WO2017072035A1 - Polymères séquencés amphiphiles solubles en milieu fortement salin - Google Patents

Polymères séquencés amphiphiles solubles en milieu fortement salin Download PDF

Info

Publication number
WO2017072035A1
WO2017072035A1 PCT/EP2016/075329 EP2016075329W WO2017072035A1 WO 2017072035 A1 WO2017072035 A1 WO 2017072035A1 EP 2016075329 W EP2016075329 W EP 2016075329W WO 2017072035 A1 WO2017072035 A1 WO 2017072035A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomers
radical polymerization
meth
alkyl
polymer
Prior art date
Application number
PCT/EP2016/075329
Other languages
English (en)
Inventor
David James Wilson
Mikel Morvan
Max Chabert
Arnaud Cadix
Original Assignee
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations filed Critical Rhodia Operations
Priority to CA3002163A priority Critical patent/CA3002163A1/fr
Priority to US15/770,352 priority patent/US10808064B2/en
Publication of WO2017072035A1 publication Critical patent/WO2017072035A1/fr
Priority to US17/021,205 priority patent/US11753493B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1812C12-(meth)acrylate, e.g. lauryl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]

Definitions

  • Soluble amphiphilic block polymers in highly saline media Soluble amphiphilic block polymers in highly saline media
  • the present invention relates to a particular polymerization process, which provides access to water-soluble type associative amphiphilic block polymers having high solubility in a high salt medium, which are typically useful in petroleum extractions operations involving rich aqueous media.
  • salts such as the seawater of some parts of the globe or brines with high salt content, up to 30% by weight).
  • the accessible polymers according to the invention are of the type formed of hydrophilic units (water-soluble or hydrodispersible) interrupted in different places by hydrophobic sequences.
  • hydrophilic units water-soluble or hydrodispersible
  • hydrophobic sequences a known method is that known as "micellar radical polymerization", examples of which have been described in US Patent 4,432,881 or in Polymer, vol. 36, No. 16, pp. 3197-321 1 (1996), to which reference may be made for more details concerning the technique of micellar radical polymerization.
  • micellar radical polymerization which will be referred to in the remainder of the description as "micellar polymerization" for the sake of brevity, block polymers of the multiblock type are synthesized by copolymerization of hydrophilic monomers and hydrophobic monomers.
  • an aqueous dispersing medium typically water or a water / alcohol mixture
  • aqueous dispersing medium typically water or a water / alcohol mixture
  • hydrophilic monomers in the solubilized or dispersed state in said medium
  • micellar solution the hydrophobic monomers contained in the micelles are called "micellar solution".
  • the micellar solution to which reference is made is a micro-heterogeneous system which is generally isotropic, optically transparent and thermodynamically stable.
  • the monomers contained in the micelles may have a surfactant character and ensure at least part of the stabilization of the micelle; in this case, we speak broad sense, of "self-micellizable” monomers (that they are suitable for themselves only to stabilize the micelles or only in association with surfactant).
  • micellar solution of the type used in micellar polymerization is to be distinguished from a microemulsion.
  • a micellar solution is formed at any concentration exceeding the critical micellar concentration of the surfactant employed, with the only condition that the hydrophobic monomer is soluble at least to a certain extent within the internal space of the micelles. .
  • a micellar solution also differs from an emulsion due to the absence of an internal homogeneous phase: the micelles contain a very small number of molecules (less than 1000 typically, in general less than 500 and typically from 1 to 100, with most often 1 to 50 monomers and at most a few hundred surfactant molecules when a surfactant is present) and the micellar solution generally has physical properties similar to those of surfactant micelles without monomers. Moreover, most often, a micellar solution is transparent vis-à-vis visible light, given the small size of the micelles that does not lead to refraction phenomena, unlike the drops of an emulsion, which refract the light and confers on it its hazy or characteristic white appearance.
  • micellar polymerization technique results in characteristic block polymers that each contain several hydrophobic blocks of substantially the same size and where this size can be controlled. Indeed, given the quartering of hydrophobic monomers in the micelles, each hydrophobic blocks formed and controlled size and substantially contains a number n H defined hydrophobic monomers, the number n H can be calculated as follows (Macromolecular Chem. Physics , 202, 8, 1384-1397, 2001):
  • N agg is the number of aggregation (also called aggregation number) of the surfactant, which reflects the number of surfactants present in each micelle
  • [M H ] is the molar concentration of hydrophobic monomer in the medium
  • surfactant is the molar concentration of surfactant in the medium
  • cmc is the critical micellar (molar) concentration
  • micellar polymerization technique thus allows interesting control of the hydrophobic units introduced into the polymers formed, namely: an overall control of the mole fraction of hydrophobic units in the polymer (by modulating the ratio of the concentrations of the two monomers); and
  • the multiblock polymers obtained by micellar polymerization also have an associative nature, making them, in absolute terms, good candidates for applications as viscosifying agents.
  • micellar polymerization allows, in the most general case, to integrate hydrophobic sequences of controlled size within hydrophilic chains, which makes it possible to synthesize self-associative polymers, it does not make it possible general, a control of the overall size of the synthesized polymers, nor the microstructure of these polymers, which does not allow to finely modulate the properties of these self-associative polymers.
  • the lack of control of the microstructure does not allow to play sufficiently fine on the properties of polymers synthesized in micellar polymerization. It also prohibits access to copolymers with controlled architecture.
  • micellar polymerization processes are generally limited to highly diluted systems to allow the addition and mixing of reagents.
  • the molecular weights obtained in micellar radical polymerization are generally of the order of 500,000 to 5,000,000 g / mol, for example from 500,000 to 3,000,000.
  • WO 2013/060741 describes a specific micellar polymerization process carried out in the presence of a radical polymerization control agent which makes it possible to retain the advantages of micellar polymerization while avoiding the aforementioned problems.
  • An object of the present invention is to provide block polymers having the advantages of micellar polymerization, and more preferably those described in the aforementioned application WO 2013/060741, and which may more specifically be easily dispersed or solubilized in medium. strongly saline.
  • the invention aims to provide a process giving access to polymer compositions which: i. comprise hydrophobic blocks of controlled size, of the type that those obtained in conventional micellar polymerization, preferably with a control of the average molecular weight of the synthesized chains and the microstructure of the polymers, namely a homogeneity, from one polymer chain to another, of the distribution of the hydrophobic sequences within the hydrophilic backbone;
  • aqueous medium comprising up to 50 g / l of salt, preferably in the range of up to 100 g / l of salts, and more preferably up to 200 g / l of salts or more, with no effect precipitation of the polymers, and this preferably without formation of any detectable turbidity to the eye.
  • the subject of the present invention is a process for the preparation of a block copolymer, which comprises a micellar radical polymerization step (E) in which an aqueous medium is placed in contact with one another.
  • E micellar radical polymerization step
  • M micellar radical polymerization step
  • hydrophilic monomers solubilized or dispersed in said aqueous medium (M); hydrophobic monomers in the form of a micellar solution, namely containing, in the dispersed state within the medium (M), micelles comprising these hydrophobic monomers;
  • At least one radical polymerization initiator this initiator being typically water-soluble or water-dispersible; and preferably at least one radical polymerization control agent, wherein said micelles comprise at least one surfactant of amphoteric nature, preferably of betaine or sultaine type.
  • the invention also relates to the polymer compositions of the type obtained according to the process comprising the step (E) carried out under the aforementioned conditions, as well as the polymers which are contained in these compositions, where they are in association with the surfactants employed in the radical polymerization.
  • the inventors have now discovered that a controlled micellar polymerization process of the type described in application WO 2013/060741 carried out with a particular surfactant, namely an amphoteric surfactant, the
  • a particular surfactant namely an amphoteric surfactant
  • the polymer composition obtained at the end of the polymerization which contains the surfactants employed during the micellar polymerization, has a particularly high solubility.
  • amphoteric surfactants according to the invention are found to be much more soluble in a highly saline medium than the polymers obtained under the same conditions but using the most commonly used surfactant (and, so to speak, the only one in practice. ) namely sodium dodecyl sulphate (SDS). More generally, the use of amphoteric surfactants according to the invention improves the dissolution properties of the polymer compositions obtained with respect to the use of an anionic surfactant used without amphoteric surfactant.
  • SDS sodium dodecyl sulphate
  • the aqueous medium (M) employed in step (E) of the process of the invention is a medium comprising water, preferably at least 50% by weight, or even at least 80%, for example at least 90%, or at least 95%.
  • This aqueous medium may optionally comprise other solvents than water, for example a water-miscible alcohol.
  • the medium (M) may be, for example, a hydroalcoholic mixture.
  • the medium (M) may comprise other solvents, preferably at a concentration where said solvent is miscible with water, which may in particular make it possible to reduce the amount of stabilizing surfactants employed.
  • the medium (M) may comprise pentanol, or any other additive for modulating the aggregation number of the surfactants.
  • micellar radical polymerization carried out in step (E), when it is carried out in the presence of a radical polymerization control agent, makes it possible, in addition to the advantages generally observed in micellar polymerization (namely the control of the molar fraction of hydrophobic units in the polymers, and (ii) a control of the number of hydrophobic units in each hydrophobic block):
  • the polymers obtained under the conditions of the present invention in the presence of a radical polymerization control agent have a controlled structure, and their average molar mass can be finely controlled.
  • These polymers have a specific structure, namely that they are, schematically, based on a backbone formed of hydrophilic units (water-soluble or hydrodispersible) interrupted in different places by small hydrophobic sequences, these hydrophobic sequences (“hydrophobic blocks” ) being of substantially identical size and present substantially the same number and proportion on all the polymer chains.
  • radical polymerization control agent is meant, in the sense of the present description, a compound capable of extending the life of the growing polymer chains in a polymerization reaction and to confer on the polymerization a living or controlled character .
  • This control agent is typically a reversible transfer agent as implemented in the controlled radical polymerizations designated under the terminology RAFT or MADIX, which typically implement a method of transfer reversible addition-fragmentation, such as those described for example in WO96 / 30421, WO 98/01478, WO 99/35178, WO 98/58974, WO 00/75207, WO 01/42312, WO 99/35177, WO 99/31144, FR2794464 or WO 02/26836.
  • Other types of control agent may be envisaged (for example of the type used in CRP or ATRP).
  • an oligomer of this type is used which (i) is soluble or dispersible in the aqueous medium (M) employed in step (E); and / or (ii) is not adapted to penetrate the micelles of the micellar solution.
  • control agent a polymer chain resulting from a controlled radical polymerization and carrying a group able to control a radical polymerization (so-called polymer chain "Living", of a type well known in itself).
  • This polymer capable of acting both as a control agent for the polymerization and as a monomer in step (E), is also referred to as "prepolymer" in the following description.
  • the control agent used in step (E) may advantageously be a prepolymer carrying a thiocarbonylthio-S group.
  • step (E °) prior to step (E) schematically allows to hydrophilize a large number of control agents carrying thiocarbonylthio functions (for example xanthate, which are rather hydrophobic by nature), converting soluble or dispersible pre-polymers in the medium (M) of step (E).
  • a pre-polymer synthesized in step (E °) has a short polymer chain, for example comprising a sequence of less than 50, or less than 25 monomer units, for example between 2 and 15.
  • step (E) When conducted in the presence of a radical polymerization control agent, step (E) combines the advantages of both controlled radical polymerization and micellar polymerization.
  • the presence of micelles in the polymerization medium does not affect the action of the control agents, which make it possible to carry out a controlled polymerization of the monomers present in the aqueous medium in a manner similar to a radical polymerization controlled in a homogeneous medium, which makes it possible to predict and very easily control the average molar mass of the polymer synthesized (this mass is even higher than the initial concentration of control agent in the medium is low, this concentration dictating the number of growing polymer chains).
  • the presence of the control agent does not impair the interesting effect observed in polymerization, namely the precise control of the size of the hydrophobic blocks.
  • step (E) of the process of the invention in particular in the presence of a radical polymerization control agent, also allows access to polymers of both high and controlled size.
  • the size of the polymers obtained is higher than the maximum sizes that are known to be obtained by employing controlled radical polymerization or micellar radical polymerization methods in the absence of control agents.
  • step (E) it proves possible to control the number-average molar mass of the polymers up to very high values.
  • the polymers synthesized according to the process of the invention may have a molecular weight greater than 300 000 g / mol.
  • step (E) can typically lead to the synthesis of a block polymer having a molecular weight Mn greater than 400 000 g / mol.
  • the initial concentration of control agent in the medium is chosen such that the synthesized hydrophilic polymer block average molecular weight has a number-average molecular weight Mn greater than or equal to 500 000 g / mol, for example between 500 000 and 1 000 000 g / mol, sizes up to 2 000 000 can be reached.
  • the process of the invention alternatively enables polymers of smaller masses to be produced.
  • the synthesized polymer is a polymer with a mass of between 1000 and 100,000 g / mol, preferably between 2,000 and 25,000 g / mol.
  • such low-weight polymers may be employed in concentration lower than their critical recovery concentration. Because of their small sizes, such polymers can diffuse at the interfaces and participate in modifying the properties of these interfaces or surfaces.
  • step (E) when step (E) is conducted in the presence of a radical polymerization control agent, the polymers obtained also have a very controlled microstructure, with substantially all similar chains, comprising blocks hydrophobes distributed substantially of the same way from one polymer chain to another,,.
  • This homogeneity of the distribution of the hydrophobic blocks from one chain to another makes it possible to obtain a population of polymer all having similar properties, which makes it possible to provide compositions having perfectly targeted and reproducible properties, which constitute an advantage for certain applications of the polymers, for example when one seeks to use them to obtain a viscosity effect dosed precisely.
  • the polymers obtained according to the invention are distinguished in this respect from the polymers generally obtained in micellar polymerization, which most often have a very broad and very heterogeneous distribution of the distribution of the hydrophobic blocks within the different chains.
  • the implementation of step (E) provides access to particularly interesting polymers.
  • these polymers most often have a linear structure, with hydrophobic blocks localized according to a monotonic gradient, namely, of constantly decreasing concentration or constantly increasing from the beginning to the end of the polymer chain in formation, which is explained in particular by the fact that the hydrophobic monomers present in micellar solution are depleted over time.
  • the polymers obtained according to the present invention can be used in many fields. They may very particularly be used as surfactants and / or rheological properties modifiers, especially as viscosifying or thickening agents, in particular in aqueous media.
  • compositions as obtained at the end of the micellar polymerization of the invention which comprise the abovementioned polymers in combination with the surfactants employed in step (E), including at least one amphoteric surfactant, are suitable for use in a highly saline environment. They are also adapted to environments of less salinity which gives them a good modularity in terms of salinity.
  • the subject of the invention is also the abovementioned uses of the specific polymer and polymer compositions obtained according to the invention, in particular the use of the polymer compositions in aqueous media comprising at least 50 g / l of salts, advantageously at least 100 g / l of salts, or even at least 150 g / l of salts, for example up to 300 g / l of salts.
  • the invention also relates to methods for modifying aqueous media employing these polymeric and polymeric compositions as a rheology modifier.
  • the invention also relates to aqueous compositions comprising the polymers according to the invention, which can in particular be used for the exploitation of oil and / or gas deposits.
  • the invention also relates to methods using aqueous compositions of this type for the exploitation of oil and / or gas deposits, including methods employing a circulation or placement of such a composition within a well.
  • the invention relates in particular to the use of aqueous compositions comprising the polymers according to the invention, and to said polymers, for carrying out a petroleum extraction operation, in particular a stimulation operation (in particular a fracturing operation) or an operation of enhanced oil recovery (EOR).
  • a stimulation operation in particular a fracturing operation
  • EOR enhanced oil recovery
  • control agent which can be advantageously used in step (E) and, where appropriate, in step (E °) of the process of the invention is advantageously a compound bearing a thiocarbonylthio group.
  • S (C S) -.
  • the control agent may carry several thiocarbonylthio groups. It may possibly be a polymer chain bearing such a group.
  • control agent can for example respond to formula (A) below:
  • a polymer chain preferably hydrophilic or hydrodispersible when the agent is implemented in step (E).
  • the groups R 1 or Z when substituted, may be substituted with optionally substituted phenyl groups, optionally substituted aromatic groups, saturated or unsaturated carbon rings, saturated or unsaturated heterocycles, or alkoxycarbonyl or aryloxycarbonyl groups ( -COOR), carboxy (-COOH), acyloxy (-O2CR), carbamoyl (-CONR2), cyano (-CN), alkylcarbonyl, alkylarylcarbonyl, arylcarbonyl, arylalkylcarbonyl, phthalimido, maleimido, succinimido, amidino, guanidimo, hydroxy (-OH ), amino (-NR2), halogen, perfluoroalkyl C n F 2 n + 1, allyl, epoxy, alkoxy (-OR), S-alkyl, S-aryl, groups having a hydrophilic or ionic character such as alkaline salts carboxylic acids, the alkaline salts of
  • control agents of formula (A) usable in step (E) it is generally preferred that the group R 1 is hydrophilic in nature.
  • the group R 1 is a water-soluble or water-dispersible polymer chain.
  • the group R1 may alternatively be amphiphilic, namely present both a hydrophilic and lipophilic character. It is preferable that R1 is not hydrophobic.
  • R 1 can typically be a substituted or unsubstituted or substituted alkyl group.
  • a control agent of formula (A) used in step (E °) may nevertheless comprise other types of groups R 1, especially a ring or a polymer chain
  • the optionally substituted alkyl, acyl, aryl, aralkyl or alkyne groups generally have 1 to 20 carbon atoms, preferably 1 to 12, and more preferably 1 to 9 carbon atoms. They can be linear or branched. They may also be substituted by oxygen atoms, in particular esters, sulfur or nitrogen atoms.
  • alkyl radicals mention may especially be made of the methyl, ethyl, propyl, butyl, pentyl, isopropyl, tert-butyl, pentyl, hexyl, octyl, decyl or dodecyl radical.
  • the alkyne groups are radicals generally of 2 to 10 carbon atoms, they have at least one acetylenic unsaturation, such as the acetylenyl radical.
  • the acyl group is a radical generally having from 1 to 20 carbon atoms with a carbonyl group.
  • aryl radicals there may be mentioned the phenyl radical, optionally substituted in particular by a nitro or hydroxyl function.
  • aralkyl radicals mention may especially be made of the benzyl or phenethyl radical, optionally substituted in particular by a nitro or hydroxyl function.
  • R 1 or Z is a polymer chain
  • this polymer chain may be derived from a radical or ionic polymerization or from a polycondensation.
  • step (E °) it is particularly advantageous to use as control agents in this step a compound selected from xanthates, trithiocarbonates, dithiocarbamates, or dithiocarbazates.
  • the living prepolymers obtained in step (E °) using the aforementioned control agents are particularly interesting for the conduct of step (E).
  • the process of the invention can be used with a very large number of hydrophilic monomers.
  • the monomers may comprise monomers selected from:
  • ethylenically unsaturated carboxylic acids, sulphonic acids and phosphonic acids, and / or its derivatives such as acrylic acid (AA), methacrylic acid, ethacrylic acid, ⁇ -chloro-acrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid, fumaric acid, monoesters of dicarboxylic acids monoethylenically unsaturated compounds having 1 to 3, preferably 1 to 2, carbon atoms, for example, monomethyl maleate, vinylsulfonic acid, (meth) allylsulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-acryloyloxypropylsulfonic acid, 2-hydroxy-3-acryl
  • amides of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids and their N-alkyl and ⁇ , ⁇ -dialkyl derivatives such as acrylamide, methacrylamide, N-methyl (meth) acrylamide, N-ethyl ( meth) acrylamide, N-propyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, morpholinyl (meth) acrylamide, and metholyl acrylamide (acrylamide) and N, N-dimethyl (meth) acrylamide are particularly interesting); N-vinyllactams and its derivatives, for example, N-vinylpryolidone, N-vinylpiperidone;
  • N-vinylamide compounds for example N-vinylformamide, N-vinyl-N-methylformamide, N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinyl-N-ethylacetamide, N-vinylpropionamide, N-vinyl-N-methylpropionamide and N-vinylbutyramide;
  • esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with amino alcohols for example, N, N-dimethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, ⁇ , ⁇ -diethylaminoethyl acrylate, and N, N-dimethylaminopropyl (meth) acrylate;
  • the amides of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with diamines comprising at least one primary or secondary amino group such as N- [2- (dimethylamino) ethyl] acrylamide, N [2- (dimethylamino) ethyl] methacrylamide, N- [3- (dimethylamino) propyl] acrylamide, N- [3- (dimethylamino) propyl] methacrylamide, N- [4- (dimethylamino) butyl] acrylamide and N- [4- (dimethylamino) butyl] methacrylamide;
  • N-diallylamines N, N-diallyl-N-alkylamines, their acid addition salts and their quaternization products, the alkyl employed here being preferentially C1-C3-alkyl; N, N-diallyl-N-methylamine and N, N-diallyl-N, N-dimethylammonium compounds, for example, chlorides and bromides;
  • substituted vinyl and allyl nitrogen-substituted heterocylates for example N-vinylimidazole, N-vinyl-2-methylimidazole, substituted vinyl and allyl heteroaromatic compounds, for example 2- and 4-vinylpyridine; 2- and 4-allylpyridine and their salts;
  • these monomers may in particular comprise acrylic acid (AA).
  • AA acrylic acid
  • the monomers are all acrylic acids, but it is also conceivable to use as monomers a mixture comprising, inter alia, acrylic acid, mixed with other hydrophilic monomers.
  • the hydrophilic monomers of step (E) comprise (meth) acrylic acid and / or (meth) acrylamido monomers.
  • (meth) acrylic acid includes methacrylic acid, acrylic acid and mixtures thereof.
  • (meth) acrylate includes methacrylate, acrylate and mixtures thereof.
  • the term "(meth) acrylate” includes methacrylate, acrylate and mixtures thereof.
  • (Meth) acrylamide / (meth) acylamido includes methacrylamide / methacrylamido, acrylamide / acrylamido and mixtures thereof.
  • Monomers containing acid groups may be used for the polymerization in the form of the free acid or in the partially or completely neutralized form.
  • the neutralization it is possible to use, for example, KOH, NaOH, ammonia or other base.
  • the monomers employed in the process of the invention are in particular acrylic acid, methacrylic acid, and / or their salts, and / or their mixtures.
  • the monomers used in step (E) comprise (and typically consist of) (meth) acrylamide monomers, or more generally (meth) acrylamido monomers, including:
  • acrylamido monomers namely, acrylamide, its sulfonate derivative (AMPS), quaternary ammonium (APTAC) and sulfopropyl dimethylammonium propyl acrylamide;
  • methacrylamido monomers such as, sulfopropyl dimethylammonium propyl methacrylamide (SPP), sulfohydroxypropyl dimethyl ammonium propyl methacrylamido.
  • SPP sulfopropyl dimethylammonium propyl methacrylamide
  • the monomers of step (E) are acrylamides.
  • An acrylamide employed in step (E) is preferably a non-copper stabilized acrylamide.
  • a copper complexing agent such as EDTA, where appropriate, preferably at a level of 20 to 2000 ppm.
  • acrylamides in step (E) can typically be employed in the form of a powder, an aqueous solution (optionally, but not necessarily, stabilized with MEHQ hydroquinone monomethyl ether, or by copper salts (preferably with EDTA if appropriate)).
  • step (E) the monomers of step (E) can be used at relatively high concentrations, typically at concentrations which would be sufficient to ensure the formation of the gel if step (E) was carried out. the absence of a screening officer.
  • the inventors have now demonstrated that, surprisingly, the polymerization of step (E) may, if necessary, be carried out under conditions which correspond to that of the gel polymerization, and this without necessarily leading to gelation of the gel. reaction medium during the polymerization, because of the presence of the control agent. That a gelation of the medium is observed or not, step (E) allows polymerization of controlled type, unlike a polymerization conducted without additional control agent.
  • the initial concentration of monomers in the reaction medium of step (E) may be up to 40% by weight, or even up to 50% by weight, this concentration generally remaining below 30% by mass relative to to the total mass of the reaction medium.
  • the initial concentration of monomers in the reaction medium of step (E) is between 0.5% and 35%, especially between 1 and 20% by weight relative to the total mass of the reaction medium.
  • the hydrophilic monomers employed in step (E) are thermosensitive macromonomers, insoluble in water beyond a certain temperature (cloud point), but soluble at lower temperature, the step (E) being conducted at a temperature below the cloud point temperature.
  • Macromonomers of this type typically have a polymerizable function of the acrylamido type, and a side chain composed of ethylene oxide or propylene oxide (random or block) chains, or based on N-isopropylacrylamide, or N-isopropylacrylamide caprolactam.
  • This embodiment gives particular access to the preparation of polymers having thermo-thickening properties, used for example in the oil industry.
  • step (E) all the hydrophilic monomers are dissolved and / or dispersed within the aqueous medium (M).
  • step (E) These monomers, implemented in step (E) in the form of a micellar solution, namely containing, in the dispersed state in the medium (M), micelles comprising these hydrophobic monomers. Provided that they can be integrated into micelles of this type, any monomer of hydrophobic nature can be envisaged in step (E).
  • hydrophobic monomer that can be used according to the invention, mention may be made in particular of: vinylaromatic monomers such as styrene, alpha-methylstyrene, parachloromethylstyrene, vinyltoluene, 2-methylstyrene, 4-methylstyrene, 2- (n-butyl) styrene, or 4- (n-decyl) styrene; (t-butyl styrene is particularly interesting);
  • vinylaromatic monomers such as styrene, alpha-methylstyrene, parachloromethylstyrene, vinyltoluene, 2-methylstyrene, 4-methylstyrene, 2- (n-butyl) styrene, or 4- (n-decyl) styrene; (t-butyl styrene is particularly interesting);
  • each of R b and R c represents, independently:
  • alkyl group preferably chlorinated and / or fluorinated, more preferably perchlorinated or perfluorinated; ⁇ , ⁇ -ethylenically unsaturated mono-, dicarboxylic acid esters with C 2 -C 30 alkanols, for example methyl ethacrylate, ethyl (meth) acrylate, ethyl ethacrylate, meth) n-propyl acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, ethacrylate tert-butyl, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 1,1,3,3-tetramethylbutyl (meth) acrylate ⁇
  • esters of vinyl or allyl alcohol with C1-C30 monocarboxylic acids for example, vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl laurate, vinyl stearate, vinyl propionate, vinyl versatate and mixtures thereof; ethylenically unsaturated nitriles, such as acrylonitrile, methacrylonitrile and mixtures thereof;
  • ⁇ , ⁇ ethylenically unsaturated mono- and di-carboxylic acid esters with C3-C30 alkanediols for example, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate , 3-hydroxypropyl methacrylate, 3-hydroxybutyl acrylate, 3-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, 6-hydroxyhexyl acrylate, 6-hydroxybutyl methacrylate, hydroxyhexyl, 3-hydroxy-2-ethylhexyl acrylate and 3-hydroxy-2-ethylhexyl methacrylate;
  • N-vinyllactams and its derivatives such as N-vinyl-5-ethyl-2-pyrrolidone, N-vinyl-6-methyl-2-piperidone and N-vinyl-6-ethyl-2-piperidone, N-vinyl-7-methyl-2-caprolactam and N-vinyl-7-ethyl-2-caprolactam;
  • esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with amino alcohols for example N, N-dimethylaminocyclohexyl (meth) acrylate;
  • amides of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with diamines comprising at least one primary or secondary amino group for example N- [4- (dimethylamino) butyl] acrylamide, N- [4- (dimethylamino) butyl] methacrylamide, N- [2- (diethylamino) ethyl] acrylamide, N- [4- (dimethylamino) cyclohexyl] acrylamide, N- [4- (dimethylamino) cyclohexyl] methacrylamide; and
  • C2-C8 monoolefins and nonaromatic hydrocarbons comprising at least two conjugated double bonds, for example ethylene, propylene, isobutylene, isoprene and butadiene.
  • hydrophobic monomers employed according to the invention can be chosen from:
  • unsaturated alpha-beta alpha-beta alkyl amides preferably C 4 -C 22 alkyl, in particular alkyl acrylamides and methacrylamides, such as methyl, ethyl, butyl, 2-ethylhexyl or isoactyl, lauryl, isodecyl or stearyl acrylamide and methacrylamide;
  • vinyl or allyl alcohol esters of saturated carboxylic acids such as acetate, propionate, versatate, or vinyl or allyl stearate; the alpha-beta unsaturated nitriles containing from 3 to 12 carbon atoms, such as acrylonitrile or
  • alpha olefins and conjugated dienes alpha olefins and conjugated dienes
  • the micelles of the micellar solution of step (E) do not contain hydrophilic or water-dispersible monomers. Furthermore, preferably, all the hydrophobic monomers employed in step (E) are enclosed in micelles of the micellar solution.
  • the monomers contained in the micelles of the micellar solution may be monomers with a surface-active character, said to be of the "self-micellizable” type, capable of partially stabilizing the micelles that contain them. Priming and Conducting Radical Polymerizations of Steps (E) and (E °)
  • the initiator of the radical polymerization is preferably water-soluble or water-dispersible. Apart from this preferential condition, it is possible to use, in step (E) and step (E °) of the process of the invention, any radical polymerization initiator (source of free radicals) known per se and adapted to the conditions chosen for these conditions. steps.
  • radical polymerization initiator (initiator) employed according to the invention may for example be chosen from the initiators conventionally used in radical polymerization. It can be for example one of the following initiators:
  • hydrogen peroxides such as: tertiary butyl peroxide, cumene hydroperoxide, t-butyl peroxyacetate, tert-butylperoxybenzoate, t-butylperoxyoctoate, t-butylperoxyneodecanoate, t butylperoxyisobutarate, lauroyl peroxide, t-amylperoxypivalte, t-butylperoxypivalate, dicumyl peroxide, benzoyl peroxide, potassium persulfate, ammonium persulfate,
  • azo compounds such as: 2-2'-azobis (isobutyronitrile), 2,2'-azobis (2-butanenitrile), 4,4'-azobis (4-pentanoic acid), 1,1 ' azobis (cyclohexane-carbonitrile), 2- (t-butylazo) -2-cyanopropane, 2,2'-azobis [2-methyl-N- (1,1) -bis (hydroxymethyl) -2-hydroxyethyl] propionamide, 2,2'-azobis (2-methyl-N-hydroxyethyl) -propionamide, 2,2'-azobis (N, N'-dimethyleneisobutyramidine) dichloride, 2,2'-azobis dichloride (2 -amidinopropane), 2,2'-azobis ( ⁇ , ⁇ '-dimethyleneisobutyramide), 2,2'-azobis (2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide) 2,2'-azobis
  • alkali metal bisulfite such as sodium metabisulphite
  • reducing sugars alkali metal persulfates in combination with an arylphosphinic acid, such as benzene phosphonic acid and the like, and reducing sugars.
  • the amount of initiator to be used is preferably determined so that the amount of radicals generated is at most 50 mol%, preferably at most 20 mol%, based on the amount of the initiator. control or transfer agent.
  • step (E) it is generally advantageous to use a radical initiator of the redox type, which has, among others, the advantage of not requiring heating of the reaction medium (no thermal initiation and which the inventors have furthermore now discovered to be suitable for the micellar polymerization of step (E).
  • the radical polymerization initiator employed in step (E) may typically be a redox initiator, typically not requiring heating for its thermal initiation. It is typically a mixture of at least one oxidizing agent with at least one reducing agent.
  • the oxidizing agent present in this redox system is preferably a water-soluble agent.
  • This oxidizing agent may for example be chosen from peroxides, such as: hydrogen peroxide, tertiary butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyacetate, t-butylperoxybenzoate, t butylperoxyoctoate, t-butylperoxynéodécanoate, t-butylperoxyisobutarate, lauroyl peroxide, t-amylperoxypivalte, t-butylperoxypivalate, dicumyl peroxide, benzoyl peroxide; sodium persulfate, potassium persulfate, ammonium persulfate, or even potassium bromate.
  • peroxides such as: hydrogen peroxide, tertiary butyl hydroperoxide, cumene hydroperoxide, t-butyl
  • the reducing agent present in the redox system is also preferably a water-soluble agent.
  • This reducing agent can typically be selected from sodium formaldehyde sulfoxylate (especially in its dihydrate form, known as Rongalit or in the form of an anhydride), ascorbic acid, erythorbic acid, sulphites, bisulphites or metasulfites (in particular sulphites, bisulphites or metasulfites of alkali metals), nitrilotrispropionamides, and tertiary amines and ethanolamines (preferably water-soluble).
  • Possible redox systems include combinations such as mixtures of water-soluble persulfates with water-soluble tertiary amines,
  • alkali metal bisulfite such as sodium metabisulphite
  • alkali metal persulfates in combination with an arylphosphinic acid, such as benzene phosphonic acid and the like, and reducing sugars.
  • an arylphosphinic acid such as benzene phosphonic acid and the like
  • An interesting redox system includes (and preferably consists of) the combination of ammonium persulfate and sodium formaldehyde sulfoxylate.
  • reaction medium of step (E) is free of copper.
  • a copper complexing agent such as EDTA
  • the radical polymerization of step (E °) may be carried out in any appropriate physical form, for example in solution in water or in a solvent for example an alcohol or THF , in emulsion in water (so-called "latex" process), by mass, if necessary by controlling the temperature and / or the pH in order to make liquid species and / or soluble or insoluble.
  • step (E) After implementation of step (E), taking into account the specific implementation of a control agent, polymers are obtained functionalized by transfer groups (living polymers). This living character makes it possible, if desired, to use these polymers in a subsequent polymerization reaction, according to a well-known technique. known in itself. Alternatively, if necessary, it is possible to deactivate or destroy the transfer groups, for example by hydrolysis, ozonolysis, or reaction with amines, according to means known per se.
  • the process of the invention may comprise, after step (E), a step (E1) of hydrolysis, ozonolysis or reaction with amines, suitable for deactivating and / or or destroying all or part of the transfer groups present on the polymer prepared in step (E).
  • any suitable surfactant or surfactant mixture comprising at least one amphoteric surfactant may be employed.
  • amphoteric surfactant employed according to the present invention may be a surfactant or mixture of surfactants chosen from both so-called true amphoteric surfactants and so-called zwitterionic surfactants.
  • amphoteric surfactant employed according to the present invention can be chosen from:
  • the surfactant containing a permanent ionic group (this ionic group being typically a group which remains of cationic nature whatever the pH, such as a quaternary ammonium) and a potentially ionic group of opposite charge (typically a group which, according to the pH, is uncharged or anionic, such as a carboxy group); and or
  • amphoteric surfactant comprising two potentially ionic groups of opposite charges (ie a group which, depending on the pH, is unfilled or anionic, such as a carboxy; and a group which, depending on the pH, is uncharged or cationic, such as that an amphoteric group)
  • amphoteric surfactant employed according to the present invention may especially be chosen from:
  • betaines in particular carboxy betaines such as cetyl betaine (and especially that available under the name Mackam CET from Solvay), lauryl betaine (Mirataine BB available from Solvay), octylbetaine or cocobetaine (Mirataine) BB-FLA available from the company Solvay); amidoalkylbetaines, such as cocamidopropyl betaine (CAPB) (Mirataine BDJ available from Solvay or Mirataine BET C-30 available from Solvay); or else the betaine compositions available under the names Mackam LAB and Mackam CBS from Solvay
  • carboxy betaines such as cetyl betaine (and especially that available under the name Mackam CET from Solvay), lauryl betaine (Mirataine BB available from Solvay), octylbetaine or cocobetaine (Mirataine) BB-FLA available from the company Solvay); amidoalkylbetaines, such as cocamidopropy
  • sulfobetaines also called “sultaines”
  • sultaines such as cocamidopropyl hydroxy sultaine (in particular Mirataine CBS available from Solvay);
  • alkylamphoacetates and alkylamphodiacetates such as for example comprising a coconut chain, lauryl (Miranol C2M Conc NP, C32, L32 in particular, available from Solvay);
  • alkylamphopropionates or alkylamphodipropionates (Miranol C2M SF);
  • alkylamine oxides for example lauramine oxide (INCI); and
  • surfactant mixtures comprising one or more of the abovementioned compounds.
  • Betaines and sultaines are amphoteric surfactants which are particularly suitable for the implementation of step (E) of the present invention.
  • Cetyl betaine in particular, is an interesting amphoteric surfactant, which is especially suitable especially when the hydrophobic monomers comprise t-butyl styrene or else lauryl (meth) acrylate.
  • the Mackam LAB is also a good candidate.
  • amphoteric surfactants in addition to the above-mentioned amphoteric surfactants, other surfactants, of anionic, cationic or nonionic type, may be used, although the presence of surfactants is absolutely not required according to the invention.
  • the micellar solution employed in step (E) does not comprise SDS, and preferably no anionic surfactant.
  • the micellar solution employed in step (E) does not comprise a non-amphoteric surfactant.
  • the micellar solution employed in step (E) may comprise an additional non-amphoteric surfactant, preferably chosen from the following nonlimiting list:
  • the anionic surfactants can be chosen from:
  • alkyl ester sulfonates for example of formula R-CH (SO 3 M) -CH 2 COOR ', or alkyl ester sulfates, for example of formula R-CH (OSO 3 M) -CH 2 COOR', where R represents a C 8 alkyl radical; -C 20 , preferably C 10 -C 16 , R 'a C 1 -C 6 alkyl radical, preferably CC 3 and M an alkaline earth metal cation, for example sodium, or the ammonium cation. Mention may in particular be made of methyl ester sulfonates whose radical R is C 14 -C 16 ;
  • alkylbenzenesulphonates more particularly C 9 -C 2 o, primary or secondary alkylsulfonates, especially C 8 -C 22 , alkylglycerol sulfonates; alkyl sulphates, for example of formula ROSO 3 M, where R represents a C 1 -C 24 , preferably C 1 -C 20 , alkyl or hydroxyalkyl radical; M a cation of the same definition as above;
  • alkylamides sulfates for example of formula RCONHR'OSO 3 M where R represents a C 2 -C 22 alkyl radical, preferably C 6 -C 20 , R 'a C 2 -C 3 alkyl radical, M representing a cation of the same definition as above, and their polyalkoxylated derivatives (ethoxylated and / or propoxylated) (alkylamidoether sulfates;
  • saturated or unsaturated fatty acid salts for example those such as C 8 -C 24 , preferably C 14 -C 20 and an alkaline earth metal cation, N-acyl N-alkyltaurates, alkylisethionates, alkylsuccinamates and alkylsulfosuccinates, alkyl glutamates, monoesters or diesters of sulfosuccinates, N-acyl sarcosinates, polyethoxycarboxylates;
  • the nonionic surfactants may be chosen from:
  • alkoxylated fatty alcohols for example, laureth-2, laureth-4, laureth-7, oleth-20, alkoxylated triglycerides, alkoxylated fatty acids, alkoxylated sorbitan esters, alkoxylated fatty amines, alkoxylated di (1-phenylethyl) phenols, alkoxylated tri (1-phenylethyl) phenols, alkoxylated alkyl phenols, products resulting from the condensation of ethylene oxide with a hydrophobic compound resulting from the condensation of propylene oxide with propylene glycol, such as Pluronic marketed by BASF; the products resulting from the condensation of ethylene oxide the compound resulting from the condensation of propylene oxide with ethylenediamine, such as Tetronic marketed by BASF; alkylpolyglycosides such as those described in US 4565647 or alkylglucosides; fatty acid amides for example in in particular mono
  • the cationic surfactants may be the salts of primary, secondary or tertiary fatty amines, optionally polyethoxylated, quaternary ammonium salts such as chlorides or bromides of tetraalkylammonium, alkylamidoalkylammonium, trialkylbenzylammonium,
  • trialkylhydroxyalkylammonium, or alkylpyridinium, imidazoline derivatives, amine oxides of cationic character is cetrimonium chloride or bromide (INCI);
  • the surfactants employed according to the present invention may be block copolymers containing at least one hydrophilic block and at least one hydrophobic block distinct from the hydrophilic block, advantageously obtained according to a polymerization process in which:
  • step (ai) contacting the polymer obtained at the end of step (a 0 ) with at least one hydrophobic monomer (respectively hydrophilic) distinct from the monomer employed in step (a 0 ) and at least one source of free radicals,
  • Polymers of the triblock type, or more comprising blocks can optionally be obtained by implementing, after step (a), a step
  • step (a 2 ) wherein, the polymer obtained at the end of step (a1) is brought into contact with at least one monomer distinct from the monomer employed in step (a1) and at least one source of free radicals; and more generally, by implementing (n + 1) steps of the type of the above steps (ai) and (a 2 ) and n is an integer ranging typically from 1 to 3, where in each step (a n ), with n ⁇ 1: the polymer obtained at the end of step (a n- i) is brought into contact with at least one monomer distinct from the monomer employed in step (a n- i) and at least one source of free radicals.
  • copolymers of the type described in WO03068827, WO03068848 and WO2005 / 021612 may be used according to the invention.
  • the molar ratio denoted “non-amphoteric / surfactant” corresponding to the ratio of the total amount (zero or no) of non-amphoteric surfactants relative to the total amount of surfactants, amphoteric and not amphoteric if necessary, is generally less than 50%, or even 30%. According to a specific embodiment, the "non-amphoteric / surfactant" ration is less than 10% or even zero.
  • the polymer compositions obtained by a process comprising step (E) of the invention and the polymers they comprise are, inter alia, useful for the regulation of the rheology of liquid media, especially aqueous media. They can also be used as associative thickeners, as viscosifying agents, gelling agents, surface modifiers, or for the constitution of nanohybrid materials. They can also be used as a vectoring agent.
  • the polymer and polymer compositions according to the invention can in particular be used to thicken or adapt the rheology of a very large number of compositions, for example compositions intended to convey cosmetic, pharmaceutical, veterinary or phytosanitary principles or else still detergents, for example.
  • the polymer and polymer compositions according to the invention can for example be used to modify the rheology of a cosmetic composition, a household product, a detergent composition, or a formulation for the field of agriculture.
  • the polymeric and polymeric compositions as obtained according to the invention are of interest as a rheology control agent in the field of oil and natural gas extraction. They can in particular be used for the constitution of drilling fluids, for fracturing, for stimulation and for enhanced oil recovery.
  • the polymer and polymer compositions as obtained according to the process of the invention generally have a rapid hydration capacity as well as good properties of injectivity and shear stability, in particular given the controlled nature of the polymerization, which leads to homogeneous batches of polymers in composition and structure, with lower polydispersity indices than compared to "uncontrolled" systems.
  • the nature of the synthesizable polymers according to the present invention is extremely flexible, which allows a very important choice both on the backbone and on the presence of substituents, which can be judiciously chosen according to the applications envisaged for the polymer.
  • the constituent monomers of the polymer give it a high temperature resistance.
  • the polymers intended for an application in EOR can for example be of the type obtained from monomers chosen from acrylamido, methacrylamido, vinyl or allylic monomers. It is generally not advantageous to use acrylates or methacylates because of their sensitivity to hydrolysis.
  • the polymers have functionalities that still ensure better salt resistance and counteract the effects of loss of viscosity, often encountered in EOR in the lack of such functionalities on the polymer.
  • Polymers according to the invention which are particularly stable with respect to salts can be synthesized using one or more of the following methods:
  • AMPS acrylamido-methylpropanesulphonic acid
  • salts especially sodium salts
  • the polymers prepared may be of the polyampholyte type with a hydrophilic backbone comprising a mixture of (i) monomeric units exhibiting at least one negative charge (for example sulphonates of the aforementioned type); and (ii) monomeric units having at least one positive charge (e.g. APTAC, MAPTAC, DiQuat (methacryloamidopropyl-pentamethyl-1,3-propylene-2-ol-ammonium dichloride), DADMAC (diallyl dimethyl ammonium chloride) N-vinylforamide (cationizable amine precursor after hydrolysis), or vinyl pyridine or one of its quaternized derivatives);
  • APTAC e.g. APTAC, MAPTAC, DiQuat (methacryloamidopropyl-pentamethyl-1,3-propylene-2-ol-ammonium dichloride), DADMAC (diallyl dimethyl ammonium chloride) N-vinylforamide (cation
  • additional monomers of the sulphobetaine type such as, for example, sulphopropyl dimethylammonium propyl acrylamide, sulphopropyl dimethylammonium propyl methacrylamide (SPP), sulphohydroxypropyl dimethylammonium propyl methacrylamide (SHPP), 2-vinyl (3-sulphopropyl) pyridinium betaine, 4-vinyl (3-sulfopropyl) pyridinium betaine, 1-vinyl-3- (3-sulfopropyl) imidazolium betaine, or even sulfopropyl methyl diallyl ammonium betaine.
  • SPP sulphopropyl dimethylammonium propyl methacrylamide
  • SHPP sulphohydroxypropyl dimethylammonium propyl methacrylamide
  • 2-vinyl (3-sulphopropyl) pyridinium betaine 4-vinyl (3-sulfopropyl
  • the polymer compositions obtained by a process comprising step (E) of the invention which comprise the polymers and surfactants used in the micellar polymerization, have the specificity of having a good solubility in water and this even in the presence large amounts of salts.
  • the polymer compositions obtained according to the invention can be solubilized, without precipitation or turbidity formation, in an aqueous solution comprising more than 50 g / l, for example more than 100 g / l or even more than 150 g / l. salts, said composition may in particular comprise up to 200 g / l, or even up to 300 g / l of salts.
  • micellar solution prepared previously 376.9 g of water, 592, were introduced at 20 ° C.
  • 8 g of acrylamide (50% by weight aqueous solution) 478 g of AMPS (51% by weight aqueous solution)
  • micellar solution thus prepared was introduced at 20 ° C., 447.8 g of water, 593, 8 g of acrylamide (50% by weight aqueous solution), 478.7 g of AMPS (51% by weight aqueous solution), 5.57 g of Rhodixan A1 (1.0% by weight ethanol solution) and 9 g of ammonium persulfate (aqueous solution at 5% by weight). The mixture was degassed by bubbling nitrogen for 40 minutes.
  • micellar solution thus prepared was introduced at 20 ° C., 623.8 g of water, 592, 8 g of acrylamide (50% by weight aqueous solution), 478.0 g of AMPS (50% by weight aqueous solution), 5.568 g of Rhodixan A1 (O-ethyl S- (1-methoxycarbonyl) ethyl xanthate ethanol solution at 1.0% by weight).
  • the mixture was degassed by bubbling nitrogen for 60 minutes. After this degassing, 18.0 g of sodium formaldehyde sulfoxylate, in the form of a 1% by weight aqueous solution and 9.0 g of sodium persulfate (5% aqueous solution), were added to the medium in one go. in mass). The mixture was degassed beforehand by bubbling nitrogen for 15 minutes.
  • the polymerization reaction was then allowed to proceed with stirring for 16 hours, whereby the polymer P3 was obtained as a gel.
  • a piece of gel (respectively P1 or P2) was placed in a 100 ml glass flask, and the brine was added to obtain a solution where the polymer concentration (P1 or P2 respectively) was 2 g / L. . . The mixture was stirred with a magnetic bar for 12 hours.
  • compositions in the flask were visually checked after 12 hours of agitation:
  • the viscosity was then measured as a function of the shear rate using an ARG2, TA instruments rheometer with a 14-15mm aluminum quilt geometry.
  • a viscosity of 7.3 is obtained at 25 ° C. for a shear rate of 10s -1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

La présente invention concerne la préparation de polymères utiles notamment à titre d'agent de rhéologie, et adaptés à une utilisation dans des milieux salins très concentrés, qui comprend une étape de polymérisation radicalaire micellaire où on met en contact, au sein d'un milieu aqueux : - des monomères hydrophiles; - des monomères hydrophobes sous la forme d'une solution micellaire, contenant des micelles comprenant ces monomères hydrophobes; - un amorceur de polymérisation radicalaire; et - de préférence un agent de contrôle de polymérisation radicalaire, où lesdites micelles comprennent au moins un tensioactif de nature amphotère. Les polymères obtenus selon l'invention sont notamment utiles pour la récupération assistée du pétrole (EOR).

Description

Polymères séquencés amphiphiles solubles en milieu fortement salin
La présente invention a trait à un procédé de polymérisation particulier, qui donne accès à des polymères séquencés amphiphiles associatifs de type hydrosolubles et présentant une solubilité élevée en milieu fortement salin, qui sont utilisables typiquement dans des opérations d'extractions pétrolières impliquant des milieux aqueux riches en sels (comme les eaux de mers de certaines partie du globe ou bien des saumures présentant de fortes teneurs en sels, pouvant aller jusqu'à 30% en masse) .
Les polymères accessibles selon l'invention sont du type formé d'unités hydrophiles (hydrosolubles ou hydrodispersible) interrompu en différents endroits par des séquences hydrophobes. Pour obtenir des polymères de ce type incluant des séquences hydrophobes, une méthode connue est celle dite de "polymérisation radicalaire micellaire", dont des exemples ont notamment été décrits dans le brevet US 4,432,881 ou bien encore dans Polymer, vol. 36 , N° 16, pp. 3197-321 1 (1996), auxquels on pourra se reporter pour plus de détails concernant la technique de polymérisation radicalaire micellaire.
Selon la technique particulière précité de polymérisation radicalaire micellaire, qui sera désignée dans la suite de la description par le terme de "polymérisation micellaire" à des fins de concision, on synthétise des polymères séquencés de type multiblocs par copolymérisation de monomères hydrophiles et de monomères hydrophobes au sein d'un milieu dispersant aqueux (typiquement de l'eau ou un mélange eau/alcool) qui comprend :
- les monomères hydrophiles à l'état solubilisé ou dispersé dans ledit milieu ;
et
- les monomères hydrophobes au sein de micelles de tensioactif formées dans ledit milieu en y introduisant ce tensioactif à une concentration supérieure à sa concentration micellaire critique (cmc).
En polymérisation micellaire, les monomères hydrophobes contenus dans les micelles sont dits en "solution micellaire". La solution micellaire à laquelle il est fait référence est un système micro-hétérogène qui est généralement isotrope, optiquement transparent et thermodynamiquement stable. Selon un mode de réalisation particulier, les monomères contenus dans les micelles peuvent présenter un caractère tensioactif et assurer au moins une partie de la stabilisation de la micelle ; on parle dans ce cas, au sens large, de monomères «auto-micellisables» (qu'ils soient propres à eux seuls à stabiliser les micelles ou bien seulement en association avec des tensioactif).
A noter qu'une solution micellaire du type de celle employée en polymérisation micellaire est à distinguer d'une microémulsion. En particulier, contrairement à une microémulsion, une solution micellaire se forme à toute concentration dépassant la concentration micellaire critique du tensioactif employé, avec comme seule condition que le monomère hydrophobe soit soluble au moins en une certaine mesure au sein de l'espace interne des micelles. Une solution micellaire se différencie par ailleurs d'une émulsion de par l'absence de phase homogène interne : les micelles contiennent un très faible nombre de molécules (moins de 1000 typiquement, en général moins de 500 et typiquement de 1 à 1 00, avec le plus souvent 1 à 50 monomères et au plus quelques centaine de molécules de tensioactif lorsqu'un tensioactif est présent) et la solution micellaire a en général des propriétés physiques similaires à celles des micelles de tensioactif sans monomères. Par ailleurs le plus souvent, une solution micellaire est transparente vis-à-vis de la lumière visible, compte tenu de la faible taille des micelles qui ne conduit pas à des phénomènes de réfraction, contrairement aux gouttes d'une émulsion, qui réfractent la lumière et lui confère son aspect trouble ou blanc caractéristique.
La technique de polymérisation micellaire conduit à des polymères séquencés caractéristiques qui contiennent chacun plusieurs blocs hydrophobes sensiblement de même taille et où cette taille peut être contrôlée. En effet, compte tenu du cantonnement des monomères hydrophobes au sein des micelles, chacun des blocs hydrophobes formés et de taille contrôlé et contient sensiblement un nombre nH défini de monomères hydrophobe, ce nombre nH pouvant être calculé comme suit (Macromolecular Chem. Physics, 202, 8, 1384-1397, 2001 ) :
nH = Nagg . [M H] / ( [tensioactif] - cmc)
où :
Nagg est le nombre d'agrégation (dit aussi numéro d'agrégation) du tensioactif, qui reflète le nombre de tensioactif présent dans chaque micelle
[MH] est la concentration molaire en monomère hydrophobe dans le milieu et
[tensioactif] est la concentration molaire en tensioactif dans le milieu
cmc est la concentration (molaire) micellaire critique
La technique de polymérisation micellaire permet ainsi un contrôle intéressant des motifs hydrophobes introduits dans les polymères formés, à savoir : - un contrôle global de la fraction molaire d'unités hydrophobes dans le polymère (en modulant le rapport des concentrations des deux monomères); et
- un contrôle plus spécifique du nombre d'unités hydrophobes présentes dans chacun des blocs hydrophobes (en modifiant les paramètres influençant le nH défini ci-dessus).
Les polymères multiblocs obtenus par polymérisation micellaire présentent en outre un caractère associatif, ce qui en fait, dans l'absolu, de bons candidats pour des applications à titre d'agents viscosants..
Cela étant, si la polymérisation micellaire, permet, dans le cas le plus général, d'intégrer certes des séquences hydrophobes de taille contrôlée au sein de chaînes hydrophiles, ce qui permet de synthétiser des polymères auto-associatifs, elle ne permet pas, en général, un contrôle de la taille globale des polymères synthétisés, ni de la microstructure de ces polymères, ce qui ne permet pas de moduler finement les propriétés de ces polymères auto-associatifs. D'autre part, l'absence de contrôle de la microstructure ne permet pas de jouer de façon suffisamment fine sur les propriétés des polymères synthétisés en polymérisation micellaire. Elle interdit de plus l'accès à des copolymères à architecture contrôlée. En outre, les procédés de polymérisation micellaire sont en général limités à des systèmes extrêmement dilués pour permettre l'ajout et le mélange des réactifs. Les masses moléculaires obtenues en polymérisation radicalaire micellaire sont généralement de l'ordre de 500 000 à 5 000 000 g/mol, par exemple de 500 000 à 3 000 000.
Il a cependant été décrit dans la demande WO 2013/060741 un procédé spécifique de polymérisation micellaire réalisé en présence d'un agent de contrôle de polymérisation radicalaire qui permet de conserver les avantages de la polyméristion micellaire tout en évitant les problèmes précités. Un but de la présente invention est de fournir des polymères séquencés présentant les avantages de la polymérisation micellaire, et plus préférentiellement ceux décrits dans la demande WO 2013/060741 précitée, et qui puissent en outre, plus spécifiquement, être aisément dispersés ou solubilisés en milieu fortement salin.
Plus précisément, l'invention vise à fournir un procédé donnant accès à des compositions de polymères qui : i. comprennent des blocs hydrophobes de taille contrôlée, du type que ceux obtenus en polymérisation micellaire usuelle, avec de préférence un contrôle de la masse moléculaire moyenne des chaînes synthétisées et de la microstructure des polymères, à savoir une homogénéité, d'une chaîne polymère à une autre, de la répartition des séquences hydrophobes au sein du squelette hydrophile ;
et
II sont dispersables dans un milieu aqueux comprenant jusqu'à 50g/L de sel, de préférence dans comprenant jusqu'à 100g/L de sels, et plus avantageusement jusqu'à 200 g/L de sels, voire davantage, et ce sans effet de précipitation des polymères, et ce de préférence sans formation d'aucune turbidité détectable à l'œil.
A cet effet, selon un premier aspect, la présente invention a pour objet un procédé de préparation d'un copolymère séquencé, qui comprend une étape (E) de polymérisation radicalaire micellaire dans laquelle on met en contact, au sein d'un milieu aqueux (M) :
- des monomères hydrophiles, solubilisés ou dispersés dans ledit milieu aqueux (M) ; - des monomères hydrophobes sous la forme d'une solution micellaire, à savoir contenant, à l'état dispersé au sein du milieu (M), des micelles comprenant ces monomères hydrophobes ;
- au moins un amorceur de polymérisation radicalaire, cet amorceur étant typiquement hydrosoluble ou hydrodispersible ; et - de préférence au moins un agent de contrôle de polymérisation radicalaire, où lesdites micelles comprennent au moins un tensioactif de nature amphotère, de préférence de type bétaine ou sultaine.
Selon un autre aspect, l'invention concerne également les compositions polymères du type obtenus selon le procédé comprenant l'étape (E) conduite dans les conditions précitées, ainsi que les polymères qui sont contenus dans ces compositions, où ils sont en association avec les tensioactifs employés lors de la polymérisation radicalaire.
Les inventeurs ont maintenant découvert qu'un procédé de polymérisation micellaire contrôlé du type décrit dans la demande WO 2013/060741 mis en œuvre avec un agent tensioactif particulier, à savoir un agent tensioactif de type amphotère, la composition polymère obtenue à l'issue de la polymérisation, qui contient les tensioactifs employés lors de la polymérisation micellaire présente une solubilité particulièrement importante.
Les polymères obtenus en employant des agents tensioactifs amphotères selon l'invention se révèlent en particulier beaucoup plus solubles en milieu fortement salin que les polymères obtenus dans les mêmes conditions mais en employant le tensioactif le plus couramment employé (et pour ainsi dire le seul en pratique) à savoir le dodécylsulfate de sodium (SDS). Plus généralement, l'emploi de tensioactifs amphotères selon l'invention améliore les propriétés de mise en solution des compositions polymères obtenues par rapport à l'emploi d'un tensioactif anionique utilisé sans tensioactif amphotère.
Le milieu aqueux (M) employé dans l'étape (E) du procédé de l'invention est un milieu comprenant de l'eau, de préférence à hauteur d'au moins 50% en masse, voire au moins 80%, par exemple au moins 90%, voire au moins 95%. Ce milieu aqueux peut éventuellement comprendre d'autres solvants que l'eau, par exemple un alcool miscible à l'eau. Ainsi, le milieu (M) peut être par exemple un mélange hydroalcoolique. Selon une variante possible, le milieu (M) peut comprendre d'autres solvants, de préférence en une concentration où ledit solvant est miscible à l'eau, ce qui peut notamment permettre de réduire la quantité de tensioactifs stabilisants employés. Ainsi, par exemple, le milieu (M) peut comprendre du pentanol, ou tout autre additif permettant de moduler le nombre d'agrégation des tensioactifs. De façon générale, il est préférable que le milieu (M) soit une phase continue d'eau et constituée d'un ou plusieurs solvants et/ou additifs miscibles entre eux et dans l'eau dans les concentrations où ils sont employés.
La polymérisation radicalaire micellaire conduite dans l'étape (E), lorsqu'elle est effectuée en présence d'un agent de contrôle de polymérisation radicalaire permet, en plus des avantages généralement observés en polymérisation micellaire (à savoir le contrôle de la fraction molaire d'unités hydrophobe dans les polymères ; et (ii) un contrôle du nombre d'unités hydrophobes dans chaque séquence hydrophobe) :
- un contrôle de la masse moléculaire moyenne ;
- un contrôle de la distribution des blocs hydrophobes au sein des différentes chaînes ; et l'obtention de chaînes polymères à caractère vivant, offrant la possibilité de préparer des polymères complexes à architecture contrôlée.
De plus, les polymères obtenus dans les conditions de la présente invention en présence d'un agent de contrôle de polymérisation radicalaire ont une structure contrôlée, et leur masse molaire moyenne peut être finement contrôlée. Ces polymères présentent une structure spécifique, à savoir qu'ils sont, schématiquement, à base d'un squelette formé d'unités hydrophiles (hydrosolubles ou hydrodispersdible) interrompu en différents endroits par des petites séquences hydrophobes, ces séquences hydrophobes ("blocs hydrophobes") étant toutes de taille sensiblement identiques et présentes sensiblement en mêmes nombre et proportion sur toutes les chaînes polymères.
Par "agent de contrôle de polymérisation radicalaire", on entend, au sens de la présente description, un composé capable de rallonger le temps de vie des chaînes polymères en croissance dans une réaction de polymérisation et de conférer à la polymérisation un caractère vivant ou contrôlé. Cet agent de contrôle est typiquement un agent de transfert réversible tel que mis en œuvre dans les polymérisations radicalaires contrôlées désignés sous la terminologie RAFT ou MADIX, qui mettent typiquement en œuvre un procédé de transfert réversible par addition-fragmentation, comme ceux décrits par exemple dans WO96/30421 , WO 98/01478, WO 99/35178, WO 98/58974, WO 00/75207, WO 01 /42312, WO 99/35177, WO 99/31 144, FR2794464 ou WO 02/26836.
Selon un mode de réalisation intéressant, on peut employer dans l'étape (E) un agent de contrôle de polymérisation radicalaire employé dans l'étape (E) est un composé qui comprend un groupe thiocarbonylthio -S(C=S)-. Ainsi, par exemple, il peut s'agir d'un composé qui comprend un groupe xanthate (porteur de fonctions -SC=S-0-), par exemple un xanthate. D'autres types d'agent de contrôle peuvent être envisagés (par exemple du type de ceux employé en CRP ou en ATRP). Typiquement, on utilise un oligomère de ce type qui (i) est soluble ou dispersible dans le milieu aqueux (M) employé dans l'étape (E) ; et/ou (ii) n'est pas propre à pénétrer dans les micelles de la solution micellaire.
Selon un mode particulier, on peut employer dans l'étape (E) à titre d'agent de contrôle une chaîne polymère issue d'une polymérisation radicalaire contrôlée et porteuse d'un groupement propre à contrôler une polymérisation radicalaire (chaîne polymère dite de type « vivante », de type bien connu en soi). Ainsi, par exemple, l'agent de contrôle peut être une chaîne polymère (de préférence hydrophile ou hydrodispersible) fonctionnalisée en bout de chaîne par un d'une par un groupe xanthate ou plus généralement comprenant un groupe -SC=S-, par exemple obtenu selon la technologie MADIX.
Alternativement, on peut employer dans l'étape (E) à titre d'agent de contrôle un composé non polymère porteur d'un groupement assurant le contrôle de la polymérisation radicalaire, notamment un groupe thiocarbonylthio -S(C=S)-.
Selon une variante particulière, on peut employer dans l'étape (E) à titre d'agent de contrôle un polymère, avantageusement un oligomère, à caractère hydrosoluble ou hydrodispersible et porteur d'un groupe thiocarbonylthio -S(C=S)-, par exemple d'un groupe xanthate -SC=S-0-). Ce polymère, propre à agir à la fois comme agent de contrôle de la polymérisation et comme monomère dans l'étape (E), est également désigné par « pré-polymère » dans la suite de la description. Typiquement, ce prépolymère est obtenu par polymérisation radicalaire de monomères hydrophiles en présence d'un agent de contrôle porteur d'un groupe thiocarbonylthio -S(C=S)-, par exemple un xanthate. Ainsi, par exemple, selon un mode de réalisation intéressant qui est illustré à la fin de la présente description, l'agent de contrôle employé dans l'étape (E) peut avantageusement être un pré-polymère porteur d'un groupe thiocarbonylthio - S(C=S)-, par exemple d'un groupe xanthate -SC=S-0-, obtenu à l'issue d'une étape (E°) de polymérisation radicalaire contrôlée préalable à l'étape (E). Dans cette étape (E°), on peut typiquement mettre en contact des monomères hydrophiles, avantageusement identiques à ceux mis en œuvre dans l'étape (E) ; un amorceur de polymérisation radicalaire ; et un agent de contrôle porteur d'un groupe thiocarbonylthio -S(C=S)-, par exemple un xanthate.
La mise en œuvre de l'étape (E°) précité préalablement à l'étape (E) permet, schématiquement, d'hydrophiliser un grand nombre d'agent de contrôle porteurs de fonctions thiocarbonylthio (par exemple des xanthate, qui sont plutôt hydrophobes par nature), en les convertissant des pré-polymères solubles ou dispersibles dans le milieu (M) de l'étape (E). De préférence, un pré-polymère synthétisé dans l'étape (E°) possède une chaîne polymère courte, par exemple comprenant un enchaînement de moins de 50, voire moins de 25 unités monomères, par exemple entre 2 et 15.
Lorsqu'elle est conduite en présence d'un agent de contrôle de polymérisation radicalaire, l'étape (E) permet de combiner les avantages à la fois de la polymérisation radicalaire contrôlée et de la polymérisation micellaire. Dans ce cadre, il est à noter que la présence des micelles dans le milieu de polymérisation n'affecte pas l'action des agents de contrôle, qui permettent de réaliser une polymérisation contrôlée des monomères présents au sein du milieu aqueux de façon similaire à une polymérisation radicalaire contrôlée effectuée en milieu homogène, ce qui permet de prévoir et de contrôler très aisément la masse molaire moyenne du polymère synthétisé (cette masse est d'autant plus élevées que la concentration initiale en agent de contrôle dans le milieu est faible, cette concentration dictant le nombre de chaînes polymères en croissance). Dans le même temps, la présence de l'agent de contrôle ne nuit pas non plus à l'effet intéressant observé en polymérisation, à savoir le contrôle précis de la taille des blocs hydrophobes.
La mise en œuvre de l'étape (E) du procédé de l'invention , en particulier en présence d'un agent de contrôle de polymérisation radicalaire, permet en outre d'accéder à des polymères de taille à la fois élevée et contrôlée. Ainsi, la taille des polymères obtenus est plus élevées que les tailles maximales qu'on sait obtenir en employant des méthodes de polymérisation radicalaire contrôlée, ou de polymérisation radicalaire micellaire en l'absence d'agents de contrôle. De plus, dans les conditions de l'étape (E), il s'avère possible de contrôler la masse molaire moyenne en nombre des polymères jusqu'à des valeurs très élevées. Selon un mode de réalisation particulier, les polymères synthétisés selon le procédé de l'invention peuvent présenter une masse moléculaire supérieure à 300 000 g/mol. Notamment en ajustant la concentration initiale en agent de contrôle a sein du milieu (M), l'étape (E) peut typiquement conduire à la synthèse d'un polymère séquencé ayant une masse moléculaire Mn supérieure à 400 000 g/mol. Selon un mode de réalisation intéressant du procédé de l'invention, dans l'étape (E), la concentration initiale en agent de contrôle dans le milieu est choisie telle que la masse moléculaire moyenne bloc polymère hydrophile synthétisée a une masse moléculaire en nombre Mn supérieure ou égale à 500 000 g/mol, par exemple entre 500 000 et 1 000 000 g/mol, des tailles allant jusqu'à 2 000 000 pouvant être atteintes.
Le procédé de l'invention permet alternativement de réaliser des polymères de plus faibles masses. Selon un mode de réalisation intéressant, le polymère synthétisé est un polymère de masse comprise entre 1 000 et 100 000 g/mol, de préférence, entre 2 000 et 25 000 g/mol. Typiquement, de tels polymères de faibles masses peuvent être employés en concentration inférieure à leur concentration de recouvrement critique. En raison de leurs petites tailles, de tels polymères peuvent diffuser aux interfaces et participer à la modification des propriétés de ces interfaces ou surfaces.
Quelle que soit la taille des polymères synthétisés, lorsque l'étape (E) est conduite en présence d'un agent de contrôle de polymérisation radicalaire les polymères obtenus présentent en outre une microstructure très contrôlée, avec des chaînes sensiblement toutes similaires, comprenant des blocs hydrophobes répartis sensiblement de la même manière d'une chaîne polymère à une autre, ,. Cette homogénéité de la distribution des blocs hydrophobes d'une chaîne à l'autre permet d'obtenir une population de polymère présentant tous des propriétés similaires, ce qui permet de fournir des compositions ayant des propriétés parfaitement ciblées et reproductibles, qui constituent un avantage pour certaines applications des polymères, par exemple lorsqu'on cherche à les employer pour obtenir un effet viscosant dosé de façon précise. Les polymères obtenus selon l'invention se distinguent en cela des polymères généralement obtenus en polymérisation micellaire, qui ont le plus souvent une répartition très large et très hétérogène de la distribution des blocs hydrophobe au sein des différentes chaînes. Ainsi, la mise en œuvre de l'étape (E) permet d'accéder à des polymères particulièrement intéressants. Compte tenu de la mise en œuvre des conditions de l'étape (E), ces polymères présentent le plus souvent une structure linéaire, avec des blocs hydrophobes localisés selon un gradient monotone, à savoir, de concentration constamment décroissant ou constamment croissant du début à la fin de la chaîne polymère en formation, ce qui s'explique notamment par le fait que les monomères hydrophobes présents en solution micellaire s'épuisent avec le temps.
Les polymères obtenus selon la présente invention peuvent être employés dans de nombreux domaines. Ils peuvent tout particulièrement être employés à titre d'agents tensioactifs et/ou d'agents modificateur de propriétés rhéologique, notamment à titre d'agent viscosant ou épaississant, en particulier dans des milieux aqueux.
Les compositions telles qu'obtenues à l'issue de la polymérisation micellaire de l'invention, qui comprennent les polymères précités en association avec les tensioactifs employés dans l'étape (E), incluant au moins un tensioactif amphotère, sont adaptées à un emploi en milieu fortement salin. Elles sont également adaptés à des milieux de moindre salinité ce qui leur confère une bonne modularité en termes de salinité.
Selon un troisième aspect, l'invention a également pour objet les utilisations précitées des compositions polymères et polymères spécifiques obtenus selon l'invention, en particulier l'emploi des compositions polymères dans des milieux aqueux comprenant au moins 50 g/L de sels, avantageusement au moins 100 g/L de sels, voire au moins 150 g/L de sels, par exemple judqu'à 300 g/L de sels. L'invention a également pour objet les procédés de modification de milieux aqueux employant ces compositions polymères et polymères à titre d'agent modificateur de rhéologie. L'invention concerne également les compositions aqueuses comprenant les polymères selon l'invention, qui peuvent notamment être employés pour l'exploitation de gisements de pétrole et/ou de gaz. L'invention a aussi pour objet les méthodes employant des compositions aqueuses de ce type pour l'exploitation de gisements de pétrole et/ou de gaz, notamment les méthodes employant une circulation ou un placement d'une telle composition au sein d'un puits. L'invention concerne en particulier l'utilisation des compositions aqueuses comprenant les polymères selon l'invention, et desdits polymères, pour effectuer une opération d'extraction pétrolière, notamment une opération de stimulation (notamment une opération de fracturation) ou bien une opération de récupération assistée de pétrole (ou EOR, pour l'anglais « Enhanced Oil Recovery »).
Différentes caractéristiques et modes de réalisation de l'invention vont maintenant être décrits encore plus en détails.
L'agent de contrôle de polymérisation radicalaire
L'agent de contrôle qui peut être avantageusement mis en œuvre dans l'étape (E) et, le cas échéant, dans l'étape (E°) du procédé de l'invention est avantageusement un composé porteur d'un groupe thiocarbonylthio -S(C=S)-. Selon un mode de réalisation particulier, l'agent de contrôle peut être porteur de plusieurs groupes thiocarbonylthio. Il peut éventuellement s'agir d'une chaîne polymère porteuse d'un tel groupe.
Ainsi, cet agent de contrôle peut par exemple répondre à la formule (A) ci- dessous :
Figure imgf000011_0001
(A)
dans laquelle : - Z représente :
. un atome d'hydrogène,
. un atome de Chlore,
. un radical alkyl éventuellement substitué, aryl éventuellement substitué, . un hétérocycle éventuellement substitué,
. un radical alkylthio éventuellement substitué, . un radica arylthio éventuellement substitué,
. un radica alkoxy éventuellement substitué,
. un radica aryloxy éventuellement substitué,
. un radica amino éventuellement substitué,
. un radica hydrazine éventuellement substitué,
. un radica alkoxycarbonyl éventuellement substitué,
. un radica aryloxycarbonyl éventuellement substitué,
. un radica carboxy, acyloxy éventuellement substitué,
. un radica aroyloxy éventuellement substitué,
. un radica carbamoyie éventuellement substitué,
. un radica cyano,
. un radica dialkyl- ou diaryl-phosphonato,
. un radica dialkyl-phosphinato ou diaryl-phosphinato, ou
une chaîne polymère,
et
Ri représente :
. un groupe alkyle, acyle, aryle, aralkyle, alcène ou alcyne éventuellement substitué,
. un cycle carboné ou un hétérocycle, saturé ou non, aromatique éventuellement substitué, ou
. une chaîne polymère, de préférence hydrophile ou hydrodispersible lorsque l'agent est mis en œuvre dans l'étape (E).
Les groupes Ri ou Z, lorsqu'ils sont substitués, peuvent l'être par des groupes phényles éventuellement substitués, des groupes aromatiques éventuellement substitués, des cycles carbonés saturés ou non, des hétérocycles saturé ou non, ou des groupes : alkoxycarbonyle ou aryloxycarbonyle (-COOR), carboxy (-COOH), acyloxy (-O2CR), carbamoyie (-CONR2), cyano (-CN), alkylcarbonyle, alkylarylcarbonyle, arylcarbonyle, arylalkylcarbonyle, phtalimido, maleïmido, succinimido, amidino, guanidimo, hydroxy (- OH), amino (-NR2), halogène, perfluoroalkyle CnF2n+i , allyle, époxy, alkoxy (-OR), S- alkyle, S-aryle, des groupes présentant un caractère hydrophile ou ionique tels que les sels alcalins d'acides carboxyliques, les sels alcalins d'acide sulfonique, les chaînes polyoxyde d'alkylène (PEO, POP), les substituants cationiques (sels d'ammonium quaternaires), R représentant un groupe alkyle ou aryle, ou une chaîne polymère.
Pour les agents de contrôle de formule (A) utilisables dans l'étape (E), on préfère en général que le groupe R^ soit de nature hydrophile. Avantageusement, il s'agit d'une chaîne polymère hydrosoluble ou hydrodispersible.
Le groupe R1 peut alternativement être amphiphile, à savoir présenter à la fois un caractère hydrophile et lipophile. Il est préférable que R1 ne soit pas hydrophobe.
Concernant les agents de contrôle de formule (A) mis en œuvre dans l'étape (E°), Ri peut typiquement être un groupe alkyle substitué ou non, de préférence substitué. Un agent de contrôle de formule (A) mis en œuvre dans l'étape (E°) peut néanmoins comprendre d'autres types de groupes Ri , notamment un cycle ou une chaîne polymère
Les groupes alkyle, acyle, aryle, aralkyle ou alcyne éventuellement substitués présentent généralement 1 à 20 atomes de carbone, de préférence 1 à 12, et plus préférentiellement 1 à 9 atomes de carbone. Ils peuvent être linéaires ou ramifiés. Ils peuvent être également substitués par des atomes d'oxygène, sous forme notamment d'esters, des atomes de soufre ou d'azote.
Parmi les radicaux alkyle, on peut notamment citer le radical méthyle, éthyle, propyle, butyle, pentyle, isopropyle, tert-butyle, pentyle, hexyle, octyle, decyle ou dodécyle.
Les groupes alcynes sont des radicaux généralement de 2 à 10 atomes de carbone, ils présentent au moins une insaturation acétylénique, tel que le radical acétylenyle.
Le groupe acyle est un radical présentant généralement de 1 à 20 atomes de carbone avec un groupement carbonyle.
Parmi les radicaux aryle, on peut notamment citer le radical phényle, éventuellement substitué notamment par une fonction nitro ou hydroxyle.
Parmi les radicaux aralkyle, on peut notamment citer le radical benzyle ou phénéthyle, éventuellement substitué notamment par une fonction nitro ou hydroxyle.
Lorsque Ri ou Z est une chaîne polymère, cette chaîne polymère peut être issue d'une polymérisation radicalaire ou ionique ou issue d'une polycondensation. Avantageusement, on utilise comme agent de contrôle pour l'étape (E), ainsi que pour l'étape (E°) le cas échéant, des composés porteurs d'une fonction xanthate -S(C=S)0-, trithiocarbonate, des dithiocarbamate, ou dithiocarbazate, par exemple porteurs d'une fonction O-ethyl xanthate de formule -S(C=S)OCH2CH3 .
Lorsque l'étape (E°) est conduite, il est notamment intéressant d'employer à titre d'agents de contrôle dans cette étape un composé choisi parmi les xanthates, les trithiocarbonates, les dithiocarbamates, ou les dithiocarbazates. Les xanthates se révèlent tout particulièrement intéressants, notamment ceux porteur d'une fonction O-ethyl xanthate -S(C=S)OCH2CH3, comme le 0-ethyl-S-(1 -methoxycarbonyl ethyl) xanthate (CH3CH(C02CH3))S(C=S)OEt. Un autre agent de contrôle possible dans l'étape (E°) est le dibenzyltrithiocarbonate de formule PhCH2S(C=S)SCH2Ph (où Ph=phényle). Les pré-polymères vivants obtenus dans l'étape (E°) en utilisant les agents de contrôle précités s'avèrent particulièrement intéressants pour la conduite de l'étape (E).
Les monomères hydrophiles
Le procédé de l'invention peut être employé avec un très grand nombre de monomères hydrophiles.
Typiquement, les monomères peuvent comprendre des monomères choisis parmi :
- les acides carboxyliques éthyléniquement insaturés, les acides sulfoniques et les acides phosphoniques, et/ou ses dérivés tels que l'acide acrylique (AA), l'acide méthacrylique, l'acide éthacrylique, l'acide α-chloro-acrylique, l'acide crotonique, l'acide maléique, l'anhydride maléique, l'acide itaconique, l'acide citraconique, l'acide mésaconique, l'acide glutaconique, l'acide aconitique, l'acide fumarique, les monoesters d'acides dicarboxyliques monoéthyléniquement insaturés comportant 1 à 3, de préférence 1 à 2, atomes de carbone, par exemple, le maléate de monométhyle, l'acide vinylsulfonique, l'acide (meth)allylsulfonique, l'acrylate de sulfoéthyle, le méthacrylate de sulfoéthyle, l'acrylate de sulfopropyle, le méthacrylate de sulfopropyle, l'acide 2-hydroxy-3-acryloyloxypropylsulfonique, l'acide 2-hydroxy-3- methacryloyloxypropylsulfonique, les acides styrenesulfoniques, l'acide 2- acrylamido-2-methylpropanesulfonique, l'acide vinylphosphonique, l'acide a- methyl vinylphosphonique et l'acide allylphosphonique ; - les esters d'acides mono- et di-carboxyliques α,β-éthyléniquement insaturés avec C2-C3-alcanediols, par exemple, l'acrylate de 2-hydroxyethyle, le méthacrylate de 2-hydroxyethyle, l'éthacrylate de 2-hydroxyethyle, l'acrylate de 2-hydroxypropyle, le méthacrylate de 2-hydroxypropyle, l'acrylate de 3- hydroxypropyle, le méthacrylate de 3-hydroxypropyle et les (meth)acrylates de polyalkylène glycol;
- les amides d'acides mono-carboxyliques α,β-éthyléniquement insaturés et leurs dérivés N-alkyle et Ν,Ν-dialkyle tels que l'acrylamide, le méthacrylamide, le N-méthyl(meth)acrylamide, le N-ethyl(meth)acrylamide, le N- propyl(meth)acrylamide, le N,N-dimethyl(meth)acrylamide, le N,N- diethyl(meth)acrylamide, le morpholinyl(meth)acrylamide, et le metholyl acrylamide (l'acrylamide et le N,N-dimethyl(meth)acrylamide s'avèrent notamment intéressant) ; le N-vinyllactames et ses dérivés, par exemple, le N-vinylpryolidone, le N- vinylpiperidone ;
- les composés N-vinylamide à chaînes ouvertes, par exemple, le N- vinylformamide, le N-vinyl-N-methylformamide, le N-vinylacetamide, le N-vinyl- N-methylacetamide, le N-vinyl-N-ethylacetamide, le N-vinylpropionamide, le N- vinyl-N-methylpropionamide et le N-vinylbutyramide ;
- les esters d'acides mono- et di-carboxyliques α,β-éthyléniquement insaturés avec les aminoalcools, par exemple, le (meth)acrylate de N,N- diméthylaminométhyle, le (meth)acrylate de N,N-dimethylaminoethyle, l'acrylate de Ν,Ν-diéthylaminoéthyle, et le (meth)acrylate de N,N- dimethylaminopropyle;
- les amides d'acides mono- et di-carboxyliques α,β-éthyléniquement insaturés avec les diamines comprenant au moins un groupe d'amino primaire ou secondaire, tels que le N-[2-(dimethylamino)ethyl]acrylamide, le N[2- (dimethylamino)ethyl]methacrylamide, le N-[3- (dimethylamino)propyl]acrylamide, le N-[3- (dimethylamino)propyl]methacrylamide, le N-[4- (dimethylamino)butyl]acrylamide et le N-[4- (dimethylamino)butyl]methacrylamide ;
- les N-diallylamines, les N,N-diallyl-N-alkylamines, leurs sels d'additions d'acide et leurs produits de quaternisation, l'alkyle employé ici étant préférentiellement C1 -C3-alkyle ; les composés du N,N-diallyl-N-methylamine et du N,N-diallyl-N,N- dimethylammonium, par exemple, les chlorures et les bromures ;
- les hétérocylces azotés substitutés de vinyle et d'allyle, par exemple, le N- vinylimidazole, le N-vinyl-2-methylimidazole, les composés hétéroaromatiques substitués de vinyle et d'allyle, par exemple, le 2- et 4-vinylpyridine, le 2- et 4- allylpyridine, et leurs sels ;
- les sulfobétaines ; et
- les mélanges et association de deux ou plusieurs des monomères précités.
Selon un mode de réalisation particulier, ces monomères peuvent notamment comprendre de l'acide acrylique (AA). Selon un mode de réalisation possible, les monomères sont tous des acides acryliques, mais il est également envisageable de mettre en œuvre à titre de monomères un mélange comprenant, entre autres, de l'acide acrylique, en mélange avec d'autres monomères hydrophiles.
Selon un mode de réalisation préférentiel, les monomères hydrophiles de l'étape (E) comprennent de l'acide (meth)acrylique et/ou des monomères (meth)acrylamido.
Au sens de la présente description, le terme « acide (meth)acrylique » englobe l'acide methacrylique, l'acide acrylique et leurs mélanges.
De la même façon, au sens de la présente description, le terme « (meth)acrylate » englobe le methacrylate, l'acrylate et leurs mélanges. De la même façon, au sens de la présente description, le terme
« (meth)acrylamide/(meth)acylamido », englobe le methacrylamide/le methacrylamido, l'acrylamide/l'acrylamido et leurs mélanges. Les monomères contenant des groupes acides peuvent être utilisés pour la polymérisation sous la forme de l'acide libre ou sous la forme partiellement ou totalement neutralisée. Pour la neutralisation, on peut utiliser, par exemple, KOH, NaOH, l'ammoniaque ou autre base. Selon un autre mode de réalisation particulier, les monomères employés dans le procédé de l'invention sont notamment l'acide acrylique, l'acide méthacrylique, et/ou leurs sels, et/ou leurs mélanges.
Selon un autre mode de réalisation, les monomères mis en œuvre dans l'étape (E) comprennent (et typiquement sont constitués de) monomères (meth)acrylamide, ou plus généralement des monomères (meth)acrylamido, incluant :
- les monomères acrylamido, à savoir, l'acrylamide, son dérivé sulfonate (AMPS), l'ammonium quaternaire (APTAC) et le sulfopropyl diméthylammonium propyl acrylamide ;
- les monomères methacrylamido, tels que, le sulfopropyl diméthylammonium propyl méthacrylamide (SPP), le sulfohydroxypropyl diméthyl ammonium propyl méthacrylamido.
Selon un mode de réalisation particulier, les monomères de l'étape (E) sont des acrylamides. Un acrylamide employé dans l'étape (E) est de préférence un acrylamide non stabilisé par du cuivre. En cas de présence de cuivre, il est préférable d'introduire un agent complexant du cuivre tel que l'EDTA, le cas échéant de préférence à hauteur de 20 à 2000 ppm. Lorsqu'on utilise des acrylamides dans l'étape (E), ils peuvent typiquement être employée sous forme de poudre, de solution aqueuse (éventuellement, mais non nécessairement, stabilisée par l'éther monométhylique de l'hydroquinone MEHQ, ou bien par des sels de cuivre (de préférence additionnée d'EDTA le cas échéant)). Quelle que soit leur nature exacte, les monomères de l'étape (E) peuvent être mis en œuvre à des concentrations relativement élevées, typiquement à des concentrations qui seraient suffisantes pour assurer la formation du gel si l'étape (E) était conduite en l'absence d'agent de contrôle. Les inventeurs ont maintenant mis en évidence que, de façon surprenante, la polymérisation de l'étape (E) peut, au besoin être conduite dans des conditions qui correspondent à celle de la polymérisation en gel, et ce sans nécessairement conduire à une gélification du milieu réactionnel lors de la polymérisation, du fait de la présence de l'agent de contrôle. Qu'une gélification du milieu soit observée ou non, l'étape (E) permet une polymérisation de type contrôlée, contrairement à une polymérisation conduite sans agent de contrôle additionnel.
Typiquement, la concentration initiale en monomères dans le milieu réactionnel de l'étape (E) peut aller jusqu'à 40% en masse, voire jusqu'à 50% en masse, cette concentration restant en général inférieure à 30% en masse par rapport à la masse totale du milieu réactionnel. Par exemple, la concentration initiale en monomères dans le milieu réactionnel de l'étape (E) est comprise entre 0,5 % et 35%, notamment entre 1 et 20% en masse par rapport à la masse totale du milieu réactionnel.
Selon un mode de réalisation spécifique, les monomères hydrophiles employés dans l'étape (E) sont des macromonomères thermosensibles, insolubles dans l'eau au- delà d'une certaine température (point de trouble ou "cloud point" en anglais), mais solubles à plus faible température, l'étape (E) étant conduite à une température inférieure à la température du point de trouble. Les macromonomères de ce type présentent typiquement une fonction polymérisable de type acrylamido, et une chaîne latérale composée d'enchaînements oxyde d'éthylène ou oxyde de propylène (statistique ou à blocs), ou bien à base de N-isopropylacrylamide, ou de N-vinylcaprolactame. Ce mode de réalisation donne notamment accès à la préparation de polymères présentant des propriétés thermo épaississantes, utilisables par exemple dans l'industrie pétrolière.
De préférence, dans l'étape (E), tous les monomères hydrophiles sont dissous et/ou dispersés au sein du milieu aqueux (M).
Les monomères hydrophobes
Ces monomères, mis en œuvre dans l'étape (E) sous la forme d'une solution micellaire, à savoir contenant, à l'état dispersé au sein du milieu (M), des micelles comprenant ces monomères hydrophobes. Sous réserve qu'ils puissent être intégrés dans des micelles de ce type, tout monomère de nature hydrophobe peut être envisagé dans l'étape (E).
A titre d'exemple non limitatif de monomère hydrophobe utilisable selon l'invention, on peut notamment citer : - les monomères vinylaromatiques tels que le styrène, l'alpha methylstyrène, le parachlorométhylstyrène, le vinyltoluène, le 2-methylstyrene, le 4-methylstyrene, le 2-(n-butyl)styrene, ou le 4-(n-decyl)styrene (le t-butyl styrène s'avère tout particulièrement intéressant) ;
- les composés vinyliques halogénés, tels que halogénures de vinyle ou de
vinylidène, comme des chlorures ou fluorure de vinyle ou de vinylidene, répondant à la formule RbRcC=CX1X2,
où : X1 = F ou Cl
X2 = H, F ou Cl
chacun de Rb et Rc représente, indépendamment :
- H, Cl, F ; ou
- un groupe alkyle, de préférence chloré et /ou fluoré, plus avantageusement perchloré ou perfluoré ; les esters d'acide mono-, di-carboxylique α,β éthyléniquement insaturés avec C2-C30-alcanols, par exemple, l'ethacrylate de methyle, le (meth)acrylate d'ethyle, l'ethacrylate d'ethyle, le (meth)acrylate de n-propyle, le (meth)acrylate d'isopropyle, le (meth)acrylate de n-butyle, le (meth)acrylate de sec-butyle, le (meth)acrylate de tert-butyle, l'ethacrylate de tert-butyle, le (meth)acrylate de n- hexyle, le (meth)acrylate de n-heptyle, le (meth)acrylate de n-octyle, le (meth)acrylate de 1 ,1 ,3,3-tetramethylbutyle, le (meth)acrylate d'ethylhexyle, le (meth)acrylate de n-nonyle, le (meth)acrylate de n-decyle, le (meth)acrylate de n-undecyle, le (meth)acrylate de tridecyle, le (meth)acrylate de myristyle, le (meth)acrylate de pentadecyle, le (meth)acrylate de palmityle, le (meth)acrylate de heptadecyle, le (meth)acrylate de nonadecyle, le (meth)acrylate d'arachinyle, le (meth)acrylate de behenyle, le (meth)acrylate de lignoceryle, le (meth)acrylate de cerotinyle, le (meth)acrylate de melissinyle, le (meth)acrylate de palmitoleoyie, le (meth)acrylate d'oleyle, le (meth)acrylate de linolyle, le (meth)acrylate de linolenyle, le (meth)acrylate de stearyle, le (meth)acrylate de lauryle et leurs mélanges ;
- les esters d'alcool de vinyle ou d'allyle avec les acides monocarboxyliques en C1 -C30, par exemple, le vinyl formate, le vinyl acétate, le vinyl propionate, le vinyl butyrate, le vinyl laurate, le vinyl stéarate, le vinyl propionate, le vinyl versatate et leurs mélanges ; - les nitriles éthyléniquement insaturés, tels que l'acrylonitrile, le methacrylonitrile et leurs mélanges ;
les esters d'acides mono- et di-carboxyliques α,β éthyléniquement insaturés avec l'alcanediols en C3-C30, par exemple, l'acrylate de 2-hydroxypropyle, le methacrylate de 2-hydroxypropyle, l'acrylate de 3-hydroxypropyle, le methacrylate de 3-hydroxypropyle, l'acrylate de 3-hydroxybutyle, le methacrylate de 3-hydroxybutyle, l'acrylate de 4-hydroxybutyle, le methacrylate de 4-hydroxybutyle, l'acrylate de 6-hydroxyhexyle, le methacrylate de 6- hydroxyhexyle, l'acrylate 3-hydroxy-2-ethylhexyle et le methacrylate de 3- hydroxy-2-ethylhexyle ;
les amides primaires d'acides mono- et di-carboxyliques α,β éthyléniquement insaturés et les dérivés de N-alkyle et Ν,Ν-dialkyle, tels que le N- propyl(meth)acrylamide, le N-(n-butyl)(meth)acrylamide, le N-(tert- butyl)(meth)acrylamide, le N-(n-octyl)(meth)acrylamide, le N-(1 , 1 ,3,3- tetramethylbutyl)(meth)acrylamide, le N-ethylhexyl(meth)acrylamide, le N-(n- nonyl)(meth)acrylamide, le N-(n-decyl)(meth)acrylamide, le N-(n- undecyl)(meth)acrylamide, le N-tridecyl(meth)acrylamide, le N- myristyl(meth)acrylamide, le N-pentadecyl(meth)acrylamide, le N- palmityl(meth)acrylamide, le N-heptadecyl(meth)acrylamide, le N- nonadecyl(meth)acrylamide, le N-arachinyl(meth)acrylamide, le N- behenyl(meth)acrylamide, le N-lignoceryl(meth)acrylamide, le N- cerotinyl(meth)acrylamide, le N-melissinyl(meth)acrylamide, le N- palmitoleoyl(meth)acrylamide, le N-oleyl(meth)acrylamide, le N- linolyl(meth)acrylamide, le N-linolenyl(meth)acrylamide, le N- stearyl(meth)acrylamide et le N-lauryl(meth)acrylamide ;
- les N-vinyllactams et ses dérivées tels que, le N-vinyl-5-ethyl-2-pyrrolidone, le N-vinyl-6-methyl-2-piperidone, le N-vinyl-6-ethyl-2-piperidone, le N-vinyl-7- methyl-2-caprolactam et le N-vinyl-7-ethyl-2-caprolactam ;
les esters d'acides mono- et di-carboxyliques α,β éthyléniquement insaturés avec aminoalcools, par exemple, le (meth)acrylate de N,N- dimethylaminocyclohexyle;
les amides d'acides mono- et di-carboxyliques α,β éthyléniquement insaturés avec diamines comprenant au moins un groupe amino primaire ou secondaire, par exemple, le N-[4-(dimethylamino)butyl]acrylamide, le N-[4- (dimethylamino)butyl]methacrylamide, le N-[2-(diethylamino)ethyl]acrylamide, le N-[4-(dimethylamino)cyclohexyl]acrylamide, le N-[4- (dimethylamino)cyclohexyl]methacrylamide ; et
- les monooléfines en C2-C8 et les hydrocarbons nonaromatiques comprenant au moins deux bonds doubles conjugués par exemple, l'éthylène, le propylène, l'isobutylène, l'isoprène, le butadiène.
Selon un mode de réalisation préférentielle, les monomères hydrophobes employés selon l'invention, peuvent être choisis parmi :
- les esters alpha-bêta insaturés d'alkyle en C1 -C30 alkyle, de préférence d'alkyle en C4-C22, en particulier les acrylates et méthacrylate d'alkyle, comme les acrylates et méthacrylate de méthyle, ethyle, butyle, 2- étylhexyl, isoactyle, lauryle, isodécyle ou stéaryle (le méthacrylate de lauryle en particulier s'avère tout spécialement intéressant) ;
- les amides alpha-bêta insaturés d'alkyle en C1 -C30 alkyle, de préférence d'alkyle en C4-C22, en particulier les acrylamide et méthacrylamide d'alkyle, comme les méthyle, ethyle, butyle, 2-étylhexyle, isoactyle, lauryle, isodécyle ou stéaryle acrylamide et méthacrylamide ;
- les esters de vinyle ou d'alcool allylique d'acide carboxyliques saturés tels que les acétate, propionate, versatate, ou stéarate de vinyle ou d'allyle ; - les nitriles alpha-bêta insaturés contenant de 3 à 12 atomes de carbone, comme l'acrylonitrile ou le
- l'acrylonitrile,
- les alpha oléfines et les diènes conjugués ;
- les mélanges et association de deux ou plusieurs des monomères précités. De préférence, les micelles de la solution micellaire de l'étape (E) ne contiennent pas de monomères à caractère hydrophile ou hydrodispersible. Par ailleurs, de préférence, tous les monomères hydrophobes employés dans l'étape (E) sont renfermés dans des micelles de la solution micellaire.
Selon un mode de réalisation possible, les monomères contenus dans les micelles de la solution micellaire peuvent être des monomères à caractère tensioactif, dits de type « auto-micellisable », propre à stabiliser en partie les micelles qui les contiennent. Amorçage et conduite des polymérisations radicalaires des étapes (E) et (E°)
Lorsqu'il est mis en œuvre dans l'étape (E) l'amorceur de la polymérisation radicalaire est de préférence hydrosoluble ou hydrodispersible. Hormis cette condition préférentielle, on peut employer dans l'étape (E) et l'étape (E°) du procédé de l'invention tout amorceur de polymérisation radicalaire (source de radicaux libres) connu en soi et adapté aux conditions choisies pour ces étapes.
Ainsi, l'amorceur (initiateur) de polymérisation radicalaire employé selon l'invention peut par exemple être choisi parmi les initiateurs classiquement utilisés en polymérisation radicalaire. Il peut s'agir par exemple d'un des initiateurs suivants :
- les peroxydes d'hydrogène tels que : Γ h ydro peroxyde de butyle tertiaire, l'hydroperoxyde de cumène, le t-butyl-peroxyacétate, le t-butyl-peroxybenzoate, le t- butylperoxyoctoate, le t-butylperoxynéodécanoate, le t-butylperoxyisobutarate, le peroxyde de lauroyle, le t-amylperoxypivalte, le t-butylperoxypivalate, le peroxyde de dicumyl, le peroxyde de benzoyle, le persulfate de potassium, le persulfate d'ammonium,
- les composés azoïques tels que : le 2-2'-azobis(isobutyronitrile), le 2,2'-azobis(2- butanenitrile), le 4,4'-azobis(4-acide pentanoïque), le 1 ,1 '-azobis(cyclohexane- carbonitrile), le 2-(t-butylazo)-2-cyanopropane, le 2,2'-azobis[2-méthyl-N-(1 ,1 )- bis(hydroxyméthyl)-2-hydroxyéthyl] propionamide, le 2,2'-azobis(2-méthyl-N- hydroxyéthyl]-propionamide, le dichlorure de 2,2'-azobis(N,N'- diméthylèneisobutyramidine), le dichlorure de 2,2'-azobis (2-amidinopropane), le 2,2'- azobis (Ν,Ν'-diméthylèneisobutyramide), le 2,2'-azobis(2-méthyl-N-[1 ,1 -bis (hydroxyméthyl)-2-hydroxyéthyl] propionamide), le 2, 2'-azobis(2-méthyl-N-[1 ,1 -bis (hydroxyméthyl)éthyl] propionamide), le 2,2'-azobis[2-méthyl-N-(2-hydroxyéthyl) propionamide], le 2,2'-azobis(isobutyramide) dihydrate,
- les systèmes redox comportant des combinaisons telles que :
- les mélanges de peroxyde d'hydrogène, d'alkyle, peresters, percarbonates et similaires et de n'importe lequel des sels de fer, de sels titaneux, formaldéhyde sulfoxylate de zinc ou formaldéhyde sulfoxylate de sodium, et des sucres réducteurs,
- les persulfates, perborate ou perchlorate de métaux alcalins ou d'ammonium en association avec un bisulfite de métal alcalin, tel que le métabisulfite de sodium, et des sucres réducteurs, et - les persulfates de métal alcalin en association avec un acide arylphosphinique, tel que l'acide benzène phosphonique et autres similaires, et des sucres réducteurs.
Typiquement, la quantité d'initiateur à utiliser est déterminée de préférence de manière à ce que la quantité de radicaux générés soit d'au plus 50 % en mole, de préférence d'au plus 20% en mole, par rapport à la quantité d'agent de contrôle ou de transfert.
Tout particulièrement dans l'étape (E), il s'avère généralement intéressant d'utiliser un amorceur radicalaire de type redox, qui présente, entre autres, l'avantage de ne pas nécessiter un chauffage du milieu réactionnel (pas d'amorçage thermique) et dont les inventeurs ont en outre maintenant découvert qu'il se révèle adapté à la polymérisation micellaire de l'étape (E).
Ainsi, l'amorceur de polymérisation radicalaire employé l'étape (E) peut typiquement être un amorceur redox, typiquement ne nécessitant pas de chauffage pour leur amorçage thermique. Il s'agit typiquement d'un mélange d'au moins un agent oxydant avec au moins un agent réducteur.
L'agent oxydant présent dans ce système redox est de préférence un agent hydrosoluble. Cet agent oxydant peut par exemple être choisi parmi les peroxydes, tels que : le peroxyde d'hydrogène, l'hydroperoxyde de butyle tertiaire, l'hydroperoxyde de cumène, le t-butyl-peroxyacétate, le t-butyl-peroxybenzoate, le t-butylperoxyoctoate, le t- butylperoxynéodécanoate, le t-butylperoxyisobutarate, le peroxyde de lauroyle, le t- amylperoxypivalte, le t-butylperoxypivalate, le peroxyde de dicumyl, le peroxyde de benzoyle ; le persulfate de sodium, le persulfate de potassium, le persulfate d'ammonium, ou bien encore le bromate de potassium. L'agent réducteur présent dans le système redox est également, de préférence, un agent hydrosoluble. Cet agent réducteur peut typiquement être choisi parmi le formaldéhyde sulfoxylate de sodium (notamment sous sa forme de dihydrate, connue sous le nom de Rongalit ou sous la forme d'un anhydride), l'acide ascorbique, l'acide érythorbique, les sulfites, bisulfites ou métasulfites (sulfites, bisulfites ou métasulfites de métaux alcalins en particulier), les nitrilotrispropionamides, et les aminés et ethanolamines tertiaires (de préférence hydrosolubles).
Des systèmes redox possibles comportent des combinaisons telles que - les mélanges de persulfates hydrosolubles avec des aminés tertiaires hydrosolubles,
- les mélanges de bromates hydrosolubles (bromate de métaux alcalins par exemple) avec des sulfites hydrosolubles (sulfites de métaux alcalins par exemple),
- les mélanges de peroxyde d'hydrogène, d'alkyle, peresters, percarbonates et similaires et de n'importe lequel des sels de fer, de sels titaneux, formaldéhyde sulfoxylate de zinc ou formaldéhyde sulfoxylate de sodium, et des sucres réducteurs,
- les persulfates, perborate ou perchlorate de métaux alcalins ou d'ammonium en association avec un bisulfite de métal alcalin, tel que le métabisulfite de sodium, et des sucres réducteurs, et
- les persulfates de métal alcalin en association avec un acide arylphosphinique, tel que l'acide benzène phosphonique et autres similaires, et des sucres réducteurs.
Un système redox intéressant comprend (et de préférence consiste en) l'association de persulfate d'ammonium et de formaldéhyde sulfoxylate de sodium.
De façon générale, et en particulier dans le cas de l'utilisation d'un système redox du type persulfate d'ammonium/formaldéhyde sulfoxylate de sodium, il s'avère préférable que le milieu réactionnel de l'étape (E) soit exempt de cuivre. En cas de présence de cuivre, il est en général souhaitable d'ajouter un complexant du cuivre, tel que de l'EDTA, en une quantité propre à masquer sa présence.
Quelle que soit la nature de l'amorceur employé, la polymérisation radicalaire de l'étape (E°) peut être effectuées sous toute forme physique appropriée, par exemple en solution dans l'eau ou dans un solvant par exemple un alcool ou le THF, en émulsion dans l'eau (procédé dit "latex"), en masse, le cas échéant en contrôlant la température et/ou le pH afin de rendre des espèces liquides et/ou solubles ou insolubles.
Après mise en œuvre de l'étape (E), compte tenu de la mise en œuvre spécifique d'un agent de contrôle, on obtient des polymères fonctionnalisés par des groupes de transfert (polymères vivants). Ce caractère vivant permet si on le souhaite, d'employer ces polymères dans une réaction de polymérisation ultérieure, selon une technique bien connue en soi. Alternativement, au besoin, il est possible de désactiver ou de détruire les groupes de transfert, par exemple par hydrolyse, ozonolyse, ou réaction avec des aminés, selon des moyens connus en soi. Ainsi, selon un mode de réalisation particulier, le procédé de l'invention peut comprendre, après l'étape (E), une étape (E1 ) d'hydrolyse, d'ozonolyse ou de réaction avec des aminés, propre à désactiver et/ou détruire tout ou partie des groupes de transfert présents sur le polymère préparé dans l'étape (E).
Tensioactifs
Pour réaliser la solution micellaire des monomères hydrophobes employés dans l'étape (E), on peut employer tout tensioactif ou mélange de tensioactifs adapté, comprenant au moins un tensioactif amphotère.
Le tensioactif amphotère employé selon la présente invention peut être un tensioactif ou mélange de tensioactifs choisi(s) aussi bien parmi les tensioactifs dits amphotères vrais que les tensioactifs dits zwitterioniques.
En particulier, tensioactif amphotère employé selon la présente invention peut être choisi parmi :
- les tensioactif contenant un groupe ionique permanent (ce groupe ionique étant typiquement un groupe qui reste de nature cationique quel que soit le pH, tel qu'un ammonium quaternaire) et un groupe potentiellement ionique de charge opposée (typiquement un groupe qui, selon le pH, est non chargé ou anionique, comme un groupe carboxy) ; et/ou
- les tensioactifs comprenant deux groupe potentiellement ionique de charges opposées (à savoir un groupe qui, selon le pH, est non chargé ou anionique, tel qu'un carboxy ; et un groupe qui, selon le pH, est non chargé ou cationique, tel qu'un groupe aminé) Le tensioactif amphotère employé selon la présente invention peut notamment être choisis parmi :
-les bétaines, notamment les carboxybétaines comme la cétyl bétaine (et notamment celle disponible sous le nom de Mackam CET auprès de la société Solvay) la lauryl bétaine (Mirataine BB disponible auprès de la société Solvay), l'octylbétaine ou la cocobétaine (Mirataine BB-FLA disponible auprès de la société Solvay); les amidoalkylbétaines, comme la cocamidopropyl bétaine (CAPB) (Mirataine BDJ disponible auprès de la société Solvay ou Mirataine BET C-30 disponible auprès de la société Solvay) ; ou bien encore les compositions de bétaines disponibles sous les noms de Mackam LAB et Mackam CBS auprès de la société Solvay
- les sulfo-bétaines (dites aussi « sultaines ») comme la cocamidopropyl hydroxy sultaine (notammment la Mirataine CBS disponible auprès de la société Solvay) ;
- les alkylamphoacétates et alkylamphodiacétates, comme par exemple comprenant une chaîne coco, lauryle (Miranol C2M Conc NP, C32, L32 notamment, disponible auprès de la société Solvay) ;
- les alkylamphopropionates ou les alkylamphodipropionates, (Miranol C2M SF) ;
- les alkyl amphohydroxypropyl sultaines (Miranol CS),
- les iminopropinates
- les oxydes d'alkyl aminés, par exemple l'oxyde de lauramine (INCI) ; et
- les mélanges de tensioactifs comprenant un ou plusieurs des composés précités.
Les bétaines et sultaines, entre autres, sont des tensioactifs amphotères qui se révèlent particulièrement adaptés à la mise en œuvre de l'étape (E) de la présente invention.
La cétyl bétaine, en particulier, est un tensioactif amphotère intéressant, qui est tout spécialement adapté notamment lorsque les monomères hydrophobes comprennent du t-butyl styrène ou bien encore du (méth)acrylate de lauryle. Alternativement, le Mackam LAB est également un bon candidat.
Optionnellement, en plus des agents tensioactifs amphotères précités, on peut éventuellement employer d'autres tensioactif, de type anionique, cationique ou non ionique, bien que la présence de tensioactifs ne soient absolument pas requise selon l'invention.
Ainsi, selon un mode de réalisation particulier, la solution micellaire employée dans l'étape (E) ne comprend pas de SDS, et de préférence aucun agent tensioactif anionique. Selon un mode plus spécifique, la solution micellaire employée dans l'étape (E) ne comprend pas de tensioactif non amphotère. Selon un autre mode de réalisation, la solution micellaire employée dans l'étape (E) peut comprendre un agent tensioactif non amphotère additionnel, choisi de préférence dans la liste non limitative suivante :
- Les tensioactifs anioniques peuvent être choisis parmi:
les alkylesters sulfonates, par exemple de formule R-CH(S03M)-CH2COOR', ou les alkylesters sulfates, par exemple de formule R-CH(OS03M)-CH2COOR', où R représente un radical alkyle en C8-C20, de préférence en C10-C16, R' un radical alkyle en Ci-C6, de préférence en C C3 et M un cation alcalino-terreux, par exemple sodium, ou le cation ammonium. On peut citer tout particulièrement les méthyl ester sulfonates dont le radical R est en C14-Ci6;
les alkylbenzènesulfonates, plus particulièrement en C9-C2o, les alkylsulfonates primaires ou secondaires, notamment en C8-C22, les alkylglycérol sulfonates ; les alkylsulfates par exemple de formule ROS03M, où R représente un radical alkyle ou hydroxyalkyle en Ci0-C24, de préférence en Ci2-C20 ; M un cation de même définition que ci-dessus ;
les alkyléthersulfates par exemple de formule RO(OA)nS03M où R représente un radical alkyle ou hydroxyalkyle en Ci0-C24, de préférence en Ci2-C20 ; OA représentant un groupement éthoxylé et/ou propoxylé ; M représentant un cation de même définition que ci-dessus, n variant généralement de 1 à 4, comme par exemple le lauryléthersulfate avec n = 2 ;
les alkylamides sulfates, par exemple de formule RCONHR'OS03M où R représente un radical alkyle en C2-C22, de préférence en C6-C20, R' un radical alkyle en C2-C3, M représentant un cation de même définition que ci-dessus, ainsi que leurs dérivés polyalcoxylés (éthoxylés et/ou propoxylés) (alkylamidoether sulfates ;
les sels d'acides gras saturés ou insaturés, par exemple comme ceux en C8-C24, de préférence en C14-C20 et d'un cation alcalino-terreux, les N-acyl N-alkyltaurates, les alkyliséthionates, les alkylsuccinamates et alkylsulfo succinates, les alkyl glutamates, les monoesters ou diesters de sulfosuccinates, les N-acyl sarcosinates, les polyéthoxycarboxylates ;
les mono et di esters phosphates, par exemple de formule suivante : (RO)x- P(=0)(OM)x ou R représente un radical alkyle, alkylaryle, arylalkyle, aryle, éventuellement polyalcoxylés, x et x' étant égaux à 1 ou 2, à la condition que la somme de x et x' soit égale à 3, M représentant un cation alcalino-terreux ;
Les tensioactifs non ioniques peuvent être choisis parmi:
les alcools gras alcoxylés ; par exemple les laureth-2, laureth-4, laureth-7, oleth- 20, les triglycérides alcoxylés, les acides gras alcoxylés, les esters de sorbitan alcoxylés, les aminés grasses alcoxylées, les di(phényl-1 éthyl) phénols alcoxylés, les tri(phényl-1 éthyl) phénols alcoxylés, les alkyls phénols alcoxylés, les produits résultant de la condensation de l'oxyde d'éthylène avec un composé hydrophobe résultant de la condensation de l'oxyde de propylène avec le propylène glycol, tels les Pluronic commercialisés par BASF ; les produits résultant de la condensation de l'oxyde d'éthylène le composé résultant de la condensation de l'oxyde de propylène avec l'éthylènediamine, tels les Tetronic commercialisés par BASF ; les alkylpolyglycosides comme ceux décrits dans US 4565647 ou les alkylglucosides; les amides d'acides gras par exemple en
Figure imgf000028_0001
notamment les monoalkanolamides d'acides gras, par exemple la cocamide MEA ou la cocamide MIPA ;
Les tensioactifs cationiques peuvent être les sels d'amines grasses primaires, secondaires ou tertiaires, éventuellement polyethoxylées, les sels d'ammonium quaternaires tels que les chlorures ou les bromures de tetraalkylammonium, d'alkylamidoalkylammonium, de trialkylbenzylammonium, de
trialkylhydroxyalkylammonium, ou d'alkylpyridinium, les dérivés d'imidazoline, les oxydes d'amines à caractère cationique. Un exemple de tensioactif cationique est le cetrimonium chloride ou bromide (INCI) ;
Les tensioactifs employés selon la présente invention peuvent être des copolymères à blocs contenant au moins un bloc hydrophile et au moins un bloc hydrophobe distinct du bloc hydrophile, avantageusement obtenus selon un procédé de polymérisation où :
(a0) on met en présence au sein d'une phase aqueuse au moins un monomère hydrophile (respectivement hydrophobe), au moins une source de radicaux libres et au moins un agent de contrôle de polymérisation radicalaire du type -S(C=S)- ;
(ai) on met en contact le polymère obtenu à l'issu de l'étape (a0) avec au moins un monomère hydrophobe (respectivement hydrophile) distinct du monomère employé dans l'étape (a0) et au moins une source de radicaux libres,
ce par quoi on obtient un copolymère dibloc.
Des polymères du type tribloc, ou comprenant davantage des blocs, peuvent éventuellement être obtenus en mettant en œuvre après l'étape (a^, une étape
(a2) dans laquelle, on met en contact le polymère obtenu à l'issu de l'étape (a1 ) avec au moins un monomère distinct du monomère employé dans l'étape (ai) et au moins une source de radicaux libres ; et plus généralement, en mettant en œuvre (n+1 ) étapes du type des étapes (ai) et (a2) précitées et n est un nombre entier allant typiquement de 1 à 3, où dans chaque étape (an), avec n≥1 : on met en contact le polymère obtenu à l'issu de l'étape (an-i) avec au moins un monomère distinct du monomère employé dans l'étape (an-i) et au moins une source de radicaux libres. On peut par exemple employer selon l'invention des copolymères du type décrits dans WO03068827, WO03068848 et WO2005/021612.
De préférence, dans l'étape (E), le ratio molaire, noté « non amphotère/tensioactif », correspondant au rapport de la quantité totale (nulle ou non) de tensioactifs non amphotères rapportée à la quantité totale de tensioactifs, amphotères et non amphotère le cas échéant, est en générale inférieur à 50%, voire à 30%. Selon un mode de réalisation spécifique, le ration « non amphotère/tensioactif » est inférieure à 10% voire nul.
Utilisation des compositions polymères de l'invention
Les compositions polymères obtenues selon un procédé comprenant l'étape (E) de l'invention et les polymères qu'ils comprennent sont, entre autres, utiles pour la régulation de la rhéologie de milieux liquides, notamment de milieux aqueux. Ils peuvent également être employés à titre d'épaississants associatifs, comme agents viscosants, gélifiants, modificateurs de surface, ou pour la constitution de matériaux nanonohybrides. Ils peuvent aussi être employés à titre d'agent de vectorisation.
Dans ce cadre, les compositions polymères et polymères selon l'invention peuvent notamment être employés pour épaissir ou adapter la rhéologie d'un très grand nombre de compositions, par exemple des compositions destinées à véhiculer des principes cosmétiques, pharmaceutiques, vétérinaire, phytosanitaires ou bien encore détergents, par exemple. Ainsi, les compositions polymères et polymères selon l'invention peuvent par exemple être utilisées pour modifier la rhéologie d'une composition cosmétique, d'un produit ménager, d'une composition détergente, ou bien d'une formulation destinée au domaine de l'agriculture.
Plus spécifiquement, les compositions polymères et polymères tels qu'obtenus selon l'invention se révèlent intéressants à titre d'agent régulateur de la rhéologie dans le domaine de l'extraction du pétrole et du gaz naturel. Ils peuvent en particulier être employés pour la constitution de fluides de forage, pour la fracturation, pour la stimulation et pour la récupération assistée du pétrole.
Dans le domaine de la récupération assistée du pétrole, les compositions polymères et polymères tels qu'obtenus selon le procédé de l'invention présentent en général une capacité d'hydratation rapide ainsi que de bonnes propriétés d'injectivité et de stabilité au cisaillement, notamment compte tenu du caractère contrôlé de la polymérisation, qui conduit à des lots de polymères homogènes en composition et en structure, avec des indices de polydispersité plus faibles que par rapport à des systèmes «non contrôlées ».
Par ailleurs, la nature des polymères synthétisable selon la présente invention est extrêmement modulable, ce qui autorise un choix très important autant sur le squelette que sur la présence de substituants, qui peuvent être judicieusement choisis en fonction des applications envisagés pour le polymère.
Pour une application en EOR, par exemple, il est intéressant que les monomères constitutifs du polymère lui confèrent une résistance à haute température. A cet effet, les polymères destinés à une application en EOR peuvent par exemple être du type obtenu à partir de monomères choisis parmi les monomères acrylamido, methacrylamido, vinylique ou allylique. Il n'est généralement pas intéressant d'utiliser les acrylates ou methacylates a cause de leur sensibilité a l'hydrolyse.
A titre d'exemple, pour améliorer la stabilité thermique du squellette, on peut employer des monomères comme le N-méthylolacrylamide, le diméthylacylamide, N- morpholine acrylamide, vinyle pyrrolidone, le vinyle amide, des dérivés acrylamido comme l'AMPS ou l'APTAC, le sodium sytrène sulfonate et ses dérivés, ou bien encore et le sodium vinyl sulfonate. Selon un mode de réalisation spécifique, bien adapté à des applications dans le domaine de l'EOR, les polymères présentent des fonctionnalités qui assurent encore une meilleure résistance aux sels et qui contrecarrent les effets de perte de viscosité, souvent rencontrés en EOR en l'absence de tels fonctionnalités sur le polymère. Des polymères selon l'invention particulièrement stables vis-à-vis des sels peuvent notamment être synthétisés en employant une ou plusieurs des méthodes suivantes:
- utilisation de monomères additionnels de type sodium -3-acrylamido-3-methyl butanoate (par exemple selon la technique décrite dans US 4,584,358) ;
- utilisation de monomères additionnels de type acide sulfonique ou sulfonate, comme l'AMPS (acide acrylamido methylpropanesulfonique), et ses sels (sels de sodium notamment), ou bien le styrène sulfonate et ses sels ;
- les polymères préparés peuvent être de type polyampholytes avec un squelette hydrophile comprenant un mélange (i) d'unités monomères présentant au moins une charge négative (par exemple des sulfonates du type précités) ; et (ii) d'unités monomères présentant au moins une charge positive (par exemple l'APTAC, le MAPTAC, le DiQuat (methacryloamidopropyl- pentamethyl-1 ,3-propylene-2-ol-ammonium dichloride), DADMAC (diallyl dimethyl ammonium chloride) le N-vinylforamide (précurseur d'amine cationisable après hydrolyse), ou bien la vinyl pyridine ou un de ses dérivés quaternisés) ;
- utilisation de monomères additionnels de type sulfobétaines comme par exemple, le sulfopropyl diméthylammonium propyl acrylamide, le sulfopropyl diméthylammonium propyl méthacrylamide (SPP), le sulfohydroxypropyl diméthyl ammonium propyl méthacrylamido (SHPP), la 2-vinyl (3-sulfopropyl) pyridinium bétaine, la 4-vinyl (3-sulfopropyl) pyridinium bétaine, la 1 -vinyl-3-(3- sulfopropyl) imidazolium bétaine, ou bien encore la sulfopropyl méthyl diallyl ammonium bétaine.
Les compositions polymères obtenues selon un procédé comprenant l'étape (E) de l'invention, qui comprennentles polymères et les tensioactifs utilisés dans la polymérisation micellaire, présentent la spécificité d'avoir une bonne solubilité dans l'eau et ce y compris en présence de grandes quantités de sels. Ainsi, typiquement, les compositions polymères obtenues selon l'invention peuvent être solubilisés, sans précipitation ni formation de turbidité, dans une solution aqueuse comprenant plus de 50 g/L, par exemple plus de 100 g/L voire plus de 150 g/L de sels, ladite composition pouvant notamment comprendre jusqu'à 200 g/L, voire jusqu'à 300 g/L de sels. Cette solubilisation des compositions polymères selon l'invention sans précipitation ni turbidité est en général obtenue même si la composition inclut plus de 1 % de cations, voir plus de 2% ou même 4% de cations divalents. Les compositions polymères de l'invention se révèlent ainsi de très bon candidats pour un emploi dans des eaux de mer très salines ou bien dans des saumures concentrées employées dans certaines opérations d'exploitation pétrolièreT
Différents aspects et avantages de l'invention seront encore illustrés par les exemples ci-après dans lesquels des polymères ont été préparés selon le procédé de l'invention.
EXEMPLES
Exemple 1 (comparatif)
Synthèse d'un polymère P1 en présence de SDS
Dans un flacon en plastique (PEHD, 1000ml) on a introduit, à 20°C, 144 g de sodium dodecyl sulfate (SDS), 565,67 g d'eau distillée et 10,33 g de 4-tert-butylstyrène (tBS). Le mélange a été porté sous agitation à l'aide d'un barreau aimanté pendant 1 h, jusqu'à obtention d'une solution micellaire limpide.
Dans un Dewar (3000 ml) équipé d'une couvercle qui permet une étanchéité d'atmosphère, on a introduit, à 20°C, 320,1 g de la solution micellaire préparée précédemment, 376,9 g d'eau, 592,8 g d'acrylamide (solution aqueuse a 50% en masse), 478 g d'AMPS (solution aqueuse a 51 % en masse), 5,56 g de Rhodixan A1 (solution éthanolique à 1 ,0% en masse) et 8,94 g de persulfate d'ammonium (solution aqueuse à 5% en masse). Le mélange a été dégazé par bullage d'azote pendant 40 minutes. On a ajouté au milieu, en une fois, 17,7 g de formaldéhyde sulfoxylate de sodium, sous forme de solution aqueuse à 1 % en masse. Le mélange a été dégazé par bullage d'azote pendant 15 minutes. On a alors laissé la réaction de polymérisation se dérouler sous agitation. Quand la viscosité du milieu a augmenté, on a arrêté l'agitation et on a laissé la réaction de polymérisation se dérouler une nuit. A la fin de la polymérisation on a obtenu un gel.
Exemple 2 :
Synthèse d'un polymère P2 en présence de Mackam LAB
Dans un flacon en plastique (PEHD, 1000ml) on a introduit, à 20°C, 122.8g de Mackam LAB à 30%, 145.18g d'eau distillée et 2.82g de 4-tert-butylstyrène (tBS). Le mélange a été porté sous agitation à l'aide d'un barreau aimanté pendant 1 h, jusqu'à obtention d'une solution micellaire limpide.
Dans un Dewar (3000 ml) équipé d'une couvercle qui permet une étanchéité d'atmosphère, on a introduit, à 20°C, 247,1 g de la solution micellaire ainsi préparée, 447,8 g d'eau, 593,8 g d'acrylamide (solution aqueuse a 50% en masse), 478,7 g d'AMPS (solution aqueuse a 51 % en masse), 5,57 g de Rhodixan A1 (solution éthanolique à 1 ,0% en masse) et 9 g de persulfate d'ammonium (solution aqueuse à 5% en masse). Le mélange a été dégazé par bullage d'azote pendant 40 minutes. On a ajouté au milieu, en une fois, 18 g de formaldéhyde sulfoxylate de sodium, sous forme de solution aqueuse à 1 % en masse. Le mélange a été dégazé par bullage d'azote pendant 15 minutes. On a alors laissé la réaction de polymérisation se dérouler sous agitation. Quand la viscosité du milieu a augmenté, on a arrêté l'agitation et on a laissé la réaction de polymérisation se dérouler une nuit. A la fin de la polymérisation on a obtenu un gel
Exemple 3 :
Synthèse d'un polymère P3 en présence de Mackam CET
Dans un flacon en PEHD de 500ml on a introduit, à température ambiante (20°C), 122,87 g Mackam CET ; 45,77 g d'eau distillée et 1 1 ,36 g de 4-tert-Butylstyrene. Le mélange a été porté sous agitation à l'aide d'un barreau aimanté pendant 30 minutes jusqu'à obtention d'une solution limpide. Dans un Dewar (3000 ml) équipé d'un couvercle qui permet une étanchéité d'atmosphère, on a introduit, à 20°C, 72,8 g de la solution micellaire ainsi préparée, 623,8 g d'eau, 592,8 g d'acrylamide (solution aqueuse a 50% en masse), 478,0 g d'AMPS (solution aqueuse à 50% en masse), 5,568 g de Rhodixan A1 (O-ethyl S-(1 - methoxycarbonyl)ethyl xanthate- solution éthanolique à 1 ,0% en masse) . On a mesuré le pH (pH initial = 7.9) et ajusté le pH de la solution monomère à 6 par ajout d'une solution d'acide chlorhydrique (solution aqueuse à 10% en masse).
Le mélange a été dégazé par bullage d'azote pendant 60 minutes. Suite à ce dégazage, on a ajouté au milieu, en une fois, 18,0 g de formaldéhyde sulfoxylate de sodium, sous forme de solution aqueuse à 1 % en masse et 9,0 g de persulfate de sodium (solution aqueuse à 5% en masse). Le mélange a été préalablement dégazé par bullage d'azote pendant 15 minutes.
On a alors laissé la réaction de polymérisation se dérouler sous agitation pendant 16 heures, ce par quoi on a obtenu le polymère P3 sous forme d'un gel.
Exemple 4 :
Essais de solubilité
La solubilité des compositions de polymère P1 et P2 ont été testées dans une saumure S consistant en une solution aqueuse des sels suivants :
NaCI : 1 19,54 g/L
CaCI2 : 9,92 g/L
MgCI2 : 6,02 g/L
Na2S04 : 2,85 g/L
Un morceau de gel (respectivement de P1 ou P2) a été placé dans un flacon en verre de 100 ml, et on a ajouté la saumure pour obtenir une solution où la concentration en polymère (P1 ou P2 respectivement) est de 2 g/L. . Le mélange a été porté sous agitation à l'aide d'un barreau aimanté pendant 12h.
L'aspect des compositions dans le flacon ont été contrôlées visuellement après 12 heures d'agitation :
Polymère P1 dans la saumure S après 12h d'agitation (comparatif) :
présence de morceaux du gel initial, légèrement gonflés et d'aspect blanchâtre
Polymère P2 dans la saumure S après 12h d'agitation :
solution homogène transparente Exemple 5 :
Rhéologie
Dans un flacon en verre de 100ml_, on a placé avec un barreau magnétique 0.3973g de gel de polymère P3 tel qu'obtenu à l'issu de l'exemple 3, auquel on a ajouté 59.2041 g d'une saumure avec la composition suivante :
NaCl I 19,54 g/L
CaCl2 9,92 g/L
MgCl2 6,02 g/L
Na2S04 2.85 g/L
On a laissé agiter sur une plaque d'agitation magnétique pendant 48h.
On a ensuite a effectué une mesure de la viscosité en fonction du taux de cisaillement à l'aide d'un rhéomètre ARG2 , TA instruments, muni d'une géométrie couette 14-15mm aluminium.
On obtient à 25°C pour un taux de cisaillement de 10s-1 une viscosité de 7,3

Claims

REVENDICATIONS
1 .- Procédé de préparation d'un copolymère séquencé, qui comprend une étape (E) de polymérisation radicalaire micellaire dans laquelle on met en contact, au sein d'un milieu aqueux (M) :
- des monomères hydrophiles, solubilisés ou dispersés dans ledit milieu aqueux (M) ;
- des monomères hydrophobes sous la forme d'une solution micellaire, à savoir contenant, à l'état dispersé au sein du milieu (M), des micelles comprenant ces monomères hydrophobes; - au moins un amorceur de polymérisation radicalaire, de préférence hydrosoluble ou hydrodispersible ; et
- de préférence au moins un agent de contrôle de polymérisation radicalaire où lesdites micelles comprennent au moins un tensioactif de nature amphotère.
2. - Procédé selon la revendication 1 , où l'agent de contrôle de polymérisation radicalaire est un composé qui comprend un groupe thiocarbonylthio -S(C=S)-, par exemple un xanthate.
3. - Procédé selon la revendication 1 ou 2, où l'agent de contrôle de polymérisation radicalaire est un oligomère à caractère hydrosoluble ou hydrodispersible porteur d'un groupe thiocarbonylthio -S(C=S)-, par exemple d'un groupe xanthate -SC=S-0-, et qui - est soluble ou dispersible dans le milieu aqueux (M) employé dans l'étape (E) ; et/ou
-n'est pas propre à pénétrer dans les micelles de la solution micellaire
4. - Procédé selon la revendication 3, où l'agent de contrôle de polymérisation radicalaire est un pré-polymère porteur d'un groupe thiocarbonylthio -S(C=S)-, par exemple d'un groupe xanthate, obtenu à l'issue d'une étape (E°), préalable à l'étape (E), ladite étape (E°) mettant en contact
- des monomères hydrophiles, de préférence identiques à ceux de l'étape (E) ; - un amorceur de polymérisation radicalaire ; et
- un agent de contrôle porteur d'un groupe thiocarbonylthio -S(C=S)-, par exemple un xanthate.
5.- Procédé selon l'une des revendication 1 à 4 où le tensioactif amphotère est choisi parmi :
-les bétaines, de préférence la cétyl bétaine, ;
- les sulfo-bétaines;
- les alkylamphoacétates et alkylamphodiacétates ;
- les alkylamphopropionates ou les alkylamphodipropionates;
- les alkyl amphohydroxypropyl sultaines ;
- les iminopropinates
- les oxyde d'alkyl aminés, par exemple l'oxyde de lauramine; et
- les mélanges de tensioactifs comprenant un ou plusieurs des composés précités.
6. Procédé selon l'une des revendication 1 à 5 où les monomères hydrophobes de l'étape (E) comprennent un ester alpha-bêta insaturés d'alkyle en C1 -C30 alkyle, par exemple d'alkyle en C4-C22, de préférence le méthacrylate de lauryle
7. Procédé selon l'une des revendication 1 à 5 où les monomères hydrophobes de l'étape (E) comprennent des monomères vinylaromatiques, de préférence du t- butyl styrène
8. -Composition polymère susceptible d'être obtenu selon le procédé de l'une des revendications 1 à 7.
9. - Utilisation d'une composition polymère ou d'un polymère contenu dans ladite composition selon la revendication 8 pour la régulation de la rhéologie d'un milieu liquide, notamment aqueux, notamment pour l'extraction de pétrole ou de gaz naturel, par exemple pour la constitution de fluides de forage, pour la fracturation, pour la stimulation ou pour la récupération assistée du pétrole EOR.
10. -Utilisation d'une composition polymère selon la revendication 9, où ladite composition polymère est employé dans un milieu aqueux comprenant plus de 50 g/L, par exemple plus de 100 g/L, de sel. .
PCT/EP2016/075329 2015-10-30 2016-10-21 Polymères séquencés amphiphiles solubles en milieu fortement salin WO2017072035A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3002163A CA3002163A1 (fr) 2015-10-30 2016-10-21 Polymeres sequences amphiphiles solubles en milieu fortement salin
US15/770,352 US10808064B2 (en) 2015-10-30 2016-10-21 Amphiphilic block polymers soluble in strongly saline medium
US17/021,205 US11753493B2 (en) 2015-10-30 2020-09-15 Amphiphilic block polymers soluble in strongly saline medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1560435A FR3043083B1 (fr) 2015-10-30 2015-10-30 Polymeres sequences amphiphiles solubles en milieu fortement salin
FR1560435 2015-10-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/770,352 A-371-Of-International US10808064B2 (en) 2015-10-30 2016-10-21 Amphiphilic block polymers soluble in strongly saline medium
US17/021,205 Continuation US11753493B2 (en) 2015-10-30 2020-09-15 Amphiphilic block polymers soluble in strongly saline medium

Publications (1)

Publication Number Publication Date
WO2017072035A1 true WO2017072035A1 (fr) 2017-05-04

Family

ID=55299646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/075329 WO2017072035A1 (fr) 2015-10-30 2016-10-21 Polymères séquencés amphiphiles solubles en milieu fortement salin

Country Status (4)

Country Link
US (2) US10808064B2 (fr)
CA (1) CA3002163A1 (fr)
FR (1) FR3043083B1 (fr)
WO (1) WO2017072035A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109054788A (zh) * 2018-08-09 2018-12-21 高阳 一种压裂暂堵剂及其制备方法
FR3079833A1 (fr) * 2018-04-10 2019-10-11 Rhodia Operations Composition aqueuse gelifiee pour l'extraction petroliere
RU2786720C2 (ru) * 2018-04-10 2022-12-26 Родиа Операсьон Водно-гелевая композиция для нефтедобычи
WO2023285230A1 (fr) * 2021-07-13 2023-01-19 Rhodia Operations Préparation de polymères séquencés amphiphiles par polymérisation radicalaire micellaire inverse

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3084877A1 (fr) * 2017-12-19 2019-06-27 Rhodia Operations Formulations aqueuses de tensioactifs et polymeres associatifs pour la recuperation assistee du petrole
US20220243111A1 (en) * 2021-02-04 2022-08-04 Aramco Services Company Ultra-high molecular weight (uhmw) branched block copolymer viscosifier for water based drilling fluids
WO2022170041A1 (fr) * 2021-02-04 2022-08-11 Aramco Services Company Mise au point d'un additif réducteur de frottement à base d'un copolymère séquencé ramifié de masse moléculaire très élevée (uhmw) présentant une stabilité mécanique et chimique améliorée
WO2022170039A1 (fr) * 2021-02-04 2022-08-11 Aramco Services Company Mise au point d'un inhibiteur de gonflement des argiles à base d'un copolymère séquencé ramifié de masse moléculaire très élevée (uhmw) pour fluide de forage à base d'eau
CN116063610B (zh) * 2021-10-30 2024-05-07 中国石油化工股份有限公司 一种聚合物微球及其制备方法和应用
CN114605588B (zh) * 2022-03-30 2023-05-19 中海石油(中国)有限公司 一种耐高温恒流变水基钻井液用流型调节剂及其制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432881A (en) 1981-02-06 1984-02-21 The Dow Chemical Company Water-dispersible hydrophobic thickening agent
US4565647A (en) 1982-04-26 1986-01-21 The Procter & Gamble Company Foaming surfactant compositions
US4584358A (en) 1985-06-12 1986-04-22 University Of Southern Mississippi Calcium-tolerant N-substituted acrylamides as thickeners for aqueous systems
WO1996030421A1 (fr) 1995-03-31 1996-10-03 Krzysztof Matyjaszewski Nouveaux copolymeres et un nouveau procede de polymerisation base sur une polymerisation radicalaire par transfert d'atome (ou de groupe)
WO1998001478A1 (fr) 1996-07-10 1998-01-15 E.I. Du Pont De Nemours And Company Polymerisation presentant des caracteristiques vivantes
WO1998058974A1 (fr) 1997-06-23 1998-12-30 Rhodia Chimie Procede de synthese de polymeres a blocs par polymerisation radicalaire controlee
WO1999031144A1 (fr) 1997-12-18 1999-06-24 E.I. Du Pont De Nemours And Company Procede de polymerisation presentant des caracteristiques vivantes et polymeres obtenus par ce procede
WO1999035178A1 (fr) 1997-12-31 1999-07-15 Rhodia Chimie Procede de synthese de polymeres a blocs par polymerisation radicalaire controlee a partir de composes dithioesters
WO1999035177A1 (fr) 1997-12-31 1999-07-15 Rhodia Chimie Procede de synthese de polymeres a blocs par polymerisation radicalaire controlee a partir de composes dithiocarbamates
FR2794464A1 (fr) 1999-06-04 2000-12-08 Rhodia Chimie Sa Procede de synthese de polymeres a blocs par polymerisation radicalaire controlee a l'aide de thioether-thiones
WO2000075207A1 (fr) 1999-06-04 2000-12-14 Rhodia Chimie Procede de synthese de polymeres par polymerisation radicalaire controlee a l'aide de xanthates halogenes
WO2001042312A1 (fr) 1999-12-09 2001-06-14 Rhodia Chimie Procede de synthese de polymeres par polymerisation radicalaire controlee a l'aide de xanthates
WO2002026836A2 (fr) 2000-09-28 2002-04-04 Symyx Technologies, Inc. Agents regulateurs de la polymerisation radicalaire de type 'vivante', procedes de polymerisation, emulsions et polymeres associes
WO2003068827A1 (fr) 2002-02-11 2003-08-21 Rhodia Chimie Procede de regulation de la stabilite d'emulsions et emulsions stabilisees
WO2003068848A2 (fr) 2002-02-11 2003-08-21 Rhodia Chimie Procede pour reguler la stabilite ou la taille des gouttelettes de simples emulsions eau dans l'huile, et simples emulsions eau dans l'huile stabilisees
WO2005021612A1 (fr) 2003-09-03 2005-03-10 Rhodia Inc Nouveau copolymere a structure controlee et utilisation de celui-ci
WO2013060741A1 (fr) 2011-10-24 2013-05-02 Rhodia Operations Preparation de polymeres sequences amphiphiles par polymerisation radicalaire micellaire a caractere controle
FR3018814A1 (fr) * 2014-03-24 2015-09-25 Rhodia Operations Polymeres amphiphiles multibloc

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004458A1 (fr) * 2013-04-11 2014-10-17 Rhodia Operations Fluides de fracturation a base de polymeres associatifs et de tensioactifs labiles
FR3025520A1 (fr) * 2014-09-05 2016-03-11 Rhodia Operations Hydratation amelioree de polymeres associatifs
FR3037073B1 (fr) * 2015-06-03 2017-07-14 Rhodia Operations Polymeres amphiphiles pour le controle du filtrat

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432881A (en) 1981-02-06 1984-02-21 The Dow Chemical Company Water-dispersible hydrophobic thickening agent
US4565647A (en) 1982-04-26 1986-01-21 The Procter & Gamble Company Foaming surfactant compositions
US4565647B1 (en) 1982-04-26 1994-04-05 Procter & Gamble Foaming surfactant compositions
US4584358A (en) 1985-06-12 1986-04-22 University Of Southern Mississippi Calcium-tolerant N-substituted acrylamides as thickeners for aqueous systems
WO1996030421A1 (fr) 1995-03-31 1996-10-03 Krzysztof Matyjaszewski Nouveaux copolymeres et un nouveau procede de polymerisation base sur une polymerisation radicalaire par transfert d'atome (ou de groupe)
WO1998001478A1 (fr) 1996-07-10 1998-01-15 E.I. Du Pont De Nemours And Company Polymerisation presentant des caracteristiques vivantes
WO1998058974A1 (fr) 1997-06-23 1998-12-30 Rhodia Chimie Procede de synthese de polymeres a blocs par polymerisation radicalaire controlee
WO1999031144A1 (fr) 1997-12-18 1999-06-24 E.I. Du Pont De Nemours And Company Procede de polymerisation presentant des caracteristiques vivantes et polymeres obtenus par ce procede
WO1999035178A1 (fr) 1997-12-31 1999-07-15 Rhodia Chimie Procede de synthese de polymeres a blocs par polymerisation radicalaire controlee a partir de composes dithioesters
WO1999035177A1 (fr) 1997-12-31 1999-07-15 Rhodia Chimie Procede de synthese de polymeres a blocs par polymerisation radicalaire controlee a partir de composes dithiocarbamates
FR2794464A1 (fr) 1999-06-04 2000-12-08 Rhodia Chimie Sa Procede de synthese de polymeres a blocs par polymerisation radicalaire controlee a l'aide de thioether-thiones
WO2000075207A1 (fr) 1999-06-04 2000-12-14 Rhodia Chimie Procede de synthese de polymeres par polymerisation radicalaire controlee a l'aide de xanthates halogenes
WO2001042312A1 (fr) 1999-12-09 2001-06-14 Rhodia Chimie Procede de synthese de polymeres par polymerisation radicalaire controlee a l'aide de xanthates
WO2002026836A2 (fr) 2000-09-28 2002-04-04 Symyx Technologies, Inc. Agents regulateurs de la polymerisation radicalaire de type 'vivante', procedes de polymerisation, emulsions et polymeres associes
WO2003068827A1 (fr) 2002-02-11 2003-08-21 Rhodia Chimie Procede de regulation de la stabilite d'emulsions et emulsions stabilisees
WO2003068848A2 (fr) 2002-02-11 2003-08-21 Rhodia Chimie Procede pour reguler la stabilite ou la taille des gouttelettes de simples emulsions eau dans l'huile, et simples emulsions eau dans l'huile stabilisees
WO2005021612A1 (fr) 2003-09-03 2005-03-10 Rhodia Inc Nouveau copolymere a structure controlee et utilisation de celui-ci
WO2013060741A1 (fr) 2011-10-24 2013-05-02 Rhodia Operations Preparation de polymeres sequences amphiphiles par polymerisation radicalaire micellaire a caractere controle
FR3018814A1 (fr) * 2014-03-24 2015-09-25 Rhodia Operations Polymeres amphiphiles multibloc

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MACROMOLECULAR CHEM. PHYSICS, vol. 202, no. 8, 2001, pages 1384 - 1397
POLYMER, vol. 36, no. 16, 1996, pages 3197 - 3211

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3079833A1 (fr) * 2018-04-10 2019-10-11 Rhodia Operations Composition aqueuse gelifiee pour l'extraction petroliere
WO2019197435A1 (fr) * 2018-04-10 2019-10-17 Rhodia Operations Composition aqueuse gélifiée pour l'extraction pétrolière
US20210115165A1 (en) * 2018-04-10 2021-04-22 Rhodia Operations Gelled aqueous composition for oil extraction
RU2786720C2 (ru) * 2018-04-10 2022-12-26 Родиа Операсьон Водно-гелевая композиция для нефтедобычи
US11548956B2 (en) 2018-04-10 2023-01-10 Rhodia Operations Gelled aqueous composition for oil extraction
CN109054788A (zh) * 2018-08-09 2018-12-21 高阳 一种压裂暂堵剂及其制备方法
WO2023285230A1 (fr) * 2021-07-13 2023-01-19 Rhodia Operations Préparation de polymères séquencés amphiphiles par polymérisation radicalaire micellaire inverse
FR3125296A1 (fr) * 2021-07-13 2023-01-20 Rhodia Operations Préparation de polymères séquencés amphiphiles par polymérisation radicalaire micellaire inverse

Also Published As

Publication number Publication date
US10808064B2 (en) 2020-10-20
CA3002163A1 (fr) 2017-05-04
US20200407480A1 (en) 2020-12-31
US11753493B2 (en) 2023-09-12
FR3043083B1 (fr) 2019-04-19
US20180312621A1 (en) 2018-11-01
FR3043083A1 (fr) 2017-05-05

Similar Documents

Publication Publication Date Title
EP2780383B1 (fr) Preparation de polymeres sequences amphiphiles par polymerisation radicalaire micellaire a caractere controle
WO2017072035A1 (fr) Polymères séquencés amphiphiles solubles en milieu fortement salin
US11267923B2 (en) Multiblock amphiphilic polymers
CA2866576C (fr) Polymerisation radicalaire controlee en dispersion eau-dans-l'eau
FR3037074A1 (fr) Agents de suspension obtenus par polymerisation micellaire
CA2985889C (fr) Polymeres amphiphiles pour le controle du filtrat
WO2016034743A1 (fr) Hydratation améliorée de polymères associatifs
EP3774958B1 (fr) Composition aqueuse gélifiée pour l'extraction pétrolière
EP3728512B1 (fr) Formulations aqueuses de tensioactifs et polymeres associatifs pour la recuperation assistee du petrole
WO2020178294A1 (fr) Suspension de polymeres associatifs pour le traitement de formations souterraines
EP4370567A1 (fr) Préparation de polymères séquencés amphiphiles par polymérisation radicalaire micellaire inverse
WO2020007828A1 (fr) Relargage progressif de chaînes polymères en milieu liquide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16797756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3002163

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15770352

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16797756

Country of ref document: EP

Kind code of ref document: A1