WO2017071413A1 - 高电压大电流复合注入的直流断路器合成试验电路和方法 - Google Patents

高电压大电流复合注入的直流断路器合成试验电路和方法 Download PDF

Info

Publication number
WO2017071413A1
WO2017071413A1 PCT/CN2016/098361 CN2016098361W WO2017071413A1 WO 2017071413 A1 WO2017071413 A1 WO 2017071413A1 CN 2016098361 W CN2016098361 W CN 2016098361W WO 2017071413 A1 WO2017071413 A1 WO 2017071413A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
high voltage
circuit breaker
circuit
current
Prior art date
Application number
PCT/CN2016/098361
Other languages
English (en)
French (fr)
Inventor
郑健超
汤广福
贺之渊
魏晓光
周万迪
杨兵建
张升
高阳
陈龙龙
Original Assignee
全球能源互联网研究院
国家电网公司
国网浙江省电力公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院, 国家电网公司, 国网浙江省电力公司 filed Critical 全球能源互联网研究院
Publication of WO2017071413A1 publication Critical patent/WO2017071413A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3272Apparatus, systems or circuits therefor

Definitions

  • the invention relates to the field of electronic technology, and in particular relates to a high voltage and large current composite injection DC circuit breaker synthesis test circuit and method.
  • DC circuit breakers are mainly used to break or close the rated current and short-circuit fault current in the DC system. Compared with the AC transmission system, since the DC system current has no natural zero-crossing point, the DC current breaking mechanism is fundamentally different from the AC breaking.
  • the hybrid high-voltage DC circuit breaker takes into account the technical characteristics of the low on-state loss of the mechanical circuit breaker and the high breaking speed of the solid-state circuit breaker, and has become a hot spot in the research of DC circuit breakers.
  • Breaking performance is one of the most important performances of DC circuit breakers.
  • the short-circuit current of DC fault is much larger than the rated current.
  • the system stores large energy and it is difficult to complete the breaking. If the fault current amplitude exceeds the maximum breaking current of the DC breaker and the transient breaking voltage exceeds the limit, the DC circuit breaker will not be able to complete the breaking when the long-term platform voltage that the circuit breaker takes over later exceeds the insulation withstand capability of the circuit breaker.
  • test circuit breakers make it difficult to conduct tests directly in actual systems. In order to reduce the test capacity, it is necessary to use a test circuit instead of the actual system to reproduce the actual operating conditions of the DC circuit breaker. Whether the test circuit can produce the same effect as the actual working condition, that is, whether the test has equivalence, determines whether the test circuit is meaningful.
  • the literature "Equivalent of high-voltage DC switch test circuit” designed a breaking test method for high-voltage DC converter switch.
  • the high-voltage DC switch is used for switching the DC line in conventional DC transmission. It cannot break the fault current and is at ground potential. It is a mechanical DC switch. Because the hybrid DC circuit breaker can break the fault current and is at a high potential, the breaking principle is very different from the mechanical type.
  • the test of the high-voltage DC transfer switch The method cannot be directly applied to a hybrid high voltage DC circuit breaker.
  • ABB proposed a low-voltage, high-current source test circuit for capacitor energy storage for 80kV hybrid circuit breaker modules to carry out the breaking test.
  • the test method can test the current stress and transient voltage during the breaking process of the hybrid high-voltage DC circuit breaker, but can not test the resistance of the circuit breaker to the platform voltage capability.
  • the existing test method for the hybrid high-voltage DC circuit breaker can only assess the breaking current capability of the circuit breaker, and can not assess the platform voltage withstand capability of the circuit breaker after the break, and the test evaluation is not comprehensive. Under the actual working conditions, the short-circuit fault current breaking test is carried out, and the cost is high and the test is difficult.
  • Embodiments of the present invention provide a high voltage and large current composite injection DC circuit breaker synthesis test circuit and method, in order to comprehensively evaluate the breaking current capacity and platform voltage withstand capability of the hybrid high voltage DC circuit breaker.
  • Embodiments of the present invention provide a high voltage and large current composite injection DC circuit breaker synthesis test circuit
  • the DC circuit breaker is a hybrid high voltage DC circuit breaker;
  • the circuit includes a high current test circuit, a hybrid high voltage DC circuit breaker, and The high voltage test circuit; the high current test circuit and the high voltage test circuit are all connected in parallel with the hybrid high voltage DC circuit breaker.
  • the high current test circuit and the high voltage test circuit are both connected in parallel with the hybrid high voltage DC circuit breaker to form a positive common connection point and a negative common connection point, and the negative common connection point is grounded.
  • the large current test circuit includes a first charging power source, a mechanical isolation switch K1, a low voltage capacitor C1, a first inductor L1, and a first thyristor valve T1;
  • One end of the mechanical isolation switch K1 is connected to the first charging power source, the other end of which is connected to the first inductor L1 and the low voltage capacitor C1, and the other end of the first inductor L1 is connected to the first thyristor valve T1, the first thyristor valve T1 The other end is connected to the positive common connection point, and the other end of the first charging power source and the other end of the low voltage capacitor C1 are connected to the negative common connection point.
  • the high voltage test circuit includes a second charging power source, a mechanical isolation switch K2, a high voltage capacitor C2, a second inductor L2, and a second thyristor valve T2;
  • One end of the mechanical isolation switch K2 is connected to the second charging power source, the other end of which is connected to the second inductor L2 and the high voltage capacitor C2, and the other end of the second inductor L2 is connected to the second thyristor valve T2, the second thyristor valve T2 The other end is connected to the positive common connection point, and the other end of the second charging power source and the other end of the high voltage capacitor C2 are connected to the negative common connection point.
  • the capacitance of the low-voltage capacitor C1 is greater than the capacitance of the high-voltage capacitor C2, and the sense of the second inductor L2 is greater than the sense of the first inductor L2.
  • the first thyristor valve T1 and the second thyristor valve T2 are each formed by a plurality of thyristors connected in series.
  • the hybrid high voltage DC circuit breaker comprises a fast mechanical switch, a main branch semiconductor switch, a transfer branch semiconductor switch and a lightning arrester;
  • the transfer branch semiconductor switch and the arrester are respectively connected in parallel.
  • the hybrid high voltage DC circuit breaker includes a fast mechanical switch, a transfer branch semiconductor switch and a lightning arrester;
  • the fast mechanical switch and the transfer branch semiconductor switch are both in parallel with the arrester.
  • Embodiments of the present invention provide a hybrid DC circuit breaker synthesis test method, where the method includes:
  • the current and voltage on the hybrid high voltage DC circuit breaker are separately detected.
  • the high current test circuit connected in parallel with the hybrid high voltage DC circuit breaker is used as a current source to supply power to the hybrid high voltage DC circuit breaker, including:
  • the start current of the first test circuit and the high voltage charging power supply circuit, a second test charging power supply, charging first and second power supply for low-voltage capacitor charging power supply are high voltage capacitors C 1 and C 2 charge;
  • the fast mechanical switch current drops to zero and the fast mechanical switch is opened.
  • the high voltage test circuit connected in parallel with the hybrid high voltage DC circuit breaker is used as a voltage source to supply power to the hybrid high voltage DC circuit breaker, including:
  • the transfer branch semiconductor switch is turned off, and the voltage of the hybrid high voltage DC circuit breaker rises rapidly.
  • the high current test circuit connected in parallel with the hybrid high voltage DC circuit breaker is used as a current source to supply power to the hybrid high voltage DC circuit breaker, including:
  • the start current of the first test circuit and the high voltage charging power source circuit, a second test charging power supply, charging first and second power supply for low-voltage capacitor charging power supply are high voltage capacitors C 1 and C 2 charge;
  • the high voltage test circuit connected in parallel with the hybrid high voltage DC circuit breaker is used as a voltage source to supply power to the hybrid high voltage DC circuit breaker, including:
  • the embodiment of the invention further provides a DC circuit breaker synthesis test method using the DC circuit breaker synthesis test circuit for high voltage and large current composite injection, the method comprising:
  • Step 1 Install a current sensor on the line in series with the hybrid HVDC breaker and close to the common connection point of the anode, and connect the line of the hybrid HVDC breaker to the positive common connection point. Install a voltage sensor on the road;
  • Step 2 The hybrid high-voltage DC circuit breaker is powered on, and is in a closed state, that is, the fast mechanical switch, the main branch semiconductor switch, and the transfer branch semiconductor switch in the hybrid high-voltage DC circuit breaker are all in a closed state;
  • Step 3 At time t0, close the mechanical isolation switch K1 in the high current test circuit and the mechanical isolation switch K2 in the high voltage test circuit;
  • Step 4 At time t1, start a first charging power source in the high current test circuit and a second charging power source in the high voltage test circuit, and the first charging power source and the second charging power source respectively charge the low voltage capacitor C1 and the high voltage capacitor C2;
  • Step 5 At time t2, after the charging of the low voltage capacitor C1 and the high voltage capacitor C2 is completed, the mechanical isolation switch K1 and the mechanical isolation switch K2 are disconnected;
  • Step 6 At time t3, the first thyristor valve T1 is triggered, and the low-voltage capacitor C1 is discharged through the first inductor L1, and the current flowing through the hybrid high-voltage DC circuit breaker rises rapidly;
  • Step 7 At time t4, turn off the main branch semiconductor switch
  • Step 8 At time t5, the fast mechanical switch current drops to zero, and the fast mechanical switch is turned off;
  • Step 9 At time t6, the second thyristor valve T2 is triggered, and the high voltage capacitor C2 is discharged through the second inductor L2;
  • Step 10 At time t7, the transfer branch semiconductor switch is turned off, and the voltage of the hybrid high-voltage DC circuit breaker rises rapidly.
  • the embodiment of the invention further provides a DC circuit breaker synthesis test method using the DC circuit breaker synthesis test circuit for high voltage and large current composite injection, the method comprising:
  • Step 1 Install a current sensor on the line in series with the hybrid high-voltage DC circuit breaker and close to the common connection point of the negative pole, and install a voltage sensor on the line of the hybrid high-voltage DC circuit breaker near the positive common connection point;
  • Step 2 The hybrid high-voltage DC circuit breaker is powered on, which is in a closed state, that is, a hybrid high voltage.
  • the fast mechanical switch and the transfer branch semiconductor switch in the DC circuit breaker are all in a closed state;
  • Step 3 At time t0, close the mechanical isolation switch K1 in the high current test circuit and the mechanical isolation switch K2 in the high voltage test circuit;
  • Step 4 At time t1, start a first charging power source in the high current test circuit and a second charging power source in the high voltage test circuit, and the first charging power source and the second charging power source respectively charge the low voltage capacitor C1 and the high voltage capacitor C2;
  • Step 5 At time t2, after the charging of the low voltage capacitor C1 and the high voltage capacitor C2 is completed, the mechanical isolation switch K1 and the mechanical isolation switch K2 are disconnected;
  • Step 6 At time t3, the first thyristor valve T1 is triggered, and the low-voltage capacitor C1 is discharged through the first inductor L1, and the current flowing through the hybrid high-voltage DC circuit breaker rises rapidly;
  • Step 7 At time t5, disconnect the fast mechanical switch
  • Step 8 At time t6, the second thyristor valve T2 is triggered, and the test capacitor C2 is discharged through the second inductor L2;
  • Step 9 At time t7, turn off the branch circuit semiconductor switch, and the voltage of the hybrid high-voltage DC circuit breaker rises rapidly.
  • the invention can utilize the high current test circuit in parallel with the hybrid high voltage direct current circuit breaker to simulate the short circuit fault current and evaluate the current flow capacity of the hybrid high voltage direct current circuit breaker; and can also be used in parallel with the hybrid high voltage direct current circuit breaker.
  • the high voltage test circuit simulates the voltage of the converter station and evaluates the platform voltage withstand energy of the hybrid high voltage DC circuit breaker.
  • FIG. 1 is a structural diagram of a circuit for synthesizing a DC circuit breaker of a high voltage and large current composite injection according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a hybrid high voltage DC circuit breaker provided in an embodiment of the present invention.
  • FIG. 3 is a timing chart of synthesis test of a DC circuit breaker with high voltage and large current composite injection provided in an embodiment of the present invention
  • FIG. 4 is a waveform diagram of a synthetic test of a high voltage and high current composite injection DC circuit breaker according to an embodiment of the present invention
  • FIG. 5 is a structural diagram of another hybrid high voltage DC circuit breaker provided in an embodiment of the present invention.
  • FIG. 6 is a timing chart of synthesis test of another high voltage and high current composite injection DC circuit breaker provided in an embodiment of the present invention.
  • FIG. 7 is a waveform diagram of a synthetic test of a DC circuit breaker of another high voltage and large current composite injection provided in an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of a hybrid DC circuit breaker synthesis test method according to an embodiment of the present invention.
  • 1-hybrid high-voltage DC circuit breaker 2-first charging power supply, 3-second charging power supply, 4-fast mechanical switch, 5-transfer branch semiconductor switch, 6-arc arrester, 7-main branch semiconductor switch.
  • Embodiment 1 provides a high voltage and high current composite injection DC circuit breaker synthesis test circuit
  • the DC circuit breaker is a hybrid high voltage DC circuit breaker; as shown in FIG. 1, the circuit includes a large current test circuit and a hybrid high voltage direct current The circuit breaker 1 and the high voltage test circuit; the high current test circuit and the high voltage test circuit are all connected in parallel with the hybrid high voltage DC circuit breaker 1.
  • the large current test circuit is configured as a current source of the hybrid DC short circuit 1 to simulate a short circuit current to test the current flow capability of the moderating DC short circuit 1.
  • the high voltage test circuit is configured to simulate the voltage of the converter station as a voltage source of the hybrid DC short circuit 1 to test the voltage withstand capability of the hybrid DC short circuit 1.
  • the high current test circuit and the high voltage test circuit are both connected in parallel with the hybrid high voltage DC circuit breaker 1 to form a positive common connection point and a negative common connection point, and the negative common connection point is grounded.
  • the test circuit comprises a first high-current charging power source 2, the mechanical isolation switch K 1, low voltage capacitor C 1, the first inductor L 1 and a first thyristor valve T 1;
  • One end of the mechanical isolation switch K 1 is connected to the first charging power source 2, the other end of which is connected to the first inductor L 1 and the low voltage capacitor C 1 , and the other end of the first inductor L 1 is connected to the first thyristor valve T 1 .
  • the other end of the first thyristor valve T 1 is connected to the positive common connection point, and the other end of the first charging power source 2 and the other end of the low voltage capacitor C 1 are connected to the negative common connection point.
  • the high voltage test circuit includes a second charging power source 3, a mechanical isolation switch K 2 , a high voltage capacitor C 2 , a second inductor L 2 and a second thyristor valve T 2 ;
  • One end of the mechanical isolation switch K 2 is connected to the second charging power source 3, the other end of which is connected to the second inductor L 2 and the high voltage capacitor C 2 , and the other end of the second inductor L 2 is connected to the second thyristor valve T 2 .
  • the other end of the second thyristor valve T 2 is connected to the positive common connection point, and the other end of the second charging power source 3 and the other end of the high voltage capacitor C 2 are connected to the negative common connection point.
  • the capacitance of the low-voltage capacitor C 1 is greater than the capacitance of the high-voltage capacitor C 2 , and the sense of the second inductor L 2 is greater than the sense of the first inductor L 2 .
  • the first thyristor valve T 1 and the second thyristor valve T 2 are each formed by a plurality of thyristors connected in series.
  • the hybrid high voltage DC circuit breaker 1 comprises a fast mechanical switch 4, a main branch semiconductor switch 7, a transfer branch semiconductor switch 5 and a lightning arrester 6;
  • the fast mechanical switch 4 is connected in series with the main branch semiconductor switch 7, and is connected in parallel with the transfer branch semiconductor switch 5 and the lightning arrester 6, respectively.
  • the embodiment of the invention further provides a DC circuit breaker synthesis test method using the DC circuit breaker synthesis test circuit for high voltage and large current composite injection, the method comprising:
  • Step 1 Install a current sensor on the line in series with the hybrid high-voltage DC circuit breaker 1 and close to the common connection point of the negative pole, and install a voltage sensor on the line of the hybrid high-voltage DC circuit breaker 1 near the positive common connection point;
  • the current sensor uses an all-fiber current sensor, a shunt or a Rogowski coil;
  • the voltage sensor uses a RC capacitor;
  • Step 2 The hybrid high-voltage DC circuit breaker 1 is powered on, and is in a closed state, that is, the fast mechanical switch 4, the main branch semiconductor switch 7, and the transfer branch semiconductor switch 5 in the hybrid high-voltage DC circuit breaker 1 are all in a closed state. ;
  • Step 3 At time t 0 , close the mechanical isolation switch K 1 in the high current test circuit and the mechanical isolation switch K 2 in the high voltage test circuit;
  • Step 4 t 1 in time, the start current of the first test circuit and the high voltage charging power source 2 in the second test charging power supply circuit 3, a first rechargeable power supply 2 and the second charging power supply 3, respectively, and low voltage capacitor C 1 High voltage capacitor C 2 is charged;
  • Step 5 At time t 2 , after the charging of the low voltage capacitor C 1 and the high voltage capacitor C 2 is completed, the mechanical isolation switch K 1 and the mechanical isolation switch K 2 are disconnected;
  • Step 6 t 3 time, the first trigger thyristor valve T 1, a first low-voltage capacitor C 1 through the inductor L 1 discharging current flows through the high-pressure mixed rapidly rising DC breaker 1;
  • Step 7 At time t 4 , the main branch semiconductor switch 7 is turned off;
  • Step 8 At time t 5 , the fast mechanical switch 4 current drops to zero, and the fast mechanical switch 4 is turned off;
  • Step 9 t 6 time, triggering the second thyristor valve T 2, high-voltage capacitor C 2 discharging through the second inductor L 2;
  • Step 10 At time t7, the branch circuit semiconductor switch 5 is turned off, and the voltage of the hybrid high voltage DC circuit breaker 1 rises rapidly.
  • the second thyristor valve T 2 is triggered before the transfer branch semiconductor switch is turned off, so that the voltage of the high voltage test circuit It can be applied to the hybrid high-voltage DC circuit breaker immediately after the end of the transient over-voltage of the hybrid high-voltage DC circuit breaker, keeping the voltage waveform continuous to achieve the equivalent actual working condition.
  • the hybrid high-voltage DC circuit breaker is used in the hybrid high-voltage DC circuit breaker breaking test through the timing matching.
  • the high current test circuit simulates the short circuit fault current in the actual system as a large current source during the disconnection test of the hybrid high voltage DC circuit breaker.
  • the current passing capacity and current breaking capacity of the hybrid high-voltage DC circuit breaker are evaluated.
  • the high voltage test circuit is used as a high voltage source to simulate the voltage of the converter station in the actual system during the disconnection test of the hybrid high voltage DC circuit breaker, and the platform voltage withstand capability of the hybrid high voltage DC circuit breaker is evaluated.
  • the embodiment provides a high voltage and large current composite injection DC circuit breaker synthesis test circuit
  • the DC circuit breaker is a hybrid high voltage DC circuit breaker; as shown in FIG. 1, the circuit includes a high current test circuit and a hybrid high voltage direct current The circuit breaker 1 and the high voltage test circuit; the high current test circuit and the high voltage test circuit are all connected in parallel with the hybrid high voltage DC circuit breaker 1.
  • the high current test circuit and the high voltage test circuit are both connected in parallel with the hybrid high voltage DC circuit breaker 1 to form a positive common connection point and a negative common connection point, and the negative common connection point is grounded.
  • the test circuit comprises a first high-current charging power source 2, the mechanical isolation switch K 1, low voltage capacitor C 1, the first inductor L 1 and a first thyristor valve T 1;
  • One end of the mechanical isolation switch K 1 is connected to the first charging power source 2, the other end of which is connected to the first inductor L 1 and the low voltage capacitor C 1 , and the other end of the first inductor L 1 is connected to the first thyristor valve T 1 .
  • the other end of the first thyristor valve T 1 is connected to the positive common connection point, and the other end of the first charging power source 2 and the other end of the low voltage capacitor C 1 are connected to the negative common connection point.
  • the high voltage test circuit includes a second charging power source 3, a mechanical isolation switch K 2 , a high voltage capacitor C 2 , a second inductor L 2 and a second thyristor valve T 2 ;
  • One end of the mechanical isolation switch K 2 is connected to the second charging power source 3, the other end of which is connected to the second inductor L 2 and the high voltage capacitor C 2 , and the other end of the second inductor L 2 is connected to the second thyristor valve T 2 .
  • the other end of the second thyristor valve T 2 is connected to the positive common connection point, and the other end of the second charging power source 3 and the other end of the high voltage capacitor C 2 are connected to the negative common connection point.
  • the capacitance of the low-voltage capacitor C 1 is greater than the capacitance of the high-voltage capacitor C 2 , and the sense of the second inductor L 2 is greater than the sense of the first inductor L 2 .
  • the first thyristor valve T 1 and the second thyristor valve T 2 are each formed by a plurality of thyristors connected in series.
  • the hybrid high voltage DC circuit breaker 1 comprises a fast mechanical switch 4, a transfer branch semiconductor switch 5 and a lightning arrester 6;
  • Both the fast mechanical switch 4 and the transfer branch semiconductor switch 5 are connected in parallel with the arrester 6.
  • the embodiment of the invention further provides a DC circuit breaker synthesis test method using the DC circuit breaker synthesis test circuit for high voltage and large current composite injection, the method comprising:
  • Step 1 Install a current sensor on the line in series with the hybrid high-voltage DC circuit breaker 1 and close to the common connection point of the negative pole, and install a voltage sensor on the line of the hybrid high-voltage DC circuit breaker 1 near the positive common connection point;
  • the current sensor uses an all-fiber current sensor, a shunt or a Rogowski coil;
  • the voltage sensor uses a RC capacitor;
  • Step 2 The hybrid high-voltage DC circuit breaker 1 is powered on, and is in a closed state, that is, the fast mechanical switch 4 and the transfer branch semiconductor switch 5 in the hybrid high-voltage DC circuit breaker 1 are in a closed state;
  • Step 3 At time t 0 , close the mechanical isolation switch K 1 in the high current test circuit and the mechanical isolation switch K 2 in the high voltage test circuit;
  • Step 4 t 1 in time, the start current of the first test circuit and the high voltage charging power source 2 in the second test charging power supply circuit 3, a first rechargeable power supply 2 and the second charging power supply 3, respectively, and low voltage capacitor C 1 High voltage capacitor C 2 is charged;
  • Step 5 At time t 2 , after the charging of the low voltage capacitor C 1 and the high voltage capacitor C 2 is completed, the mechanical isolation switch K 1 and the mechanical isolation switch K 2 are disconnected;
  • Step 6 t 3 time, the first trigger thyristor valve T 1, a first low-voltage capacitor C 1 through the inductor L 1 discharging current flows through the high-pressure mixed rapidly rising DC breaker 1;
  • Step 7 At time t 5 , disconnect the fast mechanical switch 4;
  • Step 8 t 6 time, triggering the second thyristor valve T 2, the second test capacitor C 2 through inductor L 2 discharge;
  • Step 9 At time t7, the branch circuit semiconductor switch 5 is turned off, and the voltage of the hybrid high-voltage DC circuit breaker 1 rises rapidly.
  • the second thyristor valve T 2 is triggered before the transfer branch semiconductor switch is turned off, so that the voltage of the high voltage test circuit can be mixed Immediately after the transient over-voltage of the high-voltage DC circuit breaker is over, it is applied to the circuit breaker to keep the voltage waveform continuous to achieve the equivalent actual working condition.
  • the hybrid high-voltage DC circuit breaker is jointly applied in the hybrid high-voltage DC circuit breaker breaking test.
  • the high-current test circuit is used as a large current source to simulate the short-circuit fault current in the actual system, and the current flow capacity and current breaking capacity of the hybrid high-voltage DC circuit breaker are evaluated.
  • the high voltage test circuit is used as a high voltage source to simulate the voltage of the converter station in the actual system during the disconnection test of the hybrid high voltage DC circuit breaker, and the platform voltage withstand capability of the hybrid high voltage DC circuit breaker is evaluated.
  • the large current and high voltage required in the test of the embodiment of the present invention are respectively provided by a large current test circuit and a high voltage test circuit.
  • the high current test circuit has a large current, but the voltage is low, and the high voltage test circuit voltage reaches a hybrid high voltage DC open circuit.
  • the rated voltage of the device, but the output current is small, thus reducing the energy required for the test;
  • the second thyristor valve T2 is triggered before the transfer branch semiconductor switch is turned off, so that the voltage of the high voltage test circuit can be transient overvoltage of the circuit breaker Immediately after the end, it is applied to the circuit breaker to ensure the continuity of the test voltage waveform.
  • the high voltage and high current composite injection DC circuit breaker synthesis test method provided by the invention reduces the difficulty and cost of the test implementation.
  • the embodiment provides a hybrid DC circuit breaker synthesis test method, and the method includes:
  • Step S110 using a large current test circuit connected in parallel with the hybrid high voltage DC circuit breaker as a current source to supply power to the hybrid high voltage DC circuit breaker;
  • Step S120 supplying power to the hybrid high-voltage DC circuit breaker as a voltage source by using a high-voltage test circuit connected in parallel with the hybrid high-voltage DC circuit breaker;
  • Step S130 respectively detecting current and voltage on the hybrid high voltage DC circuit breaker.
  • the high-voltage large-current composite injection DC circuit breaker synthesis test circuit provided in the foregoing embodiment can be used to perform the synthesis test method. It is worth noting in the present embodiment that the step S130 is performed with the synchronization step S110 and the step S120. For example, the current and voltage of the hybrid high voltage direct current short circuit breaker are detected by using an ammeter and a voltmeter, respectively.
  • the step S110 may include: closing a fast mechanical switch, a main branch semiconductor switch, and a transfer branch semiconductor switch in the hybrid high voltage DC circuit breaker; closing a mechanical isolation switch in the high current test circuit K 1 and a mechanical isolation switch K 2 in the high voltage test circuit; a first charging power source in the high current test circuit and a second charging power source in the high voltage test circuit, the first charging power source and the second charging power source respectively on the low voltage capacitor C and the capacitor C 2. 1 charging high-voltage; C.
  • the step S120 may include: triggering a second thyristor valve T 2 in the high voltage test circuit, the high voltage capacitor C 2 is discharged through the second inductor L 2 ; turning off the transfer branch semiconductor switch, through the mixing The voltage of the high voltage DC circuit breaker rises rapidly.
  • the step S110 may include: closing a fast mechanical switch, a main branch semiconductor switch, and a transfer branch semiconductor switch in the hybrid high voltage DC circuit breaker; triggering a second of the high voltage test circuit
  • the thyristor valve T 2 the high voltage capacitor C 2 is discharged through the second inductor L 2 ; the mechanical isolating switch K 1 in the high current test circuit and the mechanical isolating switch K 2 in the high voltage test circuit are closed;
  • the first in the high current test circuit is activated a high voltage charging power source and a second test circuit charging power supply, charging first and second power source to charge the rechargeable power supply 2, respectively, and low voltage capacitor C 1 and the high-voltage capacitor C;
  • the low voltage capacitor C 1 and the high voltage capacitor C 2 is charged, Disconnecting the mechanical isolating switch K 1 and the mechanical isolating switch K 2 ; triggering the first thyristor valve T 1 , the low-voltage capacitor C 1 is discharged through the first inductor L 1 , and the current
  • the step S120 may include: triggering a second thyristor valve T 2 of the high voltage test circuit, discharging the test capacitor C 2 through the second inductor L 2 ; turning off the transfer branch semiconductor switch, and passing the hybrid high voltage DC circuit breaker rapidly rise.

Abstract

一种高电压大电流复合注入的直流断路器合成试验电路和方法,直流断路器为混合式高压直流断路器(1);所述电路包括大电流试验回路、混合式高压直流断路器(1)和高电压试验回路;所述大电流试验回路和高电压试验回路均与混合式高压直流断路器(1)并联。

Description

高电压大电流复合注入的直流断路器合成试验电路和方法 技术领域
本发明涉及电子技术领域,具体涉及一种高电压大电流复合注入的直流断路器合成试验电路和方法。
背景技术
直流断路器主要用于分断或闭合直流系统中的额定电流和短路故障电流。相较于交流输电系统,由于直流系统电流没有自然过零点,使得直流电流的分断机理与交流分断存在本质差异。混合式高压直流断路器兼顾了机械式断路器低通态损耗和固态式断路器高分断速度的技术特点,成为直流断路器研究的热点。
分断性能是直流断路器最重要性能之一,直流故障短路电流远大于额定电流,系统储存能量大,完成分断难度高。若故障电流幅值超出直流断路器最大分断电流、暂态分断电压超出限值,断路器分断后期承受的长时间平台电压超出断路器的绝缘耐受能力时,直流断路器将无法完成开断。
直流断路器高电压、大电流应用特点使其难以直接在实际系统开展试验。为了降低试验容量,需要采用替代实际系统的试验电路复现直流断路器实际运行工况。而试验电路是否能够产生与实际工况相同效果,即试验是否具备等效性,决定了试验电路的是否有意义。
目前,国际上尚无公认的直流断路器试验标准。文献《高压直流开关试验回路等价性》设计了用于高压直流转化开关的分断试验方法,高压直流转换开关用于常规直流输电中直流极线的切换,不能分断故障电流,处于地电位,且为机械式直流开关。由于混合式直流断路器可分断故障电流,处于高电位,分断原理与机械式存在很大差别,高压直流转换开关的试验 方法不能直接应用与混合式高压直流断路器。
ABB在文献“Hybrid HVDC breaker-A solution for future HVDC system”中提出针对80kV混合式断路器模块设计了电容储能的低电压、大电流源试验电路来开展分断试验。该试验方法能够对混合式高压直流断路器分断过程中电流应力和暂态电压进行测试,但不能对断路器的耐受平台电压能力进行测试。
Alstom在文献“Development and test of a 120 kV direct current circuit breaker”中针对混合式高压直流断路器提出了双电流源复合注入的试验方法。但该方法只能对断路器的正常负荷电流通流能力和故障电流分断能力进行考核,无法对断路器的耐受平台电压能力进行考核。
现有针对混合式高压直流断路器的试验方法只能对断路器的分断电流能力进行考核,不能对断路器分断后期平台电压耐受能力进行考核,试验考核不全面。而在实际工况下,进行短路故障电流分断试验,成本高,试验难度大。
发明内容
本发明实施例提供一种高电压大电流复合注入的直流断路器合成试验电路和方法,以期望对混合式高压直流断路器的分断电流能力和平台电压耐受能力进行全面考核。
本发明采取如下技术方案:
本发明实施例提供一种高电压大电流复合注入的直流断路器合成试验电路,所述直流断路器为混合式高压直流断路器;所述电路包括大电流试验回路、混合式高压直流断路器和高电压试验回路;所述大电流试验回路和高电压试验回路均与混合式高压直流断路器并联。
所述大电流试验回路和高电压试验回路均与混合式高压直流断路器并联,形成正极公共连接点和负极公共连接点,所述负极公共连接点接地。
所述大电流试验回路包括第一充电电源、机械隔离开关K1、低压电容C1、第一电感L1和第一晶闸管阀T1;
所述机械隔离开关K1的一端连接第一充电电源,其另一端连接第一电感L1和低压电容C1,所述第一电感L1的另一端连接第一晶闸管阀T1,所述第一晶闸管阀T1的另一端连接正极公共连接点,所述第一充电电源的另一端和低压电容C1的另一端均连接负极公共连接点。
所述高电压试验回路包括第二充电电源、机械隔离开关K2、高压电容C2、第二电感L2和第二晶闸管阀T2;
所述机械隔离开关K2的一端连接第二充电电源,其另一端连接第二电感L2和高压电容C2,所述第二电感L2的另一端连接第二晶闸管阀T2,所述第二晶闸管阀T2的另一端连接正极公共连接点,所述第二充电电源的另一端和高压电容C2的另一端均连接负极公共连接点。
所述低压电容C1的容值大于高压电容C2的容值,所述第二电感L2的感值大于第一电感L2的感值。
所述第一晶闸管阀T1和第二晶闸管阀T2均由多个晶闸管串联构成。
所述混合式高压直流断路器包括快速机械开关、主支路半导体开关、转移支路半导体开关和避雷器;
所述快速机械开关与主支路半导体开关串联后,与转移支路半导体开关、避雷器分别并联。
所述混合式高压直流断路器包括快速机械开关、转移支路半导体开关和避雷器;
所述快速机械开关和转移支路半导体开关均与避雷器并联。
本发明实施例提供一种混合式直流断路器合成试验方法,所述方法包括:
利用与所述混合式高压直流断路器并联的大电流试验回路,作为电流 源向所述混合式高压直流断路器供电;
利用与所述混合式高压直流断路器并联的高压试验回路,作为电压源向所述混合式高压直流断路器供电;
分别检测所述混合式高压直流断路器上的电流和电压。
基于上述方案,所述利用与所述混合式高压直流断路器并联的大电流试验回路,作为电流源向所述混合式高压直流断路器供电,包括:
闭合所述混合式高压直流断路器中的快速机械开关、主支路半导体开关及转移支路半导体开关;
闭合大电流试验回路中的机械隔离开关K1和高电压试验回路中的机械隔离开关K2
启动大电流试验回路中的第一充电电源和所述高电压试验回路中的第二充电电源,第一充电电源和第二充电电源分别对低压电容C1和高压电容C2充电;
低压电容C1和高压电容C2充电完成后,断开机械隔离开关K1和机械隔离开关K2
触发第一晶闸管阀T1,低压电容C1经过第一电感L1放电,流过混合式高压直流断路器的电流迅速上升;
关断主支路半导体开关;
快速机械开关电流下降到零,断开快速机械开关.
基于上述方案,所述利用与所述混合式高压直流断路器并联的高压试验回路,作为电压源向所述混合式高压直流断路器供电,包括:
触发所述高压试验回路中的第二晶闸管阀T2,高压电容C2通过第二电感L2放电;
关断所述转移支路半导体开关,经过所述混合式高压直流断路器电压迅速上升。
基于上述方案,所述利用与所述混合式高压直流断路器并联的大电流试验回路,作为电流源向所述混合式高压直流断路器供电,包括:
闭合所述混合式高压直流断路器中的快速机械开关、主支路半导体开关及转移支路半导体开关;
触发所述高压试验回路的第二晶闸管阀T2,高压电容C2通过第二电感L2放电;
闭合大电流试验回路中的机械隔离开关K1和高电压试验回路中的机械隔离开关K2
启动大电流试验回路中的第一充电电源和高电压试验回路中的第二充电电源,第一充电电源和第二充电电源分别对低压电容C1和高压电容C2充电;
低压电容C1和高压电容C2充电完成后,断开机械隔离开关K1和机械隔离开关K2
触发第一晶闸管阀T1,低压电容C1经过第一电感L1放电,流过混合式高压直流断路器的电流迅速上升;
断开快速机械开关。
基于上述方案,所述利用与所述混合式高压直流断路器并联的高压试验回路,作为电压源向所述混合式高压直流断路器供电,包括:
触发所述高压试验回路的第二晶闸管阀T2,试验电容C2通过第二电感L2放电;
关断转移支路半导体开关,经过混合式高压直流断路器电压迅速上升。
本发明实施例还提供一种采用所述的直流断路器合成试验电路进行高电压大电流复合注入的直流断路器合成试验方法,所述方法包括:
步骤1:在与混合式高压直流断路器串联且靠近负极公共连接点的线路上安装电流传感器,并在混合式高压直流断路器靠近正极公共连接点的线 路上安装电压传感器;
步骤2:混合式高压直流断路器上电,其处于闭合状态,即混合式高压直流断路器中的快速机械开关、主支路半导体开关、转移支路半导体开关均处于闭合状态;
步骤3:t0时刻,闭合大电流试验回路中的机械隔离开关K1和高电压试验回路中的机械隔离开关K2;
步骤4:t1时刻,启动大电流试验回路中的第一充电电源和高电压试验回路中的第二充电电源,第一充电电源和第二充电电源分别对低压电容C1和高压电容C2充电;
步骤5:t2时刻,低压电容C1和高压电容C2充电完成后,断开机械隔离开关K1和机械隔离开关K2;
步骤6:t3时刻,触发第一晶闸管阀T1,低压电容C1经过第一电感L1放电,流过混合式高压直流断路器的电流迅速上升;
步骤7:t4时刻,关断主支路半导体开关;
步骤8:t5时刻,快速机械开关电流下降到零,断开快速机械开关;
步骤9:t6时刻,触发第二晶闸管阀T2,高压电容C2通过第二电感L2放电;
步骤10:t7时刻,关断转移支路半导体开关,经过混合式高压直流断路器电压迅速上升。
本发明实施例还提供一种采用所述的直流断路器合成试验电路进行高电压大电流复合注入的直流断路器合成试验方法,所述方法包括:
步骤1:在与混合式高压直流断路器串联且靠近负极公共连接点的线路上安装电流传感器,并在混合式高压直流断路器靠近正极公共连接点的线路上安装电压传感器;
步骤2:混合式高压直流断路器上电,其处于闭合状态,即混合式高压 直流断路器中的快速机械开关、转移支路半导体开关均处于闭合状态;
步骤3:t0时刻,闭合大电流试验回路中的机械隔离开关K1和高电压试验回路中的机械隔离开关K2;
步骤4:t1时刻,启动大电流试验回路中的第一充电电源和高电压试验回路中的第二充电电源,第一充电电源和第二充电电源分别对低压电容C1和高压电容C2充电;
步骤5:t2时刻,低压电容C1和高压电容C2充电完成后,断开机械隔离开关K1和机械隔离开关K2;
步骤6:t3时刻,触发第一晶闸管阀T1,低压电容C1经过第一电感L1放电,流过混合式高压直流断路器的电流迅速上升;
步骤7:t5时刻,断开快速机械开关;
步骤8:t6时刻,触发第二晶闸管阀T2,试验电容C2通过第二电感L2放电;
步骤9:t7时刻,关断转移支路半导体开关,经过混合式高压直流断路器电压迅速上升。
本发明可利用与混合式高压直流断路器并联的大电流试验回路,模拟短路故障电流,考核所述混合式高压直流断路器的电流通流能力;还可以利用与混合式高压直流断路器并联的高电压试验回路模拟换流站电压,考核混合式高压直流断路器的平台电压耐受能量。
附图说明
图1是本发明实施例提供的一种高电压大电流复合注入的直流断路器合成试验电路结构图;
图2是本发明实施例中提供的一种混合式高压直流断路器结构图;
图3是是本发明实施例中提供的一种高电压大电流复合注入的直流断路器合成试验时序图;
图4是是本发明实施例中提供的一种高电压大电流复合注入的直流断路器合成试验波形图;
图5是本发明实施例中提供的另一种混合式高压直流断路器结构图;
图6是是本发明实施例中提供的另一种高电压大电流复合注入的直流断路器合成试验时序图;
图7是是本发明实施例中提供的另一种高电压大电流复合注入的直流断路器合成试验波形图;
图8为本发明实施例提供的一种混合式直流断路器合成试验方法的流程示意图;
图中,1-混合式高压直流断路器,2-第一充电电源,3-第二充电电源,4-快速机械开关,5-转移支路半导体开关,6-避雷器,7-主支路半导体开关。
具体实施方式
下面结合附图对本发明的实施例作进一步详细说明,应当理解,以下所说明的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例1
实施例1提供一种高电压大电流复合注入的直流断路器合成试验电路,所述直流断路器为混合式高压直流断路器;如图1,所述电路包括大电流试验回路、混合式高压直流断路器1和高电压试验回路;所述大电流试验回路和高电压试验回路均与混合式高压直流断路器1并联。在本实施例中所述大电流试验回路,配置为作为所述混合式直流短路器1的电流源,以模拟短路电流,以试验所述缓和式直流短路器1的电流通流能力。所述高压试验回路,配置为作为所述混合式直流短路器1的电压源,模拟换流站电压,对所述混合式直流短路器1进行电压耐受能力进行考验。
所述大电流试验回路和高电压试验回路均与混合式高压直流断路器1并联,形成正极公共连接点和负极公共连接点,所述负极公共连接点接地。
所述大电流试验回路包括第一充电电源2、机械隔离开关K1、低压电容C1、第一电感L1和第一晶闸管阀T1
所述机械隔离开关K1的一端连接第一充电电源2,其另一端连接第一电感L1和低压电容C1,所述第一电感L1的另一端连接第一晶闸管阀T1,所述第一晶闸管阀T1的另一端连接正极公共连接点,所述第一充电电源2的另一端和低压电容C1的另一端均连接负极公共连接点。
所述高电压试验回路包括第二充电电源3、机械隔离开关K2、高压电容C2、第二电感L2和第二晶闸管阀T2
所述机械隔离开关K2的一端连接第二充电电源3,其另一端连接第二电感L2和高压电容C2,所述第二电感L2的另一端连接第二晶闸管阀T2,所述第二晶闸管阀T2的另一端连接正极公共连接点,所述第二充电电源3的另一端和高压电容C2的另一端均连接负极公共连接点。
所述低压电容C1的容值大于高压电容C2的容值,所述第二电感L2的感值大于第一电感L2的感值。
所述第一晶闸管阀T1和第二晶闸管阀T2均由多个晶闸管串联构成。
如图2,所述混合式高压直流断路器1包括快速机械开关4、主支路半导体开关7、转移支路半导体开关5和避雷器6;
所述快速机械开关4与主支路半导体开关7串联后,与转移支路半导体开关5、避雷器6分别并联。
本发明实施例还提供一种采用所述的直流断路器合成试验电路进行高电压大电流复合注入的直流断路器合成试验方法,所述方法包括:
步骤1:在与混合式高压直流断路器1串联且靠近负极公共连接点的线路上安装电流传感器,并在混合式高压直流断路器1靠近正极公共连接点的线路上安装电压传感器;可选地,所述电流传感器采用全光纤电流传感器、分流器或罗氏线圈;所述电压传感器采用阻容分压器;
步骤2:混合式高压直流断路器1上电,其处于闭合状态,即混合式高压直流断路器1中的快速机械开关4、主支路半导体开关7、转移支路半导体开关5均处于闭合状态;
步骤3:t0时刻,闭合大电流试验回路中的机械隔离开关K1和高电压试验回路中的机械隔离开关K2
步骤4:t1时刻,启动大电流试验回路中的第一充电电源2和高电压试验回路中的第二充电电源3,第一充电电源2和第二充电电源3分别对低压电容C1和高压电容C2充电;
步骤5:t2时刻,低压电容C1和高压电容C2充电完成后,断开机械隔离开关K1和机械隔离开关K2
步骤6:t3时刻,触发第一晶闸管阀T1,低压电容C1经过第一电感L1放电,流过混合式高压直流断路器1的电流迅速上升;
步骤7:t4时刻,关断主支路半导体开关7;
步骤8:t5时刻,快速机械开关4电流下降到零,断开快速机械开关4;
步骤9:t6时刻,触发第二晶闸管阀T2,高压电容C2通过第二电感L2放电;
步骤10:t7时刻,关断转移支路半导体开关5,经过混合式高压直流断路器1电压迅速上升。
其中,t0<t1<t2<t3<t4<t5<t6<t7,第二晶闸管阀T2在转移支路半导体开关关断前触发,使得高电压试验回路的电压能够在混合式高压直流断路器暂态过电压结束后立即施加在混合式高压直流断路器上,保持电压波形的连续,以达到等效实际工况的目的。
如图3所示,通过时序配合,在混合式高压直流断路器分断试验过程中共同作用于混合式高压直流断路器。大电流试验回路在混合式高压直流断路器分断试验过程中,作为大电流源,模拟实际系统中的短路故障电流, 对混合式高压直流断路器的电流通流能力,电流分断能力进行考核。高电压试验回路在混合式高压直流断路器分断试验过程中,作为高电压源,模拟实际系统中的换流站电压,对混合式高压直流断路器的平台电压耐受能力进行考核。
实施例2
本实施例提供一种高电压大电流复合注入的直流断路器合成试验电路,所述直流断路器为混合式高压直流断路器;如图1,所述电路包括大电流试验回路、混合式高压直流断路器1和高电压试验回路;所述大电流试验回路和高电压试验回路均与混合式高压直流断路器1并联。
所述大电流试验回路和高电压试验回路均与混合式高压直流断路器1并联,形成正极公共连接点和负极公共连接点,所述负极公共连接点接地。
所述大电流试验回路包括第一充电电源2、机械隔离开关K1、低压电容C1、第一电感L1和第一晶闸管阀T1
所述机械隔离开关K1的一端连接第一充电电源2,其另一端连接第一电感L1和低压电容C1,所述第一电感L1的另一端连接第一晶闸管阀T1,所述第一晶闸管阀T1的另一端连接正极公共连接点,所述第一充电电源2的另一端和低压电容C1的另一端均连接负极公共连接点。
所述高电压试验回路包括第二充电电源3、机械隔离开关K2、高压电容C2、第二电感L2和第二晶闸管阀T2
所述机械隔离开关K2的一端连接第二充电电源3,其另一端连接第二电感L2和高压电容C2,所述第二电感L2的另一端连接第二晶闸管阀T2,所述第二晶闸管阀T2的另一端连接正极公共连接点,所述第二充电电源3的另一端和高压电容C2的另一端均连接负极公共连接点。
所述低压电容C1的容值大于高压电容C2的容值,所述第二电感L2的感值大于第一电感L2的感值。
所述第一晶闸管阀T1和第二晶闸管阀T2均由多个晶闸管串联构成。
如图5,所述混合式高压直流断路器1包括快速机械开关4、转移支路半导体开关5和避雷器6;
所述快速机械开关4和转移支路半导体开关5均与避雷器6并联。
本发明实施例还提供一种采用所述的直流断路器合成试验电路进行高电压大电流复合注入的直流断路器合成试验方法,所述方法包括:
步骤1:在与混合式高压直流断路器1串联且靠近负极公共连接点的线路上安装电流传感器,并在混合式高压直流断路器1靠近正极公共连接点的线路上安装电压传感器;可选地,所述电流传感器采用全光纤电流传感器、分流器或罗氏线圈;所述电压传感器采用阻容分压器;
步骤2:混合式高压直流断路器1上电,其处于闭合状态,即混合式高压直流断路器1中的快速机械开关4、转移支路半导体开关5均处于闭合状态;
步骤3:t0时刻,闭合大电流试验回路中的机械隔离开关K1和高电压试验回路中的机械隔离开关K2
步骤4:t1时刻,启动大电流试验回路中的第一充电电源2和高电压试验回路中的第二充电电源3,第一充电电源2和第二充电电源3分别对低压电容C1和高压电容C2充电;
步骤5:t2时刻,低压电容C1和高压电容C2充电完成后,断开机械隔离开关K1和机械隔离开关K2
步骤6:t3时刻,触发第一晶闸管阀T1,低压电容C1经过第一电感L1放电,流过混合式高压直流断路器1的电流迅速上升;
步骤7:t5时刻,断开快速机械开关4;
步骤8:t6时刻,触发第二晶闸管阀T2,试验电容C2通过第二电感L2放电;
步骤9:t7时刻,关断转移支路半导体开关5,经过混合式高压直流断路器1电压迅速上升。
其中t0<t1<t2<t3<t5<t6<t7,第二晶闸管阀T2在转移支路半导体开关关断前触发,使得高电压试验回路的电压能够在混合式高压直流断路器暂态过电压结束后立即施加在断路器上,保持电压波形的连续,以达到等效实际工况的目的。
如图6所示,通过时序配合,在混合式高压直流断路器分断试验过程中共同作用于混合式高压直流断路器。大电流试验回路在混合式高压直流断路器分断试验过程中,作为大电流源,模拟实际系统中的短路故障电流,对混合式高压直流断路器的电流通流能力,电流分断能力进行考核。高电压试验回路在混合式高压直流断路器分断试验过程中,作为高电压源,模拟实际系统中的换流站电压,对混合式高压直流断路器的平台电压耐受能力进行考核。
本发明实施例试验中所需的大电流和高电压分别由大电流试验回路和高电压试验回路提供,大电流试验回路电流大,但电压较低,高电压试验回路电压达到混合式高压直流断路器的额定电压,但输出电流小,从而减小了试验所需能量;第二晶闸管阀T2在转移支路半导体开关关断前触发,使得高电压试验回路的电压能够在断路器暂态过电压结束后立即施加在断路器上,保证了试验电压波形的连续;本发明提供的高电压大电流复合注入的直流断路器合成试验方法降低了试验实现的难度和成本。
实施例3:
如图8所示,本实施例提供一种混合式直流断路器合成试验方法,所述方法包括:
步骤S110:利用与所述混合式高压直流断路器并联的大电流试验回路,作为电流源向所述混合式高压直流断路器供电;
步骤S120:利用与所述混合式高压直流断路器并联的高压试验回路,作为电压源向所述混合式高压直流断路器供电;
步骤S130:分别检测所述混合式高压直流断路器上的电流和电压。
在本实施例中可以利用前述实施例中提供的高电压大电流复合注入的直流断路器合成试验电路,进行所述合成试验方法。在本实施例中值得注意的是,所述步骤S130是与同步步骤S110和步骤S120执行的。例如,所述分别利用电流表和电压表一值检测所述混合高压式高压直流短路器的电流和电压。
在一些实施例中,所述步骤S110可包括:闭合所述混合式高压直流断路器中的快速机械开关、主支路半导体开关及转移支路半导体开关;闭合大电流试验回路中的机械隔离开关K1和高电压试验回路中的机械隔离开关K2;启动大电流试验回路中的第一充电电源和所述高电压试验回路中的第二充电电源,第一充电电源和第二充电电源分别对低压电容C1和高压电容C2充电;低压电容C1和高压电容C2充电完成后,断开机械隔离开关K1和机械隔离开关K2;触发第一晶闸管阀T1,低压电容C1经过第一电感L1放电,流过混合式高压直流断路器的电流迅速上升;关断主支路半导体开关;快速机械开关电流下降到零,断开快速机械开关.
此外,所述步骤S120可包括:触发所述高压试验回路中的第二晶闸管阀T2,高压电容C2通过第二电感L2放电;关断所述转移支路半导体开关,经过所述混合式高压直流断路器电压迅速上升。
在另一些实施例中,所述步骤S110可包括:闭合所述混合式高压直流断路器中的快速机械开关、主支路半导体开关及转移支路半导体开关;触发所述高压试验回路的第二晶闸管阀T2,高压电容C2通过第二电感L2放电;闭合大电流试验回路中的机械隔离开关K1和高电压试验回路中的机械隔离开关K2;启动大电流试验回路中的第一充电电源和高电压试验回路中的第 二充电电源,第一充电电源和第二充电电源分别对低压电容C1和高压电容C2充电;低压电容C1和高压电容C2充电完成后,断开机械隔离开关K1和机械隔离开关K2;触发第一晶闸管阀T1,低压电容C1经过第一电感L1放电,流过混合式高压直流断路器的电流迅速上升;断开快速机械开关。
所述步骤S120可包括:触发所述高压试验回路的第二晶闸管阀T2,试验电容C2通过第二电感L2放电;关断转移支路半导体开关,经过混合式高压直流断路器电压迅速上升。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,凡按照本发明原理所作的修改,都应当理解为落入本发明的保护范围。

Claims (15)

  1. 一种高电压大电流复合注入的直流断路器合成试验电路,所述直流断路器为混合式高压直流断路器;所述电路包括大电流试验回路、混合式高压直流断路器和高电压试验回路;所述大电流试验回路和高电压试验回路均与混合式高压直流断路器并联。
  2. 根据权利要求1所述的高电压大电流复合注入的直流断路器合成试验电路,其中:所述大电流试验回路和高电压试验回路均与混合式高压直流断路器并联,形成正极公共连接点和负极公共连接点,所述负极公共连接点接地。
  3. 根据权利要求2所述的高电压大电流复合注入的直流断路器合成试验电路,其中:所述大电流试验回路包括第一充电电源、机械隔离开关K1、低压电容C1、第一电感L1和第一晶闸管阀T1
    所述机械隔离开关K1的一端连接第一充电电源,所述机械隔离开关K1的另一端连接第一电感L1和低压电容C1,所述第一电感L1的另一端连接第一晶闸管阀T1,所述第一晶闸管阀T1的另一端连接正极公共连接点,所述第一充电电源的另一端和低压电容C1的另一端均连接负极公共连接点。
  4. 根据权利要求3所述的高电压大电流复合注入的直流断路器合成试验电路,其中:所述高电压试验回路包括第二充电电源、机械隔离开关K2、高压电容C2、第二电感L2和第二晶闸管阀T2
    所述机械隔离开关K2的一端连接第二充电电源,所述机械隔离开关K2的另一端连接第二电感L2和高压电容C2,所述第二电感L2的另一端连接第二晶闸管阀T2,所述第二晶闸管阀T2的另一端连接正极公共连接点,所述第二充电电源的另一端和高压电容C2的另一端均连接负极公共连接点。
  5. 根据权利要求4所述的高电压大电流复合注入的直流断路器合成试验电路,其中:所述低压电容C1的容值大于高压电容C2的容值,所述第二 电感L2的感值大于第一电感L2的感值。
  6. 根据权利要求4所述的高电压大电流复合注入的直流断路器合成试验电路,其中:所述第一晶闸管阀T1和第二晶闸管阀T2均由多个晶闸管串联构成。
  7. 根据权利要求4所述的高电压大电流复合注入的直流断路器合成试验电路,其中:所述混合式高压直流断路器包括快速机械开关、主支路半导体开关、转移支路半导体开关和避雷器;
    所述快速机械开关与主支路半导体开关串联后,与转移支路半导体开关、避雷器分别并联。
  8. 根据权利要求4所述的高电压大电流复合注入的直流断路器合成试验电路,其中:所述混合式高压直流断路器包括快速机械开关、转移支路半导体开关和避雷器;
    所述快速机械开关和转移支路半导体开关均与避雷器并联。
  9. 一种混合式直流断路器合成试验方法,所述方法包括:
    利用与所述混合式高压直流断路器并联的大电流试验回路,作为电流源向所述混合式高压直流断路器供电;
    利用与所述混合式高压直流断路器并联的高压试验回路,作为电压源向所述混合式高压直流断路器供电;
    分别检测所述混合式高压直流断路器上的电流和电压。
  10. 根据权利要求9所述的方法,其中,
    所述利用与所述混合式高压直流断路器并联的大电流试验回路,作为电流源向所述混合式高压直流断路器供电,包括:
    闭合所述混合式高压直流断路器中的快速机械开关、主支路半导体开关及转移支路半导体开关;
    闭合大电流试验回路中的机械隔离开关K1和高电压试验回路中的机械 隔离开关K2
    启动大电流试验回路中的第一充电电源和所述高电压试验回路中的第二充电电源,第一充电电源和第二充电电源分别对低压电容C1和高压电容C2充电;
    低压电容C1和高压电容C2充电完成后,断开机械隔离开关K1和机械隔离开关K2
    触发第一晶闸管阀T1,低压电容C1经过第一电感L1放电,流过混合式高压直流断路器的电流迅速上升;
    关断主支路半导体开关;
    快速机械开关电流下降到零,断开快速机械开关。
  11. 根据权利要求10所述的方法,其中,
    所述利用与所述混合式高压直流断路器并联的高压试验回路,作为电压源向所述混合式高压直流断路器供电,包括:
    触发所述高压试验回路中的第二晶闸管阀T2,高压电容C2通过第二电感L2放电;
    关断所述转移支路半导体开关,经过所述混合式高压直流断路器电压迅速上升。
  12. 根据权利要求9所述的方法,其中,
    所述利用与所述混合式高压直流断路器并联的大电流试验回路,作为电流源向所述混合式高压直流断路器供电,包括:
    闭合所述混合式高压直流断路器中的快速机械开关、主支路半导体开关及转移支路半导体开关;
    触发所述高压试验回路的第二晶闸管阀T2,高压电容C2通过第二电感L2放电;
    闭合大电流试验回路中的机械隔离开关K1和高电压试验回路中的机械 隔离开关K2
    启动大电流试验回路中的第一充电电源和高电压试验回路中的第二充电电源,第一充电电源和第二充电电源分别对低压电容C1和高压电容C2充电;
    低压电容C1和高压电容C2充电完成后,断开机械隔离开关K1和机械隔离开关K2
    触发第一晶闸管阀T1,低压电容C1经过第一电感L1放电,流过混合式高压直流断路器的电流迅速上升;
    断开快速机械开关。
  13. 根据权利要求12所述的方法,其中,
    所述利用与所述混合式高压直流断路器并联的高压试验回路,作为电压源向所述混合式高压直流断路器供电,包括:
    触发所述高压试验回路的第二晶闸管阀T2,试验电容C2通过第二电感L2放电;
    关断转移支路半导体开关,经过混合式高压直流断路器电压迅速上升。
  14. 一种采用权利要求7所述的直流断路器合成试验电路进行高电压大电流复合注入的直流断路器合成试验方法,所述方法包括:
    步骤1:在与混合式高压直流断路器串联且靠近负极公共连接点的线路上安装电流传感器,并在混合式高压直流断路器靠近正极公共连接点的线路上安装电压传感器;
    步骤2:混合式高压直流断路器上电,所述混合式高压直流断路器处于闭合状态,其中,所述混合式高压直流断路器中的快速机械开关、主支路半导体开关、转移支路半导体开关均处于闭合状态;
    步骤3:t0时刻,闭合大电流试验回路中的机械隔离开关K1和高电压试验回路中的机械隔离开关K2
    步骤4:t1时刻,启动大电流试验回路中的第一充电电源和高电压试验回路中的第二充电电源,第一充电电源和第二充电电源分别对低压电容C1和高压电容C2充电;
    步骤5:t2时刻,低压电容C1和高压电容C2充电完成后,断开机械隔离开关K1和机械隔离开关K2
    步骤6:t3时刻,触发第一晶闸管阀T1,低压电容C1经过第一电感L1放电,流过混合式高压直流断路器的电流迅速上升;
    步骤7:t4时刻,关断主支路半导体开关;
    步骤8:t5时刻,快速机械开关电流下降到零,断开快速机械开关;
    步骤9:t6时刻,触发第二晶闸管阀T2,高压电容C2通过第二电感L2放电;
    步骤10:t7时刻,关断转移支路半导体开关,经过混合式高压直流断路器电压迅速上升。
  15. 一种采用权利要求8所述的直流断路器合成试验电路进行高电压大电流复合注入的直流断路器合成试验方法,所述方法包括以下步骤:
    步骤1:在与混合式高压直流断路器串联且靠近负极公共连接点的线路上安装电流传感器,并在混合式高压直流断路器靠近正极公共连接点的线路上安装电压传感器;
    步骤2:混合式高压直流断路器上电,所述混合式高压直流断路器处于闭合状态,其中,所述混合式高压直流断路器中的快速机械开关、转移支路半导体开关均处于闭合状态;
    步骤3:t0时刻,闭合大电流试验回路中的机械隔离开关K1和高电压试验回路中的机械隔离开关K2
    步骤4:t1时刻,启动大电流试验回路中的第一充电电源和高电压试验回路中的第二充电电源,第一充电电源和第二充电电源分别对低压电容C1 和高压电容C2充电;
    步骤5:t2时刻,低压电容C1和高压电容C2充电完成后,断开机械隔离开关K1和机械隔离开关K2
    步骤6:t3时刻,触发第一晶闸管阀T1,低压电容C1经过第一电感L1放电,流过混合式高压直流断路器的电流迅速上升;
    步骤7:t5时刻,断开快速机械开关;
    步骤8:t6时刻,触发第二晶闸管阀T2,试验电容C2通过第二电感L2放电;
    步骤9:t7时刻,关断转移支路半导体开关,经过混合式高压直流断路器电压迅速上升。
PCT/CN2016/098361 2015-10-29 2016-09-07 高电压大电流复合注入的直流断路器合成试验电路和方法 WO2017071413A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510724998.4A CN106646206B (zh) 2015-10-29 2015-10-29 高电压大电流复合注入的直流断路器合成试验电路和方法
CN201510724998.4 2015-10-29

Publications (1)

Publication Number Publication Date
WO2017071413A1 true WO2017071413A1 (zh) 2017-05-04

Family

ID=58630964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098361 WO2017071413A1 (zh) 2015-10-29 2016-09-07 高电压大电流复合注入的直流断路器合成试验电路和方法

Country Status (2)

Country Link
CN (1) CN106646206B (zh)
WO (1) WO2017071413A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107390120A (zh) * 2017-07-26 2017-11-24 国网河南省电力公司南阳供电公司 隔离开关机械负载智能带电测试装置及测试方法
CN108107353A (zh) * 2017-11-10 2018-06-01 淮北智淮科技有限公司 一种高压直流断路器检测系统
EP3315980A4 (en) * 2015-06-26 2019-02-20 Kabushiki Kaisha Toshiba, Inc. TEST METHOD FOR DC CONTINUOUS CIRCUIT BREAKER (DC)
CN111856180A (zh) * 2020-07-08 2020-10-30 北京电力设备总厂有限公司 用于抗高压隔离开关分合闸电磁干扰试验的装置及方法
CN112345836A (zh) * 2020-11-03 2021-02-09 中国人民解放军陆军工程大学 多芯线缆大电流注入等效强场辐射效应试验方法及系统
CN114062909A (zh) * 2021-07-12 2022-02-18 中国电力科学研究院有限公司 一种用于触发间隙开关的直流大电流通流试验回路
EP3975361A1 (en) * 2020-09-29 2022-03-30 Aptiv Technologies Limited Testing device, overcurrent protector, and method of testing an overcurrent protector

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108957303B (zh) * 2017-05-26 2020-08-25 许继电气股份有限公司 一种高压直流断路器电流耐受试验回路及方法
CN107526030A (zh) * 2017-07-05 2017-12-29 全球能源互联网研究院 一种高压直流断路器的合成试验装置和方法
CN107664745B (zh) * 2017-08-18 2020-02-21 全球能源互联网研究院有限公司 一种直流断路器试验设备
CN107728048B (zh) * 2017-09-05 2020-02-21 许继电气股份有限公司 一种混合型高压直流断路器试验系统
CN107884673A (zh) * 2017-10-31 2018-04-06 华中科技大学 一种直流熔断器大电流实验的装置
CN109031105A (zh) * 2018-06-12 2018-12-18 江苏启源雷宇电气科技有限公司 一种直流断路器电流开断实验平台
CN109061450B (zh) * 2018-06-19 2021-02-09 北京平高清大科技发展有限公司 一种直流断路器用机械开关的试验电路
CN110118929B (zh) * 2018-08-13 2021-01-22 清华大学 一种开断设备测试装置及测试方法
CN109061417B (zh) * 2018-08-22 2020-09-04 合肥航太电物理技术有限公司 一种基于高压冲击续流的长间隙强流放电系统
CN112698191B (zh) * 2020-11-30 2024-02-13 中国电力科学研究院有限公司 一种用于验证电力变压器切换开关性能的电路及方法
CN113777437B (zh) * 2021-11-15 2022-02-11 中国电力科学研究院有限公司 一种用于对特高压直流穿墙套管进行试验的系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126786A (zh) * 2007-09-21 2008-02-20 中国电力科学研究院 晶闸管投切电容器高压阀试验装置及方法
CN201926741U (zh) * 2010-12-01 2011-08-10 中国电力科学研究院 一种高压直流输电换流阀合成试验装置
US20120153963A1 (en) * 2010-12-17 2012-06-21 Peter Michael Tyler Testing of a transient voltage protection device
CN102687221A (zh) * 2009-11-16 2012-09-19 Abb技术有限公司 使输电线路或配电线路的电流断路的装置和方法以及限流布置
CN103278758A (zh) * 2013-04-19 2013-09-04 国家电网公司 一种大功率晶闸管关断特性测试方法及其测试装置
CN104535923A (zh) * 2014-12-27 2015-04-22 中国西电电气股份有限公司 一种用于直流断路器开断性能检测的试验回路及试验方法
CN104900444A (zh) * 2015-06-26 2015-09-09 华北电力大学 直流断路器的拓扑结构及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059891A (ja) * 2013-09-20 2015-03-30 株式会社東芝 直流遮断器の試験装置及び直流遮断器の試験装置による試験方法
CN104767171B (zh) * 2014-01-06 2018-01-19 国家电网公司 一种高压直流断路器及其实现方法
CN103997322A (zh) * 2014-05-27 2014-08-20 西安交通大学 一种全固态直流断路器及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126786A (zh) * 2007-09-21 2008-02-20 中国电力科学研究院 晶闸管投切电容器高压阀试验装置及方法
CN102687221A (zh) * 2009-11-16 2012-09-19 Abb技术有限公司 使输电线路或配电线路的电流断路的装置和方法以及限流布置
CN201926741U (zh) * 2010-12-01 2011-08-10 中国电力科学研究院 一种高压直流输电换流阀合成试验装置
US20120153963A1 (en) * 2010-12-17 2012-06-21 Peter Michael Tyler Testing of a transient voltage protection device
CN103278758A (zh) * 2013-04-19 2013-09-04 国家电网公司 一种大功率晶闸管关断特性测试方法及其测试装置
CN104535923A (zh) * 2014-12-27 2015-04-22 中国西电电气股份有限公司 一种用于直流断路器开断性能检测的试验回路及试验方法
CN104900444A (zh) * 2015-06-26 2015-09-09 华北电力大学 直流断路器的拓扑结构及其控制方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315980A4 (en) * 2015-06-26 2019-02-20 Kabushiki Kaisha Toshiba, Inc. TEST METHOD FOR DC CONTINUOUS CIRCUIT BREAKER (DC)
CN107390120A (zh) * 2017-07-26 2017-11-24 国网河南省电力公司南阳供电公司 隔离开关机械负载智能带电测试装置及测试方法
CN108107353A (zh) * 2017-11-10 2018-06-01 淮北智淮科技有限公司 一种高压直流断路器检测系统
CN111856180A (zh) * 2020-07-08 2020-10-30 北京电力设备总厂有限公司 用于抗高压隔离开关分合闸电磁干扰试验的装置及方法
CN111856180B (zh) * 2020-07-08 2022-11-08 北京电力设备总厂有限公司 用于抗高压隔离开关分合闸电磁干扰试验的装置及方法
EP3975361A1 (en) * 2020-09-29 2022-03-30 Aptiv Technologies Limited Testing device, overcurrent protector, and method of testing an overcurrent protector
US11418020B2 (en) 2020-09-29 2022-08-16 Aptiv Technologies Limited Testing device, overcurrent protector, and method of testing an overcurrent protector
CN112345836A (zh) * 2020-11-03 2021-02-09 中国人民解放军陆军工程大学 多芯线缆大电流注入等效强场辐射效应试验方法及系统
CN112345836B (zh) * 2020-11-03 2022-11-01 中国人民解放军陆军工程大学 多芯线缆大电流注入等效强场辐射效应试验方法及系统
CN114062909A (zh) * 2021-07-12 2022-02-18 中国电力科学研究院有限公司 一种用于触发间隙开关的直流大电流通流试验回路
CN114062909B (zh) * 2021-07-12 2023-12-01 中国电力科学研究院有限公司 一种用于触发间隙开关的直流大电流通流试验回路

Also Published As

Publication number Publication date
CN106646206B (zh) 2019-11-08
CN106646206A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2017071413A1 (zh) 高电压大电流复合注入的直流断路器合成试验电路和方法
CN105807214B (zh) 一种高压直流断路器分断试验装置及其试验方法
US8339153B2 (en) Fault current test equipment of direct current thyristor valve
CN106771947A (zh) 一种用于igbt浪涌电流的检测电路及其检测方法
CN201075124Y (zh) 直流换流阀恢复期间暂态正向电压试验装置
CN202393844U (zh) 功率模块测试装置
CN101854075A (zh) 一种灭弧混合切换开关及开关切换方法
CN107834505B (zh) 限流式自充电型人工过零高压直流断路器及其开断方法
WO2019007323A1 (zh) 一种高压直流断路器的合成试验装置和方法
CN105680411A (zh) 直流固态断路器及断路控制方法
CN108169666A (zh) 一种大电流关断特性测试装置
CN109188251B (zh) 一种故障限流器试验电路和控制方法
CN108196177B (zh) 一种半导体组件性能测试系统
CN201819973U (zh) 一种用于高压断路器关合试验的装置
CN107179497B (zh) 柔性直流换流阀和直流断路器的合成试验装置及试验方法
CN205657584U (zh) 一种两级放电装置及变频器
CN102213740B (zh) 停电状态下单侧电源中高压电力线路故障检测方法及系统
Tan et al. Development of solid state arc-free socket for DC distribution system
CN209454592U (zh) 电池包的保护控制电路
CN217282209U (zh) 电流互感器开路保护装置
CN206975126U (zh) 一种高压大容量电力电容器短路试验装置
CN206193140U (zh) 空心电抗器匝间短路试验电路
CN105356434A (zh) 一种新型桥式固态故障电流限制器及其使用方法
CN109061417A (zh) 一种基于高压冲击续流的长间隙强流放电系统
CN209231489U (zh) 一种老化测试仪控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16858849

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/10/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16858849

Country of ref document: EP

Kind code of ref document: A1