WO2017071166A1 - 一种微波炉、矩形波导及其确定方法 - Google Patents

一种微波炉、矩形波导及其确定方法 Download PDF

Info

Publication number
WO2017071166A1
WO2017071166A1 PCT/CN2016/079762 CN2016079762W WO2017071166A1 WO 2017071166 A1 WO2017071166 A1 WO 2017071166A1 CN 2016079762 W CN2016079762 W CN 2016079762W WO 2017071166 A1 WO2017071166 A1 WO 2017071166A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectangular waveguide
determined
value
range
slength
Prior art date
Application number
PCT/CN2016/079762
Other languages
English (en)
French (fr)
Inventor
张斐娜
刘民勇
孙宁
栾春
Original Assignee
广东美的厨房电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510719134.3A external-priority patent/CN105390785B/zh
Priority claimed from CN201510716812.0A external-priority patent/CN105222180B/zh
Application filed by 广东美的厨房电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的厨房电器制造有限公司
Publication of WO2017071166A1 publication Critical patent/WO2017071166A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications

Definitions

  • the present invention relates to the field of home appliances, and in particular to a microwave oven, a rectangular waveguide, and a method of determining the same.
  • Microwave ovens are kitchen appliances commonly used in modern homes to heat or cook food. Microwave ovens usually include power supplies, microwave sources, cavities, furnace doors, and so on. Among them, the microwave source is the core component for generating microwaves, and the microwave generated by the microwave source mostly needs to be transmitted to the cavity of the microwave oven through the waveguide to realize food heating.
  • the size of the waveguide affects the loss of microwaves generated by the microwave source. If the size is not properly selected, the loss of the microwave will be extremely severe, which wastes energy and reduces the efficiency of the microwave oven.
  • a rectangular waveguide having a long side Wlength having a length ranging from 65 mm to 90 mm and a wide side a of the rectangular waveguide having a length ranging from 70 mm to 90 mm is provided.
  • the length of the narrow side b of the rectangular waveguide ranges from 30 mm to 44 mm, and the distance Slength between the center of the microwave feed inlet and a short-circuited surface of the rectangular waveguide ranges from 25 mm to 40 mm.
  • the Slength is an integer multiple of a quarter of the wavelength of the waveguide.
  • the rectangular waveguide satisfies at least one of the following: length of the Wlength 90 mm; the length of a is 80 mm; the length of b is 40 mm; and the Slength is 30 mm.
  • the short-circuited surface is a surface formed by adjacent wide sides and narrow sides, and opposite to the short-circuited surface is a microwave feed port.
  • a rectangular waveguide having a long side Wlength having a length ranging from 35 mm to 45 mm, and a wide side a of the rectangular waveguide having a length ranging from 70 mm to 90 mm, the rectangular waveguide
  • the length of the narrow side b ranges from 30 mm to 44 mm, and the distance Slength between the center of the microwave feed inlet and a short surface of the rectangular waveguide ranges from 16 mm to 24 mm.
  • the rectangular waveguide satisfies at least one of: the length of the Wlength is 40 mm; the length of the a is 80 mm; the length of the b is 40 mm; and the Slength is 20 mm.
  • the short-circuited surface is a surface formed by adjacent wide sides and narrow sides, and opposite to the short-circuited surface is a microwave feed port.
  • the present invention also provides a microwave oven comprising the above rectangular waveguide.
  • the microwave for the microwave oven is in the frequency band of 2.4 GHz to 2.5 GHz.
  • the present invention also provides a rectangular waveguide determining method, the determining method comprising: arranging a long side Wlength, a wide side a, a narrow side b of the rectangular waveguide, and a center of the microwave feed inlet and one of the rectangular waveguide
  • the three X1, X2, and X3 in the distance Slength between the short-circuited faces are set to values within respective predetermined ranges; the remaining one X4 is varied within its predetermined range, and each change in the rectangular waveguide is recorded Standing wave value; changing the X1, X2, and X3 to other values within respective predetermined ranges, causing the X4 to vary within its predetermined range, and recording the standing wave value in the rectangular waveguide each time; and
  • the value of X4 corresponding to the minimum standing wave value is taken as the determined value of X4.
  • the determining method further comprises determining, for X1, X2 and/or X3, the determined value of the X1, X2 and/or X3 using the step of determining the determined value of X4.
  • the determining method further comprises at least one of: setting the X1, X2, and X3 to respective determined values, causing the X4 to vary within a predetermined range thereof, and corresponding to a predetermined range of standing waves
  • the range of X4 of the standing wave is determined as the range of X4; and for X1, X2, and/or X3, the determination range of X1, X2, and/or X3 is determined by the above-described step of determining the determined range of X4.
  • the rectangular waveguide satisfies at least one of: a determined value of the Wlength is 90 mm; a determined value of the a is 80 mm; a determined value of the b is 40 mm; and a determined value of the Slength It is 30mm.
  • the determination range of the Wlength is 65 mm to 90 mm
  • the determination range of the a is 70 mm to 90 mm
  • the determination range of the b is 30 mm to 44 mm
  • the determination range of the Slength is 25 mm to 40 mm.
  • the present invention also provides a rectangular waveguide determining method, the determining method comprising: setting a distance Slength between a center of a microwave feed inlet and a short-circuit surface of the rectangular waveguide to a waveguide wavelength One quarter, the two sides X1 and X2 of the long side Wlength, the wide side a, and the narrow side b of the rectangular waveguide are set to values within respective predetermined ranges; the remaining one X3 is within its predetermined range Varying, and recording the standing wave value in the rectangular waveguide for each change; changing the X1 and X2 to other values within respective predetermined ranges, causing the X3 to vary within its predetermined range, and recording each change The standing wave value in the rectangular waveguide; and the value of X3 corresponding to the minimum standing wave value is taken as the determined value of X3.
  • the determining method further comprises determining, for X1 and/or X2, the determined value of the X1 and/or X2 using the step of determining the determined value of X3.
  • the determining method further comprises at least one of: setting the distance Slength to a quarter of a waveguide wavelength and setting the X1 and X2 to respective determined values such that the X3 is at its predetermined The range is changed, and the range of X3 corresponding to the standing wave in the predetermined range of the standing wave is taken as the determination range of X3; and for X1 and/or X2, the above-described step of determining the determined range of X3 is employed. The determined range of the X1 and/or X2 is determined.
  • the determining method further comprises: setting the wide side a and the narrow side b to respective determined values; and causing the distance Slength and the long side Wlength to be within a predetermined range according to respective steps Performing a change; recording a standing wave value in the rectangular waveguide each time; and determining a reduced value of the distance Slength corresponding to the minimum standing wave value and the long side Wlength value as the distance Slength a value and a reduced determined value of the long side Wlength, and/or a range of the distance Slength corresponding to the standing wave within the predetermined range of the standing wave and a range of the long side Wlength as the distance Slength, respectively The reduced determined range and the reduced determined range of the long side Wlength.
  • the rectangular waveguide satisfies at least one of: a reduced determined value of the Wlength is 40 mm; a determined value of the a is 80 mm; a determined value of the b is 40 mm; and the Slength The narrowed determination is 20mm.
  • the narrowed determination range of the Wlength is 35 mm to 45 mm
  • the determined range of the a is 70 mm to 90 mm
  • the determined range of the b is 30 mm to 44 mm
  • the narrowed determination range of the Slength is 16mm to 24m.
  • FIG. 1 is a schematic structural view of a rectangular waveguide according to an embodiment of the present invention.
  • FIG. 2 is a flow chart for determining a determined value of a wide side a of a rectangular waveguide in accordance with an embodiment of the present invention
  • Figure 3 is a graph of the variation of the waveguide standing wave with the wide side a;
  • Figure 4 is a graph of the variation of the standing wave of the waveguide with the narrow side b;
  • Figure 5 is a graph showing the variation of the standing wave of the waveguide with the distance Slength
  • Figure 6 is a graph showing changes in the standing wave of the waveguide with respect to the long side Wlength
  • FIG. 7 is a diagram showing a standing wave test when a parameter of a rectangular waveguide takes an optimum value according to an aspect of the present invention
  • Figure 8 is a schematic view showing the position of the microwave feed inlet
  • FIG. 9 is a schematic structural view of a microwave oven according to an embodiment of the present invention.
  • FIG. 10 is a flow chart for determining a determination value of a wide side a of a rectangular waveguide according to another embodiment of the present invention.
  • FIG. 11 is a schematic structural view of a microwave oven mounted with a rectangular waveguide provided according to another embodiment of the present invention.
  • Figure 12 is a rectangular waveguide with a short-circuited piston for testing
  • Figure 13 is a graphical representation of a standing wave test when the parameters of a rectangular waveguide take an optimum value in accordance with another aspect of the present invention.
  • the present invention in order to provide a waveguide to reduce the loss of microwave transmission in a waveguide, provides a rectangular waveguide determining method.
  • 1 is a schematic structural view of a rectangular waveguide according to an embodiment of the present invention.
  • the rectangular waveguide 4 The long side Wlength, the wide side a, the narrow side b, and a distance Slength between the center of the microwave feed inlet 1 and a short-circuit surface 3 of the rectangular waveguide 4 may be included; wherein the short-circuited surface may be an adjacent wide side and The face formed by the narrow side can be opposed to the microwave feed port 2.
  • the microwave feed port 2 As shown in FIG.
  • the microwave feed inlet 1 is located on a surface formed by the long side Wlength and the wide side a.
  • FIG. 1 only gives a schematic example, and those skilled in the art can make other suitable arrangements for the relative positions of the microwave feed inlet 1, the microwave feed outlet 2 and the short-circuit surface 3 on the rectangular waveguide 4.
  • the rectangular waveguide determining method provided by the present invention may include: long side Wlength, wide side a, narrow side b of the rectangular waveguide 4, and a center of the microwave feed inlet 1 and a short-circuit surface 3 of the rectangular waveguide 4.
  • the three X1, X2, and X3 in the distance Slength are set to values within respective predetermined ranges, wherein the short-circuited faces are faces formed by adjacent wide and narrow sides; the remaining one is X4 Varying within a predetermined range, and recording the standing wave value in the rectangular waveguide 4 each time; changing the X1, X2, and X3 to other values within respective predetermined ranges, causing the X4 to vary within its predetermined range, and
  • the standing wave value in the rectangular waveguide 4 is recorded every time; and the value of X4 corresponding to the minimum standing wave value is taken as the determined value of X4.
  • FIG. 2 is a flow chart for determining a determined value of a wide side a of a rectangular waveguide in accordance with an embodiment of the present invention.
  • the narrow side b, the long side Wlength, and the distance Slength between the center of the microwave feed inlet 1 and the short-circuit surface 3 of the rectangular waveguide 4 are set within respective predetermined ranges.
  • the predetermined range of the narrow side b may be 30 mm to 50 mm
  • the predetermined range of the long side Wlength may be 40 mm to 110 mm
  • the predetermined range of the distance Slength may be 25 mm to 40 mm
  • the wide side a is made to be in a predetermined range thereof (for example, 60 mm to 100 mm) varies, and records the standing wave value in the rectangular waveguide 4 every time
  • the narrow side b, the long side Wlength, and the distance Slength are changed to other values within respective predetermined ranges.
  • the wide side a varies within its predetermined range, and records the standing wave value in the rectangular waveguide 4 each time; at step 23, the value of the wide side a corresponding to the minimum standing wave value is taken as the determined value of the wide side a. Then, the respective determination values for the narrow side b, the long side Wlength, and the distance Slength can be determined by the above steps.
  • the above determination process can be implemented by means of simulation.
  • the rectangular waveguide determining method provided by the present invention can determine that the rectangular waveguide 4 satisfies at least one of the following: the determined value (length) of the Wlength is 90 mm; the determined value (length) of the a is 80 mm; The determined value (length) of b is 40 mm; and the determined value (length) of the Slength is 30 mm.
  • the determined values of the above parameters are preferred values, and the present invention is also based on the determination range of each parameter value determined based on these preferred values, which will be described in detail below.
  • the determining method provided by the present invention further includes at least one of: setting X1, X2, and X3 to respective determined values, causing said X4 to vary within a predetermined range thereof, and corresponding to a predetermined range of standing waves
  • the range of X4 of the standing wave is taken as the determined range of X4; and for X1, X2 and/or X3, the determined range of X1, X2 and/or X3 is determined using the above-described step of determining the determined range of X4.
  • the length of the Wlength is set to 90 mm
  • the length of the b is set to 40 mm
  • the Slength is set to 30 mm, for example, by simulation to calculate a change in the standing wave of the waveguide when the wide side a is varied within 60 mm to 100 mm.
  • Figure 3 is a graph of the variation of the standing wave of the waveguide with the broad side a, as shown in Figure 3 (where the abscissa is the value of the broad side a, the unit is mm, the ordinate is the standing wave value, no unit), and the standing wave is used.
  • the standing wave is 1 to 1.04, which means that the transmission efficiency is 100%. This is a theoretical value, which is actually difficult to achieve.
  • the standing wave is within the predetermined range of standing waves, it is considered that the determined value can be satisfied.
  • the length of the Wlength is set to 90 mm
  • the length of the a is set to 80 mm
  • the Slength is set to 30 mm, for example, by simulation to calculate a change in the standing wave of the waveguide when the narrow side b is varied within 30 mm to 50 mm.
  • Figure 4 is a graph of the variation of the standing wave of the waveguide with the narrow side b, as shown in Figure 4 (where the abscissa is the value of the narrow side b, the unit is mm, the ordinate is the standing wave value, no unit), Figure 4
  • the standing wave is 1.2, which means that the microwave transmission efficiency is 99.2%, which is the preferred value, and the b value is between 30mm and 44mm to ensure the transmission efficiency is above 90%. Therefore, the narrow side b can be determined.
  • the range is determined to be 30mm to 44mm.
  • the length of the Wlength is set to 90 mm, the length of the a is set to 80 mm, and the length of the b is set to 40 mm, for example, by simulation to calculate a change in the standing wave of the waveguide when the distance Slength is varied within 25 mm to 40 mm.
  • the standing wave is 1.2, which is a preferred value, and the transmission efficiency is more than 90% from a distance of Smm between 25 mm and 40 mm. Therefore, the determination range of the distance Slength can be determined to be 25 mm to 40 mm.
  • the length of the a is set to 80 mm
  • the length of the b is set to 40 mm
  • the Slength is set to 30 mm, for example, by simulation to calculate a change in the standing wave of the waveguide when the long side Wlength is varied within 40 mm to 110 mm.
  • Fig. 6 is a graph showing changes of the standing wave of the waveguide with the long side Wlength, as shown in Fig. 6 (where the abscissa is the value of the narrow side b, the unit is mm, the ordinate is the standing wave value, no unit), and Wlength in Fig.
  • the standing wave is 1.5, which is a preferred value, and the long-side Wlength value between 65 mm and 90 mm can ensure the transmission efficiency is above 90%. Therefore, the determination range of the long-side Wlength can be determined to be 65 mm to 90 mm.
  • the full-band standing wave test was performed in the 2.4 GHz-2.5 GHz band.
  • the test results are shown in Fig. 7, which shows the test data obtained by the vector network analyzer, wherein the selected frequency band is 200 MHz (2.35 GHz-2.55 GHz, see the lower right corner in Fig. 7).
  • the standing wave value of 90% is controlled below 1.5 (96% transmission efficiency).
  • the present invention also provides a rectangular waveguide, wherein the long side Wlength of the rectangular waveguide has a length ranging from 65 mm to 90 mm, and the wide side a of the rectangular waveguide has a length ranging from 70 mm to 90 mm.
  • the length of the narrow side b of the rectangular waveguide ranges from 30 mm to 44 mm, and the distance Slength between the center of the microwave feed inlet and a short surface of the rectangular waveguide ranges from 25 mm to 40 mm to reduce the microwave generated by the microwave source. Loss during the transfer process, which saves energy and increases the efficiency of the microwave oven.
  • rectangular waveguide The specific details and benefits of the rectangular waveguide are the same as those described above for the rectangular waveguide determination method, and will not be described herein.
  • the present invention also provides a microwave oven, wherein the microwave oven comprises the rectangular waveguide 4 described above. Its structure is shown in Figure 9.
  • the Slength is an integer multiple of a quarter of the wavelength of the waveguide.
  • it may preferably be set to a quarter wavelength of the waveguide (as shown in FIG. 8), so that the minimum size is usually It is about 30mm.
  • the present invention in order to provide a waveguide to reduce the loss of microwave transmission in a waveguide, provides another rectangular waveguide determining method.
  • the rectangular waveguide determining method may include: setting a distance Slength between a center of the microwave feed inlet 1 and a short-circuit surface 3 of the rectangular waveguide 4 to a quarter of a waveguide wavelength Setting the two sides X1 and X2 of the long side Wlength, the wide side a, and the narrow side b of the rectangular waveguide 4 to values within respective predetermined ranges; causing the remaining one X3 to vary within its predetermined range, and Recording the standing wave value in the rectangular waveguide for each change; changing the X1 and X2 to other values within respective predetermined ranges, causing the X3 to vary within its predetermined range, and recording the rectangular waveguide for each change
  • the standing wave value in the ; and the value of X3 corresponding to the minimum standing wave value is taken as the determined value of X3.
  • FIG. 10 is a flow chart for determining a determined value of a wide side a of a rectangular waveguide in accordance with another embodiment of the present invention.
  • the distance Slength between the center of the microwave feed inlet 1 and the short-circuit surface 3 of the rectangular waveguide 4 is set to be one quarter of the waveguide wavelength and the narrow side b, long
  • the sides Wlength are set within respective predetermined ranges, for example, the predetermined range of the narrow side b may be 30 mm to 50 mm, and the predetermined range of the long side Wlength may be 40 mm to 110 mm;
  • the wide side a is made to be in a predetermined range thereof (for example, 60 mm to 100 mm) varies, and records the standing wave value in the rectangular waveguide 4 for each change;
  • the narrow side b and the long side Wlength are changed to other values within respective predetermined ranges to make the width
  • the edge a varies within its predetermined range, and the standing wave value in the rectangular
  • the rectangular waveguide determining method provided by the present invention can determine that the rectangular waveguide 4 satisfies at least one of the following: the determined value (length) of the Wlength is 90 mm; the determined value (length) of the a is 80 mm; The determined value (length) of b is 40 mm; and the length of the Slength is about a quarter of the wavelength of the waveguide, for example, 30 mm.
  • the determined values of the above parameters are preferred values, and the present invention is also based on the determination range of each parameter value determined based on these preferred values, which will be described in detail below.
  • the determining method provided by the present invention further includes at least one of: setting the distance Slength to a quarter of a waveguide wavelength and setting the X1 and X2 to respective determined values such that the X3 is within a predetermined range thereof Internally varying, and the range of X3 corresponding to the standing wave within the predetermined range of the standing wave is taken as the determination range of X3; and for X1 and/or X2, using the above-described step of determining the determined range of X3, the X1 and/or are determined.
  • the range of X2 is determined.
  • the determining method provided by the present invention further includes: setting the wide side a and the narrow side b to respective determined values; making the distance Slength and the The long side Wlength is varied within a predetermined range according to respective steps; recording a standing wave value in the rectangular waveguide every time; and a value of the distance Slength corresponding to the minimum standing wave value and the long side Wlength
  • the values are respectively a reduced determined value of the distance Slength and a reduced determined value of the long side Wlength, and/or a range of the distance Slength corresponding to a standing wave within a predetermined range of standing waves and the The range of the long side Wlength is respectively taken as the reduced determination range of the distance Slength and the reduced determination range of the long side Wlength.
  • the long side Wlength changes in the range of 15 mm to 60 in steps of 5 mm
  • the distance Slength changes in the range of 10 mm to 40 mm in steps of 2 mm
  • the standing wave value when the long side Wlength and the distance Slength are differently combined
  • Table 1 where W represents the long side Wlength and S represents the distance Slength:
  • the full-band standing wave test was performed in the 2.4 GHz-2.5 GHz band.
  • the test results are shown in Figure 10, which shows the test data obtained by the vector network analyzer.
  • the selected frequency band is 200MHz (2.35GHz-2.55GHz, see the lower right corner in Figure 13), actually in the microwave heating equipment.
  • the standing wave value can meet the transmission efficiency requirements.
  • the present invention also provides a rectangular waveguide in which the length of the long side Wlength of the rectangular waveguide ranges from 35 mm to 45 mm by the determining process according to another aspect of the present invention, and the wide side a of the rectangular waveguide
  • the length ranges from 70 mm to 90 mm
  • the length of the narrow side b of the rectangular waveguide ranges from 30 mm to 44 mm
  • the distance Slength between the center of the microwave feed inlet and a short-circuit surface of the rectangular waveguide ranges from 16 mm to 24 mm.
  • the present invention also provides a microwave oven, wherein the microwave oven includes the rectangular wave described above Guide 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种微波炉、矩形波导及其确定方法,涉及家电领域,所述矩形波导(4)的长边Wlength的长度范围为65mm至90mm,所述矩形波导(4)的宽边a的长度范围为70mm至90mm,所述矩形波导(4)的窄边b的长度范围为30mm至44mm,以及微波馈入口(1)的中心与所述矩形波导(4)的一短路面(3)之间的距离Slength的范围为25mm至40mm,以降低微波源所产生的微波在传递过程中的损耗,从而既节约了能源又提高了微波炉的效率。

Description

一种微波炉、矩形波导及其确定方法 技术领域
本发明涉及家电领域,具体地,涉及一种微波炉、矩形波导及其确定方法。
背景技术
微波炉是现代家庭中普遍使用的厨房电器,用来加热或烹饪的食物。微波炉通常包括电源、微波源、腔体、炉门等部分。其中,微波源是产生微波的核心部件,而微波源产生的微波大多需要通过波导来传递至微波炉的腔体,以实现食物加热。波导的尺寸会对微波源所产生的微波的损耗产生影响,如果尺寸选择不当,微波的损耗会极为严重,从浪费了能源并降低了微波炉的使用效率。
发明内容
本发明的目的是提供一种微波炉、矩形波导及其确定方法,该矩形波导能够降低微波源所产生的微波在传递过程中的损耗,从而既节约了能源又提高了微波炉的效率。
为了实现上述目的,根据本发明的一方面提供一种矩形波导,所述矩形波导的长边Wlength的长度范围为65mm至90mm,所述矩形波导的宽边a的长度范围为70mm至90mm,所述矩形波导的窄边b的长度范围为30mm至44mm,以及微波馈入口的中心与所述矩形波导的一短路面之间的距离Slength的范围为25mm至40mm。
优选地,所述Slength为波导波长的四分之一的整数倍。
优选地,所述矩形波导满足以下项中的至少一者:所述Wlength的长度 为90mm;所述a的长度为80mm;所述b的长度为40mm;以及所述Slength为30mm。
优选地,所述短路面为相邻的宽边与窄边所形成的面,与所述短路面相对的是微波馈出口。
根据本发明的另一方面提供一种矩形波导,所述矩形波导的长边Wlength的长度范围为35mm至45mm,所述矩形波导的宽边a的长度范围为70mm至90mm,所述矩形波导的窄边b的长度范围为30mm至44mm,以及微波馈入口的中心与所述矩形波导的一短路面之间的距离Slength的范围为16mm至24mm。
优选地,所述矩形波导满足以下项中的至少一者:所述Wlength的长度为40mm;所述a的长度为80mm;所述b的长度为40mm;以及所述Slength为20mm。
优选地,所述短路面为相邻的宽边与窄边所形成的面,与所述短路面相对的是微波馈出口。
本发明还提供一种微波炉,所述微波炉包括上述矩形波导。
优选地,用于所述微波炉的微波处于2.4GHz至2.5GHz的频段内。
相应地,本发明还提供一种矩形波导确定方法,所述确定方法包括:将所述矩形波导的长边Wlength、宽边a、窄边b及微波馈入口的中心与所述矩形波导的一短路面之间的距离Slength中的三者X1、X2和X3设定为在各自预定范围内的值;使剩余一者X4在其预定范围内变化,并记录每次变化所述矩形波导中的驻波值;将所述X1、X2和X3改变为各自预定范围内的其它值,使所述X4在其预定范围内变化,并记录每次变化所述矩形波导中的驻波值;以及将对应于最小驻波值的X4的值作为X4的确定值。
优选地,所述确定方法还包括:针对X1、X2和/或X3,采用上述确定X4的确定值的步骤,确定所述X1、X2和/或X3的确定值。
优选地,所述确定方法还包括以下至少一者:将所述X1、X2和X3设定为各自的确定值,使所述X4在其预定范围内变化,并将对应于驻波预定范围内的驻波的X4的范围作为X4的确定范围;以及针对X1、X2和/或X3,采用上述确定X4的确定范围的步骤,确定所述X1、X2和/或X3的确定范围。
优选地,所述矩形波导满足以下项中的至少一者:所述Wlength的确定值为90mm;所述a的确定值为80mm;所述b的确定值为40mm;以及所述Slength的确定值为30mm。
优选地,所述Wlength的确定范围为65mm至90mm,所述a的确定范围为70mm至90mm,所述b的确定范围为30mm至44mm,以及所述Slength的确定范围为25mm至40mm。
根据本发明的另一方面,本发明还提供一种矩形波导确定方法,所述确定方法包括:将微波馈入口的中心与所述矩形波导的一短路面之间的距离Slength设置为波导波长的四分之一,将所述矩形波导的长边Wlength、宽边a、窄边b中的两者X1和X2设定为在各自预定范围内的值;使剩余一者X3在其预定范围内变化,并记录每次变化所述矩形波导中的驻波值;将所述X1和X2改变为各自预定范围内的其它值,使所述X3在其预定范围内变化,并记录每次变化所述矩形波导中的驻波值;以及将对应于最小驻波值的X3的值作为X3的确定值。
优选地,所述确定方法还包括:针对X1和/或X2,采用上述确定X3的确定值的步骤,确定所述X1和/或X2的确定值。
优选地,所述确定方法还包括以下至少一者:将所述距离Slength设置为波导波长的四分之一并将所述X1和X2设定为各自的确定值,使所述X3在其预定范围内变化,并将对应于驻波预定范围内的驻波的X3的范围作为X3的确定范围;以及针对X1和/或X2,采用上述确定X3的确定范围的步 骤,确定所述X1和/或X2的确定范围。
优选地,所述确定方法还包括:将所述宽边a和所述窄边b设定为各自的确定值;使所述距离Slength和所述长边Wlength按照各自的步阶在预定范围内进行变化;记录每次变化所述矩形波导中的驻波值;以及将对应于最小驻波值的所述距离Slength的值和所述长边Wlength值分别作为所述距离Slength的经缩小的确定值和所述长边Wlength的经缩小的确定值,和/或将对应于驻波预定范围内的驻波的所述距离Slength的范围和所述长边Wlength的范围分别作为所述距离Slength的经缩小的确定范围和所述长边Wlength的经缩小的确定范围。
优选地,所述矩形波导满足以下项中的至少一者:所述Wlength的经缩小的确定值为40mm;所述a的确定值为80mm;所述b的确定值为40mm;以及所述Slength的经缩小的确定值为20mm。
优选地,所述Wlength的经缩小的确定范围为35mm至45mm,所述a的确定范围为70mm至90mm,所述b的确定范围为30mm至44mm,以及所述Slength的经缩小的确定范围为16mm至24m。
附图标记说明
1   微波馈入口            2         微波馈出口
3   短路面                4、5      矩形波导
6   短路活塞
a   宽边                  b         窄边
Wlength   长边
Slength   微波馈入口的中心与短路面之间的距离
附图说明
图1是根据本发明一种实施方式的矩形波导的结构示意图;
图2是根据本发明一种实施方式确定矩形波导宽边a的确定值的流程图;
图3是波导驻波随宽边a变化的曲线图;
图4是波导驻波随窄边b变化的曲线图;
图5是波导驻波随距离Slength变化的曲线图;
图6是波导驻波随长边Wlength变化的曲线图;
图7是根据本发明一方面的矩形波导的参数取最优值时驻波测试图示;
图8为微波馈入口的位置示意图;
图9为根据本发明一种实施方式提供的微波炉的结构示意图;
图10是根据本发明另一种实施方式确定矩形波导宽边a的确定值的流程图;
图11为安装有根据本发明另一实施方式提供的矩形波导的微波炉的结构示意图;
图12是用于试验的具有短路活塞的矩形波导;以及
图13是根据本发明另一方面的矩形波导的参数取最优值时驻波测试图示。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
根据本发明的一方面,为了提供一种波导以降低微波在波导中传递过程的损耗,本发明提供了一种矩形波导确定方法。图1是根据本发明一种实施方式的矩形波导的结构示意图。如图1所示,在该实施方式中,矩形波导4 可以包括长边Wlength、宽边a、窄边b以及微波馈入口1的中心与所述矩形波导4的一短路面3之间的距离Slength;其中所述短路面可以为相邻的宽边与窄边所形成的面,并可以与微波馈出口2相对。如图1所示,微波馈入口1位于所述长边Wlength与宽边a形成的面上。当然,图1仅仅给出了示意性示例,本领域技术人员可以对矩形波导4上微波馈入口1、微波馈出口2以及短路面3的相对位置进行其他合适的布置。
其中,本发明提供的矩形波导确定方法可以包括:将所述矩形波导4的长边Wlength、宽边a、窄边b及微波馈入口1的中心与所述矩形波导4的一短路面3之间的距离Slength中的三者X1、X2和X3设定为在各自预定范围内的值,其中所述短路面为相邻的宽边与窄边所形成的面;使剩余一者X4在其预定范围内变化,并记录每次变化所述矩形波导4中的驻波值;将所述X1、X2和X3改变为各自预定范围内其它值,使所述X4在其预定范围内变化,并记录每次变化所述矩形波导4中的驻波值;以及将对应于最小驻波值的X4的值作为X4的确定值。
针对X1、X2和/或X3,采用上述确定X4的确定值的步骤,确定所述X1、X2和/或X3的确定值,如此确定矩形波导4的上述参数的确定值,从而提供降低微波在波导中传递过程的损耗的矩形波导。
例如,图2是根据本发明一种实施方式确定矩形波导宽边a的确定值的流程图。如图2所示,在步骤20处,将窄边b、长边Wlength及微波馈入口1的中心与所述矩形波导4的短路面3之间的距离Slength设定在各自的预定范围内,例如,窄边b的预定范围可以为30mm至50mm,长边Wlength的预定范围可以为40mm至110mm,距离Slength的预定范围可以为25mm至40mm;在步骤21处,使宽边a在其预定范围(例如60mm至100mm)内变化,并记录每次变化所述矩形波导4中的驻波值;在步骤22处,将窄边b、长边Wlength及距离Slength改变为各自预定范围内的其它值,使宽边 a在其预定范围内变化,并记录每次变化矩形波导4中的驻波值;在步骤23处,将对应于最小驻波值的宽边a的值作为宽边a的确定值。然后,可以采用上述步骤分别针对窄边b、长边Wlength及距离Slength来确定其各自的确定值。对于上述确定过程可以借助仿真来实现。
通过本发明提供的矩形波导确定方法可以确定出矩形波导4满足以下项中的至少一者:所述Wlength的确定值(长度)为90mm;所述a的确定值(长度)为80mm;所述b的确定值(长度)为40mm;以及所述Slength的确定值(长度)为30mm。上述各参数的确定值为优选值,本发明还基于这些优选值确定的各参数值的确定范围,以下将进行详细描述。
本发明提供的确定方法还包括以下至少一者:将所述X1、X2和X3设定为各自的确定值,使所述X4在其预定范围内变化,并将对应于驻波预定范围内的驻波的X4的范围作为X4的确定范围;以及针对X1、X2和/或X3,采用上述确定X4的确定范围的步骤,确定所述X1、X2和/或X3的确定范围。
将所述Wlength的长度设置为90mm,所述b的长度设置为40mm,所述Slength设置为30mm,例如通过仿真计算宽边a在60mm至100mm内变化时波导驻波的变化。图3是波导驻波随宽边a变化的曲线图,如图3所示(其中横坐标为宽边a的值,单位为mm,纵坐标为驻波值,无单位),在使用驻波衡量传输效率时,驻波为1到1.04,表示传输效率为100%,这是理论值,实际上很难达到,因此,当驻波处于驻波预定范围内时就认为所确定的值能够满足传输效率的要求。图3中a=80mm时驻波为1.3,表示此时的微波传输效率为98.3%,驻波为1.6时的传输效率为94.7%,驻波为2时,传输效率为88.9%。所以a=80mm为优选值,而且宽度a值在70mm到90mm之间都能保证传输效率在90%以上(其中,1.9对应效率为90.4%),因此,可以确定宽度a的确定范围为70mm到90mm。
将所述Wlength的长度设置为90mm,所述a的长度设置为80mm,所述Slength设置为30mm,例如通过仿真计算窄边b在30mm至50mm内变化时波导驻波的变化。图4是波导驻波随窄边b变化的曲线图,如图4所示(其中横坐标为窄边b的值,单位为mm,纵坐标为驻波值,无单位),图4中b=40mm时驻波为1.2,表示此时的微波传输效率为99.2%,为优选值,而且b值在30mm到44mm之间都能保证传输效率在90%以上,因此,可以确定窄边b的确定范围为30mm到44mm。
将所述Wlength的长度设置为90mm,所述a的长度设置为80mm,所述b的长度设置为40mm,例如通过仿真计算距离Slength在25mm至40mm内变化时波导驻波的变化。图5是波导驻波随距离Slength变化的曲线图,如图5所示(其中横坐标为距离Slength的值,单位为mm,纵坐标为驻波值,无单位),图5中slength=30mm时驻波为1.2,其为优选值,而且距离Slength值在25mm到40mm之间都能保证传输效率在90%以上,因此,可以确定距离Slength的确定范围为25mm到40mm。
将所述a的长度设置为80mm,所述b的长度设置为40mm,所述Slength设置为30mm,例如通过仿真计算长边Wlength在40mm至110mm内变化时波导驻波的变化。图6是波导驻波随长边Wlength变化的曲线图,如图6所示(其中横坐标为窄边b的值,单位为mm,纵坐标为驻波值,无单位),图6中Wlength=90mm时驻波为1.5,为优选值,而且长边Wlength值在65mm到90mm之间都能保证传输效率在90%以上,因此,可以确定长边Wlength的确定范围为65mm到90mm。
此外,基于上述参数的优选值(确定值),即a=80mm、b=40mm、slength=30mm、Wlength=90mm,在2.4GHz-2.5GHz频段内对其进行全频段的驻波测试。测试结果如图7所示,其示出了采用矢量网络分析仪得到的测试数据,其中选用的频段为200MHz(2.35GHz-2.55GHz,见图7中右下角), 实际上在微波加热设备的工作频段2.4GHz-2.5GHz内,其驻波值90%控制在1.5(96%的传输效率)以下。
通过上述确定过程,本发明还提供了一种矩形波导,其中,所述矩形波导的长边Wlength的长度范围为65mm至90mm,所述矩形波导的宽边a的长度范围为70mm至90mm,所述矩形波导的窄边b的长度范围为30mm至44mm,以及微波馈入口的中心与所述矩形波导的一短路面之间的距离Slength的范围为25mm至40mm,以降低微波源所产生的微波在传递过程中的损耗,从而既节约了能源又提高了微波炉的效率。
有关矩形波导的具体细节及益处与上述针对矩形波导确定方法的细节及益处相同,于此不再赘述。
相应地,本发明还提供一种微波炉,其中,所述微波炉包括上述矩形波导4。其结构示意图如图9所示。
其中,所述Slength为波导波长的四分之一的整数倍,为了使波导盒尺寸更小,优选地可以设置为四分之一个波导波长(如图8所示),这样,最小尺寸通常为30mm左右。
根据本发明的另一方面,为了提供一种波导以降低微波在波导中传递过程的损耗,本发明提供了另一种矩形波导确定方法。
其中,根据本发明的另一方面提供的矩形波导确定方法可以包括:将微波馈入口1的中心与所述矩形波导4的一短路面3之间的距离Slength设置为波导波长的四分之一,将所述矩形波导4的长边Wlength、宽边a、窄边b中的两者X1和X2设定为在各自预定范围内的值;使剩余一者X3在其预定范围内变化,并记录每次变化所述矩形波导中的驻波值;将所述X1和X2改变为各自预定范围内的其它值,使所述X3在其预定范围内变化,并记录每次变化所述矩形波导中的驻波值;以及将对应于最小驻波值的X3的值作为X3的确定值。
针对X1和/或X2,采用上述确定X3的确定值的步骤,确定所述X1和/或X2的确定值,如此确定矩形波导4的上述参数的确定值,从而提供降低微波在波导中传递过程的损耗的矩形波导。
例如,图10是根据本发明另一种实施方式确定矩形波导宽边a的确定值的流程图。如图10所示,在步骤30处,将微波馈入口1的中心与所述矩形波导4的短路面3之间的距离Slength设定为波导波长的四分之一并将窄边b、长边Wlength设定在各自的预定范围内,例如,窄边b的预定范围可以为30mm至50mm,长边Wlength的预定范围可以为40mm至110mm;在步骤31处,使宽边a在其预定范围(例如60mm至100mm)内变化,并记录每次变化所述矩形波导4中的驻波值;在步骤32处,将窄边b、长边Wlength改变为各自预定范围内的其它值,使宽边a在其预定范围内变化,并记录每次变化矩形波导4中的驻波值;在步骤33处,将对应于最小驻波值的宽边a的值作为宽边a的确定值。然后,可以采用上述步骤分别针对窄边b、长边Wlength来确定其各自的确定值。对于上述确定过程可以借助仿真来实现。
通过本发明提供的矩形波导确定方法可以确定出矩形波导4满足以下项中的至少一者:所述Wlength的确定值(长度)为90mm;所述a的确定值(长度)为80mm;所述b的确定值(长度)为40mm;以及所述Slength的长度为波导波长的四分之一左右,例如为30mm。上述各参数的确定值为优选值,本发明还基于这些优选值确定的各参数值的确定范围,以下将进行详细描述。
本发明提供的确定方法还包括以下至少一者:将所述距离Slength设置为波导波长的四分之一并将所述X1和X2设定为各自的确定值,使所述X3在其预定范围内变化,并将对应于驻波预定范围内的驻波的X3的范围作为X3的确定范围;以及针对X1和/或X2,采用上述确定X3的确定范围的步骤,确定所述X1和/或X2的确定范围。
按照上述基于图3、图4和图5确定的长边Wlength、宽边a、窄边b的确定值及设置为四分之一波导波长的距离Slength的值(Wlength=90mm、a=80mm、b=40mm、slength=30mm)获得较为优选的矩形波导4,该矩形波导4有良好的驻波特性,但是由于尺寸偏大,如图9所示,如果安装在微波炉上,则需要更大的空间,而且微波源的重量可能会引起其变形。
为了解决这个问题,获得体积较小的矩形波导,本发明提供的确定方法还包括:将所述宽边a和所述窄边b设定为各自的确定值;使所述距离Slength和所述长边Wlength按照各自的步阶在预定范围内进行变化;记录每次变化所述矩形波导中的驻波值;以及将对应于最小驻波值的所述距离Slength的值和所述长边Wlength值分别作为所述距离Slength的经缩小的确定值和所述长边Wlength的经缩小的确定值,和/或将对应于驻波预定范围内的驻波的所述距离Slength的范围和所述长边Wlength的范围分别作为所述距离Slength的经缩小的确定范围和所述长边Wlength的经缩小的确定范围。
例如,在仿真过程中,确定a=80mm、b=40mm,然后设置Slength、Wlength两个变量,记录两个变量不同组合时的驻波值。如长边Wlength按照5mm的步阶在15mm至60的范围内进行变化,而距离Slength按照2mm的步阶在10mm至40mm的范围内进行变化,长边Wlength和距离Slength不同组合时的驻波值如表1所示(其中W表示长边Wlength,S表示距离Slength):
表1
Figure PCTCN2016079762-appb-000001
从上表1可以看出,Slength=20mm、Wlength=40mm时,驻波为1.3,为高效率点,同时在距离Slength值在16mm至24mm,对应的长边Wlength值在35mm至45mm的情况下也能满足传输效率的要求。基于a=80mm、b=40mm、Slength=20mm、Wlength=40mm所获得的矩形波导5的体积极大地被降低,包含该矩形波导5的微波炉如图11所示。
在另一种试验中,可以通过设计如图12所示的矩形波导,在该矩形波导中设置短路活塞6,在试验过程中通过调节短路活塞6插入的深度来改变Slength和Wlength的值,然后测试驻波值。进而能够得出Slength=20mm、Wlength=40mm为Slength和Wlength的最优值。
此外,基于上述参数的优选值,即a=80mm、b=40mm、slength=20mm、Wlength=40mm,在2.4GHz-2.5GHz频段内对其进行全频段的驻波测试。测试结果如图10所示,其示出了采用矢量网络分析仪得到的测试数据,其中选用的频段为200MHz(2.35GHz-2.55GHz,见图13中右下角),实际上在微波加热设备的工作频段2.4GHz-2.5GHz内,其驻波值能够满足传输效率的要求。
通过上述根据本发明的另一方面的确定过程,本发明还提供了一种矩形波导,其中,所述矩形波导的长边Wlength的长度范围为35mm至45mm,所述矩形波导的宽边a的长度范围为70mm至90mm,所述矩形波导的窄边b的长度范围为30mm至44mm,以及微波馈入口的中心与所述矩形波导的一短路面之间的距离Slength的范围为16mm至24mm,以降低微波源所产生的微波在传递过程中的损耗,从而既节约了能源又提高了微波炉的效率。
有关根据本发明的另一方面的矩形波导的具体细节及益处与上述针对根据本发明的另一方面的矩形波导确定方法的细节及益处相同,于此不再赘述。
相应地,本发明还提供一种微波炉,其中,所述微波炉包括上述矩形波 导5。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (20)

  1. 一种矩形波导,其特征在于,所述矩形波导的长边Wlength的长度范围为65mm至90mm,所述矩形波导的宽边a的长度范围为70mm至90mm,所述矩形波导的窄边b的长度范围为30mm至44mm,以及微波馈入口的中心与所述矩形波导的一短路面之间的距离Slength的范围为25mm至40mm。
  2. 根据权利要求1所述的矩形波导,其特征在于,所述Slength为波导波长的四分之一的整数倍。
  3. 根据权利要求1所述的矩形波导,其特征在于,所述矩形波导满足以下项中的至少一者:
    所述Wlength的长度为90mm;
    所述a的长度为80mm;
    所述b的长度为40mm;以及
    所述Slength为30mm。
  4. 根据权利要求1-3中任一项所述的矩形波导,其特征在于,所述短路面为相邻的宽边与窄边所形成的面,与所述短路面相对的是微波馈出口。
  5. 一种矩形波导,其特征在于,所述矩形波导的长边Wlength的长度范围为35mm至45mm,所述矩形波导的宽边a的长度范围为70mm至90mm,所述矩形波导的窄边b的长度范围为30mm至44mm,以及微波馈入口的中心与所述矩形波导的一短路面之间的距离Slength的范围为16mm至24mm。
  6. 根据权利要求5所述的矩形波导,其特征在于,所述矩形波导满足以下项中的至少一者:
    所述Wlength的长度为40mm;
    所述a的长度为80mm;
    所述b的长度为40mm;以及
    所述Slength为20mm。
  7. 根据权利要求5或6所述的矩形波导,其特征在于,所述短路面为相邻的宽边与窄边所形成的面,与所述短路面相对的是微波馈出口。
  8. 一种微波炉,其特征在于,所述微波炉包括上述权利要求1至7中任一项所述的矩形波导。
  9. 根据权利要求8所述的微波炉,其特征在于,用于所述微波炉的微波处于2.4GHz至2.5GHz的频段内。
  10. 一种矩形波导确定方法,其特征在于,所述确定方法包括:
    将所述矩形波导的长边Wlength、宽边a、窄边b及微波馈入口的中心与所述矩形波导的一短路面之间的距离Slength中的三者X1、X2和X3设定为在各自预定范围内的值;
    使剩余一者X4在其预定范围内变化,并记录每次变化所述矩形波导中的驻波值;
    将所述X1、X2和X3改变为各自预定范围内的其它值,使所述X4在其预定范围内变化,并记录每次变化所述矩形波导中的驻波值;以及
    将对应于最小驻波值的X4的值作为X4的确定值。
  11. 根据权利要求10所述的确定方法,其特征在于,所述确定方法还包括:
    针对X1、X2和/或X3,采用上述确定X4的确定值的步骤,确定所述X1、X2和/或X3的确定值。
  12. 根据权利要求10或11所述的确定方法,其特征在于,所述确定方法还包括以下至少一者:
    将所述X1、X2和X3设定为各自的确定值,使所述X4在其预定范围内变化,并将对应于驻波预定范围内的驻波的X4的范围作为X4的确定范围;以及
    针对X1、X2和/或X3,采用上述确定X4的确定范围的步骤,确定所述X1、X2和/或X3的确定范围。
  13. 根据权利要求12所述的确定方法,其特征在于,所述矩形波导满足以下项中的至少一者:
    所述Wlength的确定值为90mm;
    所述a的确定值为80mm;
    所述b的确定值为40mm;以及
    所述Slength的确定值为30mm。
  14. 根据权利要求13所述的确定方法,其特征在于,所述Wlength的确定范围为65mm至90mm,所述a的确定范围为70mm至90mm,所述b的确定范围为30mm至44mm,以及所述Slength的确定范围为25mm至40mm。
  15. 一种矩形波导确定方法,其特征在于,所述确定方法包括:
    将微波馈入口的中心与所述矩形波导的一短路面之间的距离Slength设 置为波导波长的四分之一,将所述矩形波导的长边Wlength、宽边a、窄边b中的两者X1和X2设定为在各自预定范围内的值;
    使剩余一者X3在其预定范围内变化,并记录每次变化所述矩形波导中的驻波值;
    将所述X1和X2改变为各自预定范围内的其它值,使所述X3在其预定范围内变化,并记录每次变化所述矩形波导中的驻波值;以及
    将对应于最小驻波值的X3的值作为X3的确定值。
  16. 根据权利要求15所述的确定方法,其特征在于,所述确定方法还包括:
    针对X1和/或X2,采用上述确定X3的确定值的步骤,确定所述X1和/或X2的确定值。
  17. 根据权利要求15或16所述的确定方法,其特征在于,所述确定方法还包括以下至少一者:
    将所述距离Slength设置为波导波长的四分之一并将所述X1和X2设定为各自的确定值,使所述X3在其预定范围内变化,并将对应于驻波预定范围内的驻波的X3的范围作为X3的确定范围;以及
    针对X1和/或X2,采用上述确定X3的确定范围的步骤,确定所述X1和/或X2的确定范围。
  18. 根据权利要求17所述的确定方法,其特征在于,所述确定方法还包括:
    将所述宽边a和所述窄边b设定为各自的确定值;
    使所述距离Slength和所述长边Wlength按照各自的步阶在预定范围内 进行变化;
    记录每次变化所述矩形波导中的驻波值;以及
    将对应于最小驻波值的所述距离Slength的值和所述长边Wlength值分别作为所述距离Slength的经缩小的确定值和所述长边Wlength的经缩小的确定值,和/或将对应于驻波预定范围内的驻波的所述距离Slength的范围和所述长边Wlength的范围分别作为所述距离Slength的经缩小的确定范围和所述长边Wlength的经缩小的确定范围。
  19. 根据权利要求18所述的确定方法,其特征在于,所述矩形波导满足以下项中的至少一者:
    所述Wlength的经缩小的确定值为40mm;
    所述a的确定值为80mm;
    所述b的确定值为40mm;以及
    所述Slength的经缩小的确定值为20mm。
  20. 根据权利要求19所述的确定方法,其特征在于,所述Wlength的经缩小的确定范围为35mm至45mm,所述a的确定范围为70mm至90mm,所述b的确定范围为30mm至44mm,以及所述Slength的经缩小的确定范围为16mm至24m。
PCT/CN2016/079762 2015-10-28 2016-04-20 一种微波炉、矩形波导及其确定方法 WO2017071166A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510719134.3A CN105390785B (zh) 2015-10-28 2015-10-28 一种微波炉、矩形波导及其确定方法
CN201510716812.0 2015-10-28
CN201510716812.0A CN105222180B (zh) 2015-10-28 2015-10-28 一种微波炉、矩形波导及其确定方法
CN201510719134.3 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017071166A1 true WO2017071166A1 (zh) 2017-05-04

Family

ID=58631263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079762 WO2017071166A1 (zh) 2015-10-28 2016-04-20 一种微波炉、矩形波导及其确定方法

Country Status (1)

Country Link
WO (1) WO2017071166A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673783A (en) * 1985-06-24 1987-06-16 Kabushiki Kaisha Toshiba Compact high-frequency heating apparatus with stepped waveguide
CN104186024A (zh) * 2011-12-19 2014-12-03 松下电器产业株式会社 微波加热装置
JP2015049943A (ja) * 2013-08-29 2015-03-16 株式会社日立パワーソリューションズ マイクロ波加熱装置
CN104488352A (zh) * 2012-05-15 2015-04-01 松下知识产权经营株式会社 微波加热装置
CN105222180A (zh) * 2015-10-28 2016-01-06 广东美的厨房电器制造有限公司 一种微波炉、矩形波导及其确定方法
CN205065827U (zh) * 2015-10-28 2016-03-02 广东美的厨房电器制造有限公司 一种微波炉、矩形波导
CN205065826U (zh) * 2015-10-28 2016-03-02 广东美的厨房电器制造有限公司 一种微波炉、矩形波导
CN105390785A (zh) * 2015-10-28 2016-03-09 广东美的厨房电器制造有限公司 一种微波炉、矩形波导及其确定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673783A (en) * 1985-06-24 1987-06-16 Kabushiki Kaisha Toshiba Compact high-frequency heating apparatus with stepped waveguide
CN104186024A (zh) * 2011-12-19 2014-12-03 松下电器产业株式会社 微波加热装置
CN104488352A (zh) * 2012-05-15 2015-04-01 松下知识产权经营株式会社 微波加热装置
JP2015049943A (ja) * 2013-08-29 2015-03-16 株式会社日立パワーソリューションズ マイクロ波加熱装置
CN105222180A (zh) * 2015-10-28 2016-01-06 广东美的厨房电器制造有限公司 一种微波炉、矩形波导及其确定方法
CN205065827U (zh) * 2015-10-28 2016-03-02 广东美的厨房电器制造有限公司 一种微波炉、矩形波导
CN205065826U (zh) * 2015-10-28 2016-03-02 广东美的厨房电器制造有限公司 一种微波炉、矩形波导
CN105390785A (zh) * 2015-10-28 2016-03-09 广东美的厨房电器制造有限公司 一种微波炉、矩形波导及其确定方法

Similar Documents

Publication Publication Date Title
US11452182B2 (en) System and method for detecting changes in food load characteristics using coefficient of variation of efficiency
US20190150233A1 (en) System and method for controlling power for a cooking device
US11503679B2 (en) Electromagnetic cooking device with automatic popcorn popping feature and method of controlling cooking in the electromagnetic device
EP3563637A1 (en) Electromagnetic cooking device with automatic anti-splatter operation and method of controlling cooking in the electromagnetic device
WO2018125147A1 (en) Electromagnetic cooking device with automatic liquid heating and method of controlling cooking in the electromagnetic cooking device
WO2018125143A1 (en) Detecting changes in food load characteristics using q-factor
WO2018125137A1 (en) System and method for analyzing a frequency response of an electromagnetic cooking device
WO2018125136A1 (en) System and method for controlling a heating distribution in an electromagnetic cooking device
CN105222180B (zh) 一种微波炉、矩形波导及其确定方法
US11690147B2 (en) Electromagnetic cooking device with automatic boiling detection and method of controlling cooking in the electromagnetic cooking device
WO2017071166A1 (zh) 一种微波炉、矩形波导及其确定方法
CN205065826U (zh) 一种微波炉、矩形波导
Soltysiak et al. Measured and simulated frequency spectra of the household microwave oven
CN205065827U (zh) 一种微波炉、矩形波导
CN105390785B (zh) 一种微波炉、矩形波导及其确定方法
Korpas et al. Effects of applying a frequency and phase-shift efficiency optimisation algorithm to a solid-state microwave oven
Díaz-Caballero et al. Analysis and design of passive microwave components in substrate integrated waveguide technology
CN105795952A (zh) 一种微波烹饪方法、装置和烹饪家电
JPWO2018037696A1 (ja) 高周波加熱装置
Li et al. Space mapping post-fabrication tuning of 3D printed air-filled waveguide filter
Yakovlev Efficient electromagnetic models for systems and processes of microwave heating
EP3563638A1 (en) Electromagnetic cooking device with automatic melt operation and method of controlling cooking in the electromagnetic cooking device
RU152582U1 (ru) Свч фильтр
Harish et al. Peak voltage analysis in high power microwave filters
Wei et al. Machine Learning-Assisted Automatic Filter Synthesis with Prior Knowledge and Its Application to Single-Mode Bandpass Filter Design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.09.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16858615

Country of ref document: EP

Kind code of ref document: A1