CN107834505B - 限流式自充电型人工过零高压直流断路器及其开断方法 - Google Patents

限流式自充电型人工过零高压直流断路器及其开断方法 Download PDF

Info

Publication number
CN107834505B
CN107834505B CN201711085730.6A CN201711085730A CN107834505B CN 107834505 B CN107834505 B CN 107834505B CN 201711085730 A CN201711085730 A CN 201711085730A CN 107834505 B CN107834505 B CN 107834505B
Authority
CN
China
Prior art keywords
current
charging
module
cut
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711085730.6A
Other languages
English (en)
Other versions
CN107834505A (zh
Inventor
王建华
杨騉
葛瀚明
刘思远
刘志远
耿英三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201711085730.6A priority Critical patent/CN107834505B/zh
Publication of CN107834505A publication Critical patent/CN107834505A/zh
Application granted granted Critical
Publication of CN107834505B publication Critical patent/CN107834505B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/023Current limitation using superconducting elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

本发明公开了一种限流式自充电型人工过零高压直流断路器及其开断方法,该断路器包括限流模块、直流开断模块及充电模块;限流模块由超导限流单元实现;直流开断模块包括换流电容、放电转换开关和换流电感线圈以及机械开关;充电模块由充电转换开关实现;本发明的核心在于短路故障发生时,超导限流单元限制了短路电流的增长,同时通过超导限流单元与换流电容的并联,利用超导失超过程中承受电压实现换流电容的自充电,消除了充电设备可靠性对开断可靠性的不利影响;本发明可节约预充电设备的成本,提高开断容量以及开断设备的工作可靠性。

Description

限流式自充电型人工过零高压直流断路器及其开断方法
技术领域
本发明涉及电力系统断路器,具体涉及一种限流式自充电型人工过零高压直流断路器及其开断方法。
背景技术
柔性直流输电技术是构建灵活、坚强、高效电网和充分利用可再生能源的有效途径,代表着直流输电的未来发展方向。柔性直流电网的直流侧发生短路故障时,直流侧阻抗小,换流器直流侧的电容通过短路点直接放电,短路电流会在数毫秒内达到峰值,其上升速率与峰值均远远强于同规模交流电网。同时,当系统直流侧发生故障以后,即使换流器内部的绝缘栅双极型晶体管(IGBT)通过自保护功能而立即关断,但是由于续流二极管的存在,关断以后构成一个不控整流桥,仍然无法实现直流故障的自清除,故障电流将一直存在。因此,柔性直流输电的发展依赖于直流开断技术,对直流断路器的开断能力和工作可靠性提出了更高要求。
现有直流断路器类型主要有固态断路器,混合式断路器以及振荡式机械断路器。固态开关分断速度快,但是通态损耗大,且成本相对较高,多用于中低压直流系统;混合式开关具有通态损耗小,开断速度快,对机械开关要求低等优点,但混合式开关需要大量电力电子器件串并联,设备成本和可靠性受到了限制;自激振荡机械断路器的开断时间长达数十毫秒,无法满足柔性直流输电对于开断速度的要求;他激振荡结构通过预充电电容与电感产生的反向高频振荡电流与主回路机械开关中的直流故障电流叠加以产生“人工过零点”,从而熄灭电弧,开断短路电流,这种方法开断速度有所保证,开断能力较强,但是需要外部充电装置在开断前对电容预充电,因而其开断可靠性受到了充电装置可靠性的制约。现有专利“一种自动充电型强制过零高压直流断路器”(201520829707.3),该专利通过增设耦合电感,利用燃弧时电流变化特性对电容实现自充电,而本专利则通过超导限流单元和转换开关同时实现限流和换流电容的自充电。
发明内容
针对现有方法的不足,本发明提供一种限流式自充电型人工过零高压直流断路器及其开断方法,本发明通过超导限流单元实现先限流后开断,并利用超导限流时产生的端电压对换流电容进行充电,旨在解决现有技术中开断能力不足以及预充电装置可靠性的技术问题。
为了达到上述目的,本发明采用下述技术方案实现:
一种限流式自充电型人工过零高压直流断路器,由限流模块I、直流开断模块II及充电模块III构成;所述限流模块I由超导限流单元11实现;所述直流开断模块II由换流电容22、放电转换开关23和换流电感线圈24依次串联构成的换流支路与机械开关21构成的通流支路并联组成;所述充电模块III由充电转换开关31实现。其中,限流模块I与直流开断模块II依次连接,充电模块III将限流模块I与直流开断模块II的换流电容22连接起来。
电网稳定运行时,超导限流单元11处于超导态,机械开关21和充电转换开关31处于闭合状态,放电转换开关23处于打开状态,此时换流电容两端电位相等,电压为零。当短路故障发生时,所述超导限流单元11失超,限制短路电流增长,且两端产生电压,超导限流单元11通过所述充电开关31实现与所述换流电容22的并联,并为换流电容22自动充电;充电完成后,所述充电转换开关31打开,使所述换流电容22解除与所述超导限流单元11的并联关系;随后所述机械开关21触头拉开,电弧出现;此时所述放电转换开关23闭合,使所述换流电容22通过所述换流电感线圈24放电,放电电流与故障电流反向叠加并产生电流零点,所述机械开关熄弧,切断短路电流。
与现有技术比,本发明达到的有益效果是:
通过所述限流充电模块I实现了限制短路电流以及所述换流电容的自充电,无需在切断故障电流前对所述换流电容22预充电,降低了对开断设备的要求,节约了预充电设备的成本,提高了开断容量以及开断设备的工作可靠性。
附图说明
图1为本发明限流式自充电型人工过零高压直流断路器的原理框图。
图2为本发明限流式自充电型人工过零高压直流断路器的具体电路图。
图3为本发明限流式自充电型人工过零高压直流断路器开断结果图。
具体实施方法
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图对本发明的具体实施方式作进一步详细说明。
如图1所示,本发明一种限流式自充电型人工过零高压直流断路器,由限流模块I、直流开断模块II及充电模块III构成;限流模块I由超导限流单元11实现;直流开断模块II由换流电容22、放电转换开关23和换流电感线圈24依次串联构成的换流支路与机械开关21构成的通流支路并联组成;充电模块III由充电转换开关31实现。其中,限流模块I与直流开断模块II依次连接,充电模块III将限流模块I与直流开断模块II的换流电容22连接起来。
具体实施案例:如图2所示为10kV下开断过程仿真电路,对所述直流断路器开断直流短路故障进行仿真。短路故障发生时,超导限流器SFCL失超呈现电阻态,限制短路电流的增长,此时充电转换开关S1处于闭合状态,放电转换开关S2处于打开状态,换流电容C并联在限流器两端,限流器向电容C充电。C充电完毕后,充电转换开关S1打开,解除换流电容C与限流器的并联关系。随后机械开关S3触头拉开,电弧产生,此时放电转换开关S2闭合,换流电容通过换流电感线圈向机械开关所在回路放电,放电电流与短路电流叠加产生人工过零点,使电弧熄灭,完成开断。
图3所示为10kV下开断过程仿真结果。可以看出,采用本发明的断路器结构与开断措施,在短路电流的上升阶段,限流器将峰值为47kA的预期短路电流限制到4.5kA以下,且在限流的同时换流电容C已被充电至电源电压10kV。在短路发生后3ms,充电转换开关S1打开,电容充电停止;5ms时,机械开关触头拉开,电弧产生,由于电弧电压远小于系统电压,因此波形未见明显变化,此时在限流器的限流保护下,短路电流维持在2.5kA水平;10ms时,放电转换开关S2闭合,换流电容C通过换流电感线圈L产生峰值为3kA的反向电流,使机械开关所在回路出现过零点,机械开关将电弧熄灭,主回路电流转移至换流电容C所在支路;当换流电容C两端电压与电源相同时,开断过程结束。

Claims (2)

1.一种限流式自充电型人工过零高压直流断路器的开断方法,所述限流式自充电型人工过零高压直流断路器由限流模块(I)、直流开断模块(II)及充电模块(III)构成;所述限流模块(I)由超导限流单元(11)实现;所述直流开断模块(II)由换流电容(22)、放电转换开关(23)和换流电感线圈(24)依次串联构成的换流支路与机械开关(21)构成的通流支路并联组成;所述充电模块(III)由充电转换开关(31)实现;其中,限流模块(I)与直流开断模块(II)依次连接,充电模块(III)将限流模块(I)与直流开断模块(II)的换流电容(22)连接起来;
其特征在于:所述开断方法为:电网稳定运行时,超导限流单元(11)处于超导态,机械开关(21)和充电转换开关(31)处于闭合状态,放电转换开关(23)处于打开状态,此时换流电容(22)两端电位相等,电压为零;当短路故障发生时,所述超导限流单元(11)失超,限制短路电流增长,且两端产生电压,超导限流单元(11)通过所述充电开关(31)实现与所述换流电容(22)的并联,并为换流电容(22)自动充电;充电完成后,所述充电转换开关(31)打开,使所述换流电容(22)解除与所述超导限流单元(11)的并联关系;随后所述机械开关(21)触头拉开,电弧出现;此时所述放电转换开关(23)闭合,使所述换流电容(22)通过所述换流电感线圈(24)放电,放电电流与故障电流反向叠加并产生电流零点,所述机械开关(21)熄弧,切断短路电流。
2.根据权利要求1所述的开断方法,其特征在于:利用所述超导限流单元(11)限制短路电流,同时通过超导限流单元(11)与直流开断模块(II)中换流支路的换流电容(22)的并联,利用超导失超过程中承受电压实现换流电容(22)的自充电,消除了充电设备可靠性对开断可靠性的不利影响。
CN201711085730.6A 2017-11-07 2017-11-07 限流式自充电型人工过零高压直流断路器及其开断方法 Active CN107834505B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711085730.6A CN107834505B (zh) 2017-11-07 2017-11-07 限流式自充电型人工过零高压直流断路器及其开断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711085730.6A CN107834505B (zh) 2017-11-07 2017-11-07 限流式自充电型人工过零高压直流断路器及其开断方法

Publications (2)

Publication Number Publication Date
CN107834505A CN107834505A (zh) 2018-03-23
CN107834505B true CN107834505B (zh) 2019-03-12

Family

ID=61654625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711085730.6A Active CN107834505B (zh) 2017-11-07 2017-11-07 限流式自充电型人工过零高压直流断路器及其开断方法

Country Status (1)

Country Link
CN (1) CN107834505B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449892B (zh) * 2018-10-17 2019-12-27 天津大学 一种直流系统分散电容配置的故障限流方法
CN111244909B (zh) * 2020-01-17 2021-08-27 西安交通大学 一种模块化的机械式直流断路器及其开断方法
CN111817274A (zh) * 2020-07-18 2020-10-23 西安交通大学 借助限流设备电压充电方式的气体直流断路器及工作方法
CN113612192B (zh) * 2021-07-19 2022-05-06 西安交通大学 一种基于超导限流的自适应式真空强迫过零直流开断方法
CN114629077A (zh) * 2021-12-14 2022-06-14 浙江大学 高速真空直流限流断路器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219698B (zh) * 2013-02-06 2015-05-20 西安交通大学 一种混合式直流断路器

Also Published As

Publication number Publication date
CN107834505A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
CN107834505B (zh) 限流式自充电型人工过零高压直流断路器及其开断方法
CN103346528A (zh) 一种基于电力电子复合开关的限流式混合直流断路器
CN108448548B (zh) 一种基于预充电电容的组合式直流断路器及其控制方法
CN104900444A (zh) 直流断路器的拓扑结构及其控制方法
CN108335947B (zh) 抗容性负载大电流冲击型直流继电器
CN111478280A (zh) 一种基于电容换流的固态式直流断路器
CN113299505B (zh) 一种混合限流开断直流断路器
CN104980137A (zh) 一种强迫换流型全固态高速直流断路器和换流开关
CN113964788A (zh) 一种双向直流断路器及开断方法
CN203387155U (zh) 基于电力电子复合开关的限流式混合直流断路器
CN105680411A (zh) 直流固态断路器及断路控制方法
CN103633631A (zh) 一种高压超导限流直流断路器的开断方法
CN108092243B (zh) 一种电容缓冲型混合式直流断路器
CN205489519U (zh) 高电压大功率直流断路器
CN210297244U (zh) 一种快速直流开关
CN110311354B (zh) 一种中压大容量混合直流断路器及限流分断方法
CN202276128U (zh) 一种谐振型直流固态断路器
CN116706854A (zh) 一种具有双向分断限制短路电流的断路器
CN116613712A (zh) 一种基于晶闸管的低压直流混合式断路器及其控制方法
CN116505495A (zh) 基于电容自然充电换向的混合式直流断路器及其工作方法
CN116316465A (zh) 适用于直流互联的限流型断路器及其故障清除方法
CN207572949U (zh) 一种双向无弧型混合直流断路器
CN207124475U (zh) 储能系统
CN202917995U (zh) 一种适用于高压大容量交直流输配电系统的复合型全控固态开关
CN212137266U (zh) 一种基于电容换流的固态式直流断路器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant