WO2017073070A1 - Environmentally friendly flame-retardant composition and molding material that are based on thermoplastic impact-modified styrene polymer - Google Patents

Environmentally friendly flame-retardant composition and molding material that are based on thermoplastic impact-modified styrene polymer Download PDF

Info

Publication number
WO2017073070A1
WO2017073070A1 PCT/JP2016/004744 JP2016004744W WO2017073070A1 WO 2017073070 A1 WO2017073070 A1 WO 2017073070A1 JP 2016004744 W JP2016004744 W JP 2016004744W WO 2017073070 A1 WO2017073070 A1 WO 2017073070A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
resin
resin composition
impact
parts
Prior art date
Application number
PCT/JP2016/004744
Other languages
French (fr)
Japanese (ja)
Inventor
ウゴ ズッケーリ,
マッシミリアーノ ロスィケティ,
Original Assignee
イタルマッチ ケミカルズ ソチエタ ペル アツィオーニ
大八化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イタルマッチ ケミカルズ ソチエタ ペル アツィオーニ, 大八化学工業株式会社 filed Critical イタルマッチ ケミカルズ ソチエタ ペル アツィオーニ
Priority to JP2017547628A priority Critical patent/JP6836246B2/en
Publication of WO2017073070A1 publication Critical patent/WO2017073070A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Definitions

  • the present invention relates to an environment-friendly flame-retardant molding material based on a thermoplastic impact-resistant styrenic polymer.
  • the chemical composition of the organic polymer can be easily combusted. Therefore, various flame retardants are usually blended into polymers in order to meet stringent flame retardant standards required by processors and set by national and international organizations.
  • halogen-free flame retardants are used because of safety to the environment, although they are generally more expensive than brominated flame retardants used previously. Therefore, the importance of halogen-free flame retardants in the thermoplastic polymer market is increasing.
  • the basic requirements for these products include: compounding, good processability in molding conditions, good mechanical and electrical properties in the solid state, no blooming or discoloration during or after molding, reinforced polymer And good flame retardancy in both non-reinforced polymers.
  • Pure polystyrene is hard but brittle.
  • a product with higher impact characteristics can be obtained by modifying with a rubber such as polybutadiene rubber. Accordingly, an impact-modified styrenic polymer is obtained.
  • the impact-modified styrenic polymer can be described as including rubber particles dispersed as an additional phase in a continuous, rigid styrene resin continuous phase. Since the surface tension of the interface between the two polymers is different, it is difficult to finely disperse the rubber phase into the thermoplastic continuous phase by melt mixing through an extruder. The impact properties of products containing well dispersed rubber are generally much better than those of products containing poorly dispersed rubber.
  • graft copolymer chemically bonded to the polystyrene phase can be formed, which can act to homogenize the rubber itself.
  • the polymerization can be carried out in bulk, emulsification or suspension of monomers.
  • the impact-improved styrene polymer is also known as a rubber-modified styrene polymer, and some well-known examples include high impact polystyrene (HIPS) and acrylonitrile butadiene styrene copolymer (ABS).
  • HIPS high impact polystyrene
  • ABS acrylonitrile butadiene styrene copolymer
  • Impact-modified styrenic polymers are widely used for electronic devices and consumer products such as computer consoles, televisions, mobile phones, computers, stereos, toys and many others.
  • HIPS and ABS are commercially available and are produced by well-known methods.
  • Flame retardant HIPS and ABS are obtained using a bromine compound as a flame retardant. This is because they have the ability to maintain the good mechanical properties (eg, impact resistance) of the polymers.
  • the most widely used flame retardants for ABS and HIPS are ethylene bistetrabromophthalimide, decabromodiphenylethane, brominated epoxy oligomers and tetrabromobisphenol A.
  • Antimony oxide can be used as a synergist.
  • bromine compounds need to be replaced because of restrictions on the use of halogen flame retardants.
  • organic aryl phosphorus compounds as shown below are used in HIPS as some commercially available non-halogen flame retardants (in place of bromine flame retardants).
  • Resorcinol bis (diphenyl phosphate) Bisphenol A bis (diphenyl phosphate) Polymeric biphenyl phosphate Diphenyl cresyl phosphate Triphenyl phosphate.
  • HIPS halogen-free flame retardant material that meets high flame retardant standards is made from a blend of high impact styrene polymer and phenyl ether polymer and is commercially available.
  • Phenyl ether polymers are characterized by a high level of intrinsic flame retardancy. These polymer compositions are simply referred to as “HIPS” or more precisely “HIPS / PPO”.
  • Commercially available phenyl ether polymers belong to two different types: polyphenylene ether (PPE) and polyphenylene oxide (PPO). PPE and PPO have similar chemical compositions and are generally treated as equivalent materials, and both are commonly referred to as PPO.
  • ABS halogen-free flame retardant products that meet high flame retardant standards are made from blends of ABS polymer and polycarbonate and are available from major manufacturers.
  • Polycarbonate is characterized by a high level of intrinsic flame retardancy. These compositions are referred to as “PC / ABS”.
  • Polycarbonate is a difficult-to-process polymer and despite the fact that blending ABS makes it easy to process the composition, it still faces some difficulties in the molding operation compared to pure ABS resin. To do. Moreover, polycarbonate itself is generally more expensive than ABS resin. PC / ABS blends are not in accordance with the present invention.
  • Patent Document 1 is an environmentally friendly flame retardant comprising at least one flame retardant aid selected from polyethylene wax, calcium stearate, pentaerythritol, melamine cyanurate and ammonium polyphosphate, and aluminum hypophosphite.
  • a soluble ABS resin is disclosed.
  • these compositions lack sufficient flame retardant properties, and in particular do not reach V-0 at 1.6 mm thickness in the UL-94 standard.
  • Patent Document 2 (CN103113708A) describes an ABS flame retardant resin in which the flame retardant is a combined use of an organic phosphite or hypophosphite and a synergized ammonium salt.
  • the flame retardant is a combined use of an organic phosphite or hypophosphite and a synergized ammonium salt.
  • these compositions lack sufficient processability and produce flames and smoke during the mixing process.
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-161211 discloses a flame retardant resin composition containing various thermoplastic resins in which a flame retardant is a combination of an organic phosphite or a hypophosphite and a phosphate ester.
  • the blending ratio (weight ratio) in the above combination is: , (A-1) / (A-3), (A-1) / (A-2) and (A-3) / (A-2) are preferably 100/0 to 5/95, more preferably Is in the range of 100/0 to 10/90, more preferably 100/0 to 30/70. Within this range, flame retardancy, heat resistance and impact resistance can be maintained at a high level. is doing.
  • the ratio of the polystyrene resin (A-2) is preferably up to 95%, more preferably up to 90%, and even more preferably up to 70%. That is, if the ratio of polystyrene resin is up to 95%, the flame retardancy is maintained at a preferable level, and if the ratio of polystyrene resin is up to 90%, the flame retardancy is maintained at a more preferable level. If the ratio is up to 70%, it is described that the flame retardancy is maintained at a more preferable level. However, it is not described here that very favorable flame retardant standards such as UL-94 V-0 can be achieved at such preferred weight ratios.
  • the examples disclose only a mixture of a small amount (10%) of an ABS resin and a large amount (90%) of another resin with calcium hypophosphite and a large amount of glass fiber. In addition, it is not disclosed to achieve V-0 of UL-94 in a resin composition mainly composed of an impact-modified styrene resin.
  • Patent Document 3 the degree to which a smaller amount is preferable when focusing on the polystyrene-based resin (A-2) is increased, and the implementation of Patent Document 3
  • the ratio of polystyrene resin is: It is understood that less is preferred ".
  • Patent Document 3 does not particularly disclose achieving V-0 of UL-94 in a resin composition that does not contain a large amount of glass fiber.
  • thermoplastic resin composition containing an impact-modified styrene resin as a main component it is very difficult to achieve high flame retardancy in a thermoplastic resin composition containing an impact-modified styrene resin as a main component.
  • a weight ratio as described in paragraph 0026 Unable to achieve very strict flame retardance standards like UL-94 V-0, as shown in the examples, the amount of styrenic resin must be reduced to 10% and a large amount of glass fiber added. UL-94 V-0 cannot be achieved.
  • flame retardancy could not be achieved in a thermoplastic resin composition containing an impact-modified styrene resin as a main component.
  • Another object of the present invention is to provide a halogen-free highly flame-retardant styrene-based impact-improving resin, which is a thin member and becomes V-0 of the international standard UL-94.
  • another object of the present invention is to provide a halogen-free highly flame-retardant styrene-based impact-improving resin composition having a specimen thickness of preferably 3.2 mm or less, more preferably 1.6 mm, and V-0. It is.
  • Yet another object of the present invention is to provide halogen free flame retardant molding compositions and products based on halogen free high flame retardant styrene impact modifying polymers having good aesthetic and mechanical properties. .
  • compositions and flame retardants of the present invention are achieved with the compositions and flame retardants of the present invention.
  • the present invention provides the following composition and flame retardant.
  • (Claim 1) Halogen-free flame retardant thermoplastic resin composition, (A) thermoplastic resin, (B) aluminum hypophosphite, (C) an aromatic phosphate ester, and (D) an anti-drip agent, 50% by weight or more of the (A) thermoplastic resin is an impact-improved styrene resin, Resin composition.
  • (Section 2) Item 2.
  • the resin composition according to Item 1 wherein 80% by weight or more of the thermoplastic resin (A) is an impact-improved styrene resin.
  • (Section 3) Item 3. The resin composition according to Item 1 or 2, wherein the impact-modified styrene resin is an ABS resin.
  • thermoplastic resin composition is (A) a thermoplastic resin, and (D) an anti-drip agent, 50% by weight or more of the (A) thermoplastic resin is an impact-modified styrene resin,
  • the flame retardant is (B) aluminum hypophosphite, and (C) aromatic phosphate ester, wherein the weight of (C) aromatic phosphate ester is the sum of (B) aluminum hypophosphite and (C) aromatic phosphate ester A flame retardant that is 10% or more of the weight.
  • the impact-modified styrenic resin is ABS or HIPS
  • the (C) aromatic phosphate is resorcinol bis (di-2,6-xylyl phosphate)
  • the (B) aluminum hypophosphite the (C
  • Item 14 Item 11.
  • HIPS high-impact polystyrene resin
  • these and other objects are: A) at least one impact-modified thermoplastic styrenic resin, B) As a first flame retardant component, a metal hypophosphite salt in which at least one phosphorus valence state is +1, C) As second flame retardant component, at least one aromatic phosphate ester D) at least one anti-drip agent E) filler and / or reinforcing fiber F) achieved by a resin composition containing other conventional additives .
  • thermoplastic styrenic impact modifying polymer is preferably selected as ABS and / or HIPS.
  • the object of the present invention is to provide impact-modified styrenic resins such as ABS and HIPS, metal hypophosphites (eg, aluminum hypophosphite), aromatic phosphate esters, anti-drip agents, and other conventional additives.
  • styrenic resins such as ABS and HIPS, metal hypophosphites (eg, aluminum hypophosphite), aromatic phosphate esters, anti-drip agents, and other conventional additives.
  • the metal hypophosphite is characterized in that the valence state of phosphorus is +1.
  • the metal hypophosphite has the following chemical formula: Me (H 2 PO 2 ) n here, n is an integer of 1 to 4 depending on the valence of the metal represented by Me, and the metal Me belongs to Groups I, II, III, and IV of the periodic table.
  • Aluminum hypophosphite has the following chemical formula: Al (H 2 PO 2 ) 3
  • Sodium hypophosphite and calcium hypophosphite are widely commercially available and are usually prepared by reaction of the corresponding metal hydroxide with yellow phosphorus, for example according to the following reaction scheme where Me is selected as calcium: P 4 + 2Me (OH) 2 + H 2 O ⁇ Me (H 2 PO 2 ) 2 + MeHPO 3 + PH 3
  • Hypophosphorous acid metal salts other than calcium and sodium are usually produced by the reaction of the corresponding metal hydroxide with hypophosphorous acid or the exchange reaction of the corresponding metal salt (see, for example, “Hypophosphorus Acid and it salts, Russian Chemical”). Review, 44 (12), 1975 ").
  • Aluminum hypophosphite can also be produced using this method.
  • the present invention relates to a halogen-free flame retardant composition, essentially comprising an impact modified styrenic resin, at least one metal hypophosphite salt, at least one aromatic phosphate ester as a flame retardant, and at least one drip prevention.
  • a halogen-free flame retardant composition essentially comprising an impact modified styrenic resin, at least one metal hypophosphite salt, at least one aromatic phosphate ester as a flame retardant, and at least one drip prevention.
  • Such a composition has high flame retardancy and easy moldability.
  • the impact-modified styrenic resin is selected as ABS or HIPS
  • the metal hypophosphite is selected as aluminum hypophosphite
  • the aromatic phosphate is resorcinol bis (di-2,6-xylylphosphate).
  • Selected, anti-drip agents and other conventional additive compositions such as fillers, pigments, thermal stabilizers and processing stabilizers.
  • additives are selected from processability improvers, heat and processing stabilizers, UV stabilizers, pigments, dispersants, mold release agents, crystal nucleating agents, and mixtures thereof. obtain.
  • the metal hypophosphite has a phosphorus valence of +1 and is preferably aluminum hypophosphite.
  • the aromatic phosphate ester which is a flame retardant is preferably resorcinol bis (di-2,6-xylyl phosphate).
  • thermoplastic resin In the resin composition of the present invention, a halogen-free thermoplastic resin is used.
  • an impact-modified styrene resin is used as the main component of the thermoplastic resin.
  • the amount of the impact-improved styrene resin is preferably 30% by weight or more of the total weight of the thermoplastic resin. More preferably, the amount of the impact-modified styrene resin is 40% by weight or more of the total weight of the thermoplastic resin. More preferably, the amount of the impact-modified styrene resin is 50% by weight or more of the total weight of the thermoplastic resin. If necessary, the amount of impact-modified styrenic resin may be 55% by weight or more of the total weight of the thermoplastic resin, 60% by weight or more, and 65% by weight or more. 70% by weight or more, 75% by weight or more, 80% by weight or more, 85% by weight or more, 90% by weight or more, It may be 95% by weight or more, or 100% by weight.
  • the resin composition contains a large amount of impact-modified styrene resin, it is disadvantageous in terms of flame retardancy.
  • high flame retardancy is achieved even when the resin composition contains a large amount of impact-modified styrene resin.
  • thermoplastic resin other than the impact-improved styrene resin is used for the resin composition of the present invention
  • any conventionally known thermoplastic resin other than the impact-improved styrene resin can be used as the thermoplastic resin.
  • Impact-modified styrene resin for example, ABS or HIPS
  • any conventionally known impact-modified styrene resin can be used.
  • HIPS is prepared by dispersing a polymerized rubber phase into a styrene monomer and polymerizing styrene into a thermoplastic phase in the presence of rubber and a grafting agent.
  • the rubber is partially crosslinked and separates from the mixture as the molecular weight of styrene increases.
  • the rubber includes a grafted styrene monomer such as SBR (styrene butadiene rubber).
  • SBR styrene butadiene rubber
  • ABS is prepared by dispersing a polymerized rubber phase in styrene and acrylonitrile monomers and copolymerizing styrene and acrylonitrile in the presence of rubber and a grafting agent.
  • the rubber partially crosslinks and separates as the molecular weight of the styrene / acrylonitrile copolymer increases.
  • the rubber is typically a butadiene type rubber, but is selected from a copolymer of styrene, acrylonitrile and alkyl acrylate, a copolymer of butadiene and styrene, and an isoprene type rubber.
  • the rubber includes a styrene monomer such as SAN (styrene acrylonitrile rubber) and a grafted monomer of acrylonitrile.
  • SAN styrene acrylonitrile rubber
  • the amount of grafting between the rubber and the thermoplastic phase varies and depends on the application.
  • hypophosphite The selection of the most appropriate hypophosphite depends on several important factors. Particularly suitable hypophosphites have sufficient thermal stability to withstand melt processing at temperatures above 200 ° C. If they form hydrates, they are used in the corresponding anhydrous form and should not absorb moisture when they are later exposed to ambient humidity. Examples of hypophosphites include aluminum hypophosphite (CAS7784-22-7), calcium hypophosphite (CAS7789-79-9), manganese hypophosphite (CAS10043-84-2), magnesium hypophosphite (CAS10377-). 57-8), zinc hypophosphite (CAS15060-64-7), and barium hypophosphite (CAS171258-64-3). Most preferred according to the invention is aluminum hypophosphite.
  • Aluminum hypophosphite with a chemical structure of Al (H 2 PO 2 ) 3 is a different particle suitable for thermoplastic processing with low water absorption and high purity, for example, by Ilatch Chemical Spa (product name: Phoslite IP-A). Widely manufactured as a white powder with a diameter distribution.
  • Aluminum hypophosphite is a flammable powder, like many anhydrous hypophosphites, for easy transportation and handling, as a dry mix with other solid flame retardants, or in masterbatch form Sold.
  • aluminum hypophosphite is a flammable powder, there is a drawback that it is not easy to transport and handle. For this reason, aluminum hypophosphite has not been considered a preferred material as a flame retardant. It has not been easy for those skilled in the art to select aluminum hypophosphite as a flame retardant.
  • the resin composition or flame retardant is substantially free of hypophosphites other than aluminum hypophosphite.
  • Aromatic Phosphate Ester in the present invention, any conventionally known aromatic phosphate ester can be used as the aromatic phosphate ester.
  • preferred aromatic phosphate esters can be shown as the following general chemical structure.
  • examples include resorcinol bis (diphenyl phosphate) or resorcinol bis (di-2,6-xylyl phosphate).
  • examples include bisphenol A bis (diphenyl phosphate).
  • Preferred aromatic phosphates that act as flame retardants of the present invention are solid at room temperature, that is, those having a melting point higher than 40 ° C., more preferably those having a melting point higher than 80 ° C.
  • an aromatic phosphate ester is resorcinol bis (di-2,6-xylyl phosphate) (RDX) having the following chemical structure: (Resorcinol bis (di-2,6-xylyl phosphate) (RDX))
  • solid phosphate esters are advantageous for the purposes of the present invention. This is because solid phosphoric acid ester can be mixed with hypophosphite, which is a combustible solid in powder form, and suppresses the combustibility of the mixed powder.
  • hypophosphite which is a combustible solid in powder form, and suppresses the combustibility of the mixed powder.
  • the handling of non-flammable powders is actually advantageous in terms of safety, equipment and operational complexity. Therefore, the mixed use of aromatic phosphate ester and hypophosphite facilitates the handling and processing of the compound and the industrial process in producing the flame retardant halogen-free styrene impact strength improved resin composition of the present invention.
  • the total weight of (B) aluminum hypophosphite and (C) aromatic phosphate is preferably 5 parts by weight or more with respect to 100 parts by weight of the total thermoplastic resin, More preferably, it is 10 parts by weight or more, more preferably 15 parts by weight or more, still more preferably 20 parts by weight or more, and particularly preferably 25 parts by weight or more, particularly preferably 30 parts by weight. More than a part.
  • the total weight of (B) aluminum hypophosphite and (C) aromatic phosphate is preferably 65 parts by weight or less, more preferably 60 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
  • Part or less more preferably 55 parts by weight or less, still more preferably 50 parts by weight or less, particularly preferably 45 parts by weight or less, and particularly preferably 40 parts by weight or less. Preferably, it is 35 parts by weight or less.
  • the upper limit is not limited from the viewpoint of flame retardancy, but if it is too much, the physical properties of the resin composition may deteriorate.
  • the amount of (B) aluminum hypophosphite is preferably 60% by weight or more. More preferably, it is 65% by weight or more, more preferably 70% by weight or more, still more preferably 71% by weight or more, and particularly preferably 72% by weight or more, particularly preferably 73 wt% or more, and most preferably 74 wt% or more.
  • the amount of (B) aluminum hypophosphite is preferably 95% by weight or less, more preferably 90% by weight or less. More preferably, it is 85% by weight or less, more preferably 80% by weight or less, particularly preferably 78% by weight or less, particularly preferably 77% by weight or less, most preferably 76% by weight or less.
  • the amount of (B) aluminum hypophosphite is 75% by weight.
  • the flame retardant and the resin composition exhibit extremely excellent characteristics.
  • Anti-drip agent In the present invention, a conventionally known anti-drip agent may be used as the anti-drip agent (anti-dripping agent).
  • Polytetrafluoroethylene is widely used as an anti-drip agent in flame retardant resin compositions that meet the required UL-94 V-0 or similar standards.
  • the high molecular weight PTFE component forms microfibrils under shear conditions during resin molding.
  • the squeezed fibrils create a network that is physically immobilized in the resin matrix. Fibril relaxation during resin combustion causes a wide range of resin shrinkage and drip suppression.
  • High molecular weight PTFE is useful for drip suppression, but sometimes difficult to handle due to its tendency to agglomerate, making industrial scale handling difficult.
  • TSAN styrene acrylonitrile
  • the anti-drip additive is usually used in the range of 0.1 to 0.6% by weight of the resin composition.
  • the amount of the anti-drip agent is preferably 0.15% by weight or more of the resin composition, 0.20% by weight or more, or 0.25% by weight or more.
  • the amount of the anti-drip agent is preferably 0.55% by weight or less of the resin composition, may be 0.5% by weight or less, may be 0.45% by weight or less, It may be not more than wt%, or may be not more than 0.35 wt%.
  • the resin composition of the present invention may contain fibers (for example, reinforcing fibers) as necessary. Any known fiber may be used as the fiber.
  • Fibers for example, carbon fibers
  • inorganic fibers for example, glass fibers
  • the amount of fiber (organic fiber or inorganic fiber) used is not particularly limited.
  • the amount of fiber used may be 0.1 parts by weight or more, 0.5 parts by weight or more, or 1 part by weight or more with respect to 100 parts by weight of the total thermoplastic resin. 2 parts by weight or more, 5 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, 20 parts by weight or more, It may be 25 parts by weight or more, or 30 parts by weight or more. Moreover, it may be 35 parts by weight or more, 40 parts by weight or more, or 45 parts by weight or more as required.
  • the amount of fiber used may be 100 parts by weight or less, 90 parts by weight or less, or 80 parts by weight or less, with respect to 100 parts by weight of the thermoplastic resin. It may be 70 parts by weight or less, 60 parts by weight or less, or 50 parts by weight or less.
  • the resin composition contains a large amount of inorganic fibers, it is advantageous in flame retardancy.
  • the resin composition contains only a small amount of inorganic fibers, it is disadvantageous in flame retardancy.
  • the resin composition contains only a small amount of inorganic fibers (for example, when the amount is less than or less than the upper limit listed above), or when the resin composition does not contain inorganic fibers, it is highly difficult. Flammability is achieved. That is, an embodiment in which the content of the inorganic fiber is less than any of the above-listed upper limits, or an even smaller embodiment, for example, an embodiment in which the total amount of thermoplastic resin is 40 parts by weight or less with respect to 100 parts by weight.
  • the present invention provides a composition that can achieve high flame retardancy.
  • Examples of preferable reinforcing fibers used in the present invention are carbon fibers, aramid fibers, and preferably glass fibers used in the form of commercially available chopped glass.
  • the surface of the reinforcing fiber may be treated with a silane compound (for example, a silane coupling agent).
  • the reinforcing fibers can be used in the above-mentioned amounts, but can preferably be used in the range of, for example, 10% to 50% by weight, more preferably 20% to 35% by weight of the resin composition. When the amount is small, the advantage of mechanical properties is small, and when it exceeds 50% by weight, the melt viscosity becomes very high.
  • the resin composition of the present invention may contain a filler as necessary.
  • fillers examples include glass beads, hollow glass spheres, amorphous silica, chalk, mica, calcined kaolin, wollastonite, talc, magnesium carbonate, barium sulfate or similar products and they are fatty acids or similar Those obtained by surface treatment with a compound or pulverized in the presence of a fatty acid or a similar compound.
  • Any fine particles widely sold in the market as fillers for thermoplastic resins may be used in the composition of the present invention as long as the average particle size of the powder measured by laser is in the range of 2 to 20 microns. .
  • the amount of filler (for example, inorganic filler) used is not particularly limited. For example, it may be 0.1 parts by weight or more, 0.5 parts by weight or more, 1 part by weight or more, 2 parts by weight with respect to 100 parts by weight of the total thermoplastic resin. Part or more, 5 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, 20 parts by weight or more, 25 parts by weight May be 30 parts by weight or more. Moreover, it may be 35 parts by weight or more, 40 parts by weight or more, or 45 parts by weight or more as required.
  • the usage-amount of a filler may be 100 weight part or less with respect to a total of 100 weight part of a thermoplastic resin, may be 90 weight part or less, and may be 80 weight part or less. May be 70 parts by weight or less, 60 parts by weight or less, or 50 parts by weight or less.
  • the resin composition contains a large amount of inorganic filler, it is advantageous in flame retardancy.
  • the resin composition contains only a small amount of an inorganic filler, it is disadvantageous in flame retardancy.
  • the resin composition contains only a small amount of inorganic filler (for example, when it is less than the above-listed upper limit or when it is further less), or when it does not contain an inorganic filler, it is highly difficult. Flammability is achieved. That is, an embodiment in which the content of the inorganic filler is less than any of the above-listed upper limits, or an embodiment having a smaller content, for example, 40 parts by weight or less with respect to a total of 100 parts by weight of the thermoplastic resin.
  • the present invention provides a composition that can achieve high flame retardancy.
  • the novel flame retardant compositions based on impact-modified styrenic resins according to the invention may contain one or more other conventional additives.
  • the additive may be an organic additive or an inorganic additive.
  • Such conventional additives include, for example, the following compounds: Partially crosslinked elastomeric polymers used as processing aids, heat and processing stabilizers, UV stabilizers, pigments, dispersants, mold release agents, crystal nucleating agents, impact modifiers, and mixtures thereof.
  • the amount of conventional additives is not particularly limited. For example, it may be 0.1 parts by weight or more, 0.5 parts by weight or more, 1 part by weight or more, or 2 parts by weight with respect to a total of 100 parts by weight of the thermoplastic resin. Part or more, 5 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, 20 parts by weight or more, 25 parts by weight May be 30 parts by weight or more. Moreover, it may be 35 parts by weight or more, 40 parts by weight or more, or 45 parts by weight or more as required.
  • the usage-amount of a conventional additive may be 100 weight part or less with respect to a total of 100 weight part of a thermoplastic resin, and may be 90 weight part or less. 80 parts by weight or less, 70 parts by weight or less, 60 parts by weight or less, or 50 parts by weight or less.
  • the resin composition contains a large amount of an inorganic additive, it is advantageous in terms of flame retardancy.
  • the resin composition contains only a small amount of an inorganic additive, it is disadvantageous in flame retardancy.
  • the resin composition contains only a small amount of an inorganic additive (for example, when it is less than the above-listed upper limit or when it is further less), or when it does not contain an inorganic additive, High flame retardancy is achieved. That is, an embodiment in which the content of the inorganic additive is less than any of the above-listed upper limits, or an even smaller embodiment, for example, 40 parts by weight or less with respect to a total of 100 parts by weight of the thermoplastic resin.
  • Embodiment embodiment of 30 parts by weight or less, embodiment of 20 parts by weight or less, embodiment of 10 parts by weight or less, embodiment of 5 parts by weight or less, embodiment of 3 parts by weight or less, or 1
  • the present invention provides a composition that can achieve high flame retardancy.
  • ABS Magnetic ABS 3904, manufactured by STYRON, hereinafter referred to as ABS.
  • HIPS HIPS (Edistir SR 550, manufactured by Enchem Versalis), hereinafter referred to as HIPS.
  • Reinforcing fiber Glass fiber (PPG3786, manufactured by PPG), hereinafter referred to as GF.
  • Stabilizer Hindered phenol heat stabilizer (Irganox 1010, manufactured by BASF), hereinafter, Irg. Indicated as 1010.
  • Phosphorous acid processing stabilizer (Irgaphos 168, manufactured by BASF), hereinafter, Irg. Indicated as 168.
  • Hypophosphite Aluminum hypophosphite (Phoslite IP-A, manufactured by Italmatch Chemical), hereinafter referred to as IP-A.
  • Aromatic phosphate ester Resorcinol bis (di-2,6-xylyl phosphate) (PX-200, manufactured by Daihachi Chemical Industry), hereinafter referred to as RDX.
  • Anti-drip agent Fluorinated copolymer (Dyneon MM 3595, manufactured by 3M), hereinafter referred to as PTFE.
  • IP-C Calcium hypophosphite
  • Melamine cyanurate Melamine cyanurate
  • MC Melamine cyanurate
  • APP Ammonium polyphosphate
  • PEwax A lubricant polyethylene wax (Kemfluid 201, manufactured by UNION DERIVAN, SA) considered for the comparative example, hereinafter referred to as PEwax.
  • CaStear Calcium stearate
  • PERT pentaerythritol
  • Ammonium sulfate (reagent grade), hereinafter expressed as (NH 4 ) SO 4
  • Ammonium chloride (reagent grade), hereinafter denoted as NH 4 Cl.
  • Example 6 to 9 Comparative Examples 1 to 5, Comparative Examples 10 to 17
  • All the components shown in Table 1 were mixed in a twin screw extruder with a diameter of 20 mm at a temperature in the range of 220-230 ° C.
  • the pellets were injection molded to different thicknesses, and five test pieces were subjected to conditions of 23 ° C. and 50% humidity for 24 hours. Flame retardancy was reported according to the UL-94 procedure. If the test did not reach V-0, V-1, or V-2, the NC type was given. If the sample could not be extruded or injected, it was classified as NP.
  • NP Can not be molded.
  • NP Can not be molded.
  • Comparative Example 1 in which only 35% of IP-A was added as a flame retardant did not reach UL-94 V-0 at 1.6 mm. Comparative Example 2 containing only 25% of RDX could not be processed. Comparative Example 3 containing 20% RDX alone was not effective with UL-94. Comparative Example 4 of the mixture of IP-A and RDX was UL-94 of 1.6 mm and V-2 did not reach V-0. Comparative Example 5 of the resin composition containing IP-A in the presence of PTFE did not reach V-0 of UL-94 at 1.6 mm.
  • Examples 6 and 9 of the present invention which are the same combination of IP-A, RDX and PTFE, reached V-0 of UL-94 at 1.6 mm for both ABS and HIPS.
  • Example 7 of the present invention showing a combination of IP-A, RDX and PTFE gave a resin composition that reached V-0 of UL-94 even in the presence of glass fiber.
  • Example 8 using a combination of IP-A, RDX and PTFE without using a stabilizer was effective, and reached UL-094 V-0 at 1.6 mm.
  • Comparative Examples 10 to 14 Comparative Examples 10 to 14 showing combinations of aluminum hypophosphite (IP-A) and other elements described as auxiliaries described in CN10275606608A did not reach V-0 of UL-94 or molded could not process.
  • IP-A aluminum hypophosphite
  • Comparative Examples 15 and 16 Comparative Examples 15 and 16 showing the combination of aluminum hypophosphite (IP-A) and ammonium salt described in CN103113708A could not be molded.
  • the resin composition described in CN1027746608A and CN103113708A does not reach V-0 even with a test piece of 1.6 mm or 3.2 mm. .
  • the difference between the composition according to the present invention and the composition according to the prior art is that the flame retardant resin composition according to the present invention reaches V-0 in the UL-94V test when the thickness is 3.2 mm.
  • a flame from a gas burner (5 mm in diameter) was applied to one end of the powder row until it ignited or for a maximum of 2 minutes. If the powder did not ignite or combustion with flames and smolders did not propagate through the 200 mm row of powder in 4 minutes (or 40 minutes), the material was considered non-flammable. When the powder burned, the burning time was reported.
  • An object of the present invention is to provide a halogen-free highly flame-retardant styrene impact-improving resin that achieves V-0 of the UL-94 standard with a thin material.
  • the object is achieved by the composition of the present invention.
  • the present invention provides: (Item 1) Halogen-free flame-retardant impact-modified styrene thermoplastic composition containing the following components: A) At least one thermoplastic impact-modified styrene resin B) As a first flame retardant component, at least one phosphorus hypophosphite metal salt in which the valence state is +1 C) At least one second flame retardant component Two aromatic phosphates D) at least one anti-drip agent E) fillers and / or reinforcing fibers F) conventional additives.
  • thermoplastic composition according to item 2 The thermoplastic composition according to item 1, wherein the conventional additive is a heat and processing stabilizer, a UV stabilizer, a pigment, a dispersant, a release agent, a crystal nucleating agent, and a mixture thereof. object.
  • the conventional additive is a heat and processing stabilizer, a UV stabilizer, a pigment, a dispersant, a release agent, a crystal nucleating agent, and a mixture thereof.
  • the metal hypophosphite salt is aluminum hypophosphite.
  • the anti-drip agent is polytetrafluoroethylene PTFE.
  • thermoplastic composition according to any one of Items 1 to 5 wherein the styrene impact-improved thermoplastic resin is acrylonitrile butadiene styrene copolymer resin ABS.
  • thermoplastic composition according to any one of Items 1 to 6 wherein the styrene impact-modified thermoplastic resin is high impact polystyrene HIPS.
  • a flame retardant comprising the non-combustible powder mixture obtained by uniformly mixing the first flame retardant component and the second flame retardant component, wherein 8.

Abstract

The present invention provides a halogen-free highly flame-retardant impact-modified resin in which V-O of the UL-94 standard is achieved in a thin material. The present invention achieves high flame retardancy in a thin material through a halogen-free flame-retardant resin composition containing (A) an impact-modified styrene resin, (B) aluminum hypophosphite, (C) an aromatic phosphoric acid ester, and (D) a drip inhibitor. In one embodiment, the aromatic phosphoric acid ester is resorcinol bis(di-2,6-xylylphosphate). In one embodiment, (D) is a polytetrafluoroethylene-based resin.

Description

熱可塑性衝撃改良スチレン系ポリマーをベースとした、環境にやさしい難燃性組成物および成形材料Environmentally friendly flame retardant compositions and molding materials based on thermoplastic impact modified styrenic polymers
 本発明は、熱可塑性耐衝撃スチレン系ポリマーをベースとした、環境にやさしい難燃性成形材料に関する。 The present invention relates to an environment-friendly flame-retardant molding material based on a thermoplastic impact-resistant styrenic polymer.
 有機ポリマーの化学的組成物は容易に燃焼可能になる。それ故に、加工業者が要望する、国や国際機関の定める厳しい難燃規格を満たすため、様々な難燃剤が通常、ポリマーにブレンドされる。 The chemical composition of the organic polymer can be easily combusted. Therefore, various flame retardants are usually blended into polymers in order to meet stringent flame retardant standards required by processors and set by national and international organizations.
 最近では、以前から使用される臭素系難燃剤と比較して一般的に高価であるにもかかわらず、環境に対する安全性からハロゲンフリー難燃剤が使用される。そのため、熱可塑性ポリマー市場におけるハロゲンフリー難燃剤の重要性が増している。これらの製品に求められる基本的な要件としては、配合、成形条件における良好な処理性、固体状態における良好な機械的特性及び電気特性、成形中あるいはその後にブルーミングや変色を生じないこと、強化ポリマー及び非強化ポリマー双方における良好な難燃性がある。 Recently, halogen-free flame retardants are used because of safety to the environment, although they are generally more expensive than brominated flame retardants used previously. Therefore, the importance of halogen-free flame retardants in the thermoplastic polymer market is increasing. The basic requirements for these products include: compounding, good processability in molding conditions, good mechanical and electrical properties in the solid state, no blooming or discoloration during or after molding, reinforced polymer And good flame retardancy in both non-reinforced polymers.
 純粋なポリスチレンは硬いが脆い。例えば、ポリブタジエンゴムのようなゴムで変性することにより、より高い衝撃特性の製品を得ることができる。従って、衝撃改良スチレン系ポリマーが得られる。 Pure polystyrene is hard but brittle. For example, a product with higher impact characteristics can be obtained by modifying with a rubber such as polybutadiene rubber. Accordingly, an impact-modified styrenic polymer is obtained.
 衝撃改良スチレン系ポリマーは、連続した、剛直なスチレン樹脂連続相に追加相として分散されたゴム粒子を含むものとして記載され得る。2つのポリマーの界面の表面張力が異なることから、押出機を通した溶融混合によって熱可塑性連続相へゴム相を細かく分散させることは困難である。よく分散されたゴムを含む製品の衝撃特性は、一般的に、よく分散されていないゴムを含む製品の衝撃特性よりも、非常に良好である。 The impact-modified styrenic polymer can be described as including rubber particles dispersed as an additional phase in a continuous, rigid styrene resin continuous phase. Since the surface tension of the interface between the two polymers is different, it is difficult to finely disperse the rubber phase into the thermoplastic continuous phase by melt mixing through an extruder. The impact properties of products containing well dispersed rubber are generally much better than those of products containing poorly dispersed rubber.
 スチレン相の重合中にゴムを添加することで化学的にポリスチレン相に結合したいくらかのグラフトコポリマーを形成することができ、ゴム自体を均一化することに作用し得る。重合は、モノマーの塊状、乳化または懸濁で行われ得る。 By adding rubber during the polymerization of the styrene phase, some graft copolymer chemically bonded to the polystyrene phase can be formed, which can act to homogenize the rubber itself. The polymerization can be carried out in bulk, emulsification or suspension of monomers.
 衝撃改良スチレン系ポリマーはゴム変性スチレン系ポリマーとしても知られ、いくつかのよく知られた例としては、高衝撃ポリスチレン(HIPS)やアクリロニトリルブタジエンスチレンコポリマー(ABS)が挙げられる。 The impact-improved styrene polymer is also known as a rubber-modified styrene polymer, and some well-known examples include high impact polystyrene (HIPS) and acrylonitrile butadiene styrene copolymer (ABS).
 衝撃改良スチレン系ポリマーは電算機コンソール、テレビ、携帯電話、コンピュータ、ステレオ、玩具及びその他多くのような、電子機器や消費材向けに幅広く使用されている。 Impact-modified styrenic polymers are widely used for electronic devices and consumer products such as computer consoles, televisions, mobile phones, computers, stereos, toys and many others.
 HIPS及びABSは市販されており、よく知られた方法で生産される。 HIPS and ABS are commercially available and are produced by well-known methods.
 難燃性HIPS及びABSは、難燃剤として臭素化合物を用いて得られる。なぜなら、それらがポリマーの良好な機械的特性(例えば、耐衝撃性)を維持する能力を有するためである。最も広く用いられるABS及びHIPS向けの難燃剤は、エチレンビステトラブロモフタルイミド、デカブロモジフェニルエタン、臭素化エポキシオリゴマーやテトラブロモビスフェノールAである。酸化アンチモンが相乗化剤として使用され得る。しかしながら、臭素化合物はハロゲン難燃剤の使用制限が進められているために置き換える必要がある。 Flame retardant HIPS and ABS are obtained using a bromine compound as a flame retardant. This is because they have the ability to maintain the good mechanical properties (eg, impact resistance) of the polymers. The most widely used flame retardants for ABS and HIPS are ethylene bistetrabromophthalimide, decabromodiphenylethane, brominated epoxy oligomers and tetrabromobisphenol A. Antimony oxide can be used as a synergist. However, bromine compounds need to be replaced because of restrictions on the use of halogen flame retardants.
 例えば、以下に示すような有機アリールリン化合物が(臭素難燃剤の)置き換えとなるいくつかの市販ノンハロゲン難燃剤としてHIPSに使用されている。 For example, organic aryl phosphorus compounds as shown below are used in HIPS as some commercially available non-halogen flame retardants (in place of bromine flame retardants).
  レゾルシノールビス(ジフェニルホスフェート)
  ビスフェノールAビス(ジフェニルホスフェート)
  ポリマー性ビフェニルホスフェート
  ジフェニルクレジルホスフェート
  トリフェニルホスフェート。
Resorcinol bis (diphenyl phosphate)
Bisphenol A bis (diphenyl phosphate)
Polymeric biphenyl phosphate Diphenyl cresyl phosphate Triphenyl phosphate.
 しかしながら、これらの有機アリール燐系難燃剤は、難燃特性に関して高い基準、すなわち、UL-94のV-0は満たせず、実際に、V-2としてのみ結果を出している。 However, these organic aryl phosphorus flame retardants do not satisfy the high standard regarding flame retardancy, that is, V-0 of UL-94, and actually give results only as V-2.
 ポリマーの製造業者はこれまで、高い難燃性の基準、すなわち、UL-94のV-0を満たす、ハロゲンを含まないHIPS及びABS向けの難燃剤を得ることの試みに成功していない。 Polymer manufacturers have so far not succeeded in obtaining flame retardants for halogen-free HIPS and ABS that meet high flame retardant standards, ie, UL-94 V-0.
 高い難燃性の基準を満たす、HIPSのハロゲンフリー難燃素材は高衝撃スチレンポリマーとフェニルエーテルポリマーとのブレンドから作られ、市販されている。フェニルエーテルポリマーは高レベルの本質的難燃性を特徴とする。これらのポリマー組成物は簡易的に「HIPS」或いはより正確に「HIPS/PPO」と呼ばれる。市販のフェニルエーテルポリマーは二つの異なる種類:ポリフェニレンエーテル(PPE)及びポリフェニレンオキシド(PPO)に属する。PPE及びPPOは化学組成が類似し、一般的に同等の素材として扱われ、一般的に両方がPPOと呼ばれる。それらは加工の難しいポリマーであり、ポリスチレン或いはHIPSをブレンドすることにより樹脂組成物の加工がより容易になることにもかかわらず、純粋なHIPS樹脂と比較して成形作業において多くの困難に直面する。その上、PPOはそれ自体が一般的にHIPS樹脂より高価である。HIPS/PPOブレンドは本発明の目的ではない。 HIPS halogen-free flame retardant material that meets high flame retardant standards is made from a blend of high impact styrene polymer and phenyl ether polymer and is commercially available. Phenyl ether polymers are characterized by a high level of intrinsic flame retardancy. These polymer compositions are simply referred to as “HIPS” or more precisely “HIPS / PPO”. Commercially available phenyl ether polymers belong to two different types: polyphenylene ether (PPE) and polyphenylene oxide (PPO). PPE and PPO have similar chemical compositions and are generally treated as equivalent materials, and both are commonly referred to as PPO. They are difficult to process polymers and face many difficulties in molding operations compared to pure HIPS resins, despite blending polystyrene or HIPS to make the resin composition easier to process. . Moreover, PPO itself is generally more expensive than HIPS resin. The HIPS / PPO blend is not the object of the present invention.
 高い難燃基準を満たす、ABSのハロゲンフリー難燃製品はABSポリマーとポリカーボネートのブレンドにより作られ、主要な製造業者から入手できる。ポリカーボネートは高レベルの本質的難燃性を特徴とする。これらの組成物は「PC/ABS」と呼ばれる。ポリカーボネートは加工の難しいポリマーであり、ABSをブレンドすることによりその組成物の加工が容易になるという事実にもかかわらず、依然として、純粋なABS樹脂と比較して成形作業においていくつかの困難に直面する。その上、ポリカーボネートはそれ自体が一般的にABS樹脂より高価である。PC/ABSブレンドは本発明に従うものではない。 ハ ロ ゲ ン ABS halogen-free flame retardant products that meet high flame retardant standards are made from blends of ABS polymer and polycarbonate and are available from major manufacturers. Polycarbonate is characterized by a high level of intrinsic flame retardancy. These compositions are referred to as “PC / ABS”. Polycarbonate is a difficult-to-process polymer and despite the fact that blending ABS makes it easy to process the composition, it still faces some difficulties in the molding operation compared to pure ABS resin. To do. Moreover, polycarbonate itself is generally more expensive than ABS resin. PC / ABS blends are not in accordance with the present invention.
 特許文献1(CN102746608A)は、ポリエチレンワックス、ステアリン酸カルシウム、ペンタエリスリトール、シアヌル酸メラミン及びポリリン酸アンモニウムから選択される少なくとも一種の難燃助剤と、次亜燐酸アルミニウムから構成される環境に優しい難燃性ABS樹脂を開示する。しかしながら、これらの組成物は十分な難燃特性に欠け、特にUL-94規格において1.6mm厚みでV-0に達しない。 Patent Document 1 (CN1027746608A) is an environmentally friendly flame retardant comprising at least one flame retardant aid selected from polyethylene wax, calcium stearate, pentaerythritol, melamine cyanurate and ammonium polyphosphate, and aluminum hypophosphite. A soluble ABS resin is disclosed. However, these compositions lack sufficient flame retardant properties, and in particular do not reach V-0 at 1.6 mm thickness in the UL-94 standard.
 特許文献2(CN103113708A)は難燃剤が有機亜燐酸塩或いは次亜燐酸塩と相乗化アンモニウム塩との併用であるABS難燃性樹脂を記載する。しかしながら、このケースにおいても、これらの組成物は十分な加工性に欠け、混合工程の間に炎や煙を生じる。 Patent Document 2 (CN103113708A) describes an ABS flame retardant resin in which the flame retardant is a combined use of an organic phosphite or hypophosphite and a synergized ammonium salt. However, even in this case, these compositions lack sufficient processability and produce flames and smoke during the mixing process.
 特許文献3(特開2002-161211)は難燃剤が有機亜燐酸塩或いは次亜燐酸塩と燐酸エステルの併用である様々な熱可塑性樹脂を含む難燃樹脂組成物を開示する。0026段落においては、ポリエステル系樹脂(A-1)またはポリアミド系樹脂(A-3)とポリスチレン系樹脂(A-2)の重量比の好ましい範囲について、「上記組合せにおける配合割合(重量比)は、(A-1)/(A-3)、(A-1)/(A-2)及び(A-3)/(A-2)が、好ましくは100/0~5/95、より好ましくは100/0~10/90、更に好ましくは100/0~30/70である。この範囲であれば、難燃性、耐熱性及び耐衝撃性を高いレベルで保持できるので好ましい。」と記載している。すなわち、ポリスチレン系樹脂(A-2)の比率を95%までとすることが好ましく、90%までとすることが好ましく、70%までとすることが更に好ましいことを説明している。すなわち、ポリスチレン系樹脂の比率が95%までであれば難燃性が好ましいレベルに保持され、ポリスチレン系樹脂の比率が90%までであれば難燃性がより好ましいレベルに保持され、ポリスチレン系樹脂の比率が70%までであれば難燃性が更に好ましいレベルに保持されると記載されている。しかしながら、ここでは、そのような好ましい重量比でUL-94のV-0のように非常に厳しい難燃性の基準を達成できるとは記載されていない。そして、具体的には、実施例には少量(10%)のABS樹脂と多量(90%)の他の樹脂との混合物に次亜燐酸カルシウムおよび多量のガラス繊維を配合するもののみが開示され、衝撃改良スチレン系樹脂を主成分とする樹脂組成物においてUL-94のV-0を達成することは開示されない。 Patent Document 3 (Japanese Patent Laid-Open No. 2002-161211) discloses a flame retardant resin composition containing various thermoplastic resins in which a flame retardant is a combination of an organic phosphite or a hypophosphite and a phosphate ester. In the paragraph 0026, regarding the preferred range of the weight ratio of the polyester resin (A-1) or polyamide resin (A-3) and the polystyrene resin (A-2), “the blending ratio (weight ratio) in the above combination is: , (A-1) / (A-3), (A-1) / (A-2) and (A-3) / (A-2) are preferably 100/0 to 5/95, more preferably Is in the range of 100/0 to 10/90, more preferably 100/0 to 30/70. Within this range, flame retardancy, heat resistance and impact resistance can be maintained at a high level. is doing. That is, it is explained that the ratio of the polystyrene resin (A-2) is preferably up to 95%, more preferably up to 90%, and even more preferably up to 70%. That is, if the ratio of polystyrene resin is up to 95%, the flame retardancy is maintained at a preferable level, and if the ratio of polystyrene resin is up to 90%, the flame retardancy is maintained at a more preferable level. If the ratio is up to 70%, it is described that the flame retardancy is maintained at a more preferable level. However, it is not described here that very favorable flame retardant standards such as UL-94 V-0 can be achieved at such preferred weight ratios. Specifically, the examples disclose only a mixture of a small amount (10%) of an ABS resin and a large amount (90%) of another resin with calcium hypophosphite and a large amount of glass fiber. In addition, it is not disclosed to achieve V-0 of UL-94 in a resin composition mainly composed of an impact-modified styrene resin.
 さらに、特許文献3の上記0026段落の記載について、(A-2)のポリスチレン系樹脂に着目して見ればその量が少ない方が好ましい程度が大きくなっていることと、かつ特許文献3の実施例では(A-2)のポリスチレン系樹脂が10重量%しか含まれていない組成物のみが開示されていることとを踏まえると、特許文献3の全体としては、「ポリスチレン系樹脂の割合は、より少ない方が好ましい」ことが示されていると理解される。 Further, regarding the description of the above-mentioned paragraph 0026 of Patent Document 3, the degree to which a smaller amount is preferable when focusing on the polystyrene-based resin (A-2) is increased, and the implementation of Patent Document 3 In view of the fact that in the example, only a composition containing only 10% by weight of the polystyrene resin (A-2) is disclosed, as a whole of Patent Document 3, “the ratio of polystyrene resin is: It is understood that less is preferred ".
 特許文献3においては特に、多量のガラス繊維を含まない樹脂組成物においてUL-94のV-0を達成することは開示されない。 Patent Document 3 does not particularly disclose achieving V-0 of UL-94 in a resin composition that does not contain a large amount of glass fiber.
 すなわち、衝撃改良スチレン系樹脂を主成分とする熱可塑性樹脂組成物において高い難燃性を達成することは非常に困難であり、具体的には、0026段落に記載されているような重量比ではUL-94のV-0のように非常に厳しい難燃性の基準を達成できなくて、実施例に示されるとおり、スチレン系樹脂の量を10%まで減らしてガラス繊維を多量に添加しなければUL-94のV-0を達成することができない。特許文献3の発明によっては、衝撃改良スチレン系樹脂を主成分とする熱可塑性樹脂組成物において難燃性を達成することはできなかった。 That is, it is very difficult to achieve high flame retardancy in a thermoplastic resin composition containing an impact-modified styrene resin as a main component. Specifically, at a weight ratio as described in paragraph 0026, Unable to achieve very strict flame retardance standards like UL-94 V-0, as shown in the examples, the amount of styrenic resin must be reduced to 10% and a large amount of glass fiber added. UL-94 V-0 cannot be achieved. According to the invention of Patent Document 3, flame retardancy could not be achieved in a thermoplastic resin composition containing an impact-modified styrene resin as a main component.
中国特許出願公開第102746608号Chinese Patent Application No. 1027746608 中国特許出願公開第103113708号Chinese Patent Application No. 103113708 特開2002-161211JP 2002-161211 A
 本発明の目的
 本発明の目的はハロゲンフリーの、非強化或いは強化の高難燃スチレン系衝撃改良樹脂を提供することである。
OBJECT OF THE INVENTION It is an object of the present invention to provide a halogen free, non-reinforced or reinforced high flame retardant styrene based impact modifying resin.
 本発明の他の目的は厚みの薄い部材で国際規格のUL-94のV-0となる、ハロゲンフリーの高難燃スチレン系衝撃改良樹脂を提供することである。 Another object of the present invention is to provide a halogen-free highly flame-retardant styrene-based impact-improving resin, which is a thin member and becomes V-0 of the international standard UL-94.
 重ねて本発明の他の目的は試験片厚みが好ましくは3.2mm以下、より好ましくは1.6mmでV-0となる、ハロゲンフリーの高難燃スチレン系衝撃改良樹脂組成物を提供することである。 Again, another object of the present invention is to provide a halogen-free highly flame-retardant styrene-based impact-improving resin composition having a specimen thickness of preferably 3.2 mm or less, more preferably 1.6 mm, and V-0. It is.
 本発明のさらに他の目的は、良好な審美的及び機械的特性を有する、ハロゲンフリー高難燃スチレン衝撃改良ポリマーをベースとするハロゲンフリーの難燃性成形組成物及び製品を提供することである。 Yet another object of the present invention is to provide halogen free flame retardant molding compositions and products based on halogen free high flame retardant styrene impact modifying polymers having good aesthetic and mechanical properties. .
 本発明の組成物および難燃剤によれば、これらの及び他の目的が達成される。 These and other objectives are achieved with the compositions and flame retardants of the present invention.
 例えば、本発明は、下記の組成物および難燃剤を提供する。
(項1)
 ハロゲン非含有難燃熱可塑性樹脂組成物であって、
  (A)熱可塑性樹脂、
  (B)次亜燐酸アルミニウム、
  (C)芳香族燐酸エステル、及び
  (D)ドリップ防止剤
を含み、
 該(A)熱可塑性樹脂のうちの50重量%以上が衝撃改良スチレン系樹脂である、
樹脂組成物。
(項2)
 前記(A)熱可塑性樹脂のうちの80重量%以上が衝撃改良スチレン系樹脂である、上記項1に記載の樹脂組成物。
(項3)
 前記衝撃改良スチレン系樹脂がABS樹脂である、上記項1または項2に記載の樹脂組成物。
(項4)
 前記(C)芳香族燐酸エステルが芳香族縮合燐酸エステルである上記項1~3のいずれか1項に記載の樹脂組成物。
(項5)
 前記(C)芳香族燐酸エステルがレゾルシノールビス(ジ-2,6-キシリルホスフェート)である上記項1~3のいずれか1項に記載の樹脂組成物。
(項6)
 前記(D)ドリップ防止剤がポリテトラフルオロエチレンをベースとする樹脂である上記項1~5のいずれか1項に記載の樹脂組成物。
(項7)
 前記(B)次亜燐酸アルミニウムと前記(C)芳香族燐酸エステルの重量比が(B):(C)=90:10~60:40である上記項1~6のいずれか1項に記載の樹脂組成物。
(項8)
 前記(B)次亜燐酸アルミニウムと前記(C)芳香族燐酸エステルの重量比が(B):(C)=85:15~65:35である上記項1~6のいずれか1項に記載の樹脂組成物。
(項9)
 前記(B)次亜燐酸アルミニウムと前記(C)芳香族燐酸エステルの重量比が(B):(C)=80:20~70:30である上記項1~6のいずれか1項に記載の樹脂組成物。
(項10)
 前記ドリップ防止剤の量が樹脂組成物のうち0.1~0.6重量%である上記項6に記載の樹脂組成物。
(項11)
 ガラス繊維を含まない、上記項1~10のいずれか1項に記載の樹脂組成物。
(項12)
 ハロゲン非含有熱可塑性樹脂組成物を難燃化するための難燃剤であって、
 該熱可塑性樹脂組成物は、
  (A)熱可塑性樹脂、及び
  (D)ドリップ防止剤
を含み、
 該(A)熱可塑性樹脂のうちの50重量%以上が衝撃改良スチレン系樹脂であり、
 該難燃剤が、
  (B)次亜燐酸アルミニウム、及び
  (C)芳香族燐酸エステル
を含み、該(C)芳香族燐酸エステルの重量が、該(B)次亜燐酸アルミニウムと該(C)芳香族燐酸エステルの合計重量のうちの10%以上である、難燃剤。
(項13)
 前記衝撃改良スチレン系樹脂がABSまたはHIPSであり、前記(C)芳香族燐酸エステルがレゾルシノールビス(ジ-2,6-キシリルホスフェート)であり、前記(B)次亜燐酸アルミニウムと前記(C)芳香族燐酸エステルの重量比が(B):(C)=85:15~65:35である、上記項12に記載の難燃剤。
(項14)
 前記衝撃改良スチレン系樹脂が高衝撃ポリスチレン樹脂(HIPS)である上記項1、2、4~10のいずれか1項に記載の樹脂組成物。
For example, the present invention provides the following composition and flame retardant.
(Claim 1)
Halogen-free flame retardant thermoplastic resin composition,
(A) thermoplastic resin,
(B) aluminum hypophosphite,
(C) an aromatic phosphate ester, and (D) an anti-drip agent,
50% by weight or more of the (A) thermoplastic resin is an impact-improved styrene resin,
Resin composition.
(Section 2)
Item 2. The resin composition according to Item 1, wherein 80% by weight or more of the thermoplastic resin (A) is an impact-improved styrene resin.
(Section 3)
Item 3. The resin composition according to Item 1 or 2, wherein the impact-modified styrene resin is an ABS resin.
(Claim 4)
Item 4. The resin composition according to any one of Items 1 to 3, wherein the (C) aromatic phosphate ester is an aromatic condensed phosphate ester.
(Section 5)
Item 4. The resin composition according to any one of Items 1 to 3, wherein (C) the aromatic phosphate ester is resorcinol bis (di-2,6-xylyl phosphate).
(Claim 6)
Item 6. The resin composition according to any one of Items 1 to 5, wherein the (D) anti-drip agent is a resin based on polytetrafluoroethylene.
(Claim 7)
Item 7. The weight ratio of (B) aluminum hypophosphite to (C) aromatic phosphate is (B) :( C) = 90: 10 to 60:40, Resin composition.
(Section 8)
Item 7. The weight ratio of (B) aluminum hypophosphite to (C) aromatic phosphate is (B) :( C) = 85: 15 to 65:35, Resin composition.
(Claim 9)
Item 7. The weight ratio of (B) aluminum hypophosphite and (C) aromatic phosphate is (B) :( C) = 80: 20 to 70:30, Resin composition.
(Section 10)
Item 7. The resin composition according to Item 6, wherein the amount of the anti-drip agent is 0.1 to 0.6% by weight of the resin composition.
(Item 11)
11. The resin composition according to any one of items 1 to 10, which does not contain glass fiber.
(Clause 12)
A flame retardant for flame retardant a halogen-free thermoplastic resin composition,
The thermoplastic resin composition is
(A) a thermoplastic resin, and (D) an anti-drip agent,
50% by weight or more of the (A) thermoplastic resin is an impact-modified styrene resin,
The flame retardant is
(B) aluminum hypophosphite, and (C) aromatic phosphate ester, wherein the weight of (C) aromatic phosphate ester is the sum of (B) aluminum hypophosphite and (C) aromatic phosphate ester A flame retardant that is 10% or more of the weight.
(Section 13)
The impact-modified styrenic resin is ABS or HIPS, the (C) aromatic phosphate is resorcinol bis (di-2,6-xylyl phosphate), the (B) aluminum hypophosphite and the (C The flame retardant according to item 12, wherein the weight ratio of the aromatic phosphate ester is (B) :( C) = 85: 15 to 65:35.
(Item 14)
Item 11. The resin composition according to any one of Items 1, 2, 4 to 10, wherein the impact-improved styrene resin is a high-impact polystyrene resin (HIPS).
 また、本発明の別の局面によれば、これらの及び他の目的は、
 A)少なくとも一種の衝撃改良熱可塑性スチレン系樹脂、
 B)第一の難燃剤成分として、少なくとも一種の燐の原子価状態が+1である次亜燐酸金属塩、
 C)第二の難燃剤成分として、少なくとも一種の芳香族燐酸エステル
 D)少なくとも一種のドリップ防止剤
 E)フィラー及び/又は強化繊維
 F)その他慣用的な添加剤
を含む樹脂組成物により達成される。
Also, according to another aspect of the invention, these and other objects are:
A) at least one impact-modified thermoplastic styrenic resin,
B) As a first flame retardant component, a metal hypophosphite salt in which at least one phosphorus valence state is +1,
C) As second flame retardant component, at least one aromatic phosphate ester D) at least one anti-drip agent E) filler and / or reinforcing fiber F) achieved by a resin composition containing other conventional additives .
 本発明によれば、衝撃改良スチレン系樹脂を主成分とする樹脂組成物において高い難燃性と容易な成形性が達成される。 According to the present invention, high flame retardancy and easy moldability are achieved in a resin composition containing an impact-improved styrene resin as a main component.
 発明の説明
 本発明によれば、熱可塑性スチレン系衝撃改良ポリマーは好ましくはABS及び/またはHIPSとして選択される。
DESCRIPTION OF THE INVENTION According to the present invention, the thermoplastic styrenic impact modifying polymer is preferably selected as ABS and / or HIPS.
 そのため、本発明の目的はABSやHIPSのような衝撃改良スチレン系樹脂、次亜燐酸金属塩(例えば、次亜燐酸アルミニウム)、芳香族燐酸エステル、ドリップ防止剤、及び他の慣用的な添加剤をベースとする難燃組成物である。 Therefore, the object of the present invention is to provide impact-modified styrenic resins such as ABS and HIPS, metal hypophosphites (eg, aluminum hypophosphite), aromatic phosphate esters, anti-drip agents, and other conventional additives. Is a flame retardant composition based on
 次亜燐酸金属塩は燐の原子価状態が+1であることを特徴とする。 The metal hypophosphite is characterized in that the valence state of phosphorus is +1.
 次亜燐酸金属塩は以下の化学式を有する:
    Me(HPO
 ここで、
 nは、Meで示される金属の原子価に依存する1から4の整数であり、金属Meは周期表の第I、II、III及びIV族に属する。
The metal hypophosphite has the following chemical formula:
Me (H 2 PO 2 ) n
here,
n is an integer of 1 to 4 depending on the valence of the metal represented by Me, and the metal Me belongs to Groups I, II, III, and IV of the periodic table.
 次亜燐酸アルミニウムは以下の化学式を有する:
    Al(HPO
 次亜燐酸ナトリウム及び次亜燐酸カルシウムは幅広く商業的に入手でき、通常は対応する金属水酸化物と黄燐との反応で製造され、例えば、Meがカルシウムとして選択される次の反応スキームによる:
  P + 2Me(OH) + H
  → Me(HPO + MeHPO + PH
 カルシウム及びナトリウム以外の次亜燐酸金属塩は通常、対応する金属水酸化物と次亜燐酸との反応或いは対応する金属塩の交換反応により製造される(例えば、“Hypophosphorus Acid and its salts, Russian Chemical Review, 44(12), 1975”を参照)。この方法を用いて次亜燐酸アルミニウムも製造することができる。
Aluminum hypophosphite has the following chemical formula:
Al (H 2 PO 2 ) 3
Sodium hypophosphite and calcium hypophosphite are widely commercially available and are usually prepared by reaction of the corresponding metal hydroxide with yellow phosphorus, for example according to the following reaction scheme where Me is selected as calcium:
P 4 + 2Me (OH) 2 + H 2 O
→ Me (H 2 PO 2 ) 2 + MeHPO 3 + PH 3
Hypophosphorous acid metal salts other than calcium and sodium are usually produced by the reaction of the corresponding metal hydroxide with hypophosphorous acid or the exchange reaction of the corresponding metal salt (see, for example, “Hypophosphorus Acid and it salts, Russian Chemical”). Review, 44 (12), 1975 "). Aluminum hypophosphite can also be produced using this method.
 従って、本発明はハロゲンフリー難燃組成物に関連し、本質的に衝撃改良スチレン系樹脂、少なくとも一種の次亜燐酸金属塩、難燃剤として少なくとも一種の芳香族燐酸エステル、及び少なくとも一種のドリップ防止剤を含み、並びに他の慣用的な添加剤を含んでもよい。 Accordingly, the present invention relates to a halogen-free flame retardant composition, essentially comprising an impact modified styrenic resin, at least one metal hypophosphite salt, at least one aromatic phosphate ester as a flame retardant, and at least one drip prevention. As well as other conventional additives.
 このような組成物は高い難燃性と容易な成形性を有する。 Such a composition has high flame retardancy and easy moldability.
 特に好ましくは、衝撃改良スチレン系樹脂がABS或いはHIPSとして選択され、次亜燐酸金属塩が次亜燐酸アルミニウムとして選択され、芳香族燐酸エステルがレゾルシノールビス(ジ-2,6-キシリルホスフェート)として選択され、ドリップ防止剤及び、他の、例えば、フィラー、顔料、熱的安定剤及び加工安定剤のような慣用的な添加剤の組成物である。 Particularly preferably, the impact-modified styrenic resin is selected as ABS or HIPS, the metal hypophosphite is selected as aluminum hypophosphite, and the aromatic phosphate is resorcinol bis (di-2,6-xylylphosphate). Selected, anti-drip agents and other conventional additive compositions such as fillers, pigments, thermal stabilizers and processing stabilizers.
 本発明によれば、他の慣用的な添加剤としては、加工性向上剤、熱及び加工安定剤、UV安定剤、顔料、分散剤、離型剤、結晶核剤、及びその混合物から選択され得る。 According to the present invention, other conventional additives are selected from processability improvers, heat and processing stabilizers, UV stabilizers, pigments, dispersants, mold release agents, crystal nucleating agents, and mixtures thereof. obtain.
 本発明によれば、次亜燐酸金属塩は燐の原子価が+1であり、次亜燐酸アルミが好ましい。 According to the present invention, the metal hypophosphite has a phosphorus valence of +1 and is preferably aluminum hypophosphite.
 本発明によれば、難燃剤である芳香族燐酸エステルはレゾルシノールビス(ジ-2,6-キシリルホスフェート)が好ましい。 According to the present invention, the aromatic phosphate ester which is a flame retardant is preferably resorcinol bis (di-2,6-xylyl phosphate).
 以下に、本発明のさらなる局面を、より詳細に記載する。 In the following, further aspects of the invention will be described in more detail.
 A)熱可塑性樹脂
 本発明の樹脂組成物においては、ハロゲン非含有熱可塑性樹脂を使用する。
A) Thermoplastic resin In the resin composition of the present invention, a halogen-free thermoplastic resin is used.
 本発明の樹脂組成物においては、その熱可塑性樹脂の主成分として衝撃改良スチレン系樹脂を使用する。 In the resin composition of the present invention, an impact-modified styrene resin is used as the main component of the thermoplastic resin.
 衝撃改良スチレン系樹脂の量は、熱可塑性樹脂の合計重量のうちの30重量%以上であることが好ましい。より好ましくは、衝撃改良スチレン系樹脂の量は、熱可塑性樹脂の合計重量のうちの40重量%以上である。さらに好ましくは、衝撃改良スチレン系樹脂の量は、熱可塑性樹脂の合計重量のうちの50重量%以上である。必要に応じて、衝撃改良スチレン系樹脂の量は、熱可塑性樹脂の合計重量のうちの55重量%以上であってもよく、60重量%以上であってもよく、65重量%以上であってもよく、70重量%以上であってもよく、75重量%以上であってもよく、80重量%以上であってもよく、85重量%以上であってもよく、90重量%以上であってもよく、95重量%以上であってもよく、100重量%であってもよい。 The amount of the impact-improved styrene resin is preferably 30% by weight or more of the total weight of the thermoplastic resin. More preferably, the amount of the impact-modified styrene resin is 40% by weight or more of the total weight of the thermoplastic resin. More preferably, the amount of the impact-modified styrene resin is 50% by weight or more of the total weight of the thermoplastic resin. If necessary, the amount of impact-modified styrenic resin may be 55% by weight or more of the total weight of the thermoplastic resin, 60% by weight or more, and 65% by weight or more. 70% by weight or more, 75% by weight or more, 80% by weight or more, 85% by weight or more, 90% by weight or more, It may be 95% by weight or more, or 100% by weight.
 樹脂組成物が衝撃改良スチレン系樹脂を多量に含む場合、難燃性において不利になる。しかしながら、本発明においては、樹脂組成物が衝撃改良スチレン系樹脂を多量に含む場合においても高い難燃性が達成される。 When the resin composition contains a large amount of impact-modified styrene resin, it is disadvantageous in terms of flame retardancy. However, in the present invention, high flame retardancy is achieved even when the resin composition contains a large amount of impact-modified styrene resin.
 本発明の樹脂組成物に衝撃改良スチレン系樹脂以外の熱可塑性樹脂を用いる場合、その熱可塑性樹脂としては、衝撃改良スチレン系樹脂以外の、従来公知の任意の熱可塑性樹脂を使用することができる。 When a thermoplastic resin other than the impact-improved styrene resin is used for the resin composition of the present invention, any conventionally known thermoplastic resin other than the impact-improved styrene resin can be used as the thermoplastic resin. .
 A1)衝撃改良スチレン系樹脂(例えば、ABS或いはHIPS)
 衝撃改良スチレン系樹脂としては、従来公知の任意の衝撃改良スチレン系樹脂を使用することができる。
A1) Impact-modified styrene resin (for example, ABS or HIPS)
As the impact-modified styrene resin, any conventionally known impact-modified styrene resin can be used.
 HIPSは、重合したゴム相をスチレンモノマーへ分散し、スチレンがゴム及びグラフト化剤の存在下、熱可塑相へ重合されることで調製される。ゴムは部分的に架橋し、スチレンの分子量増加につれて混合物から分離する。いくつかの具体例でゴムはSBR(スチレンブタジエンラバー)のようなグラフト化スチレンモノマーを含む。ゴムと熱可塑相間のグラフト量は変化し用途に依存する。 HIPS is prepared by dispersing a polymerized rubber phase into a styrene monomer and polymerizing styrene into a thermoplastic phase in the presence of rubber and a grafting agent. The rubber is partially crosslinked and separates from the mixture as the molecular weight of styrene increases. In some embodiments, the rubber includes a grafted styrene monomer such as SBR (styrene butadiene rubber). The amount of grafting between the rubber and the thermoplastic phase varies and depends on the application.
 ABSは、重合したゴム相をスチレン及びアクリロニトリルモノマーへ分散し、スチレンとアクリロニトリルがゴム及びグラフト化剤の存在下で共重合することで調製される。ゴムは部分的に架橋し、スチレン/アクリロニトリル共重合体の分子量が増加するにつれて、分離する。ゴムは典型的にはブタジエンタイプのゴムだが、スチレンとアクリロニトリルとアルキルアクリレートの共重合体、ブタジエンとスチレンの共重合体、イソプレンタイプのゴムから選択される。いくつかの具体例でゴムはSAN(スチレンアクリロニトリルゴム)のようなスチレンモノマーとアクリロニトリルのグラフト化モノマーを含む。ゴムと熱可塑相間のグラフト量は変化し用途に依存する。 ABS is prepared by dispersing a polymerized rubber phase in styrene and acrylonitrile monomers and copolymerizing styrene and acrylonitrile in the presence of rubber and a grafting agent. The rubber partially crosslinks and separates as the molecular weight of the styrene / acrylonitrile copolymer increases. The rubber is typically a butadiene type rubber, but is selected from a copolymer of styrene, acrylonitrile and alkyl acrylate, a copolymer of butadiene and styrene, and an isoprene type rubber. In some embodiments, the rubber includes a styrene monomer such as SAN (styrene acrylonitrile rubber) and a grafted monomer of acrylonitrile. The amount of grafting between the rubber and the thermoplastic phase varies and depends on the application.
 B)次亜燐酸アルミニウム
 最も適切な次亜燐酸の選択はいくつかの重要な因子に従属する。特に適切な次亜燐酸塩は200℃以上の温度の溶融処理に耐える十分な熱安定性を持つ。仮にそれらが水和物を形成した場合、それらには対応する無水形態が使用され、それらが後に周囲の湿度にさらされた時に吸湿してはいけない。次亜燐酸塩の例は次亜燐酸アルミニウム(CAS7784-22-7)、次亜燐酸カルシウム(CAS7789-79-9)、次亜燐酸マンガン(CAS10043-84-2)、次亜燐酸マグネシウム(CAS10377-57-8)、次亜燐酸亜鉛(CAS15060-64-7)、次亜燐酸バリウム(CAS171258-64-3)である。本発明によると最も好ましいのは次亜燐酸アルミニウムである。
B) Aluminum hypophosphite The selection of the most appropriate hypophosphite depends on several important factors. Particularly suitable hypophosphites have sufficient thermal stability to withstand melt processing at temperatures above 200 ° C. If they form hydrates, they are used in the corresponding anhydrous form and should not absorb moisture when they are later exposed to ambient humidity. Examples of hypophosphites include aluminum hypophosphite (CAS7784-22-7), calcium hypophosphite (CAS7789-79-9), manganese hypophosphite (CAS10043-84-2), magnesium hypophosphite (CAS10377-). 57-8), zinc hypophosphite (CAS15060-64-7), and barium hypophosphite (CAS171258-64-3). Most preferred according to the invention is aluminum hypophosphite.
 化学構造がAl(HPOである次亜燐酸アルミニウムは、例えばItalmatch Chemical Spa (製品名はPhoslite IP-A)により、低吸水率で高純度の熱可塑加工に適切な異なった粒径分布の白色粉体として広く製造される。 Aluminum hypophosphite with a chemical structure of Al (H 2 PO 2 ) 3 is a different particle suitable for thermoplastic processing with low water absorption and high purity, for example, by Ilatch Chemical Spa (product name: Phoslite IP-A). Widely manufactured as a white powder with a diameter distribution.
 次亜燐酸アルミニウムは多くの無水の次亜燐酸塩のように可燃性の粉体で、輸送と取り扱いを容易にするため、他の個体の難燃剤と乾燥混合粉体として、あるいはマスターバッチ形態で販売される。 Aluminum hypophosphite is a flammable powder, like many anhydrous hypophosphites, for easy transportation and handling, as a dry mix with other solid flame retardants, or in masterbatch form Sold.
 このように、次亜燐酸アルミニウムは可燃性の粉体であるために、輸送と取扱いが容易ではないという欠点がある。そのため、次亜燐酸アルミニウムは難燃剤として好ましい物質であるとは考えられていなかった。当業者が次亜燐酸アルミニウムを難燃剤として選択することは容易ではなかった。 Thus, since aluminum hypophosphite is a flammable powder, there is a drawback that it is not easy to transport and handle. For this reason, aluminum hypophosphite has not been considered a preferred material as a flame retardant. It has not been easy for those skilled in the art to select aluminum hypophosphite as a flame retardant.
 本発明においては次亜燐酸アルミニウムが非常に良好な性能を示す。そのため、1つの実施形態においては、樹脂組成物または難燃剤に次亜燐酸アルミニウム以外の次亜燐酸塩を実質的に含まない。 In the present invention, aluminum hypophosphite shows very good performance. Thus, in one embodiment, the resin composition or flame retardant is substantially free of hypophosphites other than aluminum hypophosphite.
 C)芳香族燐酸エステル
 本発明において、芳香族燐酸エステルとしては、従来公知の任意の芳香族燐酸エステルを使用することができる。
C) Aromatic Phosphate Ester In the present invention, any conventionally known aromatic phosphate ester can be used as the aromatic phosphate ester.
 例えば、好ましい芳香族燐酸エステルは以下の一般化学構造として示され得る。 For example, preferred aromatic phosphate esters can be shown as the following general chemical structure.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、R、R、R、R’、R’、R’、R’’、R’’、R’’、R’’’、R’’’、R’’’はそれぞれ独立してH(水素)或いはCからC(炭素数1から4)のアルキル基から選択され、XはCのアリール基或いはジフェニルメタン誘導体から選択され、nは0から7の整数である。)
 例えば、n=0の場合、例としては、トリフェニルホスフェート、トリ(2,6-ジメチルフェニル)ホスフェート及びその組み合わせを含む。
(In the formula, R 1 , R 2 , R 3 , R 1 ′, R 2 ′, R 3 ′, R 1 ″, R 2 ″, R 3 ″, R 1 ″ ″, R 2 ″ ', R 3 ''' are each independently selected from H (hydrogen) or C 1 to C 4 (C 1 -C 4) alkyl group, X is selected from a C 6 aryl group or a diphenylmethane derivative; n is an integer from 0 to 7.)
For example, when n = 0, examples include triphenyl phosphate, tri (2,6-dimethylphenyl) phosphate, and combinations thereof.
 例えば、n=1から7でXがアリール基の場合、例としては、レゾルシノールビス(ジフェニルホスフェート)或いはレゾルシノールビス(ジ-2,6-キシリルホスフェート)を含む。 For example, when n = 1 to 7 and X is an aryl group, examples include resorcinol bis (diphenyl phosphate) or resorcinol bis (di-2,6-xylyl phosphate).
 例えば、n=1から2でX=(CHC(Cの場合、例としては、ビスフェノールAビス(ジフェニルホスフェート)を含む。 For example, when n = 1 to 2 and X = (CH 3 ) 2 C (C 6 H 4 ) 2 , examples include bisphenol A bis (diphenyl phosphate).
 本発明の難燃剤として作用する好ましい芳香族燐酸エステルは室温において固体であり、すなわち、融点が40℃より高いものであり、より好ましくは、融点が80℃より高いものである。 Preferred aromatic phosphates that act as flame retardants of the present invention are solid at room temperature, that is, those having a melting point higher than 40 ° C., more preferably those having a melting point higher than 80 ° C.
 本発明によると、芳香族燐酸エステルの一つの例は下記の化学構造を持つレゾルシノールビス(ジ-2,6-キシリルホスフェート)(RDX)である:
 (レゾルシノールビス(ジ-2,6-キシリルホスフェート)(RDX))
According to the present invention, one example of an aromatic phosphate ester is resorcinol bis (di-2,6-xylyl phosphate) (RDX) having the following chemical structure:
(Resorcinol bis (di-2,6-xylyl phosphate) (RDX))
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 液体と比較して、固体の燐酸エステルは、本発明の目的のために有利である。なぜなら、固体の燐酸エステルは、粉体形態で可燃性固体である次亜燐酸塩と混合でき、混合粉体の可燃性を抑制するからである。非可燃性の粉体の取り扱いは安全性、設備及び操作の複雑さの観点から実際に有利である。従って、芳香族燐酸エステルと次亜燐酸塩の混合使用は化合物の取り扱いや処理性、及び本発明の難燃性ハロゲンフリースチレン衝撃強度改良樹脂組成物の製造における工業的プロセスを容易にする。 Compared to liquids, solid phosphate esters are advantageous for the purposes of the present invention. This is because solid phosphoric acid ester can be mixed with hypophosphite, which is a combustible solid in powder form, and suppresses the combustibility of the mixed powder. The handling of non-flammable powders is actually advantageous in terms of safety, equipment and operational complexity. Therefore, the mixed use of aromatic phosphate ester and hypophosphite facilitates the handling and processing of the compound and the industrial process in producing the flame retardant halogen-free styrene impact strength improved resin composition of the present invention.
 本発明の樹脂組成物において、(B)次亜燐酸アルミニウムと(C)芳香族燐酸エステルの合計重量は、熱可塑性樹脂の合計100重量部に対して、好ましくは、5重量部以上であり、より好ましくは、10重量部以上であり、さらに好ましくは、15重量部以上であり、いっそう好ましくは、20重量部以上であり、ひときわ好ましくは、25重量部以上であり、特に好ましくは、30重量部以上である。また、(B)次亜燐酸アルミニウムと(C)芳香族燐酸エステルの合計重量は、熱可塑性樹脂の合計100重量部に対して、好ましくは、65重量部以下であり、より好ましくは、60重量部以下であり、さらに好ましくは、55重量部以下であり、いっそう好ましくは、50重量部以下であり、ひときわ好ましくは、45重量部以下であり、特に好ましくは、40重量部以下であり、最も好ましくは、35重量部以下である。上限は、難燃性の観点からは限定されないが、多過ぎると樹脂組成物の物性が低下する場合がある。 In the resin composition of the present invention, the total weight of (B) aluminum hypophosphite and (C) aromatic phosphate is preferably 5 parts by weight or more with respect to 100 parts by weight of the total thermoplastic resin, More preferably, it is 10 parts by weight or more, more preferably 15 parts by weight or more, still more preferably 20 parts by weight or more, and particularly preferably 25 parts by weight or more, particularly preferably 30 parts by weight. More than a part. The total weight of (B) aluminum hypophosphite and (C) aromatic phosphate is preferably 65 parts by weight or less, more preferably 60 parts by weight with respect to 100 parts by weight of the thermoplastic resin. Part or less, more preferably 55 parts by weight or less, still more preferably 50 parts by weight or less, particularly preferably 45 parts by weight or less, and particularly preferably 40 parts by weight or less. Preferably, it is 35 parts by weight or less. The upper limit is not limited from the viewpoint of flame retardancy, but if it is too much, the physical properties of the resin composition may deteriorate.
 本発明の難燃剤および樹脂組成物において、(B)次亜燐酸アルミニウムと(C)芳香族燐酸エステルの合計重量のうち、(B)次亜燐酸アルミニウムの量は、好ましくは、60重量%以上であり、より好ましくは、65重量%以上であり、さらに好ましくは、70重量%以上であり、いっそう好ましくは、71重量%以上であり、ひときわ好ましくは、72重量%以上であり、特に好ましくは、73重量%以上であり、最も好ましくは、74重量%以上である。(B)次亜燐酸アルミニウムと(C)芳香族燐酸エステルの合計重量のうち、(B)次亜燐酸アルミニウムの量は、好ましくは、95重量%以下であり、より好ましくは、90重量%以下であり、さらに好ましくは、85重量%以下であり、いっそう好ましくは、80重量%以下であり、ひときわ好ましくは、78重量%以下であり、特に好ましくは、77重量%以下であり、最も好ましくは、76重量%以下である。 In the flame retardant and resin composition of the present invention, of the total weight of (B) aluminum hypophosphite and (C) aromatic phosphate ester, the amount of (B) aluminum hypophosphite is preferably 60% by weight or more. More preferably, it is 65% by weight or more, more preferably 70% by weight or more, still more preferably 71% by weight or more, and particularly preferably 72% by weight or more, particularly preferably 73 wt% or more, and most preferably 74 wt% or more. Of the total weight of (B) aluminum hypophosphite and (C) aromatic phosphate, the amount of (B) aluminum hypophosphite is preferably 95% by weight or less, more preferably 90% by weight or less. More preferably, it is 85% by weight or less, more preferably 80% by weight or less, particularly preferably 78% by weight or less, particularly preferably 77% by weight or less, most preferably 76% by weight or less.
 非常に好ましい実施形態においては、(B)次亜燐酸アルミニウムと(C)芳香族燐酸エステルの合計重量のうち、(B)次亜燐酸アルミニウムの量は、75重量%である。この(B)次亜燐酸アルミニウムの量が75重量%に近ければ、難燃剤および樹脂組成物は極めて優れた特性を示す。 In a highly preferred embodiment, of the total weight of (B) aluminum hypophosphite and (C) aromatic phosphate ester, the amount of (B) aluminum hypophosphite is 75% by weight. When the amount of (B) aluminum hypophosphite is close to 75% by weight, the flame retardant and the resin composition exhibit extremely excellent characteristics.
 D)ドリップ防止剤
 本発明において、ドリップ防止剤(滴下防止剤)としては、従来公知のドリップ防止剤が使用され得る。
D) Anti-drip agent In the present invention, a conventionally known anti-drip agent may be used as the anti-drip agent (anti-dripping agent).
 ポリテトラフルオロエチレン(PTFE)は、要求されるUL-94のV-0或いは類似規格を満たすための難燃性樹脂組成物においてドリップ防止剤として幅広く使用される。高分子量のPTFE成分は樹脂成形の間のせん断条件下でマイクロフィブリルを形成する。圧迫されたフィブリルは樹脂マトリックスの中に物理的に固定化された網状構造を生み出す。樹脂の燃焼の間のフィブリルの弛緩は広範囲の樹脂での収縮とドリップの抑制を引き起こす。 Polytetrafluoroethylene (PTFE) is widely used as an anti-drip agent in flame retardant resin compositions that meet the required UL-94 V-0 or similar standards. The high molecular weight PTFE component forms microfibrils under shear conditions during resin molding. The squeezed fibrils create a network that is physically immobilized in the resin matrix. Fibril relaxation during resin combustion causes a wide range of resin shrinkage and drip suppression.
 高分子量PTFEはドリップ抑制には役立つが、時にはその凝集傾向により取り扱いが困難で、工業的スケールの取り扱いを困難にする。 High molecular weight PTFE is useful for drip suppression, but sometimes difficult to handle due to its tendency to agglomerate, making industrial scale handling difficult.
 アクリルで変性したPTFE或いは「TSAN」と呼ばれるスチレンアクリロニトリル(SAN)をコートしたPTFEのように特別に変性したグレードは、優れた粉体流動性の高い分散効率を保証できる。このような製品は個々に、例えば、EP0758010A1或いはWO03062291A1に記載される。 Specially modified grades such as PTFE modified with acrylic or PTFE coated with styrene acrylonitrile (SAN) called “TSAN” can guarantee excellent powder flowability and high dispersion efficiency. Such products are individually described, for example, in EP0758010A1 or WO03062291A1.
 ドリップ防止添加剤は、通常は、樹脂組成物の0.1~0.6重量%の範囲で使用される。ドリップ防止剤の量は、好ましくは、樹脂組成物の0.15重量%以上であり、0.20重量%以上であってもよく、あるいは、0.25重量%以上であってもよい。ドリップ防止剤の量は、好ましくは、樹脂組成物の0.55重量%以下であり、0.5重量%以下であってもよく、0.45重量%以下であってもよく、0.4重量%以下であってもよく、あるいは、0.35重量%以下であってもよい。 The anti-drip additive is usually used in the range of 0.1 to 0.6% by weight of the resin composition. The amount of the anti-drip agent is preferably 0.15% by weight or more of the resin composition, 0.20% by weight or more, or 0.25% by weight or more. The amount of the anti-drip agent is preferably 0.55% by weight or less of the resin composition, may be 0.5% by weight or less, may be 0.45% by weight or less, It may be not more than wt%, or may be not more than 0.35 wt%.
 E)フィラー及び/又は強化用繊維
 本発明の樹脂組成物は、必要に応じて繊維(例えば、強化用繊維)を含んでもよい。繊維としては、公知の任意の繊維が使用され得る。有機繊維(例えば、カーボン繊維)も使用可能であり、無機繊維(例えば、ガラス繊維)も使用可能である。
E) Filler and / or reinforcing fiber The resin composition of the present invention may contain fibers (for example, reinforcing fibers) as necessary. Any known fiber may be used as the fiber. Organic fibers (for example, carbon fibers) can also be used, and inorganic fibers (for example, glass fibers) can also be used.
 繊維(有機繊維または無機繊維)の使用量は特に限定されない。例えば、繊維の使用量は熱可塑性樹脂の合計100重量部に対して、0.1重量部以上であってもよく、0.5重量部以上であってもよく、1重量部以上であってもよく、2重量部以上であってもよく、5重量部以上であってもよく、10重量部以上であってもよく、15重量部以上であってもよく、20重量部以上であってもよく、25重量部以上であってもよく、あるいは、30重量部以上であってもよい。また、必要に応じて、35重量部以上であってもよく、40重量部以上であってもよく、あるいは、45重量部以上であってもよい。そして、繊維の使用量は、熱可塑性樹脂の合計100重量部に対して、100重量部以下であってもよく、90重量部以下であってもよく、80重量部以下であってもよく、70重量部以下であってもよく、60重量部以下であってもよく、あるいは、50重量部以下であってもよい。 The amount of fiber (organic fiber or inorganic fiber) used is not particularly limited. For example, the amount of fiber used may be 0.1 parts by weight or more, 0.5 parts by weight or more, or 1 part by weight or more with respect to 100 parts by weight of the total thermoplastic resin. 2 parts by weight or more, 5 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, 20 parts by weight or more, It may be 25 parts by weight or more, or 30 parts by weight or more. Moreover, it may be 35 parts by weight or more, 40 parts by weight or more, or 45 parts by weight or more as required. The amount of fiber used may be 100 parts by weight or less, 90 parts by weight or less, or 80 parts by weight or less, with respect to 100 parts by weight of the thermoplastic resin. It may be 70 parts by weight or less, 60 parts by weight or less, or 50 parts by weight or less.
 樹脂組成物が無機繊維を多量に含む場合、難燃性において有利になる。樹脂組成物が無機繊維を少量しか含まない場合、難燃性において不利になる。しかしながら、本発明においては、樹脂組成物が無機繊維を少量しか含まない場合(例えば、上記列挙した上限よりも少ない場合、あるいは、さらに少ない場合)、あるいは、無機繊維を含まない場合においても高い難燃性が達成される。すなわち、無機繊維の含有量が上記列挙した上限のいずれかよりも少ない実施形態、あるいは、さらに少ない実施形態、例えば、熱可塑性樹脂の合計100重量部に対して、40重量部以下である実施形態、30重量部以下である実施形態、20重量部以下である実施形態、10重量部以下である実施形態、5重量部以下である実施形態、3重量部以下である実施形態、または、1重量部以下である実施形態、さらには含有量が0である実施形態などにおいて、本発明は高い難燃性を達成できる組成物を提供する。 When the resin composition contains a large amount of inorganic fibers, it is advantageous in flame retardancy. When the resin composition contains only a small amount of inorganic fibers, it is disadvantageous in flame retardancy. However, in the present invention, even when the resin composition contains only a small amount of inorganic fibers (for example, when the amount is less than or less than the upper limit listed above), or when the resin composition does not contain inorganic fibers, it is highly difficult. Flammability is achieved. That is, an embodiment in which the content of the inorganic fiber is less than any of the above-listed upper limits, or an even smaller embodiment, for example, an embodiment in which the total amount of thermoplastic resin is 40 parts by weight or less with respect to 100 parts by weight. 30 parts by weight or less, 20 parts by weight or less, 10 parts by weight or less, 5 parts by weight or less, 3 parts by weight or less, or 1 part by weight In an embodiment that is less than or equal to parts, and an embodiment in which the content is 0, the present invention provides a composition that can achieve high flame retardancy.
 本発明に使用される好ましい強化用繊維の例は、カーボン繊維、アラミド繊維、好ましくは市販のチョップドガラス形状で使用されるガラス繊維などである。熱可塑性樹脂との相溶性を向上するために強化繊維はシラン化合物(例えば、シランカップリング剤)で表面を処理されていてもよい。強化用繊維は、上述した量で使用できるが、好ましくは、例えば、樹脂組成物の10重量%から50重量%、より好ましくは20重量%から35重量%の範囲で使用され得る。量が少ない場合、機械的特性の利点が少なく、そして50重量%を超えると溶融粘度が非常に高くなる。 Examples of preferable reinforcing fibers used in the present invention are carbon fibers, aramid fibers, and preferably glass fibers used in the form of commercially available chopped glass. In order to improve the compatibility with the thermoplastic resin, the surface of the reinforcing fiber may be treated with a silane compound (for example, a silane coupling agent). The reinforcing fibers can be used in the above-mentioned amounts, but can preferably be used in the range of, for example, 10% to 50% by weight, more preferably 20% to 35% by weight of the resin composition. When the amount is small, the advantage of mechanical properties is small, and when it exceeds 50% by weight, the melt viscosity becomes very high.
 本発明の樹脂組成物は、必要に応じてフィラーを含んでもよい。 The resin composition of the present invention may contain a filler as necessary.
 本発明に使用され得るフィラーの例は、ガラスビーズ、中空ガラス球、アモルファスシリカ、チョーク、マイカ、焼成カオリン、ワラストナイト、タルク、炭酸マグネシウム、硫酸バリウム又は類似の製品及びそれらを脂肪酸または同様の化合物で表面処理或いは脂肪酸または同様の化合物の存在下で粉砕したものなどである。熱可塑性樹脂向けのフィラーとして市場で広く販売されるいずれの微粒子もレーザーで計測した粉体の平均粒子径が2ミクロンから20ミクロンの範囲であれば、本発明の組成物に使用してもよい。 Examples of fillers that can be used in the present invention are glass beads, hollow glass spheres, amorphous silica, chalk, mica, calcined kaolin, wollastonite, talc, magnesium carbonate, barium sulfate or similar products and they are fatty acids or similar Those obtained by surface treatment with a compound or pulverized in the presence of a fatty acid or a similar compound. Any fine particles widely sold in the market as fillers for thermoplastic resins may be used in the composition of the present invention as long as the average particle size of the powder measured by laser is in the range of 2 to 20 microns. .
 フィラー(例えば、無機フィラー)の使用量は特に限定されない。例えば、熱可塑性樹脂の合計100重量部に対して、0.1重量部以上であってもよく、0.5重量部以上であってもよく、1重量部以上であってもよく、2重量部以上であってもよく、5重量部以上であってもよく、10重量部以上であってもよく、15重量部以上であってもよく、20重量部以上であってもよく、25重量部以上であってもよく、あるいは、30重量部以上であってもよい。また、必要に応じて、35重量部以上であってもよく、40重量部以上であってもよく、あるいは、45重量部以上であってもよい。そして、フィラー(例えば、無機フィラー)の使用量は、熱可塑性樹脂の合計100重量部に対して、100重量部以下であってもよく、90重量部以下であってもよく、80重量部以下であってもよく、70重量部以下であってもよく、60重量部以下であってもよく、あるいは、50重量部以下であってもよい。 The amount of filler (for example, inorganic filler) used is not particularly limited. For example, it may be 0.1 parts by weight or more, 0.5 parts by weight or more, 1 part by weight or more, 2 parts by weight with respect to 100 parts by weight of the total thermoplastic resin. Part or more, 5 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, 20 parts by weight or more, 25 parts by weight May be 30 parts by weight or more. Moreover, it may be 35 parts by weight or more, 40 parts by weight or more, or 45 parts by weight or more as required. And the usage-amount of a filler (for example, inorganic filler) may be 100 weight part or less with respect to a total of 100 weight part of a thermoplastic resin, may be 90 weight part or less, and may be 80 weight part or less. May be 70 parts by weight or less, 60 parts by weight or less, or 50 parts by weight or less.
 樹脂組成物が無機フィラーを多量に含む場合、難燃性において有利になる。樹脂組成物が無機フィラーを少量しか含まない場合、難燃性において不利になる。しかしながら、本発明においては、樹脂組成物が無機フィラーを少量しか含まない場合(例えば、上記列挙した上限よりも少ない場合、あるいは、さらに少ない場合)、あるいは、無機フィラーを含まない場合においても高い難燃性が達成される。すなわち、無機フィラーの含有量が上記列挙した上限のいずれかよりも少ない実施形態、あるいは、さらに少ない実施形態、例えば、熱可塑性樹脂の合計100重量部に対して、40重量部以下である実施形態、30重量部以下である実施形態、20重量部以下である実施形態、10重量部以下である実施形態、5重量部以下である実施形態、3重量部以下である実施形態、または、1重量部以下である実施形態、さらには含有量が0である実施形態などにおいて、本発明は高い難燃性を達成できる組成物を提供する。 When the resin composition contains a large amount of inorganic filler, it is advantageous in flame retardancy. When the resin composition contains only a small amount of an inorganic filler, it is disadvantageous in flame retardancy. However, in the present invention, even when the resin composition contains only a small amount of inorganic filler (for example, when it is less than the above-listed upper limit or when it is further less), or when it does not contain an inorganic filler, it is highly difficult. Flammability is achieved. That is, an embodiment in which the content of the inorganic filler is less than any of the above-listed upper limits, or an embodiment having a smaller content, for example, 40 parts by weight or less with respect to a total of 100 parts by weight of the thermoplastic resin. 30 parts by weight or less, 20 parts by weight or less, 10 parts by weight or less, 5 parts by weight or less, 3 parts by weight or less, or 1 part by weight In an embodiment that is less than or equal to parts, and an embodiment in which the content is 0, the present invention provides a composition that can achieve high flame retardancy.
 F)他の慣用的な添加剤
 本発明による衝撃改良スチレン系樹脂をベースとする新規の難燃組成物は一種あるいはそれ以上の他の慣用的な添加剤を含んでもよい。添加剤は有機添加剤であってもよく、無機添加剤であってもよい。このような慣用的な添加剤としては、例えば、下記化合物が挙げられる:
加工助剤、熱及び加工安定剤、UV安定剤、顔料、分散剤、離型剤、結晶核剤、衝撃改良剤として使用される部分架橋弾性ポリマー、及びこれらの混合物。
F) Other conventional additives The novel flame retardant compositions based on impact-modified styrenic resins according to the invention may contain one or more other conventional additives. The additive may be an organic additive or an inorganic additive. Such conventional additives include, for example, the following compounds:
Partially crosslinked elastomeric polymers used as processing aids, heat and processing stabilizers, UV stabilizers, pigments, dispersants, mold release agents, crystal nucleating agents, impact modifiers, and mixtures thereof.
 慣用的な添加剤(例えば、無機添加剤)の使用量は特に限定されない。例えば、熱可塑性樹脂の合計100重量部に対して、0.1重量部以上であってもよく、0.5重量部以上であってもよく、1重量部以上であってもよく、2重量部以上であってもよく、5重量部以上であってもよく、10重量部以上であってもよく、15重量部以上であってもよく、20重量部以上であってもよく、25重量部以上であってもよく、あるいは、30重量部以上であってもよい。また、必要に応じて、35重量部以上であってもよく、40重量部以上であってもよく、あるいは、45重量部以上であってもよい。そして、慣用的な添加剤(例えば、無機添加剤)の使用量は、熱可塑性樹脂の合計100重量部に対して、100重量部以下であってもよく、90重量部以下であってもよく、80重量部以下であってもよく、70重量部以下であってもよく、60重量部以下であってもよく、あるいは、50重量部以下であってもよい。 The amount of conventional additives (for example, inorganic additives) used is not particularly limited. For example, it may be 0.1 parts by weight or more, 0.5 parts by weight or more, 1 part by weight or more, or 2 parts by weight with respect to a total of 100 parts by weight of the thermoplastic resin. Part or more, 5 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, 20 parts by weight or more, 25 parts by weight May be 30 parts by weight or more. Moreover, it may be 35 parts by weight or more, 40 parts by weight or more, or 45 parts by weight or more as required. And the usage-amount of a conventional additive (for example, inorganic additive) may be 100 weight part or less with respect to a total of 100 weight part of a thermoplastic resin, and may be 90 weight part or less. 80 parts by weight or less, 70 parts by weight or less, 60 parts by weight or less, or 50 parts by weight or less.
 樹脂組成物が無機添加剤を多量に含む場合、難燃性において有利になる。樹脂組成物が無機添加剤を少量しか含まない場合、難燃性において不利になる。しかしながら、本発明においては、樹脂組成物が無機添加剤を少量しか含まない場合(例えば、上記列挙した上限よりも少ない場合、あるいは、さらに少ない場合)、あるいは、無機添加剤を含まない場合においても高い難燃性が達成される。すなわち、無機添加剤の含有量が上記列挙した上限のいずれかよりも少ない実施形態、あるいは、さらに少ない実施形態、例えば、熱可塑性樹脂の合計100重量部に対して、40重量部以下である実施形態、30重量部以下である実施形態、20重量部以下である実施形態、10重量部以下である実施形態、5重量部以下である実施形態、3重量部以下である実施形態、または、1重量部以下である実施形態、さらには含有量が0である実施形態などにおいて、本発明は高い難燃性を達成できる組成物を提供する。 When the resin composition contains a large amount of an inorganic additive, it is advantageous in terms of flame retardancy. When the resin composition contains only a small amount of an inorganic additive, it is disadvantageous in flame retardancy. However, in the present invention, even when the resin composition contains only a small amount of an inorganic additive (for example, when it is less than the above-listed upper limit or when it is further less), or when it does not contain an inorganic additive, High flame retardancy is achieved. That is, an embodiment in which the content of the inorganic additive is less than any of the above-listed upper limits, or an even smaller embodiment, for example, 40 parts by weight or less with respect to a total of 100 parts by weight of the thermoplastic resin. Embodiment, embodiment of 30 parts by weight or less, embodiment of 20 parts by weight or less, embodiment of 10 parts by weight or less, embodiment of 5 parts by weight or less, embodiment of 3 parts by weight or less, or 1 In an embodiment in which the content is not more than parts by weight, and in an embodiment in which the content is 0, the present invention provides a composition that can achieve high flame retardancy.
 以下の実験例は非限定的なものとして与えられる。 The following experimental examples are given as non-limiting examples.
 実験部分
 以下の実施例では、下に列挙した成分が使用された。
樹脂:
 ABS(Magnum ABS 3904, STYRON製)、以下ABSと表記。
Experimental Part In the examples below, the ingredients listed below were used.
resin:
ABS (Magnum ABS 3904, manufactured by STYRON), hereinafter referred to as ABS.
 HIPS(Edistir SR 550, Enichem Versalis製)、以下HIPSと表記。
強化繊維:
 ガラス繊維(PPG3786, PPG製)、以下GFと表記。
安定剤:
 ヒンダードフェノール熱安定剤(Irganox 1010, BASF製)、以下、Irg.1010と表記。
HIPS (Edistir SR 550, manufactured by Enchem Versalis), hereinafter referred to as HIPS.
Reinforcing fiber:
Glass fiber (PPG3786, manufactured by PPG), hereinafter referred to as GF.
Stabilizer:
Hindered phenol heat stabilizer (Irganox 1010, manufactured by BASF), hereinafter, Irg. Indicated as 1010.
 亜燐酸加工安定剤(Irgaphos 168, BASF製)、以下、Irg.168と表記。
次亜燐酸塩:
 次亜燐酸アルミニウム(Phoslite IP-A, イタルマッチケミカル製)、以下IP-Aと表記。
Phosphorous acid processing stabilizer (Irgaphos 168, manufactured by BASF), hereinafter, Irg. Indicated as 168.
Hypophosphite:
Aluminum hypophosphite (Phoslite IP-A, manufactured by Italmatch Chemical), hereinafter referred to as IP-A.
 芳香族燐酸エステル:
 レゾルシノールビス(ジ-2,6-キシリルホスフェート)(PX-200, 大八化学工業製)、以下RDXと表記。
ドリップ防止剤:
 フッ素化コポリマー(Dyneon MM 3595, 3M製)、以下PTFEと表記。
Aromatic phosphate ester:
Resorcinol bis (di-2,6-xylyl phosphate) (PX-200, manufactured by Daihachi Chemical Industry), hereinafter referred to as RDX.
Anti-drip agent:
Fluorinated copolymer (Dyneon MM 3595, manufactured by 3M), hereinafter referred to as PTFE.
 本発明によらない、比較例のための難燃剤:
次亜燐酸カルシウム(Phoslite IP-C, イタルマッチケミカル製)、以下IP-Cと表記。
シアヌル酸メラミン(Melagard MC25, イタルマッチケミカル製)、以下MCと表記。
ポリリン酸アンモニウム(Exolit AP 422, クラリアント製)、以下APPと表記。
比較例向けに考慮される滑剤
ポリエチレンワックス(Kemfluid 201, UNION DERIVAN, S.A.製)、以下、PEwaxと表記。
ステアリン酸カルシウム(Kemistab EC, UNION DERIVAN, S.A.製)、以下CaStearと表記。
比較例向けの他の添加剤
ペンタエリスリトール(Charmor PM40, Perstorp製)、以下PERTと表記。
硫酸アンモニウム(試薬グレード)、以下(NH)SOとして表記。
塩化アンモニウム(試薬グレード)、以下NHClとして表記。
Flame retardant for comparative examples not according to the invention:
Calcium hypophosphite (Phoslite IP-C, manufactured by Italmatch Chemical), hereinafter referred to as IP-C.
Melamine cyanurate (Melagard MC25, manufactured by Ital Match Chemical), hereinafter referred to as MC.
Ammonium polyphosphate (Exolit AP 422, manufactured by Clariant), hereinafter referred to as APP.
A lubricant polyethylene wax (Kemfluid 201, manufactured by UNION DERIVAN, SA) considered for the comparative example, hereinafter referred to as PEwax.
Calcium stearate (Kemistab EC, UNION DERIVAN, manufactured by SA), hereinafter referred to as CaStear.
Another additive for the comparative example, pentaerythritol (Charmor PM40, manufactured by Perstorp), hereinafter referred to as PERT.
Ammonium sulfate (reagent grade), hereinafter expressed as (NH 4 ) SO 4 .
Ammonium chloride (reagent grade), hereinafter denoted as NH 4 Cl.
 本発明による実施例(実施例6から実施例9)及び比較例(比較例1から5、比較例10から17)
 表1に示される全ての成分は220~230℃の範囲の温度で直径20mmの二軸押出機で混合された。ペレットは異なった厚みに射出成形され、5本の試験片を24時間23℃湿度50%の条件とした。難燃性はUL-94の手順に従い報告された。試験がV-0、V-1、V-2に達しない場合はNC種別が与えられた。サンプルを押出し或いは射出することができなかった場合、NPに区分された。
Examples according to the present invention (Examples 6 to 9) and comparative examples (Comparative Examples 1 to 5, Comparative Examples 10 to 17)
All the components shown in Table 1 were mixed in a twin screw extruder with a diameter of 20 mm at a temperature in the range of 220-230 ° C. The pellets were injection molded to different thicknesses, and five test pieces were subjected to conditions of 23 ° C. and 50% humidity for 24 hours. Flame retardancy was reported according to the UL-94 procedure. If the test did not reach V-0, V-1, or V-2, the NC type was given. If the sample could not be extruded or injected, it was classified as NP.
 表1(実施例および比較例) Table 1 (Examples and Comparative Examples)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 *NC:V-0、V-1、V-2に達しなかった。 * NC: V-0, V-1, and V-2 were not reached.
  NP:成形加工できなかった。 NP: Could not be molded.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 *NC:V-0、V-1、V-2に達しなかった。 * NC: V-0, V-1, and V-2 were not reached.
  NP:成形加工できなかった。 NP: Could not be molded.
 表1の解説 本発明の実施例(実施例6から実施例9)及び比較例(比較例1から比較例5)
 難燃剤としてIP-Aのみを35%添加した比較例1はUL-94のV-0に1.6mmでは達しなかった。RDXのみ25%を含む比較例2は加工できなかった。RDXのみを20%含む比較例3はUL-94で効果的でなかった。IP-AとRDXの混合品の比較例4はUL-94の1.6mmでV-0には達せずV-2であった。PTFEの存在下IP-Aを含む樹脂組成物の比較例5は1.6mmではUL-94のV-0には達しなかった。
Explanation of Table 1 Examples (Examples 6 to 9) and Comparative Examples (Comparative Examples 1 to 5) of the present invention
Comparative Example 1 in which only 35% of IP-A was added as a flame retardant did not reach UL-94 V-0 at 1.6 mm. Comparative Example 2 containing only 25% of RDX could not be processed. Comparative Example 3 containing 20% RDX alone was not effective with UL-94. Comparative Example 4 of the mixture of IP-A and RDX was UL-94 of 1.6 mm and V-2 did not reach V-0. Comparative Example 5 of the resin composition containing IP-A in the presence of PTFE did not reach V-0 of UL-94 at 1.6 mm.
 IP-A、RDX及びPTFEの同じ組み合わせである、本発明の実施例6及び9はABS及びHIPSどちらでも1.6mmでUL-94のV-0に達した。 Examples 6 and 9 of the present invention, which are the same combination of IP-A, RDX and PTFE, reached V-0 of UL-94 at 1.6 mm for both ABS and HIPS.
 IP-A、RDX及びPTFEの組み合わせを示す本発明の実施例7はガラス繊維存在下でも、UL-94のV-0に達する樹脂組成物を与えた。 Example 7 of the present invention showing a combination of IP-A, RDX and PTFE gave a resin composition that reached V-0 of UL-94 even in the presence of glass fiber.
 IP-A、RDX及びPTFEの組み合わせで安定剤を用いない実施例8は効果的で、1.6mmでUL-94のV-0に達した。 Example 8 using a combination of IP-A, RDX and PTFE without using a stabilizer was effective, and reached UL-094 V-0 at 1.6 mm.
 表1の解説、比較例10から14(CN102746608A)
 CN102756608Aに記載される、次亜燐酸アルミニウム(IP-A)と助剤として記載される他の要素との組み合わせを示す比較例10から14はUL-94のV-0に達しなかったか、あるいは成形加工できなかった。
Explanation of Table 1, Comparative Examples 10 to 14 (CN1027746608A)
Comparative Examples 10 to 14 showing combinations of aluminum hypophosphite (IP-A) and other elements described as auxiliaries described in CN10275606608A did not reach V-0 of UL-94 or molded Could not process.
 表1の解説、比較例15及び16(CN103113708A)
 CN103113708Aに記載される次亜燐酸アルミニウム(IP-A)とアンモニウム塩の組み合わせを示す比較例15及び16は成形加工できなかった。
Explanation of Table 1, Comparative Examples 15 and 16 (CN103113708A)
Comparative Examples 15 and 16 showing the combination of aluminum hypophosphite (IP-A) and ammonium salt described in CN103113708A could not be molded.
 上述のように、CN102746608A及びCN103113708Aに記載される樹脂組成物は、1.6mmはおろか3.2mmの試験片でもV-0に達しないことから、本特許の目標に対しては満足に働かない。 As described above, the resin composition described in CN1027746608A and CN103113708A does not reach V-0 even with a test piece of 1.6 mm or 3.2 mm. .
 それどころか、本発明による組成物に関して先行技術による組成物との違いは、本発明による難燃樹脂組成物であればUL-94V試験で3.2mmの厚みならV-0に達することである。 On the contrary, the difference between the composition according to the present invention and the composition according to the prior art is that the flame retardant resin composition according to the present invention reaches V-0 in the UL-94V test when the thickness is 3.2 mm.
 表1の解説、比較例17(特開2002-161211)
 特開2002-161211は特許請求の範囲に、様々な熱可塑性樹脂を記載し、そして0026段落において、ポリスチレン系樹脂の量が少ない場合に難燃性等を高いレベルに保持できると記載している。そして、実施例に記載される樹脂は90%の他樹脂と10%のABSの混合物のみである。この樹脂混合物に次亜燐酸カルシウム、RDX及びGFを添加した場合に3.2mmでV-0に達することは開示されているが、ABS樹脂を主成分樹脂とする場合またはABS樹脂を単独で使用する場合での性能は示されない。比較例17に示したように、実施例1の配合の樹脂成分をABS樹脂のみにした場合、3.2mmでもV-0は得られなかった。特開2002-161211の発明においては、衝撃改良スチレン系樹脂を主成分とする樹脂組成物においてUL-94のV-0を達成できないことが理解される。
Explanation of Table 1, Comparative Example 17 (Japanese Patent Laid-Open No. 2002-161211)
Japanese Patent Application Laid-Open No. 2002-161211 describes various thermoplastic resins in the claims, and in the 0026 paragraph, it is described that flame retardance can be maintained at a high level when the amount of polystyrene resin is small. . The resin described in the examples is only a mixture of 90% other resin and 10% ABS. Although it has been disclosed that when calcium hypophosphite, RDX and GF are added to this resin mixture, V-0 is reached at 3.2 mm. However, when ABS resin is the main component resin or ABS resin is used alone Performance is not shown when doing so. As shown in Comparative Example 17, when the resin component blended in Example 1 was only ABS resin, V-0 was not obtained even at 3.2 mm. In the invention of Japanese Patent Laid-Open No. 2002-161211, it is understood that V-0 of UL-94 cannot be achieved in a resin composition containing an impact-improved styrene resin as a main component.
 (比較例18から19および実施例20から21)
 表2に示した成分は高速の実験室用ミキサーで均一に混合され、不燃性で空隙がなく低熱伝導のベース板の上に長さ250mm幅20mm高さ10mmの途切れないストリップ或いは粉の列に形成された。粉体或いは顆粒物質は長さ250mmの高さ10mm幅20mmの三角形断面をもつ型に緩く充填された。その後その型は固体表面から2cmの高さから3回落とされた。その後必要な場合、型は再度充填された。その後側面の制限を取り外し、過剰分を除く。不燃性で空隙の無い低熱伝導のベース板を型の上に置き、器具をひっくり返して型を外した。ガスバーナー(直径5mm)による炎を粉に着火するまで或いは最大2分間粉の列の一方の末端に当てた。粉が着火しない或いは炎やくすぶりを伴った燃焼が200mmの粉の列を4分間(あるいは40分間)で伝播しない場合は、この物質は可燃性でないとみなした。粉が燃焼した場合は燃焼時間を報告した。
(Comparative Examples 18 to 19 and Examples 20 to 21)
The ingredients shown in Table 2 are uniformly mixed in a high speed laboratory mixer into a non-flammable, void-free, low thermal conductive base plate in a continuous strip or powder array of 250 mm long, 20 mm high and 10 mm high. Been formed. The powder or granular material was loosely filled into a mold having a triangular cross section of 250 mm long, 10 mm high and 20 mm wide. The mold was then dropped three times from a height of 2 cm from the solid surface. The mold was then refilled if necessary. Then remove the side restrictions and remove the excess. A non-combustible, void-free base plate with low thermal conductivity was placed on the mold, and the mold was turned upside down. A flame from a gas burner (5 mm in diameter) was applied to one end of the powder row until it ignited or for a maximum of 2 minutes. If the powder did not ignite or combustion with flames and smolders did not propagate through the 200 mm row of powder in 4 minutes (or 40 minutes), the material was considered non-flammable. When the powder burned, the burning time was reported.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記比較例18および19から理解されるとおり、次亜燐酸アルミニウムを単独で使用する場合または高い純度で使用する場合には、可燃性の問題がある。上記実施例20および21から理解されるとおり、相当量の芳香族燐酸エステルと混合することにより、その問題が解決される。 As understood from Comparative Examples 18 and 19, there is a problem of flammability when aluminum hypophosphite is used alone or in high purity. As understood from Examples 20 and 21 above, the problem is solved by mixing with a substantial amount of an aromatic phosphate.
 本発明の目的は厚みの薄い素材でUL-94規格のV-0を達成するハロゲンフリーの高難燃スチレン衝撃改良樹脂を提供することにある。本発明の組成物等によりその目的が達成される。 An object of the present invention is to provide a halogen-free highly flame-retardant styrene impact-improving resin that achieves V-0 of the UL-94 standard with a thin material. The object is achieved by the composition of the present invention.
 従って、一つの実施形態において、本発明は以下を提供する。
(項1) 以下の成分を含むハロゲンフリー難燃性衝撃改良スチレン熱可塑性組成物:
 A)少なくとも一種の熱可塑性衝撃改良スチレン系樹脂
 B)第一の難燃剤成分として少なくとも一種の燐の原子価状態が+1である次亜燐酸金属塩
 C)第二の難燃剤成分として少なくとも一つの芳香族燐酸エステル
 D)少なくとも一種のドリップ防止剤
 E)フィラー及び/又は強化繊維
 F)慣用的な添加剤。
(項2) 慣用的な添加物が、熱及び加工安定剤、UV安定剤、顔料、分散剤、離型剤、結晶核剤及びその混合物であることを特徴とする上記項1の熱可塑性組成物。
(項3) 次亜燐酸金属塩が次亜燐酸アルミニウムであることを特徴とする上記項1または項2の熱可塑性組成物。
(項4) 芳香族燐酸エステルがレゾルシノールビス(ジ-2,6-キシレニルホスフェート)であることを特徴とする上記項1~項3のいずれかに記載の熱可塑性組成物。
(項5) ドリップ防止剤がポリテトラフルオロエチレンPTFEであることを特徴とする上記項1~項4のいずれかに記載の熱可塑性組成物。
(項6) スチレン衝撃改良熱可塑性樹脂がアクリロニトリルブタジエンスチレン共重合樹脂ABSであることを特徴とする上記項1~項5のいずれかに記載の熱可塑性組成物。(項7) スチレン衝撃改良熱可塑性樹脂が高衝撃ポリスチレンHIPSであることを特徴とする上記項1~項6のいずれかに記載の熱可塑性組成物。
(項8) 前記第一の難燃剤成分と前記第二の難燃剤成分が均一に混合されて得られた非可燃性粉体混合物を含むことを特徴とする難燃剤であって、上記項1~項7のいずれかに記載の熱可塑性組成物において使用するための難燃剤。
(項9) 高衝撃ポリスチレンHIPS及び/又はアクリロニトリルブタジエンスチレンコポリマーABS熱可塑性組成物における難燃剤としての、上記項8の難燃剤の使用。
(項10) 良好な外観と機械的特性を有する難燃成形組成物及びその製品の製造における上記項1の熱可塑性組成物の使用。
Accordingly, in one embodiment, the present invention provides:
(Item 1) Halogen-free flame-retardant impact-modified styrene thermoplastic composition containing the following components:
A) At least one thermoplastic impact-modified styrene resin B) As a first flame retardant component, at least one phosphorus hypophosphite metal salt in which the valence state is +1 C) At least one second flame retardant component Two aromatic phosphates D) at least one anti-drip agent E) fillers and / or reinforcing fibers F) conventional additives.
(Item 2) The thermoplastic composition according to item 1, wherein the conventional additive is a heat and processing stabilizer, a UV stabilizer, a pigment, a dispersant, a release agent, a crystal nucleating agent, and a mixture thereof. object.
(Item 3) The thermoplastic composition according to Item 1 or Item 2, wherein the metal hypophosphite salt is aluminum hypophosphite.
(Item 4) The thermoplastic composition according to any one of Items 1 to 3, wherein the aromatic phosphate ester is resorcinol bis (di-2,6-xylenyl phosphate).
(Item 5) The thermoplastic composition according to any one of Items 1 to 4, wherein the anti-drip agent is polytetrafluoroethylene PTFE.
(Item 6) The thermoplastic composition according to any one of Items 1 to 5, wherein the styrene impact-improved thermoplastic resin is acrylonitrile butadiene styrene copolymer resin ABS. (Item 7) The thermoplastic composition according to any one of Items 1 to 6, wherein the styrene impact-modified thermoplastic resin is high impact polystyrene HIPS.
(Item 8) A flame retardant comprising the non-combustible powder mixture obtained by uniformly mixing the first flame retardant component and the second flame retardant component, wherein 8. A flame retardant for use in the thermoplastic composition according to any one of items 7 to 7.
(Item 9) Use of the flame retardant according to item 8 above as a flame retardant in a high impact polystyrene HIPS and / or acrylonitrile butadiene styrene copolymer ABS thermoplastic composition.
(Item 10) Use of the thermoplastic composition according to item 1 in the production of a flame retardant molding composition having good appearance and mechanical properties, and a product thereof.
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。 As described above, the present invention has been exemplified using the preferred embodiment of the present invention, but the present invention should not be construed as being limited to this embodiment. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge from the description of specific preferred embodiments of the present invention. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood.

Claims (14)

  1.  ハロゲン非含有難燃熱可塑性樹脂組成物であって、
      (A)熱可塑性樹脂、
      (B)次亜燐酸アルミニウム、
      (C)芳香族燐酸エステル、及び
      (D)ドリップ防止剤
    を含み、
     該(A)熱可塑性樹脂のうちの50重量%以上が衝撃改良スチレン系樹脂である、
    樹脂組成物。
    Halogen-free flame retardant thermoplastic resin composition,
    (A) thermoplastic resin,
    (B) aluminum hypophosphite,
    (C) an aromatic phosphate ester, and (D) an anti-drip agent,
    50% by weight or more of the (A) thermoplastic resin is an impact-improved styrene resin,
    Resin composition.
  2.  前記(A)熱可塑性樹脂のうちの80重量%以上が衝撃改良スチレン系樹脂である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein 80% by weight or more of the thermoplastic resin (A) is an impact-modified styrene resin.
  3.  前記衝撃改良スチレン系樹脂がABS樹脂である、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the impact-modified styrene resin is an ABS resin.
  4.  前記(C)芳香族燐酸エステルが芳香族縮合燐酸エステルである請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the (C) aromatic phosphate ester is an aromatic condensed phosphate ester.
  5.  前記(C)芳香族燐酸エステルがレゾルシノールビス(ジ-2,6-キシリルホスフェート)である請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the (C) aromatic phosphate ester is resorcinol bis (di-2,6-xylyl phosphate).
  6.  前記(D)ドリップ防止剤がポリテトラフルオロエチレンをベースとする樹脂である請求項1~5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the (D) anti-drip agent is a resin based on polytetrafluoroethylene.
  7.  前記(B)次亜燐酸アルミニウムと前記(C)芳香族燐酸エステルの重量比が(B):(C)=90:10~60:40である請求項1~6のいずれか1項に記載の樹脂組成物。 The weight ratio of (B) aluminum hypophosphite to (C) aromatic phosphate is (B) :( C) = 90: 10 to 60:40, according to any one of claims 1 to 6. Resin composition.
  8.  前記(B)次亜燐酸アルミニウムと前記(C)芳香族燐酸エステルの重量比が(B):(C)=85:15~65:35である請求項1~6のいずれか1項に記載の樹脂組成物。 The weight ratio of the (B) aluminum hypophosphite and the (C) aromatic phosphate ester is (B) :( C) = 85: 15 to 65:35. Resin composition.
  9.  前記(B)次亜燐酸アルミニウムと前記(C)芳香族燐酸エステルの重量比が(B):(C)=80:20~70:30である請求項1~6のいずれか1項に記載の樹脂組成物。 The weight ratio of (B) aluminum hypophosphite to (C) aromatic phosphate is (B) :( C) = 80: 20 to 70:30. Resin composition.
  10.  前記ドリップ防止剤の量が樹脂組成物のうち0.1~0.6重量%である請求項6に記載の樹脂組成物。 The resin composition according to claim 6, wherein the amount of the anti-drip agent is 0.1 to 0.6% by weight of the resin composition.
  11.  ガラス繊維を含まない、請求項1~10のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 10, which does not contain glass fiber.
  12.  ハロゲン非含有熱可塑性樹脂組成物を難燃化するための難燃剤であって、
     該熱可塑性樹脂組成物は、
      (A)熱可塑性樹脂、及び
      (D)ドリップ防止剤
    を含み、
     該(A)熱可塑性樹脂のうちの50重量%以上が衝撃改良スチレン系樹脂であり、
     該難燃剤が、
      (B)次亜燐酸アルミニウム、及び
      (C)芳香族燐酸エステル
    を含み、該(C)芳香族燐酸エステルの重量が、該(B)次亜燐酸アルミニウムと該(C)芳香族燐酸エステルの合計重量のうちの10%以上である、難燃剤。
    A flame retardant for flame retardant a halogen-free thermoplastic resin composition,
    The thermoplastic resin composition is
    (A) a thermoplastic resin, and (D) an anti-drip agent,
    50% by weight or more of the (A) thermoplastic resin is an impact-modified styrene resin,
    The flame retardant is
    (B) aluminum hypophosphite, and (C) aromatic phosphate ester, wherein the weight of (C) aromatic phosphate ester is the sum of (B) aluminum hypophosphite and (C) aromatic phosphate ester A flame retardant that is 10% or more of the weight.
  13.  前記衝撃改良スチレン系樹脂がABSまたはHIPSであり、前記(C)芳香族燐酸エステルがレゾルシノールビス(ジ-2,6-キシリルホスフェート)であり、前記(B)次亜燐酸アルミニウムと前記(C)芳香族燐酸エステルの重量比が(B):(C)=85:15~65:35である、請求項12に記載の難燃剤。 The impact-modified styrenic resin is ABS or HIPS, the (C) aromatic phosphate ester is resorcinol bis (di-2,6-xylyl phosphate), the (B) aluminum hypophosphite and the (C The flame retardant according to claim 12, wherein the weight ratio of the aromatic phosphate ester is (B) :( C) = 85: 15 to 65:35.
  14.  前記衝撃改良スチレン系樹脂が高衝撃ポリスチレン樹脂(HIPS)である請求項1、2、4~10のいずれか1項に記載の樹脂組成物。 11. The resin composition according to claim 1, wherein the impact-modified styrene resin is a high impact polystyrene resin (HIPS).
PCT/JP2016/004744 2015-10-30 2016-10-28 Environmentally friendly flame-retardant composition and molding material that are based on thermoplastic impact-modified styrene polymer WO2017073070A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017547628A JP6836246B2 (en) 2015-10-30 2016-10-28 Environmentally friendly flame-retardant compositions and molding materials based on thermoplastic impact-improved styrene-based polymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015214464 2015-10-30
JP2015-214464 2015-10-30

Publications (1)

Publication Number Publication Date
WO2017073070A1 true WO2017073070A1 (en) 2017-05-04

Family

ID=58631514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004744 WO2017073070A1 (en) 2015-10-30 2016-10-28 Environmentally friendly flame-retardant composition and molding material that are based on thermoplastic impact-modified styrene polymer

Country Status (2)

Country Link
JP (1) JP6836246B2 (en)
WO (1) WO2017073070A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961254A (en) * 2020-08-27 2020-11-20 湖北航天化学技术研究所 Preparation method of modified aluminum hypophosphite flame retardant

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124466A (en) * 1997-08-08 1999-05-11 Clariant Gmbh Synergistic flame retardant combination for polymer
JPH11181229A (en) * 1997-12-24 1999-07-06 Sumika Abs Latex Kk Sliding resin composition
WO2008015991A1 (en) * 2006-08-03 2008-02-07 Asahi Kasei Chemicals Corporation Flame-retardant resin composition
JP2008527070A (en) * 2004-12-30 2008-07-24 チェイル インダストリーズ インコーポレイテッド Flame retardant styrene resin composition
JP2011506706A (en) * 2007-12-20 2011-03-03 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Flame-proof and impact-resistant polycarbonate composition
WO2011152371A1 (en) * 2010-06-04 2011-12-08 ユニチカ株式会社 Thermoplastic resin composition and molded products thereof
CN104371207A (en) * 2014-11-25 2015-02-25 中国科学院宁波材料技术与工程研究所 Flame retardant material and preparation method thereof
JP2015046258A (en) * 2013-08-27 2015-03-12 住友電気工業株式会社 Halogen-free flame-retardant insulated wire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE398651T1 (en) * 2003-11-07 2008-07-15 Italmatch Chemicals Spa HALOGEN-FREE FLAME RETARDANT POLYCARBONATE COMPOSITIONS
ES2755124T3 (en) * 2014-05-06 2020-04-21 Italmatch Chemicals Spa Eco-friendly flame retardant molding compositions based on impact modified thermoplastic styrenic polymers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124466A (en) * 1997-08-08 1999-05-11 Clariant Gmbh Synergistic flame retardant combination for polymer
JPH11181229A (en) * 1997-12-24 1999-07-06 Sumika Abs Latex Kk Sliding resin composition
JP2008527070A (en) * 2004-12-30 2008-07-24 チェイル インダストリーズ インコーポレイテッド Flame retardant styrene resin composition
WO2008015991A1 (en) * 2006-08-03 2008-02-07 Asahi Kasei Chemicals Corporation Flame-retardant resin composition
JP2011506706A (en) * 2007-12-20 2011-03-03 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Flame-proof and impact-resistant polycarbonate composition
WO2011152371A1 (en) * 2010-06-04 2011-12-08 ユニチカ株式会社 Thermoplastic resin composition and molded products thereof
JP2015046258A (en) * 2013-08-27 2015-03-12 住友電気工業株式会社 Halogen-free flame-retardant insulated wire
CN104371207A (en) * 2014-11-25 2015-02-25 中国科学院宁波材料技术与工程研究所 Flame retardant material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961254A (en) * 2020-08-27 2020-11-20 湖北航天化学技术研究所 Preparation method of modified aluminum hypophosphite flame retardant

Also Published As

Publication number Publication date
JP6836246B2 (en) 2021-02-24
JPWO2017073070A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
US5952408A (en) Flameproof thermoplastic resin compositions
EP1976913A1 (en) Halogen-free flame retardant compositions, thermoplastic compositions comprising the same and methods of producing the compositions
JP7112422B2 (en) Flame Retardant Styrene-Containing Formulation
CN101412843A (en) Flame-retardant polycarbonate and acrylonitrile-butadiene-styrene resin compositions
US5864004A (en) Flame retardant polymer resin composition having improved heat distortion temperature and mechanical properties
KR102181722B1 (en) Environmental friendly flame retardant moulding compositions based on thermoplastic impact modified styrenic polymers
JP6836246B2 (en) Environmentally friendly flame-retardant compositions and molding materials based on thermoplastic impact-improved styrene-based polymers
JP7153029B2 (en) Flame-retardant styrene-containing composition
EP0731140B1 (en) Flameproof thermoplastic resin compositions
KR20120133374A (en) Flame resistant styrene based compositions comprising antimony pentoxide
KR101140516B1 (en) Thermoplastic flame retardant resin composition
JP6092978B2 (en) Thermoplastic resin composition and molded article produced therefrom
KR101683339B1 (en) Antidripping Agent for Styrene based Flame Resistant Resin, and Styrene Flame Resistant Resin Composition Comprising The Same
KR101769185B1 (en) Thermoplastic resin compositions
JP3432069B2 (en) Polycarbonate flame retardant resin composition
KR101630515B1 (en) Char enhancing agent and phosphorus based flame retard resin composition
JPH02124957A (en) High-rigidity flame-retarding styrene resin composition
JP2001200133A (en) Melt-drip type flame-retarded styrene-based resin composition
JPH05504582A (en) Ignition-resistant carbonate polymer blend composition
JP2018158978A (en) Resin composition, molding, and method for producing resin composition
KR100407855B1 (en) Thermoplastic composition with flame retardancy
GB2329639A (en) Flame retardant resin composition
KR101236649B1 (en) Thermoplastic flame retardant resin composition
JPH0762100B2 (en) Flame-retardant thermoplastic resin composition
KR20160031182A (en) Nonhlogen flame retardent resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547628

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859308

Country of ref document: EP

Kind code of ref document: A1