の右上の写真は、同じチタン製のロッド(Ti)の表面をSEMで撮影した写真である。左側の2つの写真に示されるように、チタン製のロット(Ti)と実例1で製造したインプラント(CrTi)のいずれにも、骨との間に空隙が見られなかった。また、右側の2つの写真に示されるように、チタン製のロッド(Ti)の表面には小片が見られたのみであったが、実施例1で製造したインプラント(CrTi)の表面には膜状生成物が見られた。
(4) Interface observation Fig. 14 shows the results of observation of the surface state and the state of the interface between the implant and the bone with an SEM (scanning electron microscope) for the 8th week implant implanted in the femur of a rabbit. . The lower left photograph in FIG. 14 is a photograph of the interface between the implant (CrTi) manufactured in Example 1 and the bone taken with an SEM (scanning electron microscope). The lower right photograph in FIG. 14 is a photograph of the surface of the same implant (CrTi) taken with an SEM. The upper left photograph in FIG. 14 is a photograph taken by SEM of an interface between a titanium rod (Ti) and a bone as a comparative example. The upper right photograph in FIG. 14 is a photograph of the surface of the same titanium rod (Ti) taken with an SEM. As shown in the two photographs on the left, neither the titanium lot (Ti) nor the implant manufactured in Example 1 (CrTi) had any voids between the bones. Further, as shown in the two photographs on the right side, only small pieces were seen on the surface of the titanium rod (Ti), but the film was not formed on the surface of the implant (CrTi) manufactured in Example 1. A product was seen.
(5)インプラント表面の成分分析
 ウサギの大腿骨に埋め入れた8週目のインプラントについて、Michael D. Morris et al., Clinical Orthopaedics and Related Resarch, 2011, vol.496, pp.2160-2169に記載の方法に従い、走査型電子顕微鏡及びレーザーラマン分光光度計を用いて、表面に形成された膜状生成物の成分分析を行った。比較例として、チタン製のロッド(Ti)の表面に形成された小片についての成分分析を行った。その結果を示すチャートを図15に示す。図15の上側のチャートに示すように、チタン製のロッド(Ti)の表面に形成された小片については、リン酸塩及び炭酸塩などの無機成分のピークが見られ、自家骨に類似する成分となっていたのに対し、図15の下側のチャートに示すように、インプラント(CrTi)の表面に形成された膜状生成物については、リン酸塩及び炭酸塩などの無機成分のピークが消失していた。
 次に、同じく8週目のインプラント(CrTi)の表面に形成された膜状生成物について、XPS(X線光電子分光法)による成分分析を行った。その分析結果を示すチャートを図16に示す。図16のチャートに示されるように、Ca3p、P2p、P2s、Ca2p、Ca2sのスペクトルが検出され、カルシウムやリンの原子の存在が示されたことから、膜状生成物は石灰化が進行していることがわかった。
(5) Component analysis of implant surface The 8th week implant implanted in the femur of a rabbit is described in Michael D. Morris et al., Clinical Orthopaedics and Related Resarch, 2011, vol.496, pp.2160-2169. According to the method, component analysis of the film-like product formed on the surface was performed using a scanning electron microscope and a laser Raman spectrophotometer. As a comparative example, component analysis was performed on small pieces formed on the surface of a titanium rod (Ti). A chart showing the results is shown in FIG. As shown in the upper chart of FIG. 15, for the small pieces formed on the surface of the titanium rod (Ti), peaks of inorganic components such as phosphate and carbonate are seen, and components similar to autologous bone On the other hand, as shown in the lower chart of FIG. 15, the film-like product formed on the surface of the implant (CrTi) has a peak of inorganic components such as phosphate and carbonate. It disappeared.
Next, component analysis by XPS (X-ray photoelectron spectroscopy) was performed on the film-like product formed on the surface of the implant (CrTi) at the eighth week. A chart showing the analysis results is shown in FIG. As shown in the chart of FIG. 16, the spectra of Ca3p, P2p, P2s, Ca2p, and Ca2s were detected, and the presence of calcium and phosphorus atoms was shown. I found out.
(6)インプラント周囲の骨組織観察
 ウサギの大腿骨に埋め入れた8週目のインプラント(CrTi)について、剪断試験後のインプラント周囲の骨組織をHE(ヘマトキシリン・エオジン)で染色し、生物顕微鏡による観察を行った。また、比較例として、ウサギの大腿骨に埋め入れた8週目のチタン製のロッド(Ti)について、剪断試験後のロッドの周囲の骨組織を同じくHE染色して観察した。その結果を図17に示す。図17の上側の写真に示されるように、チタン製のロッド(Ti)の周囲の骨組織では線維状の組織は観察されなかったが、図17の下側の写真に示されるように、インプラント(CrTi)の周囲の骨組織には、層板状の配向性を持つコラーゲン線維が観察された。
(6) Observation of bone tissue around implant For 8 week implant (CrTi) implanted in the femur of a rabbit, the bone tissue around the implant after the shear test was stained with HE (hematoxylin and eosin), and by a biological microscope Observations were made. In addition, as a comparative example, the bone tissue around the rod after the shearing test was observed with the same HE staining for an 8 week titanium rod (Ti) embedded in the femur of a rabbit. The result is shown in FIG. As shown in the upper photograph of FIG. 17, fibrous tissue was not observed in the bone tissue around the titanium rod (Ti), but as shown in the lower photograph of FIG. Collagen fibers having a lamellar plate-like orientation were observed in the bone tissue around (CrTi).
 本発明のインプラント、インプラントの製造方法及びインプラントの表面処理方法は、医療用のインプラントを製造する産業において有用である。 The implant, the implant production method, and the implant surface treatment method of the present invention are useful in the industry for producing medical implants.
1  インプラント
2  基材
3  インプラントの表面
4  水酸基を有するクロム基
5  生体組織
6  インプラントと生体組織との間隙
7  細胞
8  クロムイオン
9  コラーゲン
 
 
 
 
 
 
DESCRIPTION OF SYMBOLS 1 Implant 2 Base material 3 Implant surface 4 Chromium group having a hydroxyl group 5 Biological tissue 6 Gap between implant and biological tissue 7 Cell 8 Chromium ion 9 Collagen




Claims (10)

  1.  医療目的で生体内に埋め入れるインプラントにおいて、
     前記インプラントの基材が、金属、金属合金、金属酸化物又はセラミックであり、
     前記基材の表面が、水酸基を有するクロム基で修飾されていることを特徴とするインプラント。
    In implants that are implanted in vivo for medical purposes,
    The implant substrate is a metal, metal alloy, metal oxide or ceramic;
    An implant wherein the surface of the substrate is modified with a chromium group having a hydroxyl group.
  2.  前記水酸基を有するクロム基が、下記一般式(1)
     -O-Cr(OH)R   ・・・(1)
    (式中、Rは-OH又は-O-を表す)
    で示される基である、請求項1に記載のインプラント。
    The chromium group having a hydroxyl group is represented by the following general formula (1)
    -O-Cr (OH) R (1)
    (Wherein R represents —OH or —O—)
    The implant according to claim 1, which is a group represented by:
  3.  前記クロム基が、酸化数が3価のクロム基である、請求項1に記載のインプラント。 The implant according to claim 1, wherein the chromium group is a trivalent oxidation chromium group.
  4.  前記インプラントが、デンタルインプラントである、請求項1~3のいずれか1項に記載のインプラント。 The implant according to any one of claims 1 to 3, wherein the implant is a dental implant.
  5.  水酸化クロムイオンを含有する反応溶液中に、金属、金属合金、金属酸化物及びセラミックからなる群から選択される基材を浸漬し、前記反応溶液中から前記基材を取り出すことを含む、インプラントの製造方法。 Implanting a substrate selected from the group consisting of metals, metal alloys, metal oxides, and ceramics in a reaction solution containing chromium hydroxide ions, and removing the substrate from the reaction solution Manufacturing method.
  6.  前記水酸化クロムイオンが、クロム原子のイオン価が3価の水酸化クロムイオンである、請求項5に記載のインプラントの製造方法。 The method for producing an implant according to claim 5, wherein the chromium hydroxide ion is a chromium hydroxide ion in which an ion valence of a chromium atom is trivalent.
  7.  水酸化クロムイオンを含有する反応溶液をインプラントに接触させることを含む、生体適合性を向上させるためのインプラントの表面処理方法。 An implant surface treatment method for improving biocompatibility, comprising bringing a reaction solution containing chromium hydroxide ions into contact with an implant.
  8.  前記水酸化クロムイオンが、クロム原子のイオン価が3価の水酸化クロムイオンである、請求項7に記載のインプラントの表面処理方法。 The implant surface treatment method according to claim 7, wherein the chromium hydroxide ion is a chromium hydroxide ion having a valence of chromium atom of trivalent.
  9.  水酸化クロムイオンを含む溶液であることを特徴とする、インプラントの表面処理剤。 An implant surface treatment agent characterized by being a solution containing chromium hydroxide ions.
  10.  前記水酸化クロムイオンが、クロム原子のイオン価が3価の水酸化クロムイオンである、請求項9に記載のインプラントの表面処理剤。 The surface treatment agent for an implant according to claim 9, wherein the chromium hydroxide ion is a chromium hydroxide ion having a valence of chromium atom of trivalent.
PCT/JP2016/081676 2015-10-27 2016-10-26 Chromium-modified implant and method for manufacturing same WO2017073591A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016575692A JP6185679B1 (en) 2015-10-27 2016-10-26 Chromium-modified implant and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015210344 2015-10-27
JP2015-210344 2015-10-27

Publications (1)

Publication Number Publication Date
WO2017073591A1 true WO2017073591A1 (en) 2017-05-04

Family

ID=58631568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081676 WO2017073591A1 (en) 2015-10-27 2016-10-26 Chromium-modified implant and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6185679B1 (en)
WO (1) WO2017073591A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111738A (en) * 2020-07-22 2020-12-22 上海微创医疗器械(集团)有限公司 Medical implant device, preparation method thereof and preparation method of intravascular stent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533532A (en) * 2002-04-09 2005-11-10 アストラ・テック・アクチエボラーグ Medical prosthetic device with improved biocompatibility
JP2008237425A (en) * 2007-03-27 2008-10-09 Gc Corp Surface treatment method of titanium or titanium alloy
WO2009081870A1 (en) * 2007-12-21 2009-07-02 Japan Medical Materials Corporation Medical device and method for manufacture thereof
WO2010026886A1 (en) * 2008-09-05 2010-03-11 日本化学工業株式会社 Process for production of chromium hydroxide
WO2010150788A1 (en) * 2009-06-25 2010-12-29 国立大学法人秋田大学 Process for producing titanium-based biomedical implant having zinc-containing functional group imparted thereto, and titanium-based biomedical implant
WO2012141178A1 (en) * 2011-04-12 2012-10-18 三井金属鉱業株式会社 Copper foil for negative electrode current collector with chromate film, and negative electrode member using copper foil for negative electrode current collector with chromate film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533532A (en) * 2002-04-09 2005-11-10 アストラ・テック・アクチエボラーグ Medical prosthetic device with improved biocompatibility
JP2008237425A (en) * 2007-03-27 2008-10-09 Gc Corp Surface treatment method of titanium or titanium alloy
WO2009081870A1 (en) * 2007-12-21 2009-07-02 Japan Medical Materials Corporation Medical device and method for manufacture thereof
WO2010026886A1 (en) * 2008-09-05 2010-03-11 日本化学工業株式会社 Process for production of chromium hydroxide
WO2010150788A1 (en) * 2009-06-25 2010-12-29 国立大学法人秋田大学 Process for producing titanium-based biomedical implant having zinc-containing functional group imparted thereto, and titanium-based biomedical implant
WO2012141178A1 (en) * 2011-04-12 2012-10-18 三井金属鉱業株式会社 Copper foil for negative electrode current collector with chromate film, and negative electrode member using copper foil for negative electrode current collector with chromate film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111738A (en) * 2020-07-22 2020-12-22 上海微创医疗器械(集团)有限公司 Medical implant device, preparation method thereof and preparation method of intravascular stent
CN112111738B (en) * 2020-07-22 2022-07-22 上海微创医疗器械(集团)有限公司 Medical implant device, preparation method thereof and preparation method of intravascular stent

Also Published As

Publication number Publication date
JP6185679B1 (en) 2017-08-23
JPWO2017073591A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
Schierano et al. An alumina toughened zirconia composite for dental implant application: in vivo animal results
Wang et al. Preparation of hydroxyapatite coating on CoCrMo implant using an effective electrochemically-assisted deposition pretreatment
Katić et al. The potential-assisted deposition as valuable tool for producing functional apatite coatings on metallic materials
EP2773389A1 (en) Method for modifying surfaces for better osseointegration
Kang et al. The effect of calcium ion concentration on the bone response to oxidized titanium implants
Wieland Experimental determination and quantitative evaluation of the surface composition and topography of medical implant surfaces and their influence on osteoblastic cell-surface interactions
AlOtaibi et al. Corrosion behavior of two cp titanium dental implants connected by cobalt chromium metal superstructure in artificial saliva and the influence of immersion time
Aksoy et al. Boron-doped hydroxyapatite coatings on NiTi alloys using the electrophoretic deposition method: enhanced corrosion and adhesion performances
Podgorbunsky et al. Formation on magnesium alloy MA8 bioactive coatings containing nanosized hydroxyapatite
Skriabin et al. Titanium Membranes with Hydroxyapatite/Titania Bioactive Ceramic Coatings: Characterization and In Vivo Biocompatibility Testing
Fadl-allah et al. Surface modification of titanium plate with anodic oxidation and its application in bone growth
JP6185679B1 (en) Chromium-modified implant and method for producing the same
JP5535647B2 (en) Metal implant
JP5019346B2 (en) Bone-compatible implant and method for producing the same
Asmawi et al. Development of bioactive ceramic coating on titanium alloy substrate for biomedical application using dip coating method
JP2007526777A (en) Method of manufacturing intraosseous implant or medical prosthesis by ion implantation, and intraosseous implant or medical prosthesis manufactured thereby
Park et al. The bioactivity of enhanced Ti-32Nb-5Zr alloy with anodic oxidation and cyclic calcification
Sridhar et al. Biomaterials corrosion
Focsaneanu et al. Experimental study on the influence of zirconia surface preparation on deposition of hydroxyapatite
Sikora A quest for the holy grail of bioimplants-a review of recent developments in biodegradable metals for medical applications
JPH07284527A (en) Biomedical metal and its use method
Gao et al. Corrosion and bone response of magnesium implants after surface modification by heat-self-assembled monolayer
US20110212153A1 (en) Composite coatings and deposition methods
KR101336408B1 (en) Method for precipitating a ceramic coating on a metal and biodegradable implant manufactured by the same
Gitiara et al. Corrosion Behavior of Mg–Zn–Ca–Mn Alloy Coated with Nano-hydroxyapatite by Cyclic Voltammetry Method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016575692

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859821

Country of ref document: EP

Kind code of ref document: A1