WO2017071372A1 - Robot ayant une fonction de retour automatique de charge, système et procédé correspondant - Google Patents

Robot ayant une fonction de retour automatique de charge, système et procédé correspondant Download PDF

Info

Publication number
WO2017071372A1
WO2017071372A1 PCT/CN2016/095496 CN2016095496W WO2017071372A1 WO 2017071372 A1 WO2017071372 A1 WO 2017071372A1 CN 2016095496 W CN2016095496 W CN 2016095496W WO 2017071372 A1 WO2017071372 A1 WO 2017071372A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
robot
charging base
captured
host
Prior art date
Application number
PCT/CN2016/095496
Other languages
English (en)
Chinese (zh)
Inventor
吴坚
Original Assignee
深圳拓邦股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳拓邦股份有限公司 filed Critical 深圳拓邦股份有限公司
Publication of WO2017071372A1 publication Critical patent/WO2017071372A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to the field of artificial intelligence, and more particularly to a robot with an automatic return charging function
  • Infrared positioning although high precision, is because this kind of light can't penetrate the object, so that the infrared light can only be positioned within the line of sight. Just like the infrared light used in our TV remote control, if something is blocked, it will be lost. The signal.
  • it often works in dusty environments. Some dust debris can easily interfere with the infrared receiving window on the fuselage, and infrared rays are easily interfered with indoor fluorescent lamps during transmission, so there will be intelligence. The vacuum cleaner cannot find the charging base.
  • Ultrasonic waves mainly locate objects by reflective ranging, similar to bats calculating the distance between an object and itself by triangulation, and ultrasonic ranging is multipath. Effect and non-line-of-sight propagation have a great influence on the manufacturing cost of the circuit. Currently, few robot vacuum cleaners use this principle.
  • Bluetooth is positioned by measuring the strength of the model, its power is relatively low, the positioning system made by Bluetooth is relatively small, very easy to integrate in the automatic sweeper circuit, using this technology It is not easily affected by the line of sight, that is, it can be positioned within a straight line even if obstacles are blocked.
  • the technical problem to be solved by the present invention is to provide a robot, a system and a corresponding method with an automatic return charging function, based on intelligent analysis of a preset identifier, finding a charging base, close to alignment, It is now automatically charged.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a robot having an automatic return charging function, comprising a robot host, wherein the robot host is provided with a rechargeable battery, a charging unit, and a driving unit; :
  • a camera is disposed on the robot host, and is configured to capture a preset identifier that is set in association with an external charging base, and the charging base can cooperate with the charging unit to implement a charging function;
  • the processor is connected to the camera, receives shooting information output by the camera, and determines a direction and a distance of the charging base according to the captured preset identifier, and sends a control command to the charging device after charging
  • the driving unit further controls the robot host to approach the charging base until the charging base cooperates with the charging unit to implement a charging function.
  • the processor comprises:
  • an image analysis processing module configured to receive the shooting information output by the camera, and perform analysis to determine deviation angle data of the robot host and the charging base according to the length and width distortion of the captured preset identifier And outputting the off-angle data, and outputting the photographing information when the length-width distortion is minimum;
  • a control module in communication with the graphic analysis processing module and the robot host, configured to receive the off-angle data output by the image analysis processing module, and send a control command to the driving unit to control the The robot main body approaches the charging base.
  • the camera is provided with a communication module for receiving a user instruction and forwarding the user instruction to the processor.
  • the communication module is a WIFI module.
  • the processor further includes:
  • a matching module configured to receive the shooting information output by the image analysis processing module, and match the shooting information with pre-stored charging base related scene information, when the shooting information is related to a pre-stored charging base Information fitting ⁇ , controlling the charging unit to cooperate with the charging base to start charging;
  • a calculation module in communication with the image analysis processing module and the matching module, configured to receive the The shooting information output by the image analysis processing module calculates an area of the captured preset identifier in the captured image, and calculates the robot host and the charging according to the area of the captured preset identifier in the captured image.
  • the distance of the pedestal when the distance reaches a preset distance ⁇ , outputting the shooting information to the matching module, and controlling the matching module to start working.
  • the present invention also provides a system having an automatic return charging function, including a charging base and the above-described robot having an automatic return charging function, and the charging base is provided with a preset identification.
  • the present invention also provides a method for automatically returning charging, comprising the following steps:
  • S100 capturing a preset identifier that is set in association with an external charging base
  • S200 Determine a direction and a distance of the charging base according to the captured preset identifier, and control the robot host to approach the charging base until the charging base cooperates with the charging unit to implement a charging function. .
  • the step S200 includes the following steps:
  • S210 Determine deviation angle data of the robot host and the charging base according to the length and width distortion of the captured preset identifier.
  • S220 Control the robot host to approach the charging base according to the deviation angle data.
  • the step S200 further includes the following steps:
  • the present invention has the following beneficial effects: the camera captures a preset identifier set in association with an external charging base, and the processor determines a direction and a distance of the charging base according to the captured preset identifier, and controls the The robot host approaches the charging base until the charging base cooperates with the charging unit to implement a charging function; based on intelligent analysis of the preset identification, the charging base is found, and the alignment is aligned , to achieve automatic charging.
  • FIG. 1 is a schematic block diagram of a robot having an automatic return charging function according to the present invention
  • FIG. 2 is a flow chart 1 of a method for automatically returning charging according to the present invention
  • FIG. 3 is a flow chart 2 of the method for automatically returning charging according to the present invention.
  • FIG. 4 is a third flowchart of a method for automatically returning charging according to the present invention.
  • the robot having the automatic return charging function includes the robot host 100, the camera 200, and the processor 300.
  • the robot main body 100 is provided with a rechargeable battery, a charging unit, and a driving unit.
  • the camera 200 is disposed on the robot host 100 for capturing a preset identifier set in association with an external charging base, and the charging base can cooperate with the charging unit to implement a charging function.
  • the preset identifier may be text information that is easy to recognize by the image, two-dimensional code information, or other shape identification symbols.
  • the processor 300 is connected to the camera 200, receives the shooting information output by the camera 200, determines the direction and distance of the charging base according to the captured preset identifier, and sends a control command to the driving unit after charging is required, and then The robot host 100 is controlled to approach the charging base until the charging base cooperates with the charging unit to implement the charging function.
  • the processor 300 includes: an image analysis processing module 310, and a control module 320.
  • the image analysis processing module 310 is configured to receive the shooting information output by the camera 200, and perform analysis to determine the deviation angle data of the robot host 100 and the charging base according to the length and width distortion of the captured preset identifier, and the deviation angle is obtained.
  • the data is output, and the shooting information is output when the length and width distortion of the captured preset mark is the smallest. Wherein, when the length and width distortion of the preset mark taken is the smallest, the robot host 100 is regarded as facing the charging base.
  • the control module 320 is communicatively coupled to the graphics analysis processing module and the robot host 100, and configured to receive the off-angle data output by the image analysis processing module 310, and send a control command to the driving unit to control the robot.
  • the host 100 approaches the charging base.
  • a communication module 400 is disposed in the camera 200 for receiving user instructions and forwarding the user instructions to the processor 300.
  • the processor 300 sends a control command to the driving unit according to the received user command, and controls the robot host 100 to approach the charging base, when the robot host 100 appears at the charging base.
  • the camera 200 can capture the preset identifier associated with the charging base, and the processor 300 can automatically control the robot host 100 to approach the charging base.
  • the processor 300 also sends a signal to the user terminal to inform the user that the robot can automatically return to the charging base.
  • the user can continue to send commands to the robot to control the robot to approach the charging base.
  • users can remotely and visually control the robot through terminals such as mobile phones and computers.
  • the communication module 400 is a WIFI module.
  • the processor 300 further includes: a matching module 330, and a computing module 340.
  • the matching module 330 is configured to receive the shooting information output by the image analysis processing module 310, and match the shooting information with the pre-stored charging base related scene information, and when the shooting information is matched with the pre-stored charging base related scene information,
  • the robot host 100 is just tightly coupled with the charging base, and controls the charging unit to cooperate with the charging base to start charging.
  • the calculation module 340 is communicatively coupled to the image analysis processing module 310 and the matching module 330 for receiving the shooting information output by the image analysis processing module 310, and calculating the area of the captured preset identifier in the image captured by the camera 200, and Calculating the distance between the robot host 100 and the charging base according to the area of the captured preset identifier in the captured image.
  • the shooting information is output to the matching module 330, and the control matching module 330 starts working. .
  • the present invention also provides a system having an automatic return charging function, the system comprising a charging base and the above-described robot having an automatic return charging function, and the charging base is provided with a preset identification.
  • the present invention also provides a method for automatically returning to charging, as shown in FIG. 2, comprising the following steps:
  • S100 Capture a preset identifier that is set in association with an external charging base. This step is performed by the camera 200.
  • step S200 Determine a direction and a distance of the charging base according to the captured preset identifier, and control the robot host (100) to approach the charging base until the charging base cooperates with the charging unit to implement a charging function. This step is performed by the processor 300. [0050] Further, step S200 is as shown in FIG. 3, and includes the following steps:
  • S210 Determine deviation angle data of the robot host 100 and the charging base according to the length and width distortion of the captured preset identifier. Specifically, this step is performed by the image analysis processing module 310 of the processor 300, and the same image analysis processing module 310 outputs the off-angle data to the control module 320.
  • S220 Control the robot host 100 to approach the charging base according to the deviation angle data. This step is performed by control module 320 of processor 300.
  • step S200 is as shown in FIG. 4, and further includes the following steps:
  • S201 when the length and width distortion are the smallest, calculate an area of the captured preset identifier in the captured image, and calculate the robot host 100 and the charging base according to the area of the captured preset identifier in the captured image. the distance. This step is performed by computing module 340 of processor 300.
  • the present invention captures a preset identifier of the external charging base through the camera 200, and the processor 300 calculates a deviation angle between the robot host 100 and the charging base according to the length and width distortion of the captured preset identifier.
  • the data control robot host 100 approaches the charging base.
  • the robot host 100 is regarded as facing the charging base, and the captured preset mark is calculated at the camera 20 0.
  • the area in the shooting picture calculates the distance between the robot host 100 and the charging base.
  • the shooting information is matched with the pre-stored charging base related scene information to achieve the best fit.
  • the host 100 is closely coupled with the charging base, and controls the charging unit to cooperate with the charging base to start charging. The whole process is based on the intelligent analysis of the preset identification, finding the charging base, close to the alignment, close contact, and automatic charging.
  • the present invention uses a high-definition webcam as an automatic return charging base, which can greatly improve the accuracy of recognition. By identifying the preset identifier, more information in the scene can be acquired, and multiple charging can be identified in the same venue. Dock, find the charging dock that suits you.
  • the high-definition camera is not only a visual device of the robot, but also enables the user to operate the robot by remotely and visually recognizing the robot through the internet network using a mobile phone.
  • the robot of the invention can be applied to a smart sweeper.

Abstract

L'invention porte sur un robot ayant une fonction de retour automatique de charge, un système et un procédé correspondant. Le robot comprend un hôte de robot (100), une caméra (200) et un processeur (300). Une batterie rechargeable, une unité de charge et une unité d'entraînement sont montées dans l'hôte de robot (100). La caméra (200) est disposée sur l'hôte de robot (100) et est utilisée pour prendre une vue d'un identifiant prédéterminé agencé pour correspondre à une base de charge externe, laquelle base de charge peut coopérer avec l'unité de charge pour réaliser une fonction de charge. Le processeur (300) est connecté à la caméra (200) pour recevoir les informations de prise de vue fournies en sortie par la caméra (200), détermine la direction de la base de charge et la distance jusqu'à cette dernière selon l'identifiant prédéterminé ayant fait l'objet de la prise de vue, et envoie une instruction de commande à l'unité d'entraînement lorsqu'une charge est nécessaire, de sorte que l'hôte de robot (100) est commandé pour s'approcher de la base de charge jusqu'à ce que la fonction de charge soit réalisée par la base de charge coopérant avec l'unité de charge. Selon le robot, le système et le procédé correspondant, sur la base d'une analyse intelligente d'un identifiant prédéterminé, une base de charge est recherchée et est approchée en vue d'un alignement, de manière à réaliser une charge automatique.
PCT/CN2016/095496 2015-10-26 2016-08-16 Robot ayant une fonction de retour automatique de charge, système et procédé correspondant WO2017071372A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510702936.3 2015-10-26
CN201510702936.3A CN105242670B (zh) 2015-10-26 2015-10-26 具有自动返回充电功能的机器人、系统及对应方法

Publications (1)

Publication Number Publication Date
WO2017071372A1 true WO2017071372A1 (fr) 2017-05-04

Family

ID=55040346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095496 WO2017071372A1 (fr) 2015-10-26 2016-08-16 Robot ayant une fonction de retour automatique de charge, système et procédé correspondant

Country Status (2)

Country Link
CN (1) CN105242670B (fr)
WO (1) WO2017071372A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108303984A (zh) * 2018-02-27 2018-07-20 弗徕威智能机器人科技(上海)有限公司 一种移动机器人的自主回充方法
CN109991969A (zh) * 2017-12-29 2019-07-09 周秦娜 一种基于深度传感器的机器人自动返航的控制方法及装置
TWI682258B (zh) * 2017-09-25 2020-01-11 大陸商深圳洛克時代科技有限公司 自主移動機器人及其尋樁方法、控制裝置以及智能清潔系統
TWI689801B (zh) * 2017-09-25 2020-04-01 大陸商深圳洛克時代科技有限公司 自主移動機器人及其尋樁方法、控制裝置以及智能清潔系統
CN112180989A (zh) * 2020-09-30 2021-01-05 苏州盈科电子有限公司 一种机器人充电方法及装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242670B (zh) * 2015-10-26 2019-01-22 深圳拓邦股份有限公司 具有自动返回充电功能的机器人、系统及对应方法
CN107153131A (zh) * 2016-03-06 2017-09-12 李志刚 一种双稳态电能表信号接插件
CN105674991A (zh) * 2016-03-29 2016-06-15 深圳市华讯方舟科技有限公司 一种机器人定位方法和装置
CN105910599A (zh) * 2016-04-15 2016-08-31 深圳乐行天下科技有限公司 机器人设备及其定位目标物方法
CN106153059B (zh) * 2016-07-01 2019-05-31 北京云迹科技有限公司 基于视觉标识对接充电装置的方法
CN107703933B (zh) * 2016-08-09 2021-07-06 深圳光启合众科技有限公司 机器人的充电方法、装置和设备
CN106308685B (zh) * 2016-08-23 2019-10-11 北京小米移动软件有限公司 清洁机器人及其控制方法
CN106444777B (zh) * 2016-10-28 2019-12-17 北京进化者机器人科技有限公司 机器人自动回位充电方法和系统
CN107392962A (zh) * 2017-08-14 2017-11-24 深圳市思维树科技有限公司 一种基于图案识别的机器人充电对接系统和方法
CN107745648A (zh) * 2017-10-19 2018-03-02 环球车享汽车租赁有限公司 充电接口识别和定位方法及系统
CN107728621A (zh) * 2017-10-19 2018-02-23 环球车享汽车租赁有限公司 充电接口识别和定位方法及系统
CN107825423A (zh) * 2017-10-19 2018-03-23 环球车享汽车租赁有限公司 充电接口识别和定位方法及系统
CN107894770A (zh) * 2017-11-24 2018-04-10 北京奇虎科技有限公司 机器人充电座、机器人的充电方法及装置
CN107945233B (zh) * 2017-12-04 2020-11-24 深圳市无限动力发展有限公司 视觉扫地机器人及其回充方法
CN108599289B (zh) * 2018-03-26 2022-02-15 安克创新科技股份有限公司 电子设备的充电系统及方法
CN108818529A (zh) * 2018-06-01 2018-11-16 重庆锐纳达自动化技术有限公司 一种机器人充电桩视觉引导方法
CN114287827B (zh) * 2018-09-11 2023-04-11 原相科技股份有限公司 清洁机器人系统及其清洁机器人和充电路径决定方法
CN109510266B (zh) * 2018-11-30 2024-02-06 广东银狐医疗科技股份有限公司 一种电动轮椅充电装置、充电系统
CN110000776B (zh) * 2019-03-04 2021-01-08 深圳市银星智能科技股份有限公司 移动机器人及其控制方法
CN110477825B (zh) * 2019-08-30 2021-10-26 深圳飞科机器人有限公司 清洁机器人、自主充电方法、系统及可读存储介质
CN114343509A (zh) * 2021-12-31 2022-04-15 上海仙途智能科技有限公司 无人洗地机补给站及无人洗地机系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679152A (en) * 1985-02-20 1987-07-07 Heath Company Navigation system and method for a mobile robot
CN1299083A (zh) * 1999-10-29 2001-06-13 索尼公司 机器人及充电系统、充电站搜索法、连接器和电连接结构
CN1493247A (zh) * 2002-10-31 2004-05-05 ������������ʽ���� 机器人吸尘器系统及其与充电设备对接方法
CN1587590A (zh) * 2004-09-17 2005-03-02 清华大学 一种太阳能采暖的相变蓄能高架活动地板
CN102545275A (zh) * 2010-12-07 2012-07-04 上海新世纪机器人有限公司 机器人自动充电装置及其自动充电方法
CN103784079A (zh) * 2012-10-26 2014-05-14 Lg电子株式会社 机器人清洁器系统及其控制方法
CN104578285A (zh) * 2014-12-30 2015-04-29 深圳市科陆电子科技股份有限公司 一种自动充电机器人的定位装置及方法
CN105242670A (zh) * 2015-10-26 2016-01-13 深圳拓邦股份有限公司 具有自动返回充电功能的机器人、系统及对应方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100500842B1 (ko) * 2002-10-31 2005-07-12 삼성광주전자 주식회사 로봇청소기와, 그 시스템 및 제어방법
US7437226B2 (en) * 2003-08-20 2008-10-14 Samsung Electronics Co., Ltd. Method of constructing artificial mark for autonomous driving, apparatus and method of determining position of intelligent system using artificial mark and intelligent system employing the same
KR101144102B1 (ko) * 2009-12-02 2012-05-24 한국생산기술연구원 능동형 이동로봇 충전 시스템 및 그 방법
US9480379B2 (en) * 2011-10-21 2016-11-01 Samsung Electronics Co., Ltd. Robot cleaner and control method for the same
CN104199449A (zh) * 2014-09-16 2014-12-10 湖南格兰博智能科技有限责任公司 一种基于智能手机的自动地面清洁机器人遥控系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679152A (en) * 1985-02-20 1987-07-07 Heath Company Navigation system and method for a mobile robot
CN1299083A (zh) * 1999-10-29 2001-06-13 索尼公司 机器人及充电系统、充电站搜索法、连接器和电连接结构
CN1493247A (zh) * 2002-10-31 2004-05-05 ������������ʽ���� 机器人吸尘器系统及其与充电设备对接方法
CN1587590A (zh) * 2004-09-17 2005-03-02 清华大学 一种太阳能采暖的相变蓄能高架活动地板
CN102545275A (zh) * 2010-12-07 2012-07-04 上海新世纪机器人有限公司 机器人自动充电装置及其自动充电方法
CN103784079A (zh) * 2012-10-26 2014-05-14 Lg电子株式会社 机器人清洁器系统及其控制方法
CN104578285A (zh) * 2014-12-30 2015-04-29 深圳市科陆电子科技股份有限公司 一种自动充电机器人的定位装置及方法
CN105242670A (zh) * 2015-10-26 2016-01-13 深圳拓邦股份有限公司 具有自动返回充电功能的机器人、系统及对应方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI682258B (zh) * 2017-09-25 2020-01-11 大陸商深圳洛克時代科技有限公司 自主移動機器人及其尋樁方法、控制裝置以及智能清潔系統
TWI689801B (zh) * 2017-09-25 2020-04-01 大陸商深圳洛克時代科技有限公司 自主移動機器人及其尋樁方法、控制裝置以及智能清潔系統
US11054836B2 (en) 2017-09-25 2021-07-06 Shenzhen Rock Times Technology Co., Ltd. Autonomous mobile robot, method for docking an autonomous mobile robot, control device and smart cleaning system
US11347230B2 (en) 2017-09-25 2022-05-31 Shenzhen Rock Times Technology Co., Ltd. Autonomous mobile robot, method for docking autonomous mobile robot, control device and smart cleaning system
CN109991969A (zh) * 2017-12-29 2019-07-09 周秦娜 一种基于深度传感器的机器人自动返航的控制方法及装置
CN108303984A (zh) * 2018-02-27 2018-07-20 弗徕威智能机器人科技(上海)有限公司 一种移动机器人的自主回充方法
CN112180989A (zh) * 2020-09-30 2021-01-05 苏州盈科电子有限公司 一种机器人充电方法及装置

Also Published As

Publication number Publication date
CN105242670B (zh) 2019-01-22
CN105242670A (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
WO2017071372A1 (fr) Robot ayant une fonction de retour automatique de charge, système et procédé correspondant
CN109643127B (zh) 构建地图、定位、导航、控制方法及系统、移动机器人
KR102183012B1 (ko) 모바일 기기, 청소로봇 및 그 제어방법
US9962054B2 (en) Robot cleaner, robot cleaning system having the same, and method for operating a robot cleaner
WO2019232806A1 (fr) Procédé et système de navigation, système de commande mobile et robot mobile
JP5426603B2 (ja) ロボット掃除機、並びにロボット掃除機を用いた遠隔監視システム及びロボット掃除機を用いた遠隔監視方法
WO2020113452A1 (fr) Procédé et dispositif de surveillance pour cible mobile, système de surveillance et robot mobile
KR102398330B1 (ko) 이동 로봇 및 그 제어방법
KR101855831B1 (ko) 청소 장치, 및 복수의 로봇 청소기를 이용한 협동 청소 방법
US11119484B2 (en) Vacuum cleaner and travel control method thereof
WO2016074628A1 (fr) Procédé de construction d'une carte par un robot automoteur et procédé d'actionnement par utilisation de la carte
US20190254490A1 (en) Vacuum cleaner and travel control method thereof
WO2019007038A1 (fr) Robot de balayage de sol, système de robot de balayage de sol et son procédé de fonctionnement
KR101356161B1 (ko) 로봇 청소기, 및 로봇 청소기의 원격 제어 시스템 및 방법
WO2019184083A1 (fr) Procédé de planification de robot
US20230057965A1 (en) Robot and control method therefor
WO2014106468A1 (fr) Ensemble de commande de déplacement opérationnel longitudinal d'un robot automoteur et procédé de commande correspondant
WO2019019819A1 (fr) Dispositif électronique mobile et procédé de traitement de tâches dans une région de tâche
WO2018228258A1 (fr) Dispositif électronique mobile et procédé associé
US10447064B2 (en) Wireless charging system and wireless charging method
JP2017027417A (ja) 画像処理装置及び電気掃除器
KR20110119116A (ko) 로봇 청소기, 원격 감시 시스템, 및 로봇 청소기를 이용한 원격 감시 방법
KR101708301B1 (ko) 로봇 청소기 및 원격 제어 시스템
CN108175337B (zh) 扫地机器人及其行走的方法
CN106899796A (zh) 拍照系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.09.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16858809

Country of ref document: EP

Kind code of ref document: A1