WO2017071421A1 - 一种数据的处理方法和基站以及用户设备 - Google Patents

一种数据的处理方法和基站以及用户设备 Download PDF

Info

Publication number
WO2017071421A1
WO2017071421A1 PCT/CN2016/099114 CN2016099114W WO2017071421A1 WO 2017071421 A1 WO2017071421 A1 WO 2017071421A1 CN 2016099114 W CN2016099114 W CN 2016099114W WO 2017071421 A1 WO2017071421 A1 WO 2017071421A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
downlink data
downlink
harq process
tti
Prior art date
Application number
PCT/CN2016/099114
Other languages
English (en)
French (fr)
Inventor
张振华
胡钰舒
沈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2018540197A priority Critical patent/JP6566410B2/ja
Priority to EP16858857.2A priority patent/EP3358772B1/en
Priority to KR1020187014066A priority patent/KR102118326B1/ko
Publication of WO2017071421A1 publication Critical patent/WO2017071421A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data processing method, a base station, and a user equipment.
  • Long-term evolution (English term: Long Term Evolution, English abbreviation: LTE) is gradually developing from one independent site to the other.
  • Common technologies include: joint transmission of two cells (English name: joint transmission, English abbreviation: JT), single frequency network (English name: Single Frequency Network, English abbreviation: SFN), dynamic node selection (English full name: Dynamic Point Selection, English abbreviation: DPS), carrier aggregation (English full name: Carrier Aggregation, English abbreviation: CA), coordinated scheduling power control (English full name: Coordinated Scheduling-based Power Control, English abbreviation: CSPC).
  • inter-station interconnection An important basis for inter-station coordination is inter-station interconnection.
  • the commonly used methods include optical fiber interconnection and common Internet protocol (English full name: Internet Protocol, English abbreviation: IP) network interconnection.
  • IP Internet Protocol
  • the advantage of fiber optic interconnection is that the delay is small (for example, can reach 100 nanoseconds or less), but the engineering cost is high, and the operator who needs to lay the fiber in advance needs to re-lay the fiber.
  • IP interconnection is that the cost is low, and the existing transmission network can be utilized without special modification, but the delay of data transmission is large, and usually has a delay of 2 to 8 milliseconds.
  • the hybrid automatic repeat request English full name: Hybrid Automatic Repeat reQuest, English abbreviation: HARQ
  • Figure 1-a is a schematic diagram of the processing flow of delaying a HARQ process when inter-station transmission is not considered in the prior art.
  • the main steps may include the following steps:
  • Step 1 The secondary carrier cell (English full name: Secondary Carrier Cell, English abbreviation: SCC) delivers the downlink authorization to the user equipment (English name: User Equipment, English abbreviation: UE).
  • Authorization is the downlink authorization for HARQ process 0.
  • the UE demodulates the corresponding data in the frequency domain location of the authorization, and performs cyclic redundancy check (English full name: Cyclic Redundancy Check, English abbreviation: CRC) to obtain the test result.
  • cyclic redundancy check English full name: Cyclic Redundancy Check, English abbreviation: CRC
  • Step 2 After receiving the downlink grant from the UE for 4 milliseconds, the UE needs to feed back the downlink grant reception result of the HARQ process 0 corresponding to the 0 time to the base station.
  • Step 3 The base station receives the feedback of the HARQ process 0 through the primary carrier cell (English name: Primary Carrier Cell, English abbreviation: PCC), and performs demodulation processing.
  • PCC Primary Carrier Cell
  • Step 4 Since the inter-station transmission delay is not considered, after the demodulation is completed, the base station transmits the feedback of the HARQ process 0 to the SCC through the PCC at the same time. For example, the base station demodulates at 7 o'clock, and the base station sends feedback of HARQ process 0 to the SCC at time 7.
  • Step 5 At the new downlink scheduling moment, the SCC finds that the HARQ process 0 is available, and continues to use the HARQ process 0 to complete a downlink authorization.
  • Figure 1-b is a schematic diagram of the processing flow of delaying eight HARQ processes in the prior art without considering inter-station transmission. Among them, different arrow symbols indicate different HARQ processes.
  • Figure 1-b when there is no inter-station transmission delay, the feedback of each HARQ process can be timely fed back to the SCC, in the SCC.
  • the side can be scheduled to be scheduled every millisecond, and each HARQ process has a multiplexing gain.
  • the first three steps are similar to steps 1, 2, and 3 shown in Figure 1-a.
  • Step 4 Since the inter-station transmission delay is 4 milliseconds, the feedback information requires a delay of 4 milliseconds to feed back to the SCC. In the 8th, 9th, and 10th milliseconds, the SCC cannot be scheduled because there is no available HARQ process. Therefore, in the existing technical solution, as the transmission delay between stations increases, the waiting time of the HARQ process becomes longer, and the time that the user cannot be scheduled becomes longer, which causes waste of air interface resources.
  • the embodiment of the present invention provides a data processing method, a base station, and a user equipment, where the delay between the stations can achieve full scheduling of the UE and the multiplexing gain of the HARQ process.
  • the embodiment of the present invention provides the following technical solutions:
  • an embodiment of the present invention provides a data scheduling method, including:
  • the first base station sends the first downlink grant and the first downlink data to the user equipment UE by using the first hybrid automatic repeat request HARQ process in the first transmission time interval TTI, where the first downlink data carries the first state
  • the first new data indicates NDI
  • the first base station sends a second downlink grant and a second downlink data to the UE by using a second HARQ process in the second TTI, where the second downlink data carries a second NDI including a second state;
  • the first base station sends a third downlink grant and a third downlink data to the UE in the third TTI by using the first HARQ process, where the third downlink data carries a first NDI including a third state, where The third state is obtained after the first state of the first NDI is inverted;
  • the first base station receives, in the fourth TTI, a second feedback result corresponding to the second downlink data that is sent by the second base station, where the first base station includes the denied NACK information according to the second feedback result.
  • the second downlink data of the fourth downlink grant and the retransmission is sent to the UE by using the second HARQ process, where the retransmitted second downlink data carries a second NDI including the second state, There is an inter-station transmission delay between the second base station and the first base station.
  • the method further includes:
  • the TTI sends the first downlink data of the fifth downlink grant and the retransmission to the UE by using the first HARQ process, where the retransmitted first downlink data carries the first NDI including the first state,
  • the first state is obtained after the third state of the first NDI is inverted, and a time difference between the fourth TTI and the second TTI is equal to between the fifth TTI and the first TTI Time difference.
  • the first base station after the third TTI sends the third downlink authorization and the third downlink data to the UE by using the first HARQ process,
  • the method further includes:
  • the first base station sends a sixth downlink grant and a fourth downlink data to the UE by using the first HARQ process in the sixth TTI, where the fourth downlink data carries a first NDI including the first state, The first state is obtained after the third state of the first NDI is inverted.
  • the first base station uses the first The HARQ process sends the third downlink authorization and the third downlink data to the UE, including:
  • the first base station determines that there is no available HARQ process in the third TTI, the first base station sends a third downlink grant and a third downlink data to the UE in the third TTI by using a virtual HARQ process,
  • the virtual HARQ process corresponds to the first HARQ process.
  • the first base station sends the second base station to send in the fourth TTI After the second feedback result corresponding to the second downlink data, the method further includes:
  • the first base station sends, according to the acknowledgement ACK information included in the second feedback result, the fourth downlink grant and the fifth downlink data to the UE in the fourth TTI by using the second HARQ process, where the fifth downlink
  • the data carries a second NDI including a fourth state, and the second state of the second NDI is inverted to obtain the fourth state.
  • the embodiment of the present invention further provides a data scheduling method, including:
  • the user equipment UE receives the first downlink grant sent by the first base station by using the first hybrid automatic repeat request HARQ process in the first transmission time interval TTI, and demodulates the first base station according to the first downlink grant.
  • the first downlink data carries a first new data indicating NDI including a first state;
  • the UE receives the second downlink grant sent by the first base station by using the second HARQ process in the second TTI, and demodulates the second downlink data sent by the first base station according to the second downlink grant, to the The second base station sends a second feedback result corresponding to the second downlink data, where the second downlink data carries a second NDI including a second state;
  • the UE receives the third downlink grant sent by the first base station by using the first HARQ process in the third TTI, and demodulates the third downlink data sent by the first base station according to the third downlink grant, to The second base station sends a third feedback result corresponding to the third downlink data, where the third downlink data carries a first NDI including a third state;
  • the UE receives the fourth downlink grant sent by the first base station by using the second HARQ process in the fourth TTI, and demodulates the second downlink of the retransmission sent by the first base station according to the fourth downlink grant. And transmitting, to the second base station, a fourth feedback result corresponding to the retransmitted second downlink data, where the retransmitted second downlink data carries a second NDI including the second state.
  • the method further includes:
  • the UE receives the fifth downlink grant sent by the first base station by using the first HARQ process in the fifth TTI, and demodulates the first retransmission sent by the first base station according to the fifth downlink grant.
  • Row data, the retransmitted first downlink data carries a first NDI including the first state.
  • the method before the fourth TTI uses the second HARQ process to receive the fourth downlink authorization sent by the first base station, also includes:
  • the UE receives the sixth downlink grant sent by the first base station by using the first HARQ process in the sixth TTI, and demodulates the fourth downlink data sent by the first base station according to the sixth downlink grant,
  • the fourth downlink data carries a first NDI including the first state.
  • the UE uses the first HARQ process in a third TTI Receiving the third downlink authorization sent by the first base station, including:
  • the UE receives the third downlink grant sent by the first base station by using the virtual HARQ process in the third TTI, where the virtual HARQ process corresponds to the first HARQ process.
  • the UE uses the second HARQ process in the fourth TTI After receiving the fourth downlink authorization sent by the first base station, the method further includes:
  • the UE demodulates the fifth downlink data sent by the first base station according to the fourth downlink grant, where the fifth downlink data carries a second NDI including a fourth state.
  • the third downlink data sent by a base station includes:
  • the UE clears the first downlink data stored in the cache corresponding to the first HARQ process according to the first NDI that is included in the third downlink data, and includes the third downlink number.
  • the cache corresponding to the first HARQ process is written.
  • the second downlink data of the retransmission sent by the base station includes:
  • the second downlink data stored in the cache corresponding to the second HARQ process and the downlink of the retransmission according to the second NDI that is included in the second downlink data that is carried in the retransmitted second downlink data is merged, and the merged result is written into the cache corresponding to the first HARQ process.
  • the embodiment of the present invention further provides a base station, where the base station is specifically a first base station, and the first base station includes:
  • a first data processing module configured to send, by using a first hybrid automatic repeat request (HARQ) process, a first downlink grant and first downlink data to the user equipment UE, where the first downlink data carries Having a first new data including a first state indicating an NDI;
  • HARQ hybrid automatic repeat request
  • a second data processing module configured to send a second downlink grant and a second downlink data to the UE by using a second HARQ process, where the second downlink data carries a second NDI including a second state;
  • a third data processing module configured to send, by using the first HARQ process, a third downlink authorization and a third downlink data to the UE, where the third downlink data carries a first NDI including a third state. After the first state of the first NDI is inverted, the third state is obtained;
  • a fourth data processing module configured to receive, by the fourth TTI, a second feedback result corresponding to the second downlink data sent by the second base station, and use the denied NACK information included in the second feedback result to be used in the fourth TTI
  • the second HARQ process sends a fourth downlink grant and a second downlink data to the UE, where the retransmitted second downlink data carries a second NDI including the second state, and the second There is an inter-station transmission delay between the base station and the first base station.
  • the first base station further includes:
  • a fifth data processing module configured to receive a first feedback result corresponding to the first downlink data sent by the second base station, and use the NACK information included in the first feedback result in the fifth TTI according to the fifth TTI Transmitting, by the first HARQ process, the first downlink authorization and retransmission to the UE Downstream data, the retransmitted first downlink data carries a first NDI including the first state, and the third state of the first NDI is inverted to obtain the first state, the fourth A time difference between the TTI and the second TTI is equal to a time difference between the fifth TTI and the first TTI.
  • the first base station further includes:
  • a sixth data processing module configured by the third data processing module to use the third TTI after the third TTI sends the third downlink grant and the third downlink data to the UE by using the first HARQ process a HARQ process sends a sixth downlink grant and a fourth downlink data to the UE, where the fourth downlink data carries a first NDI including the first state, and the third state of the first NDI is reversed. The first state is obtained.
  • the third data processing module is specifically used to When the third TTI determines that no HARQ process is available, the first base station sends a third downlink grant and a third downlink data to the UE in the third TTI by using a virtual HARQ process, where the virtual HARQ process and the first The HARQ process corresponds.
  • the fourth processing module is further configured to use the fourth TTI After receiving the second feedback result corresponding to the second downlink data sent by the second base station, sending, by using the second HARQ process, the acknowledgement ACK information according to the second feedback result to the UE.
  • the embodiment of the present invention further provides a user equipment, including:
  • a first data processing module configured to receive, by using a first hybrid automatic repeat request HARQ process, a first downlink grant sent by the first base station, and demodulate according to the first downlink grant, in a first transmission time interval TTI
  • the first downlink data sent by the first base station sends a first feedback result corresponding to the first downlink data to the second base station, and the inter-station transmission exists between the second base station and the first base station Delay, the first downlink data carries a first new data indicating NDI including a first state;
  • a second data processing module configured to receive, by using a second HARQ process, a second downlink grant sent by the first base station, and demodulate the second downlink sent by the first base station according to the second downlink grant Data, sending, to the second base station, a second feedback node corresponding to the second downlink data
  • the second downlink data carries a second NDI including a second state
  • a third data processing module configured to receive, by using the first HARQ process, a third downlink grant sent by the first base station, and demodulate the first base station, according to the third downlink grant a third downlink data, the third downlink data corresponding to the third downlink data is sent to the second base station, where the third downlink data carries a first NDI including a third state;
  • a fourth data processing module configured to receive, by using the second HARQ process, the fourth downlink grant sent by the first base station, and demodulate the weight sent by the first base station according to the fourth downlink grant And transmitting, by the second downlink data, a fourth feedback result corresponding to the retransmitted second downlink data, where the retransmitted second downlink data carries a second NDI including the second state .
  • the user equipment further includes:
  • a fifth data processing module configured to receive, by using the first HARQ process, the fifth downlink grant sent by the first base station, and demodulate the weight sent by the first base station according to the fifth downlink grant And transmitting the first downlink data, where the retransmitted first downlink data carries a first NDI including the first state.
  • the user equipment further includes: a sixth data processing module, where the fourth data processing module uses the second in the fourth TTI Before receiving the fourth downlink grant sent by the first base station, the HARQ process receives the sixth downlink grant sent by the first base station by using the first HARQ process in the sixth TTI, and demodulates according to the sixth downlink grant.
  • the fourth downlink data sent by the first base station, where the fourth downlink data carries a first NDI including the first state.
  • the U third data processing module is specifically used in The third TTI receives the third downlink grant sent by the first base station by using a virtual HARQ process, where the virtual HARQ process corresponds to the first HARQ process.
  • the fourth data processing module is further configured to The fourth downlink grant is used to demodulate the fifth downlink data sent by the first base station, and the fifth downlink data carries a second NDI including the fourth state.
  • the third data processing module is specifically configured to The air interface resource indicated by the third downlink authorization receives the third downlink data, and the first downlink that is stored in the cache corresponding to the first HARQ process according to the first NDI that is included in the third downlink data and includes the third state The data is cleared, and the third downlink data is written into a cache corresponding to the first HARQ process.
  • the fourth data processing module is specifically configured to The air interface resource indicated by the fourth downlink grant receives the second downlink data that is retransmitted, and the cache corresponding to the second HARQ process according to the second NDI that is included in the retransmitted second downlink data that includes the second state. And compressing the second downlink data stored in the downlink data and the retransmitted downlink data, and writing the merged result to a cache corresponding to the first HARQ process.
  • the first base station sends the first downlink grant and the first downlink data to the UE in the first TTI by using the first HARQ process, where the first downlink data carries the first NDI including the first state;
  • the first base station sends the second downlink grant and the second downlink data to the UE in the second TTI by using the second HARQ process, where the second downlink data carries the second NDI including the second state;
  • the first base station uses the first in the third TTI.
  • the HARQ process sends the third downlink grant and the third downlink data to the UE, where the third downlink data carries the first NDI including the third state, and the first state of the first NDI is reversed to obtain the third state; the first base station is in the fourth state.
  • the TTI receives the second feedback result corresponding to the second downlink data sent by the second base station, and the first base station sends the fourth downlink authorization and retransmission to the UE by using the second HARQ process according to the negative NACK information included in the second feedback result.
  • the second downlink data, the retransmitted second downlink data carries a second NDI including the second state, and the inter-station transmission delay existing between the second base station and the first base station is between the fourth TTI and the first TTI The time difference.
  • the first base station divides the HARQ process into two types of processes: a first HARQ process and a second HARQ process, where the first HARQ process may be used by the first base station to send the downlink to the UE in the first TTI and the third TTI.
  • the data can implement full scheduling of the UE, and thus can provide utilization of air interface resources.
  • the first base station receives the second feedback result in the fourth TTI, and the first base station retransmits the second downlink data by using the second HARQ process.
  • the state of the second NDI carried in the second downlink data that is retransmitted is not reversed (ie, the second NDI still includes the second state), because The UE may jointly decode the second downlink data sent by the first base station in the second TTI and the second downlink data sent by the fourth TTI according to the second NDI including the second state, so that the second HARQ process can be implemented.
  • the multiplexing gain of the HARQ process is not reversed (ie, the second NDI still includes the second state).
  • FIG. 1-a is a schematic diagram of a processing flow for delaying a HARQ process when inter-station transmission is not considered in the prior art
  • FIG. 1-b is a schematic diagram of a process flow of delaying eight HARQ processes in the prior art without considering inter-station transmission;
  • FIG. 1-c is a schematic diagram of a process flow of delaying eight HARQ processes in consideration of inter-station transmission in the prior art
  • FIG. 2 is a schematic block diagram of a method for processing data according to an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of another method for processing data according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a processing flow for delaying a HARQ process when considering inter-station transmission according to an embodiment of the present invention
  • FIG. 5-a is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 5-b is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 5-c is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • 6-a is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • 6-b is a schematic structural diagram of another user equipment according to an embodiment of the present invention.
  • FIG. 6-c is a schematic structural diagram of another user equipment according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another user equipment according to an embodiment of the present disclosure.
  • Embodiments of the present invention provide a data processing method, a base station, and a user equipment, which are used in a base station.
  • the delay between stations can achieve full scheduling of the UE and the multiplexing gain of the HARQ process.
  • An embodiment of the data processing method of the present invention is applicable to a scenario in which the base station side uses the HARQ process to send data to the UE.
  • the data processing method provided by the embodiment of the present invention may include:
  • the first base station sends the first downlink grant and the first downlink data to the UE by using the first HARQ process in the first transmission time interval (English full name: Transmission Time Interval, English abbreviation: TTI), and the first downlink data carries the first downlink data.
  • TTI Transmission Time Interval
  • NDI New Data Indicator
  • the first base station sends a downlink grant and downlink data to the UE by using one HARQ process in one TTI.
  • the different TTIs that appear in the embodiments of the present invention are respectively defined as: a first TTI, a second TTI, a third TTI, a fourth TTI, a fifth TTI, a sixth TTI, etc., in order to distinguish different TTIs, and the like.
  • the respective downlink grants sent by the first base station in different TTIs are also respectively defined as: a first downlink grant, a second downlink grant, a third downlink grant, a fourth downlink grant, a fifth downlink grant, a sixth downlink grant, and the like. .
  • the different downlink data that appear in the embodiment of the present invention are respectively defined as: first downlink data, second downlink data, third downlink data, fourth downlink data, and the like.
  • different HARQs will be used in the embodiments of the present invention.
  • the NDI corresponding to the process is also defined by a different definition.
  • the NDI corresponding to the first HARQ process is defined as the first NDI
  • the NDI corresponding to the second HARQ process is defined as the second NDI.
  • the first base station divides the HARQ process into two types of processes: a first HARQ process and a second HARQ process, and the first HARQ process only uses the initial transmission of the HARQ process when the HARQ process is insufficient, and is used to ensure Full scheduling of the UE, the first HARQ process is also referred to as a normal HARQ process.
  • the full scheduling means that the UE receives a downlink grant in each TTI, so the HARQ process can be used to implement full scheduling of the UE.
  • the second HARQ process preserves the HARQ multiplexing gain in any case, and the second HARQ process is also referred to as a multiplexed HARQ process.
  • a combination of two types of HARQ processes is utilized to achieve the effect of satisfying full scheduling and obtaining HARQ multiplexing gain.
  • the protocol stipulates that there are a total of eight HARQ processes, namely, No. 0, No. 1, No. 2, No., No. 7, HARQ processes.
  • the eight HARQ processes are divided into two types.
  • the HARQ process is the first HARQ process, and the 1st and 7th is the second HARQ process.
  • the HARQ processes 1 to 7 wait for the feedback information of the initial transmission to determine whether to retransmit.
  • the second HARQ process from 1 to 7 has a retransmission gain. Due to the existence of the inter-station transmission delay, there is a certain time difference between the one-to-seventh HARQ process being fed back from one station to another, which causes the UE to have no available scheduling resources within a certain period of time. In this case, The No. 0 HARQ process can satisfy the user's full schedule.
  • the HARQ processes of No. 0 and No. 1 may be used as the first HARQ process, and the No. 2-7 number is used as the second HARQ process, and the No.
  • the No. 2 HARQ process is used as the first HARQ process, and the No. 3 to No. 7 is used as the second HARQ process.
  • the specific implementation manner may be determined according to the application scenario, and is only described herein.
  • each HARQ process has a unique NDI
  • the downlink data sent by using the HARQ process carries an NDI
  • the NDI may include two states, for example, the first NDI includes: a first state and a first The three states, the second NDI include: a second state and a fourth state.
  • the NDI is 1 bit, and each HARQ process has a unique NDI.
  • the HARQ process is initial transmission, the HARQ is flipped (for example, flipped from 0 to 1, or from 1 to 0).
  • the HARQ process is retransmitted, the NDI remains unchanged and does not flip.
  • the first base station sends the first downlink grant and the first downlink data to the UE by using the first HARQ process, where the first base station sends the first downlink to the UE by using the first HARQ process.
  • Line authorization and then send the first downlink to the UE in the frequency domain location of the first downlink grant indication Data, the UE may receive the first downlink data sent by the first base station according to the determined first downlink grant.
  • the case where the first base station sends the second downlink grant, the third downlink grant, the fourth downlink grant, the fifth downlink grant, and the sixth downlink grant to send downlink data is similar to this, and is not described one by one.
  • the first base station sends the second downlink grant and the second downlink data to the UE by using the second HARQ process in the second TTI, where the second downlink data carries the second NDI that includes the second state.
  • the first base station sends the first downlink grant and the first downlink data to the UE in the first TTI by using the first HARQ process, where the base station is different from the first TTI in step 202.
  • a second time (defined as a second TTI) sends a second downlink grant and a second downlink data to the UE by using the second HARQ process provided by the embodiment of the present invention, where the second downlink data carries a second NDI including the second state.
  • the second NDI carried by the second downlink data includes two states: a second state and a fourth state. In the second NDI, the second state flip can obtain the fourth state, and the fourth state flip can obtain the second state.
  • the second NDI is used to indicate whether the data of the current HARQ process of the UE is an initial transmission or a retransmission. If the value is inconsistent with the downlink data saved in the buffer corresponding to the second HARQ process, the UE considers that this is an initial transmission, otherwise it is considered to be one time. Retransmission, if the UE considers it to be a retransmission, the UE may perform HARQ combining to obtain the multiplexing gain of the HARQ process.
  • the first HARQ process is used to implement full scheduling of the UE
  • the second HARQ process is used to implement multiplexing gain of the HARQ process.
  • the description of the step 201 and the step 202 shows that the UE can use two different HARQ processes in two different TTIs, and both types of HARQ processes can be used to send downlink data to the UE, and the two types of HARQ processes can be used. Guaranteed full scheduling, and can obtain HARQ multiplexing gain.
  • the first base station sends a third downlink grant and a third downlink data to the UE by using the first HARQ process in the third TTI, where the third downlink data carries the first NDI including the third state, where the first state of the first NDI is reversed. After getting the third state.
  • the first base station separately sends the first downlink data and the second downlink data to the UE.
  • the first base station is a base station of the SCC
  • the second base station is a base station of the PCC.
  • the UE receives the first downlink data, and the UE sends the first feedback result corresponding to the first downlink data to the second base station, and the second base station sends the first feedback result to the first base station.
  • the UE receives the second downlink data, and the UE sends a second feedback result corresponding to the second downlink data to the second base station, and the second base station sends the second feedback result to the first base station.
  • the first base station sends the first downlink data to the UE in the first TTI, before the first base station does not receive the first feedback result, the first base station does not have an available HARQ process, in order to implement full scheduling of the UE, the first The base station may still send downlink data to the UE using the first HARQ process.
  • the third TTI is a TTI after the first TTI, and the third base station assumes that the first base station has not received the first feedback result, and the first base station uses the first HARQ process to meet the full scheduling of the UE.
  • the first NDI corresponding to the first HARQ process includes the first state
  • the third TTI after the first TTI needs to use the first HARQ process to send the third downlink data different from the first downlink data
  • the state of the first NDI corresponding to the first HARQ process is reversed, that is, the third downlink data needs to carry the first NDI including the third state, and the first state of the first NDI is inverted to obtain the third state.
  • the first base station sends the first downlink data to the UE in the first TTI, and the first base station receives the first feedback corresponding to the first downlink data sent by the second base station in the fifth TTI.
  • the data processing method provided by the embodiment of the present invention may further include the following steps:
  • the first base station receives the first feedback result corresponding to the first downlink data sent by the second base station in the fifth TTI, and the first base station includes the negative according to the first feedback result (English full name: Negative ACKnowledgment, English abbreviation: NACK)
  • the first downlink data of the fifth downlink grant and the retransmission is sent to the UE by using the first HARQ process in the fifth TTI, and the retransmitted first downlink data carries the first NDI including the first state, the first NDI.
  • a first state is obtained, and a time difference between the fourth TTI and the second TTI is equal to a time difference between the fifth TTI and the first TTI.
  • the first base station After the first base station sends the first downlink data in the first TTI, before the first base station receives the first feedback result, the first base station, in order to satisfy the full scheduling of the UE, the first base station is in the third TTI.
  • the third downlink data is sent.
  • the first base station may obtain the UE receiving the first feedback result, that is, whether the UE correctly receives the first downlink data. If the UE correctly receives the first downlink data, the first feedback result includes the acknowledgement (English name: ACKnowledgment, English abbreviation: ACK) information. If the UE receives the first downlink data error, the first feedback result includes the NACK information.
  • the first base station needs to retransmit the first downlink data to the UE, that is, the step A1 needs to be performed, and the first base station sends the fifth downlink authorization and the weight to the UE by using the first HARQ process in the fifth TTI.
  • First pass The first downlink data of the retransmission carries the first NDI including the first state, and the third state of the first NDI is inverted to obtain the first state. It is known in step 203 that the first NDI corresponding to the first HARQ process in the third TTI is in the third state. If the step A1 is performed, the first NDI corresponding to the first HARQ process in the third TTI needs to be inverted. The first NDI is flipped to the first state.
  • the first HARQ process is used to implement full scheduling of the UE, so the first base station may use the first base station multiple times before the first base station does not receive the first feedback result sent by the second base station.
  • the first HARQ performs to send new downlink data to the UE to implement full scheduling of the UE.
  • the data processing method provided by the embodiment of the present invention, It can also include the following steps:
  • the first base station sends the sixth downlink grant and the fourth downlink data to the UE by using the first HARQ process in the sixth TTI, where the fourth downlink data carries the first NDI including the first state, and the third state of the first NDI is reversed. After getting the first state.
  • the first base station sends the sixth downlink grant and the fourth downlink data to the UE by using the first HARQ process. It can be seen from step 203 that, in the third TTI, the first NDI corresponding to the first HARQ process includes a third state, and the sixth TTI after the third TTI uses the first HARQ process to send a fourth downlink different from the third downlink data.
  • the first NDI corresponding to the first HARQ process needs to be reversed. That is, the fourth downlink data needs to carry the first NDI including the first state, and the third state of the first NDI is inverted to obtain the first state.
  • the first base station may use the first HARQ process to send new downlink data to the UE multiple times.
  • the first base station sends the third downlink grant and the third downlink data to the UE by using the first HARQ process in the third TTI, which may include the following steps:
  • the first base station determines that no HARQ process is available in the third TTI, the first base station sends the third downlink grant and the third downlink data to the UE in the third TTI, using the virtual HARQ process, the virtual HARQ process and the first HARQ process. Corresponding.
  • the first base station sends the first downlink data and the second downlink data by using the first HARQ process and the second HARQ process, and the first base station determines that there is no available HARQ process in the third TTI. At this time, the first base station sends the third downlink grant and the third downlink data to the UE in the third TTI by using the virtual HARQ process, where the virtual HARQ process corresponds to the first HARQ process.
  • the inter-station transmission delay causes the downlink scheduling of the first base station to be dissatisfied
  • multiple (eight as an example) HARQ processes are virtualized
  • the scheduler of the first base station discovers After the real 0 to 7 HARQ process is unavailable, a HARQ process is applied from the virtual 8 to 15 HARQ process, and then mapped to the real HARQ process of the air interface according to a certain mapping relationship (for example, modulo mode).
  • the first base station receives the second feedback result corresponding to the second downlink data sent by the second base station, where the first base station sends the second HARQ process to the UE according to the NACK information included in the second feedback result.
  • the second downlink data of the fourth downlink grant and the retransmission, the second downlink data that is retransmitted carries the second NDI including the second state.
  • the inter-station transmission delay exists between the second base station and the first base station.
  • the first base station sends the second downlink data to the UE in the second TTI, and the first base station receives the second feedback result corresponding to the second downlink data sent by the second base station in the fourth TTI, where the first The fourth TTI is located after the second TTI, and the fourth TTI is located after the third TTI.
  • the first base station sends the first base station in the third TTI to meet the full scheduling of the UE before the fourth base station receives the second feedback result.
  • the third downlink data after the first base station receives the second feedback result in the fourth TTI, the first base station may obtain the UE receiving the second feedback result, that is, whether the UE correctly receives the second downlink data, if the UE is correct Receiving the second downlink data, the second feedback result includes the ACK information, and if the UE receives the second downlink data error, the second feedback result includes the NACK information, and when the second feedback result includes the NACK information, the first base station needs to retransmit to the UE.
  • the second downlink data that is, the step 204 is performed, the first base station sends the fourth downlink grant and the retransmitted second downlink data to the UE by using the second HARQ process in the fourth TTI, and the retransmitted second downlink data carries the second downlink data.
  • the second NDI of the second state the state of the second NDI is the second state in the second TTI, and the second NDI corresponding to the second HARQ process is required because the second downlink data needs to be retransmitted in the second TTI.
  • the second state is still maintained, and the UE uses the second state according to the second NDI corresponding to the second HARQ process at the fourth TTI, and the UE may determine that the first base station retransmits the second downlink data to the UE.
  • the implementation of the first base station when the second feedback result received by the first base station is NACK information is described in step 204, and then when the second feedback result is ACK information, the embodiment of the present invention
  • the processing method of the provided data may further include the following steps:
  • the first base station After the first base station receives the second feedback result corresponding to the second downlink data sent by the second base station, the first base station uses the second HARQ process direction in the fourth TTI according to the acknowledgement ACK information included in the second feedback result.
  • the UE sends a fourth downlink grant and a fifth downlink data, where the fifth downlink data carries a second NDI including a fourth state, and the second state of the second NDI is inverted to obtain a fourth state.
  • the second feedback result includes the ACK information.
  • the first downlink data that the first base station can send to the UE that is, the step D1 needs to be performed.
  • the base station sends the fourth downlink grant and the fifth downlink data to the UE in the fourth TTI by using the second HARQ process, where the fifth downlink data carries the second NDI including the fourth state, and the second HARQ process corresponds to the second HARTI process.
  • the second NDI is in the second state, and new downlink data is transmitted in the fourth TTI, and the second state is obtained after the second state of the second NDI is inverted.
  • the first base station sends the first downlink grant and the first downlink data to the UE by using the first HARQ process in the first TTI, where the first downlink data carries the first state. a first NDI; the first base station sends the second downlink grant and the second downlink data to the UE in the second TTI, where the second downlink data carries the second NDI including the second state; the first base station is in the third The TTI sends the third downlink grant and the third downlink data to the UE by using the first HARQ process, where the third downlink data carries the first NDI including the third state, and the first state of the first NDI is inverted to obtain the third state; Receiving, by the second base station, a second feedback result corresponding to the second downlink data sent by the second base station, where the first base station sends the fourth downlink to the UE by using the second HARQ process according to the negative NACK information included in the second feedback result.
  • the retransmitted second downlink data carries a second NDI including a second state
  • the inter-station transmission delay existing between the second base station and the first base station is a fourth TTI and a a TTI The time difference between.
  • the first base station divides the HARQ process into two types of processes: a first HARQ process and a second HARQ process, where the first HARQ process may be used by the first base station to send the downlink to the UE in the first TTI and the third TTI.
  • the data can implement full scheduling of the UE, and thus can provide utilization of air interface resources.
  • the first base station receives the second feedback result in the fourth TTI, and the first base station uses the second HARQ process to weight the second downlink data.
  • the UE may perform the second NDI in the second downlink data that is not retransmitted (ie, the second NDI still includes the second state), so the UE may be in the first base station according to the second NDI including the second state.
  • the second downlink data sent by the second TTI and the second downlink data sent by the fourth TTI are jointly decoded, so the second HARQ process can implement the multiplexing gain of the HARQ process.
  • the foregoing embodiment describes the data processing method provided by the embodiment of the present invention from the first base station side, and then describes the data processing method provided by the embodiment of the present invention from the UE side that interacts with the first base station, as shown in FIG. 3 .
  • the method for processing another data provided by the embodiment of the present invention may specifically include the following steps:
  • the UE receives the first downlink grant sent by the first base station by using the first HARQ process in the first TTI, and demodulates the first downlink data sent by the first base station according to the first downlink grant, and sends the first downlink data to the second base station.
  • the first base station sends the first downlink grant to the UE by using the first HARQ process in the first TTI, and the UE receives the first downlink grant in the first TTI by using the first HARQ process, and the UE receives the first downlink grant.
  • the downlink grant determines the frequency domain location of the first downlink data sent by the first base station, and then the UE demodulates the first downlink data according to the first downlink grant, and the UE generates a first feedback result according to the receiving condition of the first downlink data. And transmitting a first feedback result corresponding to the first downlink data to the second base station. For example, if the UE correctly receives the first downlink data, the first feedback result includes ACK information.
  • the first feedback result includes NACK information.
  • the UE may determine whether the first base station is to transmit the first downlink data or retransmit the first downlink data according to the state of the first NDI carried in the first downlink data.
  • the first base station divides the HARQ process into two types of processes: a first HARQ process and a second HARQ process, and the first HARQ process only uses the initial transmission of the HARQ process when the HARQ process is insufficient, and is used to ensure Full scheduling of the UE, the first HARQ process is also referred to as a normal HARQ process.
  • the full scheduling means that the UE receives a downlink grant in each TTI, so the HARQ process can be used to implement full scheduling of the UE.
  • the second HARQ process preserves the HARQ multiplexing gain in any case, and the second HARQ process is also referred to as a multiplexed HARQ process.
  • a combination of two types of HARQ processes is utilized to achieve the effect of satisfying full scheduling and obtaining HARQ multiplexing gain.
  • the protocol stipulates that there are a total of eight HARQ processes, namely, No. 0, No. 1, No. 2, No., No. 7, HARQ processes. Among them, 8 HARQ processes are divided into two categories, 0 The HARQ process is the first HARQ process, and the 1st to 7th is the second HARQ process. The HARQ processes 1 to 7 wait for the feedback information of the initial transmission to determine whether to retransmit, so that the first transmission of the HARQ process from 1 to 7 occurs.
  • the second HARQ process from 1 to 7 has a retransmission gain. Due to the existence of the inter-station transmission delay, there is a certain time difference between the one-to-seventh HARQ process being fed back from one station to another, which causes the UE to have no available scheduling resources within a certain period of time. In this case, The No. 0 HARQ process can satisfy the user's full schedule.
  • the UE receives the second downlink grant sent by the first base station by using the second HARQ process in the second TTI, and demodulates the second downlink data sent by the first base station according to the second downlink grant, and sends the second downlink to the second base station.
  • the second feedback result corresponding to the data, the second downlink data carries a second NDI including the second state.
  • the first base station sends a second downlink grant to the UE by using the second HARQ process in the second TTI, and the UE uses the second HARQ process to receive the second downlink grant in the second TTI, and the UE grants the second downlink grant from the second downlink.
  • Determining, by the first base station, the frequency domain location of the second downlink data, and then demodulating the second downlink data according to the second downlink grant the UE generates a second feedback result according to the received condition of the second downlink data, and then sends the second feedback result to the first base station. a second feedback result corresponding to the second downlink data.
  • the second feedback result includes the ACK information. If the UE receives the second downlink data error, the second feedback result includes the NACK information. In addition, the UE may determine, according to the status of the second NDI carried in the second downlink data, whether the first base station is to transmit the second downlink data or retransmit the second downlink data.
  • the second NDI carried by the second downlink data includes two states: a second state and a fourth state.
  • the second state flip can obtain the fourth state
  • the fourth state flip can obtain the second state.
  • the second NDI is used to indicate whether the data of the current HARQ process of the UE is an initial transmission or a retransmission. If the value is inconsistent with the downlink data saved in the buffer corresponding to the second HARQ process, the UE considers that this is an initial transmission, otherwise it is considered to be one time. Retransmission, if the UE considers it to be a retransmission, the UE may perform HARQ combining to obtain the multiplexing gain of the HARQ process.
  • the first HARQ process is used to implement full scheduling of the UE
  • the second HARQ process is used to implement multiplexing gain of the HARQ process. Therefore, the description of the steps 301 and 302 indicates that the UE can use two different HARQ processes in two different TTIs, and both types of HARQ processes can be used to send downlink data to the UE, and the two types of HARQ processes can be used. Guaranteed full scheduling, and can obtain HARQ multiplexing gain.
  • the UE receives the third downlink grant sent by the first base station by using the first HARQ process in the third TTI, and demodulates the third downlink data sent by the first base station according to the third downlink grant, and sends the third downlink to the second base station.
  • the third feedback result corresponding to the data, the third downlink data carries the first NDI including the third state.
  • the UE receives the first downlink data, the UE sends a first feedback result corresponding to the first downlink data to the second base station, and the second base station sends the first feedback result to the first base station. .
  • the UE receives the second downlink data, and the UE sends a second feedback result corresponding to the second downlink data to the second base station, and the second base station sends the second feedback result to the first base station.
  • the inter-station cooperation scenario of two base stations there is bound to be an inter-station transmission delay from the second base station to the first base station.
  • the first base station may still send downlink data to the UE using the first HARQ process.
  • the third TTI is a TTI after the first TTI, and the third base station assumes that the first base station has not received the first feedback result, and the first base station uses the first HARQ process to meet the full scheduling of the UE. Sending a third downlink grant and a third downlink data to the UE.
  • the first NDI corresponding to the first TTI first HARQ process includes a first state, and when the third TTI after the first TTI is used to send the third downlink data different from the first downlink data by using the first HARQ process, The first NDI corresponding to the first HARQ process performs a state inversion, that is, the third downlink data needs to carry the first NDI including the third state, and the first state of the first NDI is reversed to obtain the third state.
  • the first base station sends the third downlink grant to the UE by using the first HARQ process in the third TTI, and the UE receives the third downlink grant in the third TTI by using the first HARQ process, and the UE receives the third downlink grant from the third downlink.
  • the data processing method provided by the embodiment of the present invention further includes the following steps:
  • the UE receives the fifth downlink grant sent by the first base station by using the first HARQ process in the fifth TTI, and demodulates the first downlink data of the retransmission sent by the first base station according to the fifth downlink grant, and retransmits the first
  • the downlink data carries a first NDI including a first state.
  • the first base station sends the first downlink data in the first TTI, and the first base station is in the fifth.
  • the first base station sends the third downlink data in the third TTI in order to satisfy the full scheduling of the UE, and after the first base station receives the first feedback result in the fifth TTI, the first base station A base station can obtain the UE receiving the first feedback result, that is, whether the UE correctly receives the first downlink data.
  • the first feedback result includes the acknowledgement (English name: ACKnowledgment, The abbreviation: ACK) information
  • the first feedback result includes the NACK information
  • the first base station needs to retransmit the first downlink data to the UE, that is, Step 1:
  • the first base station sends the first downlink data of the fifth downlink grant and the retransmission to the UE by using the first HARQ process in the fifth TTI, and the retransmitted first downlink data carries the first state including the first state.
  • An NDI the third state of the first NDI is inverted to obtain a first state.
  • step 203 it is known in step 203 that the first NDI corresponding to the first HARQ process in the third TTI is in the third state. If the step A1 is performed, the first NDI corresponding to the first HARQ process in the third TTI needs to be inverted. The first NDI is flipped to the first state.
  • the UE receives the third downlink grant sent by the first base station by using the first HARQ process in the third TTI, and specifically includes the following steps:
  • E1 The UE receives the third downlink grant sent by the first base station by using the virtual HARQ process in the third TTI, where the virtual HARQ process corresponds to the first HARQ process.
  • the first base station sends the first downlink data and the second downlink data respectively by using the first HARQ process and the second HARQ process, and the first base station determines that there is no available HARQ process in the third TTI, and the first base station is in the first
  • the third TTI sends a third downlink grant and a third downlink data to the UE by using a virtual HARQ process, where the virtual HARQ process corresponds to the first HARQ process.
  • the inter-station transmission delay causes the downlink scheduling of the first base station to be dissatisfied
  • multiple (eight as an example) HARQ processes are virtualized
  • the scheduler of the first base station discovers After the real 0 to 7 HARQ process is unavailable, a HARQ process is applied from the virtual 8 to 15 HARQ process, and then mapped to the real HARQ process of the air interface according to a certain mapping relationship (for example, modulo mode).
  • the demodulating the third downlink data sent by the first base station according to the third downlink grant in step 303 may include the following implementation manners:
  • the UE clears the first downlink data stored in the cache corresponding to the first HARQ process according to the first NDI that is included in the third downlink data, and writes the third downlink data into the cache corresponding to the first HARQ process.
  • the UE receives the third downlink grant by using the first HARQ process in the third TTI, and the UE obtains the air interface resource of the third downlink grant indication, and the frequency domain location of the third downlink data transmission may be determined by using the air interface resource, and then the UE according to the third
  • the downlink grant is used to demodulate the third downlink data.
  • the state of the first NDI corresponding to the first HARQ process is the first state
  • the third downlink data carries the first NDI including the third state.
  • the state of the first NDI corresponding to the first HARQ process has been reversed, and the UE determines that the first base station sends new downlink data, so the first HARQ process corresponds to the first stored in the cache. Line data is emptied.
  • the UE receives the fourth downlink grant sent by the first base station by using the second HARQ process in the fourth TTI, and demodulates the retransmitted second downlink data sent by the first base station according to the fourth downlink grant, and sends the second downlink data to the second base station.
  • the fourth downlink data corresponding to the retransmitted second downlink data, the retransmitted second downlink data carries the second NDI including the second state.
  • the fourth TTI is located after the second TTI, and the fourth TTI is located after the third TTI.
  • the first base station sends the second downlink data
  • the first base station sends the first base station in the third TTI to meet the full scheduling of the UE before the fourth base station receives the second feedback result.
  • Three downlink data the UE sends a second feedback result corresponding to the second downlink data to the second base station, where the second base station receives the second feedback result, and the second base station forwards the second feedback result to the first base station, because the second base station and There is an inter-station transmission delay between the first base stations.
  • the first base station After the first base station receives the second feedback result in the fourth TTI, the first base station sends a second retransmission to the UE in the fourth TTI according to the second feedback result. Downstream data.
  • the UE receives the fourth downlink grant sent by the first base station by using the second HARQ process in the fourth TTI, and demodulates the retransmitted second downlink data sent by the first base station according to the fourth downlink grant, and sends and retransmits the second downlink data to the second base station.
  • the fourth downlink data corresponding to the second downlink data, the retransmitted second downlink data carries the second NDI including the second state.
  • the second NDI state is in the second state in the second TTI.
  • the second NDI corresponding to the second HARQ process still maintains the second state, because the second downlink data needs to be retransmitted in the second TTI.
  • the second NDI corresponding to the second HARQ process uses the second state, and the UE may determine that the first base station retransmits the second downlink data to the UE.
  • the method for processing data provided by the embodiment of the present invention further includes the following steps:
  • the UE receives the sixth downlink grant sent by the first base station by using the first HARQ process in the sixth TTI. And performing, according to the sixth downlink grant, demodulating the fourth downlink data sent by the first base station, where the fourth downlink data carries the first NDI including the first state.
  • the sixth TTI is a TTI after the third TTI
  • the sixth TTI assumes that the first base station has not received the first feedback result.
  • the first base station in order to satisfy the full scheduling of the UE, the first base station sends the sixth downlink grant and the fourth downlink data to the UE by using the first HARQ process, and the UE receives the first base station by using the first HARQ process in the sixth TTI. And a downlink authorization, and demodulating the fourth downlink data sent by the first base station according to the sixth downlink grant.
  • the first NDI corresponding to the first HARQ process includes a third state
  • the sixth TTI after the third TTI is used to send the fourth downlink data different from the third downlink data by using the first HARQ process
  • the first NDI corresponding to the first HARQ process is reversed, that is, the fourth downlink data needs to carry the first NDI including the first state, and the third state of the first NDI is inverted to obtain the first state.
  • the first base station may use the first HARQ process to send new downlink data to the UE multiple times.
  • the implementation of the second downlink data that the UE receives the retransmission in the fourth TTI when the second feedback result sent by the UE is NACK is described in step 304, and then the second feedback result is ACK information.
  • the method for processing data provided by the embodiment of the present invention may further include the following steps:
  • the UE After the fourth TTI receives the fourth downlink grant sent by the first base station, the UE demodulates the fifth downlink data sent by the first base station according to the fourth downlink grant, and the fifth downlink data carries the first The fourth NDI of the four states.
  • the first base station may send new downlink data (ie, the fifth downlink data) to the UE, where Step G1 is performed, and after the fourth TTI receives the fourth downlink grant sent by the first base station by using the second HARQ process, the UE demodulates the fifth downlink data and the fifth downlink data sent by the first base station according to the fourth downlink grant.
  • Carrying a second NDI including a fourth state where the second NDI corresponding to the second HARQ process is in the second state, the new downlink data is transmitted in the fourth TTI, and the second state of the second NDI is reversed. The fourth state is obtained.
  • the re-transmitting the second downlink data sent by the first base station according to the fourth downlink grant in step 304 may include the following implementation manners:
  • the UE combines the second downlink data stored in the buffer corresponding to the second HARQ process and the retransmitted downlink data according to the second NDI included in the second downlink data carried in the retransmitted second downlink data, and merges the combined result. Write to the cache corresponding to the first HARQ process.
  • the UE receives the fourth downlink grant by using the second HARQ process in the fourth TTI, and the UE obtains the air interface resource of the fourth downlink grant indication, and the frequency domain location of the retransmitted second downlink data transmission may be determined by the air interface resource, and then the UE Demodulating the retransmitted second downlink data according to the fourth downlink grant, in the second TTI, the second NDI corresponding to the second HARQ process is in the second state, and if the retransmitted second downlink data carries the second The second NDI of the state indicates that the state of the second NDI corresponding to the second HARQ process is not reversed at the fourth TTI, and the UE determines that the second base station transmits the second downlink data that is retransmitted, and therefore the second HARQ
  • the second downlink data stored in the buffer corresponding to the process is merged with the second downlink data that is retransmitted, so that the multiplexing gain of the HARQ process can be obtained.
  • the first base station divides the HARQ process into two types of processes: a first HARQ process and a second HARQ process, where the first HARQ process can be used by the first base station.
  • the first TTI and the third TTI send downlink data to the UE, which can implement full scheduling of the UE, and thus can provide utilization of air interface resources.
  • the first base station receives the second feedback result in the fourth TTI, and the first base station retransmits the second downlink data by using the second HARQ process.
  • the state of the second NDI carried in the retransmitted second downlink data is not reversed (ie, the second NDI still includes the second state), so the UE may be in the first base station according to the second NDI including the second state.
  • the second downlink data sent by the second TTI and the second downlink data sent by the fourth TTI are jointly decoded, so the second HARQ process can implement the multiplexing gain of the HARQ process.
  • the following is a description of the inter-station cooperative transmission between two base stations in the CA scenario, where the first base station is the base station where the SCC is located, and the second base station is the base station where the PCC is located.
  • FIG. 4 illustrates a processing flow for delaying a HARQ process when considering inter-station transmission according to an embodiment of the present invention. intention.
  • the embodiment of the invention adopts a new HARQ allocation scheme.
  • the embodiment of the present invention is applicable to a scenario in which a time-delay between stations is required to be coordinated, which can achieve full scheduling and ensure the HARQ multiplexing gain.
  • the embodiment of the present invention can ensure full scheduling and obtain HARQ multiplexing. Gain, followed by an example.
  • the HARQ process is divided into two types: a first HARQ process and a second HARQ process, where the first HARQ process is performed by the normal HARQ, and the second HARQ process is a multiplexed HARQ process.
  • the purpose of the common HARQ is to use when the S2 L2 scheduler finds that the multiplexed HARQ cannot be applied, and is used to maintain the full scheduling of the UE.
  • the purpose of multiplexing the HARQ is to perform retransmission or initial transmission according to the feedback ACK/NACK information. For multiplexing gain, the multiplexed HARQ process must have retransmission gain.
  • Process 0 is a normal HARQ process
  • process 1 is a multiplexed HARQ process
  • other HARQ processes are performed.
  • Step 1 At TTI 0, the SCC L2 scheduler applies for HARQ process 0 successfully and schedules the UE. The UE receives this data and demodulates it.
  • Step 2 At TTI 1, the SCC L2 scheduler applies for HARQ process 1 successfully and schedules the UE. The UE receives this data and demodulates it.
  • Step 3 At TTI 4, the UE sends the feedback result of HARQ process 0 to the PCC, and the PCC receives and starts demodulation.
  • Step 4 At TTI 5, the UE sends the feedback result of HARQ process 1 to the PCC, and the PCC receives and starts demodulation.
  • Step 5 At TTI 7, the PCC demodulates the result of HARQ process 0, which is assumed to be NACK, and the result is sent to the SCC.
  • Step 6 In the TTI 8, the SCC L2 scheduler applies for the HARQ process, but all the HARQ processes are used, no idle resources are available, and the SCC L2 scheduler applies for the normal HARQ process 0, corresponding to the virtual HARQ process 8, to satisfy the full Scheduling while NDI flips.
  • the UE clears the buffer on the HARQ process 0 and replaces it with new data. It can be seen from FIG. 4 that the data of the previous HARQ process 0 in 0 ms is the data of the new process 0 in 8 ms. Alternative.
  • Step 7 At TTI8, the PCC demodulates the feedback result of HARQ process 1, which is assumed here as NACK, and send this result to SCC.
  • Step 8 In the TTI 9, the SCC L2 scheduler applies for the HARQ process, but all the HARQ processes are used, and no idle resources are available, so the SCC L2 scheduler applies for the normal HARQ process 0, corresponding to the virtual HARQ process 9, for satisfying Full scheduling, while NDI flips.
  • the UE clears the buffer on the HARQ process 0 and replaces it with new data. It can be seen from Figure 4 that the data of the HARQ process 0 in 8 ms is replaced by the new process 0 in the 9 ms data. .
  • Step 9 In the TTI 10, the SCC L2 scheduler applies for the HARQ process, but all the HARQ processes are used, and no idle resources are available, so the SCC L2 scheduler applies for the normal HARQ process 0, corresponding to the virtual HARQ process 10, to satisfy Full scheduling, while NDI flips.
  • the UE clears the buffer on the HARQ process 0 and replaces it with the new data. It can be seen from FIG. 4 that the data of the HARQ process 0 in 9 milliseconds is replaced by the new process 0 in the data of 10 milliseconds. .
  • Step 10 At TTI11, SCC L2 receives the demodulation information of the No. 0 HARQ process fed back by the PCC at time TTI 0. Since the feedback value is NACK, the SCC L2 scheduler needs to perform retransmission, because the HARQ process 0 cannot be used. Retransmission, therefore, this re-transfer can only be handled as an initial transmission, flipping NDI, and losing the retransmission gain.
  • Step 11 At TTI12, SCC L2 receives the demodulation information of the No. 1 HARQ process fed back by the PCC at time TTI 1. Since the feedback value is NACK, the SCC L2 scheduler needs to perform retransmission. At this time, according to the HARQ complex With the gain scheme, the HARQ process 1 is applied, and the NDI is not inverted. After receiving the data, the UE merges with the data received at the time of TTI1, so that the HARQ process 1 obtains the multiplexing gain.
  • the foregoing description of the present invention shows that the problem of the full scheduling and the HARQ multiplexing gain cannot be ensured at the same time in the prior art.
  • the embodiment of the present invention flexibly classifies the HARQ process according to the different roles of the two types of HARQ processes, thereby achieving both A method of full scheduling and obtaining HARQ multiplexing gain.
  • the initial error rate (English full name: Initial Block Error Rate, English abbreviation: IBLER) can be set separately.
  • the normal HARQ process can be set to 1% IBLER to increase the probability of the first transmission.
  • the multiplexed HARQ process setting is consistent with the existing default parameters, and the HARQ multiplexing gain is preserved.
  • the purpose of setting the IBLER of the normal HARQ process to 1% is to ensure that the initial transmission is correctly transmitted in 99% of cases. It should be noted that the IBLER of the above-mentioned common HARQ process is flexible and configurable, for example, the IBLER of the normal HARQ process. It can be set to 5%, 10%, etc., and is not limited here.
  • the scenario of the cross-site CA is taken as an example. It can be understood that the implementation of the present invention can be used as long as there is an inter-station transmission delay between two base stations or more base stations.
  • the processing method of the foregoing data may be used for characteristics such as DPS, JT, SFN, etc., which require inter-station interaction ACK/NACK.
  • a base station 500 is provided in the embodiment of the present invention.
  • the base station 500 may be a first base station, and the base station 500 may include: a first data processing module 501, a second data processing module 502, a third data processing module 503, a fourth data processing module 504, wherein
  • the first data processing module 501 is configured to send the first downlink authorization and the first downlink data to the user equipment UE by using the first hybrid automatic repeat request HARQ process in the first transmission time interval TTI, where the first downlink data is used. Carrying the first new data including the first state to indicate the NDI;
  • the second data processing module 502 is configured to send, by using the second HARQ process, the second downlink authorization and the second downlink data to the UE, where the second downlink data carries the second NDI including the second state;
  • a third data processing module 503, configured to send, by using the first HARQ process, a third downlink authorization and a third downlink data to the UE, where the third downlink data carries a first NDI, the first state of the first NDI is inverted to obtain the third state;
  • the fourth data processing module 504 is configured to receive, by the fourth TTI, a second feedback result corresponding to the second downlink data sent by the second base station, and the fourth TTI information included in the second TTI according to the second feedback result. Transmitting, by the second HARQ process, the fourth downlink data of the fourth downlink grant and the retransmission to the UE, where the retransmitted second downlink data carries a second NDI including the second state, where the There is an inter-station transmission delay between the two base stations and the first base station.
  • the first base station 500 further includes The fifth data processing module 505 is configured to receive, by the fifth TTI, a first feedback result corresponding to the first downlink data sent by the second base station, and the NACK information included according to the first feedback result is in the first
  • the first downlink data of the fifth downlink grant and the retransmission is sent to the UE by using the first HARQ process, and the retransmitted first downlink data carries the first NDI including the first state.
  • the first state is obtained after the third state of the first NDI is inverted, and a time difference between the fourth TTI and the second TTI is equal to between the fifth TTI and the first TTI The time difference.
  • the first base station 500 further includes: a sixth data processing module 506, for the first After the third TTI sends the third downlink grant and the third downlink data to the UE by using the first HARQ process, the third TTI sends the sixth downlink to the UE by using the first HARQ process in the sixth TTI.
  • a sixth data processing module 506 for the first After the third TTI sends the third downlink grant and the third downlink data to the UE by using the first HARQ process, the third TTI sends the sixth downlink to the UE by using the first HARQ process in the sixth TTI.
  • Authorization and fourth downlink data the fourth downlink data carries a first NDI including the first state, and the first state is obtained after the third state of the first NDI is inverted.
  • the third data processing module 503 is specifically configured to: when the first base station determines that no HARQ process is available in the third TTI, use the virtual HARQ process direction in the third TTI.
  • the UE sends a third downlink grant and a third downlink data, where the virtual HARQ process corresponds to the first HARQ process.
  • the fourth processing module 504 is further configured to: after the fourth TTI receives the second feedback result corresponding to the second downlink data sent by the second base station, according to the second feedback
  • the result includes the acknowledgement ACK information, where the fourth TTI sends the fourth downlink grant and the fifth downlink data to the UE by using the second HARQ process, where the fifth downlink data carries the second NDI including the fourth state.
  • the fourth state is obtained after the second state of the second NDI is inverted.
  • the first base station sends the first downlink grant and the first downlink data to the UE by using the first HARQ process in the first TTI, where the first downlink data carries the first state. a first NDI; the first base station sends the second downlink grant and the second downlink data to the UE in the second TTI, where the second downlink data carries the second NDI including the second state; the first base station is in the third The TTI sends the third downlink grant and the third downlink data to the UE by using the first HARQ process, where the third downlink data carries the first NDI including the third state, and the first state of the first NDI is inverted to obtain the third state; Receiving, by the second base station, the second feedback result corresponding to the second downlink data sent by the second base station, where the first base station includes the negative NACK included according to the second feedback result.
  • the second downlink data of the fourth downlink grant and the retransmission is sent to the UE by using the second HARQ process, and the retransmitted second downlink data carries the second NDI including the second state, the second base station, and the first
  • the inter-station transmission delay existing between the base stations is the time difference between the fourth TTI and the first TTI.
  • the first base station divides the HARQ process into two types of processes: a first HARQ process and a second HARQ process, where the first HARQ process may be used by the first base station to send the downlink to the UE in the first TTI and the third TTI.
  • the data can implement full scheduling of the UE, and thus can provide utilization of air interface resources.
  • the first base station receives the second feedback result in the fourth TTI, and the first base station retransmits the second downlink data by using the second HARQ process.
  • the state of the second NDI carried in the retransmitted second downlink data is not reversed (ie, the second NDI still includes the second state), so the UE may be in the first base station according to the second NDI including the second state.
  • the second downlink data sent by the second TTI and the second downlink data sent by the fourth TTI are jointly decoded, so the second HARQ process can implement the multiplexing gain of the HARQ process.
  • a UE 600 is provided in the embodiment of the present invention.
  • the UE 600 may include: a first data processing module 601, a second data processing module 602, a third data processing module 603, and a fourth data processing module. 604, wherein
  • the first data processing module 601 is configured to receive, by using the first hybrid automatic repeat request HARQ process, the first downlink authorization sent by the first base station, and according to the first downlink authorization solution, in the first transmission time interval TTI. Transmitting the first downlink data sent by the first base station, and sending a first feedback result corresponding to the first downlink data to the second base station, where there is an inter-station between the second base station and the first base station Transmitting a delay, the first downlink data carrying a first new data indicating NDI including a first state;
  • the second data processing module 602 is configured to receive, by using the second HARQ process, the second downlink grant sent by the first base station, and demodulate the second base sent by the first base station according to the second downlink grant. Downstream data, sending a second feedback result corresponding to the second downlink data to the second base station, where the second downlink data carries a second NDI including a second state;
  • the third data processing module 603 is configured to receive, by using the first HARQ process, a third downlink grant sent by the first base station, and demodulate, by using the third downlink grant, the first base station to send, according to the third TTI a third downlink data, the third downlink data corresponding to the third downlink data is sent to the second base station, where the third downlink data carries a first NDI including a third state;
  • the fourth data processing module 604 is configured to receive, by using the second HARQ process, the fourth downlink grant sent by the first base station, and demodulate the first downlink according to the fourth downlink grant, in the fourth TTI Transmitting the second downlink data that is sent by the base station, and sending, by the second base station, a fourth feedback result corresponding to the retransmitted second downlink data, where the retransmitted second downlink data carries the second state The second NDI.
  • the UE 600 may further include: a fifth data processing module 605, configured to use the fifth TTI, as shown in FIG. 6-a.
  • a fifth data processing module 605 configured to use the fifth TTI, as shown in FIG. 6-a.
  • a downlink data carries a first NDI including the first state.
  • the UE 600 may further include: a sixth data processing module 606 for the fourth data processing, as shown in FIG. 6-a.
  • the module receives the sixth downlink grant sent by the first base station by using the first HARQ process in the sixth TTI, before the fourth TTI uses the second HARQ process to receive the fourth downlink grant sent by the first base station, And demodulating, according to the sixth downlink grant, fourth downlink data sent by the first base station, where the fourth downlink data carries a first NDI including the first state.
  • the third data processing module 603 is specifically configured to receive, by using the virtual HARQ process, the third downlink grant sent by the first base station in the third TTI, where the virtual HARQ process and The first HARQ process corresponds.
  • the fourth data processing module 604 is further configured to: according to the fourth downlink grant, demodulate the fifth downlink data sent by the first base station, where the fifth downlink data carries A second NDI including a fourth state.
  • the third data processing module 603 is specifically configured to receive, according to the air interface resource indicated by the third downlink authorization, the third downlink data, and include, according to the third downlink data,
  • the first NDI in the third state clears the first downlink data stored in the cache corresponding to the first HARQ process, and writes the third downlink data into the cache corresponding to the first HARQ process.
  • the fourth data processing module 604 is configured to receive retransmitted second downlink data according to the air interface resource indicated by the fourth downlink grant indication, and according to the retransmitted second downlink. Carrying, by the data, the second NDI including the second state, combining the second downlink data stored in the buffer corresponding to the second HARQ process and the retransmitted downlink data, and writing the combined result The cache corresponding to the first HARQ process.
  • the first base station divides the HARQ process into two types of processes: a first HARQ process and a second HARQ process, where the first HARQ process can be used by the first base station.
  • the first TTI and the third TTI send downlink data to the UE, which can implement full scheduling of the UE, and thus can provide utilization of air interface resources.
  • the first base station receives the second feedback result in the fourth TTI, and the first base station retransmits the second downlink data by using the second HARQ process.
  • the state of the second NDI carried in the retransmitted second downlink data is not reversed (ie, the second NDI still includes the second state), so the UE may be in the first base station according to the second NDI including the second state.
  • the second downlink data sent by the second TTI and the second downlink data sent by the fourth TTI are jointly decoded, so the second HARQ process can implement the multiplexing gain of the HARQ process.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes some or all of the steps described in the foregoing method embodiments.
  • the base station is specifically a first base station.
  • the base station 700 includes:
  • the input device 701, the output device 702, the processor 703, and the memory 704 (wherein the number of processors 703 in the base station 700 may be one or more, and one processor in FIG. 7 is taken as an example).
  • the input device 701, the output device 702, the processor 703, and the memory 704 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 703 is configured to perform the following steps:
  • the processor 703 is further configured to perform the following steps:
  • the processor 703 is further configured to perform the following steps:
  • the third TTI After the third TTI sends the third downlink grant and the third downlink data to the UE by using the first HARQ process, sending, by using the first HARQ process, a sixth downlink grant and a fourth to the UE, in the sixth TTI.
  • Downstream data, the fourth downlink data carries a first NDI including the first state, and the first state is obtained after the third state of the first NDI is inverted.
  • the processor 703 is specifically configured to perform the following steps:
  • the third TTI uses the virtual HARQ process to send the third downlink grant and the third downlink data to the UE, where the virtual HARQ process and the The first HARQ process corresponds.
  • the processor 703 is further configured to: after the fourth TTI receives the second feedback result corresponding to the second downlink data sent by the second base station, according to the second feedback
  • the result includes the acknowledgement ACK information, where the fourth TTI sends the fourth downlink grant and the fifth downlink data to the UE by using the second HARQ process, where the fifth downlink data carries the second NDI including the fourth state.
  • the fourth state is obtained after the second state of the second NDI is inverted.
  • the first base station sends the first downlink grant and the first downlink data to the UE in the first TTI by using the first HARQ process, where the first downlink data carries the packet. a first NDI of the first state; the first base station sends a second downlink grant and a second downlink data to the UE by using the second HARQ process in the second TTI, where the second downlink data carries a second NDI including the second state; A first base station sends a third downlink grant and a third downlink data to the UE by using the first HARQ process in the third TTI, where the third downlink data carries the first NDI including the third state, and the first state of the first NDI is inverted.
  • the third base station receives the second feedback result corresponding to the second downlink data sent by the second base station in the fourth TTI, and the first base station uses the second HARQ process in the fourth TTI according to the negative NACK information included in the second feedback result.
  • the UE sends the fourth downlink grant and the retransmitted second downlink data, where the retransmitted second downlink data carries the second NDI including the second state, and the inter-station transmission delay existing between the second base station and the first base station is The time difference between the fourth TTI and the first TTI.
  • the first base station divides the HARQ process into two types of processes: a first HARQ process and a second HARQ process, where the first HARQ process may be used by the first base station to send the downlink to the UE in the first TTI and the third TTI.
  • the data can implement full scheduling of the UE, and thus can provide utilization of air interface resources.
  • the first base station receives the second feedback result in the fourth TTI, and the first base station retransmits the second downlink data by using the second HARQ process.
  • the state of the second NDI carried in the retransmitted second downlink data is not reversed (ie, the second NDI still includes the second state), so the UE may be in the first base station according to the second NDI including the second state.
  • the second downlink data sent by the second TTI and the second downlink data sent by the fourth TTI are jointly decoded, so the second HARQ process can implement the multiplexing gain of the HARQ process.
  • the UE 800 includes:
  • the input device 801, the output device 802, the processor 803, and the memory 804 (wherein the number of processors 803 in the UE 800 may be one or more, and one processor in FIG. 8 is taken as an example).
  • the input device 801, the output device 802, the processor 803, and the memory 804 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 803 is configured to perform the following steps:
  • the first hybrid automatic repeat request HARQ process Receiving, by using the first hybrid automatic repeat request HARQ process, the first downlink grant sent by the first base station, and demodulating the first base station according to the first downlink grant, according to the first transmission time interval TTI a downlink data, a first feedback result corresponding to the first downlink data is sent to the second base station, and an inter-station transmission delay exists between the second base station and the first base station, where the first The row data carries a first new data indicating the first state indicating the NDI;
  • the second base station receives, by using the second HARQ process, the fourth downlink grant sent by the first base station, and demodulating the second downlink data of the retransmission sent by the first base station according to the fourth downlink grant,
  • the second base station sends a fourth feedback result corresponding to the retransmitted second downlink data, where the retransmitted second downlink data carries a second NDI including the second state.
  • the processor 803 is further configured to perform the following steps:
  • the retransmitted first downlink data carries a first NDI including the first state.
  • the processor 803 is further configured to: perform, in the sixth TTI, before the fourth TTI receives the fourth downlink grant sent by the first base station by using the second HARQ process
  • the first HARQ process receives the sixth downlink grant sent by the first base station, and demodulates the fourth downlink data sent by the first base station according to the sixth downlink grant, where the fourth downlink data carries The first NDI of the first state.
  • the processor 803 is specifically configured to perform the following steps:
  • the processor 803 is further configured to: after the fourth TTI receives the fourth downlink grant sent by the first base station by using the second HARQ process, according to the fourth The downlink grant is used to demodulate the fifth downlink data sent by the first base station, and the fifth downlink data carries a second NDI including a fourth state.
  • the processor 803 is specifically configured to perform the following steps:
  • the first NDI including the third state carried according to the third downlink data will be the first
  • the first downlink data stored in the cache corresponding to the HARQ process is cleared, and the third downlink data is written into the cache corresponding to the first HARQ process.
  • the processor 803 is specifically configured to perform the following steps:
  • the first base station divides the HARQ process into two types of processes: a first HARQ process and a second HARQ process, where the first HARQ process can be used by the first base station.
  • the first TTI and the third TTI send downlink data to the UE, which can implement full scheduling of the UE, and thus can provide utilization of air interface resources.
  • the first base station receives the second feedback result in the fourth TTI, and the first base station retransmits the second downlink data by using the second HARQ process.
  • the state of the second NDI carried in the retransmitted second downlink data is not reversed (ie, the second NDI still includes the second state), so the UE may be in the first base station according to the second NDI including the second state.
  • the second downlink data sent by the second TTI and the second downlink data sent by the fourth TTI are jointly decoded, so the second HARQ process can implement the multiplexing gain of the HARQ process.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically, one or more communication buses or signal lines can be realized.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, dedicated hardware, dedicated CPU, dedicated memory, dedicated memory, Special components and so on.
  • functions performed by computer programs can be easily implemented with the corresponding hardware, and the specific hardware structure used to implement the same function can be various, such as analog circuits, digital circuits, or dedicated circuits. Circuits, etc.
  • software program implementation is a better implementer in more cases. formula.
  • the technical solution of the present invention which is essential or contributes to the prior art, can be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.
  • a computer device may be A personal computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明公开一种数据的处理方法和基站以及用户设备,用于站间传输时延时实现UE满调度,HARQ进程复用增益。该方法包括:第一基站在第一TTI使用第一HARQ进程向UE发送第一下行授权和第一下行数据,第一下行数据携带有包括第一状态的第一NDI;第一基站在第二TTI使用第二HARQ进程向UE发送第二下行授权和第二下行数据,第二下行数据携带有包括第二状态的第二NDI;第一基站在第三TTI使用第一HARQ进程向UE发送第三下行授权和第三下行数据,第三下行数据携带有包括第三状态的第一NDI;第一基站根据第二反馈结果包括的NACK信息在第四TTI使用第二HARQ进程向UE发送第四下行授权和重传的第二下行数据。

Description

一种数据的处理方法和基站以及用户设备
本申请要求于2015年10月26日提交中国专利局、申请号为201510700640.8、发明名称为“一种数据的处理方法和基站以及用户设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种数据的处理方法和基站以及用户设备。
背景技术
长期演进(英文全称:Long Term Evolution,英文简称:LTE)网络正逐步从一个一个的独立站点,向站点之间相互协作快速发展。常见的技术有:两个小区联合发送(英文全称:joint transmission,英文简称:JT)、单频组网(英文全称:Single Frequency Network,英文简称:SFN)、动态节点选择(英文全称:Dynamic Point Selection,英文简称:DPS)、载波聚合(英文全称:Carrier Aggregation,英文简称:CA)、协调调度功率控制(英文全称:Coordinated Scheduling-based Power Control,英文简称:CSPC)等。
站间协同一个重要的基础是站间互联。目前常用的方法有光纤互联以及普通的互联网协议(英文全称:Internet Protocol,英文简称:IP)网络互联。其中,光纤互联的优点是时延小(例如可以达到100纳秒以下),但是工程造价高,对于预先没有铺设光纤的运营商就需要重新铺光纤。IP互联的优点是成本低,可利用现有的传输网络,无需特殊改造,但是数据传输的时延大,通常有2~8毫秒的时延。当时延过大时会导致混合自动重传请求(英文全称:Hybrid Automatic Repeat reQuest,英文简称:HARQ)反馈不及时,从而会造成无法获得HARQ复用增益的问题。
在不考虑站间传输时延的情况下,一个HARQ进程的处理流程如图1-a所示,图1-a为现有技术中不考虑站间传输时延时一个HARQ进程的处理流程示意图,主要可包括如下步骤:
步骤1:辅载波小区(英文全称:Secondary Carrier Cell,英文简称:SCC)下发下行授权给用户设备(英文全称:User Equipment,英文简称:UE),此 授权为HARQ进程0的下行授权。UE收到此授权后,在该授权中的频域位置去解调相应的数据,并进行循环冗余校验(英文全称:Cyclic Redundancy Check,英文简称:CRC)处理,得到检验结果。
步骤2:从UE接收到下行授权的4毫秒之后,UE需要将对应于0时刻的HARQ进程0的下行授权接收结果反馈给基站。
步骤3:基站通过主载波小区(英文全称:Primary Carrier Cell,英文简称:PCC)接收HARQ进程0的反馈,并进行解调处理。
步骤4:由于不考虑站间传输时延,基站在解调完成之后,基站在同一时刻通过PCC将HARQ进程0的反馈发送到SCC。例如基站在7时刻解调完成,基站在7时刻将HARQ进程0的反馈发送到SCC。
步骤5:在新的一次下行调度时刻,SCC发现HARQ进程0可用,继续使用HARQ进程0完成一次下行授权。
将上述流程扩展到全部8个HARQ进程的理想回传下,如图1-b所示,图1-b为现有技术中不考虑站间传输时延时8个HARQ进程的处理流程示意图,其中,不同箭头符号指示的是不同的HARQ进程,从图1-b可以看出,当不存在站间传输时延的情况下,每一个HARQ进程的反馈都能够及时的反馈到SCC,在SCC侧能满足每个毫秒都被调度,以及每个HARQ进程都有复用增益。
本发明的发明人在实现本发明的过程中发现,上述的现有技术只能应用于不存在站间传输时延的情况,而在实际的应用场景中,站间传输时延通常都会存在。当站间传输时延为非理想情况时,比如为4毫秒,处理流程如图1-c所示,图1-c为现有技术中考虑站间传输时延时8个HARQ进程的处理流程示意图,主要可包括如下步骤:
前3个步骤与图1-a所示的步骤1、步骤2、步骤3相类似。
步骤4:由于站间传输时延为4毫秒,导致反馈的信息需要4毫秒的延迟才能反馈到SCC,在第8、9、10毫秒,由于没有可用的HARQ进程,SCC无法调度。因此,在现有的技术方案中,随着站间传输时延的增大,HARQ进程的等待时间会变长,用户无法被调度的时间也会变长,这会造成空口资源的浪费。
发明内容
本发明实施例提供了一种数据的处理方法和基站以及用户设备,用于基站之间存在站间传输时延时既能实现UE的满调度,又能实现HARQ进程的复用增益。
为解决上述技术问题,本发明实施例提供以下技术方案:
第一方面,本发明实施例提供一种数据的调度方法,包括:
第一基站在第一传输时间间隔TTI使用第一混合自动重传请求HARQ进程向用户设备UE发送第一下行授权和第一下行数据,所述第一下行数据携带有包括第一状态的第一新数据指示NDI;
所述第一基站在第二TTI使用第二HARQ进程向所述UE发送第二下行授权和第二下行数据,所述第二下行数据携带有包括第二状态的第二NDI;
所述第一基站在第三TTI使用所述第一HARQ进程向所述UE发送第三下行授权和第三下行数据,所述第三下行数据携带有包括第三状态的第一NDI,所述第一NDI的所述第一状态翻转后得到所述第三状态;
所述第一基站在第四TTI接收第二基站发送的所述第二下行数据对应的第二反馈结果,所述第一基站根据所述第二反馈结果包括的否认NACK信息在所述第四TTI使用所述第二HARQ进程向所述UE发送第四下行授权和重传的第二下行数据,所述重传的第二下行数据携带有包括所述第二状态的第二NDI,所述第二基站和所述第一基站之间存在站间传输时延。
结合第一方面,在第一方面的第一种可能的实现方式中,所述方法还包括:
所述第一基站在第五TTI接收第二基站发送的所述第一下行数据对应的第一反馈结果,所述第一基站根据所述第一反馈结果包括的NACK信息在所述第五TTI使用所述第一HARQ进程向所述UE发送第五下行授权和重传的第一下行数据,所述重传的第一下行数据携带有包括所述第一状态的第一NDI,所述第一NDI的所述第三状态翻转后得到所述第一状态,所述第四TTI和所述第二TTI之间的时间差等于所述第五TTI和所述第一TTI之间的时间差。
结合第一方面,在第一方面的第二种可能的实现方式中,所述第一基站在第三TTI使用所述第一HARQ进程向所述UE发送第三下行授权和第三下行数据之后,所述方法还包括:
所述第一基站在第六TTI使用所述第一HARQ进程向所述UE发送第六下行授权和第四下行数据,所述第四下行数据携带有包括所述第一状态的第一NDI,所述第一NDI的所述第三状态翻转后得到所述第一状态。
结合第一方面或第一方面的第一种可能或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述第一基站在第三TTI使用所述第一HARQ进程向所述UE发送第三下行授权和第三下行数据,包括:
若所述第一基站在第三TTI确定没有可用的HARQ进程时,所述第一基站在所述第三TTI使用虚拟HARQ进程向所述UE发送第三下行授权和第三下行数据,所述虚拟HARQ进程和所述第一HARQ进程相对应。
结合第一方面或第一方面的第一种可能或第二种可能的实现方式,在第一方面的第四种可能的实现方式中,所述第一基站在第四TTI接收第二基站发送的所述第二下行数据对应的第二反馈结果之后,所述方法还包括:
所述第一基站根据所述第二反馈结果包括的确认ACK信息在所述第四TTI使用所述第二HARQ进程向所述UE发送第四下行授权和第五下行数据,所述第五下行数据携带有包括第四状态的第二NDI,所述第二NDI的所述第二状态翻转后得到所述第四状态。
第二方面,本发明实施例还提供一种数据的调度方法,包括:
用户设备UE在第一传输时间间隔TTI使用第一混合自动重传请求HARQ进程接收所述第一基站发送的第一下行授权,以及根据所述第一下行授权解调所述第一基站发送的第一下行数据,向第二基站发送与所述第一下行数据对应的第一反馈结果,所述第二基站和所述第一基站之间存在站间传输时延,所述第一下行数据携带有包括第一状态的第一新数据指示NDI;
所述UE在第二TTI使用第二HARQ进程接收所述第一基站发送的第二下行授权,以及根据所述第二下行授权解调所述第一基站发送的第二下行数据,向所述第二基站发送与所述第二下行数据对应的第二反馈结果,所述第二下行数据携带有包括第二状态的第二NDI;
所述UE在第三TTI使用所述第一HARQ进程接收所述第一基站发送的第三下行授权,以及根据所述第三下行授权解调所述第一基站发送的第三下行数据,向第二基站发送与所述第三下行数据对应的第三反馈结果,所述第三下行数据携带有包括第三状态的第一NDI;
所述UE在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权,以及根据所述第四下行授权解调所述第一基站发送的重传的第二下行数据,向所述第二基站发送与重传的第二下行数据对应的第四反馈结果,所述重传的第二下行数据携带有包括所述第二状态的第二NDI。
结合第二方面,在第二方面的第一种可能的实现方式中,所述方法还包括:
所述UE在第五TTI使用所述第一HARQ进程接收所述第一基站发送的第五下行授权,以及根据所述第五下行授权解调所述第一基站发送的重传的第一下行数据,所述重传的第一下行数据携带有包括所述第一状态的第一NDI。
结合第二方面,在第二方面的第二种可能的实现方式中,所述UE在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权之前,所述方法还包括:
所述UE在第六TTI使用所述第一HARQ进程接收所述第一基站发送的第六下行授权,以及根据所述第六下行授权解调所述第一基站发送的第四下行数据,所述第四下行数据携带有包括所述第一状态的第一NDI。
结合第二方面或第二方面的第一种可能或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述UE在第三TTI使用所述第一HARQ进程接收所述第一基站发送的第三下行授权,包括:
所述UE在所述第三TTI使用虚拟HARQ进程接收所述第一基站发送的第三下行授权,所述虚拟HARQ进程和所述第一HARQ进程相对应。
结合第二方面或第二方面的第一种可能或第二种可能的实现方式,在第二方面的第四种可能的实现方式中,所述UE在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权之后,所述方法还包括:
所述UE根据所述第四下行授权解调所述第一基站发送的第五下行数据,所述第五下行数据携带有包括第四状态的第二NDI。
结合第二方面或第二方面的第一种可能或第二种可能的实现方式,在第二方面的第四种可能的实现方式中,所述根据所述第三下行授权解调所述第一基站发送的第三下行数据,包括:
所述UE根据所述第三下行授权指示的空口资源接收所述第三下行数据;
所述UE根据所述第三下行数据携带的包括第三状态的第一NDI将所述第一HARQ进程对应的缓存中存储的第一下行数据清空,并将所述第三下行数 据写入所述第一HARQ进程对应的缓存。
结合第二方面或第二方面的第一种可能或第二种可能的实现方式,在第二方面的第五种可能的实现方式中,所述根据所述第四下行授权解调所述第一基站发送的重传的第二下行数据,包括:
所述UE根据所述第四下行授权指示的空口资源接收重传的第二下行数据;
所述UE根据所述重传的第二下行数据携带的包括所述第二状态的第二NDI,将所述第二HARQ进程对应的缓存中存储的第二下行数据和所述重传的下行数据进行合并,并将合并后的结果写入所述第一HARQ进程对应的缓存。
第三方面,本发明实施例还提供一种基站,所述基站具体为第一基站,所述第一基站,包括:
第一数据处理模块,用于在第一传输时间间隔TTI使用第一混合自动重传请求HARQ进程向用户设备UE发送第一下行授权和第一下行数据,所述第一下行数据携带有包括第一状态的第一新数据指示NDI;
第二数据处理模块,用于在第二TTI使用第二HARQ进程向所述UE发送第二下行授权和第二下行数据,所述第二下行数据携带有包括第二状态的第二NDI;
第三数据处理模块,用于在第三TTI使用所述第一HARQ进程向所述UE发送第三下行授权和第三下行数据,所述第三下行数据携带有包括第三状态的第一NDI,所述第一NDI的所述第一状态翻转后得到所述第三状态;
第四数据处理模块,用于在第四TTI接收第二基站发送的所述第二下行数据对应的第二反馈结果,根据所述第二反馈结果包括的否认NACK信息在所述第四TTI使用所述第二HARQ进程向所述UE发送第四下行授权和重传的第二下行数据,所述重传的第二下行数据携带有包括所述第二状态的第二NDI,所述第二基站和所述第一基站之间存在站间传输时延。
结合第三方面,在第三方面的第一种可能的实现方式中,所述第一基站还包括:
第五数据处理模块,用于在第五TTI接收第二基站发送的所述第一下行数据对应的第一反馈结果,根据所述第一反馈结果包括的NACK信息在所述第五TTI使用所述第一HARQ进程向所述UE发送第五下行授权和重传的第一 下行数据,所述重传的第一下行数据携带有包括所述第一状态的第一NDI,所述第一NDI的所述第三状态翻转后得到所述第一状态,所述第四TTI和所述第二TTI之间的时间差等于所述第五TTI和所述第一TTI之间的时间差。
结合第三方面,在第三方面的第二种可能的实现方式中,所述第一基站还包括:
第六数据处理模块,用于所述第三数据处理模块在第三TTI使用所述第一HARQ进程向所述UE发送第三下行授权和第三下行数据之后,在第六TTI使用所述第一HARQ进程向所述UE发送第六下行授权和第四下行数据,所述第四下行数据携带有包括所述第一状态的第一NDI,所述第一NDI的所述第三状态翻转后得到所述第一状态。
结合第三方面或第三方面的第一种可能或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述第三数据处理模块,具体用于若所述第一基站在第三TTI确定没有可用的HARQ进程时,在所述第三TTI使用虚拟HARQ进程向所述UE发送第三下行授权和第三下行数据,所述虚拟HARQ进程和所述第一HARQ进程相对应。
结合第三方面或第三方面的第一种可能或第二种可能的实现方式,在第三方面的第四种可能的实现方式中,所述第四处理模块,还用于在第四TTI接收第二基站发送的所述第二下行数据对应的第二反馈结果之后,根据所述第二反馈结果包括的确认ACK信息在所述第四TTI使用所述第二HARQ进程向所述UE发送第四下行授权和第五下行数据,所述第五下行数据携带有包括第四状态的第二NDI,所述第二NDI的所述第二状态翻转后得到所述第四状态。
第四方面,本发明实施例还提供一种用户设备,包括:
第一数据处理模块,用于在第一传输时间间隔TTI使用第一混合自动重传请求HARQ进程接收所述第一基站发送的第一下行授权,以及根据所述第一下行授权解调所述第一基站发送的第一下行数据,向第二基站发送与所述第一下行数据对应的第一反馈结果,所述第二基站和所述第一基站之间存在站间传输时延,所述第一下行数据携带有包括第一状态的第一新数据指示NDI;
第二数据处理模块,用于在第二TTI使用第二HARQ进程接收所述第一基站发送的第二下行授权,以及根据所述第二下行授权解调所述第一基站发送的第二下行数据,向所述第二基站发送与所述第二下行数据对应的第二反馈结 果,所述第二下行数据携带有包括第二状态的第二NDI;
第三数据处理模块,用于在第三TTI使用所述第一HARQ进程接收所述第一基站发送的第三下行授权,以及根据所述第三下行授权解调所述第一基站发送的第三下行数据,向第二基站发送与所述第三下行数据对应的第三反馈结果,所述第三下行数据携带有包括第三状态的第一NDI;
第四数据处理模块,用于在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权,以及根据所述第四下行授权解调所述第一基站发送的重传的第二下行数据,向所述第二基站发送与重传的第二下行数据对应的第四反馈结果,所述重传的第二下行数据携带有包括所述第二状态的第二NDI。
结合第四方面,在第四方面的第一种可能的实现方式中,所述用户设备还包括:
第五数据处理模块,用于在第五TTI使用所述第一HARQ进程接收所述第一基站发送的第五下行授权,以及根据所述第五下行授权解调所述第一基站发送的重传的第一下行数据,所述重传的第一下行数据携带有包括所述第一状态的第一NDI。
结合第四方面,在第四方面的第二种可能的实现方式中,所述用户设备还包括:第六数据处理模块,用于所述第四数据处理模块在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权之前,在第六TTI使用所述第一HARQ进程接收所述第一基站发送的第六下行授权,以及根据所述第六下行授权解调所述第一基站发送的第四下行数据,所述第四下行数据携带有包括所述第一状态的第一NDI。
结合第四方面或第四方面的第一种可能或第二种可能的实现方式,在第四方面的第三种可能的实现方式中,所述U第三数据处理模块,具体用于在所述第三TTI使用虚拟HARQ进程接收所述第一基站发送的第三下行授权,所述虚拟HARQ进程和所述第一HARQ进程相对应。
结合第四方面或第四方面的第一种可能或第二种可能的实现方式,在第四方面的第四种可能的实现方式中,所述第四数据处理模块,还用于根据所述第四下行授权解调所述第一基站发送的第五下行数据,所述第五下行数据携带有包括第四状态的第二NDI。
结合第四方面或第四方面的第一种可能或第二种可能的实现方式,在第四方面的第四种可能的实现方式中,所述第三数据处理模块,具体用于根据所述第三下行授权指示的空口资源接收所述第三下行数据;根据所述第三下行数据携带的包括第三状态的第一NDI将所述第一HARQ进程对应的缓存中存储的第一下行数据清空,并将所述第三下行数据写入所述第一HARQ进程对应的缓存。
结合第四方面或第四方面的第一种可能或第二种可能的实现方式,在第四方面的第五种可能的实现方式中,所述第四数据处理模块,具体用于根据所述第四下行授权指示的空口资源接收重传的第二下行数据;根据所述重传的第二下行数据携带的包括所述第二状态的第二NDI,将所述第二HARQ进程对应的缓存中存储的第二下行数据和所述重传的下行数据进行合并,并将合并后的结果写入所述第一HARQ进程对应的缓存。
从以上技术方案可以看出,本发明实施例具有以下优点:
在本发明实施例中,第一基站在第一TTI使用第一HARQ进程向UE发送第一下行授权和第一下行数据,第一下行数据携带有包括第一状态的第一NDI;第一基站在第二TTI使用第二HARQ进程向UE发送第二下行授权和第二下行数据,第二下行数据携带有包括第二状态的第二NDI;第一基站在第三TTI使用第一HARQ进程向UE发送第三下行授权和第三下行数据,第三下行数据携带有包括第三状态的第一NDI,第一NDI的第一状态翻转后得到第三状态;第一基站在第四TTI接收第二基站发送的第二下行数据对应的第二反馈结果,第一基站根据第二反馈结果包括的否认NACK信息在第四TTI使用第二HARQ进程向UE发送第四下行授权和重传的第二下行数据,重传的第二下行数据携带有包括第二状态的第二NDI,第二基站和第一基站之间存在的站间传输时延为第四TTI和第一TTI之间的时间差。本发明实施例中,第一基站将HARQ进程分为两类进程:第一HARQ进程和第二HARQ进程,第一HARQ进程可以用于第一基站在第一TTI和第三TTI向UE发送下行数据,可以实现UE的满调度,因此可以提供对空口资源的利用率。在第一基站和第二基站之间存在站间传输时延的情况下,第一基站在第四TTI接收到第二反馈结果,第一基站使用第二HARQ进程对第二下行数据进行重传,由于重传的第二下行数据中携带的第二NDI的状态并没有翻转(即第二NDI仍包括第二状态),因 此UE可以根据包括第二状态的第二NDI对第一基站在第二TTI发送的第二下行数据和第四TTI发送的重传的第二下行数据进行共同解码,因此第二HARQ进程可以实现HARQ进程的复用增益。
附图说明
为了更清楚地说明现有技术以及本发明实施例中的技术方案,下面将对现有技术以及本发明实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的技术人员来讲,还可以根据这些附图获得其他的附图。
图1-a为现有技术中不考虑站间传输时延时一个HARQ进程的处理流程示意图;
图1-b为现有技术中不考虑站间传输时延时8个HARQ进程的处理流程示意图;
图1-c为现有技术中考虑站间传输时延时8个HARQ进程的处理流程示意图;
图2为本发明实施例提供的一种数据的处理方法的流程方框示意图;
图3为本发明实施例提供的另一种数据的处理方法的流程方框示意图;
图4为本发明实施例中考虑站间传输时延时一个HARQ进程的处理流程示意图;
图5-a为本发明实施例提供的一种基站的组成结构示意图;
图5-b为本发明实施例提供的另一种基站的组成结构示意图;
图5-c为本发明实施例提供的另一种基站的组成结构示意图;
图6-a为本发明实施例提供的一种用户设备的组成结构示意图;
图6-b为本发明实施例提供的另一种用户设备的组成结构示意图;
图6-c为本发明实施例提供的另一种用户设备的组成结构示意图;
图7为本发明实施例提供的另一种基站的组成结构示意图;
图8为本发明实施例提供的另一种用户设备的组成结构示意图。
具体实施方式
本发明实施例提供了一种数据的处理方法和基站以及用户设备,用于基站 之间存在站间传输时延时既能实现UE的满调度,又能实现HARQ进程的复用增益。
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域的技术人员所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本发明的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
以下分别进行详细说明。
本发明数据的处理方法的一个实施例,可应用于基站侧使用HARQ进程向UE发送数据的场景中,请参阅图2所示,本发明一个实施例提供的数据的处理方法,可以包括:
201、第一基站在第一传输时间间隔(英文全称:Transmission Time Interval,英文简称:TTI)使用第一HARQ进程向UE发送第一下行授权和第一下行数据,第一下行数据携带有包括第一状态的第一新数据指示(英文全称:New Data Indicator,英文简称:NDI)。
在本发明实施例中,第一基站在一个TTI使用一个HARQ进程向UE发送下行授权以及下行数据。其中,为了区分不同的TTI,将本发明实施例中后续出现的不同TTI分别定义为:第一TTI、第二TTI、第三TTI、第四TTI、第五TTI、第六TTI等等,另外将第一基站在不同个TTI发送的各个下行授权也分别定义为:第一下行授权、第二下行授权、第三下行授权、第四下行授权、第五下行授权、第六下行授权等等。为了区别不同的下行数据,将本发明实施例中后续出现的不同下行数据分别定义为:第一下行数据、第二下行数据、第三下行数据、第四下行数据等等。同样的,本发明实施例中将不同的HARQ 进程对应的NDI也分别采用不同的定义方式,例如,将第一HARQ进程对应的NDI定义为第一NDI,将第二HARQ进程对应的NDI定义为第二NDI。
在本发明实施例中,第一基站将HARQ进程分为两类进程:第一HARQ进程和第二HARQ进程,第一HARQ进程在HARQ进程不够用时仅做HARQ进程的初传使用,用于保证UE的满调度,该第一HARQ进程也称之为普通HARQ进程。其中,满调度指的是UE在每一个TTI都收到一个下行授权,因此HARQ进程可以用于实现UE的满调度。第二HARQ进程在任何情况都保留HARQ复用增益,该第二HARQ进程也称之为复用HARQ进程。本发明实施例中利用两类HARQ进程的组合,达到既能满足满调度,又能获得HARQ复用增益的效果。举例说明如下,协议规定一共有8个HARQ进程,分别为0号、1号、2号、…、7号HARQ进程。其中,8个HARQ进程分成两类,0号HARQ进程是第一HARQ进程,1~7号是第二HARQ进程,1~7号HARQ进程会等待初传调度的反馈信息来决定是否重传,这样当1~7号HARQ进程出现初传失败时,可以实现重传,因此1~7号的第二HARQ进程有重传增益。由于站间传输时延的存在会导致1~7号HARQ进程从一个站反馈到另外一个站时有一定的时间差,这会导致UE在一定时间内没有可用的调度资源,在这种情况下,0号HARQ进程可以满足用户的满调度。不限定的是,在本发明的另一些实施例中,还可以将0号和1号HARQ进程作为第一HARQ进程,而将2~7号作为第二HARQ进程,还可以将0号、1号、2号HARQ进程作为第一HARQ进程,而将3~7号作为第二HARQ进程,具体实现方式可以根据应用场景来确定,此处仅作说明。
在本发明实施例中,每个HARQ进程有一个独自的NDI,在使用HARQ进程发送的下行数据都携带有一个NDI,该NDI可以包括两个状态,例如第一NDI包括:第一状态和第三状态,第二NDI包括:第二状态和第四状态。举例说明如下,NDI为1个比特,每个HARQ进程有一个独自的NDI,当本HARQ进程是初传的时候,HARQ翻转(例如从0翻转到1,或者从1翻转到0),当本HARQ进程是重传的时候,NDI保持不变,不进行翻转。
需要说明的是,在本发明实施例中,第一基站使用第一HARQ进程向UE发送第一下行授权和第一下行数据可以是第一基站使用第一HARQ进程向UE发送第一下行授权,然后在第一下行授权指示的频域位置向UE发送第一下行 数据,则UE可以根据确定的第一下行授权来接收第一基站发送的第一下行数据。另外,第一基站发送第二下行授权、第三下行授权、第四下行授权、第五下行授权、第六下行授权来发送下行数据的情况与此相类似,不再逐一描述。
202、第一基站在第二TTI使用第二HARQ进程向UE发送第二下行授权和第二下行数据,第二下行数据携带有包括第二状态的第二NDI。
在本发明实施例中,前述步骤201中第一基站在第一TTI使用第一HARQ进程向UE发送第一下行授权和第一下行数据,步骤202中基站在不同于第一TTI的另一个时刻(定义为第二TTI)使用本发明实施例提供的第二HARQ进程向UE发送第二下行授权和第二下行数据,该第二下行数据携带有包括第二状态的第二NDI。其中,第二下行数据携带的第二NDI包括两种状态:第二状态和第四状态,在第二NDI中第二状态翻转可以得到第四状态,第四状态翻转可以得到第二状态。第二NDI用于指示UE本次HARQ进程的数据是初传还是重传,如果此值和第二HARQ进程对应的缓冲中保存的下行数据不一致,UE认为这是一次初传,否则认为是一次重传,若UE认为是一次重传,UE可以进行HARQ合并,获得HARQ进程的复用增益。在本发明实施例中,由前述内容描述可知,第一HARQ进程用于实现UE的满调度,第二HARQ进程用于实现HARQ进程的复用增益。因此通过步骤201和步骤202的描述可知,UE可以在两个不同的TTI分别使用两种不同的HARQ进程,则两类HARQ进程均可以用于向UE发送下行数据,通过两类HARQ进程既能保证满调度,又能获得HARQ复用增益。
203、第一基站在第三TTI使用第一HARQ进程向UE发送第三下行授权和第三下行数据,第三下行数据携带有包括第三状态的第一NDI,第一NDI的第一状态翻转后得到第三状态。
在本发明实施例中,由前述步骤201和步骤202可知,第一基站分别向UE发送了第一下行数据和第二下行数据,对于站间协作的实现场景中,例如载波聚合场景中,第一基站为SCC的基站,第二基站为PCC的基站。UE对第一下行数据进行接收,UE向第二基站发送第一下行数据对应的第一反馈结果,由第二基站再向第一基站发送该第一反馈结果。同样的,UE对第二下行数据进行接收,UE向第二基站发送第二下行数据对应的第二反馈结果,由第二基站再向第一基站发送该第二反馈结果。在两个基站的站间协作场景下,从 第二基站到第一基站之间必然会存在站间传输时延。因此当第一基站在第一TTI向UE发送第一下行数据之后,在第一基站未接收到第一反馈结果之前,第一基站没有可用的HARQ进程,为了实现UE的满调度,第一基站可以仍使用第一HARQ进程向UE发送下行数据。例如,第三TTI为第一TTI之后的一个TTI,在第三TTI假设第一基站还没有接收到第一反馈结果,第一基站为了满足UE的满调度,第一基站再使用第一HARQ进程向UE发送第三下行授权和第三下行数据。由步骤201可知,第一HARQ进程对应的第一NDI包括第一状态,在第一TTI之后的第三TTI再使用第一HARQ进程发送不同于第一下行数据的第三下行数据时,需要将第一HARQ进程对应的第一NDI进行状态翻转,即需要在第三下行数据携带有包括第三状态的第一NDI,第一NDI的第一状态翻转后得到第三状态。
在本发明的一些实施例中,第一基站在第一TTI向UE发送了第一下行数据,第一基站在第五TTI接收到第二基站发送的第一下行数据对应的第一反馈结果,其中第五TTI位于第一TTI之后,第五TTI也位于第三TTI之后,本发明实施例提供的数据的处理方法还可以包括如下步骤:
A1、第一基站在第五TTI接收第二基站发送的第一下行数据对应的第一反馈结果,第一基站根据第一反馈结果包括的否认(英文全称:Negative ACKnowledgment,英文简称:NACK)信息在第五TTI使用第一HARQ进程向UE发送第五下行授权和重传的第一下行数据,重传的第一下行数据携带有包括第一状态的第一NDI,第一NDI的第三状态翻转后得到第一状态,第四TTI和第二TTI之间的时间差等于第五TTI和第一TTI之间的时间差。
其中,第一基站在第一TTI发送了第一下行数据之后,第一基站在第五TTI接收到第一反馈结果之前,第一基站为了满足UE的满调度,第一基站在第三TTI发送了第三下行数据,当第一基站在第五TTI接收到第一反馈结果之后,第一基站可以获取到UE对第一反馈结果的接收情况,即UE是否正确接收到第一下行数据,若UE正确接收到第一下行数据,第一反馈结果包括确认(英文名称:ACKnowledgment,英文简称:ACK)信息,若UE接收第一下行数据错误,第一反馈结果包括NACK信息,当第一反馈结果包括NACK信息时,第一基站需要向UE重传第一下行数据,即需要执行步骤A1,第一基站在第五TTI使用第一HARQ进程向UE发送第五下行授权和重传的第一下 行数据,重传的第一下行数据携带有包括第一状态的第一NDI,第一NDI的第三状态翻转后得到第一状态。由步骤203可知,在第三TTI第一HARQ进程对应的第一NDI为第三状态,若执行步骤A1,则还需要对在第三TTI第一HARQ进程对应的第一NDI进行翻转,此时第一NDI翻转为第一状态。
需要说明的是,在本发明实施例中,第一HARQ进程用于实现UE的满调度,因此当第一基站没有收到第二基站发送的第一反馈结果之前,第一基站可以多次使用第一HARQ进行向UE发送新的下行数据,以实现UE的满调度。例如,在本发明的一些实施例中,步骤203第一基站在第三TTI使用第一HARQ进程向UE发送第三下行授权和第三下行数据之后,本发明实施例提供的数据的处理方法,还可以包括如下步骤:
B1、第一基站在第六TTI使用第一HARQ进程向UE发送第六下行授权和第四下行数据,第四下行数据携带有包括第一状态的第一NDI,第一NDI的第三状态翻转后得到第一状态。
其中,在第一TTI之后除了存在第三TTI之外,还存在一个第六TTI,第六TTI为第三TTI之后的一个TTI,在第六TTI假设第一基站还没有接收到第一反馈结果,第一基站为了满足UE的满调度,第一基站再使用第一HARQ进程向UE发送第六下行授权和第四下行数据。由步骤203可知,在第三TTI,第一HARQ进程对应的第一NDI包括第三状态,在第三TTI之后的第六TTI再使用第一HARQ进程发送不同于第三下行数据的第四下行数据时,需要将第一HARQ进程对应的第一NDI进行状态翻转,即需要在第四下行数据携带有包括第一状态的第一NDI,第一NDI的第三状态翻转后得到第一状态。
需要说明的是,在本发明实施例中,第一基站使用第一HARQ进程向UE发送了第一下行数据之后,在第一基站接收到第一下行数据对应的第一反馈结果之前,第一基站为了满足UE的满调度,可以多次使用第一HARQ进程向UE发送新的下行数据。
在本发明的一些实施例中,步骤203第一基站在第三TTI使用第一HARQ进程向UE发送第三下行授权和第三下行数据,具体可以包括如下步骤:
C1、若第一基站在第三TTI确定没有可用的HARQ进程时,第一基站在第三TTI使用虚拟HARQ进程向UE发送第三下行授权和第三下行数据,虚拟HARQ进程和第一HARQ进程相对应。
其中,由步骤201和步骤202可知,第一基站使用第一HARQ进程和第二HARQ进程分别发送了第一下行数据和第二下行数据,第一基站在第三TTI确定没有可用的HARQ进程,此时第一基站在第三TTI使用虚拟HARQ进程向UE发送第三下行授权和第三下行数据,虚拟HARQ进程和第一HARQ进程相对应。举例说明如下,在本发明实施例中,当站间传输时延导致第一基站的下行调度不满时,会虚拟出多个(以8个为例)HARQ进程,当第一基站的调度器发现没有可用的真实0~7HARQ进程后,会从虚拟的8~15HARQ进程中申请一个HARQ进程,然后按照一定的映射关系(例如取模的方式)映射到空口的真实HARQ进程。
204、第一基站在第四TTI接收第二基站发送的第二下行数据对应的第二反馈结果,第一基站根据第二反馈结果包括的NACK信息在第四TTI使用第二HARQ进程向UE发送第四下行授权和重传的第二下行数据,重传的第二下行数据携带有包括第二状态的第二NDI。
其中,第二基站和第一基站之间存在站间传输时延。
在本发明实施例中,第一基站在第二TTI向UE发送了第二下行数据,第一基站在第四TTI接收到第二基站发送的第二下行数据对应的第二反馈结果,其中第四TTI位于第二TTI之后,第四TTI位于第三TTI之后。第一基站在第二TTI发送了第二下行数据之后,第一基站在第四TTI接收到第二反馈结果之前,第一基站为了满足UE的满调度,第一基站在第三TTI发送了第三下行数据,当第一基站在第四TTI接收到第二反馈结果之后,第一基站可以获取到UE对第二反馈结果的接收情况,即UE是否正确接收到第二下行数据,若UE正确接收到第二下行数据,第二反馈结果包括ACK信息,若UE接收第二下行数据错误,第二反馈结果包括NACK信息,当第二反馈结果包括NACK信息时,第一基站需要向UE重传第二下行数据,即需要执行步骤204,第一基站在第四TTI使用第二HARQ进程向UE发送第四下行授权和重传的第二下行数据,重传的第二下行数据携带有包括第二状态的第二NDI,第二NDI的状态在第二TTI时为第二状态,由于在第四TTI第二HARQ进程需要重传第二下行数据,因此第二HARQ进程对应的第二NDI仍维持第二状态,UE根据在第四TTI时第二HARQ进程对应的第二NDI使用第二状态,UE可以确定第一基站向UE重传了第二下行数据。
在本发明的一些实施例中,步骤204中描述了第一基站接收到的第二反馈结果为NACK信息时第一基站的实现方式,那么当第二反馈结果为ACK信息时,本发明实施例提供的数据的处理方法还可以包括如下步骤:
D1、第一基站在第四TTI接收第二基站发送的第二下行数据对应的第二反馈结果之后,第一基站根据第二反馈结果包括的确认ACK信息在第四TTI使用第二HARQ进程向UE发送第四下行授权和第五下行数据,第五下行数据携带有包括第四状态的第二NDI,第二NDI的第二状态翻转后得到第四状态。
其中,若UE接收第二下行数据正确,第二反馈结果包括ACK信息,当第二反馈结果包括ACK信息时,第一基站可以向UE发送的新的下行数据,即需要执行步骤D1,第一基站在第四TTI使用第二HARQ进程向UE发送第四下行授权和第五下行数据,第五下行数据携带有包括第四状态的第二NDI,在第二TTI时第二HARQ进程对应的第二NDI为第二状态,在第四TTI传了新的下行数据,第二NDI的第二状态翻转后得到第四状态。
通过前述实施例对本发明的举例说明可知,第一基站在第一TTI使用第一HARQ进程向UE发送第一下行授权和第一下行数据,第一下行数据携带有包括第一状态的第一NDI;第一基站在第二TTI使用第二HARQ进程向UE发送第二下行授权和第二下行数据,第二下行数据携带有包括第二状态的第二NDI;第一基站在第三TTI使用第一HARQ进程向UE发送第三下行授权和第三下行数据,第三下行数据携带有包括第三状态的第一NDI,第一NDI的第一状态翻转后得到第三状态;第一基站在第四TTI接收第二基站发送的第二下行数据对应的第二反馈结果,第一基站根据第二反馈结果包括的否认NACK信息在第四TTI使用第二HARQ进程向UE发送第四下行授权和重传的第二下行数据,重传的第二下行数据携带有包括第二状态的第二NDI,第二基站和第一基站之间存在的站间传输时延为第四TTI和第一TTI之间的时间差。本发明实施例中,第一基站将HARQ进程分为两类进程:第一HARQ进程和第二HARQ进程,第一HARQ进程可以用于第一基站在第一TTI和第三TTI向UE发送下行数据,可以实现UE的满调度,因此可以提供对空口资源的利用率。在第一基站和第二基站之间存在站间传输时延的情况下,第一基站在第四TTI接收到第二反馈结果,第一基站使用第二HARQ进程对第二下行数据进行重 传,由于重传的第二下行数据中携带的第二NDI的状态并没有翻转(即第二NDI仍包括第二状态),因此UE可以根据包括第二状态的第二NDI对第一基站在第二TTI发送的第二下行数据和第四TTI发送的重传的第二下行数据进行共同解码,因此第二HARQ进程可以实现HARQ进程的复用增益。
前述实施例从第一基站侧描述了本发明实施例提供的数据的处理方法,接下来从与第一基站交互的UE侧来描述本发明实施例提供的数据的处理方法,请参阅如图3所示,为本发明实施例提供的另一种数据的处理方法,具体可以包括如下步骤:
301、UE在第一TTI使用第一HARQ进程接收第一基站发送的第一下行授权,以及根据第一下行授权解调第一基站发送的第一下行数据,向第二基站发送与第一下行数据对应的第一反馈结果,第二基站和第一基站之间存在站间传输时延,第一下行数据携带有包括第一状态的第一NDI。
在本发明实施例中,第一基站在第一TTI使用第一HARQ进程向UE发送了第一下行授权,UE在第一TTI使用第一HARQ进程接收第一下行授权,UE从第一下行授权确定第一基站发送第一下行数据的频域位置,然后UE根据第一下行授权解调第一下行数据,UE根据对第一下行数据的接收情况生成第一反馈结果,然后向第二基站发送与第一下行数据对应的第一反馈结果。举例说明如下,若UE正确接收到第一下行数据,第一反馈结果包括ACK信息,若UE接收第一下行数据错误,第一反馈结果包括NACK信息。另外UE可以根据第一下行数据中携带的第一NDI的状态来确定第一基站是初传第一下行数据还是重传第一下行数据。
在本发明实施例中,第一基站将HARQ进程分为两类进程:第一HARQ进程和第二HARQ进程,第一HARQ进程在HARQ进程不够用时仅做HARQ进程的初传使用,用于保证UE的满调度,该第一HARQ进程也称之为普通HARQ进程。其中,满调度指的是UE在每一个TTI都收到一个下行授权,因此HARQ进程可以用于实现UE的满调度。第二HARQ进程在任何情况都保留HARQ复用增益,该第二HARQ进程也称之为复用HARQ进程。本发明实施例中利用两类HARQ进程的组合,达到既能满足满调度,又能获得HARQ复用增益的效果。举例说明如下,协议规定一共有8个HARQ进程,分别为0号、1号、2号、…、7号HARQ进程。其中,8个HARQ进程分成两类,0 号HARQ进程是第一HARQ进程,1~7号是第二HARQ进程,1~7号HARQ进程会等待初传调度的反馈信息来决定是否重传,这样当1~7号HARQ进程出现初传失败时,可以实现重传,因此1~7号的第二HARQ进程有重传增益。由于站间传输时延的存在会导致1~7号HARQ进程从一个站反馈到另外一个站时有一定的时间差,这会导致UE在一定时间内没有可用的调度资源,在这种情况下,0号HARQ进程可以满足用户的满调度。
302、UE在第二TTI使用第二HARQ进程接收第一基站发送的第二下行授权,以及根据第二下行授权解调第一基站发送的第二下行数据,向第二基站发送与第二下行数据对应的第二反馈结果,第二下行数据携带有包括第二状态的第二NDI。
在本发明实施例中,第一基站在第二TTI使用第二HARQ进程向UE发送了第二下行授权,UE在第二TTI使用第二HARQ进程接收第二下行授权,UE从第二下行授权确定第一基站发送第二下行数据的频域位置,然后UE根据第二下行授权解调第二下行数据,UE根据对第二下行数据的接收情况生成第二反馈结果,然后向第一基站发送与第二下行数据对应的第二反馈结果。举例说明如下,若UE正确接收到第二下行数据,第二反馈结果包括ACK信息,若UE接收第二下行数据错误,第二反馈结果包括NACK信息。另外UE可以根据第二下行数据中携带的第二NDI的状态来确定第一基站是初传第二下行数据还是重传第二下行数据。
其中,第二下行数据携带的第二NDI包括两种状态:第二状态和第四状态,在第二NDI中第二状态翻转可以得到第四状态,第四状态翻转可以得到第二状态。第二NDI用于指示UE本次HARQ进程的数据是初传还是重传,如果此值和第二HARQ进程对应的缓冲中保存的下行数据不一致,UE认为这是一次初传,否则认为是一次重传,若UE认为是一次重传,UE可以进行HARQ合并,获得HARQ进程的复用增益。在本发明实施例中,由前述内容描述可知,第一HARQ进程用于实现UE的满调度,第二HARQ进程用于实现HARQ进程的复用增益。因此通过步骤301和步骤302的描述可知,UE可以在两个不同的TTI分别使用两种不同的HARQ进程,则两类HARQ进程均可以用于向UE发送下行数据,通过两类HARQ进程既能保证满调度,又能获得HARQ复用增益。
303、UE在第三TTI使用第一HARQ进程接收第一基站发送的第三下行授权,以及根据第三下行授权解调第一基站发送的第三下行数据,向第二基站发送与第三下行数据对应的第三反馈结果,第三下行数据携带有包括第三状态的第一NDI。
在本发明实施例中,UE对第一下行数据进行接收,UE向第二基站发送第一下行数据对应的第一反馈结果,由第二基站再向第一基站发送该第一反馈结果。同样的,UE对第二下行数据进行接收,UE向第二基站发送第二下行数据对应的第二反馈结果,由第二基站再向第一基站发送该第二反馈结果。在两个基站的站间协作场景下,从第二基站到第一基站之间必然会存在站间传输时延。因此当第一基站在第一TTI向UE发送第一下行数据之后,在第一基站未接收到第一反馈结果之前,第一基站没有可用的HARQ进程,为了实现UE的满调度,第一基站可以仍使用第一HARQ进程向UE发送下行数据。例如,第三TTI为第一TTI之后的一个TTI,在第三TTI假设第一基站还没有接收到第一反馈结果,第一基站为了满足UE的满调度,第一基站再使用第一HARQ进程向UE发送第三下行授权和第三下行数据。在第一TTI第一HARQ进程对应的第一NDI包括第一状态,在第一TTI之后的第三TTI再使用第一HARQ进程发送不同于第一下行数据的第三下行数据时,需要将第一HARQ进程对应的第一NDI进行状态翻转,即需要在第三下行数据携带有包括第三状态的第一NDI,第一NDI的第一状态翻转后得到第三状态。
在本发明实施例中,第一基站在第三TTI再次使用第一HARQ进程向UE发送了第三下行授权,UE在第三TTI使用第一HARQ进程接收第三下行授权,UE从第三下行授权确定第一基站发送第三下行数据的频域位置,然后UE根据第三下行授权解调第三下行数据,UE根据对第三下行数据的接收情况生成第三反馈结果,然后向第一基站发送与第三下行数据对应的第三反馈结果。
在本发明的一些实施例中,步骤302执行之后,本发明实施例提供的数据的处理方法还包括如下步骤:
D1、UE在第五TTI使用第一HARQ进程接收第一基站发送的第五下行授权,以及根据第五下行授权解调第一基站发送的重传的第一下行数据,重传的第一下行数据携带有包括第一状态的第一NDI。
其中,第一基站在第一TTI发送了第一下行数据之后,第一基站在第五 TTI接收到第一反馈结果之前,第一基站为了满足UE的满调度,第一基站在第三TTI发送了第三下行数据,当第一基站在第五TTI接收到第一反馈结果之后,第一基站可以获取到UE对第一反馈结果的接收情况,即UE是否正确接收到第一下行数据,若UE正确接收到第一下行数据,第一反馈结果包括确认(英文名称:ACKnowledgment,英文简称:ACK)信息,若UE接收第一下行数据错误,第一反馈结果包括NACK信息,当第一反馈结果包括NACK信息时,第一基站需要向UE重传第一下行数据,即需要执行步骤A1,第一基站在第五TTI使用第一HARQ进程向UE发送第五下行授权和重传的第一下行数据,重传的第一下行数据携带有包括第一状态的第一NDI,第一NDI的第三状态翻转后得到第一状态。由步骤203可知,在第三TTI第一HARQ进程对应的第一NDI为第三状态,若执行步骤A1,则还需要对在第三TTI第一HARQ进程对应的第一NDI进行翻转,此时第一NDI翻转为第一状态。
在本发明的一些实施例中,步骤303UE在第三TTI使用第一HARQ进程接收第一基站发送的第三下行授权,具体可以包括如下步骤:
E1、UE在第三TTI使用虚拟HARQ进程接收第一基站发送的第三下行授权,虚拟HARQ进程和第一HARQ进程相对应。
其中,第一基站使用第一HARQ进程和第二HARQ进程分别发送了第一下行数据和第二下行数据,第一基站在第三TTI确定没有可用的HARQ进程,此时第一基站在第三TTI使用虚拟HARQ进程向UE发送第三下行授权和第三下行数据,虚拟HARQ进程和第一HARQ进程相对应。举例说明如下,在本发明实施例中,当站间传输时延导致第一基站的下行调度不满时,会虚拟出多个(以8个为例)HARQ进程,当第一基站的调度器发现没有可用的真实0~7HARQ进程后,会从虚拟的8~15HARQ进程中申请一个HARQ进程,然后按照一定的映射关系(例如取模的方式)映射到空口的真实HARQ进程。
在本发明的一些实施例中,步骤303中的根据第三下行授权解调第一基站发送的第三下行数据,可包括如下实现方式:
UE根据第三下行授权指示的空口资源接收第三下行数据;
UE根据第三下行数据携带的包括第三状态的第一NDI将第一HARQ进程对应的缓存中存储的第一下行数据清空,并将第三下行数据写入第一HARQ进程对应的缓存。
其中,UE在第三TTI使用第一HARQ进程接收第三下行授权,UE获取第三下行授权指示的空口资源,通过该空口资源可以确定第三下行数据发送的频域位置,然后UE根据第三下行授权解调第三下行数据,在第一TTI时,第一HARQ进程对应的第一NDI的状态为第一状态,若第三下行数据携带有包括第三状态的第一NDI。则说明在第三TTI时第一HARQ进程对应的第一NDI的状态已经翻转,UE确定此时第一基站发送的是新的下行数据,因此第一HARQ进程对应的缓存中存储的第一下行数据清空。
304、UE在第四TTI使用第二HARQ进程接收第一基站发送的第四下行授权,以及根据第四下行授权解调第一基站发送的重传的第二下行数据,向第二基站发送与重传的第二下行数据对应的第四反馈结果,重传的第二下行数据携带有包括第二状态的第二NDI。
在本发明实施例中,第四TTI位于第二TTI之后,并且第四TTI位于第三TTI之后。第一基站在第二TTI发送了第二下行数据之后,第一基站在第四TTI接收到第二反馈结果之前,第一基站为了满足UE的满调度,第一基站在第三TTI发送了第三下行数据。步骤302中UE向第二基站发送了第二下行数据对应的第二反馈结果,则第二基站接收该第二反馈结果,第二基站向第一基站转发第二反馈结果,由于第二基站和第一基站之间存在站间传输时延,当第一基站在第四TTI接收到第二反馈结果之后,第一基站根据第二反馈结果为NACK在第四TTI向UE发送重传的第二下行数据。UE在第四TTI使用第二HARQ进程接收第一基站发送的第四下行授权,以及根据第四下行授权解调第一基站发送的重传的第二下行数据,向第二基站发送与重传的第二下行数据对应的第四反馈结果,重传的第二下行数据携带有包括第二状态的第二NDI。第二NDI的状态在第二TTI时为第二状态,由于在第四TTI第二HARQ进程需要重传第二下行数据,因此第二HARQ进程对应的第二NDI仍维持第二状态,UE根据在第四TTI时第二HARQ进程对应的第二NDI使用第二状态,UE可以确定第一基站向UE重传了第二下行数据。
在本发明的一些实施例中,步骤304UE在第四TTI使用第二HARQ进程接收第一基站发送的第四下行授权之前,本发明实施例提供的数据的处理方法还包括如下步骤:
F1、UE在第六TTI使用第一HARQ进程接收第一基站发送的第六下行授 权,以及根据第六下行授权解调第一基站发送的第四下行数据,第四下行数据携带有包括第一状态的第一NDI。
其中,在第一TTI之后除了存在第三TTI之外,还存在一个第六TTI,第六TTI为第三TTI之后的一个TTI,在第六TTI假设第一基站还没有接收到第一反馈结果,第一基站为了满足UE的满调度,第一基站再使用第一HARQ进程向UE发送第六下行授权和第四下行数据,UE在第六TTI使用第一HARQ进程接收第一基站发送的第六下行授权,以及根据第六下行授权解调第一基站发送的第四下行数据。在第三TTI,第一HARQ进程对应的第一NDI包括第三状态,在第三TTI之后的第六TTI再使用第一HARQ进程发送不同于第三下行数据的第四下行数据时,需要将第一HARQ进程对应的第一NDI进行状态翻转,即需要在第四下行数据携带有包括第一状态的第一NDI,第一NDI的第三状态翻转后得到第一状态。
需要说明的是,在本发明实施例中,第一基站使用第一HARQ进程向UE发送了第一下行数据之后,在第一基站接收到第一下行数据对应的第一反馈结果之前,第一基站为了满足UE的满调度,可以多次使用第一HARQ进程向UE发送新的下行数据。
在本发明的一些实施例中,步骤304中描述了UE发送的第二反馈结果为NACK时UE在第四TTI接收重传的第二下行数据的实现方式,那么当第二反馈结果为ACK信息时,本发明实施例提供的数据的处理方法还可以包括如下步骤:
G1、UE在第四TTI使用第二HARQ进程接收第一基站发送的第四下行授权之后,UE根据第四下行授权解调第一基站发送的第五下行数据,第五下行数据携带有包括第四状态的第二NDI。
其中,若UE接收第二下行数据正确,第二反馈结果包括ACK信息,当第二反馈结果包括ACK信息时,第一基站可以向UE发送的新的下行数据(即第五下行数据),此时需要执行步骤G1,UE在第四TTI使用第二HARQ进程接收第一基站发送的第四下行授权之后,UE根据第四下行授权解调第一基站发送的第五下行数据,第五下行数据携带有包括第四状态的第二NDI,在第二TTI时第二HARQ进程对应的第二NDI为第二状态,在第四TTI传了新的下行数据,第二NDI的第二状态翻转后得到第四状态。
在本发明的一些实施例中,步骤304中的根据第四下行授权解调第一基站发送的重传的第二下行数据,可包括如下实现方式:
UE根据第四下行授权指示的空口资源接收重传的第二下行数据;
UE根据重传的第二下行数据携带的包括第二状态的第二NDI,将第二HARQ进程对应的缓存中存储的第二下行数据和重传的下行数据进行合并,并将合并后的结果写入第一HARQ进程对应的缓存。
其中,UE在第四TTI使用第二HARQ进程接收第四下行授权,UE获取第四下行授权指示的空口资源,通过该空口资源可以确定重传的第二下行数据发送的频域位置,然后UE根据第四下行授权解调重传的第二下行数据,在第二TTI时,第二HARQ进程对应的第二NDI的状态为第二状态,若重传的第二下行数据携带有包括第二状态的第二NDI,则说明在第四TTI时第二HARQ进程对应的第二NDI的状态没有翻转,UE确定此时第一基站发送的是重传的第二下行数据,因此将第二HARQ进程对应的缓存中存储的第二下行数据和重传的第二下行数据进行合并,从而可以取得HARQ进程的复用增益。
通过前述实施例对本发明的举例说明可知,本发明实施例中,第一基站将HARQ进程分为两类进程:第一HARQ进程和第二HARQ进程,第一HARQ进程可以用于第一基站在第一TTI和第三TTI向UE发送下行数据,可以实现UE的满调度,因此可以提供对空口资源的利用率。在第一基站和第二基站之间存在站间传输时延的情况下,第一基站在第四TTI接收到第二反馈结果,第一基站使用第二HARQ进程对第二下行数据进行重传,由于重传的第二下行数据中携带的第二NDI的状态并没有翻转(即第二NDI仍包括第二状态),因此UE可以根据包括第二状态的第二NDI对第一基站在第二TTI发送的第二下行数据和第四TTI发送的重传的第二下行数据进行共同解码,因此第二HARQ进程可以实现HARQ进程的复用增益。
为便于更好的理解和实施本发明实施例的上述方案,下面举例相应的应用场景来进行具体说明。
接下来以CA场景中两个基站之间进行站间协作传输为了进行说明,其中,第一基站为SCC所在的基站,第二基站为PCC所在的基站。请参阅如图4所示,为本发明实施例中考虑站间传输时延时一个HARQ进程的处理流程示 意图。本发明实施例采用一种新的HARQ分配方案。本发明实施例应用于在站间时延大的需要协作的场景,既可以做到满调度,又可以保证获得HARQ复用增益,本发明实施例既能保证满调度,又能获得HARQ复用增益,接下来进行举例说明。
本发明实施例中将HARQ进程分为两类:第一HARQ进程和第二HARQ进程,第一HARQ进程为普通HARQ进行,用来保证能进行满调度,第二HARQ进程为复用HARQ进程,用来获得HARQ复用增益。普通HARQ的用途是当SCC的L2调度器发现无法申请到复用HARQ时使用,用于维持UE满调度,复用HARQ的用途是根据反馈的ACK/NACK信息,进行重传或初传,获取复用增益用,复用HARQ进程一定有重传增益。
接下来以共有0-7号共8个HARQ进程为例,具体的,对其中的HARQ进程0和1进行说明,进程0为普通HARQ进程,进程1为复用HARQ进行,其他的HARQ进程均为等待反馈状态,是不可用的进程。
如图4所示,主要包括如下步骤:
步骤1:在TTI 0,SCC L2调度器申请HARQ进程0成功,并调度UE。UE收到此数据并解调。
步骤2:在TTI 1,SCC L2调度器申请HARQ进程1成功,并调度UE。UE收到此数据并解调。
步骤3:在TTI 4,UE发送HARQ进程0的反馈结果到PCC,PCC收到并开始解调。
步骤4:在TTI 5,UE发送HARQ进程1的反馈结果到PCC,PCC收到并开始解调。
步骤5:在TTI 7,PCC解调出HARQ进程0的结果,这里假设为NACK,同时将此结果发往SCC。
步骤6:在TTI 8,SCC L2调度器申请HARQ进程,但是所有的HARQ进程都被使用,无空闲的资源可用,SCC L2调度器申请普通HARQ进程0,对应虚拟HARQ进程8,用来满足满调度,同时NDI翻转。UE在此刻收到此调度后,清空HARQ进程0上的缓冲,使用新的数据替代,从图4可以看出之前HARQ进程0号在0毫秒的数据被新的进程0号在8毫秒的数据替代。
步骤7:在TTI8,PCC解调出HARQ进程1的反馈结果,这里假设为 NACK,同时将此结果发往SCC。
步骤8:在TTI 9,SCC L2调度器申请HARQ进程,但是所有的HARQ进程都被使用,无空闲的资源可用,于是SCC L2调度器申请普通HARQ进程0,对应虚拟HARQ进程9,用来满足满调度,同时NDI翻转。UE在此刻收到此调度后,清空HARQ进程0上的缓冲,使用新的数据替代,从图4可以看出HARQ进程0号在8毫秒的数据被新的进程0号在9毫秒的数据替代。
步骤9:在TTI 10,SCC L2调度器申请HARQ进程,但是所有的HARQ进程都被使用,无空闲的资源可用,于是SCC L2调度器申请普通HARQ进程0,对应虚拟HARQ进程10,用来满足满调度,同时NDI翻转。UE在此刻收到此调度后,清空HARQ进程0上的缓冲,使用新的数据替代,从图4可以看出HARQ进程0号在9毫秒的数据被新的进程0号在10毫秒的数据替代。
步骤10:在TTI11,SCC L2收到PCC反馈的0号HARQ进程在TTI 0时刻的解调信息,由于此时反馈的值为NACK,SCC L2调度器需要进行重传,由于HARQ进程0已经无法重传了,因此,此次重转仅能当做初传来处理,翻转NDI,丢失了重传增益。
步骤11:在TTI12,SCC L2收到PCC反馈的1号HARQ进程在TTI 1时刻的解调信息,由于此时反馈的值为NACK,SCC L2调度器需要进行重传,此时,按照HARQ复用增益方案,申请HARQ进程1,同时NDI不翻转,UE收到此数据后,会同在TTI1时刻收到的数据进行合并,这样,HARQ进程1获得了复用增益。
通过前述对本发明的举例说明可知,针对现有技术不能同时保证满调度和HARQ复用增益的问题,本发明实施例灵活的将HARQ进程分类,根据两类HARQ进程不同的作用,从而实现了既能满调度,又能获得HARQ复用增益的方法。对于普通HARQ进程和复用HARQ进程,可以分别设置初传误码率(英文全称:Initial Block Error Rate,英文简称:IBLER)。普通HARQ进程可以设置为1%的IBLER,以增加第一次传输正确的几率,复用HARQ进程设置同现有的默认参数一致,保留HARQ复用增益。普通HARQ进程的IBLER设置为1%的目的是为了保证99%的情况下初传都传输正确。需要说明的是,上述普通HARQ进程的IBLER是灵活可配,例如普通HARQ进程的IBLER 还是可以设置为5%、10%等多种情况,具体此处不做限定。
需要说明的是,在本发明的前述举例说明以跨站CA的场景为例,可以理解的是,只要两个基站或者更多的基站之间存在站间传输时延,都可以使用本发明实施例前述的数据的处理方法,例如也可以用于DPS、JT、SFN等需要站间交互ACK/NACK的特性。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
为便于更好的实施本发明实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅图5-a所示,本发明实施例提供的一种基站500,该基站500具体可以为第一基站,该基站500可以包括:第一数据处理模块501、第二数据处理模块502、第三数据处理模块503、第四数据处理模块504,其中,
第一数据处理模块501,用于在第一传输时间间隔TTI使用第一混合自动重传请求HARQ进程向用户设备UE发送第一下行授权和第一下行数据,所述第一下行数据携带有包括第一状态的第一新数据指示NDI;
第二数据处理模块502,用于在第二TTI使用第二HARQ进程向所述UE发送第二下行授权和第二下行数据,所述第二下行数据携带有包括第二状态的第二NDI;
第三数据处理模块503,用于在第三TTI使用所述第一HARQ进程向所述UE发送第三下行授权和第三下行数据,所述第三下行数据携带有包括第三状态的第一NDI,所述第一NDI的所述第一状态翻转后得到所述第三状态;
第四数据处理模块504,用于在第四TTI接收第二基站发送的所述第二下行数据对应的第二反馈结果,根据所述第二反馈结果包括的否认NACK信息在所述第四TTI使用所述第二HARQ进程向所述UE发送第四下行授权和重传的第二下行数据,所述重传的第二下行数据携带有包括所述第二状态的第二NDI,所述第二基站和所述第一基站之间存在站间传输时延。
在本发明的一些实施例中,请参阅如图5-b所示,所述第一基站500还包 括:第五数据处理模块505,用于在第五TTI接收第二基站发送的所述第一下行数据对应的第一反馈结果,根据所述第一反馈结果包括的NACK信息在所述第五TTI使用所述第一HARQ进程向所述UE发送第五下行授权和重传的第一下行数据,所述重传的第一下行数据携带有包括所述第一状态的第一NDI,所述第一NDI的所述第三状态翻转后得到所述第一状态,所述第四TTI和所述第二TTI之间的时间差等于所述第五TTI和所述第一TTI之间的时间差。
在本发明的一些实施例中,请参阅如图5-c所示,相对于如图5-a所示,所述第一基站500还包括:第六数据处理模块506,用于所述第三数据处理模块在第三TTI使用所述第一HARQ进程向所述UE发送第三下行授权和第三下行数据之后,在第六TTI使用所述第一HARQ进程向所述UE发送第六下行授权和第四下行数据,所述第四下行数据携带有包括所述第一状态的第一NDI,所述第一NDI的所述第三状态翻转后得到所述第一状态。
在本发明的一些实施例中,所述第三数据处理模块503,具体用于若所述第一基站在第三TTI确定没有可用的HARQ进程时,在所述第三TTI使用虚拟HARQ进程向所述UE发送第三下行授权和第三下行数据,所述虚拟HARQ进程和所述第一HARQ进程相对应。
在本发明的一些实施例中,所述第四处理模块504,还用于在第四TTI接收第二基站发送的所述第二下行数据对应的第二反馈结果之后,根据所述第二反馈结果包括的确认ACK信息在所述第四TTI使用所述第二HARQ进程向所述UE发送第四下行授权和第五下行数据,所述第五下行数据携带有包括第四状态的第二NDI,所述第二NDI的所述第二状态翻转后得到所述第四状态。
通过前述实施例对本发明的举例说明可知,第一基站在第一TTI使用第一HARQ进程向UE发送第一下行授权和第一下行数据,第一下行数据携带有包括第一状态的第一NDI;第一基站在第二TTI使用第二HARQ进程向UE发送第二下行授权和第二下行数据,第二下行数据携带有包括第二状态的第二NDI;第一基站在第三TTI使用第一HARQ进程向UE发送第三下行授权和第三下行数据,第三下行数据携带有包括第三状态的第一NDI,第一NDI的第一状态翻转后得到第三状态;第一基站在第四TTI接收第二基站发送的第二下行数据对应的第二反馈结果,第一基站根据第二反馈结果包括的否认NACK 信息在第四TTI使用第二HARQ进程向UE发送第四下行授权和重传的第二下行数据,重传的第二下行数据携带有包括第二状态的第二NDI,第二基站和第一基站之间存在的站间传输时延为第四TTI和第一TTI之间的时间差。本发明实施例中,第一基站将HARQ进程分为两类进程:第一HARQ进程和第二HARQ进程,第一HARQ进程可以用于第一基站在第一TTI和第三TTI向UE发送下行数据,可以实现UE的满调度,因此可以提供对空口资源的利用率。在第一基站和第二基站之间存在站间传输时延的情况下,第一基站在第四TTI接收到第二反馈结果,第一基站使用第二HARQ进程对第二下行数据进行重传,由于重传的第二下行数据中携带的第二NDI的状态并没有翻转(即第二NDI仍包括第二状态),因此UE可以根据包括第二状态的第二NDI对第一基站在第二TTI发送的第二下行数据和第四TTI发送的重传的第二下行数据进行共同解码,因此第二HARQ进程可以实现HARQ进程的复用增益。
请参阅图6-a所示,本发明实施例提供的一种UE600,该UE600可以包括:第一数据处理模块601、第二数据处理模块602、第三数据处理模块603、第四数据处理模块604,其中,
第一数据处理模块601,用于在第一传输时间间隔TTI使用第一混合自动重传请求HARQ进程接收所述第一基站发送的第一下行授权,以及根据所述第一下行授权解调所述第一基站发送的第一下行数据,向第二基站发送与所述第一下行数据对应的第一反馈结果,所述第二基站和所述第一基站之间存在站间传输时延,所述第一下行数据携带有包括第一状态的第一新数据指示NDI;
第二数据处理模块602,用于在第二TTI使用第二HARQ进程接收所述第一基站发送的第二下行授权,以及根据所述第二下行授权解调所述第一基站发送的第二下行数据,向所述第二基站发送与所述第二下行数据对应的第二反馈结果,所述第二下行数据携带有包括第二状态的第二NDI;
第三数据处理模块603,用于在第三TTI使用所述第一HARQ进程接收所述第一基站发送的第三下行授权,以及根据所述第三下行授权解调所述第一基站发送的第三下行数据,向第二基站发送与所述第三下行数据对应的第三反馈结果,所述第三下行数据携带有包括第三状态的第一NDI;
第四数据处理模块604,用于在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权,以及根据所述第四下行授权解调所述第一 基站发送的重传的第二下行数据,向所述第二基站发送与重传的第二下行数据对应的第四反馈结果,所述重传的第二下行数据携带有包括所述第二状态的第二NDI。
在本发明的一些实施例中,请参阅如图6-b所示,相对于如图6-a所示,UE600,还可以包括:第五数据处理模块605,用于在第五TTI使用所述第一HARQ进程接收所述第一基站发送的第五下行授权,以及根据所述第五下行授权解调所述第一基站发送的重传的第一下行数据,所述重传的第一下行数据携带有包括所述第一状态的第一NDI。
在本发明的一些实施例中,请参阅如图6-c所示,相对于如图6-a所示,UE600,还可以包括:第六数据处理模块606,用于所述第四数据处理模块在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权之前,在第六TTI使用所述第一HARQ进程接收所述第一基站发送的第六下行授权,以及根据所述第六下行授权解调所述第一基站发送的第四下行数据,所述第四下行数据携带有包括所述第一状态的第一NDI。
在本发明的一些实施例中,所述第三数据处理模块603,具体用于在所述第三TTI使用虚拟HARQ进程接收所述第一基站发送的第三下行授权,所述虚拟HARQ进程和所述第一HARQ进程相对应。
在本发明的一些实施例中,所述第四数据处理模块604,还用于根据所述第四下行授权解调所述第一基站发送的第五下行数据,所述第五下行数据携带有包括第四状态的第二NDI。
在本发明的一些实施例中,所述第三数据处理模块603,具体用于根据所述第三下行授权指示的空口资源接收所述第三下行数据;根据所述第三下行数据携带的包括第三状态的第一NDI将所述第一HARQ进程对应的缓存中存储的第一下行数据清空,并将所述第三下行数据写入所述第一HARQ进程对应的缓存。
在本发明的一些实施例中,所述第四数据处理模块604,具体用于根据所述第四下行授权指示的空口资源接收重传的第二下行数据;根据所述重传的第二下行数据携带的包括所述第二状态的第二NDI,将所述第二HARQ进程对应的缓存中存储的第二下行数据和所述重传的下行数据进行合并,并将合并后的结果写入所述第一HARQ进程对应的缓存。
通过前述实施例对本发明的举例说明可知,本发明实施例中,第一基站将HARQ进程分为两类进程:第一HARQ进程和第二HARQ进程,第一HARQ进程可以用于第一基站在第一TTI和第三TTI向UE发送下行数据,可以实现UE的满调度,因此可以提供对空口资源的利用率。在第一基站和第二基站之间存在站间传输时延的情况下,第一基站在第四TTI接收到第二反馈结果,第一基站使用第二HARQ进程对第二下行数据进行重传,由于重传的第二下行数据中携带的第二NDI的状态并没有翻转(即第二NDI仍包括第二状态),因此UE可以根据包括第二状态的第二NDI对第一基站在第二TTI发送的第二下行数据和第四TTI发送的重传的第二下行数据进行共同解码,因此第二HARQ进程可以实现HARQ进程的复用增益。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本发明方法实施例基于同一构思,其带来的技术效果与本发明方法实施例相同,具体内容可参见本发明前述所示的方法实施例中的叙述,此处不再赘述。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
接下来介绍本发明实施例提供的另一种基站,该基站具体为第一基站,请参阅图7所示,基站700包括:
输入装置701、输出装置702、处理器703和存储器704(其中基站700中的处理器703的数量可以一个或多个,图7中以一个处理器为例)。在本发明的一些实施例中,输入装置701、输出装置702、处理器703和存储器704可通过总线或其它方式连接,其中,图7中以通过总线连接为例。
其中,处理器703,用于执行如下步骤:
在第一传输时间间隔TTI使用第一混合自动重传请求HARQ进程向用户设备UE发送第一下行授权和第一下行数据,所述第一下行数据携带有包括第一状态的第一新数据指示NDI;
在第二TTI使用第二HARQ进程向所述UE发送第二下行授权和第二下行数据,所述第二下行数据携带有包括第二状态的第二NDI;
在第三TTI使用所述第一HARQ进程向所述UE发送第三下行授权和第 三下行数据,所述第三下行数据携带有包括第三状态的第一NDI,所述第一NDI的所述第一状态翻转后得到所述第三状态;
在第四TTI接收第二基站发送的所述第二下行数据对应的第二反馈结果,所述第一基站根据所述第二反馈结果包括的否认NACK信息在所述第四TTI使用所述第二HARQ进程向所述UE发送第四下行授权和重传的第二下行数据,所述重传的第二下行数据携带有包括所述第二状态的第二NDI,所述第二基站和所述第一基站之间存在站间传输时延。
在本发明的一些实施例中,处理器703,还用于执行如下步骤:
在第五TTI接收第二基站发送的所述第一下行数据对应的第一反馈结果,所述第一基站根据所述第一反馈结果包括的NACK信息在所述第五TTI使用所述第一HARQ进程向所述UE发送第五下行授权和重传的第一下行数据,所述重传的第一下行数据携带有包括所述第一状态的第一NDI,所述第一NDI的所述第三状态翻转后得到所述第一状态,所述第四TTI和所述第二TTI之间的时间差等于所述第五TTI和所述第一TTI之间的时间差。
在本发明的一些实施例中,处理器703,还用于执行如下步骤:
在第三TTI使用所述第一HARQ进程向所述UE发送第三下行授权和第三下行数据之后,在第六TTI使用所述第一HARQ进程向所述UE发送第六下行授权和第四下行数据,所述第四下行数据携带有包括所述第一状态的第一NDI,所述第一NDI的所述第三状态翻转后得到所述第一状态。
在本发明的一些实施例中,处理器703,具体用于执行如下步骤:
若所述第一基站在第三TTI确定没有可用的HARQ进程时,在所述第三TTI使用虚拟HARQ进程向所述UE发送第三下行授权和第三下行数据,所述虚拟HARQ进程和所述第一HARQ进程相对应。
在本发明的一些实施例中,处理器703,还用于执行如下步骤:在第四TTI接收第二基站发送的所述第二下行数据对应的第二反馈结果之后,根据所述第二反馈结果包括的确认ACK信息在所述第四TTI使用所述第二HARQ进程向所述UE发送第四下行授权和第五下行数据,所述第五下行数据携带有包括第四状态的第二NDI,所述第二NDI的所述第二状态翻转后得到所述第四状态。
通过前述实施例对本发明的举例说明可知,第一基站在第一TTI使用第一HARQ进程向UE发送第一下行授权和第一下行数据,第一下行数据携带有包 括第一状态的第一NDI;第一基站在第二TTI使用第二HARQ进程向UE发送第二下行授权和第二下行数据,第二下行数据携带有包括第二状态的第二NDI;第一基站在第三TTI使用第一HARQ进程向UE发送第三下行授权和第三下行数据,第三下行数据携带有包括第三状态的第一NDI,第一NDI的第一状态翻转后得到第三状态;第一基站在第四TTI接收第二基站发送的第二下行数据对应的第二反馈结果,第一基站根据第二反馈结果包括的否认NACK信息在第四TTI使用第二HARQ进程向UE发送第四下行授权和重传的第二下行数据,重传的第二下行数据携带有包括第二状态的第二NDI,第二基站和第一基站之间存在的站间传输时延为第四TTI和第一TTI之间的时间差。本发明实施例中,第一基站将HARQ进程分为两类进程:第一HARQ进程和第二HARQ进程,第一HARQ进程可以用于第一基站在第一TTI和第三TTI向UE发送下行数据,可以实现UE的满调度,因此可以提供对空口资源的利用率。在第一基站和第二基站之间存在站间传输时延的情况下,第一基站在第四TTI接收到第二反馈结果,第一基站使用第二HARQ进程对第二下行数据进行重传,由于重传的第二下行数据中携带的第二NDI的状态并没有翻转(即第二NDI仍包括第二状态),因此UE可以根据包括第二状态的第二NDI对第一基站在第二TTI发送的第二下行数据和第四TTI发送的重传的第二下行数据进行共同解码,因此第二HARQ进程可以实现HARQ进程的复用增益。
接下来介绍本发明实施例提供的另一种UE请参阅图8所示,UE800包括:
输入装置801、输出装置802、处理器803和存储器804(其中UE800中的处理器803的数量可以一个或多个,图8中以一个处理器为例)。在本发明的一些实施例中,输入装置801、输出装置802、处理器803和存储器804可通过总线或其它方式连接,其中,图8中以通过总线连接为例。
其中,处理器803,用于执行如下步骤:
在第一传输时间间隔TTI使用第一混合自动重传请求HARQ进程接收所述第一基站发送的第一下行授权,以及根据所述第一下行授权解调所述第一基站发送的第一下行数据,向第二基站发送与所述第一下行数据对应的第一反馈结果,所述第二基站和所述第一基站之间存在站间传输时延,所述第一下行数据携带有包括第一状态的第一新数据指示NDI;
在第二TTI使用第二HARQ进程接收所述第一基站发送的第二下行授权, 以及根据所述第二下行授权解调所述第一基站发送的第二下行数据,向所述第二基站发送与所述第二下行数据对应的第二反馈结果,所述第二下行数据携带有包括第二状态的第二NDI;
在第三TTI使用所述第一HARQ进程接收所述第一基站发送的第三下行授权,以及根据所述第三下行授权解调所述第一基站发送的第三下行数据,向第二基站发送与所述第三下行数据对应的第三反馈结果,所述第三下行数据携带有包括第三状态的第一NDI;
在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权,以及根据所述第四下行授权解调所述第一基站发送的重传的第二下行数据,向所述第二基站发送与重传的第二下行数据对应的第四反馈结果,所述重传的第二下行数据携带有包括所述第二状态的第二NDI。
在本发明的一些实施例中,处理器803,还用于执行如下步骤:
在第五TTI使用所述第一HARQ进程接收所述第一基站发送的第五下行授权,以及根据所述第五下行授权解调所述第一基站发送的重传的第一下行数据,所述重传的第一下行数据携带有包括所述第一状态的第一NDI。
在本发明的一些实施例中,处理器803,还用于执行如下步骤:在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权之前,在第六TTI使用所述第一HARQ进程接收所述第一基站发送的第六下行授权,以及根据所述第六下行授权解调所述第一基站发送的第四下行数据,所述第四下行数据携带有包括所述第一状态的第一NDI。
在本发明的一些实施例中,处理器803,具体用于执行如下步骤:
在所述第三TTI使用虚拟HARQ进程接收所述第一基站发送的第三下行授权,所述虚拟HARQ进程和所述第一HARQ进程相对应。
在本发明的一些实施例中,处理器803,还用于执行如下步骤:在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权之后,根据所述第四下行授权解调所述第一基站发送的第五下行数据,所述第五下行数据携带有包括第四状态的第二NDI。
在本发明的一些实施例中,处理器803,具体用于执行如下步骤:
根据所述第三下行授权指示的空口资源接收所述第三下行数据;
根据所述第三下行数据携带的包括第三状态的第一NDI将所述第一 HARQ进程对应的缓存中存储的第一下行数据清空,并将所述第三下行数据写入所述第一HARQ进程对应的缓存。
在本发明的一些实施例中,处理器803,具体用于执行如下步骤:
根据所述第四下行授权指示的空口资源接收重传的第二下行数据;
根据所述重传的第二下行数据携带的包括所述第二状态的第二NDI,将所述第二HARQ进程对应的缓存中存储的第二下行数据和所述重传的下行数据进行合并,并将合并后的结果写入所述第一HARQ进程对应的缓存。
通过前述实施例对本发明的举例说明可知,本发明实施例中,第一基站将HARQ进程分为两类进程:第一HARQ进程和第二HARQ进程,第一HARQ进程可以用于第一基站在第一TTI和第三TTI向UE发送下行数据,可以实现UE的满调度,因此可以提供对空口资源的利用率。在第一基站和第二基站之间存在站间传输时延的情况下,第一基站在第四TTI接收到第二反馈结果,第一基站使用第二HARQ进程对第二下行数据进行重传,由于重传的第二下行数据中携带的第二NDI的状态并没有翻转(即第二NDI仍包括第二状态),因此UE可以根据包括第二状态的第二NDI对第一基站在第二TTI发送的第二下行数据和第四TTI发送的重传的第二下行数据进行共同解码,因此第二HARQ进程可以实现HARQ进程的复用增益。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本发明而言更多情况下软件程序实现是更佳的实施方 式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
综上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照上述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对上述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (24)

  1. 一种数据的调度方法,其特征在于,包括:
    第一基站在第一传输时间间隔TTI使用第一混合自动重传请求HARQ进程向用户设备UE发送第一下行授权和第一下行数据,所述第一下行数据携带有包括第一状态的第一新数据指示NDI;
    所述第一基站在第二TTI使用第二HARQ进程向所述UE发送第二下行授权和第二下行数据,所述第二下行数据携带有包括第二状态的第二NDI;
    所述第一基站在第三TTI使用所述第一HARQ进程向所述UE发送第三下行授权和第三下行数据,所述第三下行数据携带有包括第三状态的第一NDI,所述第一NDI的所述第一状态翻转后得到所述第三状态;
    所述第一基站在第四TTI接收第二基站发送的所述第二下行数据对应的第二反馈结果,所述第一基站根据所述第二反馈结果包括的否认NACK信息在所述第四TTI使用所述第二HARQ进程向所述UE发送第四下行授权和重传的第二下行数据,所述重传的第二下行数据携带有包括所述第二状态的第二NDI,所述第二基站和所述第一基站之间存在站间传输时延。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一基站在第五TTI接收第二基站发送的所述第一下行数据对应的第一反馈结果,所述第一基站根据所述第一反馈结果包括的NACK信息在所述第五TTI使用所述第一HARQ进程向所述UE发送第五下行授权和重传的第一下行数据,所述重传的第一下行数据携带有包括所述第一状态的第一NDI,所述第一NDI的所述第三状态翻转后得到所述第一状态,所述第四TTI和所述第二TTI之间的时间差等于所述第五TTI和所述第一TTI之间的时间差。
  3. 根据权利要求1所述的方法,其特征在于,所述第一基站在第三TTI使用所述第一HARQ进程向所述UE发送第三下行授权和第三下行数据之后,所述方法还包括:
    所述第一基站在第六TTI使用所述第一HARQ进程向所述UE发送第六下行授权和第四下行数据,所述第四下行数据携带有包括所述第一状态的第一NDI,所述第一NDI的所述第三状态翻转后得到所述第一状态。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一基 站在第三TTI使用所述第一HARQ进程向所述UE发送第三下行授权和第三下行数据,包括:
    若所述第一基站在第三TTI确定没有可用的HARQ进程时,所述第一基站在所述第三TTI使用虚拟HARQ进程向所述UE发送第三下行授权和第三下行数据,所述虚拟HARQ进程和所述第一HARQ进程相对应。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一基站在第四TTI接收第二基站发送的所述第二下行数据对应的第二反馈结果之后,所述方法还包括:
    所述第一基站根据所述第二反馈结果包括的确认ACK信息在所述第四TTI使用所述第二HARQ进程向所述UE发送第四下行授权和第五下行数据,所述第五下行数据携带有包括第四状态的第二NDI,所述第二NDI的所述第二状态翻转后得到所述第四状态。
  6. 一种数据的处理方法,其特征在于,包括:
    用户设备UE在第一传输时间间隔TTI使用第一混合自动重传请求HARQ进程接收所述第一基站发送的第一下行授权,以及根据所述第一下行授权解调所述第一基站发送的第一下行数据,向第二基站发送与所述第一下行数据对应的第一反馈结果,所述第二基站和所述第一基站之间存在站间传输时延,所述第一下行数据携带有包括第一状态的第一新数据指示NDI;
    所述UE在第二TTI使用第二HARQ进程接收所述第一基站发送的第二下行授权,以及根据所述第二下行授权解调所述第一基站发送的第二下行数据,向所述第二基站发送与所述第二下行数据对应的第二反馈结果,所述第二下行数据携带有包括第二状态的第二NDI;
    所述UE在第三TTI使用所述第一HARQ进程接收所述第一基站发送的第三下行授权,以及根据所述第三下行授权解调所述第一基站发送的第三下行数据,向第二基站发送与所述第三下行数据对应的第三反馈结果,所述第三下行数据携带有包括第三状态的第一NDI;
    所述UE在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权,以及根据所述第四下行授权解调所述第一基站发送的重传的第二下行数据,向所述第二基站发送与重传的第二下行数据对应的第四反馈结果,所述重传的第二下行数据携带有包括所述第二状态的第二NDI。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述UE在第五TTI使用所述第一HARQ进程接收所述第一基站发送的第五下行授权,以及根据所述第五下行授权解调所述第一基站发送的重传的第一下行数据,所述重传的第一下行数据携带有包括所述第一状态的第一NDI。
  8. 根据权利要求6所述的方法,其特征在于,所述UE在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权之前,所述方法还包括:
    所述UE在第六TTI使用所述第一HARQ进程接收所述第一基站发送的第六下行授权,以及根据所述第六下行授权解调所述第一基站发送的第四下行数据,所述第四下行数据携带有包括所述第一状态的第一NDI。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述UE在第三TTI使用所述第一HARQ进程接收所述第一基站发送的第三下行授权,包括:
    所述UE在所述第三TTI使用虚拟HARQ进程接收所述第一基站发送的第三下行授权,所述虚拟HARQ进程和所述第一HARQ进程相对应。
  10. 根据权利要求6至8中任一项所述的方法,其特征在于,所述UE在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权之后,所述方法还包括:
    所述UE根据所述第四下行授权解调所述第一基站发送的第五下行数据,所述第五下行数据携带有包括第四状态的第二NDI。
  11. 根据权利要求6至8中任一项所述的方法,其特征在于,所述根据所述第三下行授权解调所述第一基站发送的第三下行数据,包括:
    所述UE根据所述第三下行授权指示的空口资源接收所述第三下行数据;
    所述UE根据所述第三下行数据携带的包括第三状态的第一NDI将所述第一HARQ进程对应的缓存中存储的第一下行数据清空,并将所述第三下行数据写入所述第一HARQ进程对应的缓存。
  12. 根据权利要求6至8中任一项所述的方法,其特征在于,所述根据所述第四下行授权解调所述第一基站发送的重传的第二下行数据,包括:
    所述UE根据所述第四下行授权指示的空口资源接收重传的第二下行数据;
    所述UE根据所述重传的第二下行数据携带的包括所述第二状态的第二NDI,将所述第二HARQ进程对应的缓存中存储的第二下行数据和所述重传的下行数据进行合并,并将合并后的结果写入所述第一HARQ进程对应的缓存。
  13. 一种基站,其特征在于,所述基站具体为第一基站,所述第一基站,包括:
    第一数据处理模块,用于在第一传输时间间隔TTI使用第一混合自动重传请求HARQ进程向用户设备UE发送第一下行授权和第一下行数据,所述第一下行数据携带有包括第一状态的第一新数据指示NDI;
    第二数据处理模块,用于在第二TTI使用第二HARQ进程向所述UE发送第二下行授权和第二下行数据,所述第二下行数据携带有包括第二状态的第二NDI;
    第三数据处理模块,用于在第三TTI使用所述第一HARQ进程向所述UE发送第三下行授权和第三下行数据,所述第三下行数据携带有包括第三状态的第一NDI,所述第一NDI的所述第一状态翻转后得到所述第三状态;
    第四数据处理模块,用于在第四TTI接收第二基站发送的所述第二下行数据对应的第二反馈结果,根据所述第二反馈结果包括的否认NACK信息在所述第四TTI使用所述第二HARQ进程向所述UE发送第四下行授权和重传的第二下行数据,所述重传的第二下行数据携带有包括所述第二状态的第二NDI,所述第二基站和所述第一基站之间存在站间传输时延。
  14. 根据权利要求13所述的基站,其特征在于,所述第一基站还包括:
    第五数据处理模块,用于在第五TTI接收第二基站发送的所述第一下行数据对应的第一反馈结果,根据所述第一反馈结果包括的NACK信息在所述第五TTI使用所述第一HARQ进程向所述UE发送第五下行授权和重传的第一下行数据,所述重传的第一下行数据携带有包括所述第一状态的第一NDI,所述第一NDI的所述第三状态翻转后得到所述第一状态,所述第四TTI和所述第二TTI之间的时间差等于所述第五TTI和所述第一TTI之间的时间差。
  15. 根据权利要求13所述的基站,其特征在于,所述第一基站还包括:
    第六数据处理模块,用于所述第三数据处理模块在第三TTI使用所述第一HARQ进程向所述UE发送第三下行授权和第三下行数据之后,在第六TTI使用所述第一HARQ进程向所述UE发送第六下行授权和第四下行数据,所 述第四下行数据携带有包括所述第一状态的第一NDI,所述第一NDI的所述第三状态翻转后得到所述第一状态。
  16. 根据权利要求13至15中任一项所述的基站,其特征在于,所述第三数据处理模块,具体用于若所述第一基站在第三TTI确定没有可用的HARQ进程时,在所述第三TTI使用虚拟HARQ进程向所述UE发送第三下行授权和第三下行数据,所述虚拟HARQ进程和所述第一HARQ进程相对应。
  17. 根据权利要求13至15中任一项所述的基站,其特征在于,所述第四处理模块,还用于在第四TTI接收第二基站发送的所述第二下行数据对应的第二反馈结果之后,根据所述第二反馈结果包括的确认ACK信息在所述第四TTI使用所述第二HARQ进程向所述UE发送第四下行授权和第五下行数据,所述第五下行数据携带有包括第四状态的第二NDI,所述第二NDI的所述第二状态翻转后得到所述第四状态。
  18. 一种用户设备UE,其特征在于,包括:
    第一数据处理模块,用于在第一传输时间间隔TTI使用第一混合自动重传请求HARQ进程接收所述第一基站发送的第一下行授权,以及根据所述第一下行授权解调所述第一基站发送的第一下行数据,向第二基站发送与所述第一下行数据对应的第一反馈结果,所述第二基站和所述第一基站之间存在站间传输时延,所述第一下行数据携带有包括第一状态的第一新数据指示NDI;
    第二数据处理模块,用于在第二TTI使用第二HARQ进程接收所述第一基站发送的第二下行授权,以及根据所述第二下行授权解调所述第一基站发送的第二下行数据,向所述第二基站发送与所述第二下行数据对应的第二反馈结果,所述第二下行数据携带有包括第二状态的第二NDI;
    第三数据处理模块,用于在第三TTI使用所述第一HARQ进程接收所述第一基站发送的第三下行授权,以及根据所述第三下行授权解调所述第一基站发送的第三下行数据,向第二基站发送与所述第三下行数据对应的第三反馈结果,所述第三下行数据携带有包括第三状态的第一NDI;
    第四数据处理模块,用于在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权,以及根据所述第四下行授权解调所述第一基站发送的重传的第二下行数据,向所述第二基站发送与重传的第二下行数据对应的第四反馈结果,所述重传的第二下行数据携带有包括所述第二状态的第二 NDI。
  19. 根据权利要求18所述的用户设备,其特征在于,所述用户设备还包括:
    第五数据处理模块,用于在第五TTI使用所述第一HARQ进程接收所述第一基站发送的第五下行授权,以及根据所述第五下行授权解调所述第一基站发送的重传的第一下行数据,所述重传的第一下行数据携带有包括所述第一状态的第一NDI。
  20. 根据权利要求18所述的用户设备,其特征在于,所述用户设备还包括:第六数据处理模块,用于所述第四数据处理模块在第四TTI使用所述第二HARQ进程接收所述第一基站发送的第四下行授权之前,在第六TTI使用所述第一HARQ进程接收所述第一基站发送的第六下行授权,以及根据所述第六下行授权解调所述第一基站发送的第四下行数据,所述第四下行数据携带有包括所述第一状态的第一NDI。
  21. 根据权利要求18至20中任一项所述的用户设备,其特征在于,所述U第三数据处理模块,具体用于在所述第三TTI使用虚拟HARQ进程接收所述第一基站发送的第三下行授权,所述虚拟HARQ进程和所述第一HARQ进程相对应。
  22. 根据权利要求18至20中任一项所述的用户设备,其特征在于,所述第四数据处理模块,还用于根据所述第四下行授权解调所述第一基站发送的第五下行数据,所述第五下行数据携带有包括第四状态的第二NDI。
  23. 根据权利要求18至20中任一项所述的用户设备,其特征在于,所述第三数据处理模块,具体用于根据所述第三下行授权指示的空口资源接收所述第三下行数据;根据所述第三下行数据携带的包括第三状态的第一NDI将所述第一HARQ进程对应的缓存中存储的第一下行数据清空,并将所述第三下行数据写入所述第一HARQ进程对应的缓存。
  24. 根据权利要求18至20中任一项所述的用户设备,其特征在于,所述第四数据处理模块,具体用于根据所述第四下行授权指示的空口资源接收重传的第二下行数据;根据所述重传的第二下行数据携带的包括所述第二状态的第二NDI,将所述第二HARQ进程对应的缓存中存储的第二下行数据和所述重传的下行数据进行合并,并将合并后的结果写入所述第一HARQ进程对应的 缓存。
PCT/CN2016/099114 2015-10-26 2016-09-14 一种数据的处理方法和基站以及用户设备 WO2017071421A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018540197A JP6566410B2 (ja) 2015-10-26 2016-09-14 データ処理方法、基地局、およびユーザ機器
EP16858857.2A EP3358772B1 (en) 2015-10-26 2016-09-14 Data processing method, base station, and user equipment
KR1020187014066A KR102118326B1 (ko) 2015-10-26 2016-09-14 데이터 처리 방법, 기지국 및 사용자 장비

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510700640.8 2015-10-26
CN201510700640.8A CN105262570B (zh) 2015-10-26 2015-10-26 一种数据的处理方法和基站以及用户设备

Publications (1)

Publication Number Publication Date
WO2017071421A1 true WO2017071421A1 (zh) 2017-05-04

Family

ID=55102094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099114 WO2017071421A1 (zh) 2015-10-26 2016-09-14 一种数据的处理方法和基站以及用户设备

Country Status (5)

Country Link
EP (1) EP3358772B1 (zh)
JP (1) JP6566410B2 (zh)
KR (1) KR102118326B1 (zh)
CN (1) CN105262570B (zh)
WO (1) WO2017071421A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105262570B (zh) * 2015-10-26 2018-07-03 上海华为技术有限公司 一种数据的处理方法和基站以及用户设备
US9930685B2 (en) * 2016-05-04 2018-03-27 Qualcomm Incorporated Techniques for transmitting and receiving delayed feedback for a transmission
CN111447621B (zh) * 2016-06-28 2022-08-26 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
WO2018112922A1 (zh) * 2016-12-23 2018-06-28 华为技术有限公司 一种数据传输的方法及设备
CN109217990B (zh) * 2017-06-30 2021-07-09 华为技术有限公司 一种数据传输方法及装置
CN108337072A (zh) * 2017-12-26 2018-07-27 上海华为技术有限公司 一种上行数据调度方法以及相关设备
JP7124657B2 (ja) 2018-11-14 2022-08-24 味の素株式会社 樹脂組成物、樹脂シート、プリント配線板及び半導体装置
CN112468266B (zh) * 2019-09-09 2023-06-27 中兴通讯股份有限公司 基站虚拟harq进程调度方法、装置及基站
CN113875178B (zh) * 2019-09-30 2023-09-29 华为技术有限公司 一种通信方法及装置
CN112422243B (zh) * 2020-11-22 2021-08-13 广州技象科技有限公司 基于进程优化的数据传输方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651528A (zh) * 2008-08-11 2010-02-17 华为技术有限公司 上行链路传输方法及其系统
WO2014171754A1 (ko) * 2013-04-19 2014-10-23 주식회사 케이티 하향링크 제어정보를 송수신하는 방법 및 그 장치
CN104919888A (zh) * 2012-08-13 2015-09-16 瑞典爱立信有限公司 包括不连续发射的重发方法和相关设备
CN105262570A (zh) * 2015-10-26 2016-01-20 上海华为技术有限公司 一种数据的处理方法和基站以及用户设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100754727B1 (ko) * 2003-11-14 2007-09-03 삼성전자주식회사 복합 자동반복 요구 시스템에서 고속 공통 제어 채널을통한 제어신호의 송수신 방법 및 장치
MX2009003610A (es) * 2006-10-02 2009-04-22 Lg Electronics Inc Metodo para retransmitir datos en el sistema de multiples portadoras.
US8498195B1 (en) * 2007-03-30 2013-07-30 Marvell International Ltd. HARQ retransmission scheme for at least two transmit antennas
US8656239B2 (en) * 2008-02-12 2014-02-18 Qualcomm Incorporated Control of data transmission based on HARQ in a wireless communication system
CN101572593B (zh) * 2008-04-28 2013-08-07 中兴通讯股份有限公司 混合自动重传方法以及无线通信系统
EP2166804A1 (en) * 2008-09-17 2010-03-24 Panasonic Corporation Deactivation of semi-persistent resource allocations in a mobile communication network
KR20110090521A (ko) * 2010-02-04 2011-08-10 주식회사 팬택 무선통신 시스템에서 데이터 및 제어정보의 전송 방법 및 그 송신장치, 그 수신장치
CN104067551B (zh) * 2013-01-18 2017-10-17 华为技术有限公司 数据传输方法、基站和用户设备
JP6224358B2 (ja) * 2013-06-14 2017-11-01 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
JP6459973B2 (ja) * 2013-11-25 2019-01-30 ソニー株式会社 通信制御装置、通信制御方法及び端末装置
WO2015113287A1 (zh) * 2014-01-29 2015-08-06 华为技术有限公司 一种数据传输方法、设备和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651528A (zh) * 2008-08-11 2010-02-17 华为技术有限公司 上行链路传输方法及其系统
CN104919888A (zh) * 2012-08-13 2015-09-16 瑞典爱立信有限公司 包括不连续发射的重发方法和相关设备
WO2014171754A1 (ko) * 2013-04-19 2014-10-23 주식회사 케이티 하향링크 제어정보를 송수신하는 방법 및 그 장치
CN105262570A (zh) * 2015-10-26 2016-01-20 上海华为技术有限公司 一种数据的处理方法和基站以及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358772A4 *

Also Published As

Publication number Publication date
KR20180070668A (ko) 2018-06-26
EP3358772A1 (en) 2018-08-08
KR102118326B1 (ko) 2020-06-09
JP6566410B2 (ja) 2019-08-28
CN105262570A (zh) 2016-01-20
EP3358772B1 (en) 2019-11-06
EP3358772A4 (en) 2018-10-17
CN105262570B (zh) 2018-07-03
JP2018533896A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2017071421A1 (zh) 一种数据的处理方法和基站以及用户设备
CN110831200B (zh) 用于移动通信系统的用户装置及基站
WO2020192624A1 (zh) 一种确定传输优先级的方法、装置和计算机可读存储介质
KR101142718B1 (ko) 무선 통신 시스템에서 접속들에 대한 서비스 품질을 유지하기 위한 기술
US11882561B2 (en) Control information transmission techniques
WO2014201976A1 (zh) 一种数据传输方法、系统及基站和用户设备
WO2021204122A1 (zh) 一种上行信道的传输方法及设备
WO2017113187A1 (zh) 下行传输方法和基站及终端
WO2021022976A1 (zh) Uci的传输方法、装置、终端及基站
WO2016145655A1 (zh) 一种混合自动重传请求管理的方法、装置及系统
WO2009003311A1 (fr) Procédé et équipement pour émettre des données dans la station relais et la station de base
CN109314590B (zh) 上行传输的方法和装置
CN109547170A (zh) 数据传输方法、网络侧设备及通信系统
CN108781135B (zh) 物联网的传输优化方法、装置和设备
WO2021023186A1 (zh) 信息传输方法、终端及基站
WO2018059370A1 (zh) 传输方法、移动通信终端及网络侧设备
WO2010094148A1 (zh) 混合自动重传请求方法和演进基站
CN110050428A (zh) 多载波下的数据传输方法和装置
WO2018201807A1 (zh) 一种确定数据是否受到破坏的方法及装置
US9768936B2 (en) Message transmission in an unlicensed spectrum
WO2018223508A1 (zh) 一种传输的方法,设备及系统
WO2018170745A1 (zh) 一种基于载波聚合的解调方法及装置
WO2012019494A1 (zh) 一种时分双工系统的中继链路harq传输方法及装置
WO2022017126A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023231910A1 (zh) 反馈信息发送方法、反馈信息接收方法、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858857

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018540197

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016858857

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187014066

Country of ref document: KR

Kind code of ref document: A