WO2017070089A1 - Heterocyclic compounds as immunomodulators - Google Patents
Heterocyclic compounds as immunomodulators Download PDFInfo
- Publication number
- WO2017070089A1 WO2017070089A1 PCT/US2016/057487 US2016057487W WO2017070089A1 WO 2017070089 A1 WO2017070089 A1 WO 2017070089A1 US 2016057487 W US2016057487 W US 2016057487W WO 2017070089 A1 WO2017070089 A1 WO 2017070089A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- cycloalkyl
- membered heterocycloalkyl
- aryl
- membered heteroaryl
- Prior art date
Links
- 0 CCC(C1)C1C(C(CCC(*)(C1)*(C)C)C(**)=*N=C)=C1C1[C@](C)(C*)CCC=CC1 Chemical compound CCC(C1)C1C(C(CCC(*)(C1)*(C)C)C(**)=*N=C)=C1C1[C@](C)(C*)CCC=CC1 0.000 description 2
- UWLGTGNADLJREH-AWEZNQCLSA-N COC([C@H]1N(Cc2cc3cc(Br)c[n]3cn2)CCCC1)=O Chemical compound COC([C@H]1N(Cc2cc3cc(Br)c[n]3cn2)CCCC1)=O UWLGTGNADLJREH-AWEZNQCLSA-N 0.000 description 1
- BEWSFHZQQWMFRV-UHFFFAOYSA-N Cc(c(-c1c[n]2nc(CN(C)CCO)cnc2n1)ccc1)c1-c1ccccc1 Chemical compound Cc(c(-c1c[n]2nc(CN(C)CCO)cnc2n1)ccc1)c1-c1ccccc1 BEWSFHZQQWMFRV-UHFFFAOYSA-N 0.000 description 1
- GVMMDWWYMZMTQI-UHFFFAOYSA-N Cc(c(-c1ccccc1)ccc1)c1-c1c[n]2nc(C=C)cnc2n1 Chemical compound Cc(c(-c1ccccc1)ccc1)c1-c1c[n]2nc(C=C)cnc2n1 GVMMDWWYMZMTQI-UHFFFAOYSA-N 0.000 description 1
- CKSYEDZQDVNAOP-UHFFFAOYSA-N Cc(c(-c1ccccc1)ccc1)c1-c1c[n]2nc(C=O)cnc2n1 Chemical compound Cc(c(-c1ccccc1)ccc1)c1-c1c[n]2nc(C=O)cnc2n1 CKSYEDZQDVNAOP-UHFFFAOYSA-N 0.000 description 1
- BDEGOOBLCLSRNC-UHFFFAOYSA-N Cc(c(-c1ccccc1)ccc1)c1-c1c[n]2nc(CO)ccc2n1 Chemical compound Cc(c(-c1ccccc1)ccc1)c1-c1c[n]2nc(CO)ccc2n1 BDEGOOBLCLSRNC-UHFFFAOYSA-N 0.000 description 1
- IFXRIWBIVNZHMZ-UHFFFAOYSA-N Cc(c(-c1ccccc1)ccc1)c1-c1n[n]2c(C)nc(C=O)cc2n1 Chemical compound Cc(c(-c1ccccc1)ccc1)c1-c1n[n]2c(C)nc(C=O)cc2n1 IFXRIWBIVNZHMZ-UHFFFAOYSA-N 0.000 description 1
- RTVBRSKXIPHHDH-SANMLTNESA-N Cc1cc(CN(CCCC2)[C@@H]2C(O)=O)c[n]2c1nc(-c1c(C)c(-c3ccccc3)ccc1)c2 Chemical compound Cc1cc(CN(CCCC2)[C@@H]2C(O)=O)c[n]2c1nc(-c1c(C)c(-c3ccccc3)ccc1)c2 RTVBRSKXIPHHDH-SANMLTNESA-N 0.000 description 1
- HOUCNGOUKQECJK-UHFFFAOYSA-N OCCNCc1cc2cc(Br)c[n]2cc1 Chemical compound OCCNCc1cc2cc(Br)c[n]2cc1 HOUCNGOUKQECJK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
Definitions
- the present application is concerned with pharmaceutically active compounds.
- the disclosure provides compounds as well as their compositions and methods of use.
- the compounds modulate PD-1/PD-L1 protein/protein interaction and are useful in the treatment of various diseases including infectious diseases and cancer.
- the immune system plays an important role in controlling and eradicating diseases such as cancer.
- cancer cells often develop strategies to evade or to suppress the immune system in order to favor their growth.
- One such mechanism is altering the expression of co-stimulatory and co-inhibitory molecules expressed on immune cells (Postow et al, J. Clinical Oncology 2015, 1 -9).
- Blocking the signaling of an inhibitory immune checkpoint, such as PD-1 has proven to be a promising and effective treatment modality.
- PD-1 Programmed cell death-1
- CD279 is a cell surface receptor expressed on activated T cells, natural killer T cells, B cells, and macrophages (Greenwald et al, Annu. Rev. Immunol 2005, 23 :515-548; Okazaki and Honjo, Trends Immunol 2006,
- PD- 1 functions as an intrinsic negative feedback system to prevent the activation of T-cells, which in turn reduces autoimmunity and promotes self-tolerance.
- PD- 1 is also known to play a critical role in the suppression of antigen-specific T cell response in diseases like cancer and viral infection (Sharpe et al, Nat Immunol 2007 8, 239-245; Postow et al, J. Clinical Oncol 2015, 1 -9).
- the structure of PD-1 consists of an extracellular immunoglobulin variable-like domain followed by a transmembrane region and an intracellular domain (Parry et al, Mol Cell Biol 2005, 9543-9553).
- the intracellular domain contains two phosphorylation sites located in an immunoreceptor tyrosine-based inhibitory motif and an immunoreceptor tyrosine-based switch motif, which suggests that PD-1 negatively regulates T cell receptor- mediated signals.
- PD-1 has two ligands, PD-L1 and PD-L2 (Parry et al, Mol Cell Biol 2005, 9543-9553; Latchman et al, Nat Immunol 2001 , 2, 261-268), and they differ in their expression patterns.
- PD-L1 protein is upregulated on macrophages and dendritic cells in response to lipopolysaccharide and GM-CSF treatment, and on T cells and B cells upon T cell receptor and B cell receptor signaling.
- PD-Ll is also highly expressed on almost all tumor cells, and the expression is further increased after IFN- ⁇ treatment (Iwai et al,
- Ligation of PD-1 with its ligands PD-Ll and PD-L2 on T cells delivers a signal that inhibits IL-2 and IFN- ⁇ production, as well as cell proliferation induced upon T cell receptor activation (Carter et al, Eur J Immunol 2002, 32(3):634-43; Freeman et al, J Exp Med 2000, 192(7): 1027-34).
- the mechanism involves recruitment of SHP-2 or SHP-1 phosphatases to inhibit T cell receptor signaling such as Syk and Lck phosphorylation (Sharpe et al, Nat Immunol 2007, 8, 239-245).
- Activation of the PD-1 signaling axis also attenuates PKC- ⁇ activation loop phosphorylation, which is necessary for the activation of NF- ⁇ and API pathways, and for cytokine production such as IL-2, IFN- ⁇ and TNF (Sharpe et al, Nat Immunol 2007, 8, 239-245;
- PD-1 -deficient mice have been shown to develop lupus-like glomerulonephritis and dilated cardiomyopathy (Nishimura et al,
- the present disclosure further provides a compound of Formula (I):
- the present disclosure further provides a pharmaceutical composition
- a pharmaceutical composition comprising a compound of the disclosure, or a pharmaceutically acceptable salt or a stereoisomer thereof, and at least one pharmaceutically acceptable carrier or excipient.
- the present disclosure further provides methods of modulating or inhibiting PD- 1/PD-Ll protein/protein interaction, which comprises administering to an individual a compound of the disclosure, or a pharmaceutically acceptable salt or a stereoisomer thereof.
- the present disclosure further provides methods of treating a disease or disorder in a patient comprising administering to the patient a therapeutically effective amount of a compound of the disclosure, or a pharmaceutically acceptable salt or a stereoisomer thereof.
- one of Y 1 and Y 2 is N and the other of Y 1 and Y 2 is C;
- X 1 is N or CR 1 ;
- X 2 is N or CR 2 ;
- X 3 is N or CR 3 ;
- X 4 is N or CR 4 ;
- X 5 is N or CR 5
- X 6 is N or CR 6 ;
- Cy is Ce- ⁇ aryl, C3-10 cycloalkyl, 5- to 14-membered heteroaryl, or 4- to 10-membered heterocycloalkyl, each of which is optionally substituted with 1 to 4 independently selected R 7 substituents;
- Z 1 is N or CR 8a ;
- Z 2 is N or CR 8b ;
- Z 3 is N or CR 8c ;
- R 1 , R 2 , R 8a , R 8b and R 8c are each independently selected from H, Ci-4 alkyl, C3-6 cycloalkyl, C3-6 cycloalkyl-Ci-4 alkyl-, Ce- ⁇ aryl, Ce-io aryl-Ci-4 alkyl-, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, C2-4 alkenyl, C2-4 alkynyl, halo, CN, OR 10 , C1-4 haloalkyl, Ci- 4 haloalkoxy, NH2, -NHR 10 , -NR 10 R 10 , NHOR 10 , C(0)R 10 , C(O)NR 10 R 10 , C(0)OR 10 , OC(0)R 10 , OC(O)NR 10 R 10 , NR 10
- R 9 is halo, Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci- 4 alkyl-, CN, N0 2 , OR 11 , SR 11 , NH 2 , NHR 11 , NR n R n , NHOR 11 , C(0)R n , C(0)NR n R n , C(0)OR n , OC(0)R n , OC(0)NR n R n , NR n C(0)R n
- each R 11 is independently selected from H, Ci-6 alkyl, Ci-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
- heterocycloalkyl Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R 11 are each optionally substituted with 1, 2 or 3 independently selected R b substituents;
- R 3 , R 4 , R 5 , R 6 and R 7 are each independently selected from H, halo, Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-C 1-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered
- R 3 , R 4 , R 5 , R 6 and R 7 are each optionally substituted with 1, 2, 3, or 4 R b substituents, with the proviso that at least one of R 3 , R 4 , R 5 and R 6 is other than H;
- R 7 substituents on the Cy ring taken together with the atoms to which they are attached, form a fused phenyl ring, a fused 5-, 6- or 7-membered heterocycloalkyl ring, a fused 5- or 6-membered heteroaryl ring or a fused C3-6 cycloalkyl ring, wherein the fused 5-, 6- or 7-membered heterocycloalkyl ring and fused 5- or 6-membered heteroaryl ring each have 1-4 heteroatoms as ring members selected from N, O and S and wherein the fused phenyl ring, fused 5-, 6- or 7-membered heterocycloalkyl ring, fused 5- or 6-membered heteroaryl ring and fused C3-6 cycloalkyl ring are each optionally substituted with 1, 2 or 3 independently selected R b substituents;
- each R a is independently selected from H, CN, Ci-6 alkyl, C 1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl
- each R d is independently selected from Ci-6 alkyl, Ci-6 haloalkyl, halo, C6-io aryl, 5-10 membered heteroaryl, C3-10 cycloalkyl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-C 1-4 alkyl- , C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci- 4 alkyl-, CN, NH2, NHOR e , OR e , SR e , C(0)R e , C(0)NR e R e , C(0)OR e , OC(0)R e , OC(0)NR e R e , NHR e , NR e R e , NR e C(0)R e , NR e C(0)NR e R e , NR e C(0)
- heterocycloalkyl, Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R f are each optionally substituted with 1, 2, 3, 4, or 5 R n substituents independently selected from C1-4 alkyl, Ci- 4 haloalkyl, halo, CN, NHOR 0 , OR 0 , SR°, C(O)R 0 , C(O)NR 0 R°, C(O)OR 0 ,
- each R is independently selected from H, Ci-6 alkyl, Ci-4 haloalkyl, C 2 -6 alkenyl, C 2 -6 alkynyl, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
- heterocycloalkyl Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R p is optionally substituted with 1, 2 or 3 R q substituents;
- R a substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, 7-, 8-, 9- or 10-membered heterocycloalkyl group optionally substituted with 1, 2 or 3 R h substituents independently selected from Ci-6 alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce- ⁇ aryl, 5-6 membered heteroaryl, Ce- ⁇ aryl-Ci-4alkyl-, C3-10 cycloalkyl-C 1-4 alkyl-, (5-6 membered heteroaryl)-C 1-4 alkyl-, (4-7 membered
- cycloalkyl Ce- ⁇ aryl, 5 or 6-membered heteroaryl, 4-7 membered heterocycloalkyl, C2-4 alkenyl, C2-4 alkynyl, halo, CM alkyl, Ci- 4 haloalkyl, CN, NHOR k , OR k , SR k , C(0)R k , C(0)NR k R k , C(0)OR k , OC(0)R k , OC(0)NR k R k , NHR k , NR k R k , NR k C(0)R k ,
- CM alkyl, C3-6 cycloalkyl, Ce- ⁇ aryl, 5- or 6-membered heteroaryl, 4-6 membered heterocycloalkyl, C2-4 alkenyl, C2-4 alkynyl, Ci-4 haloalkyl, and Ci-4 haloalkoxy of R> are each optionally substituted with 1, 2 or 3 independently selected R q substituents; or two R h groups attached to the same carbon atom of the 4- to 10-membered heterocycloal
- R c substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected R h substituents;
- R e substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected R h substituents; or any two R substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected R h substituents;
- R 1 substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected R h substituents;
- R k substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected R h substituents;
- R° substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected R h substituents;
- each R e , R 1 , R k , R° or R p is independently selected from H, Ci-4 alkyl, C3-6 cycloalkyl, Ce- ⁇ aryl, 5 or 6-membered heteroaryl, 4-7 membered heterocycloalkyl, C1-4 haloalkyl, C2-4 alkenyl, and C2-4 alkynyl, wherein the C1-4 alkyl, C3-6 cycloalkyl, Ce- ⁇ aryl, 5 or 6-membered heteroaryl, 4-7 membered heterocycloalkyl, C2-4 alkenyl, and C2-4 alkynyl of R e , R 1 , R k , R° or R p are each optionally substituted with 1, 2 or 3 R q substituents;
- each R3 ⁇ 4 is independently selected from OH, CN, -COOH, NH2, halo, C 1-6 haloalkyl, Ci-6 alkyl, Ci-6 alkoxy, Ci-6 alkylthio, phenyl, 5-6 membered heteroaryl, 4-6 membered heterocycloalkyl, C3-6 cycloalkyl, NHR 12 , NR 12 R 12 , and C1-4 haloalkoxy, wherein the Ci-6 alkyl, phenyl, C3-6 cycloalkyl, 4-6 membered heterocycloalkyl, and 5-6 membered heteroaryl of R q are each optionally substituted with halo, OH, CN, -COOH, NH 2 , Ci-4 alkyl, Ci-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, phenyl, C3-10 cycloalkyl, 5-6 membered heteroaryl and 4-6 membered heterocycloalkyl
- the present disclosure provides a compound of Formula ( ⁇ ), or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein:
- one of Y 1 and Y 2 is N and the other of Y 1 and Y 2 is C;
- X 1 is N or CR 1
- X 2 is N or CR 2 ;
- X 3 is N or CR 3 ;
- X 4 is N or CR 4 ;
- X 5 is N or CR 5 ;
- X 6 is N or CR 6 ;
- Cy is Ce- ⁇ aryl, C3-10 cycloalkyl, 5- to 14-membered heteroaryl, or 4- to 10-membered heterocycloalkyl, each of which is optionally substituted with 1 to 4 independently selected R 7 substituents;
- Z 1 is N or CR 8a ;
- Z 2 is N or CR 8b ;
- Z 3 is N or CR 8c ;
- R 1 , R 2 , R 8a , R 8b and R 8c are each independently selected from H, C1-4 alkyl, C3-4 cycloalkyl, C2-4 alkenyl, C2-4 alkynyl, halo, CN, OH, C1-4 alkoxy, Cw haloalkyl, C1-4
- R 3 , R 4 , R 5 , R 6 and R 7 are each independently selected from H, halo, Ci-6 alkyl, C 2 -6 alkenyl, C 2 -6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-C 1-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci- 4 alkyl-, CN, NC , OR a , SR a , NHOR a , C(0)R a , C(0)NR a R a , C(0)OR a , OC(0)R a , OC(0)NR a R a , NHR a
- R 3 , R 4 , R 5 , R 6 and R 7 are each optionally substituted with 1, 2, 3, or 4 R b substituents, with the proviso that at least one of R 3 , R 4 , R 5 and R 6 is other than H;
- R 7 substituents on the Cy ring taken together with the atoms to which they are attached, form a fused phenyl ring, a fused 5-, 6- or 7-membered heterocycloalkyl ring, a fused 5- or 6-membered heteroaryl ring or a fused C3-6 cycloalkyl ring, wherein the fused 5-, 6- or 7-membered heterocycloalkyl ring and fused 5- or 6-membered heteroaryl ring each have 1-4 heteroatoms as ring members selected from N, O and S and wherein the fused phenyl ring, fused 5-, 6- or 7-membered heterocycloalkyl ring, fused 5- or 6-membered heteroaryl ring and fused C3-6 cycloalkyl ring are each optionally substituted with 1, 2 or 3 independently selected R b substituents or 1, 2 or 3 independently selected R q substituents; each R a is independently selected from H, CN, Ci-6 alky
- each R d is independently selected from C1-4 alkyl, Ci-4 haloalkyl, halo, C3-10 cycloalkyl, 4-10 membered heterocycloalkyl, CN, NH 2 , NHOR e , OR e , SR e , C(0)R e ,
- CM alkyl, C3-10 cycloalkyl and 4-10 membered heterocycloalkyl of R d are each further optionally substituted with 1 -3 independently selected R q substituents;
- heterocycloalkyl, Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R f are each optionally substituted with 1, 2, 3, 4, or 5 R n substituents independently selected from C1-4 alkyl, CM haloalkyl, halo, CN, NHOR 0 , OR 0 , SR°, C(O)R 0 , C(O)NR 0 R°, C(O)OR 0 ,
- each R g is independently selected from H, Ci-6 alkyl, C1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10
- R a substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, 7-, 8-, 9- or 10-membered heterocycloalkyl group optionally substituted with 1, 2 or 3 R h substituents independently selected from Ci-6 alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce- ⁇ aryl, 5-6 membered heteroaryl, C3-10 cycloalkyl-Ci-4 alkyl-, (5-6 membered heteroaryl)-Ci-4 alkyl-, (4-7 membered heterocycloalkyl)-Ci-4 alkyl-, Ci-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, halo, CN, OR 1 , SR, NHOR, C(0)R, C(0)NRR, C(0)OR, OC(0)R, OC C N , NHR', NRR, N C C , N C C N , N ,
- Ci-e alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce- ⁇ aryl, 5-6 membered heteroaryl, C3-10 cycloalkyl-Ci-4 alkyl-, (5-6 membered heteroaryl)-Ci-4 alkyl-, (4-7 membered heterocycloalkyl)-Ci-4 alkyl- of R h are each further optionally substituted by 1 , 2, or 3 Ri substituents independently selected from C3-6 cycloalkyl, Ce- ⁇ aryl, 5 or 6-membered heteroaryl, C2-4 alkenyl, C2-4 alkynyl, halo, C1-4 alkyl, Ci-4 haloalkyl, CN, NHOR k , OR k , SR k , C(0)R k , C(0)NR k R k , C(0)OR k , OC(0)R k
- R c substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected R h substituents;
- R e substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected R h substituents; or any two R substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected R h substituents;
- R 1 substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected R h substituents;
- R k substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected R h substituents;
- R° substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected R h substituents;
- each R e , R 1 , R k , R° or R p is independently selected from H, Ci-4 alkyl, C3-6 cycloalkyl, Ce- ⁇ aryl, 5 or 6-membered heteroaryl, C1-4 haloalkyl, C2-4 alkenyl, and C2-4 alkynyl, wherein the Ci-4 alkyl, C3-6 cycloalkyl, Ce- ⁇ aryl, 5 or 6-membered heteroaryl, C2-4 alkenyl, and C2-4 alkynyl of R e , R 1 , R k , R° or R p are each optionally substituted with 1, 2 or 3 R q substituents; each R q is independently selected from OH, CN, -COOH, NH2, halo, C 1-6 haloalkyl, Ci-6 alkyl, Ci-6 alkoxy, Ci-6 haloalkoxy, Ci-6 alkylthio, phenyl, 5-6 membered heteroaryl, 4-6
- Cy is Ce- ⁇ aryl, optionally substituted with 1 to 4 independently selected R 7 substituents.
- Cy is phenyl or naphthyl, each of which is optionally substituted with 1 to 4 independently selected R 7 substituents.
- Cy is phenyl optionally substituted with 1 to 4 independently selected R 7 substituents.
- Cy is unsubstituted phenyl.
- Cy is C3-10 cycloalkyl, optionally substituted with 1 to 4 independently selected R 7 substituents.
- Cy is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, cycloheptyl or cyclooctyl, each of which is optionally substituted with 1 to 4 independently selected R 7 substituents.
- Cy is 5- to 14-membered heteroaryl, optionally substituted with 1 to 4 independently selected R 7 substituents.
- Cy is pyridy, primidinyl, pyrazinyl, pyridazinyl, triazinyl, pyrrolyl, pyrazolyl, azolyl, oxazolyl, thiazolyl, imidazolyl, furanyl, thiophenyl, quinolinyl, isoquinolinyl, naphthyridinyl, indolyl, benzothiophenyl, benzofuranyl, benzisoxazolyl, imidazo[l,2-Z>]thiazolyl, purinyl, thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, pyrazolyl, isothiazolyl, isoxazolyl, 1,2,3-triazolyl, tetrazolyl, 1,2,3-thiadiazolyl, 1,2,3- oxadiazolyl, 1,2,4
- Cy is 4- to 10-membered heterocycloalkyl, optionally substituted with 1 to 4 independently selected R 7 substituents.
- Cy is azetidinyl, azepanyl, dihydrobenzofuranyl, dihydrofuranyl, dihydropyranyl, morpholino, 3-oxa-9-azaspiro[5.5]undecanyl, l-oxa-8-azaspiro[4.5]decanyl, piperidinyl, piperazinyl, oxopiperazinyl, pyranyl, pyrrolidinyl, quinuclidinyl,
- Cy is 3-dihydro-l,4- benzodioxin-6-yl optionally substituted with 1 to 4 independently selected R 7 substituents.
- Z 1 is CR 8a
- Z 2 is CR 8b
- Z 3 is CR 8c .
- R 8a , R 8b and R 8c are each H.
- Z 1 is CR 8a
- Z 2 is N
- Z 3 is N.
- R 8a is H.
- Z 1 is CR 8a
- Z 2 is N
- Z 3 is CR 8c .
- R 8a and R 8c are each H.
- Z 1 is CR 8a
- Z 2 is CR 8b
- Z 3 is N.
- R 8a and R 8b are each H.
- Z 1 is N
- Z 2 is CR 8b
- Z 3 is CR 8c .
- R 8b and R 8c are each H.
- Z 1 is N
- Z 2 is N
- Z 3 is CR 8c .
- R 8c is H.
- Z 1 is N
- Z 2 is CR 8b and Z 3 is N.
- R 8b is H.
- Z 1 , Z 2 and Z 3 are each N.
- the present disclosure provides componds of Formula (I):
- one of Y 1 and Y 2 is N and the other of Y 1 and Y 2 is C;
- X 1 is N or CR 1 ;
- X 2 is N or CR 2 ;
- X 3 is N or CR 3 ;
- X 4 is N or CR 4 ;
- X 5 is N or CR 5 ;
- X 6 is N or CR 6 ;
- R 1 , R 2 and R 8 are each independently selected from H, Ci-4 alkyl, C3-4 cycloalkyl, C2-4 alkenyl, C2-4 alkynyl, halo, CN, OH, Ci-4 alkoxy, Ci-4 haloalkyl, Ci-4 haloalkoxy, NH2, -NH- Ci-4 alkyl, -N(Ci- 4 alkyl) 2 , NHOR 10 , C(0)R 10 , C(O)NR 10 R 10 , C(0)OR 10 , OC(0)R 10 ,
- each R 10 is independently H or C1-4 alkyl optionally substituted with 1 or 2 groups independently selected from halo, OH, CN and C1-4 alkoxy and the C1-4 alkyl, C3-4 cycloalkyl, C 2 -4 alkenyl and C 2 -4 alkynyl of R 1 , R 2 or R 8 are each optionally substituted with 1 or 2 substituents independently selected from halo, OH, CN and C1-4 alkoxy;
- R 3 , R 4 , R 5 , R 6 and R 7 are each independently selected from H, halo, Ci-6 alkyl, C 2 -6 alkenyl, C 2 -6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci- 4 alkyl-, CN, NC , OR a , SR a , NHOR a , C(0)R a , C(0)NR a R a , C(0)OR a , OC(0)R a , OC(0)NR a R a , NHR a
- R 3 , R 4 , R 5 , R 6 and R 7 are each optionally substituted with 1, 2, 3, or 4 R b substituents, with the proviso that at least one of R 3 , R 4 , R 5 and R 6 is other than H;
- R 7 substituents on the phenyl ring taken together with the carbon atoms to which they are attached, form a fused phenyl ring, a fused 5- or 6-membered heterocycloalkyl ring, a fused 5- or 6-membered heteroaryl ring or a fused C5-6 cycloalkyl ring, wherein the fused 5- or 6-membered heterocycloalkyl ring and fused 5- or 6-membered heteroaryl ring each have 1-4 heteroatoms as ring members selected from N, O and S and wherein the fused phenyl ring, fused 5- or 6-membered heterocycloalkyl ring, fused 5- or 6- membered heteroaryl ring and fused C5-6 cycloalkyl ring are each optionally substituted with 1 or 2 independently selected R q substituents;
- each R a is independently selected from H, CN, Ci-6 alkyl, Ci-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-
- each R d is independently selected from C 1-4 alkyl, Ci-4 haloalkyl, halo, C3-10
- cycloalkyl 4-10 membered heterocycloalkyl, CN, NH 2 , NHOR e , OR e , SR e , C(0)R e ,
- each R c is independently selected from H, Ci-6 alkyl, C 1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
- heterocycloalkyl, Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R f are each optionally substituted with 1 , 2, 3, 4, or 5 R n substituents independently selected from CM alkyl, C M haloalkyl, halo, CN, NHOR 0 , OR 0 , SR°, C(O)R 0 , C(O)NR 0 R°, C(O)OR 0 ,
- each R g is independently selected from H, Ci-6 alkyl, C1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce- ⁇ aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10
- R a substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, 7-, 8-, 9- or 10-membered heterocycloalkyl group optionally substituted with 1, 2 or 3 R h substituents independently selected from Ci-6 alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce- ⁇ aryl, 5-6 membered heteroaryl, C3-10 cycloalkyl-Ci-4 alkyl-, (5-6 membered heteroaryl)-Ci-4 alkyl-, (4-7 membered heterocycloalkyl)-Ci-4 alkyl-, Ci-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, halo, CN, OR 1 , SR, NHOR, C(0)R, C(0)NRR, C(0)OR, OC(0)R, OC C N , NHR', NRR, N C C , N C C N , N ,
- Ci-e alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce- ⁇ aryl, 5-6 membered heteroaryl, C3-10 cycloalkyl-Ci-4 alkyl-, (5-6 membered heteroaryl)-Ci-4 alkyl-, (4-7 membered heterocycloalkyl)-Ci-4 alkyl- of R h are each further optionally substituted by 1 , 2, or 3 Ri substituents independently selected from C3-6 cycloalkyl, Ce- ⁇ aryl, 5 or 6-membered heteroaryl, C2-4 alkenyl, C2-4 alkynyl, halo, C1-4 alkyl, Ci-4 haloalkyl, CN, NHOR k , OR k , SR k , C(0)R k , C(0)NR k R k , C(0)OR k , OC(0)R k
- R c substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected R h substituents;
- R e substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected R h substituents; or any two R substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected R h substituents;
- R 1 substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected R h substituents;
- R k substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected R h substituents;
- R° substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected R h substituents;
- each R e , R 1 , R k , R° or R p is independently selected from H, Ci-4 alkyl, C3-6 cycloalkyl, Ce- ⁇ aryl, 5 or 6-membered heteroaryl, C1-4 haloalkyl, C2-4 alkenyl, and C2-4 alkynyl, wherein the Ci-4 alkyl, C3-6 cycloalkyl, Ce- ⁇ aryl, 5 or 6-membered heteroaryl, C2-4 alkenyl, and C2-4 alkynyl of R e , R 1 , R k , R° or R p are each optionally substituted with 1, 2 or 3 R q substituents; each R3 ⁇ 4 is independently selected from OH, CN, -COOH, NH2, halo, C M alkyl, CM alkoxy, C1-4 alkylthio, phenyl, 5-6 membered heteroaryl, C3-6 cycloalkyl, NHR 12 , NR 12 R 12
- n is an integer of 1 , 2, 3, 4 or 5;
- the subscript m is an integer of 1 , 2, 3 or 4. In some embodiments, the subscript m is an integer of 1 , 2 or 3.
- R 9 is C1-4 alkyl, halo, CN, OH, cyclopropyl, C2-4 alkynyl, C1-4 alkoxy, C M haloalkyl, Ci- 4 haloalkoxy, NH 2 , -NH-CM alkyl, -N(CM alkyl) 2 , NHOR 1 1 , C(0)R n , C(0)NR n R n , C(0)OR n , OC(0)R n , OC(0)NR n R n , NR n C(0)R n ,
- two adjacent R 7 substituents on the phenyl ring taken together with the carbon atoms to which they are attached, form a fused phenyl ring, a fused 5- or 6- membered heterocycloalkyl ring, a fused 5- or 6-membered heteroaryl ring or a fused C5-6 cycloalkyl ring, wherein the fused 5- or 6-membered heterocycloalkyl ring and fused 5- or 6- membered heteroaryl ring each have 1-4 heteroatoms as ring members selected from N, O and S and wherein the fused phenyl ring, fused 5- or 6-membered heterocycloalkyl ring, fused 5- or 6-membered heteroaryl ring and fused C5-6 cycloalkyl ring are each optionally substituted with 1,2 or 3 independently selected R b substituents or 1 or 2 independently selected R q substituents.
- stereoisomers thereof, as described herein are useful as inhibitors of the PD-1/PD-L1 protein/protein interaction.
- compounds or pharmaceutically acceptable salts or stereoisomers thereof as described herein can disrupt the PD-1/PD-L1 protein/protein interaction in the PD-1 pathway.
- the present disclosure provides compounds having Formula (II):
- heterocycloalkyl, Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R 1 are each optionally substituted with 1 , 2, 3, or 4 R b substituents.
- Other variables of Formula (II) are as defined in Formula ( ⁇ ) or (I) or any embodiment of compounds of Formula ( ⁇ ) or (I) as described herein.
- R 9 is CN or Ci-4 alkyl optionally substituted with R1
- R 9 is CFb or CN.
- the present disclosure provides compounds having Formula
- R 5 is halo, Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, C6-io aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce- ⁇ aryl-Ci-4 alkyl-, C3-10
- heterocycloalkyl, Ce- ⁇ aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R 1 are each optionally substituted with 1 , 2, 3, or 4 R b substituents.
- Other variables of Formula (Ila) are as defined in Formula ( ⁇ ) or (I) or any embodiment of compounds of Formula (I) as described herein.
- R 9 is CN or C1-4 alkyl optionally substituted with R1
- R 9 is CH3 or CN.
- the present disclosure provides compounds having Formula
- variables of Formula (IV) are as defined in Formula ( ⁇ ) or (I) or any embodiment of compounds of Formula ( ⁇ ) or (I) as described herein.
- the present disclosure provides compounds having Formula
- variables of Formula (V) are as defined in Formula ( ⁇ ) or (I) or any embodiment of compounds of Formula ( ⁇ ) or (I) as described herein.
- the present disclosure provides compounds having Formula
- variables of Formula (VI) are as defined in Formula ( ⁇ ) or (I) or any embodiment of compounds of Formula ( ⁇ ) or (I) as described herein.
- the present disclosure provides compounds having Formula (VII):
- R 7 is H
- n is 1
- Z 1 is CR 8a
- Z 2 is CR 8b
- Z is CR 8c
- Z 1 , Z 2 and Z 3 are each H.
- the present disclosure provides compounds having Formula
- R 7 is H
- n is 1
- Z 1 is CR 8a
- Z 2 is CR 8b
- Z is CR 8c
- Z 1 , Z 2 and Z 3 are each H.
- R 6 and R 6 wherein the substituents R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are as defined in Formula ( ⁇ ) or (I) or any embodiment of compounds of Formula ( ⁇ ) or (I) as described herein.
- R 1 , R 2 , R 3 and R 5 are each H.
- R 1 , R 2 , R 3 and R 5 are each H.
- X 1 is N
- X 2 is CH
- X 3 X 5 and X 6 are each CH
- Y 1 is N
- Y 2 is C.
- X 1 is CH
- X 2 is CH
- X 3 X 5 and X 6 are each CH
- Y 1 is C
- Y 2 is N.
- X 1 is CH
- X 2 is CH
- X and X 6 are each CH
- X 5 is N
- Y 1 is C and Y 2 is N.
- X 1 is N
- X 2 is CH
- X 3 and X 6 are each N
- X 5 is CH
- Y 1 is N and Y 2 is C.
- X 1 is N
- X 2 is CH
- X 3 and X 5 are each CH
- X 6 is N
- Y 1 is N and Y 2 is C.
- X 1 is N
- X 2 is CH
- X 3 and X 6 are each CH
- X 5 is N
- Y 1 is N
- Y 2 is C.
- X 1 is N
- X 2 is CH
- X 5 and X 6 are each CH
- X 3 is N
- Y 1 is N
- Y 2 is C.
- X 1 and X 2 are each N, X 3 , X 5 and X 6 are each CH, Y 1 is C and Y 2 is N.
- X 1 and X 2 are each N, X 3 is CH, X 5 is N, X 6 is CR 6 , Y 1 is C and Y 2 is N.
- X 1 is N
- X 2 is CH
- X 3 and X 5 are each CH
- X 6 is CR 6
- Y 1 is N and Y 2 is C.
- X 1 and X 2 are each N, X 3 and X 5 are each CH, X 6 is CR 6 , Y 1 is N and Y 2 is C.
- R 9 is Ci-4 alkyl or CN.
- R 9 is C3 ⁇ 4 or CN.
- R 7 and R 8 are each H.
- R 8a , R 8b , and R 8c are each H.
- R 7 , R 8a , R 8b , and R 8c are each H.
- X 1 , X 2 , X 3 , X 5 and X 6 are each CH.
- X 1 , X 2 , X 3 and X 6 are each CH.
- X 2 and X 5 are each CH.
- X 2 , X 3 and X 5 are each CH.
- VIII, X 2 and X 6 are each CH.
- X 2 , X 5 and X 6 are each CH.
- X 3 , X 5 and X 6 are each CH.
- X 3 is CH.
- R 4 is Ci-4 alkyl substituted with R b .
- R b is NHR C or NR C R C .
- R b is 2-hydroxyethylamino, 2-hydroxyethyl(methyl)amino, 2- carboxypiperidin-l -yl, (cyanomethyl)amino, (S)-2-carboxypiperidin-l -yl, (R)-2- carboxypiperidin-l -yl or 2-carboxypiperidin-l -yl.
- R 4 is Ci-4 alkyl substituted with R d .
- R 4 is Ci-4 alkyl substituted with R f .
- R 4 is Ci-4 alkyl substituted with R h . In other embodiments, R 4 is Ci-4 alkyl substituted with RJ. In other embodiments, R 4 is Ci-4 alkyl substituted with R n . In other embodiments, R 4 is Ci-4 alkyl substituted with R1
- R 4 is -CH2R b .
- R b is NHR C or NR C R C .
- R b is 2-hydroxyethylamino, 2-hydroxyethyl(methyl)amino, 2-carboxypiperidin-l-yl, (cyanomethyl)amino, (S)-2-carboxypiperidin-l -yl, (R)-2-carboxypiperidin-l-yl or 2- carboxypiperidin-l -yl.
- R 4 is -CH2-R d .
- R 4 is - CH2-R f . In other embodiments, R 4 is -CH 2 -R h . In other embodiments, R 4 is -CH2-RJ. In other embodiments, R 4 is -CH 2 -R n . In other embodiments, R 4 is -CH2-R q .
- R 4 is 2-hydroxyethylaminomethyl, 2-hydroxyethyl(methyl)aminomethyl, 2- carboxypiperidin-1 -ylmethyl, (cyanomethyl)aminomethyl, (S)-2-carboxypiperidin-l - ylmethyl, (R)-2-carboxypiperidin-l -ylmethyl or 2-carboxypiperidin-l -ylmethyl.
- R 6 is H, halo or Ci-6 alkyl optionally substituted with 1 -3 R q substituents.
- R 6 is H, halo or CH 3 .
- Ci-6 alkyl is specifically intended to individually disclose (without limitation) methyl, ethyl, C3 alkyl, C4 alkyl, C5 alkyl and Ce alkyl.
- n-membered typically describes the number of ring- forming atoms in a moiety where the number of ring-forming atoms is n.
- piperidinyl is an example of a 6-membered heterocycloalkyl ring
- pyrazolyl is an example of a 5-membered heteroaryl ring
- pyridyl is an example of a 6-membered heteroaryl ring
- 1,2,3,4-tetrahydro-naphthalene is an example of a 10-membered cycloalkyl group.
- each linking substituent include both the forward and backward forms of the linking substituent.
- -NR(CR'R") n - includes both -NR(CR'R") n - and -(CR'R")nNR- and is intended to disclose each of the forms individually.
- the Markush variables listed for that group are understood to be linking groups. For example, if the structure requires a linking group and the Markush group definition for that variable lists “alkyl” or "aryl” then it is understood that the "alkyl” or “aryl” represents a linking alkylene group or arylene group, respectively.
- substituted means that an atom or group of atoms formally replaces hydrogen as a "substituent" attached to another group.
- substituted refers to any level of substitution, e.g. , mono-, di-, tri-, tetra- or penta-substitution, where such substitution is permitted.
- the substituents are independently selected, and substitution may be at any chemically accessible position. It is to be understood that substitution at a given atom is limited by valency. It is to be understood that substitution at a given atom results in a chemically stable molecule.
- optionally substituted means unsubstituted or substituted.
- substituted means that a hydrogen atom is removed and replaced by a substituent.
- a single divalent substituent e.g., oxo, can replace two hydrogen atoms.
- Cn-m indicates a range which includes the endpoints, wherein n and m are integers and indicate the number of carbons. Examples include C 1-4, C i-6 and the like.
- alkyl employed alone or in combination with other terms, refers to a saturated hydrocarbon group that may be straight-chained or branched.
- Cn-m alkyl refers to an alkyl group having n to m carbon atoms. An alkyl group formally corresponds to an alkane with one C-H bond replaced by the point of attachment of the alkyl group to the remainder of the compound.
- the alkyl group contains from 1 to 6 carbon atoms, from 1 to 4 carbon atoms, from 1 to 3 carbon atoms, or 1 to 2 carbon atoms.
- alkyl moieties include, but are not limited to, chemical groups such as methyl, ethyl, ft-propyl, isopropyl, w-butyl, fert-butyl, isobutyl, sec-butyl; higher homologs such as 2- methyl-1 -butyl, w-pentyl, 3-pentyl, w-hexyl, 1 ,2,2-trimethylpropyl and the like.
- alkenyl employed alone or in combination with other terms, refers to a straight-chain or branched hydrocarbon group corresponding to an alkyl group having one or more double carbon-carbon bonds.
- An alkenyl group formally corresponds to an alkene with one C-H bond replaced by the point of attachment of the alkenyl group to the remainder of the compound.
- Cn-m alkenyl refers to an alkenyl group having n to m carbons. In some embodiments, the alkenyl moiety contains 2 to 6, 2 to 4, or 2 to 3 carbon atoms.
- Example alkenyl groups include, but are not limited to, ethenyl, w-propenyl, isopropenyl, n- butenyl, seobutenyl and the like.
- alkynyl employed alone or in combination with other terms, refers to a straight-chain or branched hydrocarbon group corresponding to an alkyl group having one or more triple carbon-carbon bonds.
- An alkynyl group formally corresponds to an alkyne with one C-H bond replaced by the point of attachment of the alkyl group to the remainder of the compound.
- Cn-m alkynyl refers to an alkynyl group having n to m carbons.
- Example alkynyl groups include, but are not limited to, ethynyl, propyn-l-yl, propyn-2-yl and the like. In some embodiments, the alkynyl moiety contains 2 to 6, 2 to 4, or 2 to 3 carbon atoms.
- alkylene employed alone or in combination with other terms, refers to a divalent alkyl linking group.
- An alkylene group formally corresponds to an alkane with two C-H bond replaced by points of attachment of the alkylene group to the remainder of the compound.
- Cn-m alkylene refers to an alkylene group having n to m carbon atoms.
- alkylene groups include, but are not limited to, ethan-l,2-diyl, propan-l,3-diyl, propan-l,2-diyl, butan-l,4-diyl, butan-l,3-diyl, butan-l,2-diyl, 2-methyl-propan-l,3-diyl and the like.
- alkoxy employed alone or in combination with other terms, refers to a group of formula -O-alkyl, wherein the alkyl group is as defined above.
- Cn-m alkoxy refers to an alkoxy group, the alkyl group of which has n to m carbons.
- Example alkoxy groups include methoxy, ethoxy, propoxy (e.g., w-propoxy and isopropoxy), /-butoxy and the like.
- the alkyl group has 1 to 6, 1 to 4, or 1 to 3 carbon atoms.
- amino refers to a group of formula -NH 2 .
- cyano or "nitrile” refers to a group of formula -C ⁇ N, which also may be written as -CN.
- halo refers to fluoro, chloro, bromo and iodo.
- halo refers to a halogen atom selected from F, CI, or Br.
- halo groups are F.
- haloalkyl refers to an alkyl group in which one or more of the hydrogen atoms has been replaced by a halogen atom.
- C n -m haloalkyl refers to a Cn-m alkyl group having n to m carbon atoms and from at least one up to ⁇ 2(n to m)+l ⁇ halogen atoms, which may either be the same or different.
- the halogen atoms are fluoro atoms.
- the haloalkyl group has 1 to 6 or 1 to 4 carbon atoms.
- Example haloalkyl groups include CF3, C2F5, CHF2, CCh, CHCI2, C2CI5 and the like.
- the haloalkyl group is a fluoroalkyl group.
- haloalkoxy refers to a group of formula -O-haloalkyl, wherein the haloalkyl group is as defined above.
- Cn-m haloalkoxy refers to a haloalkoxy group, the haloalkyl group of which has n to m carbons.
- Example haloalkoxy groups include trifluoromethoxy and the like. In some embodiments, the haloalkoxy group has 1 to 6, 1 to 4, or 1 to 3 carbon atoms.
- oxo refers to an oxygen atom as a divalent substituent, forming a carbonyl group when attached to carbon, or attached to a heteroatom forming a sulfoxide or sulfone group, or an N-oxide group.
- aromatic refers to a carbocycle or heterocycle having one or more polyunsaturated rings having aromatic character (i.e., having (4n + 2) delocalized ⁇ (pi) electrons where n is an integer).
- aryl employed alone or in combination with other terms, refers to an aromatic hydrocarbon group, which may be monocyclic or poly cyclic (e.g. , having 2 fused rings).
- Cn-m aryl refers to an aryl group having from n to m ring carbon atoms.
- Aryl groups include, e.g. , phenyl, naphthyl, indanyl, indenyl and the like.
- aryl groups have from 6 to about 10 carbon atoms. In some embodiments aryl groups have 6 carbon atoms. In some embodiments aryl groups have 10 carbon atoms. In some embodiments, the aryl group is phenyl. In some embodiments, the aryl group is naphthyl.
- heteroaryl or “heteroaromatic,” employed alone or in combination with other terms, refers to a monocyclic or poly cyclic aromatic heterocycle having at least one heteroatom ring member selected from sulfur, oxygen and nitrogen.
- the heteroaryl ring has 1, 2, 3 or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen.
- any ring-forming N in a heteroaryl moiety can be an N-oxide.
- the heteroaryl has 5-14 ring atoms including carbon atoms and 1, 2, 3 or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen.
- the heteroaryl has 5-10 ring atoms including carbon atoms and 1, 2, 3 or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen. In some embodiments, the heteroaryl has 5-6 ring atoms and 1 or 2 heteroatom ring members independently selected from nitrogen, sulfur and oxygen. In some embodiments, the heteroaryl is a five-membered or six-membered heteroaryl ring. In other embodiments, the heteroaryl is an eight-membered, nine-membered or ten-membered fused bicyclic heteroaryl ring.
- Example heteroaryl groups include, but are not limited to, pyridintl (pyridyl), pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolyl, pyrazolyl, azolyl, oxazolyl, thiazolyl, imidazolyl, furanyl, thiophenyl, quinolinyl, isoquinolinyl, naphthyridinyl (including 1,2-, 1,3-, 1,4-, 1,5-, 1,6-, 1,7-, 1,8-, 2,3- and 2,6-naphthyridine), indolyl, benzothiophenyl, benzofuranyl, benzisoxazolyl, imidazo[l,2-Z>]thiazolyl, purinyl, and the like.
- pyridintl pyridyl
- pyrimidinyl pyrazinyl
- pyridazinyl
- a five-membered heteroaryl ring is a heteroaryl group having five ring atoms wherein one or more (e.g. , 1, 2 or 3) ring atoms are independently selected from N, O and S.
- Exemplary five-membered ring heteroaryls include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, pyrazolyl, isothiazolyl, isoxazolyl, 1,2,3-triazolyl, tetrazolyl, 1,2,3- thiadiazolyl, 1,2,3-oxadiazolyl, 1 ,2,4-triazolyl, 1 ,2,4-thiadiazolyl, 1,2,4-oxadiazolyl, 1,3,4- triazolyl, 1,3,4-thiadiazolyl and 1,3,4-oxadiazolyl.
- a six-membered heteroaryl ring is a heteroaryl group having six ring atoms wherein one or more (e.g. , 1, 2 or 3) ring atoms are independently selected from N, O and S.
- Exemplary six-membered ring heteroaryls are pyridyl, pyrazinyl, pyrimidinyl, triazinyl and pyridazinyl.
- cycloalkyl employed alone or in combination with other terms, refers to a non-aromatic hydrocarbon ring system (monocyclic, bicyclic or poly cyclic), including cyclized alkyl and alkenyl groups.
- Cn-m cycloalkyl refers to a cycloalkyl that has n to m ring member carbon atoms.
- Cycloalkyl groups can include mono- or poly cyclic (e.g., having 2, 3 or 4 fused rings) groups and spirocycles. Cycloalkyl groups can have 3, 4, 5, 6 or 7 ring-forming carbons (C3-7).
- the cycloalkyl group has 3 to 6 ring members, 3 to 5 ring members, or 3 to 4 ring members. In some embodiments, the cycloalkyl group is monocyclic. In some embodiments, the cycloalkyl group is monocyclic or bicyclic. In some embodiments, the cycloalkyl group is a C3-6 monocyclic cycloalkyl group. Ring- forming carbon atoms of a cycloalkyl group can be optionally oxidized to form an oxo or sulfido group. Cycloalkyl groups also include cycloalkylidenes.
- cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. Also included in the definition of cycloalkyl are moieties that have one or more aromatic rings fused (i.e. , having a bond in common with) to the cycloalkyl ring, e.g., benzo or thienyl derivatives of cyclopentane, cyclohexane and the like.
- a cycloalkyl group containing a fused aromatic ring can be attached through any ring-forming atom including a ring-forming atom of the fused aromatic ring.
- cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclopentenyl, cyclohexenyl, cyclohexadienyl, cycloheptatrienyl, norbornyl, norpinyl, norcamyl, bicyclo[l . l . l]pentanyl, bicyclo[2.1.1]hexanyl, and the like.
- the cycloalkyl group is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
- heterocycloalkyl refers to a non-aromatic ring or ring system, which may optionally contain one or more alkenylene groups as part of the ring structure, which has at least one heteroatom ring member independently selected from nitrogen, sulfur oxygen and phosphorus, and which has 4-10 ring members, 4-7 ring members, or 4-6 ring members. Included within the term “heterocycloalkyl” are monocyclic 4-, 5-, 6- and 7-membered heterocycloalkyl groups. Heterocycloalkyl groups can include mono- or bicyclic (e.g., having two fused or bridged rings) ring systems.
- the heterocycloalkyl group is a monocyclic group having 1, 2 or 3 heteroatoms independently selected from nitrogen, sulfur and oxygen. Ring- forming carbon atoms and heteroatoms of a heterocycloalkyl group can be optionally oxidized to form an oxo or sulfido group or other oxidized linkage (e.g. , C(O), S(O), C(S) or S(0)2, N-oxide etc.) or a nitrogen atom can be quaternized.
- the heterocycloalkyl group can be attached through a ring-forming carbon atom or a ring-forming heteroatom. In some embodiments, the heterocycloalkyl group contains 0 to 3 double bonds. In some
- the heterocycloalkyl group contains 0 to 2 double bonds. Also included in the definition of heterocycloalkyl are moieties that have one or more aromatic rings fused (i. e. , having a bond in common with) to the heterocycloalkyl ring, e.g. , benzo or thienyl derivatives of piperidine, morpholine, azepine, etc.
- a heterocycloalkyl group containing a fused aromatic ring can be attached through any ring-forming atom including a ring-forming atom of the fused aromatic ring.
- heterocycloalkyl groups include azetidinyl, azepanyl, dihydrobenzofuranyl, dihydrofuranyl, dihydropyranyl, morpholino, 3-oxa-9- azaspiro[5.5]undecanyl, l-oxa-8-azaspiro[4.5]decanyl, piperidinyl, piperazinyl,
- oxopiperazinyl pyranyl, pyrrolidinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydropyranyl, 1,2,3,4-tetrahydroquinolinyl, tropanyl, and thiomorpholino.
- the definitions or embodiments refer to specific rings (e.g. , an azetidine ring, a pyridine ring, etc.). Unless otherwise indicated, these rings can be attached to any ring member provided that the valency of the atom is not exceeded. For example, an azetidine ring may be attached at any position of the ring, whereas an azetidin-3-yl ring is attached at the 3-position.
- the compounds described herein can be asymmetric (e.g. , having one or more stereocenters). All stereoisomers, such as enantiomers and diastereomers, are intended unless otherwise indicated.
- One method includes fractional recrystallization using a chiral resolving acid which is an optically active, salt-forming organic acid.
- Suitable resolving agents for fractional recrystallization methods are, e.g. , optically active acids, such as the D and L forms of tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid or the various optically active camphorsulfonic acids such as ⁇ - camphorsulfonic acid.
- Other resolving agents suitable for fractional crystallization methods include stereoisomerically pure forms of a-methylbenzylamine (e.g.
- Resolution of racemic mixtures can also be carried out by elution on a column packed with an optically active resolving agent (e.g., dinitrobenzoylphenylglycine).
- an optically active resolving agent e.g., dinitrobenzoylphenylglycine
- Suitable elution solvent composition can be determined by one skilled in the art.
- the compounds of the invention have the (i?)-configuration. In other embodiments, the compounds have the ( ⁇ -configuration. In compounds with more than one chiral centers, each of the chiral centers in the compound may be independently (R) or (S), unless otherwise indicated.
- Tautomeric forms result from the swapping of a single bond with an adjacent double bond together with the concomitant migration of a proton.
- Tautomeric forms include prototropic tautomers which are isomeric protonation states having the same empirical formula and total charge.
- Example prototropic tautomers include ketone - enol pairs, amide - imidic acid pairs, lactam - lactim pairs, enamine - imine pairs, and annular forms where a proton can occupy two or more positions of a heterocyclic system, e.g.
- Tautomeric forms can be in equilibrium or sterically locked into one form by appropriate substitution.
- Compounds of the invention can also include all isotopes of atoms occurring in the intermediates or final compounds.
- Isotopes include those atoms having the same atomic number but different mass numbers.
- isotopes of hydrogen include tritium and deuterium.
- One or more constituent atoms of the compounds of the invention can be replaced or substituted with isotopes of the atoms in natural or non-natural abundance.
- the compound includes at least one deuterium atom.
- one or more hydrogen atoms in a compound of the present disclosure can be replaced or substituted by deuterium.
- the compound includes two or more deuterium atoms.
- the compound includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 deuterium atoms.
- Synthetic methods for including isotopes into organic compounds are known in the art.
- the term, "compound,” as used herein is meant to include all stereoisomers, geometric isomers, tautomers and isotopes of the structures depicted.
- the term is also meant to refer to compounds of the inventions, regardless of how they are prepared, e.g., synthetically, through biological process (e.g., metabolism or enzyme conversion), or a combination thereof.
- All compounds, and pharmaceutically acceptable salts thereof can be found together with other substances such as water and solvents (e.g., hydrates and solvates) or can be isolated.
- solvents e.g., hydrates and solvates
- the compounds described herein and salts thereof may occur in various forms and may, e.g. , take the form of solvates, including hydrates.
- the compounds may be in any solid state form, such as a polymorph or solvate, so unless clearly indicated otherwise, reference in the specification to compounds and salts thereof should be understood as encompassing any solid state form of the compound.
- the compounds of the invention, or salts thereof are substantially isolated.
- substantially isolated is meant that the compound is at least partially or substantially separated from the environment in which it was formed or detected.
- Partial separation can include, e.g. , a composition enriched in the compounds of the invention.
- Substantial separation can include compositions containing at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% by weight of the compounds of the invention, or salt thereof.
- phrases "pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- ambient temperature and “room temperature,” as used herein, are understood in the art, and refer generally to a temperature, e.g. , a reaction temperature, that is about the temperature of the room in which the reaction is carried out, e.g., a temperature from about 20 °C to about 30 °C.
- the present invention also includes pharmaceutically acceptable salts of the compounds described herein.
- pharmaceutically acceptable salts refers to derivatives of the disclosed compounds wherein the parent compound is modified by converting an existing acid or base moiety to its salt form.
- examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
- the pharmaceutically acceptable salts of the present invention include the non-toxic salts of the parent compound formed, e.g. , from non-toxic inorganic or organic acids.
- the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods.
- such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, non-aqueous media like ether, ethyl acetate, alcohols (e.g., methanol, ethanol, iso-propanol or butanol) or acetonitrile (MeCN) are preferred.
- non-aqueous media like ether, ethyl acetate, alcohols (e.g., methanol, ethanol, iso-propanol or butanol) or acetonitrile (MeCN) are preferred.
- suitable salts are found in Remington's Pharmaceutical Sciences, 17 th Ed., (Mack Publishing Company, Easton, 1985), p. 1418, Berge et al, J. Pharm. Sci., 1977, 66(1), 1-19 and in Stahl et al., Handbook of Pharmaceutical Salt
- the reactions for preparing compounds of the invention can be carried out in suitable solvents which can be readily selected by one of skill in the art of organic synthesis.
- suitable solvents can be substantially non-reactive with the starting materials (reactants), the intermediates or products at the temperatures at which the reactions are carried out, e.g. , temperatures which can range from the solvent's freezing temperature to the solvent's boiling temperature.
- a given reaction can be carried out in one solvent or a mixture of more than one solvent.
- suitable solvents for a particular reaction step can be selected by the skilled artisan.
- Reactions can be monitored according to any suitable method known in the art.
- product formation can be monitored by spectroscopic means, such as nuclear magnetic resonance spectroscopy (e.g. , 3 ⁇ 4 or 1 C), infrared spectroscopy, spectrophotometry (e.g. , UV -visible), mass spectrometry or by chromatographic methods such as high performance liquid chromatography (HPLC) or thin layer chromatography (TLC).
- spectroscopic means such as nuclear magnetic resonance spectroscopy (e.g. , 3 ⁇ 4 or 1 C), infrared spectroscopy, spectrophotometry (e.g. , UV -visible), mass spectrometry or by chromatographic methods such as high performance liquid chromatography (HPLC) or thin layer chromatography (TLC).
- HPLC high performance liquid chromatography
- TLC thin layer chromatography
- the compounds of Formula 4 can be prepared according to Scheme 1.
- substituted phenyl boronic esters 6 under standard Suzuki coupling condition (e.g., in the presence of a palladium catalyst and a suitable base) to produce the biphenyl compounds 7.
- brominating reagents including, but not limited,
- the triazole-containing heteroaryl halides of formula 13 (Hal 4 is a halide such as Br or I) can be formed according to Scheme 3. Coupling of amino heterocycles 9 with ethoxycarbonyl isothiocyanate 11, followed by treatment with hydroxylamine hydrochloride and diisopropylethylamine (DIPEA) can form N-bridged heteroaryl amines 12. Conversion of the primary amine in 12 to halides can be achieved under Sandmeyer reaction conditions [i.e. in the presence of tert-butyl nitrite and a halogen sources such as CuBn or b] to generate the N-bridged heteraryl halides 13.
- Scheme 4
- the N-bridged heteroaryl compounds of Formula 18 can be prepared according to Scheme 4, starting from compounds of formula 14 or 15 which can be prepared according to procedures as described in Scheme 1 or 2.
- Heteroaryl esters 14 can be reduced to aldehydes 16 via a sequence of reduction (e.g., L1AIH4 or L1BH4 as reducing reagents) and oxidation (e.g., Dess-Martin periodinane as oxidant).
- the aldehydes 16 might also be formed via direct reduction of esters 14 under mild reducing conditions [e.g., using diisobutylaluminium hydride (DIBAL) as the reducing agent at low temperature].
- DIBAL diisobutylaluminium hydride
- aldehydes 16 can be formed through a direct reduction of nitriles 15 with DIBAL as the reducing reagent at low temperature. Then the aldehydes 16 can react with amines 17 of formula HNR C R C under standard reductive amination conditions (e.g., sodium triacetoxyborohydride or sodium cyanoborohydride as reducing reagents) to generate compounds of formula 18.
- Scheme 5 e.g., sodium triacetoxyborohydride or sodium cyanoborohydride as reducing reagents
- aldehydes 16 can also be prepared using procedures as shown in
- the halide in compounds 19 can be converted to vinyl group to give olefins 20, under standard Suzuki coupling condition (e.g., with vinylboronic acid pinaco ester in the presence of a palladium catalyst and a suitable base).
- the vinyl group in compounds 20 can be oxidatively cleaved by NalCn in the presence of catalytic amount of OsCn to form aldehydes 16.
- Compounds of Formula 25 can be prepared using procedures as outlined in Scheme 6.
- M is a boronic acid, boronic ester or an appropriately substituted metal [e.g., M is B(OR)2, Sn(Alkyl)4, or Zn- Hal]
- Suzuki coupling conditions e.g., in the presence of a palladium catalyst and a suitable base
- Stille coupling conditions e.g., in
- compound 24 can be a cyclic amine (where M is H and attached to an amine nitrogen in ring Cy) and the coupling of aryl halide 23 with the cyclic amine 24 can be performed under Buchwald animation conditions (e.g., in the presence of a palladium catalyst and a base such as sodium tert-butoxide).
- Buchwald animation conditions e.g., in the presence of a palladium catalyst and a base such as sodium tert-butoxide.
- Compounds of Formula 25 can be prepared using the procedures as outlined in Scheme 7.
- Selective coupling of aryl halides 26 with compounds of formula 24 [M is a boronic acid, boronic ester or an appropriately substituted metal, e.g., M is B(OR)2, Sn(Alkyl)4, or Zn-Hal] can be achieved under suitable Suzuki coupling, Stille coupling or Negishi coupling conditions to give compounds of Formula 27.
- M is a cyclic amine (e.g., M is H and attached to nitrogen in ring Cy)
- the coupling can be achieved under Buchwald animation conditions.
- Conversion of compound 27 to the final product 25 can be achieved using similar conditions as described in Scheme 1. III.
- Compounds of the present disclosure can inhibit the activity of PD-1/PD-L1 protein/protein interaction and, thus, are useful in treating diseases and disorders associated with activity of PD-1 and the diseases and disorders associated with PD-L1 including its interaction with other proteins such as PD-1 and B7-1 (CD80).
- the compounds of the present disclosure, or pharmaceutically acceptable salts or stereoisomers thereof are useful for therapeutic administration to enhance immunity in cancer or chronic infection, including enhancement of response to vaccination.
- the present disclosure provides a method for inhibiting the PD-1/PD-L1 protein/protein interaction.
- the method includes administering to an individual or a patient a compound of Formula ( ⁇ ) or (I) or of any of the formulas as described herein, or of a compound as recited in any of the claims and described herein, or a pharmaceutically acceptable salt or a stereoisomer thereof.
- the compounds of the present disclosure can be used alone, in combination with other agents or therapies or as an adjuvant or neoadjuvant for the treatment of diseases or disorders, including cancer or infection diseases.
- any of the compounds of the disclosure including any of the embodiments thereof, may be used.
- the compounds of the present disclosure inhibit the PD-1/PD-L1 protein/protein interaction, resulting in a PD-1 pathway blockade.
- the blockade of PD-1 can enhance the immune response to cancerous cells and infectious diseases in mammals, including humans.
- the present disclosure provides treatment of an individual or a patient in vivo using a compound of Formula ( ⁇ ) or (I) or a salt or stereoisomer thereof such that growth of cancerous tumors is inhibited.
- a compound of Formula ( ⁇ ) or (I) or of any of the formulas as described herein, or a compound as recited in any of the claims and described herein, or a salt or stereoisomer thereof can be used to inhibit the growth of cancerous tumors.
- a compound of Formula ( ⁇ ) or (I) or of any of the formulas as described herein, or a compound as recited in any of the claims and described herein, or a salt or stereoisomer thereof can be used in conjunction with other agents or standard cancer treatments, as described below.
- the present disclosure provides a method for inhibiting growth of tumor cells in vitro. The method includes contacting the tumor cells in vitro with a compound of Formula ( ⁇ ) or (I) or of any of the formulas as described herein, or of a compound as recited in any of the claims and described herein, or of a salt or stereoisomer thereof.
- the present disclosure provides a method for inhibiting growth of tumor cells in an individual or a patient.
- the method includes administering to the individual or patient in need thereof a therapeutically effective amount of a compound of Formula ( ⁇ ) or (I) or of any of the formulas as described herein, or of a compound as recited in any of the claims and described herein, or a salt or a stereoisomer thereof.
- a method for treating cancer includes administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula ( ⁇ ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a salt thereof.
- cancers include those whose growth may be inhibited using compounds of the disclosure and cancers typically responsive to immunotherapy.
- cancers that are treatable using the compounds of the present disclosure include, but are not limited to, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, endometrial cancer, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin's Disease, non-Hodgkin's lymphoma, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, chronic or acute leukemias including acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leuk
- cancers treatable with compounds of the present disclosure include melanoma (e.g., metastatic malignant melanoma), renal cancer (e.g. clear cell carcinoma), prostate cancer (e.g. hormone refractory prostate adenocarcinoma), breast cancer, colon cancer and lung cancer (e.g. non-small cell lung cancer). Additionally, the disclosure includes refractory or recurrent malignancies whose growth may be inhibited using the compounds of the disclosure.
- melanoma e.g., metastatic malignant melanoma
- renal cancer e.g. clear cell carcinoma
- prostate cancer e.g. hormone refractory prostate adenocarcinoma
- breast cancer e.g. hormone refractory prostate adenocarcinoma
- colon cancer e.g. non-small cell lung cancer
- lung cancer e.g. non-small cell lung cancer
- cancers that are treatable using the compounds of the present disclosure include, but are not limited to, solid tumors (e.g. , prostate cancer, colon cancer, esophageal cancer, endometrial cancer, ovarian cancer, uterine cancer, renal cancer, hepatic cancer, pancreatic cancer, gastric cancer, breast cancer, lung cancer, cancers of the head and neck, thyroid cancer, glioblastoma, sarcoma, bladder cancer, etc.), hematological cancers (e.g.
- lymphoma leukemia such as acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), DLBCL, mantle cell lymphoma, Non-Hodgkin lymphoma (including relapsed or refractory NHL and recurrent follicular), Hodgkin lymphoma or multiple myeloma) and combinations of said cancers.
- ALL acute lymphoblastic leukemia
- AML acute myelogenous leukemia
- CLL chronic lymphocytic leukemia
- CML chronic myelogenous leukemia
- DLBCL mantle cell lymphoma
- Non-Hodgkin lymphoma including relapsed or refractory NHL and recurrent follicular
- Hodgkin lymphoma or multiple myeloma and combinations of said cancers.
- PD-1 pathway blockade with compounds of the present disclosure can also be used for treating infections such as viral, bacteria, fungus and parasite infections.
- the present disclosure provides a method for treating infections such as viral infections. The method includes administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula ( ⁇ ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, a salt thereof.
- viruses causing infections treatable by methods of the present disclosure include, but are not limit to, human immunodeficiency virus, human papillomavirus, influenza, hepatitis A, B, C or D viruses, adenovirus, poxvirus, herpes simpl ex viruses, human cytomegalovirus, severe acute respirator ⁇ ' syndrome virus, eboia virus, and measles virus.
- viruses causing infections treatable by methods of the present disclosure include, but are not limit to, hepatitis (A, B, or C), herpes virus (e.g., VZV, HSV-1, HAV-6, HSV-II, and CMV, Epstein Barr virus), adenovirus, influenza virus, fiaviviruses, echovirus, rhinovirus, coxsackie virus, cornovirus, respiratory syncytial virus, mumpsvirus, rotavirus, measles virus, rubella virus, parvovirus, vaccinia virus, HTLV virus, dengue virus, papillomavirus, molluscum virus, poliovirus, rabies virus, JC virus and arboviral encephalitis virus.
- herpes virus e.g., VZV, HSV-1, HAV-6, HSV-II, and CMV, Epstein Barr virus
- adenovirus e.g., adenovirus
- influenza virus e.g., V
- the present disclosure provides a method for treating bacterial infections.
- the method includes administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula ( ⁇ ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a salt thereof.
- Non-limiting examples of pathogenic bacteria causing infections treatable by methods of the disclosure include chlamydia, rickettsial bacteria, mycobacteria, staphylococci, streptococci, pneumonococci, meningococci and conococci, klebsiella, proteus, serratia, pseudomonas, legionella, diphtheria, salmonella, bacilli, cholera, tetanus, botulism, anthrax, plague, leptospirosis, and Lyme's disease bacteria.
- the present disclosure provides a method for treating fungus infections.
- the method includes administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula ( ⁇ ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a salt thereof.
- pathogenic fungi causing infections treatable by methods of the disclosure include Candida (albicans, krusei, glabrata, tropicalis, etc.), Cryptococcus neoformans, Aspergillus
- Genus Mucorales micor, absidia, rhizophus
- Sporothrix schenkii Blastomyces dermatitidis
- Paracoccidioides brasiliensis Coccidioides immitis
- Histoplasma capsulatum Histoplasma capsulatum.
- the present disclosure provides a method for treating parasite infections.
- the method includes administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula ( ⁇ ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a salt thereof.
- Non-limiting examples of pathogenic parasites causing infections treatable by methods of the disclosure include Entamoeba histolytica, Balantidium coli, Naegleriafowleri, Acanthamoeba sp., Giardia lambia, Cryptosporidium sp., Pneumocystis carinii, Plasmodium vivax, Babesia microti, Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondi, and Nippostrongylus brasiliensis.
- mice preferably mice, rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, or primates, and most preferably humans.
- terapéuticaally effective amount refers to the amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue, system, animal, individual or human that is being sought by a researcher, veterinarian, medical doctor or other clinician.
- treating refers to one or more of (1) inhibiting the disease; e.g. , inhibiting a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e. , arresting further development of the pathology and/or symptomatology); and (2) ameliorating the disease; e.g., ameliorating a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e. , reversing the pathology and/or symptomatology) such as decreasing the severity of disease.
- the compounds of the invention are useful in preventing or reducing the risk of developing any of the diseases referred to herein; e.g. , preventing or reducing the risk of developing a disease, condition or disorder in an individual who may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of the disease.
- Cancer cell growth and survival can be impacted by multiple signaling pathways.
- Targeting more than one signaling pathway (or more than one biological molecule involved in a given signaling pathway) may reduce the likelihood of drug-resistance arising in a cell population, and/or reduce the toxicity of treatment.
- the compounds of the present disclosure can be used in combination with one or more other enzyme/protein/receptor inhibitors for the treatment of diseases, such as cancer or infections.
- diseases such as cancer or infections.
- cancers include solid tumors and liquid tumors, such as blood cancers.
- infections include viral infections, bacterial infections, fungus infections or parasite infections.
- the compounds of the present disclosure can be combined with one or more inhibitors of the following kinases for the treatment of cancer: Aktl, Akt2, Akt3, TGF-PR, PKA, PKG, PKC, CaM-kinase, phosphorylase kinase, MEKK, ERK, MAPK, mTOR, EGFR, HER2, HER3, HER4, INS-R, IGF-1R, IR-R, PDGFaR, PDGFPR, CSFIR, KIT, FLK-II, KDR/FLK-1, FLK-4, flt-1 , FGFRl , FGFR2, FGFR3, FGFR4, c-Met, Ron, Sea, TRKA, TRKB, TRKC, FLT3, VEGFR/Flt2, Flt4, EphAl , EphA2, EphA3, EphB2, EphB4, Tie2, Src, Fyn, Lck, Fgr, Btk, Fak, S
- the compounds of the present disclosure can be combined with one or more of the following inhibitors for the treatment of cancer or infections.
- inhibitors that can be combined with the compounds of the present disclosure for treatment of cancer and infections include an FGFR inhibitor (FGFRl, FGFR2, FGFR3 or FGFR4, e.g., INCB54828, INCB62079 and INCB63904), a JAK inhibitor (JAK1 and/or JAK2, e.g., ruxolitinib, baricitinib or INCB39110), an IDO inhibitor (e.g., epacadostat and NLG919), an LSD1 inhibitor (e.g., INCB59872 and INCB60003), a TDO inhibitor, a PI3K-delta inhibitor, a PI3K-gamma inhibitor such as PI3K-gamma selective inhibitor (e.g., INCB50797), a Pirn inhibitor, a CSFIR inhibitor, a
- JAK inhibitor JAK inhibitor
- immune checkpoint inhibitors include inhibitors against immune checkpoint molecules such as CD27, CD28, CD40, CD122, CD96, CD73, CD47, OX40, GITR, CSF1R, JAK, PI3K delta, PI3K gamma, TAM, arginase, CD137 (also known as 4-1BB), ICOS, A2AR, B7-H3, B7-H4, BTLA, CTLA-4, LAG3, TIM3, VISTA, PD-1 , PD-L1 and PD-L2.
- immune checkpoint inhibitors include inhibitors against immune checkpoint molecules such as CD27, CD28, CD40, CD122, CD96, CD73, CD47, OX40, GITR, CSF1R, JAK, PI3K delta, PI3K gamma, TAM, arginase, CD137 (also known as 4-1BB), ICOS, A2AR, B7-H3, B7-H4, BTLA, CTLA-4, LAG3,
- the immune checkpoint molecule is a stimulatory checkpoint molecule selected from CD27, CD28, CD40, ICOS, OX40, GITR and CD137.
- the immune checkpoint molecule is an inhibitory checkpoint molecule selected from A2AR, B7-H3, B7-H4, BTLA, CTLA-4, IDO, KIR, LAG3, PD-1, TIM3, and VISTA.
- the compounds provided herein can be used in combination with one or more agents selected from KIR inhibitors, TIGIT inhibitors, LAIRl inhibitors, CD 160 inhibitors, 2B4 inhibitors and TGFR beta inhibitors.
- the inhibitor of an immune checkpoint molecule is anti-PDl antibody, anti-PD-Ll antibody, or anti-CTLA-4 antibody.
- the inhibitor of an immune checkpoint molecule is an inhibitor of PD-1 , e.g., an anti-PD-1 monoclonal antibody.
- the anti-PD-1 monoclonal antibody is nivolumab, pembrolizumab (also known as MK-3475), pidilizumab, SHR-1210, PDR001 , or AMP-224.
- the anti-PD-1 monoclonal antibody is nivolumab or pembrolizumab.
- the anti-PDl antibody is pembrolizumab.
- the anti PD-1 antibody is SHR-1210.
- the inhibitor of an immune checkpoint molecule is an inhibitor of PD-L1 , e.g., an anti-PD-Ll monoclonal antibody.
- the anti-PD-Ll monoclonal antibody is BMS-935559, MEDI4736, MPDL3280A (also known as RG7446), or MSB0010718C.
- the anti-PD-Ll monoclonal antibody is BMS-935559, MEDI4736, MPDL3280A (also known as RG7446), or MSB0010718C.
- the anti-PD-Ll monoclonal antibody is
- the inhibitor of an immune checkpoint molecule is an inhibitor of CTLA-4, e.g., an anti-CTLA-4 antibody.
- the anti-CTLA-4 antibody is ipilimumab.
- the inhibitor of an immune checkpoint molecule is an inhibitor of LAG3, e.g., an anti-LAG3 antibody.
- the anti-LAG3 antibody is BMS-986016 or LAG525.
- the inhibitor of an immune checkpoint molecule is an inhibitor of GITR, e.g., an anti-GITR antibody.
- the anti-GITR antibody is TRX518 or MK-4166.
- the inhibitor of an immune checkpoint molecule is an inhibitor of OX40, e.g., an anti-OX40 antibody or OX40L fusion protein.
- OX40 e.g., an anti-OX40 antibody or OX40L fusion protein.
- the anti-OX40 antibody is MEDI0562.
- the OX40L fusion protein is MEDI6383.
- the agent is an alkylating agent, a proteasome inhibitor, a corticosteroid, or an immunomodulatory agent.
- an alkylating agent include cyclophosphamide (CY), melphalan (MEL), and bendamustine.
- the proteasome inhibitor is carfilzomib.
- the corticosteroid is dexamethasone (DEX).
- the immunomodulatory agent is lenalidomide (LEN) or pomalidomide (POM).
- the compounds of the present disclosure can further be used in combination with other methods of treating cancers, for example by chemotherapy, irradiation therapy, tumor- targeted therapy, adjuvant therapy, immunotherapy or surgery.
- immunotherapy include cytokine treatment (e.g., interferons, GM-CSF, G-CSF, IL-2), CRS-207 immunotherapy, cancer vaccine, monoclonal antibody, adoptive T cell transfer, oncolytic virotherapy and immunomodulating small molecules, including thalidomide or JAK1/2 inhibitor and the like.
- the compounds can be administered in combination with one or more anti-cancer drugs, such as a chemotherapeutics.
- chemotherapeutics include any of: abarelix, aldesleukin, alemtuzumab, alitretinoin, allopurinol, altretamine, anastrozole, arsenic trioxide,
- mercaptopurine methotrexate, methoxsalen, mitomycin C, mitotane, mitoxantrone, nandrolone phenpropionate, nelarabine, nofetumomab, oxaliplatin, paclitaxel, pamidronate, panitumumab, pegaspargase, pegfilgrastim, pemetrexed disodium, pentostatin, pipobroman, plicamycin, procarbazine, quinacrine, rasburicase, rituximab, ruxolitinib, sorafenib, streptozocin, sunitinib, sunitinib maleate, tamoxifen, temozolomide, teniposide, testolactone, thalidomide, thioguanine, thiotepa, topotecan, toremifene, tositum
- anti-cancer agent(s) include antibody therapeutics such as trastuzumab (Herceptin), antibodies to costimulatory molecules such as CTLA-4 (e.g., ipilimumab), 4- 1BB, antibodies to PD-1 and PD-L1 , or antibodies to cytokines (IL-10, TGF- ⁇ , etc.).
- Herceptin antibodies to costimulatory molecules
- CTLA-4 e.g., ipilimumab
- 4- 1BB antibodies to PD-1 and PD-L1
- cytokines IL-10, TGF- ⁇ , etc.
- antibodies to PD-1 and/or PD-L1 that can be combined with compounds of the present disclosure for the treatment of cancer or infections such as viral, bacteria, fungus and parasite infections include, but are not limited to, nivolumab, pembrolizumab, MPDL3280A, MEDI-4736 and SHR-1210.
- the compounds of the present disclosure can further be used in combination with one or more anti-inflammatory agents, steroids, immunosuppressants or therapeutic antibodies.
- the compounds of Formula ( ⁇ ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or salts thereof can be combined with another immunogenic agent, such as cancerous cells, purified tumor antigens (including recombinant proteins, peptides, and carbohydrate molecules), cells, and cells transfected with genes encoding immune stimulating cytokines.
- tumor vaccines include peptides of melanoma antigens, such as peptides of gplOO, MAGE antigens, Trp-2, MARTI and/or tyrosinase, or tumor cells transfected to express the cytokine GM-CSF.
- tumor vaccines include the proteins from viruses implicated in human cancers such as Human Papilloma Viruses (HPV), Hepatitis Viruses (HBV and HCV) and Kaposi's Herpes Sarcoma Virus (KHSV).
- HPV Human Papilloma Viruses
- HBV and HCV Hepatitis Viruses
- KHSV Kaposi's Herpes Sarcoma Virus
- the compounds of the present disclosure can be used in combination with tumor specific antigen such as heat shock proteins isolated from tumor tissue itself.
- the compounds of Formula ( ⁇ ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or salts thereof can be combined with dendritic cells immunization to activate potent anti-tumor responses.
- the compounds of the present disclosure can be used in combination with bispecific macrocyclic peptides that target Fe alpha or Fe gamma receptor-expressing effectors cells to tumor cells.
- the compounds of the present disclosure can also be combined with macrocyclic peptides that activate host immune responsiveness.
- the compounds of the present disclosure can be used in combination with bone marrow transplant for the treatment of a variety of tumors of hematopoietic origin.
- the compounds of Formula ( ⁇ ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or salts thereof can be used in combination with vaccines, to stimulate the immune response to pathogens, toxins, and self antigens.
- pathogens for which this therapeutic approach may be particularly useful include pathogens for which there is currently no effective vaccine, or pathogens for which conventional vaccines are less than completely effective. These include, but are not limited to, HIV, Hepatitis (A, B, & C), Influenza, Herpes, Giardia, Malaria, Leishmania, Staphylococcus aureus, Pseudomonas Aeruginosa.
- Viruses causing infections treatable by methods of the present disclosure include, but are not limit to human papillomavirus, influenza, hepatitis A, B, C or D viruses, adenovirus, poxvirus, herpes simplex viruses, human cytomegalovirus, severe acute respiratory syndrome virus, ebola virus, measles virus, herpes virus (e.g., VZV, HSV-1, HAV-6, HSV-II, and CMV, Epstein Barr virus), fiaviviruses, echovirus, rhinovirus, coxsackie virus, cornovirus, respiratory syncytial virus, mumpsvirus, rotavirus, measles virus, rubella virus, parvovirus, vaccinia virus, HTLV virus, dengue virus, papillomavirus, molluscum virus, poliovirus, rabies virus, JC virus and arboviral encephalitis virus.
- human papillomavirus influenza, hepatitis A,
- Pathogenic bacteria causing infections treatable by methods of the disclosure include, but are not limited to, chlamydia, rickettsial bacteria, mycobacteria, staphylococci, streptococci, pneumonococci, meningococci and conococci, klebsiella, proteus, serratia, pseudomonas, legionella, diphtheria, salmonella, bacilli, cholera, tetanus, botulism, anthrax, plague, leptospirosis, and Lyme's disease bacteria.
- Pathogenic fungi causing infections treatable by methods of the disclosure include, but are not limited to, Candida (albicans, krusei, glabrata, tropicalis, etc.), Cryptococcus neoformans, Aspergillus (fumigatus, niger, etc.), Genus Mucorales (mucor, absidia, rhizophus), Sporothrix schenkii, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Coccidioides immitis and Histoplasma capsulatum.
- Candida albicans, krusei, glabrata, tropicalis, etc.
- Cryptococcus neoformans Aspergillus (fumigatus, niger, etc.)
- Genus Mucorales micor, absidia, rhizophus
- Sporothrix schenkii Blastomyces dermatitidis
- Paracoccidioides brasiliensis C
- Pathogenic parasites causing infections treatable by methods of the disclosure include, but are not limited to, Entamoeba histolytica, Balantidium coli, Naegleriafowleri,
- more than one pharmaceutical agent When more than one pharmaceutical agent is administered to a patient, they can be administered simultaneously, separately, sequentially, or in combination (e.g. , for more than two agents).
- the compounds of the present disclosure can be administered in the form of pharmaceutical compositions.
- a composition comprising a compound of Formula ( ⁇ ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a pharmaceutically acceptable salt thereof, or any of the embodiments thereof, and at least one pharmaceutically acceptable carrier or excipient.
- These compositions can be prepared in a manner well known in the pharmaceutical art, and can be administered by a variety of routes, depending upon whether local or systemic treatment is indicated and upon the area to be treated.
- Administration may be topical (including transdermal, epidermal, ophthalmic and to mucous membranes including intranasal, vaginal and rectal delivery), pulmonary (e.g. , by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal or intranasal), oral or parenteral.
- Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal intramuscular or injection or infusion; or intracranial, e.g. , intrathecal or intraventricular, administration.
- Parenteral administration can be in the form of a single bolus dose, or may be, e.g. , by a continuous perfusion pump.
- Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.
- compositions which contain, as the active ingredient, the compound of the present disclosure or a pharmaceutically acceptable salt thereof, in combination with one or more pharmaceutically acceptable carriers or excipients.
- the composition is suitable for topical administration.
- the active ingredient is typically mixed with an excipient, diluted by an excipient or enclosed within such a carrier in the form of, e.g. , a capsule, sachet, paper, or other container.
- the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient.
- compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, e.g. , up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions and sterile packaged powders.
- the active compound can be milled to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it can be milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size can be adjusted by milling to provide a substantially uniform distribution in the formulation, e.g. , about 40 mesh.
- the compounds of the invention may be milled using known milling procedures such as wet milling to obtain a particle size appropriate for tablet formation and for other formulation types.
- Finely divided (nanoparticulate) preparations of the compounds of the invention can be prepared by processes known in the art see, e.g., WO 2002/000196.
- excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup and methyl cellulose.
- the formulations can additionally include: lubricating agents such as talc, magnesium stearate and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
- the compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
- the pharmaceutical composition comprises silicified microcrystalline cellulose (SMCC) and at least one compound described herein, or a pharmaceutically acceptable salt thereof.
- SMCC silicified microcrystalline cellulose
- the silicified SMCC silicified microcrystalline cellulose
- microcrystalline cellulose comprises about 98% microcrystalline cellulose and about 2% silicon dioxide w/w.
- the composition is a sustained release composition comprising at least one compound described herein, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier or excipient.
- the composition comprises at least one compound described herein, or a pharmaceutically acceptable salt thereof, and at least one component selected from microcrystalline cellulose, lactose monohydrate, hydroxypropyl methylcellulose and polyethylene oxide.
- the composition comprises at least one compound described herein, or a pharmaceutically acceptable salt thereof, and microcrystalline cellulose, lactose monohydrate and hydroxypropyl methylcellulose.
- the composition comprises at least one compound described herein, or a pharmaceutically acceptable salt thereof, and microcrystalline cellulose, lactose monohydrate and polyethylene oxide.
- the composition further comprises magnesium stearate or silicon dioxide.
- the microcrystalline cellulose is Avicel PH102TM.
- the lactose monohydrate is Fast-flo 316TM.
- the hydroxypropyl methylcellulose is hydroxypropyl methylcellulose 2208 K4M (e.g. , Methocel K4 M
- the polyethylene oxide is polyethylene oxide WSR 1105 (e.g. , Poly ox WSR 1105TM).
- a wet granulation process is used to produce the composition. In some embodiments, a dry granulation process is used to produce the composition.
- compositions can be formulated in a unit dosage form, each dosage containing from about 5 to about 1,000 mg (1 g), more usually about 100 mg to about 500 mg, of the active ingredient. In some embodiments, each dosage contains about 10 mg of the active ingredient. In some embodiments, each dosage contains about 50 mg of the active ingredient. In some embodiments, each dosage contains about 25 mg of the active ingredient.
- unit dosage forms refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable
- the components used to formulate the pharmaceutical compositions are of high purity and are substantially free of potentially harmful contaminants (e.g., at least National Food grade, generally at least analytical grade, and more typically at least pharmaceutical grade).
- the composition is preferably manufactured or formulated under Good Manufacturing Practice standards as defined in the applicable regulations of the U.S. Food and Drug Administration.
- suitable formulations may be sterile and/or substantially isotonic and/or in full compliance with all Good
- the active compound may be effective over a wide dosage range and is generally administered in a therapeutically effective amount. It will be understood, however, that the amount of the compound actually administered will usually be determined by a physician, according to the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms and the like.
- the therapeutic dosage of a compound of the present invention can vary according to, e.g., the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the patient, and the judgment of the prescribing physician.
- the compounds of the invention can be provided in an aqueous physiological buffer solution containing about 0.1 to about 10% w/v of the compound for parenteral administration.
- Some typical dose ranges are from about 1 ⁇ g/kg to about 1 g/kg of body weight per day. In some embodiments, the dose range is from about 0.01 mg/kg to about 100 mg/kg of body weight per day.
- the dosage is likely to depend on such variables as the type and extent of progression of the disease or disorder, the overall health status of the particular patient, the relative biological efficacy of the compound selected, formulation of the excipient, and its route of administration. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
- a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
- the active ingredient is typically dispersed evenly throughout the composition so that the composition can be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
- preformulation is then subdivided into unit dosage forms of the type described above containing from, e.g. , about 0.1 to about 1000 mg of the active ingredient of the present invention.
- the tablets or pills of the present invention can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action.
- the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
- the two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release.
- enteric layers or coatings such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.
- liquid forms in which the compounds and compositions of the present invention can be incorporated for administration orally or by injection include aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.
- compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders.
- the liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra.
- the compositions are administered by the oral or nasal respiratory route for local or systemic effect.
- Compositions can be nebulized by use of inert gases. Nebulized solutions may be breathed directly from the nebulizing device or the nebulizing device can be attached to a face mask, tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions can be administered orally or nasally from devices which deliver the formulation in an appropriate manner.
- Topical formulations can contain one or more conventional carriers.
- ointments can contain water and one or more hydrophobic carriers selected from, e.g., liquid paraffin, poly oxy ethylene alkyl ether, propylene glycol, white Vaseline, and the like.
- Carrier compositions of creams can be based on water in combination with glycerol and one or more other components, e.g., glycerinemonostearate, PEG-glycerinemonostearate and cetylstearyl alcohol.
- Gels can be formulated using isopropyl alcohol and water, suitably in combination with other components such as, e.g., glycerol, hydroxy ethyl cellulose, and the like.
- topical formulations contain at least about 0.1, at least about 0.25, at least about 0.5, at least about 1, at least about 2 or at least about 5 wt % of the compound of the invention.
- the topical formulations can be suitably packaged in tubes of, e.g., 100 g which are optionally associated with instructions for the treatment of the select indication, e.g. , psoriasis or other skin condition.
- compositions can be administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. Effective doses will depend on the disease condition being treated as well as by the judgment of the attending clinician depending upon factors such as the severity of the disease, the age, weight and general condition of the patient and the like.
- compositions administered to a patient can be in the form of pharmaceutical compositions described above. These compositions can be sterilized by conventional sterilization techniques, or may be sterile filtered. Aqueous solutions can be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration.
- the pH of the compound preparations typically will be between 3 and 11, more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers or stabilizers will result in the formation of pharmaceutical salts.
- the therapeutic dosage of a compound of the present invention can vary according to, e.g., the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the patient, and the judgment of the prescribing physician.
- the compounds of the invention can be provided in an aqueous physiological buffer solution containing about 0.1 to about 10% w/v of the compound for parenteral administration.
- Some typical dose ranges are from about 1 ⁇ g/kg to about 1 g/kg of body weight per day. In some embodiments, the dose range is from about 0.01 mg/kg to about 100 mg/kg of body weight per day.
- the dosage is likely to depend on such variables as the type and extent of progression of the disease or disorder, the overall health status of the particular patient, the relative biological efficacy of the compound selected, formulation of the excipient, and its route of administration. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- the compounds of the present disclosure can further be useful in investigations of biological processes in normal and abnormal tissues.
- another aspect of the present invention relates to labeled compounds of the invention (radio-labeled, fluorescent-labeled, etc.) that would be useful not only in imaging techniques but also in assays, both in vitro and in vivo, for localizing and quantitating PD-1 or PD-L1 protein in tissue samples, including human, and for identifying PD-L1 ligands by inhibition binding of a labeled compound.
- the present invention includes PD-1/PD-L1 binding assays that contain such labeled compounds.
- the present invention further includes isotopically-substituted compounds of the disclosure.
- An “isotopically-substituted” compound is a compound of the invention where one or more atoms are replaced or substituted by an atom having an atomic mass or mass number different from the atomic mass or mass number typically found in nature (i.e. , naturally occurring). It is to be understood that a "radio-labeled” compound is a compound that has incorporated at least one isotope that is radioactive (e.g., radionuclide).
- Suitable radionuclides that may be incorporated in compounds of the present invention include but are not limited to 3 ⁇ 4 (also written as T for tritium), n C, 1 C, 14 C, 1 N, 15 N, 15 0, 17 0, 18 0, 18 F, 5 S, 6C1, 82 Br, 75 Br, 76 Br, 77 Br, 12 I, 124 I, 125 I and 1 X I.
- the radionuclide that is incorporated in the instant radio-labeled compounds will depend on the specific application of that radio-labeled compound. For example, for in vitro PD-Ll protein labeling and competition assays, compounds that incorporate H, 14 C, 82 Br, 125 I, 1 1 1, 5 S or will generally be most useful.
- n C, 18 F, 125 I, 12 I, 124 I, 1 X I, 75 Br, 76 Br or 77 Br will generally be most useful.
- the radionuclide is selected from the group consisting of H, 14 C, 125 1, 5 S and 82 Br. Synthetic methods for incorporating radio-isotopes into organic compounds are known in the art.
- a labeled compound of the invention can be used in a screening assay to identify and/or evaluate compounds.
- a newly synthesized or identified compound i.e. , test compound
- a test compound which is labeled can be evaluated for its ability to bind a PD- Ll protein by monitoring its concentration variation when contacting with the PD-Ll protein, through tracking of the labeling.
- a test compound (labeled) can be evaluated for its ability to reduce binding of another compound which is known to bind to a PD-Ll protein (i.e., standard compound). Accordingly, the ability of a test compound to compete with the standard compound for binding to the PD-Ll protein directly correlates to its binding affinity.
- the standard compound is labeled and test compounds are unlabeled. Accordingly, the concentration of the labeled standard compound is monitored in order to evaluate the competition between the standard compound and the test compound, and the relative binding affinity of the test compound is thus ascertained.
- kits useful useful, e.g., in the treatment or prevention of diseases or disorders associated with the activity of PD-Ll including its interaction with other proteins such as PD-1 and B7-1 (CD80), such as cancer or infections, which include one or more containers containing a pharmaceutical composition comprising a therapeutically effective amount of a compound of Formula ( ⁇ ) or (I), or any of the embodiments thereof.
- kits can further include one or more of various conventional pharmaceutical kit components, such as, e.g. , containers with one or more pharmaceutically acceptable carriers, additional containers, etc., as will be readily apparent to those skilled in the art.
- Instructions, either as inserts or as labels, indicating quantities of the components to be administered, guidelines for administration, and/or guidelines for mixing the components, can also be included in the kit.
- Step 4 4, 4, 5, 5-tetramethyl-2-(2-methylbiphenyl-3-yl)-l, 3, 2-dioxaborolane
- Step 5 2-( ⁇ [2-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-a ]pyridin-6-yl ]methyl ⁇ amino)ethanol
- Step 2 methyl (2S)-l- ⁇ [2-(2-methylbiphenyl-3-yl)indolizin-7-yl]methyl ⁇ piperidine-2- carboxylate
- Step 3 Methyl (2S)-l- ⁇ [6-(2-methylbiphenyl-3-yl)pyrrolo[l, 2-c]pyrimidin-3- ylJmethyljpiperidine-2-carboxylate
- Step 4 (2S)-l- ⁇ [6-(2-methylbiphenyl-3-yl)pyrrolo[l, 2-cJpyrimidin-3-ylJmethyl ⁇ piperidine-2- carboxylic acid
- Step 1 l-(2-methylbiphenyl-3-yl)ethanone
- Step 4 6-vinyl-l ,2, 4-triazin-3-amine
- Step 5 6-( 2-methylbiphenyl-3-yl -2-vinylimidazo[ 1, 2-b ][ 1, 2, 4 Jtriazine
- Step 7 2-( ( 6-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-b ][ 1, 2, 4 ]triazin-2-yl)methylamino)ethanol
- 6-(2-methylbiphenyl-3-yl)imidazo[l,2-b] [l,2,4]triazine-2- carbaldehyde 20 mg, 0.06 mmol
- N,N-dimethylformamide 500 ⁇
- ethanolamine (19 ⁇ , 0.32 mmol)
- acetic acid 18 ⁇ , 0.32 mmol
- Step 1 6-bromo-8-methyl-2-(2-methylbiphenyl-3-yl)imidazo[ 1,2-a] pyridine
- Step 3 8-methyl-2-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-a ]pyridine-6-carbaldehyde
- Step 4 2-((8-methyl-2-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-a ]pyridin-6- yl)methylamino)ethanol
- Step 4 8-chloro-2-(2-methylbiphenyl-3-yl)imidazo [ 1 ,2-a]pyridine-6-carbaldehyde
- Step 5 2-( (8-chloro-2-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-a Jpyridin-6- yl)methylamino)ethanol
- ethanolamine 50 ⁇ , 0.82 mmol
- acetic acid 0.2 mL, 3.5 mmol
- the resulting mixture was stirred at room temperature overnight then sodium cyanoborohydride (0.065 g, 1.0 mmol) was added.
- Step 1 5-(l, 3-dioxolan-2-yl)pyrimidi -2-amine
- Step 2 6-( 1, 3-dioxolan-2-yl)-2- -methylbiphenyl-3-yl)imidazo[ 1, 2-a Jpyrimidine
- Step 4 2-( ⁇ [2-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-a Jpyrimidin-6-yl Jmethyljaminojethanol
- 2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyrimidine-6-carbaldehyde 15.0 mg, 0.0479 mmol
- 1,2-dichloroethane 1 mL
- ethanolamine 5.8 ⁇ , 0.096 mmol
- the mixture was stirred at room temperature for 30 min, then sodium triacetoxyborohydride (30 mg, 0.14 mmol) was added.
- the resulting mixture was stirred at room temperature overnight then concentrated.
- Step 3 2-(2-methylbiphenyl-3-yl)imidazo[ 1 ,2-a]pyrazine-6-carbaldehyde
- Step 4 2-( ⁇ [2-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-a ]pyrazin-6-yl ]methyl ⁇ amino)ethanol
- 2-(2-methylbiphenyl-3-yl)imidazo[l ,2-a]pyrazine-6-carbaldehyde 15.0 mg, 0.0479 mmol
- N,N-diisopropylethylamine 17 ⁇ L, 0.096 mmol
- ethanolamine 5.8 xL, 0.096 mmol
- Step 1 methyl 2-(2-methylbiphenyl-3-yl)imidazo[l, 2-b]pyridazine-6-carboxylate
- Step 4 (2S)-1 - ⁇ [2-(2-methylbiphenyl-3-yl)imidazo [ 1 , 2-b]pyridazin-6-yl]methyl ⁇ piperidine-2- carboxylic acid
- Step 1 ( 2-amino[ 1,2, 4 Jtriazolof 1, 5 -a Jpyridin- 7-yl)methanol
- Step 2 ( 2-bromo[ 1,2, 4 Jtriazolof 1, 5 -a Jpyridin- 7-yl)methanol
- Step 4 2-( 2-methylbiphenyl-3-y 5-a Jpyridine- 7 -carbaldehyde
- Step 5 2-( ⁇ [2-(2-methylbiphenyl-3-yl) [ 1, 2, 4 Jtriazolof 1, 5-a ]pyridin-7- yl ]methyl ⁇ amino)ethanol
- Ethanolamine (7.3 mg, 0.12 mmol) was added to a solution of 2-(2-methylbiphenyl-3- yl)[l,2,4]triazolo[l,5-a]pyridine-7-carbaldehyde (7.5 mg, 0.024 mmol) in N,N- dimethylformamide (0.24 mL), followed by acetic acid (2.0 ⁇ , 0.036 mmol).
- the reaction mixture was stirred at room temperature for 10 min then sodium cyanoborohydride (4.5 mg, 0.072 mmol) was added.
- Step 2 methyl 2-bromo[l, 2, 4]triazolo[l, 5-a]pyridine-6-carboxylate tert-Butyl nitrite (1.31 mL, 11.0 mmol) was added to a suspension of methyl 2- amino[l,2,4]triazolo[l,5-a]pyridine-6-carboxylate (883 mg, 4.59 mmol) and copper(II) bromide (2.05 g, 9.19 mmol) in acetonitrile (44 mL). The mixture was stirred at room temperature for 2 h then diluted with dichloromethane and washed with water. The organic phase was dried over Na2S04, filtered and concentrated.
- Step 3 methyl 2-(2-methylbiph idine-6-carboxylate
- Diisobutylaluminum hydride in DCM (643 ⁇ , 0.643 mmol) was added to the solution of methyl 2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-a]pyridine-6-carboxylate (184 mg, 0.536 mmol) in Et ⁇ O (5 mL) at 0 °C.
- the mixture was stirred at room temperature for 3 h then another portion of diisobutylaluminum hydride (1M in DCM, 1 mL, 1 mmol) was added.
- the mixture was stirred at room temperature for another 2 h then quenched with aqueous NH4CI and stirred with Rochelle salt, and then extracted with DCM.
- Ethanolamine (8.7 ⁇ , 0.15 mmol) was added to a solution of 2-(2-methylbiphenyl-3- yl)[l,2,4]triazolo[l ,5-a]pyridine-6-carbaldehyde (9.0 mg, 0.029 mmol) in N,N- dimethylformamide (0.28 mL), followed by acetic acid (2.5 ⁇ , 0.04 mmol). The reaction mixture was stirred at room temperature for 10 min then sodium cyanoborohydride (5.4 mg, 0.087 mmol) was added.
- Step 1 7-chloro-5-methyl[ 1, 2, 4 Jtriazolof 1, 5-c Jpyrimidin-2-amine
- Step 2 7 -chloro-2-iodo-5 -methyl [ 1, 2, 4 Jtriazolof 1, 5-c Jpyrimidine
- fert-Butyl nitrite (1.16 mL, 9.78 mmol) was added to a suspension of 7-chloro-5- methyl[l,2,4]triazolo[l,5-c]pyrimidin-2-amine (crude product from Step 1) and copper(I) iodide (1.55 g, 8.15 mmol) in acetonitrile (39.4 mL).
- the mixture was heated at 70 °C for 2 h then cooled to room temperature, diluted with dichloromethane and washed with water.
- the organic phase was dried over Na2S04, filtered and concentrated. The residue was purified by chromatography on silica gel to give the desired product as a yellow solid (61.0 mg).
- Step 4 5-methyl-2-(2-methylbiphenyl-3-yl)[ 1, 2, 4 Jtriazolof 1, 5-c Jpyrimidine- 7-carbaldehyde
- Ethanolamine (5.9 ⁇ , 0.097 mmol) was added to the solution of 5-methyl-2-(2- methylbiphenyl-3-yl)[l ,2,4]triazolo[l ,5-c]pyrirnidine-7-carbaldehyde (6.4 mg, 0.019 mmol) in N,N-dimethylformamide (0.19 mL), followed by acetic acid (1.7 xL, 0.029 mmol). The mixture was stirred at room temperature for 10 min then sodium cyanoborohydride (3.7 mg, 0.059 mmol) was added.
- Step 1 ethyl ( ⁇ [3-chloro-5-(hydroxymethyl)pyridin-2-ylJaminojcarbonothioyl)carbamate
- Step 2 ( 2-amino-8-chloro [ 1, 2, 4 Jtriazolof 1, 5-a ]pyridin-6-yl)methanol
- Step 3 ( 2-bromo-8-chloro[ 1, 2, 4 Jtriazolof 1, 5-a ]pyridin-6-yl)methanol
- fert-Butyl nitrite (579 ⁇ , 4.87 mmol) was added to a suspension of (2-amino-8- chloro[l ,2,4]triazolo[l,5-a]pyridin-6-yl)methanol (403 mg, 2.03 mmol) and copper(II) bromide (906 mg, 4.06 mmol) in acetonitrile (19.6 mL). The mixture was stirred at room temperature for 3 h. The reaction mixture was diluted with dichloromethane and washed with water. The organic phase was dried, filtered and concentrated.
- Step 4 [ 8-chloro-2-( 2-methylbiphenyl-3-yl) [ 1, 2, 4 Jtriazolof 1, 5-a Jpyridin-6-yl Jmethanol
- Step 5 8-chloro-2-(2-methylbiph 5 -a ]pyridine-6-carbaldehyde
- Dess-Martin periodinane (706 mg, 1.66 mmol) was added to a solution of [8-chloro- 2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-a]pyridin-6-yl]methanol (291 mg, 0.832 mmol) in dichloromethane (3.94 mL). The mixture was stirred at room temperature for 1 h. The mixture was quenched with aq. sodium bisulfite and extracted with dichloromethane. The organic phase was dried over a drying agent and filtered. The filtrate was concentrated.
- Step 6 2-( ⁇ [8-chloro-2-(2-methylbiphenyl-3-yl) [ 1, 2, 4 Jtriazolof 1, 5 -a ]pyridin-6- yl Jmethyljaminojethanol
- Step 2 2-(2, 3-dihydro-l, 4-benzodioxin-6-yl)-6-(4, 4, 5, 5-tetramethyl-l, 3, 2-dioxaborolan-2- yl)benzonitrile
- Step 3 2-(8-chloro-6- ⁇ [(2-hydroxyethyl)amino Jmethyljf 1, 2, 4]triazolo[ 1, 5-a Jpyridin- (2, 3-dihydro-l, 4-benzodioxin-6-yl)benzonitrile
- Example A PD-1/PD-L1 Homogeneous Time-Resolved Fluorescence (HTRF) binding assay
- the assays were conducted in a standard black 384-well polystyrene plate with a final volume of 20 ⁇ . Inhibitors were first serially diluted in DMSO and then added to the plate wells before the addition of other reaction components. The final concentration of DMSO in the assay was 1 %. The assays were carried out at 25° C in the PBS buffer (pH 7.4) with 0.05% Tween-20 and 0.1 % BSA.
- Recombinant human PD-L1 protein (19-238) with a His- tag at the C-terminus was purchased from AcroBiosy stems (PD 1-H5229).
- Recombinant human PD-1 protein (25-167) with Fc tag at the C-terminus was also purchased from
- PD-L1 and PD-1 proteins were diluted in the assay buffer and ⁇ 0 ⁇ . was added to the plate well. Plates were centrifuged and proteins were
- Example 1 Data obtained for the Example compounds using the PD-1/PD-L1 homogenous time- resolved fluorescence (HTRF) binding assay described in Example A is provided in Table 1.
- Table 1 Data obtained for the Example compounds using the PD-1/PD-L1 homogenous time- resolved fluorescence (HTRF) binding assay described in Example A is provided in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Virology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Disclosed are compounds of Formula (I'), methods of using the compounds to modulate PD-1/PD-L1 interaction, and pharmaceutical compositions comprising such compounds. The compounds are useful in treating, preventing or ameliorating diseases or disorders such as cancer or viral infections.
Description
HETEROCYCLIC COMPOUNDS AS IMMUNOMODULATORS FIELD OF THE INVENTION
The present application is concerned with pharmaceutically active compounds. The disclosure provides compounds as well as their compositions and methods of use. The compounds modulate PD-1/PD-L1 protein/protein interaction and are useful in the treatment of various diseases including infectious diseases and cancer.
BACKGROUND OF THE INVENTION
The immune system plays an important role in controlling and eradicating diseases such as cancer. However, cancer cells often develop strategies to evade or to suppress the immune system in order to favor their growth. One such mechanism is altering the expression of co-stimulatory and co-inhibitory molecules expressed on immune cells (Postow et al, J. Clinical Oncology 2015, 1 -9). Blocking the signaling of an inhibitory immune checkpoint, such as PD-1 , has proven to be a promising and effective treatment modality.
Programmed cell death-1 (PD-1), also known as CD279, is a cell surface receptor expressed on activated T cells, natural killer T cells, B cells, and macrophages (Greenwald et al, Annu. Rev. Immunol 2005, 23 :515-548; Okazaki and Honjo, Trends Immunol 2006,
(4): 195-201). It functions as an intrinsic negative feedback system to prevent the activation of T-cells, which in turn reduces autoimmunity and promotes self-tolerance. In addition, PD- 1 is also known to play a critical role in the suppression of antigen-specific T cell response in diseases like cancer and viral infection (Sharpe et al, Nat Immunol 2007 8, 239-245; Postow et al, J. Clinical Oncol 2015, 1 -9).
The structure of PD-1 consists of an extracellular immunoglobulin variable-like domain followed by a transmembrane region and an intracellular domain (Parry et al, Mol Cell Biol 2005, 9543-9553). The intracellular domain contains two phosphorylation sites located in an immunoreceptor tyrosine-based inhibitory motif and an immunoreceptor tyrosine-based switch motif, which suggests that PD-1 negatively regulates T cell receptor- mediated signals. PD-1 has two ligands, PD-L1 and PD-L2 (Parry et al, Mol Cell Biol 2005, 9543-9553; Latchman et al, Nat Immunol 2001 , 2, 261-268), and they differ in their expression patterns. PD-L1 protein is upregulated on macrophages and dendritic cells in response to lipopolysaccharide and GM-CSF treatment, and on T cells and B cells upon T
cell receptor and B cell receptor signaling. PD-Ll is also highly expressed on almost all tumor cells, and the expression is further increased after IFN-γ treatment (Iwai et al,
PNAS2002, 99(19): 12293-7; Blank et al, Cancer Res 2004, 64(3): 1140-5). In fact, tumor PD- Ll expression status has been shown to be prognostic in multiple tumor types (Wang et al, Eur J Surg Oncol 2015; Huang et al, Oncol Rep 2015; Sabatier et al, Oncotarget 2015, 6(7): 5449-5464). PD-L2 expression, in contrast, is more restricted and is expressed mainly by dendritic cells (Nakae et al, J Immunol 2006, 177:566-73). Ligation of PD-1 with its ligands PD-Ll and PD-L2 on T cells delivers a signal that inhibits IL-2 and IFN-γ production, as well as cell proliferation induced upon T cell receptor activation (Carter et al, Eur J Immunol 2002, 32(3):634-43; Freeman et al, J Exp Med 2000, 192(7): 1027-34). The mechanism involves recruitment of SHP-2 or SHP-1 phosphatases to inhibit T cell receptor signaling such as Syk and Lck phosphorylation (Sharpe et al, Nat Immunol 2007, 8, 239-245).
Activation of the PD-1 signaling axis also attenuates PKC-Θ activation loop phosphorylation, which is necessary for the activation of NF-κΒ and API pathways, and for cytokine production such as IL-2, IFN-γ and TNF (Sharpe et al, Nat Immunol 2007, 8, 239-245;
Carter et al, Eur J Immunol 2002, 32(3):634-43; Freeman et al, J Exp Med 2000,
192(7): 1027-34).
Several lines of evidence from preclinical animal studies indicate that PD-1 and its ligands negatively regulate immune responses. PD-1 -deficient mice have been shown to develop lupus-like glomerulonephritis and dilated cardiomyopathy (Nishimura et al,
Immunity 1999, 11 : 141-151; Nishimura et al, Science 2001, 291 :319-322). Using an LCMV model of chronic infection, it has been shown that PD-l/PD-Ll interaction inhibits activation, expansion and acquisition of effector functions of virus-specific CD8 T cells (Barber et al, Nature 2006, 439, 682-7). Together, these data support the development of a therapeutic approach to block the PD-1 -mediated inhibitory signaling cascade in order to augment or "rescue" T cell response. Accordingly, there is a need for new compounds that block PD- l/PD-Ll protein/protein interaction.
SUMMARY
The present disclosure provides, inter alia, a compound of Formula (Γ):
or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein constituent variables are defined herein.
The present disclosure further provides a compound of Formula (I):
or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein constituent variables are defined herein.
The present disclosure further provides a pharmaceutical composition comprising a compound of the disclosure, or a pharmaceutically acceptable salt or a stereoisomer thereof, and at least one pharmaceutically acceptable carrier or excipient.
The present disclosure further provides methods of modulating or inhibiting PD- 1/PD-Ll protein/protein interaction, which comprises administering to an individual a compound of the disclosure, or a pharmaceutically acceptable salt or a stereoisomer thereof.
The present disclosure further provides methods of treating a disease or disorder in a patient comprising administering to the patient a therapeutically effective amount of a compound of the disclosure, or a pharmaceutically acceptable salt or a stereoisomer thereof.
DETAILED DESCRIPTION
I. Compounds
The present disclosure p ormula (Γ):
or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein:
one of Y1 and Y2 is N and the other of Y1 and Y2 is C;
X1 is N or CR1;
X2 is N or CR2;
X3 is N or CR3;
X4 is N or CR4;
X5 is N or CR5;
X6 is N or CR6;
Cy is Ce-ιο aryl, C3-10 cycloalkyl, 5- to 14-membered heteroaryl, or 4- to 10-membered heterocycloalkyl, each of which is optionally substituted with 1 to 4 independently selected R7 substituents;
Z1 is N or CR8a;
Z2 is N or CR8b;
Z3 is N or CR8c;
R1, R2, R8a, R8b and R8c are each independently selected from H, Ci-4 alkyl, C3-6 cycloalkyl, C3-6 cycloalkyl-Ci-4 alkyl-, Ce-ιο aryl, Ce-io aryl-Ci-4 alkyl-, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, C2-4 alkenyl, C2-4 alkynyl, halo, CN, OR10, C1-4 haloalkyl, Ci-4 haloalkoxy, NH2, -NHR10, -NR10R10, NHOR10, C(0)R10, C(O)NR10R10, C(0)OR10, OC(0)R10, OC(O)NR10R10, NR10C(O)R10, NR10C(O)OR10, NR10C(O)NR10R10, C(=NR10)R10, C(=NR10)NR10R10, NR10C(=NR10)NR10R10, NR10S(O)R10, NR10S(O)2R10, NR10S(O)2NR10R10, S(0)R10, S(O)NR10R10, S(0)2R10, and S(O)2NR10R10, wherein each R10 is independently selected from H, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, C1-4 alkoxy, C3-6 cycloalkyl, C3-6 cycloalkyl-Ci-4 alkyl-, Ce-ιο aryl, Ce-io aryl-Ci-4 alkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, (5-10 membered heteroaryl)-C 1-4 alkyl-, and (4- 10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, Ci-4 alkoxy, C3-6 cycloalkyl, C3-6 cycloalkyl-Ci-4 alkyl-, Ce-ιο aryl, Ce-ιο aryl-Ci-4 alkyl-, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R1, R2, R8a, R8b, R8c and R10 are each optionally substituted with 1 , 2 or 3 independently selected Rb substituents;
R9 is halo, Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, CN, N02, OR11, SR11, NH2, NHR11, NRnRn, NHOR11, C(0)Rn, C(0)NRnRn, C(0)ORn, OC(0)Rn, OC(0)NRnRn, NRnC(0)Rn, NR11C(0)OR11, NR11C(0)NR11R11, C(=NR11)R11, C(=NR11)NR11R11,
NR11C(=NR11)NR11R11, NRnS(0)Rn, NRnS(0)2Rn, NR^ O^NR11^1, S(0)Rn,
S(0)NRnRn, S(0)2Rn, and S(0)2NRnRn, wherein the Ci-e alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-14
membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R9 are each optionally substituted with 1, 2 or 3 Rb substituents;
each R11 is independently selected from H, Ci-6 alkyl, Ci-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R11 are each optionally substituted with 1, 2 or 3 independently selected Rb substituents;
R3, R4, R5, R6 and R7 are each independently selected from H, halo, Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-C 1-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered
heterocycloalkyl)-Ci-4 alkyl-, CN, NO2, ORa, SRa, NHORa, C(0)Ra, C(0)NRaRa, C(0)ORa, OC(0)Ra, OC(0)NRaRa, NHRa, NRaRa, NRaC(0)Ra, NRaC(0)ORa, NRaC(0)NRaRa, C(=NRa)Ra, C(=NRa)NRaRa, NRaC(=NRa)NRaRa, NRaS(0)Ra, NRaS(0)2Ra, NRaS(0)2NRaRa, S(0)Ra, S(0)NRaRa, S(0)2Ra, and S(0)2NRaRa, wherein the Ci-e alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R3, R4, R5, R6 and R7 are each optionally substituted with 1, 2, 3, or 4 Rb substituents, with the proviso that at least one of R3, R4, R5 and R6 is other than H;
or two adjacent R7 substituents on the Cy ring, taken together with the atoms to which they are attached, form a fused phenyl ring, a fused 5-, 6- or 7-membered heterocycloalkyl ring, a fused 5- or 6-membered heteroaryl ring or a fused C3-6 cycloalkyl ring, wherein the fused 5-, 6- or 7-membered heterocycloalkyl ring and fused 5- or 6-membered heteroaryl ring each have 1-4 heteroatoms as ring members selected from N, O and S and wherein the fused phenyl ring, fused 5-, 6- or 7-membered heterocycloalkyl ring, fused 5- or 6-membered heteroaryl ring and fused C3-6 cycloalkyl ring are each optionally substituted with 1, 2 or 3 independently selected Rb substituents;
each Ra is independently selected from H, CN, Ci-6 alkyl, C 1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered
heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Ra are each optionally substituted with 1, 2, 3, 4, or 5 Rd substituents;
each Rd is independently selected from Ci-6 alkyl, Ci-6 haloalkyl, halo, C6-io aryl, 5-10 membered heteroaryl, C3-10 cycloalkyl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl- , C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, CN, NH2, NHORe, ORe, SRe, C(0)Re, C(0)NReRe, C(0)ORe, OC(0)Re, OC(0)NReRe, NHRe, NReRe, NReC(0)Re, NReC(0)NReRe, NReC(0)ORe, C(=NRe)NReRe, NReC (=NRe)NReRe, NReC(=NOH)NReRe, NReC(=NCN)NReRe, S(0)Re, S(0)NReRe, S(0)2Re, NReS(0)2Re, NReS(0)2NReRe, and S(0)2NReRe, wherein the Ci-e alkyl, Ci-6 haloalkyl, Ce-ιο aryl, 5-10 membered heteroaryl, C3-10 cycloalkyl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rd are each optionally substituted with 1-3 independently selected Rh substituents;
each Rb substituent is independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, C1-4 haloalkoxy, C6-io aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, CN, OH, NH2, NO2, NHORc, ORc, SRC, C(0)Rc, C(0)NRcRc, C(0)ORc, OC(0)Rc, OC(0)NRcRc, C(=NRC)NRCRC, NRCC(=NRC)NRCRC, NHRC, NRCRC, NRcC(0)Rc, NRcC(0)ORc, NRcC(0)NRcRc, NRcS(0)Rc, NRcS(0)2Rc, NRcS(0)2NRcRc, S(0)Rc, S(0)NRcRc, S(0)2Rc and S(0)2NRcRc; wherein the Ci-4 alkyl, C1-4 haloalkyl, C 1-4 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl- , (5-10 membered heteroaryl)-Ci-4 alkyl-and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rb are each further optionally substituted with 1 -3 independently selected Rd substituents; each Rc is independently selected from H, Ci-6 alkyl, C 1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rc are
each optionally substituted with 1, 2, 3, 4, or 5 Rf substituents independently selected from Ci-4 alkyl, Ci-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-C 1-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered
heterocycloalkyl)-Ci-4 alkyl-, halo, CN, NHOR , ORg, SRg, C(0)Rg, C(0)NRgRg, C(0)ORg, OC(0)Rg, OC(0)NRgRg, NHR , NRgRg, NRgC(0)Rg, NR C(0)NR R , NRgC(0)ORg, C(=NRg)NRgRg, NRgC(=NRg)NRgRg, S(0)Rg, S(0)NRgRg, S(0)2Rg, NRgS(0)2Rg,
NRgS(0)2NRgRg, and S(0)2NRgRg; wherein the CM alkyl, Ci-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rf are each optionally substituted with 1, 2, 3, 4, or 5 Rn substituents independently selected from C1-4 alkyl, Ci-4 haloalkyl, halo, CN, NHOR0, OR0, SR°, C(O)R0, C(O)NR0R°, C(O)OR0,
OC(0)R°, OC(0)NR°R°, NHR°, NR°R°, NR0C(O)R°, NR0C(O)NR°R°, NR°C(0)OR°, C(=NR°)NR°R°, NR0C(=NR°)NR°R0, S(O)R0, S(O)NR0R°, S(O)2R0, NR0S(O)2R°,
NR°S(0)2NR°R°, and S(O)2NR0R°;
each R is independently selected from H, Ci-6 alkyl, Ci-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R are each optionally substituted with 1-3 Rp substituents independently selected from Ci-6 alkyl, Ci-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C6-io aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl- , (5-10 membered heteroaryl)-C 1-4 alkyl-, (4-10 membered heterocycloalkyl)-C 1-4 alkyl-, halo, CN, NHORr, ORr, SRr, C(0)Rr, C(0)NR¾r, C(0)ORr, OC(0)Rr, OC(0)NR¾r, NHRr, NRrRr, NRrC(0)Rr, NRrC(0)NRrRr, NRrC(0)ORr, C(=NRr)NRrRr, NRrC(=NRr)NRrRr, NRrC(=NOH)NRrRr, NRrC(=NCN)NRrRr, S(0)Rr, S(0)NRrRr, S(0)2Rr, NRrS(0)2Rr,
R'S^ R'R1 and S(0)2NRrRr, wherein the Ci-e alkyl, Ci-e haloalkyl, C2-e alkenyl, C2-e alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered
heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rp is optionally substituted with 1, 2 or 3 Rq substituents;
or any two Ra substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, 7-, 8-, 9- or 10-membered heterocycloalkyl group optionally substituted with 1, 2 or 3 Rh substituents independently selected from Ci-6 alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce-ιο aryl, 5-6 membered heteroaryl, Ce-ιο aryl-Ci-4alkyl-, C3-10 cycloalkyl-C 1-4 alkyl-, (5-6 membered heteroaryl)-C 1-4 alkyl-, (4-7 membered
heterocycloalkyl)-Ci-4 alkyl-, Ci-6 haloalkyl, Ci-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, halo, CN, OR1, SR, NHOR, C(0)R, C(0)NRR, C(0)OR, OC(0)R, OC(0)NRR, NHR', NRR, NRC(0)R, NRC^NRR, NRC(0)OR, C(=NR)NRR, NRC^NR NRR, S(0)R,
SiOJNR'R', S(0)2R, N S O^ , N S O^N , and S O^N , wherein the Ci-e alkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce-ιο aryl, 5-6 membered heteroaryl, Ce-ιο aryl-Ci-4alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-6 membered heteroaryl)-Ci-4 alkyl-, (4-7 membered heterocycloalkyl)-Ci-4 alkyl- of Rh are each further optionally substituted by 1 , 2, or 3 Ri substituents independently selected from C3-6
cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, 4-7 membered heterocycloalkyl, C2-4 alkenyl, C2-4 alkynyl, halo, CM alkyl, Ci-4 haloalkyl, CN, NHORk, ORk, SRk, C(0)Rk, C(0)NRkRk, C(0)ORk, OC(0)Rk, OC(0)NRkRk, NHRk, NRkRk, NRkC(0)Rk,
NRkC(0)NRkRk, NRkC(0)ORk, C(=NRk)NRkRk, NRkC (=NRk)NRkRk, S(0)Rk, S(0)NRkRk, S(0)2Rk, NRkS(0)2Rk, NRkS(0)2NRkRk, and S(0)2NRkRk, wherein the CM alkyl, C3-6 cycloalkyl, Ce-ιο aryl, 5- or 6-membered heteroaryl, 4-6 membered heterocycloalkyl, C2-4 alkenyl, C2-4 alkynyl, Ci-4 haloalkyl, and Ci-4 haloalkoxy of R> are each optionally substituted with 1, 2 or 3 independently selected Rq substituents; or two Rh groups attached to the same carbon atom of the 4- to 10-membered heterocycloalkyl taken together with the carbon atom to which they are attached form a C3-6 cycloalkyl or 4- to 6-membered heterocycloalkyl having 1 -2 heteroatoms as ring members selected from O, N or S;
or any two Rc substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents;
or any two Re substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents;
or any two R substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents;
or any two R1 substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents;
or any two Rk substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents;
or any two R° substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents; and
each Re, R1, Rk, R° or Rp is independently selected from H, Ci-4 alkyl, C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, 4-7 membered heterocycloalkyl, C1-4 haloalkyl, C2-4 alkenyl, and C2-4 alkynyl, wherein the C1-4 alkyl, C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, 4-7 membered heterocycloalkyl, C2-4 alkenyl, and C2-4 alkynyl of Re, R1, Rk, R° or Rp are each optionally substituted with 1, 2 or 3 Rq substituents;
each R¾ is independently selected from OH, CN, -COOH, NH2, halo, C 1-6 haloalkyl, Ci-6 alkyl, Ci-6 alkoxy, Ci-6 alkylthio, phenyl, 5-6 membered heteroaryl, 4-6 membered heterocycloalkyl, C3-6 cycloalkyl, NHR12, NR12R12, and C1-4 haloalkoxy, wherein the Ci-6 alkyl, phenyl, C3-6 cycloalkyl, 4-6 membered heterocycloalkyl, and 5-6 membered heteroaryl of Rq are each optionally substituted with halo, OH, CN, -COOH, NH2, Ci-4 alkyl, Ci-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, phenyl, C3-10 cycloalkyl, 5-6 membered heteroaryl and 4-6 membered heterocycloalkyl and each R12 is independently Ci-6 alkyl;
=^is a single bond or a double bond to maintain ring A being aromatic; and with the proviso that the compound is other than 6-(6-chloro-3-methylimidazol[l ,2- a]pyridine-2-yl)-4-(4-chlorophenyl)-(l , l-dimethylethoxy)-2,5-dimethyl-3-pyridineacetic acid or 6-(6-chloroimidazol[l,2-a]pyridine-2-yl)-4-(4-chlorophenyl)-(l, l -dimethylethoxy)-2,5- dimethyl-3-pyridineacetic acid, or enantiomers thereof.
The present disclosure provides a compound of Formula (Γ), or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein:
one of Y1 and Y2 is N and the other of Y1 and Y2 is C;
X1 is N or CR1;
X2 is N or CR2;
X3 is N or CR3;
X4 is N or CR4;
X5 is N or CR5;
X6 is N or CR6;
Cy is Ce-ιο aryl, C3-10 cycloalkyl, 5- to 14-membered heteroaryl, or 4- to 10-membered heterocycloalkyl, each of which is optionally substituted with 1 to 4 independently selected R7 substituents;
Z1 is N or CR8a;
Z2 is N or CR8b;
Z3 is N or CR8c;
R1, R2, R8a, R8b and R8c are each independently selected from H, C1-4 alkyl, C3-4 cycloalkyl, C2-4 alkenyl, C2-4 alkynyl, halo, CN, OH, C1-4 alkoxy, Cw haloalkyl, C1-4
haloalkoxy, NH2, -NH-Ci-4 alkyl, -N(Ci-4 alkyl)2, NHOR10, C(0)R10, C(O)NR10R10, C(0)OR10, OC(0)R10, OC(O)NR10R10, NR10C(O)R10, NR10C(O)OR10, NR10C(O)NR10R10, C(=NR10)R10, C(=NR10)NR10R10, NR10C(=NR10)NR10R10, NR10S(O)R10, NR10S(O)2R10, NR10S(O)2NR10R10, S(0)R10, S(O)NR10R10, S(0)2R10, and S(O)2NR10R10, wherein each R10 is independently selected from H and C1-4 alkyl optionally substituted with 1 or 2 groups independently selected from halo, OH, CN and C1-4 alkoxy; and wherein the C1-4 alkyl, C3-4 cycloalkyl, C2-4 alkenyl and C2-4 alkynyl of R1, R2, R8a, R8b, or R8c are each optionally substituted with 1 or 2 substituents independently selected from halo, OH, CN and C1-4 alkoxy;
R9 is Ci-4 alkyl, halo, CN, OH, cyclopropyl, C2-4 alkynyl, C1-4 alkoxy, Ci-4 haloalkyl, Ci-4 haloalkoxy, NH2, -NH-Ci-4 alkyl, -N(Ci-4 alkyl)2, NHOR11, C(0)Rn, C(0)NRnRn, C(0)ORn, OC(0)Rn, OC(0)NRnRn, NRnC(0)Rn, NRnC(0)ORn, NR11C(0)NR11R11, C(=NR11)R11, C(=NR11)NR11R11, NR11C(=NR11)NR11R11, NRnS(0)Rn, NRnS(0)2Rn, NR11S(0)2NR11R11, S(0)Rn, S(0)NRnRn, S(0)2Rn, and S(0)2NRnRn, wherein CM alkyl, cyclopropyl, C2-4 alkynyl and C1-4 alkoxy of R9 are each optionally substituted with 1 or 2 substituents selected from halo, OH, CN and OCH3 and each R11 is independently selected from H and C1-4 alkyl optionally substituted with 1 or 2 halo, OH, CN or OCH3 substituents;
R3, R4, R5, R6 and R7 are each independently selected from H, halo, Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-C 1-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered
heterocycloalkyl)-Ci-4 alkyl-, CN, NC , ORa, SRa, NHORa, C(0)Ra, C(0)NRaRa, C(0)ORa, OC(0)Ra, OC(0)NRaRa, NHRa, NRaRa, NRaC(0)Ra, NRaC(0)ORa, NRaC(0)NRaRa, C(=NRa)Ra, C(=NRa)NRaRa, NRaC(=NRa)NRaRa, NRaS(0)Ra, NRaS(0)2Ra, NRaS(0)2NRaRa, S(0)Ra, S(0)NRaRa, S(0)2Ra, and S(0)2NRaRa, wherein the Ci-e alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R3, R4, R5, R6 and R7 are each optionally substituted with 1, 2, 3, or 4 Rb substituents, with the proviso that at least one of R3, R4, R5 and R6 is other than H;
or two adjacent R7 substituents on the Cy ring, taken together with the atoms to which they are attached, form a fused phenyl ring, a fused 5-, 6- or 7-membered heterocycloalkyl ring, a fused 5- or 6-membered heteroaryl ring or a fused C3-6 cycloalkyl ring, wherein the fused 5-, 6- or 7-membered heterocycloalkyl ring and fused 5- or 6-membered heteroaryl ring each have 1-4 heteroatoms as ring members selected from N, O and S and wherein the fused phenyl ring, fused 5-, 6- or 7-membered heterocycloalkyl ring, fused 5- or 6-membered heteroaryl ring and fused C3-6 cycloalkyl ring are each optionally substituted with 1, 2 or 3 independently selected Rb substituents or 1, 2 or 3 independently selected Rq substituents; each Ra is independently selected from H, CN, Ci-6 alkyl, Ci-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Ra are each optionally substituted with 1, 2, 3, 4, or 5 Rd substituents;
each Rd is independently selected from C1-4 alkyl, Ci-4 haloalkyl, halo, C3-10 cycloalkyl, 4-10 membered heterocycloalkyl, CN, NH2, NHORe, ORe, SRe, C(0)Re,
C(0)NReRe, C(0)ORe, OC(0)Re, OC(0)NReRe, NHRe, NReRe, NReC(0)Re, NReC(0)NReRe, NReC(0)ORe, C(=NRe)NReRe, NReC(=NRe)NReRe, S(0)Re, S(0)NReRe, S(0)2Re,
NReS(0)2Re, NReS(0)2NReRe, and S(0)2NReRe, wherein the CM alkyl, C3-10 cycloalkyl and 4-10 membered heterocycloalkyl of Rd are each further optionally substituted with 1 -3 independently selected Rq substituents;
each Rb substituent is independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, C1-4 haloalkoxy, C6-io aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, CN, OH, NH2, NO2, NHORc, ORc, SRC, C(0)Rc, C(0)NRcRc, C(0)ORc, OC(0)Rc, OC(0)NRcRc, C(=NRC)NRCRC, NRCC(=NRC)NRCRC, NHRC, NRCRC, NRcC(0)Rc, NRcC(0)ORc, NRcC(0)NRcRc, NRcS(0)Rc, NRcS(0)2Rc, NRcS(0)2NRcRc, S(0)Rc, S(0)NRcRc, S(0)2Rc and S(0)2NRcRc; wherein the Ci-4 alkyl, C1-4 haloalkyl, Ci-4 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl- , (5-10 membered heteroaryl)-Ci-4 alkyl-and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rb are each further optionally substituted with 1-3 independently selected Rd substituents; each Rc is independently selected from H, Ci-6 alkyl, C 1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rc are each optionally substituted with 1, 2, 3, 4, or 5 Rf substituents independently selected from Ci-4 alkyl, C1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-C 1-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered
heterocycloalkyl)-Ci-4 alkyl-, halo, CN, NHOR , ORg, SRg, C(0)Rg, C(0)NRgRg, C(0)ORg, OC(0)Rg, OC(0)NRgRg, NHRg, NRgRg, NRgC(0)Rg, NRgC(0)NRgRg, NRgC(0)ORg, C(=NRg)NRgRg, NRgC(=NRg)NRgRg, S(0)Rg, S(0)NRgRg, S(0)2Rg, NRgS(0)2Rg,
NRgS(0)2NRgRg, and S(0)2NRgRg; wherein the CM alkyl, CM haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rf are each optionally substituted with 1, 2, 3, 4, or 5 Rn substituents independently selected from C1-4 alkyl, CM haloalkyl, halo, CN, NHOR0, OR0, SR°, C(O)R0, C(O)NR0R°, C(O)OR0,
OC(0)R°, OC(0)NR°R°, NHR°, NR°R°, NR0C(O)R°, NR0C(O)NR°R°, NR°C(0)OR°, C(=NR°)NR°R°, NR0C(=NR°)NR°R0, S(O)R0, S(O)NR0R°, S(O)2R0, NR0S(O)2R°,
NR0S(O)2NR°R0, and S(O)2NR0R°;
each Rg is independently selected from H, Ci-6 alkyl, C1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R are each optionally substituted with 1-3 independently selected Rp substituents;
or any two Ra substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, 7-, 8-, 9- or 10-membered heterocycloalkyl group optionally substituted with 1, 2 or 3 Rh substituents independently selected from Ci-6 alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce-ιο aryl, 5-6 membered heteroaryl, C3-10 cycloalkyl-Ci-4 alkyl-, (5-6 membered heteroaryl)-Ci-4 alkyl-, (4-7 membered heterocycloalkyl)-Ci-4 alkyl-, Ci-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, halo, CN, OR1, SR, NHOR, C(0)R, C(0)NRR, C(0)OR, OC(0)R, OC C N , NHR', NRR, N C C , N C C N , NRC(0)OR, C(=NR)NRR, NRiC(=NR1)NRiRi, S(0)R, SiOJNR'R', S(0)2R, NRS(0)2R,
N S O^N , and S O^N , wherein the Ci-e alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce-ιο aryl, 5-6 membered heteroaryl, C3-10 cycloalkyl-Ci-4 alkyl-, (5-6 membered heteroaryl)-Ci-4 alkyl-, (4-7 membered heterocycloalkyl)-Ci-4 alkyl- of Rh are each further optionally substituted by 1 , 2, or 3 Ri substituents independently selected from C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, C2-4 alkenyl, C2-4 alkynyl, halo, C1-4 alkyl, Ci-4 haloalkyl, CN, NHORk, ORk, SRk, C(0)Rk, C(0)NRkRk, C(0)ORk, OC(0)Rk,
OC(0)NRkRk, NHRk, NRkRk, NRkC(0)Rk, NRkC(0)NRkRk, NRkC(0)ORk, C(=NRk)NRkRk, NRkC(=NRk)NRkRk, S(0)Rk, S(0)NRkRk, S(0)2Rk, NRkS(0)2Rk, NRkS(0)2NRkRk, and S(0)2NRkRk; or two Rh groups attached to the same carbon atom of the 4- to 10-membered heterocycloalkyl taken together with the carbon atom to which they are attached form a C3-6 cycloalkyl or 4- to 6-membered heterocycloalkyl having 1 -2 heteroatoms as ring members selected from O, N or S;
or any two Rc substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents;
or any two Re substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents;
or any two R substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two R1 substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two Rk substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two R° substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents; and
each Re, R1, Rk, R° or Rp is independently selected from H, Ci-4 alkyl, C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, C1-4 haloalkyl, C2-4 alkenyl, and C2-4 alkynyl, wherein the Ci-4 alkyl, C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, C2-4 alkenyl, and C2-4 alkynyl of Re, R1, Rk, R° or Rp are each optionally substituted with 1, 2 or 3 Rq substituents; each Rq is independently selected from OH, CN, -COOH, NH2, halo, C 1-6 haloalkyl, Ci-6 alkyl, Ci-6 alkoxy, Ci-6 haloalkoxy, Ci-6 alkylthio, phenyl, 5-6 membered heteroaryl, 4-6 membered heterocycloalkyl, C3-6 cycloalkyl, NHR12, NR12R12, and Ci-4 haloalkoxy, wherein the Ci-6 alkyl, phenyl, C3-6 cycloalkyl, 4-6 membered heterocycloalkyl, and 5-6 membered heteroaryl of Rq are each optionally substituted with halo, OH, CN, -COOH, NH2, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, phenyl, C3-10 cycloalkyl and 4-6 membered heterocycloalkyl and each R12 is independently Ci-6 alkyl; and
= is a single bond or a double bond to maintain ring A being aromatic.
In some embodiments of compounds of Formula (Γ), Cy is Ce-ιο aryl, optionally substituted with 1 to 4 independently selected R7 substituents. In certain embodiments, Cy is phenyl or naphthyl, each of which is optionally substituted with 1 to 4 independently selected R7 substituents. In certain embodiments, Cy is phenyl optionally substituted with 1 to 4 independently selected R7 substituents. In certain embodiments, Cy is unsubstituted phenyl.
In some embodiments of compounds of Formula (Γ), Cy is C3-10 cycloalkyl, optionally substituted with 1 to 4 independently selected R7 substituents. In certain embodiments, Cy is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, cycloheptyl or cyclooctyl, each of which is optionally substituted with 1 to 4 independently selected R7 substituents.
In some embodiments of compounds of Formula (Γ), Cy is 5- to 14-membered heteroaryl, optionally substituted with 1 to 4 independently selected R7 substituents. In certain embodiments, Cy is pyridy, primidinyl, pyrazinyl, pyridazinyl, triazinyl, pyrrolyl, pyrazolyl, azolyl, oxazolyl, thiazolyl, imidazolyl, furanyl, thiophenyl, quinolinyl, isoquinolinyl, naphthyridinyl, indolyl, benzothiophenyl, benzofuranyl, benzisoxazolyl, imidazo[l,2-Z>]thiazolyl, purinyl, thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, pyrazolyl, isothiazolyl, isoxazolyl, 1,2,3-triazolyl, tetrazolyl, 1,2,3-thiadiazolyl, 1,2,3- oxadiazolyl, 1,2,4-triazolyl, 1,2,4-thiadiazolyl, 1,2,4-oxadiazolyl, 1,3,4-triazolyl, 1,3,4- thiadiazolyl and 1,3,4-oxadiazolyl, each of which is optionally substituted with 1 to 4 independently selected R7 substituents.
In some embodiments of compounds of Formula (Γ), Cy is 4- to 10-membered heterocycloalkyl, optionally substituted with 1 to 4 independently selected R7 substituents. In certain embodiments, Cy is azetidinyl, azepanyl, dihydrobenzofuranyl, dihydrofuranyl, dihydropyranyl, morpholino, 3-oxa-9-azaspiro[5.5]undecanyl, l-oxa-8-azaspiro[4.5]decanyl, piperidinyl, piperazinyl, oxopiperazinyl, pyranyl, pyrrolidinyl, quinuclidinyl,
tetrahydrofuranyl, tetrahydropyranyl, 1,2,3,4-tetrahydroquinolinyl, tropanyl, 2,3-dihydro-l,4- benzodioxin-6-yl, and thiomorpholino, each of which is optionally substituted with 1 to 4 independently selected R7 substituents. In some embodiments, Cy is 3-dihydro-l,4- benzodioxin-6-yl optionally substituted with 1 to 4 independently selected R7 substituents.
In some embodiments of compounds of Formula (Γ), Z1 is CR8a, Z2 is CR8b and Z3 is CR8c. In certain instances, R8a, R8b and R8c are each H.
In some embodiments of compounds of Formula (Γ), Z1 is CR8a, Z2 is N and Z3 is N. In certain instances, R8a is H.
In some embodiments of compounds of Formula (Γ), Z1 is CR8a, Z2 is N and Z3 is CR8c. In certain instances, R8a and R8c are each H.
In some embodiments of compounds of Formula (Γ), Z1 is CR8a, Z2 is CR8b and Z3 is N. In certain instances, R8a and R8b are each H.
In some embodiments of compounds of Formula (Γ), Z1 is N, Z2 is CR8b and Z3 is CR8c. In certain instances, R8b and R8c are each H.
In some embodiments of compounds of Formula (Γ), Z1 is N, Z2 is N and Z3 is CR8c. In certain instances, R8c is H.
In some embodiments of compounds of Formula (Γ), Z1 is N, Z2 is CR8b and Z3 is N. In certain instances, R8b is H.
In some embodiments of compounds of Formula (Γ), Z1, Z2 and Z3 are each N.
In some embodiments, the present disclosure provides componds of Formula (I):
or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein:
one of Y1 and Y2 is N and the other of Y1 and Y2 is C;
X1 is N or CR1;
X2 is N or CR2;
X3 is N or CR3;
X4 is N or CR4;
X5 is N or CR5;
X6 is N or CR6;
R1, R2 and R8 are each independently selected from H, Ci-4 alkyl, C3-4 cycloalkyl, C2-4 alkenyl, C2-4 alkynyl, halo, CN, OH, Ci-4 alkoxy, Ci-4 haloalkyl, Ci-4 haloalkoxy, NH2, -NH- Ci-4 alkyl, -N(Ci-4 alkyl)2, NHOR10, C(0)R10, C(O)NR10R10, C(0)OR10, OC(0)R10,
OC(O)NR10R10, NR10C(O)R10, NR10C(O)OR10, NR10C(O)NR10R10, C(=NR10)R10,
C(=NR10)NR10R10, NR10C(=NR10)NR10R10, NR10S(O)R10, NR10S(O)2R10,
NR10S(O)2NR10R10, S(0)R10, S(O)NR10R10, S(0)2R10, and S(O)2NR10R10, wherein each R10 is independently H or C1-4 alkyl optionally substituted with 1 or 2 groups independently selected from halo, OH, CN and C1-4 alkoxy and the C1-4 alkyl, C3-4 cycloalkyl, C2-4 alkenyl and C2-4 alkynyl of R1, R2 or R8 are each optionally substituted with 1 or 2 substituents independently selected from halo, OH, CN and C1-4 alkoxy;
R9 is Ci-4 alkyl, halo, CN, OH, cyclopropyl, C2-4 alkynyl, C1-4 alkoxy, Ci-4 haloalkyl, Ci-4 haloalkoxy, NH2, -NH-Ci-4 alkyl, -N(Ci-4 alkyl)2, NHOR11, C(0)Rn, C(0)NRnRn, C(0)ORn, OC(0)Rn, OC(0)NRnRn, NRnC(0)Rn, NRnC(0)ORn, NR11C(0)NR11R11, C(=NR11)R11, C(=NR11)NR11R11, NR11C(=NR11)NR11R11, NRnS(0)Rn, NRnS(0)2Rn, NR11S(0)2NR11R11, S(0)Rn, S(0)NRnRn, S(0)2Rn, and S(0)2NRnRn, wherein each R11 is independently H or C1-4 alkyl optionally substituted with 1 or 2 halo, OH, CN or OCH3;
R3, R4, R5, R6 and R7 are each independently selected from H, halo, Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered
heterocycloalkyl)-Ci-4 alkyl-, CN, NC , ORa, SRa, NHORa, C(0)Ra, C(0)NRaRa, C(0)ORa, OC(0)Ra, OC(0)NRaRa, NHRa, NRaRa, NRaC(0)Ra, NRaC(0)ORa, NRaC(0)NRaRa, C(=NRa)Ra, C(=NRa)NRaRa, NRaC(=NRa)NRaRa, NRaS(0)Ra, NRaS(0)2Ra, NRaS(0)2NRaRa, S(0)Ra, S(0)NRaRa, S(0)2Ra, and S(0)2NRaRa, wherein the Ci-e alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R3, R4, R5, R6 and R7 are each optionally substituted with 1, 2, 3, or 4 Rb substituents, with the proviso that at least one of R3, R4, R5 and R6 is other than H;
or two adjacent R7 substituents on the phenyl ring, taken together with the carbon atoms to which they are attached, form a fused phenyl ring, a fused 5- or 6-membered heterocycloalkyl ring, a fused 5- or 6-membered heteroaryl ring or a fused C5-6 cycloalkyl ring, wherein the fused 5- or 6-membered heterocycloalkyl ring and fused 5- or 6-membered heteroaryl ring each have 1-4 heteroatoms as ring members selected from N, O and S and wherein the fused phenyl ring, fused 5- or 6-membered heterocycloalkyl ring, fused 5- or 6- membered heteroaryl ring and fused C5-6 cycloalkyl ring are each optionally substituted with 1 or 2 independently selected Rq substituents;
each Ra is independently selected from H, CN, Ci-6 alkyl, Ci-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Ra are each optionally substituted with 1, 2, 3, 4, or 5 Rd substituents;
each Rd is independently selected from C 1-4 alkyl, Ci-4 haloalkyl, halo, C3-10
cycloalkyl, 4-10 membered heterocycloalkyl, CN, NH2, NHORe, ORe, SRe, C(0)Re,
C(0)NReRe, C(0)ORe, OC(0)Re, OC(0)NReRe, NHRe, NReRe, NReC(0)Re, NReC(0)NReRe, NReC(0)ORe, C(=NRe)NReRe, NReC(=NRe)NReRe, S(0)Re, S(0)NReRe, S(0)2Re,
NReS(0)2Re, NReS(0)2NReRe, and S(0)2NReRe, wherein the C M alkyl, C3-10 cycloalkyl and 4-10 membered heterocycloalkyl of Rd are each further optionally substituted with 1 -3 independently selected Rq substituents;
each Rb substituent is independently selected from halo, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 haloalkoxy, C6-io aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, CN, OH, NH2, NO2, NHORc, ORc, SRC, C(0)Rc, C(0)NRcRc, C(0)ORc, OC(0)Rc, OC(0)NRcRc, C(=NRC)NRCRC, NRCC(=NRC)NRCRC, NHRC, NRCRC, NRcC(0)Rc, NRcC(0)ORc, NRcC(0)NRcRc, NRcS(0)Rc, NRcS(0)2Rc, NRcS(0)2NRcRc, S(0)Rc, S(0)NRcRc, S(0)2Rc or S(0)2NRcRc; wherein the CM alkyl, C 1-4 haloalkyl, C1-4 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rb are each further optionally substituted with 1 -3 independently selected Rd substituents;
each Rc is independently selected from H, Ci-6 alkyl, C 1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rc are each optionally substituted with 1, 2, 3, 4, or 5 Rf substituents independently selected from Ci-4 alkyl, C1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10
cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, halo, CN, NHOR , ORg, SRg, C(0)Rg, C(0)NRgRg, C(0)ORg, OC(0)Rg, OC(0)NRgRg, NHRg, NRgRg, NRgC(0)Rg, NRgC(0)NRgRg, NRgC(0)ORg, C(=NRg)NRgRg, NRgC(=NRg)NRgRg, S(0)Rg, S(0)NRgRg, S(0)2Rg, NRgS(0)2Rg,
NRgS(0)2NRgRg, and S(0)2NRgRg; wherein the CM alkyl, CM haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rf are each optionally substituted with 1 , 2, 3, 4, or 5 Rn substituents independently selected from CM alkyl, C M haloalkyl, halo, CN, NHOR0, OR0, SR°, C(O)R0, C(O)NR0R°, C(O)OR0,
OC(0)R°, OC(0)NR°R°, NHR°, NR°R°, NR0C(O)R°, NR0C(O)NR°R°, NR°C(0)OR°, C(=NR°)NR°R°, NR0C(=NR°)NR°R0, S(O)R0, S(O)NR0R°, S(O)2R0, NR0S(O)2R°,
NR0S(O)2NR°R0, and S(O)2NR0R°;
each Rg is independently selected from H, Ci-6 alkyl, C1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R are each optionally substituted with 1-3 independently selected Rp substituents;
or any two Ra substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, 7-, 8-, 9- or 10-membered heterocycloalkyl group optionally substituted with 1, 2 or 3 Rh substituents independently selected from Ci-6 alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce-ιο aryl, 5-6 membered heteroaryl, C3-10 cycloalkyl-Ci-4 alkyl-, (5-6 membered heteroaryl)-Ci-4 alkyl-, (4-7 membered heterocycloalkyl)-Ci-4 alkyl-, Ci-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, halo, CN, OR1, SR, NHOR, C(0)R, C(0)NRR, C(0)OR, OC(0)R, OC C N , NHR', NRR, N C C , N C C N , NRC(0)OR, C(=NR)NRR, NRiC(=NR1)NRiRi, S(0)R, SiOJNR'R', S(0)2R, NRS(0)2R,
N S O^N , and S O^N , wherein the Ci-e alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce-ιο aryl, 5-6 membered heteroaryl, C3-10 cycloalkyl-Ci-4 alkyl-, (5-6 membered heteroaryl)-Ci-4 alkyl-, (4-7 membered heterocycloalkyl)-Ci-4 alkyl- of Rh are each further optionally substituted by 1 , 2, or 3 Ri substituents independently selected from C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, C2-4 alkenyl, C2-4 alkynyl, halo, C1-4 alkyl, Ci-4 haloalkyl, CN, NHORk, ORk, SRk, C(0)Rk, C(0)NRkRk, C(0)ORk, OC(0)Rk,
OC(0)NRkRk, NHRk, NRkRk, NRkC(0)Rk, NRkC(0)NRkRk, NRkC(0)ORk, C(=NRk)NRkRk, NRkC(=NRk)NRkRk, S(0)Rk, S(0)NRkRk, S(0)2Rk, NRkS(0)2Rk, NRkS(0)2NRkRk, and S(0)2NRkRk; or two Rh groups attached to the same carbon atom of the 4- to 10-membered heterocycloalkyl taken together with the carbon atom to which they attach form a C3-6 cycloalkyl or 4- to 6-membered heterocycloalkyl having 1 -2 heteroatoms as ring members selected from O, N or S;
or any two Rc substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents;
or any two Re substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents;
or any two R substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents;
or any two R1 substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents;
or any two Rk substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents;
or any two R° substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents; and
each Re, R1, Rk, R° or Rp is independently selected from H, Ci-4 alkyl, C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, C1-4 haloalkyl, C2-4 alkenyl, and C2-4 alkynyl, wherein the Ci-4 alkyl, C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, C2-4 alkenyl, and C2-4 alkynyl of Re, R1, Rk, R° or Rp are each optionally substituted with 1, 2 or 3 Rq substituents; each R¾ is independently selected from OH, CN, -COOH, NH2, halo, C M alkyl, CM alkoxy, C1-4 alkylthio, phenyl, 5-6 membered heteroaryl, C3-6 cycloalkyl, NHR12, NR12R12, and Ci-4 haloalkoxy, wherein the C M alkyl, phenyl and 5-6 membered heteroaryl of Rq are each optionally substituted with OH, CN, -COOH, NH2, Ci-4 alkoxy, C3-10 cycloalkyl and 4-6 membered heterocycloalkyl and each R12 is independently Ci-6 alkyl;
=is a single bond or a double bond to maintain ring A being aromatic;
the subscript n is an integer of 1 , 2, 3, 4 or 5; and
the subscript m is an integer of 1 , 2, 3 or 4. In some embodiments, the subscript m is an integer of 1 , 2 or 3.
In some embodiments, R9 is C1-4 alkyl, halo, CN, OH, cyclopropyl, C2-4 alkynyl, C1-4 alkoxy, C M haloalkyl, Ci-4 haloalkoxy, NH2, -NH-CM alkyl, -N(CM alkyl)2, NHOR1 1, C(0)Rn, C(0)NRnRn, C(0)ORn, OC(0)Rn, OC(0)NRnRn, NRnC(0)Rn,
NRHC^OR! !^RHC^NRHR11, C(=NR11)R11, C(=NR11)NR11R11,
S(0)NRnRn, S(0)2Rn, and S(0)2NR11R11, wherein C M alkyl, cyclopropyl, C2-4 alkynyl and CM alkoxy of R9 are each optionally substituted with 1 or 2 substituents selected from halo, OH, CN and OCH3 and each R11 is independently H or C1-4 alkyl optionally substituted with 1 or 2 halo, OH, CN or OCH3.
In some embodiments, two adjacent R7 substituents on the phenyl ring, taken together with the carbon atoms to which they are attached, form a fused phenyl ring, a fused 5- or 6- membered heterocycloalkyl ring, a fused 5- or 6-membered heteroaryl ring or a fused C5-6 cycloalkyl ring, wherein the fused 5- or 6-membered heterocycloalkyl ring and fused 5- or 6- membered heteroaryl ring each have 1-4 heteroatoms as ring members selected from N, O and S and wherein the fused phenyl ring, fused 5- or 6-membered heterocycloalkyl ring, fused 5- or 6-membered heteroaryl ring and fused C5-6 cycloalkyl ring are each optionally substituted with 1,2 or 3 independently selected Rb substituents or 1 or 2 independently selected Rq substituents. The compounds, or pharmaceutically acceptable salts or
stereoisomers thereof, as described herein are useful as inhibitors of the PD-1/PD-L1 protein/protein interaction. For example, compounds or pharmaceutically acceptable salts or stereoisomers thereof as described herein can disrupt the PD-1/PD-L1 protein/protein interaction in the PD-1 pathway.
In some embodiments, the present disclosure provides compounds having Formula (II):
harmaceutically acceptable salt or a stereoisomer thereof, wherein R4 is halo, Ci-6 alkyl,
C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, C6-io aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered
heterocycloalkyl)-Ci-4 alkyl-, CN, NO2, ORa, SRa, NHORa, C(0)Ra, C(0)NRaRa, C(0)ORa, OC(0)Ra, OC(0)NRaRa, NHRa, NRaRa, NRaC(0)Ra, NRaC(0)ORa, NRaC(0)NRaRa, C(=NRa)Ra, C(=NRa)NRaRa, NRaC(=NRa)NRaRa, NRaS(0)Ra, NRaS(0)2Ra, NRaS(0)2NRaRa, S(0)Ra, S(0)NRaRa, S(0)2Ra, and S(0)2NRaRa, wherein the Ci-e alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R1 are each optionally substituted with 1 , 2, 3, or 4 Rb substituents. Other variables of Formula (II) are as defined in Formula (Γ) or (I) or any embodiment of compounds of Formula (Γ) or (I) as
described herein. In one embodiment of compounds of Formula (II), R9 is CN or Ci-4 alkyl optionally substituted with R1 In another embodiment, R9 is CFb or CN.
In some embodiments, the present disclosure provides compounds having Formula
(Ila):
or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein R5 is halo, Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, C6-io aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10
cycloalkyl-C 1-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered
heterocycloalkyl)-Ci-4 alkyl-, CN, NO2, ORa, SRa, NHORa, C(0)Ra, C(0)NRaRa, C(0)ORa, OC(0)Ra, OC(0)NRaRa, NHRa, NRaRa, NRaC(0)Ra, NRaC(0)ORa, NRaC(0)NRaRa, C(=NRa)Ra, C(=NRa)NRaRa, NRaC(=NRa)NRaRa, NRaS(0)Ra, NRaS(0)2Ra, NRaS(0)2NRaRa, S(0)Ra, S(0)NRaRa, S(0)2Ra, and S(0)2NRaRa, wherein the Ci-e alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R1 are each optionally substituted with 1 , 2, 3, or 4 Rb substituents. Other variables of Formula (Ila) are as defined in Formula (Γ) or (I) or any embodiment of compounds of Formula (I) as described herein. In one embodiment of compounds of Formula (II), R9 is CN or C1-4 alkyl optionally substituted with R1 In another embodiment, R9 is CH3 or CN.
In some embodiments, the present disclosure provides compounds having Formula
(III):
or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein the variables of Formula (III) are as defined in Formula (Γ) or (I) or any embodiment of compounds of Formula (Γ) or (I) as described herein.
In some embodiments, the present disclosure provides compounds having Formula
or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein the variables of Formula (IV) are as defined in Formula (Γ) or (I) or any embodiment of compounds of Formula (Γ) or (I) as described herein.
In some embodiments, the present disclosure provides compounds having Formula
(V):
or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein the variables of Formula (V) are as defined in Formula (Γ) or (I) or any embodiment of compounds of Formula (Γ) or (I) as described herein.
In some embodiments, the present disclosure provides compounds having Formula
(VI):
or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein the variables of Formula (VI) are as defined in Formula (Γ) or (I) or any embodiment of compounds of Formula (Γ) or (I) as described herein.
or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein the variables of Formula (VII) are as defined in Formula (Γ) or (I) or any embodiment of compounds of Formula (Γ) or (I) as described herein. In some instances, R7 is H, n is 1, Z1 is CR8a, Z2 is CR8b and Z is CR8c. In certain instances, Z1, Z2 and Z3 are each H.
In some embodiments, the present disclosure provides compounds having Formula
(VIII):
or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein the variables of Formula (VIII) are as defined in Formula (Γ) or (I) or any embodiment of compounds of Formula (Γ) or (I) as described herein. In some instances, R7 is H, n is 1, Z1 is CR8a, Z2 is CR8b and Z is CR8c. In certain instances, Z1, Z2 and Z3 are each H.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, or a pharmaceutically acceptable salt or a stereoisomer thereof, the moiety:
R6 and R6 , wherein the substituents R1, R2, R3, R4, R5 and R6 are as defined in Formula (Γ) or (I) or any embodiment of compounds of Formula (Γ) or (I) as described herein. In certain embodiments, at each occurrence, R1, R2, R3 and R5 are each H.
and R6 are as defined in Formula (Γ) or (I) or any embodiment of compounds of Formula (Γ) or (I) as described herein. In certain embodiments, at each occurrence, R1, R2, R3 and R5 are each H.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, X1 is N, X2 is CH, X3, X5 and X6 are each CH, Y1 is N and Y2 is C.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V,VI, VII, or VIII, X1 is CH, X2 is CH, X3, X5 and X6 are each CH, Y1 is C and Y2 is N.
In some embodiments of compounds of Formula Γ, I, II, III, IV, V, VI, or VII, X1 is CH, X2 is CH, X and X6 are each CH, X5 is N, Y1 is C and Y2 is N.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, X1 is N, X2 is CH, X3 and X6 are each N, X5 is CH, Y1 is N and Y2 is C.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, X1 is N, X2 is CH, X3 and X5 are each CH, X6 is N, Y1 is N and Y2 is C.
In some embodiments of compounds of Formula Γ, I, II, III, IV, V, VI, or VII, X1 is N, X2 is CH, X3 and X6 are each CH, X5 is N, Y1 is N and Y2 is C.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or
VIII, X1 is N, X2 is CH, X5 and X6 are each CH, X3 is N, Y1 is N and Y2 is C.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, X1 and X2 are each N, X3, X5 and X6 are each CH, Y1 is C and Y2 is N.
In some embodiments of compounds of Formula Γ, I, II, III, IV, V, VI, or VII, X1 and X2 are each N, X3 is CH, X5 is N, X6 is CR6, Y1 is C and Y2 is N.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, X1 is N, X2 is CH, X3 and X5 are each CH, X6 is CR6, Y1 is N and Y2 is C.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, or VI, VII, or VIII, X1 and X2 are each N, X3 and X5 are each CH, X6 is CR6, Y1 is N and Y2 is C.
In some embodiments, R9 is Ci-4 alkyl or CN.
In some embodiments, R9 is C¾ or CN.
In some embodiments, R7 and R8 are each H.
In some embodiments, R8a, R8b, and R8c are each H.
In some embodiments, R7, R8a, R8b, and R8c are each H.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or
VIII, X2, X3, X5 and X6 are each CH.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, X1, X2, X3, X5 and X6 are each CH.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, X1, X2, X3 and X6 are each CH.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, X2 and X5 are each CH.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, X2, X3 and X5 are each CH.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or
VIII, X2 and X6 are each CH.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, X2, X5 and X6 are each CH.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, X3, X5 and X6 are each CH.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, X3 is CH.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or
VIII, R4 is Ci-4 alkyl substituted with Rb. In certain embodiements, Rb is NHRC or NRCRC. In other embodiments, Rb is 2-hydroxyethylamino, 2-hydroxyethyl(methyl)amino, 2- carboxypiperidin-l -yl, (cyanomethyl)amino, (S)-2-carboxypiperidin-l -yl, (R)-2- carboxypiperidin-l -yl or 2-carboxypiperidin-l -yl. In other embodiments, R4 is Ci-4 alkyl substituted with Rd. In other embodiments, R4 is Ci-4 alkyl substituted with Rf. In other embodiments, R4 is Ci-4 alkyl substituted with Rh. In other embodiments, R4 is Ci-4 alkyl substituted with RJ. In other embodiments, R4 is Ci-4 alkyl substituted with Rn. In other embodiments, R4 is Ci-4 alkyl substituted with R1
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, R4 is -CH2Rb. In certain embodiements, Rb is NHRC or NRCRC. In other embodiments, Rb is 2-hydroxyethylamino, 2-hydroxyethyl(methyl)amino, 2-carboxypiperidin-l-yl, (cyanomethyl)amino, (S)-2-carboxypiperidin-l -yl, (R)-2-carboxypiperidin-l-yl or 2- carboxypiperidin-l -yl. In other embodiments, R4 is -CH2-Rd. In other embodiments, R4 is - CH2-Rf. In other embodiments, R4 is -CH2-Rh. In other embodiments, R4 is -CH2-RJ. In other embodiments, R4 is -CH2-Rn. In other embodiments, R4 is -CH2-Rq.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, R4 is 2-hydroxyethylaminomethyl, 2-hydroxyethyl(methyl)aminomethyl, 2- carboxypiperidin-1 -ylmethyl, (cyanomethyl)aminomethyl, (S)-2-carboxypiperidin-l - ylmethyl, (R)-2-carboxypiperidin-l -ylmethyl or 2-carboxypiperidin-l -ylmethyl.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or
VIII, R6 is H, halo or Ci-6 alkyl optionally substituted with 1 -3 Rq substituents.
In some embodiments of compounds of Formula Γ, I, II, Ila, III, IV, V, VI, VII, or VIII, R6 is H, halo or CH3.
It is further appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, can also be provided in combination in a single embodiment (while the embodiments are intended to be combined as if written in multiply dependent form). Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, can also be provided separately or in any suitable subcombination. Thus, it is contemplated as features described as
embodiments of the compounds of formula (Γ) or (I) can be combined in any suitable combination.
At various places in the present specification, certain features of the compounds are disclosed in groups or in ranges. It is specifically intended that such a disclosure include each and every individual subcombination of the members of such groups and ranges. For example, the term " Ci-6 alkyl" is specifically intended to individually disclose (without limitation) methyl, ethyl, C3 alkyl, C4 alkyl, C5 alkyl and Ce alkyl.
The term "n-membered," where n is an integer, typically describes the number of ring- forming atoms in a moiety where the number of ring-forming atoms is n. For example, piperidinyl is an example of a 6-membered heterocycloalkyl ring, pyrazolyl is an example of a 5-membered heteroaryl ring, pyridyl is an example of a 6-membered heteroaryl ring and 1,2,3,4-tetrahydro-naphthalene is an example of a 10-membered cycloalkyl group.
At various places in the present specification, variables defining divalent linking groups may be described. It is specifically intended that each linking substituent include both the forward and backward forms of the linking substituent. For example, -NR(CR'R")n- includes both -NR(CR'R")n- and -(CR'R")nNR- and is intended to disclose each of the forms individually. Where the structure requires a linking group, the Markush variables listed for that group are understood to be linking groups. For example, if the structure requires a linking group and the Markush group definition for that variable lists "alkyl" or "aryl" then it is understood that the "alkyl" or "aryl" represents a linking alkylene group or arylene group, respectively.
The term "substituted" means that an atom or group of atoms formally replaces hydrogen as a "substituent" attached to another group. The term "substituted", unless otherwise indicated, refers to any level of substitution, e.g. , mono-, di-, tri-, tetra- or penta-substitution, where such substitution is permitted. The substituents are independently selected, and substitution may be at any chemically accessible position. It is to be understood that substitution at a given atom is limited by valency. It is to be understood that substitution at a given atom results in a chemically stable molecule. The phrase "optionally substituted" means unsubstituted or substituted. The term "substituted" means that a hydrogen atom is removed and replaced by a substituent. A single divalent substituent, e.g., oxo, can replace two hydrogen atoms.
The term "Cn-m" indicates a range which includes the endpoints, wherein n and m are integers and indicate the number of carbons. Examples include C 1-4, C i-6 and the like.
The term "alkyl" employed alone or in combination with other terms, refers to a saturated hydrocarbon group that may be straight-chained or branched. The term "Cn-m alkyl", refers to an alkyl group having n to m carbon atoms. An alkyl group formally corresponds to an alkane with one C-H bond replaced by the point of attachment of the alkyl group to the remainder of the compound. In some embodiments, the alkyl group contains from 1 to 6 carbon atoms, from 1 to 4 carbon atoms, from 1 to 3 carbon atoms, or 1 to 2 carbon atoms. Examples of alkyl moieties include, but are not limited to, chemical groups such as methyl, ethyl, ft-propyl, isopropyl, w-butyl, fert-butyl, isobutyl, sec-butyl; higher homologs such as 2- methyl-1 -butyl, w-pentyl, 3-pentyl, w-hexyl, 1 ,2,2-trimethylpropyl and the like.
The term "alkenyl" employed alone or in combination with other terms, refers to a straight-chain or branched hydrocarbon group corresponding to an alkyl group having one or more double carbon-carbon bonds. An alkenyl group formally corresponds to an alkene with one C-H bond replaced by the point of attachment of the alkenyl group to the remainder of the compound. The term "Cn-m alkenyl" refers to an alkenyl group having n to m carbons. In some embodiments, the alkenyl moiety contains 2 to 6, 2 to 4, or 2 to 3 carbon atoms.
Example alkenyl groups include, but are not limited to, ethenyl, w-propenyl, isopropenyl, n- butenyl, seobutenyl and the like.
The term "alkynyl" employed alone or in combination with other terms, refers to a straight-chain or branched hydrocarbon group corresponding to an alkyl group having one or more triple carbon-carbon bonds. An alkynyl group formally corresponds to an alkyne with one C-H bond replaced by the point of attachment of the alkyl group to the remainder of the compound. The term "Cn-m alkynyl" refers to an alkynyl group having n to m carbons.
Example alkynyl groups include, but are not limited to, ethynyl, propyn-l-yl, propyn-2-yl and the like. In some embodiments, the alkynyl moiety contains 2 to 6, 2 to 4, or 2 to 3 carbon atoms.
The term "alkylene", employed alone or in combination with other terms, refers to a divalent alkyl linking group. An alkylene group formally corresponds to an alkane with two C-H bond replaced by points of attachment of the alkylene group to the remainder of the compound. The term "Cn-m alkylene" refers to an alkylene group having n to m carbon atoms. Examples of alkylene groups include, but are not limited to, ethan-l,2-diyl, propan-l,3-diyl, propan-l,2-diyl, butan-l,4-diyl, butan-l,3-diyl, butan-l,2-diyl, 2-methyl-propan-l,3-diyl and the like.
The term "alkoxy", employed alone or in combination with other terms, refers to a group of formula -O-alkyl, wherein the alkyl group is as defined above. The term "Cn-m
alkoxy" refers to an alkoxy group, the alkyl group of which has n to m carbons. Example alkoxy groups include methoxy, ethoxy, propoxy (e.g., w-propoxy and isopropoxy), /-butoxy and the like. In some embodiments, the alkyl group has 1 to 6, 1 to 4, or 1 to 3 carbon atoms.
The term "amino" refers to a group of formula -NH2.
The term "carbamyl" refers to a group of formula -C(0)NH2.
The term "carbonyl", employed alone or in combination with other terms, refers to a -C(=0)- group, which also may be written as C(O).
The term "cyano" or "nitrile" refers to a group of formula -C≡N, which also may be written as -CN.
The terms "halo" or "halogen", used alone or in combination with other terms, refers to fluoro, chloro, bromo and iodo. In some embodiments, "halo" refers to a halogen atom selected from F, CI, or Br. In some embodiments, halo groups are F.
The term "haloalkyl" as used herein refers to an alkyl group in which one or more of the hydrogen atoms has been replaced by a halogen atom. The term "Cn-m haloalkyl" refers to a Cn-m alkyl group having n to m carbon atoms and from at least one up to {2(n to m)+l } halogen atoms, which may either be the same or different. In some embodiments, the halogen atoms are fluoro atoms. In some embodiments, the haloalkyl group has 1 to 6 or 1 to 4 carbon atoms. Example haloalkyl groups include CF3, C2F5, CHF2, CCh, CHCI2, C2CI5 and the like. In some embodiments, the haloalkyl group is a fluoroalkyl group.
The term "haloalkoxy", employed alone or in combination with other terms, refers to a group of formula -O-haloalkyl, wherein the haloalkyl group is as defined above. The term "Cn-m haloalkoxy" refers to a haloalkoxy group, the haloalkyl group of which has n to m carbons. Example haloalkoxy groups include trifluoromethoxy and the like. In some embodiments, the haloalkoxy group has 1 to 6, 1 to 4, or 1 to 3 carbon atoms.
The term "oxo" refers to an oxygen atom as a divalent substituent, forming a carbonyl group when attached to carbon, or attached to a heteroatom forming a sulfoxide or sulfone group, or an N-oxide group. In some embodiments, heterocyclic groups may be optionally substituted by 1 or 2 oxo (=0) substituents.
The term "sulfido" refers to a sulfur atom as a divalent substituent, forming a thiocarbonyl group (C=S) when attached to carbon.
The term "aromatic" refers to a carbocycle or heterocycle having one or more polyunsaturated rings having aromatic character (i.e., having (4n + 2) delocalized π (pi) electrons where n is an integer).
The term "aryl," employed alone or in combination with other terms, refers to an aromatic hydrocarbon group, which may be monocyclic or poly cyclic (e.g. , having 2 fused rings). The term "Cn-m aryl" refers to an aryl group having from n to m ring carbon atoms. Aryl groups include, e.g. , phenyl, naphthyl, indanyl, indenyl and the like. In some embodiments, aryl groups have from 6 to about 10 carbon atoms. In some embodiments aryl groups have 6 carbon atoms. In some embodiments aryl groups have 10 carbon atoms. In some embodiments, the aryl group is phenyl. In some embodiments, the aryl group is naphthyl.
The term "heteroaryl" or "heteroaromatic," employed alone or in combination with other terms, refers to a monocyclic or poly cyclic aromatic heterocycle having at least one heteroatom ring member selected from sulfur, oxygen and nitrogen. In some embodiments, the heteroaryl ring has 1, 2, 3 or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen. In some embodiments, any ring-forming N in a heteroaryl moiety can be an N-oxide. In some embodiments, the heteroaryl has 5-14 ring atoms including carbon atoms and 1, 2, 3 or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen. In some embodiments, the heteroaryl has 5-10 ring atoms including carbon atoms and 1, 2, 3 or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen. In some embodiments, the heteroaryl has 5-6 ring atoms and 1 or 2 heteroatom ring members independently selected from nitrogen, sulfur and oxygen. In some embodiments, the heteroaryl is a five-membered or six-membered heteroaryl ring. In other embodiments, the heteroaryl is an eight-membered, nine-membered or ten-membered fused bicyclic heteroaryl ring. Example heteroaryl groups include, but are not limited to, pyridintl (pyridyl), pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolyl, pyrazolyl, azolyl, oxazolyl, thiazolyl, imidazolyl, furanyl, thiophenyl, quinolinyl, isoquinolinyl, naphthyridinyl (including 1,2-, 1,3-, 1,4-, 1,5-, 1,6-, 1,7-, 1,8-, 2,3- and 2,6-naphthyridine), indolyl, benzothiophenyl, benzofuranyl, benzisoxazolyl, imidazo[l,2-Z>]thiazolyl, purinyl, and the like.
A five-membered heteroaryl ring is a heteroaryl group having five ring atoms wherein one or more (e.g. , 1, 2 or 3) ring atoms are independently selected from N, O and S.
Exemplary five-membered ring heteroaryls include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, pyrazolyl, isothiazolyl, isoxazolyl, 1,2,3-triazolyl, tetrazolyl, 1,2,3- thiadiazolyl, 1,2,3-oxadiazolyl, 1 ,2,4-triazolyl, 1 ,2,4-thiadiazolyl, 1,2,4-oxadiazolyl, 1,3,4- triazolyl, 1,3,4-thiadiazolyl and 1,3,4-oxadiazolyl.
A six-membered heteroaryl ring is a heteroaryl group having six ring atoms wherein one or more (e.g. , 1, 2 or 3) ring atoms are independently selected from N, O and S.
Exemplary six-membered ring heteroaryls are pyridyl, pyrazinyl, pyrimidinyl, triazinyl and pyridazinyl.
The term "cycloalkyl," employed alone or in combination with other terms, refers to a non-aromatic hydrocarbon ring system (monocyclic, bicyclic or poly cyclic), including cyclized alkyl and alkenyl groups. The term "Cn-m cycloalkyl" refers to a cycloalkyl that has n to m ring member carbon atoms. Cycloalkyl groups can include mono- or poly cyclic (e.g., having 2, 3 or 4 fused rings) groups and spirocycles. Cycloalkyl groups can have 3, 4, 5, 6 or 7 ring-forming carbons (C3-7). In some embodiments, the cycloalkyl group has 3 to 6 ring members, 3 to 5 ring members, or 3 to 4 ring members. In some embodiments, the cycloalkyl group is monocyclic. In some embodiments, the cycloalkyl group is monocyclic or bicyclic. In some embodiments, the cycloalkyl group is a C3-6 monocyclic cycloalkyl group. Ring- forming carbon atoms of a cycloalkyl group can be optionally oxidized to form an oxo or sulfido group. Cycloalkyl groups also include cycloalkylidenes. In some embodiments, cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. Also included in the definition of cycloalkyl are moieties that have one or more aromatic rings fused (i.e. , having a bond in common with) to the cycloalkyl ring, e.g., benzo or thienyl derivatives of cyclopentane, cyclohexane and the like. A cycloalkyl group containing a fused aromatic ring can be attached through any ring-forming atom including a ring-forming atom of the fused aromatic ring. Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclopentenyl, cyclohexenyl, cyclohexadienyl, cycloheptatrienyl, norbornyl, norpinyl, norcamyl, bicyclo[l . l . l]pentanyl, bicyclo[2.1.1]hexanyl, and the like. In some embodiments, the cycloalkyl group is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
The term "heterocycloalkyl," employed alone or in combination with other terms, refers to a non-aromatic ring or ring system, which may optionally contain one or more alkenylene groups as part of the ring structure, which has at least one heteroatom ring member independently selected from nitrogen, sulfur oxygen and phosphorus, and which has 4-10 ring members, 4-7 ring members, or 4-6 ring members. Included within the term "heterocycloalkyl" are monocyclic 4-, 5-, 6- and 7-membered heterocycloalkyl groups. Heterocycloalkyl groups can include mono- or bicyclic (e.g., having two fused or bridged rings) ring systems. In some embodiments, the heterocycloalkyl group is a monocyclic group having 1, 2 or 3 heteroatoms independently selected from nitrogen, sulfur and oxygen. Ring-
forming carbon atoms and heteroatoms of a heterocycloalkyl group can be optionally oxidized to form an oxo or sulfido group or other oxidized linkage (e.g. , C(O), S(O), C(S) or S(0)2, N-oxide etc.) or a nitrogen atom can be quaternized. The heterocycloalkyl group can be attached through a ring-forming carbon atom or a ring-forming heteroatom. In some embodiments, the heterocycloalkyl group contains 0 to 3 double bonds. In some
embodiments, the heterocycloalkyl group contains 0 to 2 double bonds. Also included in the definition of heterocycloalkyl are moieties that have one or more aromatic rings fused (i. e. , having a bond in common with) to the heterocycloalkyl ring, e.g. , benzo or thienyl derivatives of piperidine, morpholine, azepine, etc. A heterocycloalkyl group containing a fused aromatic ring can be attached through any ring-forming atom including a ring-forming atom of the fused aromatic ring. Examples of heterocycloalkyl groups include azetidinyl, azepanyl, dihydrobenzofuranyl, dihydrofuranyl, dihydropyranyl, morpholino, 3-oxa-9- azaspiro[5.5]undecanyl, l-oxa-8-azaspiro[4.5]decanyl, piperidinyl, piperazinyl,
oxopiperazinyl, pyranyl, pyrrolidinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydropyranyl, 1,2,3,4-tetrahydroquinolinyl, tropanyl, and thiomorpholino.
At certain places, the definitions or embodiments refer to specific rings (e.g. , an azetidine ring, a pyridine ring, etc.). Unless otherwise indicated, these rings can be attached to any ring member provided that the valency of the atom is not exceeded. For example, an azetidine ring may be attached at any position of the ring, whereas an azetidin-3-yl ring is attached at the 3-position.
The compounds described herein can be asymmetric (e.g. , having one or more stereocenters). All stereoisomers, such as enantiomers and diastereomers, are intended unless otherwise indicated. Compounds of the present invention that contain asymmetrically substituted carbon atoms can be isolated in optically active or racemic forms. Methods on how to prepare optically active forms from optically inactive starting materials are known in the art, such as by resolution of racemic mixtures or by stereoselective synthesis. Many geometric isomers of olefins, C=N double bonds and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present invention. Cis and trans geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms.
Resolution of racemic mixtures of compounds can be carried out by any of numerous methods known in the art. One method includes fractional recrystallization using a chiral resolving acid which is an optically active, salt-forming organic acid. Suitable resolving agents for fractional recrystallization methods are, e.g. , optically active acids, such as the D
and L forms of tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid or the various optically active camphorsulfonic acids such as β- camphorsulfonic acid. Other resolving agents suitable for fractional crystallization methods include stereoisomerically pure forms of a-methylbenzylamine (e.g. , S and R forms, or diastereomerically pure forms), 2-phenylglycinol, norephedrine, ephedrine, N- methylephedrine, cyclohexylethylamine, 1,2-diaminocyclohexane and the like.
Resolution of racemic mixtures can also be carried out by elution on a column packed with an optically active resolving agent (e.g., dinitrobenzoylphenylglycine). Suitable elution solvent composition can be determined by one skilled in the art.
In some embodiments, the compounds of the invention have the (i?)-configuration. In other embodiments, the compounds have the (^-configuration. In compounds with more than one chiral centers, each of the chiral centers in the compound may be independently (R) or (S), unless otherwise indicated.
Compounds of the invention also include tautomeric forms. Tautomeric forms result from the swapping of a single bond with an adjacent double bond together with the concomitant migration of a proton. Tautomeric forms include prototropic tautomers which are isomeric protonation states having the same empirical formula and total charge. Example prototropic tautomers include ketone - enol pairs, amide - imidic acid pairs, lactam - lactim pairs, enamine - imine pairs, and annular forms where a proton can occupy two or more positions of a heterocyclic system, e.g. , 1H- and 3H-imidazole, 1H-, 2H- and 4H- 1,2,4- triazole, 1H- and 2H- isoindole and 1H- and 2H-pyrazole. Tautomeric forms can be in equilibrium or sterically locked into one form by appropriate substitution.
Compounds of the invention can also include all isotopes of atoms occurring in the intermediates or final compounds. Isotopes include those atoms having the same atomic number but different mass numbers. For example, isotopes of hydrogen include tritium and deuterium. One or more constituent atoms of the compounds of the invention can be replaced or substituted with isotopes of the atoms in natural or non-natural abundance. In some embodiments, the compound includes at least one deuterium atom. For example, one or more hydrogen atoms in a compound of the present disclosure can be replaced or substituted by deuterium. In some embodiments, the compound includes two or more deuterium atoms. In some embodiments, the compound includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 deuterium atoms. Synthetic methods for including isotopes into organic compounds are known in the art.
The term, "compound," as used herein is meant to include all stereoisomers, geometric isomers, tautomers and isotopes of the structures depicted. The term is also meant to refer to compounds of the inventions, regardless of how they are prepared, e.g., synthetically, through biological process (e.g., metabolism or enzyme conversion), or a combination thereof.
All compounds, and pharmaceutically acceptable salts thereof, can be found together with other substances such as water and solvents (e.g., hydrates and solvates) or can be isolated. When in the solid state, the compounds described herein and salts thereof may occur in various forms and may, e.g. , take the form of solvates, including hydrates. The compounds may be in any solid state form, such as a polymorph or solvate, so unless clearly indicated otherwise, reference in the specification to compounds and salts thereof should be understood as encompassing any solid state form of the compound.
In some embodiments, the compounds of the invention, or salts thereof, are substantially isolated. By "substantially isolated" is meant that the compound is at least partially or substantially separated from the environment in which it was formed or detected. Partial separation can include, e.g. , a composition enriched in the compounds of the invention. Substantial separation can include compositions containing at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% by weight of the compounds of the invention, or salt thereof.
The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
The expressions, "ambient temperature" and "room temperature," as used herein, are understood in the art, and refer generally to a temperature, e.g. , a reaction temperature, that is about the temperature of the room in which the reaction is carried out, e.g., a temperature from about 20 °C to about 30 °C.
The present invention also includes pharmaceutically acceptable salts of the compounds described herein. The term "pharmaceutically acceptable salts" refers to derivatives of the disclosed compounds wherein the parent compound is modified by converting an existing acid or base moiety to its salt form. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues
such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts of the present invention include the non-toxic salts of the parent compound formed, e.g. , from non-toxic inorganic or organic acids. The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods.
Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, non-aqueous media like ether, ethyl acetate, alcohols (e.g., methanol, ethanol, iso-propanol or butanol) or acetonitrile (MeCN) are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th Ed., (Mack Publishing Company, Easton, 1985), p. 1418, Berge et al, J. Pharm. Sci., 1977, 66(1), 1-19 and in Stahl et al., Handbook of Pharmaceutical Salts: Properties, Selection, and Use, (Wiley, 2002). In some embodiments, the compounds described herein include the N-oxide forms.
//. Synthesis
Compounds of the invention, including salts thereof, can be prepared using known organic synthesis techniques and can be synthesized according to any of numerous possible synthetic routes, such as those in the Schemes below.
The reactions for preparing compounds of the invention can be carried out in suitable solvents which can be readily selected by one of skill in the art of organic synthesis. Suitable solvents can be substantially non-reactive with the starting materials (reactants), the intermediates or products at the temperatures at which the reactions are carried out, e.g. , temperatures which can range from the solvent's freezing temperature to the solvent's boiling temperature. A given reaction can be carried out in one solvent or a mixture of more than one solvent. Depending on the particular reaction step, suitable solvents for a particular reaction step can be selected by the skilled artisan.
Preparation of compounds of the invention can involve the protection and
deprotection of various chemical groups. The need for protection and deprotection, and the selection of appropriate protecting groups, can be readily determined by one skilled in the art. The chemistry of protecting groups is described, e.g., in Kocienski, Protecting Groups, (Thieme, 2007); Robertson, Protecting Group Chemistry, (Oxford University Press, 2000); Smith et al., March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th Ed. (Wiley, 2007); Peturssion et al, "Protecting Groups in Carbohydrate Chemistry," J.
Chem. Educ, 1997, 74(\ 1), 1297; and Wuts et al., Protective Groups in Organic Synthesis, 4th Ed., (Wiley, 2006).
Reactions can be monitored according to any suitable method known in the art. For example, product formation can be monitored by spectroscopic means, such as nuclear magnetic resonance spectroscopy (e.g. , ¾ or 1 C), infrared spectroscopy, spectrophotometry (e.g. , UV -visible), mass spectrometry or by chromatographic methods such as high performance liquid chromatography (HPLC) or thin layer chromatography (TLC).
The Schemes below provide general guidance in connection with preparing the compounds of the invention. One skilled in the art would understand that the preparations shown in the Schemes can be modified or optimized using general knowledge of organic chemistry to prepare various compounds of the invention.
Compounds of formula (Γ) or (I) can be prepared, e.g., using a process as illustrated in Schemes 1-5.
Scheme 1
4
The compounds of Formula 4 can be prepared according to Scheme 1. The halo group (e.g., Hal1 = CI, Br, I) of biphenyl compounds 1 can be converted to the boronic esters 2 under standard conditions [e.g., in the presence of bis(pinacolato)diboron and a palladium catalyst, such as, tetrakis(triphenylphosphine) palladium(O), palladium(II) acetate]. Boronates 2 can react with the heteroaryl halides 3 (e.g., Hal2 = CI, Br, I) under standard Suzuki coupling condition (e.g., in the presence of a palladium catalyst and a suitable base) to give the N-bridged bicyclic compounds 4.
Scheme 2
10
The N-bridged heteroaryl compounds of Formula 10 can also be prepared according to Scheme 2. Briefly, the halo group of the substituted phenyl ethanone 5 (e.g., Hal3 = CI, Br or I) can be coupled with substituted phenyl boronic esters 6 under standard Suzuki coupling condition (e.g., in the presence of a palladium catalyst and a suitable base) to produce the biphenyl compounds 7. Bromination of the methyl ketones 7 using brominating reagents including, but not limited, to copper(II) bromide can generate a-bromo ketones 8.
Condensation of a-bromo ketones 8 and amino heterocycles 9 in polar solvents (e.g., isopropanol) under heating can afford the N-bridged heteroaryl compounds 10.
9 11 1 2 1 3
The triazole-containing heteroaryl halides of formula 13 (Hal4 is a halide such as Br or I) can be formed according to Scheme 3. Coupling of amino heterocycles 9 with ethoxycarbonyl isothiocyanate 11, followed by treatment with hydroxylamine hydrochloride and diisopropylethylamine (DIPEA) can form N-bridged heteroaryl amines 12. Conversion of the primary amine in 12 to halides can be achieved under Sandmeyer reaction conditions [i.e. in the presence of tert-butyl nitrite and a halogen sources such as CuBn or b] to generate the N-bridged heteraryl halides 13.
Scheme 4
The N-bridged heteroaryl compounds of Formula 18 can be prepared according to Scheme 4, starting from compounds of formula 14 or 15 which can be prepared according to procedures as described in Scheme 1 or 2. Heteroaryl esters 14 can be reduced to aldehydes 16 via a sequence of reduction (e.g., L1AIH4 or L1BH4 as reducing reagents) and oxidation (e.g., Dess-Martin periodinane as oxidant). The aldehydes 16 might also be formed via direct reduction of esters 14 under mild reducing conditions [e.g., using diisobutylaluminium hydride (DIBAL) as the reducing agent at low temperature]. Alternatively, aldehydes 16 can be formed through a direct reduction of nitriles 15 with DIBAL as the reducing reagent at low temperature. Then the aldehydes 16 can react with amines 17 of formula HNRCRC under standard reductive amination conditions (e.g., sodium triacetoxyborohydride or sodium cyanoborohydride as reducing reagents) to generate compounds of formula 18.
Scheme 5
19 20
16
Alternatively, aldehydes 16 can also be prepared using procedures as shown in
Scheme 5, starting from heteroaryl halides 19 (e.g., Hal5 = CI, Br, I) which can be synthesized according to procedures as described in Scheme 1 or 2. The halide in compounds 19 can be converted to vinyl group to give olefins 20, under standard Suzuki coupling condition (e.g., with vinylboronic acid pinaco ester in the presence of a palladium catalyst and a suitable base). The vinyl group in compounds 20 can be oxidatively cleaved by NalCn in the presence of catalytic amount of OsCn to form aldehydes 16.
21 22
23 25
Compounds of Formula 25 can be prepared using procedures as outlined in Scheme 6. The halo group (e.g., Hal2 = CI, Br, I) of heteroaryl compounds 3 can be converted to the boronic esters 21 under standard conditions [e.g., in the presence of bis(pinacolato)diboron and a palladium catalyst, such as, tetrakis(triphenylphosphine) palladium(O), palladium(II)
acetate]. Selective coupling of boronates 21 with aryl halides 22 (e.g., Hal6 = CI, Br, I) under suitable Suzuki coupling condition (e.g., in the presence of a palladium catalyst and a suitable base) can give the N-bridged bicyclic compounds 23. The halide (e.g., Hal7 = CI, Br, I) in compound 23 can be coupled to compounds of formula 24, in which M is a boronic acid, boronic ester or an appropriately substituted metal [e.g., M is B(OR)2, Sn(Alkyl)4, or Zn- Hal], under Suzuki coupling conditions (e.g., in the presence of a palladium catalyst and a suitable base) or Stille coupling conditions (e.g., in the presence of a palladium catalyst), or Negishi coupling conditions (e.g., in the presence of a palladium catalyst) to give derivatives of Formula 25. Alternatively, compound 24 can be a cyclic amine (where M is H and attached to an amine nitrogen in ring Cy) and the coupling of aryl halide 23 with the cyclic amine 24 can be performed under Buchwald animation conditions (e.g., in the presence of a palladium catalyst and a base such as sodium tert-butoxide).
Scheme 7
Alternatively, Compounds of Formula 25 can be prepared using the procedures as outlined in Scheme 7. Selective coupling of aryl halides 26 with compounds of formula 24 [M is a boronic acid, boronic ester or an appropriately substituted metal, e.g., M is B(OR)2, Sn(Alkyl)4, or Zn-Hal] can be achieved under suitable Suzuki coupling, Stille coupling or Negishi coupling conditions to give compounds of Formula 27. If compound 24 is a cyclic amine (e.g., M is H and attached to nitrogen in ring Cy), the coupling can be achieved under Buchwald animation conditions. Conversion of compound 27 to the final product 25 can be achieved using similar conditions as described in Scheme 1. III. Uses of the Compounds
Compounds of the present disclosure can inhibit the activity of PD-1/PD-L1 protein/protein interaction and, thus, are useful in treating diseases and disorders associated with activity of PD-1 and the diseases and disorders associated with PD-L1 including its interaction with other proteins such as PD-1 and B7-1 (CD80). In certain embodiments, the compounds of the present disclosure, or pharmaceutically acceptable salts or stereoisomers
thereof, are useful for therapeutic administration to enhance immunity in cancer or chronic infection, including enhancement of response to vaccination. In some embodiments, the present disclosure provides a method for inhibiting the PD-1/PD-L1 protein/protein interaction. The method includes administering to an individual or a patient a compound of Formula (Γ) or (I) or of any of the formulas as described herein, or of a compound as recited in any of the claims and described herein, or a pharmaceutically acceptable salt or a stereoisomer thereof. The compounds of the present disclosure can be used alone, in combination with other agents or therapies or as an adjuvant or neoadjuvant for the treatment of diseases or disorders, including cancer or infection diseases. For the uses described herein, any of the compounds of the disclosure, including any of the embodiments thereof, may be used.
The compounds of the present disclosure inhibit the PD-1/PD-L1 protein/protein interaction, resulting in a PD-1 pathway blockade. The blockade of PD-1 can enhance the immune response to cancerous cells and infectious diseases in mammals, including humans. In some embodiments, the present disclosure provides treatment of an individual or a patient in vivo using a compound of Formula (Γ) or (I) or a salt or stereoisomer thereof such that growth of cancerous tumors is inhibited. A compound of Formula (Γ) or (I) or of any of the formulas as described herein, or a compound as recited in any of the claims and described herein, or a salt or stereoisomer thereof, can be used to inhibit the growth of cancerous tumors. Alternatively, a compound of Formula (Γ) or (I) or of any of the formulas as described herein, or a compound as recited in any of the claims and described herein, or a salt or stereoisomer thereof, can be used in conjunction with other agents or standard cancer treatments, as described below. In one embodiment, the present disclosure provides a method for inhibiting growth of tumor cells in vitro. The method includes contacting the tumor cells in vitro with a compound of Formula (Γ) or (I) or of any of the formulas as described herein, or of a compound as recited in any of the claims and described herein, or of a salt or stereoisomer thereof. In another embodiment, the present disclosure provides a method for inhibiting growth of tumor cells in an individual or a patient. The method includes administering to the individual or patient in need thereof a therapeutically effective amount of a compound of Formula (Γ) or (I) or of any of the formulas as described herein, or of a compound as recited in any of the claims and described herein, or a salt or a stereoisomer thereof.
In some embodiments, provided herein is a method for treating cancer. The method includes administering to a patient in need thereof, a therapeutically effective amount of a
compound of Formula (Γ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a salt thereof. Examples of cancers include those whose growth may be inhibited using compounds of the disclosure and cancers typically responsive to immunotherapy.
Examples of cancers that are treatable using the compounds of the present disclosure include, but are not limited to, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, endometrial cancer, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin's Disease, non-Hodgkin's lymphoma, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, chronic or acute leukemias including acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, chronic lymphocytic leukemia, solid tumors of childhood, lymphocytic lymphoma, cancer of the bladder, cancer of the kidney or urethra, carcinoma of the renal pelvis, neoplasm of the central nervous system (CNS), primary CNS lymphoma, tumor angiogenesis, spinal axis tumor, brain stem glioma, pituitary adenoma, Kaposi's sarcoma, epidermoid cancer, squamous cell cancer, T -cell lymphoma, environmentally induced cancers including those induced by asbestos, and combinations of said cancers. The compounds of the present disclosure are also useful for the treatment of metastatic cancers, especially metastatic cancers that express PD-L1.
In some embodiments, cancers treatable with compounds of the present disclosure include melanoma (e.g., metastatic malignant melanoma), renal cancer (e.g. clear cell carcinoma), prostate cancer (e.g. hormone refractory prostate adenocarcinoma), breast cancer, colon cancer and lung cancer (e.g. non-small cell lung cancer). Additionally, the disclosure includes refractory or recurrent malignancies whose growth may be inhibited using the compounds of the disclosure.
In some embodiments, cancers that are treatable using the compounds of the present disclosure include, but are not limited to, solid tumors (e.g. , prostate cancer, colon cancer, esophageal cancer, endometrial cancer, ovarian cancer, uterine cancer, renal cancer, hepatic cancer, pancreatic cancer, gastric cancer, breast cancer, lung cancer, cancers of the head and neck, thyroid cancer, glioblastoma, sarcoma, bladder cancer, etc.), hematological cancers (e.g. , lymphoma, leukemia such as acute lymphoblastic leukemia (ALL), acute myelogenous
leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), DLBCL, mantle cell lymphoma, Non-Hodgkin lymphoma (including relapsed or refractory NHL and recurrent follicular), Hodgkin lymphoma or multiple myeloma) and combinations of said cancers.
PD-1 pathway blockade with compounds of the present disclosure can also be used for treating infections such as viral, bacteria, fungus and parasite infections. The present disclosure provides a method for treating infections such as viral infections. The method includes administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula (Γ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, a salt thereof. Examples of viruses causing infections treatable by methods of the present disclosure include, but are not limit to, human immunodeficiency virus, human papillomavirus, influenza, hepatitis A, B, C or D viruses, adenovirus, poxvirus, herpes simpl ex viruses, human cytomegalovirus, severe acute respirator}' syndrome virus, eboia virus, and measles virus. In some embodiments, viruses causing infections treatable by methods of the present disclosure include, but are not limit to, hepatitis (A, B, or C), herpes virus (e.g., VZV, HSV-1, HAV-6, HSV-II, and CMV, Epstein Barr virus), adenovirus, influenza virus, fiaviviruses, echovirus, rhinovirus, coxsackie virus, cornovirus, respiratory syncytial virus, mumpsvirus, rotavirus, measles virus, rubella virus, parvovirus, vaccinia virus, HTLV virus, dengue virus, papillomavirus, molluscum virus, poliovirus, rabies virus, JC virus and arboviral encephalitis virus.
The present disclosure provides a method for treating bacterial infections. The method includes administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula (Γ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a salt thereof. Non-limiting examples of pathogenic bacteria causing infections treatable by methods of the disclosure include chlamydia, rickettsial bacteria, mycobacteria, staphylococci, streptococci, pneumonococci, meningococci and conococci, klebsiella, proteus, serratia, pseudomonas, legionella, diphtheria, salmonella, bacilli, cholera, tetanus, botulism, anthrax, plague, leptospirosis, and Lyme's disease bacteria.
The present disclosure provides a method for treating fungus infections. The method includes administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula (Γ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a salt thereof. Non-limiting examples of pathogenic fungi causing infections treatable by methods of the disclosure include Candida
(albicans, krusei, glabrata, tropicalis, etc.), Cryptococcus neoformans, Aspergillus
(fumigatus, niger, etc.), Genus Mucorales (mucor, absidia, rhizophus), Sporothrix schenkii, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Coccidioides immitis and
Histoplasma capsulatum.
The present disclosure provides a method for treating parasite infections. The method includes administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula (Γ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a salt thereof. Non-limiting examples of pathogenic parasites causing infections treatable by methods of the disclosure include Entamoeba histolytica, Balantidium coli, Naegleriafowleri, Acanthamoeba sp., Giardia lambia, Cryptosporidium sp., Pneumocystis carinii, Plasmodium vivax, Babesia microti, Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondi, and Nippostrongylus brasiliensis.
The terms "individual" or "patient," used interchangeably, refer to any animal, including mammals, preferably mice, rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, or primates, and most preferably humans.
The phrase "therapeutically effective amount" refers to the amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue, system, animal, individual or human that is being sought by a researcher, veterinarian, medical doctor or other clinician.
As used herein, the term "treating" or "treatment" refers to one or more of (1) inhibiting the disease; e.g. , inhibiting a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e. , arresting further development of the pathology and/or symptomatology); and (2) ameliorating the disease; e.g., ameliorating a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e. , reversing the pathology and/or symptomatology) such as decreasing the severity of disease.
In some embodiments, the compounds of the invention are useful in preventing or reducing the risk of developing any of the diseases referred to herein; e.g. , preventing or reducing the risk of developing a disease, condition or disorder in an individual who may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of the disease.
Combination Therapies
Cancer cell growth and survival can be impacted by multiple signaling pathways. Thus, it is useful to combine different enzyme/protein/receptor inhibitors, exhibiting different preferences in the targets which they modulate the activities of, to treat such conditions. Targeting more than one signaling pathway (or more than one biological molecule involved in a given signaling pathway) may reduce the likelihood of drug-resistance arising in a cell population, and/or reduce the toxicity of treatment.
The compounds of the present disclosure can be used in combination with one or more other enzyme/protein/receptor inhibitors for the treatment of diseases, such as cancer or infections. Examples of cancers include solid tumors and liquid tumors, such as blood cancers. Examples of infections include viral infections, bacterial infections, fungus infections or parasite infections. For example, the compounds of the present disclosure can be combined with one or more inhibitors of the following kinases for the treatment of cancer: Aktl, Akt2, Akt3, TGF-PR, PKA, PKG, PKC, CaM-kinase, phosphorylase kinase, MEKK, ERK, MAPK, mTOR, EGFR, HER2, HER3, HER4, INS-R, IGF-1R, IR-R, PDGFaR, PDGFPR, CSFIR, KIT, FLK-II, KDR/FLK-1, FLK-4, flt-1 , FGFRl , FGFR2, FGFR3, FGFR4, c-Met, Ron, Sea, TRKA, TRKB, TRKC, FLT3, VEGFR/Flt2, Flt4, EphAl , EphA2, EphA3, EphB2, EphB4, Tie2, Src, Fyn, Lck, Fgr, Btk, Fak, SYK, FRK, JAK, ABL, ALK and B-Raf. In some embodiments, the compounds of the present disclosure can be combined with one or more of the following inhibitors for the treatment of cancer or infections. Non- limiting examples of inhibitors that can be combined with the compounds of the present disclosure for treatment of cancer and infections include an FGFR inhibitor (FGFRl, FGFR2, FGFR3 or FGFR4, e.g., INCB54828, INCB62079 and INCB63904), a JAK inhibitor (JAK1 and/or JAK2, e.g., ruxolitinib, baricitinib or INCB39110), an IDO inhibitor (e.g., epacadostat and NLG919), an LSD1 inhibitor (e.g., INCB59872 and INCB60003), a TDO inhibitor, a PI3K-delta inhibitor, a PI3K-gamma inhibitor such as PI3K-gamma selective inhibitor (e.g., INCB50797), a Pirn inhibitor, a CSFIR inhibitor, a TAM receptor tyrosine kinases (Tyro-3, Axl, and Mer), an angiogenesis inhibitor, an interleukin receptor inhibitor, bromo and extra terminal family members inhibitors (for example, bromodomain inhibitors or BET inhibitors such as INCB54329 and INCB57643) and an adenosine receptor antagonist or combinations thereof.
Compounds of the present disclosure can be used in combination with one or more immune checkpoint inhibitors. Exemplary immune checkpoint inhibitors include inhibitors
against immune checkpoint molecules such as CD27, CD28, CD40, CD122, CD96, CD73, CD47, OX40, GITR, CSF1R, JAK, PI3K delta, PI3K gamma, TAM, arginase, CD137 (also known as 4-1BB), ICOS, A2AR, B7-H3, B7-H4, BTLA, CTLA-4, LAG3, TIM3, VISTA, PD-1 , PD-L1 and PD-L2. In some embodiments, the immune checkpoint molecule is a stimulatory checkpoint molecule selected from CD27, CD28, CD40, ICOS, OX40, GITR and CD137. In some embodiments, the immune checkpoint molecule is an inhibitory checkpoint molecule selected from A2AR, B7-H3, B7-H4, BTLA, CTLA-4, IDO, KIR, LAG3, PD-1, TIM3, and VISTA. In some embodiments, the compounds provided herein can be used in combination with one or more agents selected from KIR inhibitors, TIGIT inhibitors, LAIRl inhibitors, CD 160 inhibitors, 2B4 inhibitors and TGFR beta inhibitors.
In some embodiments, the inhibitor of an immune checkpoint molecule is anti-PDl antibody, anti-PD-Ll antibody, or anti-CTLA-4 antibody.
In some embodiments, the inhibitor of an immune checkpoint molecule is an inhibitor of PD-1 , e.g., an anti-PD-1 monoclonal antibody. In some embodiments, the anti-PD-1 monoclonal antibody is nivolumab, pembrolizumab (also known as MK-3475), pidilizumab, SHR-1210, PDR001 , or AMP-224. In some embodiments, the anti-PD-1 monoclonal antibody is nivolumab or pembrolizumab. In some embodiments, the anti-PDl antibody is pembrolizumab. In some embodiments, the anti PD-1 antibody is SHR-1210.
In some embodiments, the inhibitor of an immune checkpoint molecule is an inhibitor of PD-L1 , e.g., an anti-PD-Ll monoclonal antibody. In some embodiments, the anti-PD-Ll monoclonal antibody is BMS-935559, MEDI4736, MPDL3280A (also known as RG7446), or MSB0010718C. In some embodiments, the anti-PD-Ll monoclonal antibody is
MPDL3280A or MEDI4736.
In some embodiments, the inhibitor of an immune checkpoint molecule is an inhibitor of CTLA-4, e.g., an anti-CTLA-4 antibody. In some embodiments, the anti-CTLA-4 antibody is ipilimumab.
In some embodiments, the inhibitor of an immune checkpoint molecule is an inhibitor of LAG3, e.g., an anti-LAG3 antibody. In some embodiments, the anti-LAG3 antibody is BMS-986016 or LAG525.
In some embodiments, the inhibitor of an immune checkpoint molecule is an inhibitor of GITR, e.g., an anti-GITR antibody. In some embodiments, the anti-GITR antibody is TRX518 or MK-4166.
In some embodiments, the inhibitor of an immune checkpoint molecule is an inhibitor of OX40, e.g., an anti-OX40 antibody or OX40L fusion protein. In some embodiments, the
anti-OX40 antibody is MEDI0562. In some embodiments, the OX40L fusion protein is MEDI6383.
Compounds of the present disclosure can be used in combination with one or more agents for the treatment of diseases such as cancer. In some embodiments, the agent is an alkylating agent, a proteasome inhibitor, a corticosteroid, or an immunomodulatory agent. Examples of an alkylating agent include cyclophosphamide (CY), melphalan (MEL), and bendamustine. In some embodiments, the proteasome inhibitor is carfilzomib. In some embodiments, the corticosteroid is dexamethasone (DEX). In some embodiments, the immunomodulatory agent is lenalidomide (LEN) or pomalidomide (POM).
The compounds of the present disclosure can further be used in combination with other methods of treating cancers, for example by chemotherapy, irradiation therapy, tumor- targeted therapy, adjuvant therapy, immunotherapy or surgery. Examples of immunotherapy include cytokine treatment (e.g., interferons, GM-CSF, G-CSF, IL-2), CRS-207 immunotherapy, cancer vaccine, monoclonal antibody, adoptive T cell transfer, oncolytic virotherapy and immunomodulating small molecules, including thalidomide or JAK1/2 inhibitor and the like. The compounds can be administered in combination with one or more anti-cancer drugs, such as a chemotherapeutics. Example chemotherapeutics include any of: abarelix, aldesleukin, alemtuzumab, alitretinoin, allopurinol, altretamine, anastrozole, arsenic trioxide,
asparaginase, azacitidine, bevacizumab, bexarotene, baricitinib, bleomycin, bortezombi, bortezomib, busulfan intravenous, busulfan oral, calusterone, capecitabine, carboplatin, carmustine, cetuximab, chlorambucil, cisplatin, cladribine, clofarabine, cyclophosphamide, cytarabine, dacarbazine, dactinomycin, dalteparin sodium, dasatinib, daunorubicin, decitabine, denileukin, denileukin diftitox, dexrazoxane, docetaxel, doxorubicin, dromostanolone propionate, eculizumab, epirubicin, erlotinib, estramustine, etoposide phosphate, etoposide, exemestane, fentanyl citrate, filgrastim, floxuridine, fludarabine, fluorouracil, fulvestrant, gefitinib, gemcitabine, gemtuzumab ozogamicin, goserelin acetate, histrelin acetate, ibritumomab tiuxetan, idarubicin, ifosfamide, imatinib mesylate, interferon alfa 2a, irinotecan, lapatinib ditosylate, lenalidomide, letrozole, leucovorin, leuprolide acetate, levamisole, lomustine, meclorethamine, megestrol acetate, melphalan,
mercaptopurine, methotrexate, methoxsalen, mitomycin C, mitotane, mitoxantrone, nandrolone phenpropionate, nelarabine, nofetumomab, oxaliplatin, paclitaxel, pamidronate, panitumumab, pegaspargase, pegfilgrastim, pemetrexed disodium, pentostatin, pipobroman, plicamycin, procarbazine, quinacrine, rasburicase, rituximab, ruxolitinib, sorafenib, streptozocin, sunitinib, sunitinib maleate, tamoxifen, temozolomide, teniposide, testolactone,
thalidomide, thioguanine, thiotepa, topotecan, toremifene, tositumomab, trastuzumab, tretinoin, uracil mustard, valrubicin, vinblastine, vincristine, vinorelbine, vorinostat and zoledronate.
Other anti-cancer agent(s) include antibody therapeutics such as trastuzumab (Herceptin), antibodies to costimulatory molecules such as CTLA-4 (e.g., ipilimumab), 4- 1BB, antibodies to PD-1 and PD-L1 , or antibodies to cytokines (IL-10, TGF-β, etc.).
Examples of antibodies to PD-1 and/or PD-L1 that can be combined with compounds of the present disclosure for the treatment of cancer or infections such as viral, bacteria, fungus and parasite infections include, but are not limited to, nivolumab, pembrolizumab, MPDL3280A, MEDI-4736 and SHR-1210.
The compounds of the present disclosure can further be used in combination with one or more anti-inflammatory agents, steroids, immunosuppressants or therapeutic antibodies.
The compounds of Formula (Γ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or salts thereof can be combined with another immunogenic agent, such as cancerous cells, purified tumor antigens (including recombinant proteins, peptides, and carbohydrate molecules), cells, and cells transfected with genes encoding immune stimulating cytokines. Non-limiting examples of tumor vaccines that can be used include peptides of melanoma antigens, such as peptides of gplOO, MAGE antigens, Trp-2, MARTI and/or tyrosinase, or tumor cells transfected to express the cytokine GM-CSF.
The compounds of Formula (Γ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or salts thereof can be used in combination with a vaccination protocol for the treatment of cancer. In some embodiments, the tumor cells are transduced to express GM-CSF. In some embodiments, tumor vaccines include the proteins from viruses implicated in human cancers such as Human Papilloma Viruses (HPV), Hepatitis Viruses (HBV and HCV) and Kaposi's Herpes Sarcoma Virus (KHSV). In some embodiments, the compounds of the present disclosure can be used in combination with tumor specific antigen such as heat shock proteins isolated from tumor tissue itself. In some embodiments, the compounds of Formula (Γ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or salts thereof can be combined with dendritic cells immunization to activate potent anti-tumor responses.
The compounds of the present disclosure can be used in combination with bispecific macrocyclic peptides that target Fe alpha or Fe gamma receptor-expressing effectors cells to
tumor cells. The compounds of the present disclosure can also be combined with macrocyclic peptides that activate host immune responsiveness.
The compounds of the present disclosure can be used in combination with bone marrow transplant for the treatment of a variety of tumors of hematopoietic origin.
The compounds of Formula (Γ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or salts thereof can be used in combination with vaccines, to stimulate the immune response to pathogens, toxins, and self antigens. Examples of pathogens for which this therapeutic approach may be particularly useful, include pathogens for which there is currently no effective vaccine, or pathogens for which conventional vaccines are less than completely effective. These include, but are not limited to, HIV, Hepatitis (A, B, & C), Influenza, Herpes, Giardia, Malaria, Leishmania, Staphylococcus aureus, Pseudomonas Aeruginosa.
Viruses causing infections treatable by methods of the present disclosure include, but are not limit to human papillomavirus, influenza, hepatitis A, B, C or D viruses, adenovirus, poxvirus, herpes simplex viruses, human cytomegalovirus, severe acute respiratory syndrome virus, ebola virus, measles virus, herpes virus (e.g., VZV, HSV-1, HAV-6, HSV-II, and CMV, Epstein Barr virus), fiaviviruses, echovirus, rhinovirus, coxsackie virus, cornovirus, respiratory syncytial virus, mumpsvirus, rotavirus, measles virus, rubella virus, parvovirus, vaccinia virus, HTLV virus, dengue virus, papillomavirus, molluscum virus, poliovirus, rabies virus, JC virus and arboviral encephalitis virus.
Pathogenic bacteria causing infections treatable by methods of the disclosure include, but are not limited to, chlamydia, rickettsial bacteria, mycobacteria, staphylococci, streptococci, pneumonococci, meningococci and conococci, klebsiella, proteus, serratia, pseudomonas, legionella, diphtheria, salmonella, bacilli, cholera, tetanus, botulism, anthrax, plague, leptospirosis, and Lyme's disease bacteria.
Pathogenic fungi causing infections treatable by methods of the disclosure include, but are not limited to, Candida (albicans, krusei, glabrata, tropicalis, etc.), Cryptococcus neoformans, Aspergillus (fumigatus, niger, etc.), Genus Mucorales (mucor, absidia, rhizophus), Sporothrix schenkii, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Coccidioides immitis and Histoplasma capsulatum.
Pathogenic parasites causing infections treatable by methods of the disclosure include, but are not limited to, Entamoeba histolytica, Balantidium coli, Naegleriafowleri,
Acanthamoeba sp., Giardia lambia, Cryptosporidium sp., Pneumocystis carinii, Plasmodium
vivax, Babesia microti, Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondi, and Nippostrongylus brasiliensis.
When more than one pharmaceutical agent is administered to a patient, they can be administered simultaneously, separately, sequentially, or in combination (e.g. , for more than two agents).
IV. Formulation, Dosage Forms and Administration
When employed as pharmaceuticals, the compounds of the present disclosure can be administered in the form of pharmaceutical compositions. Thus the present disclosure provides a composition comprising a compound of Formula (Γ) or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a pharmaceutically acceptable salt thereof, or any of the embodiments thereof, and at least one pharmaceutically acceptable carrier or excipient. These compositions can be prepared in a manner well known in the pharmaceutical art, and can be administered by a variety of routes, depending upon whether local or systemic treatment is indicated and upon the area to be treated. Administration may be topical (including transdermal, epidermal, ophthalmic and to mucous membranes including intranasal, vaginal and rectal delivery), pulmonary (e.g. , by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal or intranasal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal intramuscular or injection or infusion; or intracranial, e.g. , intrathecal or intraventricular, administration. Parenteral administration can be in the form of a single bolus dose, or may be, e.g. , by a continuous perfusion pump. Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.
Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
This invention also includes pharmaceutical compositions which contain, as the active ingredient, the compound of the present disclosure or a pharmaceutically acceptable salt thereof, in combination with one or more pharmaceutically acceptable carriers or excipients. In some embodiments, the composition is suitable for topical administration. In making the compositions of the invention, the active ingredient is typically mixed with an excipient, diluted by an excipient or enclosed within such a carrier in the form of, e.g. , a capsule, sachet, paper, or other container. When the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient. Thus,
the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, e.g. , up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions and sterile packaged powders.
In preparing a formulation, the active compound can be milled to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it can be milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size can be adjusted by milling to provide a substantially uniform distribution in the formulation, e.g. , about 40 mesh.
The compounds of the invention may be milled using known milling procedures such as wet milling to obtain a particle size appropriate for tablet formation and for other formulation types. Finely divided (nanoparticulate) preparations of the compounds of the invention can be prepared by processes known in the art see, e.g., WO 2002/000196.
Some examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup and methyl cellulose. The formulations can additionally include: lubricating agents such as talc, magnesium stearate and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents. The compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
In some embodiments, the pharmaceutical composition comprises silicified microcrystalline cellulose (SMCC) and at least one compound described herein, or a pharmaceutically acceptable salt thereof. In some embodiments, the silicified
microcrystalline cellulose comprises about 98% microcrystalline cellulose and about 2% silicon dioxide w/w.
In some embodiments, the composition is a sustained release composition comprising at least one compound described herein, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier or excipient. In some embodiments, the composition comprises at least one compound described herein, or a pharmaceutically acceptable salt thereof, and at least one component selected from microcrystalline cellulose, lactose monohydrate, hydroxypropyl methylcellulose and polyethylene oxide. In some embodiments, the composition comprises at least one compound described herein, or a
pharmaceutically acceptable salt thereof, and microcrystalline cellulose, lactose monohydrate and hydroxypropyl methylcellulose. In some embodiments, the composition comprises at least one compound described herein, or a pharmaceutically acceptable salt thereof, and microcrystalline cellulose, lactose monohydrate and polyethylene oxide. In some
embodiments, the composition further comprises magnesium stearate or silicon dioxide. In some embodiments, the microcrystalline cellulose is Avicel PH102™. In some embodiments, the lactose monohydrate is Fast-flo 316™. In some embodiments, the hydroxypropyl methylcellulose is hydroxypropyl methylcellulose 2208 K4M (e.g. , Methocel K4 M
Premier™) and/or hydroxypropyl methylcellulose 2208 K100LV (e.g., Methocel K00LV™). In some embodiments, the polyethylene oxide is polyethylene oxide WSR 1105 (e.g. , Poly ox WSR 1105™).
In some embodiments, a wet granulation process is used to produce the composition. In some embodiments, a dry granulation process is used to produce the composition.
The compositions can be formulated in a unit dosage form, each dosage containing from about 5 to about 1,000 mg (1 g), more usually about 100 mg to about 500 mg, of the active ingredient. In some embodiments, each dosage contains about 10 mg of the active ingredient. In some embodiments, each dosage contains about 50 mg of the active ingredient. In some embodiments, each dosage contains about 25 mg of the active ingredient. The term "unit dosage forms" refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable
pharmaceutical excipient.
The components used to formulate the pharmaceutical compositions are of high purity and are substantially free of potentially harmful contaminants (e.g., at least National Food grade, generally at least analytical grade, and more typically at least pharmaceutical grade). Particularly for human consumption, the composition is preferably manufactured or formulated under Good Manufacturing Practice standards as defined in the applicable regulations of the U.S. Food and Drug Administration. For example, suitable formulations may be sterile and/or substantially isotonic and/or in full compliance with all Good
Manufacturing Practice regulations of the U.S. Food and Drug Administration.
The active compound may be effective over a wide dosage range and is generally administered in a therapeutically effective amount. It will be understood, however, that the amount of the compound actually administered will usually be determined by a physician, according to the relevant circumstances, including the condition to be treated, the chosen
route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms and the like.
The therapeutic dosage of a compound of the present invention can vary according to, e.g., the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the patient, and the judgment of the prescribing physician. The proportion or concentration of a compound of the invention in a
pharmaceutical composition can vary depending upon a number of factors including dosage, chemical characteristics (e.g. , hydrophobicity), and the route of administration. For example, the compounds of the invention can be provided in an aqueous physiological buffer solution containing about 0.1 to about 10% w/v of the compound for parenteral administration. Some typical dose ranges are from about 1 μg/kg to about 1 g/kg of body weight per day. In some embodiments, the dose range is from about 0.01 mg/kg to about 100 mg/kg of body weight per day. The dosage is likely to depend on such variables as the type and extent of progression of the disease or disorder, the overall health status of the particular patient, the relative biological efficacy of the compound selected, formulation of the excipient, and its route of administration. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.
For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention. When referring to these preformulation compositions as homogeneous, the active ingredient is typically dispersed evenly throughout the composition so that the composition can be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. This solid
preformulation is then subdivided into unit dosage forms of the type described above containing from, e.g. , about 0.1 to about 1000 mg of the active ingredient of the present invention.
The tablets or pills of the present invention can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and
mixtures of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.
The liquid forms in which the compounds and compositions of the present invention can be incorporated for administration orally or by injection include aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.
Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra. In some embodiments, the compositions are administered by the oral or nasal respiratory route for local or systemic effect. Compositions can be nebulized by use of inert gases. Nebulized solutions may be breathed directly from the nebulizing device or the nebulizing device can be attached to a face mask, tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions can be administered orally or nasally from devices which deliver the formulation in an appropriate manner.
Topical formulations can contain one or more conventional carriers. In some embodiments, ointments can contain water and one or more hydrophobic carriers selected from, e.g., liquid paraffin, poly oxy ethylene alkyl ether, propylene glycol, white Vaseline, and the like. Carrier compositions of creams can be based on water in combination with glycerol and one or more other components, e.g., glycerinemonostearate, PEG-glycerinemonostearate and cetylstearyl alcohol. Gels can be formulated using isopropyl alcohol and water, suitably in combination with other components such as, e.g., glycerol, hydroxy ethyl cellulose, and the like. In some embodiments, topical formulations contain at least about 0.1, at least about 0.25, at least about 0.5, at least about 1, at least about 2 or at least about 5 wt % of the compound of the invention. The topical formulations can be suitably packaged in tubes of, e.g., 100 g which are optionally associated with instructions for the treatment of the select indication, e.g. , psoriasis or other skin condition.
The amount of compound or composition administered to a patient will vary depending upon what is being administered, the purpose of the administration, such as prophylaxis or therapy, the state of the patient, the manner of administration and the like. In therapeutic applications, compositions can be administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. Effective doses will depend on the disease condition being
treated as well as by the judgment of the attending clinician depending upon factors such as the severity of the disease, the age, weight and general condition of the patient and the like.
The compositions administered to a patient can be in the form of pharmaceutical compositions described above. These compositions can be sterilized by conventional sterilization techniques, or may be sterile filtered. Aqueous solutions can be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration. The pH of the compound preparations typically will be between 3 and 11, more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers or stabilizers will result in the formation of pharmaceutical salts.
The therapeutic dosage of a compound of the present invention can vary according to, e.g., the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the patient, and the judgment of the prescribing physician. The proportion or concentration of a compound of the invention in a
pharmaceutical composition can vary depending upon a number of factors including dosage, chemical characteristics (e.g. , hydrophobicity), and the route of administration. For example, the compounds of the invention can be provided in an aqueous physiological buffer solution containing about 0.1 to about 10% w/v of the compound for parenteral administration. Some typical dose ranges are from about 1 μg/kg to about 1 g/kg of body weight per day. In some embodiments, the dose range is from about 0.01 mg/kg to about 100 mg/kg of body weight per day. The dosage is likely to depend on such variables as the type and extent of progression of the disease or disorder, the overall health status of the particular patient, the relative biological efficacy of the compound selected, formulation of the excipient, and its route of administration. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.
V. Labeled Compounds and Assay Methods
The compounds of the present disclosure can further be useful in investigations of biological processes in normal and abnormal tissues. Thus, another aspect of the present invention relates to labeled compounds of the invention (radio-labeled, fluorescent-labeled, etc.) that would be useful not only in imaging techniques but also in assays, both in vitro and in vivo, for localizing and quantitating PD-1 or PD-L1 protein in tissue samples, including human, and for identifying PD-L1 ligands by inhibition binding of a labeled compound.
Accordingly, the present invention includes PD-1/PD-L1 binding assays that contain such labeled compounds.
The present invention further includes isotopically-substituted compounds of the disclosure. An "isotopically-substituted" compound is a compound of the invention where one or more atoms are replaced or substituted by an atom having an atomic mass or mass number different from the atomic mass or mass number typically found in nature (i.e. , naturally occurring). It is to be understood that a "radio-labeled" compound is a compound that has incorporated at least one isotope that is radioactive (e.g., radionuclide). Suitable radionuclides that may be incorporated in compounds of the present invention include but are not limited to ¾ (also written as T for tritium), nC, 1 C, 14C, 1 N, 15N, 150, 170, 180, 18F, 5S, 6C1, 82Br, 75Br, 76Br, 77Br, 12 I, 124I, 125I and 1 XI. The radionuclide that is incorporated in the instant radio-labeled compounds will depend on the specific application of that radio-labeled compound. For example, for in vitro PD-Ll protein labeling and competition assays, compounds that incorporate H, 14C, 82Br, 125I, 1 11, 5S or will generally be most useful. For radio-imaging applications nC, 18F, 125I, 12 I, 124I, 1 XI, 75Br, 76Br or 77Br will generally be most useful. In some embodiments the radionuclide is selected from the group consisting of H, 14C, 1251, 5S and 82Br. Synthetic methods for incorporating radio-isotopes into organic compounds are known in the art.
Specifically, a labeled compound of the invention can be used in a screening assay to identify and/or evaluate compounds. For example, a newly synthesized or identified compound (i.e. , test compound) which is labeled can be evaluated for its ability to bind a PD- Ll protein by monitoring its concentration variation when contacting with the PD-Ll protein, through tracking of the labeling. For example, a test compound (labeled) can be evaluated for its ability to reduce binding of another compound which is known to bind to a PD-Ll protein (i.e., standard compound). Accordingly, the ability of a test compound to compete with the standard compound for binding to the PD-Ll protein directly correlates to its binding affinity. Conversely, in some other screening assays, the standard compound is labeled and test compounds are unlabeled. Accordingly, the concentration of the labeled standard compound is monitored in order to evaluate the competition between the standard compound and the test compound, and the relative binding affinity of the test compound is thus ascertained.
VI. Kits
The present disclosure also includes pharmaceutical kits useful, e.g., in the treatment or prevention of diseases or disorders associated with the activity of PD-Ll including its
interaction with other proteins such as PD-1 and B7-1 (CD80), such as cancer or infections, which include one or more containers containing a pharmaceutical composition comprising a therapeutically effective amount of a compound of Formula (Γ) or (I), or any of the embodiments thereof. Such kits can further include one or more of various conventional pharmaceutical kit components, such as, e.g. , containers with one or more pharmaceutically acceptable carriers, additional containers, etc., as will be readily apparent to those skilled in the art. Instructions, either as inserts or as labels, indicating quantities of the components to be administered, guidelines for administration, and/or guidelines for mixing the components, can also be included in the kit.
The invention will be described in greater detail by way of specific examples. The following examples are offered for illustrative purposes, and are not intended to limit the invention in any manner. Those of skill in the art will readily recognize a variety of non- critical parameters which can be changed or modified to yield essentially the same results. The compounds of the Examples have been found to inhibit the activity of PD-1/PD-L1 protein/protein interaction according to at least one assay described herein.
EXAMPLES
Experimental procedures for compounds of the invention are provided below. Open Access Preparative LCMS Purification of some of the compounds prepared was performed on Waters mass directed fractionation systems. The basic equipment setup, protocols and control software for the operation of these systems have been described in detail in literature. See, e.g. , Blom, "Two-Pump At Column Dilution Configuration for Preparative LC-MS", K. Blom, J. Combi. Chem., 2002, 4, 295-301 ; Blom et al, "Optimizing Preparative LC-MS Configurations and Methods for Parallel Synthesis Purification", J. Combi. Chem., 2003, 5, 670-83; and Blom et al., "Preparative LC-MS Purification: Improved Compound Specific Method Optimization", J. Combi. Chem., 2004, 6, 874-883.
Example 1
2-({ [2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyridin-6-yl]methyl}amino)ethanol
Step 1: (2-bromoimidazo[l,
To a solution of methyl 2-bromoimidazo[l,2-a]pyridine-6-carboxylate (200 mg, 0.784 mmol) (ArkPharm, cat#AK-31669) in tetrahydrofuran (5.0 mL) at 0 °C was added 1.0 M diisobutylaluminum hydride in tetrahydrofuran (862 μί, 0.862 mmol). The resulting mixture was sitrred at room temperature for 1 h then it was quenched with saturated NH4CI aqueous solution (1 mL), stirred for 1 h then filtered through celite. The organic layer was dried over Na2S04, filtered and concentrated. The residue was used for next step without further purification. LC-MS calculated for C8H8BrN20 (M+H)+: m/z = 227.0; found 227.2.
To a suspension of the crude (2-bromoimidazo[l,2-a]pyridin-6-yl)methanol from Step 1 in methylene chloride (5.0 mL) was added Dess-Martin periodinane (499 mg, 1.18 mmol). The resulting mixture was stirred at room temperature for 30 min then quenched with sat'd NaHCC solution. The organic layer was dried over Na2S04, filtered and concentrated. The residue was purified by flash chromatography on a silica gel column eluting with 0 to 10 % MeOH/DCM to give the desired product (156 mg, 88 %). LC-MS calculated for C8H6BrN20 (M+H)+: m/z = 225.0; found 225.2.
To a solution of 2-bromoimidazo[l,2-a]pyridine-6-carbaldehyde (20 mg, 0.09 and ethanolamine (7.0 mg, 0.12 mmol) in acetonitrile (1.0 mL) was added sodium triacetoxyborohydride (28 mg, 0.13 mmol). The resulting mixture was stirred at room
temperature for overnight then concentrated. The residue was used for next step without further purification. LC-MS calculated for CioHi3BrN30 (M+H)+: m/z = 270.0; found 270.2.
Step 4: 4, 4, 5, 5-tetramethyl-2-(2-methylbiphenyl-3-yl)-l, 3, 2-dioxaborolane
A mixture of 3-chloro-2-methylbiphenyl (0.440 mL, 2.47 mmol) (Aldrich, cat#361623), 4,4,5,5,4',4',5',5'-octamethyl-[2,2']bi[[l,3,2]dioxaborolanyl] (1.88 g, 7.40 mmol), palladium acetate (22.2 mg, 0.0987 mmol), K3PO4 (1.57 g, 7.40 mmol) and 2- (dicyclohexylphosphino)-2',6'-dimethoxy-l,l'-bi phenyl (101 mg, 0.247 mmol) in 1,4- dioxane (10 mL) was purged with nitrogen then stirred at room temperature for 48 h. The reaction mixture was diluted with dichloromethane (DCM), then washed over water and brine. The organic layer was dried over Na2S04, filtered and concentrated. The residue was purified by flash chromatography on a silica gel column eluting with 0 to 5% EtOAc/DCM to give the desired product (656 mg, 90 %). LC-MS calculated for C19H24BO2 (M+H)+: m/z = 295.2; found 295.2.
Step 5: 2-( {[2-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-a ]pyridin-6-yl ]methyl}amino)ethanol
To a mixture of 2-{[(2-bromoiniidazo[l,2-a]pyridin-6-yl)methyl]amino}ethanol (9 mg, 0.03 mmol), 4,4,5, 5-tetramethyl-2-(2-methylbiphenyl-3-yl)-l,3,2-dioxaborolane (10 mg, 0.03 mmol) and sodium carbonate (8.58 mg, 0.0809 mmol) in fert-butyl alcohol (0.4 mL) and water (0.2 mL) was added dichloro[l, -bis(dicyclohexylphosphino)ferrocene]palladium(II) (3 mg, 0.00324 mmol). The resulting mixture was purged with nitrogen, then heated to 105 °C and stirred for 4 h. The reaction mixture was cooled to room temperature then purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C23H24N3O (M+H)+: m/z = 358.4; found 358.2.
Example 2
2-({[2-(2-methylbiphenyl- anol
A mixture of 4-bromo-lH-pyrrole-2-carbaldehyde {Apollo, cat#AS422081 51 1 mg, 2.94 mmol), ethyl 4-bromocrotonate (Aldrich, cat#E13830: 1 130 mg, 5.87 mmol) and potassium carbonate (893 mg, 6.46 mmol) in N, N-dimethylformamide (DMF, 8 mL) was stirred overnight at room temperature. The reaction mixture was diluted with EtOAc then washed with water and brine. The organic layer was dried over Na2S04, filtered and concentrated. The residue was purified by flash chromatography on a silica gel column eluting with 0 to 30 % EtOAc/hexanes to give the desired product as a yellow solid. LC-MS calculated for CiiHnBrNC (M+H)+: m/z = 268.0; found 268.0.
To a solution of ethyl 2-bromoindolizine-7-carboxylate (167 mg, 0.623 mmol) in
THF (1 mL) was added lithium tetrahydroaluminate in THF (1.0 M, 400 pL, 0.4
mmol) dropwise at 0 °C. The mixture was slowly warmed up to room temperature and stirred for 1 h then the mixture was quenched with EtOAc, followed by water and sodium hydroxide solution. The mixture was extracted with EtOAc three times. The organic phase was combined, dried over Na2S04, filtered and concentrated. The residue was purified by flash chromatography on a silica gel column eluting with 0 to 60 % EtOAc/hexanes to give the desired product. LC-MS calculated for C9H9BrNO (M+H)+: m/z = 226.0; found 225.9.
To a solution of (2-bromoindolizin-7-yl)methanol (44.0 mg, 0.195 mmol) in methylene chloride (1.5 mL) was added Dess-Martin periodinane (82.6 mg, 0.195 mmol) at room temperature. The reaction mixture was stirred for 10 min then quenched with NaHC03 solution and Na2S203 solution. The mixture was extracted with methylene chloride. The organic phase was combined, dried over MgS04 and concentrated. The residue was used in
the next step without further purification. LC-MS calculated for CiiHvBrNO (M+H)+: m/z = 224.0; found 223.9.
To the crude product from Step 3 was added a solution of ethanolamine (23 μί, 0.39 mmol) in methylene chloride (2 mL). The mixture was stirred for 20 min at room temperature then sodium triacetoxyborohydride (82 mg, 0.39 mmol) and acetic acid (1 drop) were added. The mixture was stirred at room temperature for 2 h then quenched by NH4OH solution and extracted with EtOAc three times. The organic phase was combined, dried over MgS04 and concentrated. The residue was used in the next step without further purification. LC-MS calculated for CnHi4BrN20 (M+H)+: m/z = 269.0; found 269.0.
Step 5: 2-({[2-(2-methylbiphenyl-3-yl)indolizin-7-ylJmethyljamino)ethanol
To a solution of the crude product from Step 4 in 1,4-dioxane (1 mL) and water (0.2 mL) were added 4,4,5, 5-tetramethyl-2-(2-methylbiphenyl-3-yl)-l,3,2-dioxaborolane {Example 1, Step 4: 57 mg, 0.20 mmol), potassium phosphate (69 mg, 0.32 mmol) and dichloro[l, -bis(dicyclohexylphosphino)ferrocene]palladium(II) (10 mg, 0.01 mmol). The resulting mixture was purged with N2 then stirred at 90 °C for 4 h. The reaction mixture was cooled to room temperature then diluted with EtOAc and washed with water. The organic phase was dried over MgSCn, filtered and concentrated. The residue was dissolved in MeOH then purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C24H25N2O (M+H)+: m/z = 357.2; found 357.2. Example 3
(2S)-l-{[2-(2-methylbiphen -3-yl)indolizin-7-yl]methyl}piperidine-2-carboxylic acid
To a mixture of methyl (2S)-piperidine-2-carboxylate hydrogen chloride (180 mg, 1.0 mmol) and 2-bromoindolizine-7-carbaldehyde (75 mg, 0.33 mmol) in CH2CI2 (2 mL) at room temperature was added N,N-diisopropylethylamine (170 μί, 1.0 mmol), followed by acetic acid (100 μί, 2 mmol). The reaction mixture was stirred for 1 h then sodium
triacetoxyborohydride (280 mg, 1.3 mmol) was added. After stirring at room temperature for 4 h, the reaction mixture was quenched with NH4OH solution then extracted with CH2CI2 three times. The organic phase was combined, dried over MgS04, filtered and concentrated. The residue was purified by flash chromatography on a silica gel column eluting with 0 to 40 % EtOAc/hexanes to give the desired product. LC-MS calculated for Ci6H2oBrN202 (M+H)+: m/z = 351.1 ; found 351.0.
Step 2: methyl (2S)-l-{[2-(2-methylbiphenyl-3-yl)indolizin-7-yl]methyl}piperidine-2- carboxylate
To a solution of methyl (2S)-l-[(2-bromoindolizin-7-yl)methyl]piperidine-2- carboxylate (product from Step 1) in 1 ,4-dioxane (0.3 mL) and water (0.06 mL) was added 4,4,5,5-tetramethyl-2-(2-methylbiphenyl-3-yl)-l,3,2-dioxaborolane {Example 1, Step 4: 18 mg, 0.060 mmol), potassium phosphate (17 mg, 0.078 mmol) and dichloro[l ,l '- bis(dicyclohexylphosphino)ferrocene]palladium(II) (2 mg, 0.003 mmol). The mixture was purged with N2, then heated at 90 °C for 4 h. The reaction mixture was cooled to room temperature, diluted with EtOAc then washed with water and brine. The organic phase was dried over MgS04, filtered and concentrated. The residue was purified by flash
chromatography on a silica gel column eluting with 0 to 50 % EtOAc/Hexanes to give the desired product. LC-MS calculated for C29H31N2O2 (M+H)+: m/z = 439.2; found 439.2.
Step 3: (2S)-l-{[2-(2-methylbiphenyl-3-yl)indolizin-7-ylJmethyl}piperidine-2-carboxylic acid
To a mixture of methyl (2S)-l - {[2-(2-methylbiphenyl-3-yl)indolizin-7- yl]methyl}piperidine-2-carboxylate (14 mg, 0.032 mmol) in tetrahydrofuran (THF, 0.3
mL) and MeOH (0.3 mL) was added lithium hydroxide monohydrate (20 mg, 0.4 mmol) and water (0.3 mL). The resulting mixture was stirred at room temperature overnight. The reaction mixture was diluted with MeOH then purified by prep-HPLC (pH = 10, acetonitrile/water+NH40H) to give the desired product. LC-MS calculated for C28H29N2O2 (M+H)+: m/z = 425.2; found 425.2.
Example 4
(2S)-l-{[6-(2-methylbiphenyl-3-yl)pyrrolo[l,2-c]pyrimidin-3-yl]methyl}piperidine-2-
To a solution of ethyl 6-bromopyrrolo[l,2-c]pyrimidine-3-carboxylate (D-L chiral chemicals, cat#ST-KS-041: 119 mg, 0.442 mmol) in CH2CI2 (4 mL) was added
diisobutylaluminum hydride in CH2CI2 (1.0 M, 440 μί, 0.44 mmol) dropwise at -78 °C. The mixture was slowly warmed up to room temperature and stirred for 3 h. Then the reaction mixture was quenched with EtOAc followed by (NH4)2S04 solution then extracted with EtO Ac three times. The organic phase was combined, dried over MgS04, filtered and concentrated. The residue was purified by flash chromatography on a silica gel column eluting with 0 to 50 % EtOAc/Hexanes to give the desired product. LC-MS calculated for C8H6BrN20 (M+H)+: m/z = 225.0; found 224.9.
To a solution of 6-bromopyrrolo[l,2-c]pyrimidine-3-carbaldehyde (9.0 mg, 0.040 mmol) and methyl (2S)-piperidine-2-carboxylate [1.0] -hydrogen chloride (18 mg, 0.10 mmol) in CH2CI2 (0.2 mL) were added diisopropylethylamine (17.4 μί, 0.10 mmol) and
acetic acid (7 μί, 0.1 mmol) at room temperature. The mixture was stirred for 2 h then sodium triacetoxyborohydride (30 mg, 0.2 mmol) was added. The reaction mixture was stirred at room temperature for 3 h then quenched by NH4OH solution and extracted with CH2CI2 three times. The organic phase was combined, dried over MgS04, filtered and concentrated. The residue was used in the next step without further purification. LC-MS calculated for Ci5Hi9BrN302 (M+H)+: m/z = 352.1 ; found 352.0.
Step 3: Methyl (2S)-l-{[6-(2-methylbiphenyl-3-yl)pyrrolo[l, 2-c]pyrimidin-3- ylJmethyljpiperidine-2-carboxylate
To the mixture of the crude product from Step 2 in 1 ,4-dioxane (0.3 mL) and water (0.07 mL) was added 4,4,5, 5-tetramethyl-2-(2-methylbiphenyl-3-yl)-l ,3,2-dioxaborolane (Example 1, Step 4: 21 mg, 0.070 mmol), potassium phosphate (20. mg, 0.092 mmol) and dichloro[l, l '-bis(dicyclohexylphosphino) ferrocene] palladium(II) (3 mg, 0.004 mmol). The mixture was purged with N2, then heated at 90 °C for 4 h. The reaction mixture was cooled to room temperature, diluted with EtOAc then washed with water and brine. The organic phase was dried over MgS04, filtered and concentrated. The residue was purified by flash chromatography on a silica gel column eluting with 0 to 60 % EtOAc/hexanes to give the desired product. LC-MS calculated for C28H30N3O2 (M+H)+: m/z = 440.2; found 440.2.
Step 4: (2S)-l-{[6-(2-methylbiphenyl-3-yl)pyrrolo[l, 2-cJpyrimidin-3-ylJmethyl}piperidine-2- carboxylic acid
To a solution of methyl (2S)-l- { [6-(2-methylbiphenyl-3-yl)pyrrolo[l ,2-c]pyrimidin- 3-yl]methyl}piperidine-2-carboxylate (6.7 mg, 0.015 mmol) in THF (0.1 mL) and MeOH (0.1 mL) was added lithium hydroxide monohydrate (8 mg, 0.2 mmol) and water (O. lmL). The resulting mixture was stirred at room temperature ovemight then diluted with MeOH and purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C27H28N3O2 (M+H)+: m/z = 426.2; found 426.2. Example 5
To a solution of l -(3-bromo-2-methylphenyl)ethanone (AstaTech, cat#CL9266: 4.2 g, 20. mmol) in water (10 mL) and 1,4-dioxane (45 mL) were added potassium phosphate (8.4 g, 39 mmol), phenylboronic acid (2.6 g, 22 mmol) and chloro(2-dicyclohexylphosphino- 2^4^6'-triisopropyl-l,r-biphenyl)[2-(2'-amino-l,r-biphenyl)]palladium(II) (0.8 g, 1 mmol). The resulting mixture was purged with nitrogen then stirred at 100 °C for 30 mins. The reaction mixture was cooled to room temperature then diluted with ethyl acetate, washed with water and brine. The organic layer was dried over MgS04, filtered, then concentrated. The residue was purified by silica gel chromatography eluting with 0-50% ethyl acetate in hexanes to afford the desired product (3.95 g, 95%) as light yellowish oil. LC-MS calculated for CisHisO (M+H)+: m/z = 21 1.3; found 211.3. Step 2: 2-bromo-l-(2-methylbiphen -3-yl)ethanone
To a solution of l -(2-methylbiphenyl-3-yl)ethanone (1.25 g, 5.94 mmol) in ethyl acetate (30 mL) was added copper(II) bromide (5.3 g, 24 mmol). The reaction mixture was stirred at 80 °C for 2 hours then cooled to room temperature, filtered and concentrated to dryness under reduced pressure. The residue was purified by silica gel chromatography using 0-50% ethyl acetate in hexanes to afford desired product (1.51 g, 87%) as light yellowish oil. LC-MS calculated for Ci5Hi4BrO (M+H)+: m/z = 289.0; found 289.0.
Step 3: 6-bromo-l ,2, 4-triazin-3-amine
H2N
To a solution of l,2,4-triazin-3 -amine {Aldrich, cat#100625 5.0 g, 52 mmol) in acetonitrile (50 mL) and water (70 mL) was added N-bromosuccinimide (9.72 g, 54.6 mmol). The resulting mixture was stirred at room temperature for 2 hours then diluted with 100 mL saturated NaHCCb solution, and stirred for another 1 hour, then extracted with ethyl acetate. The organic layer was washed with brine, dried over MgS04 then filtered and concentrated to dryness to afford the desired product (4.5 g, 49%) as a brownish solid, which was used for the next step without further purification.
To a solution of 6-bromo-l ,2,4-triazin-3-amine (1.0 g, 5.7 mmol) in water (3 mL) and 1,4-dioxane (17 mL) were added potassium phosphate (2.4 g, 11 mmol), 4,4,5,5-tetramethyl- 2-vinyl-l ,3,2-dioxaborolane {Aldrich, cat#633348: 0.97 g, 6.3 mmol) and chloro(2- dicy clohexylphosphino-2',4',6'-triisopropyl-l , 1 '-biphenyl)[2-(2'-amino- 1 ,1 '- biphenyl)]palladium(II) (0.09 g, 0.1 mmol). The resulting mixture was purged with nitrogen then stirred at 80 °C for 30 mins. The reaction mixture was cooled to room temperature, diluted with ethyl acetate then washed with water and brine. Then organic layer was dried over MgS04, filtered, then concentrated to dryness to afford the desired product (580 mg, 83%) as a brownish solid which was used for next step without further purification.
Step 5: 6-( 2-methylbiphenyl-3-yl -2-vinylimidazo[ 1, 2-b ][ 1, 2, 4 Jtriazine
To a solution of 6-vinyl-l ,2,4-triazin-3 -amine (200 mg, 2 mmol) in isopropyl alcohol (6.3 mL) was added 2-bromo-l-(2-methylbiphenyl-3-yl)ethanone (470 mg, 1.6 mmol). The resulting mixture was warmed up to 90 °C and stirred for 2 hours. The reaction mixture was cooled to room temperature then concentrated to dryness. The residue was purified by silica gel chromatography using 0-50% ethyl acetate in hexanes to afford desired product (200 mg, 40%) as a yellowish solid. LC-MS calculated for C20H17N4 (M+H)+: m/z = 313.1 ; found 313.4.
Step 6: 6-( 2-methylbiphenyl-3 -2-carbaldehyde
To a solution of 6-(2-methylbiphenyl-3-yl)-2-vinylimidazo[l,2-b][l,2,4]triazine (340 mg, 1.1 mmol) in tetrahydrofuran (10 mL) and water (20 mL) was added potassium osmate, dihydrate (80 mg, 0.2 mmol) and sodium periodate (880 mg, 4.1 mmol). The resulting mixture was stirred at room temperature for 2 hours then diluted with ethyl acetate, washed with water and brine. The organic layer was dried over MgS04, filtered, then concentrated to dryness. The residue was purified by silica gel chromatography using 0-80% ethyl acetate in hexanes to afford the desired product (220 mg, 64%) as a yellowish solid. LC-MS calculated for C19H15N4O (M+H)+: m/z = 315.1; found 315.2.
Step 7: 2-( ( 6-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-b ][ 1, 2, 4 ]triazin-2-yl)methylamino)ethanol To a solution of 6-(2-methylbiphenyl-3-yl)imidazo[l,2-b] [l,2,4]triazine-2- carbaldehyde (20 mg, 0.06 mmol) in N,N-dimethylformamide (500 μί) was added ethanolamine (19 μί, 0.32 mmol) and acetic acid (18 μί, 0.32 mmol). The resulting mixture was stirred at room temperature for 30 min then sodium cyanoborohydride (8.0 mg, 0.13 mmol) was added. The mixture was stirred at room temperature for 2 hours then diluted with methanol and purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C21H22N5O (M+H)+: m/z = 360.2; found 360.2.
Example 6
2-((6-(2-methylbiphenyl-3
This compound was prepared using similar procedures as described for Example 5 with aminoacetonitrile replacing ethanolamine in Step 7. The resulting mixture was purified
by prep-HPLC (pH = 2, acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C21H19N6 (M+H)+: m/z = 355.2; found 355.2.
Example 7
2-((6-(2-methylbiphenyl- -yl)imidazo[l,2-b] [l,2,4]triazin-2-yl)methylamino)acetamide
This compound was prepared using similar procedures as described for Example 5 with glycinamide replacing ethanolamine in Step 7. The resulting mixture was purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C2iH2iN60 (M+H)+: m/z = 373.2; found 373.2.
Example 8
2-(methyl((6-(2-methylbiphenyl-3-yl)imidazo [ 1,2-b] [1,2,4] triazin-2- yl)methyl)amino)ethanol
This compound was prepared using similar procedures as described for Example 5 with 2-(methylamino)ethanol replacing ethanolamine in Step 7. The resulting mixture was purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C22H24N5O (M+H)+: m/z = 374.2; found 374.2.
Example 9
2-((8-methyl-2-(2-methylb l)methylamino)ethanol
To a solution of 2-bromo-l-(2-methylbiphenyl-3-yl)ethanone {Example 5, Step 2: 500 mg, 2 mmol) in isopropyl alcohol (7 mL) was added 5-bromo-3-methylpyridin-2-amine {Aldrich, cat#525537: 320 mg, 1.7 mmol). The resulting mixture was stirred at 90 °C for 1 hour then cooled to room temperature and concentrated to dryness. The residue was purified by silica gel chromatography using 0-60% ethyl acetate in hexanes to afford the desired product (299 mg, 40%) as a white solid. LC-MS calculated for C2iHi8BrN2 (M+H)+: m/z = 377.1; found 377.0. Step 2: 8-methyl-2-(2-methylbiphenyl-3-yl)-6-vinylimidazo[ 1, 2-a Jpyridine
To a solution of 6-bromo-8-methyl-2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyridine (229 mg, 0.607 mmol) in water (0.5 mL) and 1,4-dioxane (2.5 mL) was added 4,4,5,5- tetramethyl-2-vinyl-l, 3,2-dioxaborolane {Aldrich, cat#633348: 100 mg, 0.67
mmol), potassium phosphate (0.26 g, 1.2 mmol) and (2'-aminobiphenyl-2- yl)(chloro)[dicyclohexyl(2',4',6'-triisopropylbiphenyl-2-yl)phosphoranylidene]palladium (0.05 g, 0.06 mmol). The mixture was purged with nitrogen then stirred at 90 °C for 1 hour. The reaction mixture was cooled to room temperature then concentrated. The residue was purified by silica gel chromatography using 0-60% ethyl acetate in hexanes to afford the desired product (197 mg, 82%) as a yellowish solid. LC-MS calculated for C23H21N2 (M+H)+: m/z = 325.2; found 325.1.
Step 3: 8-methyl-2-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-a ]pyridine-6-carbaldehyde
To a solution of 8-methyl-2-(2-methylbiphenyl-3-yl)-6-vinylimidazo[l,2-a]pyridine (162 mg, 0.499 mmol) in 1 ,4-dioxane (3.5 mL) and water (6 mL) was added potassium osmate, dihydrate (20 mg, 0.05 mmol) and sodium metaperiodate (210 mg, 1.0 mmol). The resulting mixture was stirred at room temperature for 2 hours then diluted with water, quenched with sodium sulfite, then extracted with ethyl acetate. The combined extract was dried over Na2S04, filtered, then concentrated to dryness under reduced pressure. The residue was purified by silica gel chromatography using 0-80% ethyl acetate in hexanes to afford the desired product (57 mg, 35%) as a yellowish solid. LC-MS calculated for C22H19N2O (M+H)+: m/z = 327.1 ; found 327.1.
Step 4: 2-((8-methyl-2-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-a ]pyridin-6- yl)methylamino)ethanol
To a solution of 8-methyl-2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyridine-6- carbaldehyde (28 mg, 0.086 mmol) in N,N-dimethylformamide (700 μί) was added ethanolamine (10. μί, 0.17 mmol) and acetic acid (50 μί, 0.8 mmol). The mixture was stirred at room temperature overnight then sodium cyanoborohydride (0.027 g, 0.43 mmol) was added. The reaction mixture was stirred at room temperature for another 30 mins then diluted with methanol and purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to afford desired product as TFA salt. LC-MS calculated for C24H26N3O (M+H)+: m/z = 372.2; found 372.2.
Example 10
(S)-l-((8-methyl-2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyridin-6- yl)methyl)piperidine-2-car
This compound was prepared using similar procedures as described for Example 9 with (S)-piperidine-2-carboxylic acid replacing ethanolamine in Step 4. The resulting mixture was purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C28H30N3O2 (M+H)+: m/z = 440.2; found 440.3.
Example 11
To a solution of 2-amino-5-bromopyridine (Aldrich, cat#l 22858: 5.0 g, 29 mmol) in N,N-dimethylformamide (60 mL) was added N-chlorosuccinimide (4.2 g, 32 mmol). The resulting mixture was stirred at room temperature for 1 hour then saturated NaHCC aqueous solution was added. The mixture was stirred for 10 min then extracted with ethyl acetate. The combined extracts were dried over MgS04, filtered, and concentrated to dryness under reduced pressure. The residue was purified by silica gel chromatography using 0-100% ethyl acetate in hexanes to afford the desired product (4.8 g, 80%) as a yellowish solid. LC-MS calculated for C5H5BrClN2 (M+H)+: m/z = 206.9; found 206.9. Step 2: 6-bromo-8-chloro-2-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-a Jpyridine
To a solution of 2-bromo-l-(2-methylbiphenyl-3-yl)ethanone {Example 5, Step 2: 560 mg, 1.9 mmol) in isopropyl alcohol (7 mL) was added 5-bromo-3-chloropyridin-2-amine (400 mg, 2 mmol). The resulting mixture was stirred at 90 °C for 4 hours then cooled to room temperature and concentrated to dryness under reduced pressure. The residue was purified by silica gel chromatography using 0-50% ethyl acetate in hexanes to afford the desired product (82 mg, 10%) as a yellowish solid. LC-MS calculated for C2oHi5BrClN2 (M+H)+: m/z = 397.0; found 397.0.
Step 3: 8-chloro-2-(2-methylbiphenyl-3-yl)-6-vinylimidazo[ 1, 2-a Jpyridine
To a solution of 6-bromo-8-chloro-2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyridine (82 mg, 0.21 mmol) in water (0.2 mL) and 1 ,4-dioxane (2 mL) was added 4,4,5,5- tetramethyl-2-vinyl-l,3,2-dioxaborolane (Aldrich, cai#633348: 35 mg, 0.23 mmol), potassium phosphate (88 mg, 0.41 mmol) and (2'-aminobiphenyl-2- yl)(chloro)[dicyclohexyl(2',4',6'-triisopropylbiphenyl-2-yl)phosphoranylidene]palladium (8 mg, 0.01 mmol). The resulting mixture was purged with nitrogen then warmed up to 70 °C and stirred for 30 mins. The reaction mixture was then cooled to room temperature, diluted with brine, and extracted with ethyl acetate. The combined extracts were dried over MgS04, filtered, and then concentrated to dryness under reduced pressure. The residue was purified with silica gel chromatography using 0-80% ethyl acetate in hexanes to afford the desired product (59 mg, 83%) as a yellowish solid. LC-MS calculated for C22H18CIN2 (M+H)+: m/z = 345.1 ; found 345.0.
Step 4: 8-chloro-2-(2-methylbiphenyl-3-yl)imidazo [ 1 ,2-a]pyridine-6-carbaldehyde
To a solution of 8-chloro-2-(2-methylbiphenyl-3-yl)-6-vinylimidazo[l ,2-a]pyridine (59 mg, 83%) in 1,4-dioxane (2 mL,) and water (3 mL) was added sodium periodate (0.13 g, 0.62 mmol) and potassium osmate dihydrate (20 mg, 0.04 mmol). The resulting mixture was stirred at room temperature for 2 hours then diluted with water, quenched with sodium sulfite, and extracted with ethyl acetate. The combined extracts were dried over MgS04, filtered, and concentrated to dryness under reduced pressure. The residue was used for next step without further purification. LC-MS calculated for C21H16CIN2O (M+H)+: m/z = 347.1 ; found 347.0.
Step 5: 2-( (8-chloro-2-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-a Jpyridin-6- yl)methylamino)ethanol
To a solution of the crude product from Step 4 in N,N-dimethylformamide (2 mL) was added ethanolamine (50 μί, 0.82 mmol) and acetic acid (0.2 mL, 3.5 mmol). The resulting mixture was stirred at room temperature overnight then sodium cyanoborohydride (0.065 g, 1.0 mmol) was added. The mixture was stirred at room temperature for another 30 mins then diluted with methanol and purified by prep-HPLC (pH = 2,
acetonitrile/water+TFA) to afford desired product as the TFA salt. LC-MS calculated for C23H23CIN3O (M+H)+: m/z = 392.2; found 392.1.
Example 12
2-({[2-(2-methylbiphenyl- -yl)imidazo[l,2-a]pyrimidin-6-yl]methyl}amino)ethanol
To a solution of 2-aminopyrimidine-5-carbaldehyde (Aldrich, cat#734845: 200 mg, 1.62 mmol) in toluene (5 mL) were added 1,2-ethanediol (120 μί, 2.1 mmol) and p- toluenesulfonic acid monohydrate (30 mg, 0.2 mmol), followed by molecular sieves (400 mg). The mixture was heated to reflux overnight. The reaction mixture was cooled to room temperature and filtered. The filtrate was concentrated to dryness under reduced pressure and the residue was used in the next step without further purification. LC-MS calculated for C7H10N3O2 (M+H)+: m/z = 168.1 ; found 168.0.
Step 2: 6-( 1, 3-dioxolan-2-yl)-2- -methylbiphenyl-3-yl)imidazo[ 1, 2-a Jpyrimidine
To a solution of 2-bromo-l-(2-methylbiphenyl-3-yl)ethanone {Example 5, Step 2: 138 mg, 0.48 mmol) in isopropyl alcohol (2 mL) was added 5-(l,3-dioxolan-2-yl)pyrimidin-2- amine (80. mg, 0.48 mmol) and dipotassium hydrogen phosphate (170 mg, 0.96 mmol). The
reaction mixture was stirred at 110 °C overnight. The mixture was then cooled to room temperature, poured into water and extracted with dichloromethane twice (20 mL). The combined organic phase was washed with brine, dried over MgS04, filtered and
concentrated. The residue was purified by flash chromatography on a silica gel column eluting with 0 to 25 % ethyl acetate/DCM to give the desired product. LC-MS calculated for C22H20N3O2 (M+H)+: m/z = 358.2; found 358.1.
Step 3: 2-(2-methylbiphenyl- aldehyde
To a solution of 6-(l,3-dioxolan-2-yl)-2-(2-methylbiphenyl-3-yl)imidazo[l,2-a] pyrimidine (40 mg, 0.1 mmol) in tetrahydrofuran (2 mL) was added 1.0 M hydrogen chloride in water (450 μί, 0.45 mmol). The reaction solution was stirred at 50 °C for 2 hour then cooled to room temperature, diluted with DCM, washed with NaHCC aqueous solution and brine. The organic layer was dried over MgSCn, filtered and concentrated. The residue was used in the next step without further purification. LC-MS calculated for C20H16N3O (M+H)+: m/z = 314.1; found 314.1.
Step 4: 2-( {[2-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-a Jpyrimidin-6-yl Jmethyljaminojethanol To a solution of 2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyrimidine-6-carbaldehyde (15.0 mg, 0.0479 mmol) in 1,2-dichloroethane (1 mL) was added ethanolamine (5.8 μί, 0.096 mmol). The mixture was stirred at room temperature for 30 min, then sodium triacetoxyborohydride (30 mg, 0.14 mmol) was added. The resulting mixture was stirred at room temperature overnight then concentrated. The residue was diluted with MeOH and purified by prep-HPLC (pH = 10, acetonitrile/water+NLUOH) to give the desired product. LC-MS calculated for C22H23N4O (M+H)+: m/z = 359.2; found 359.1.
Example 13
2-({[2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyrazin-6-yl]methyl}amino)ethanol
Stepl : 2-( 2-methylbiphenyl itrile
To a solution of 2-bromo-l-(2-methylbiphenyl-3-yl)ethanone (Example 5, Step 2: Til mg, 2.71 mmol) in isopropyl alcohol (10 mL) was added 5-aminopyrazine-2-carbonitrile (Ark Pharm, cat#AK-21935: 325. mg, 2.71 mmol). The resulting mixture was heated at 110 °C overnight then cooled to room temperature and concentrated. The residue was purified by flash chromatography on a silica gel column eluting with 0 to 25 % ethyl acetate/DCM to give the desired product. LC-MS calculated for C20H15N4 (M+H)+: m/z = 311.1 ; found 311.1.
Step 2: [ 2-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-a Jpyrazin-6-yl Jmethanol
To a solution of 2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyrazine-6-carbonitrile (110 mg, 0.35 mmol) in methylene chloride (3 mL) was added 1.0 M diisobutylaluminum hydride in DCM (0.71 mL, 0.71 mmol) dropwise at -78 °C. The mixture was stirred at -78 °C for 2 hours then quenched with a few drops of saturated NH4CI aqueous solution and diluted with saturated sodium potassium tartrate solution. The suspension was stirred at room temperature overnight then extracted with DCM. The combined organic layers were dried over MgS04, filtered and concentrated. The residue was purified by flash chromatography on a silica gel column eluting with 0 to 25 % ethyl acetate/DCM to give the desired product. LC- MS calculated for C20H18N3O (M+H)+: m/z = 316.1; found 316.1.
Dimethyl sulfoxide (27 μί, 0.38 mmol) was added to a solution of 2.0 M oxalyl chloride in DCM (0.095 mL, 0.19 mmol) in methylene chloride (1 mL) at -78 °C. To the above solution, [2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyrazin-6-yl]methanol (30. mg, 0.095 mmol) in methylene chloride (1 mL) was slowly added and then continued to stir at -78 °C for 30 mins. Then N,N-diisopropylethylamine (0.13 mL, 0.76 mmol) was added. The reaction mixture was slowly warmed to 0 °C then poured into NaHCC aqueous solution and extracted with DCM. The combined extracts were washed with water and brine. The organic layer was dried over MgSCn, filtered and concentrated. The residue was purified by flash chromatography on a silica gel column eluting with 0 to 25 % ethyl acetate/DCM to give the desired product. LC-MS calculated for C20H16N3O (M+H)+: m/z = 314.1 ; found 314.1.
Step 4: 2-( {[2-(2-methylbiphenyl-3-yl)imidazo[ 1, 2-a ]pyrazin-6-yl ]methyl}amino)ethanol To a solution of 2-(2-methylbiphenyl-3-yl)imidazo[l ,2-a]pyrazine-6-carbaldehyde (15.0 mg, 0.0479 mmol) in 1 ,2-dichloroethane (1 mL) was added N,N-diisopropylethylamine (17 \L, 0.096 mmol) and ethanolamine (5.8 xL, 0.096 mmol). The mixture was stirred at room temperature for 20 min, then sodium triacetoxyborohydride (30. mg, 0.14 mmol) was added. The reaction mixture was stirred at room temperature for 3 h then concentrated. The residue was dissolved in MeOH then purified by prep-HPLC (pH = 2,
acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C22H23N4O (M+H)+: m/z = 359.2; found 359.1.
Example 14
(S)- l-((2-(2-methylbiphenyl-3-yl)imidazo [ 1,2-b] pyridazin-6-yl)methyl)piperidine-2- carboxylic acid
Methyl 6-aminopyridazine-3-carboxylate {Accela ChemBio, cat#SY006049 87 mg, 0.57 mmol) was added to the solution of 2-bromo-l-(2-methylbiphenyl-3-yl)ethanone {Example 5, Step 2: 181 mg, 0.626 mmol) in isopropyl alcohol (2.3 mL). The mixture was stirred at 90 °C for 2 h then cooled to room temperature and concentrated. The residue was purified by chromatography (15-30% EtOAc/hexanes) on silica gel to give the desired product 85 mg (43% yield). LC-MS calculated for C21H18N3O2 (M+H)+: m/z = 344.1; found: 344.1.
Step 2: [ 2-( 2-methylbiphenyl-3-yl)imidazo[ 1, 2-b ]pyridazin-6-yl Jmethanol
1.0 M Diisobutylaluminum hydride in DCM (0.33 mL, 0.33 mmol) was added to a solution of methyl 2-(2-methylbiphenyl-3-yl)imidazo[l,2-b]pyridazine-6-carboxylate (104 mg, 0.303 mmol) in methylene chloride (1.5 mL) at -40 °C. The mixture was warmed to -5 °C and stirred for 40 min and then stirred at room temperature overnight. The mixture was quenched with aqueous NH4CI and potassium sodium tartrate, and extracted with DCM. The combined extracts were dried over Na2S04, filtered and concentrated. The residue was purified by chromatography (90-100% EtOAc) on silica gel to give the desire product (35 mg). LC-MS calculated for C20H18N3O (M+H)+: m/z = 316.1; found: 316.1.
Step 3: 2-(2-methylbiphenyl- carbaldehyde
Dess-Martin periodinane (66.6 mg, 0.157 mmol) was added to the solution of [2-(2- methylbiphenyl-3-yl)imidazo[l,2-b]pyridazin-6-yl]methanol (33.0 mg, 0.105 mmol) in DCM (3 mL). The mixture was stirred at room temperature for 15 min then quenched with aqueous
sodium bisulfite and extracted with Et^O. The organic phase was dried over Na2S04, filtered and concentrated. The residue was purified by chromatography (20-30% EtO Ac/Hex) on silica gel to give the desired product (24 mg). LC-MS calculated for C20H16N3O (M+H)+: m/z = 314.1 ; found: 314.1.
Step 4: (2S)-1 -{ [2-(2-methylbiphenyl-3-yl)imidazo [ 1 , 2-b]pyridazin-6-yl]methyl}piperidine-2- carboxylic acid
(25)-piperidine-2-carboxylic acid (26.8 mg, 0.207 mmol) was added to a solution of 2-(2-methylbiphenyl-3-yl)imidazo[l,2-b]pyridazine-6-carbaldehyde (13.0 mg, 0.0415 mmol) in N,N-dimethylformamide (0.41 mL), followed by acetic acid (3.54 μΐ,, 0.0622 mmol). The reaction mixture was stirred at room temperature for 10 min. Then sodium cyanoborohydride (7.9 mg, 0.12 mmol) was added. The reaction mixture was stirred at room temperature overnight then diluted with MeOH and purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to afford the desired product as the TFA salt. LC-MS calculated for C26H27N4O2 (M+H)+: m/z = 427.2; found: 427.2.
Example 15
2-({ [2-(2-methylbiphenyl- -yl)imidazo[l,2-b]pyridazin-6-yl]methyl}amino)ethanol
This compound was prepared using similar procedures as described for Example 14 with ethanolamine replacing (25)-piperidine-2-carboxylic acid in Step 4. The resulting mixture was purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C22H23N4O (M+H)+: m/z = 359.2; found 359.2. Example 16
2-({ [2-(2-methylbiphenyl- -yl)[l,2,4]triazolo[l,5-a]pyridin-7-yl]methyl}amino)ethanol
Ethoxycarbonyl isothiocyanate (606 μί, 5.36 mmol) was added to a solution of (2- aminopyridin-4-yl)methanol {Aldrich, cat# 714577: 555 mg, 4.47 mmol) in 1,4-dioxane (22.4 mL). The reaction mixture was stirred at room temperature for 15 h. The mixture was concentrated and the residue was dissolved in methanol (16.0 mL)/ethanol (16.0 mL), then N^V-diisopropylethylamine (1.56 mL, 8.94 mmol) was added, followed by
hydroxylamine hydrochloride (932 mg, 13.4 mmol). The reaction mixture was stirred at 45 °C for 2 h then cooled to room temperature and concentrated. The residue was used in the next step without further purification. LC-MS calculated for C7H9N4O (M+H)+: m/z = 165.1 ; found: 165.1.
fert-Butyl nitrite (1.28 mL, 10.7 mmol) was added to a suspension of (2- amino[l,2,4]triazolo[l,5-a]pyridin-7-yl)methanol (734 mg, 4.47 mmol) and copper(II) bromide (2.00 g, 8.94 mmol) in acetonitrile (55 mL). The reaction mixture was stirred at room temperature for 2 h then diluted with DCM and washed with water. The organic phase was dried over Na2S04, filtered and concentrated. The residue was purified by
chromatography on silica gel to give the desired product as a yellow solid (842 mg, 83% yield). LC-MS calculated for CvHvBrNsO (M+H)+: m/z = 228.0; found: LC/MS : 228.0.
Step 3: [ 2-( 2-methylbiphenyl-3- 5-a ]pyridin-7-yl Jmethanol
A mixture of (2-bromo[l,2,4]triazolo[l ,5-a]pyridin-7-yl)methanol (128 mg, 0.564 mmol), 4,4,5,5-tetramethyl-2-(2-methylbiphenyl-3-yl)-l,3,2-dioxaborolane {Example 1, Step 4: 199 mg, 0.676 mmol), (2'-aminobiphenyl-2-yl)(chloro)[dicyclohexyl(2',4',6'- triisopropylbiphenyl-2-yl)phosphoranylidene]palladium (44.4 mg, 0.0564 mmol) and K3PO4 (215 mg, 1.01 mmol) in 1,4-dioxane (2.6 mL) / water (0.3 mL) was purged with nitrogen then stirred at 90 °C for 18 h. The mixture was cooled to room temperature then diluted with
DCM, dried over Na2S04, filtered and concentrated. The residue was purified by
chromatography (40-100% EtOAc/ hexanes) on silica gel to give the desired product as an off-white solid (85.0 mg). LC-MS calculated for C20H18N3O (M+H)+: m/z = 316.1 ; found: 316.1.
Step 4: 2-( 2-methylbiphenyl-3-y 5-a Jpyridine- 7 -carbaldehyde
Dess-Martin periodinane (80.7 mg, 0.190 mmol) was added to the solution of [2-(2- methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-a]pyridin-7-yl]methanol (40.0 mg, 0.127 mmol) in dichloromethane (3 mL). The mixture was stirred at room temperature for 1.5 h and more Dess-Martin periodinane (1.5 equiv) was added. The mixture was stirred for another 3.5 h then quenched with aqueous sodium bisulfite and extracted with dichloromethane. The combined extracts were dried over Na2S04, filtered and concentrated. The residue was purified with chromatography on silica gel to give the desired product (29 mg). LC-MS calculated for C20H16N3O (M+H)+: m/z = 314.1 ; found: 314.1.
Step 5: 2-( { [2-(2-methylbiphenyl-3-yl) [ 1, 2, 4 Jtriazolof 1, 5-a ]pyridin-7- yl ]methyl}amino)ethanol
Ethanolamine (7.3 mg, 0.12 mmol) was added to a solution of 2-(2-methylbiphenyl-3- yl)[l,2,4]triazolo[l,5-a]pyridine-7-carbaldehyde (7.5 mg, 0.024 mmol) in N,N- dimethylformamide (0.24 mL), followed by acetic acid (2.0 μί, 0.036 mmol). The reaction mixture was stirred at room temperature for 10 min then sodium cyanoborohydride (4.5 mg, 0.072 mmol) was added. The mixture was stirred at room temperature ovemight then diluted with MeOH and purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to afford the desired product as the TFA salt. LC-MS calculated for C22H23N4O (M+H)+: m/z = 359.2; found: 359.2.
Example 17
(2S)- 1-{ [2-(2-methylbiphenyl-3-yl) [ 1,2,4] triazolo [1,5-a] pyridin-7-yl] methyl }piperidine-2- carboxylic acid
This compound was prepared using similar procedures as described for Example 16 with (25 -piperidine-2-carboxylic acid replacing ethanolamine in Step 5. The resulting mixture was purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C26H27N4O2 (M+H)+: m/z = 427.2; found 427.2.
Example 18
2-({ [2-(2-methylbiphenyl- -yl)[l,2,4]triazolo[l,5-a]pyridin-6-yl]methyl}amino)ethanol
To a solution of methyl 6-aminonicotinate (Aldrich, cat#648736: 699 mg, 4.59 mmol) in 1,4-dioxane (23.0 mL) was added ethoxycarbonyl isothiocyanate (623 μί, 5.51 mmol). The reaction mixture was stirred at room temperature for 15 h. The crude was concentrated and the residue was dissolved in methanol (17 mL)/ethanol (17 mL) then N,N-diisopropylethylamine (1.6 mL, 9.2 mmol) was added, followed by
hydroxy aminehydrochoride (958 mg, 13.8 mmol). The resulting mixture was stirred at 45 °C for 2 h then cooled to room temperature and concentrated. The residue was directly used for the next step without further purification. LC-MS calculated for C8H9N4O2 (M+H)+: m/z = 193.1 ; found: 193.0.
Step 2: methyl 2-bromo[l, 2, 4]triazolo[l, 5-a]pyridine-6-carboxylate
tert-Butyl nitrite (1.31 mL, 11.0 mmol) was added to a suspension of methyl 2- amino[l,2,4]triazolo[l,5-a]pyridine-6-carboxylate (883 mg, 4.59 mmol) and copper(II) bromide (2.05 g, 9.19 mmol) in acetonitrile (44 mL). The mixture was stirred at room temperature for 2 h then diluted with dichloromethane and washed with water. The organic phase was dried over Na2S04, filtered and concentrated. The residue was purified by chromatography on silica gel to give the desired product as a white solid (483 mg, 41% yield). LC-MS calculated for CsHvBrNsC (M+H)+: m/z = 256.0; found: 256.0.
Step 3: methyl 2-(2-methylbiph idine-6-carboxylate
A mixture of methyl 2-bromo[l,2,4]triazolo[l,5-a]pyridine-6-carboxylate (188 mg,
0.734 mmol), 4,4,5, 5-tetramethyl-2-(2-methylbiphenyl-3-yl)-l,3,2-dioxaborolane {Example
1, Step 4: 259 mg, 0.881 mmol), (2'-aminobiphenyl-2-yl)(chloro)[dicyclohexyl(2',4',6'- triisopropylbiphenyl-2-yl)phosphoranylidene]palladium (57.8 mg, 0.0734 mmol) and K3PO4 (280 mg, 1.32 mmol) in 1,4-dioxane (3.4 mL) / water (0.3 mL) was purged with nitrogen then stirred at 90 °C for 15 h. The reaction mixture was cooled to room temperature and concentrated. The residue was purified by chromatography (20-25% EtOAc/ Hex) on silica gel to give the desired product as an off-white solid (188 mg, 75% yield). LC-MS calculated for C21H18N3O2 (M+H)+: 344.1; found: 344.1.
Step 4: [ 2-(2-methylbiphenyl-3- 5 -a ]pyridin-6-yl Jmethanol
Diisobutylaluminum hydride in DCM (643 μί, 0.643 mmol) was added to the solution of methyl 2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-a]pyridine-6-carboxylate (184 mg, 0.536 mmol) in Et^O (5 mL) at 0 °C. The mixture was stirred at room temperature for 3 h then another portion of diisobutylaluminum hydride (1M in DCM, 1 mL, 1 mmol) was added. The mixture was stirred at room temperature for another 2 h then quenched with aqueous NH4CI and stirred with Rochelle salt, and then extracted with DCM. The combined
extracts were dried over Na2S04, filtered and concentrated. The residue was purified by chromatography (50-100% EtOAc) on silica gel to give the desired product (86 mg, 51% yield). LC-MS calculated for C20H18N3O (M+H)+: 316.1 ; found: 316.1. Step 5: 2-( 2-methylbiphenyl-3-y 5-a Jpyridine-6-carbaldehyde
Dess-Martin periodinane (171 mg, 0.404 mmol) was added to a solution of [2-(2- methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-a]pyridin-6-yl]methanol (85 mg, 0.27 mmol) in dichloromethane (3 mL). The mixture was stirred at room temperature for 1 h then quenched with aqueous sodium bisulfite, and extracted with dichloromethane. The combined extracts were dried over Na2S04, filtered and concentrated. The residue was purified with
chromatography (20-40% EtOAc/Hex) on silica gel to give the desired product (70 mg). LC- MS calculated for C20H16N3O (M+H)+: m/z = 314.1 ; found: 314.1. Step 6: 2-({ [2-(2-methylbiphenyl-3-yl) [ 1 ,2, 4]triazolo [ 1 ,5-a]pyridin-6- yl ]methyl}amino)ethanol
Ethanolamine (8.7 μί, 0.15 mmol) was added to a solution of 2-(2-methylbiphenyl-3- yl)[l,2,4]triazolo[l ,5-a]pyridine-6-carbaldehyde (9.0 mg, 0.029 mmol) in N,N- dimethylformamide (0.28 mL), followed by acetic acid (2.5 μί, 0.04 mmol). The reaction mixture was stirred at room temperature for 10 min then sodium cyanoborohydride (5.4 mg, 0.087 mmol) was added. The mixture was stirred at room temperature ovemight then diluted with MeOH and purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to afford the desired product as the TFA salt. LC-MS calculated for C22H23N4O (M+H)+: m/z = 359.2; found: 359.2.
Example 19
(2.S)-l-{ [2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-a]pyridin-6-yl]methyl}piperidine-2- carboxylic acid
The title compound was prepared using similar procedures as described for Example 18 with (25)-piperidine-2-carboxylic acid replacing ethanolamine in Step 6. The resulting mixture was purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C26H27N4O2 (M+H)+: m/z = 427.2; found 427.2.
Example 20
2-({ [5-methyl-2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-c]pyrimidin-7- yl] methyl } am ino )ethanol
To a solution of 6-chloro-2-methylpyrimidin-4-amine (AK Scientific, cat# W3822: 585 mg, 4.07 mmol) in 1,4-dioxane (20.4 mL) was added ethoxycarbonyl isothiocyanate (553 μί, 4.89 mmol). The reaction mixture was heated at 50 °C for 6 h then cooled to room temperature and concentrated. The residue was dissolved in methanol (15 mL)/ethanol (15 mL) then N,N-diisopropylethylamine (1.42 mL, 8.15 mmol) was added, followed by hydroxylamine hydrochloride (849 mg, 12.2 mmol). The mixture was stirred at 50 °C for 3 h then cooled to room temperature and concentrated. The residue was directly used for the next step without further purification. LC-MS calculated for CeHvClNs (M+H)+: m/z = 184.0; found 184.0.
fert-Butyl nitrite (1.16 mL, 9.78 mmol) was added to a suspension of 7-chloro-5- methyl[l,2,4]triazolo[l,5-c]pyrimidin-2-amine (crude product from Step 1) and copper(I) iodide (1.55 g, 8.15 mmol) in acetonitrile (39.4 mL). The mixture was heated at 70 °C for 2 h then cooled to room temperature, diluted with dichloromethane and washed with water. The organic phase was dried over Na2S04, filtered and concentrated. The residue was purified by chromatography on silica gel to give the desired product as a yellow solid (61.0 mg). LC-MS calculated for C6H5CIN4 (M+H)+: m/z = 294.9; found 294.9. Step 3: 5-methyl-2-(2-methylbiphenyl-3-yl)-7-vinyl[l, 2, 4Jtriazolo[l, 5-cJpyrimidine
A mixture of 7-chloro-2-iodo-5-methyl[l ,2,4]triazolo[l ,5-c]pyrimidine (61 mg, 0.21 mmol), 4,4,5,5-tetramethyl-2-(2-methylbiphenyl-3-yl)-l,3,2-dioxaborolane (Example 1, Step 4: 67 mg, 0.23 mmol), (2'-aminobiphenyl-2-yl)(chloro)[dicyclohexyl(2',4',6'- triisopropylbiphenyl-2-yl)phosphoranylidene]palladium (16 mg, 0.02 mmol) and K3PO4 (79 mg, 0.37 mmol) in 1,4-dioxane (0.96 mL) / water (75 μί) was purged with nitrogen then heated at 90 °C for 3 h. The reaction mixture was cooled to room temperature then 4,4,5,5- tetramethyl-2-vinyl-l ,3,2-dioxaborolane (105 μί, 0.62 mmol) was added, followed by (2'- aminobiphenyl-2-yl)(chloro)[dicyclohexyl(2',4',6'-triisopropylbiphenyl-2- yl)phosphoranylidene]palladium (16 mg, 0.02 mmol) and K3PO4 (79 mg, 0.37 mmol). The mixture was purged with nitrogen again and stirred at 90 °C for 3 h. The reaction mixture was cooled to room temperature, diluted with dichloromethane then dried over Na2S04, filtered and concentrated. The residue was purified by chromatography (8-15% EtOAc/ Hex) on silica gel to give the desired product as an off-white solid. LC-MS calculated for C21H19N4 (M+H)+: m/z = 327.2; found 327.1.
Potassium osmate dihydrate (0.96 mg, 0.0026 mmol) and sodium periodate (5.85 mg, 0.0273 mmol) were added to the solution of 5-methyl-2-(2-methylbiphenyl-3-yl)-7- vinyl[l ,2,4]triazolo[l ,5-c]pyrimidine (8.5 mg, 0.026 mmol) in tetrahydrofuran (0.07 mL) and water (0.11 mL). The mixture was stirred at room temperature for 1 h then diluted with ethyl acetate and washed with water. The organic phase was dried over Na2S04, filtered and concentrated. The residue was directly used for the next step without further purification. LC- MS calculated for C20H17N4O (M+H)+: m/z = 329.1 ; found 329.2. Step 5: 2-({ [5-methyl-2-(2-methylbiphenyl-3-yl) [ 1 , 2, 4]triazolo[ 1 , 5-c]pyrimidin-7- yl ]methyl}amino)ethanol
Ethanolamine (5.9 μί, 0.097 mmol) was added to the solution of 5-methyl-2-(2- methylbiphenyl-3-yl)[l ,2,4]triazolo[l ,5-c]pyrirnidine-7-carbaldehyde (6.4 mg, 0.019 mmol) in N,N-dimethylformamide (0.19 mL), followed by acetic acid (1.7 xL, 0.029 mmol). The mixture was stirred at room temperature for 10 min then sodium cyanoborohydride (3.7 mg, 0.059 mmol) was added. The mixture was stirred at room temperature overnight then diluted with MeOH and purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to afford the desired product as the TFA salt. LC-MS calculated for C22H24N5O (M+H)+: m/z = 374.2; found: 374.2.
Example 21
2-({ [8-chloro-2-(2-methylbiphenyl-3-yl)-[l,2,4]triazolo[l,5-a]pyridin-6- yl] methyl } am ino )ethanol
To a solution of (6-amino-5-chloropyridin-3-yl)methanol (551 mg, 3.47 mmol) in 1,4-dioxane (8.8 mL) was added ethoxycarbonyl isothiocyanate (471 μί, 4.17 mmol). The reaction mixture was stirred at room temperature for 15 h. The precipitate was filtered and washed with dichloromethane. The mother liquor was concentrated and filtered again. Two crops of the solid were collected and dried to give the desired product 599 mg (60% yield). LC-MS calculated for C10H13CIN3O3S (M+H)+: m/z = 290.0; found: 290.0.
Hydroxy aminehydrochloride (423 mg, 6.09 mmol) was added to a solution of ethyl ({ [3-chloro-5-(hydroxymethyl)pyridin-2-yl]amino} carbonothioyl)carbamate (588 mg, 2.03 mmol) in methanol (7.5 mL)/ethanol (7.5 mL), followed by N,N-diisopropylethylamine (0.707 mL, 4.06 mmol). The reaction mixture was then heated at 50 °C for 1.5 h. The crude was concentrated. The residue was directly used in the next step. LC-MS calculated for C7H8CIN4O (M+H)+: m/z = 199.0; found: 199.0.
fert-Butyl nitrite (579 μί, 4.87 mmol) was added to a suspension of (2-amino-8- chloro[l ,2,4]triazolo[l,5-a]pyridin-6-yl)methanol (403 mg, 2.03 mmol) and copper(II) bromide (906 mg, 4.06 mmol) in acetonitrile (19.6 mL). The mixture was stirred at room temperature for 3 h. The reaction mixture was diluted with dichloromethane and washed with water. The organic phase was dried, filtered and concentrated. The residue was purified by chromatography on silica gel (50-75% EtO Ac/Hex) to give the desired product as a white solid (428 mg, 82 % yield, two steps). LC-MS calculated for CvHeBrClNsO (M+H)+: m/z = 261.9; found: 261.9.
A mixture of (2-bromo-8-chloro[l,2,4]triazolo[l,5-a]pyridin-6-yl)methanol (350 mg, 1.33 mmol), 4,4,5,5-tetramethyl-2-(2-methylbiphenyl-3-yl)-l,3,2-dioxaborolane {Example 1, Step 4: 392 mg, 1.33 mmol), K3P04 (509 mg, 2.40 mmol) and
tetrakis(triphenylphosphine)palladium(0) (385 mg, 0.333 mmol) in 1,4-dioxane (6.18 mL) / water (480 μί) was stirred and heated at 110 °C for 4 h. The crude mixture was dried over a drying agent and filtered. The filtrate was concentrated. The residue was purified by chromatography (40-60% EtOAc/Hex) on silica gel to give the desired product 291 mg (63% yield). LC-MS calculated for C20H17CIN3O (M+H)+: m/z = 350.1 ; found: 350.1.
Step 5: 8-chloro-2-(2-methylbiph 5 -a ]pyridine-6-carbaldehyde
Dess-Martin periodinane (706 mg, 1.66 mmol) was added to a solution of [8-chloro- 2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-a]pyridin-6-yl]methanol (291 mg, 0.832 mmol) in dichloromethane (3.94 mL). The mixture was stirred at room temperature for 1 h. The mixture was quenched with aq. sodium bisulfite and extracted with dichloromethane. The organic phase was dried over a drying agent and filtered. The filtrate was concentrated. The residue was purified by chromatography (15-25% EtOAc/Hex) on silica gel to give the desired product (215 mg, 74% yield) as a white solid. LC-MS calculated for C20H15CIN3O (M+H)+: m/z = 348.1; found: 348.1.
Step 6: 2-( { [8-chloro-2-(2-methylbiphenyl-3-yl) [ 1, 2, 4 Jtriazolof 1, 5 -a ]pyridin-6- yl Jmethyljaminojethanol
Ethanolamine (186 μί, 3.09 mmol) was added to a solution of 8-chloro-2-(2- methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-a]pyridine-6-carbaldehyde (215 mg, 0.618 mmol) in N,N-dimethylformamide (3.87 mL), followed by trifiuoroacetic acid (143 μί). The reaction mixture was stirred at room temperature for 10 min. Then sodium cyanoborohydride (116
mg, 1.85 mmol) was added. The reaction mixture was stirred at room temperature overnight. The crude was diluted with water and extracted with dichloromethane. The organic phase was concentrated. The residue was purified by chromatography on silica gel (5-15%
MeOH/DCM) to give the desired product 188 mg (77% yield). LC-MS calculated for C22H22CIN4O (M+H)+: m/z = 393.1 ; found: 393.1.
Example 22
2-({ [8- [(2-methoxyethyl)amino]-2-(2-methylbiphenyl-3-yl) [1,2,4] triazolo [ 1,5- a] pyridin- 6-yl] methyl } amino )erhan ol
[(2-Di-cyclohexylphosphino-3,6-dimethoxy-2',4',6'- triisopropyl-l,l '-biphenyl)-2-(2'- amino-Ι,Γ -biphenyl)]palladium(II) methanesulfonate methanesulfonate (Brettphos-Pd-G3, Aldrich, cat# 761605 : 3.7 mg, 0.0041 mmol) was added to a mixture of 2-({[8-chloro-2-(2- methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-a]pyridin-6-yl]methyl} amino)ethanol (8.0 mg, 0.020 mmol), cesium carbonate (13.3 mg, 0.0407 mmol) and 2-methoxyethylamine (5.3 \L, 0.061 mmol) in 1,4-dioxane (152 \L). The mixture was stirred at 100 °C for 45 min. The crude was diluted with MeOH and filtered. The filtrate was purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to afford the desired product as the TFA salt. LC-MS calculated for C25H30N5O2 (M+H)+: m/z = 432.2; found: 432.2.
Example 23
4-[6-{[(2-hydroxyethyl)amino]methyl}-2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5- a] pyridin-8-yl] butanenitrile
Chloro(2-dicyclohexylphosphino-2',6'-diisopropoxy-l, -biphenyl)[2-(2'-amino-l, - biphenyl)]palladium(II) (RuPhos-Pd-G2, Aldrich, cat#753246: 1.6 mg, 0.0020 mmol) was
added to a mixture of 2-({[8-chloro-2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-a]pyridin-6- yljmethyl} amino)ethanol {Example 21: 8.0 mg, 0.02 mmol), 4-(4,4,5,5-tetramethyl-l ,3,2- dioxaborolan-2-yl)butanenitrile (7.9 mg, 0.041 mmol) and cesium carbonate (13.3 mg, 0.0407 mmol) in 1 ,4-dioxane (94.5 μL)/water (31.1 μί). The mixture was stirred at 100 °C for 1 h. The crude was diluted with MeOH and filtered. The filtrate was purified by prep- HPLC (pH = 2, acetonitrile/water+TFA) to afford the desired product as the TFA salt. LC- MS calculated for C26H28N5O (M+H)+: m/z = 426.2; found: 426.3.
Example 24
[6-{ [(2-hydroxyethyl)amino]methyl}-2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5- a] pyridin-8-yl] acetonitrile
Chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-l, -biphenyl)[2-(2'-amino-l, - biphenyl)]palladium(II) (XPhos-Pd-G2, Aldrich, cat# 741825: 4.8 mg, 0.0061 mmol) was added to a mixture of 2-({[8-chloro-2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-a]pyridin-6- yl]methyl} amino)ethanol {Example 21: 12.0 mg, 0.0305 mmol), 4-(4,4,5,5-tetramethyl- l,3,2-dioxaborolan-2-yl)isoxazole (8.94 mg, 0.0458 mmol) and potassium phosphate (19.4 mg, 0.0916 mmol) in 1,4-dioxane (188 μί, 2.41 mmol)/water (1 1.0 μί, 0.61 1 mmol). The mixture was stirred at 100 °C for 2 h. The crude was diluted with MeOH and filtered through Celite. The filtrate was purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to afford the desired product as the TFA salt. LC-MS calculated for C24H24N5O (M+H)+: m/z = 398.2; found: 398.2.
Example 25
2-(8-chloro-6-{ [(2-hydroxyethyl)amino]methyl} [l,2,4]triazolo[l,5-a]pyridin-2-yl)-6-(2,3- dihydro-l,4-benzodioxin-6-yl)benzonitrile
Step 1: 2-bromo-6-(2, 3-dihydro-l, 4-benzodioxin-6-yl)benzonitrile
A mixture of 2-bromo-6-iodobenzonitrile (3.01 g, 9.78 mmol), 2,3-dihydi benzodioxin-6-ylboronic acid (1.60 g, 8.89 mmol), [Ι, Γ- bis(diphenylphosphino)ferrocene]dichloropalladium(II),complex with dichloromethane (1 : 1) (363 mg, 0.444 mmol) and potassium carbonate (3.07 g, 22.2 mmol) in 1,4-dioxane (36.0 mL, 462 mmol) and water (1.60 mL, 88.9 mmol) was degassed and recharged with nitrogen. The mixture was then heated and stirred at 75 °C for 4 h. The reaction mixture was dried over a drying agent and filtered. The filtrate was concentrated. The residue was purified by chromatography on silica gel (10-15% EtO Ac/Hex) to afford the desired product 1.48 g. LC- MS calculated for CisHiiBrNC (M+H)+: m/z = 316.0 and 318.0; found: 316.0 and 318.0.
Step 2: 2-(2, 3-dihydro-l, 4-benzodioxin-6-yl)-6-(4, 4, 5, 5-tetramethyl-l, 3, 2-dioxaborolan-2- yl)benzonitrile
A mixture of 2-bromo-6-(2,3-dihydro-l ,4-benzodioxin-6-yl)benzonitrile (1.20 g, 3.80 mmol), Bis(pinacolato)diboron (1.06 g, 4.18 mmol), [Ι ,Γ- bis(diphenylphosphino)ferrocene]dichloropalladium(II),complex with dichloromethane (1 : 1) (150 mg, 0.19 mmol), potassium acetate (1.1 g, 1 1 mmol) in 1,4-dioxane (30 mL, 400 mmol) was degassed for 5 min, and then stirred at 90 °C for 4 h. The crude was diluted with dichloromethane and then filtered. The filtrate was concentrated. The residue was purified by chromatography on silica gel to afford the desired product. LC-MS calculated for
C21H23BNO4 (M+H)+: m/z = 364.2; found: 364.2.
Step 3: 2-(8-chloro-6-{[(2-hydroxyethyl)amino Jmethyljf 1, 2, 4]triazolo[ 1, 5-a Jpyridin-
(2, 3-dihydro-l, 4-benzodioxin-6-yl)benzonitrile
This compound was prepared using similar procedures as described for Example 21. The resulting crude was purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C24H21CIN5O3 (M+H)+: m/z = 462.1 ; found: 462.1.
Example 26
2-[2-cyano-3-(2,3-dihydro-l,4-benzodioxin-6-yl)phenyl]-6-{[(2- hydroxyethyl)amino]meth l} [l,2,4]triazolo[l,5-a]pyridine-8-carbonitrile
A mixture of 2-(8-chloro-6-{ [(2-hydroxyethyl)amino]methyl} [l,2,4]triazolo[l ,5-a] pyridin-2-yl)-6-(2,3-dihydro-l ,4-benzodioxin-6-yl)benzonitrile {Example 25: 6.0 mg, 0.013 mmol), potassium hexacyanoferrate(II) trihydrate (5.49 mg, 0.0130 mmol), and potassium acetate (0.255 mg, 0.00260 mmol) in 1 ,4-dioxane (32.2 μί) / water (32.2 μί) was stirred and heated at 100 °C for 1 h. The resulting crude was diluted with MeOH and filtered. The filtrate was purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C25H21N6O3 (M+H)+: m/z = 453.2; found: 453.2.
Example 27
2-(8-(cyanomethyl)-6-{ [(2-hydroxyethyl)amino]methyl}[l,2,4]triazolo[l,5-a]pyridin-2- yl)-6-(2,3-dihydro-l,4-benz ioxin-6-yl)benzonitrile
This compound was prepared using similar procedures as described for Example 24. The resulting crude was purified by prep-HPLC (pH = 2, acetonitrile/water+TFA) to give the desired product as the TFA salt. LC-MS calculated for C26H23N6O3 (M+H)+: m/z = 467.2;
found: 467.2.
Example A. PD-1/PD-L1 Homogeneous Time-Resolved Fluorescence (HTRF) binding assay
The assays were conducted in a standard black 384-well polystyrene plate with a final volume of 20 μί. Inhibitors were first serially diluted in DMSO and then added to the plate wells before the addition of other reaction components. The final concentration of DMSO in the assay was 1 %. The assays were carried out at 25° C in the PBS buffer (pH 7.4) with 0.05% Tween-20 and 0.1 % BSA. Recombinant human PD-L1 protein (19-238) with a His- tag at the C-terminus was purchased from AcroBiosy stems (PD 1-H5229). Recombinant human PD-1 protein (25-167) with Fc tag at the C-terminus was also purchased from
AcroBiosystems (PD1-H5257). PD-L1 and PD-1 proteins were diluted in the assay buffer and \ 0 μΐ. was added to the plate well. Plates were centrifuged and proteins were
preincubated with inhibitors for 40 minutes. The incubation was followed by the addition of \0 μΐ. of HTRF detection buffer supplemented with Europium cryptate-labeled anti -human IgG (PerkinElmer-AD0212) specific for Fc and anti-His antibody conjugated to SureLight®- Allophycocyanin (APC, PerkinElmer-AD0059H). After centrifugation, the plate was incubated at 25° C for 60 min. before reading on a PHERAstar FS plate reader
(665nm/620nm ratio). Final concentrations in the assay were - 3 nM PD1, 10 nM PD-L1 , 1 nM europium anti-human IgG and 20 nM anti-His-Allophycocyanin.ICso determination was performed by fitting the curve of percent control activity versus the log of the inhibitor concentration using the GraphPad Prism 5.0 software.
Compounds of the present disclosure, as exemplified in Examples 1-20, showed IC50 values in the following ranges: + = IC50≤ 100 nM; ++ = 100 nM < IC50≤ 500 nM; +++ = 500 nM < IC5o≤ 10000 nM
Data obtained for the Example compounds using the PD-1/PD-L1 homogenous time- resolved fluorescence (HTRF) binding assay described in Example A is provided in Table 1.
Table 1
Example
ICso (nM)
4 +++
5 +
6 ++
7 ++
8 ++
9 ++
10 ++
11 ++
12 ++
13 +
14 +++
15 ++
16 +
17 ++
18 +
19 ++
20 +
21 +
22 ++
23 +
24 +
25 +
26 +
27 +
Various modifications of the invention, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. Each reference, including without limitation all patent, patent applications, and publications, cited in the present application is incorporated herein by reference in its entirety.
Claims
What is claimed is:
or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein:
one of Y1 and Y2 is N and the other of Y1 and Y2 is C;
X1 is N or CR1;
X2 is N or CR2;
X3 is N or CR3;
X4 is N or CR4;
X5 is N or CR5;
X6 is N or CR6;
Cy is Ce-ιο aryl, C3-10 cycloalkyl, 5- to 14-membered heteroaryl, or 4- to 10-membered heterocycloalkyl, each of which is optionally substituted with 1 to 4 independently selected R7 substituents;
Z1 is N or CR8a;
Z2 is N or CR8b;
Z3 is N or CR8c;
R1, R2, R8a, R8b and R8c are each independently selected from H, Ci-4 alkyl, C3-6 cycloalkyl, C3-6 cycloalkyl-Ci-4 alkyl-, Ce-ιο aryl, Ce-io aryl-Ci-4 alkyl-, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, C2-4 alkenyl, C2-4 alkynyl, halo, CN, OR10, C1-4 haloalkyl, Ci-4 haloalkoxy, NH2, -NHR10, -NR10R10, NHOR10, C(0)R10, C(O)NR10R10, C(0)OR10, OC(0)R10, OC(O)NR10R10, NR10C(O)R10, NR10C(O)OR10, NR10C(O)NR10R10, C(=NR10)R10, C(=NR10)NR10R10, NR10C(=NR10)NR10R10, NR10S(O)R10, NR10S(O)2R10, NR10S(O)2NR10R10, S(0)R10, S(O)NR10R10, S(0)2R10, and S(O)2NR10R10, wherein each R10 is independently selected from H, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, C1-4 alkoxy, C3-6 cycloalkyl, C3-6 cycloalkyl-Ci-4 alkyl-, Ce-ιο aryl, Ce-io aryl-Ci-4 alkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4- 10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, Ci-4 alkoxy, C3-6 cycloalkyl, C3-6 cycloalkyl-Ci-4 alkyl-, Ce-ιο aryl, Ce-ιο aryl-Ci-4 alkyl-, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, (5-10 membered heteroaryl)-Ci-4
alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R1, R2, R8a, R8b, R8c and R10 are each optionally substituted with 1 , 2 or 3 independently selected Rb substituents;
R9 is halo, Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, CN, NO2, OR11, SR.11, NH2, NHR11, NRnRn, NHOR11, C(0)Rn, C(0)NRnRn, C(0)ORn, OC(0)Rn, OC(0)NRnRn, NRnC(0)Rn, NR11C(0)OR11, NR11C(0)NR11R11, C(=NR11)R11, C(=NR11)NR11R11,
NR11C(=NR11)NR11R11, NRnS(0)Rn, NR^ O^R11, NR^ O^NR11^1, S(0)Rn,
S(0)NRnRn, S(0)2Rn, and S(0)2NR11R11, wherein the Ci-e alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R9 are each optionally substituted with 1, 2 or 3 Rb substituents;
each R11 is independently selected from H, Ci-6 alkyl, Ci-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R11 are each optionally substituted with 1 , 2 or 3 independently selected Rb substituents;
R3, R4, R5, R6 and R7 are each independently selected from H, halo, Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-C 1-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered
heterocycloalkyl)-Ci-4 alkyl-, CN, NO2, ORa, SRa, NHORa, C(0)Ra, C(0)NRaRa, C(0)ORa, OC(0)Ra, OC(0)NRaRa, NHRa, NRaRa, NRaC(0)Ra, NRaC(0)ORa, NRaC(0)NRaRa, C(=NRa)Ra, C(=NRa)NRaRa, NRaC(=NRa)NRaRa, NRaS(0)Ra, NRaS(0)2Ra, NRaS(0)2NRaRa, S(0)Ra, S(0)NRaRa, S(0)2Ra, and S(0)2NRaRa, wherein the Ci-e alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R3, R4, R5, R6
and R7 are each optionally substituted with 1, 2, 3, or 4 Rb substituents, with the proviso that at least one of R3, R4, R5 and R6 is other than H;
or two adjacent R7 substituents on the Cy ring, taken together with the atoms to which they are attached, form a fused phenyl ring, a fused 5-, 6- or 7-membered heterocycloalkyl ring, a fused 5- or 6-membered heteroaryl ring or a fused C3-6 cycloalkyl ring, wherein the fused 5-, 6- or 7-membered heterocycloalkyl ring and fused 5- or 6-membered heteroaryl ring each have 1-4 heteroatoms as ring members selected from N, O and S and wherein the fused phenyl ring, fused 5-, 6- or 7-membered heterocycloalkyl ring, fused 5- or 6-membered heteroaryl ring and fused C3-6 cycloalkyl ring are each optionally substituted with 1, 2 or 3 independently selected Rb substituents;
each Ra is independently selected from H, CN, Ci-6 alkyl, Ci-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Ra are each optionally substituted with 1, 2, 3, 4, or 5 Rd substituents;
each Rd is independently selected from Ci-6 alkyl, Ci-6 haloalkyl, halo, C6-io aryl, 5-10 membered heteroaryl, C3-10 cycloalkyl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl- , C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, CN, NH2, NHORe, ORe, SRe, C(0)Re, C(0)NReRe, C(0)ORe, OC(0)Re, OC(0)NReRe, NHRe, NReRe, NReC(0)Re, NReC(0)NReRe, NReC(0)ORe, C(=NRe)NReRe, NReC (=NRe)NReRe, NReC(=NOH)NReRe, NReC(=NCN)NReRe, S(0)Re, S(0)NReRe, S(0)2Re, NReS(0)2Re, NReS(0)2NReRe, and S(0)2NReRe, wherein the Ci-e alkyl, Ci-6 haloalkyl, Ce-ιο aryl, 5-10 membered heteroaryl, C3-10 cycloalkyl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rd are each optionally substituted with 1-3 independently selected Rh substituents;
each Rb substituent is independently selected from halo, C1-4 alkyl, C1-4 haloalkyl, C1-4 haloalkoxy, C6-io aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, CN, OH, NH2, NO2, NHORc, ORc, SRC, C(0)Rc, C(0)NRcRc, C(0)ORc, OC(0)Rc, OC(0)NRcRc, C(=NRC)NRCRC,
NRCC(=NRC)NRCRC, NHRC, NRCRC, NRcC(0)Rc, NRcC(0)ORc, NRcC(0)NRcRc, NRcS(0)Rc, NRcS(0)2Rc, NRcS(0)2NRcRc, S(0)Rc, S(0)NRcRc, S(0)2Rc and S(0)2NRcRc; wherein the Ci-4 alkyl, Ci-4 haloalkyl, Ci-4 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl- , (5-10 membered heteroaryl)-Ci-4 alkyl-and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rb are each further optionally substituted with 1 -3 independently selected Rd substituents; each Rc is independently selected from H, Ci-6 alkyl, C 1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rc are each optionally substituted with 1, 2, 3, 4, or 5 Rf substituents independently selected from Ci-4 alkyl, C 1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10
cycloalkyl-C 1-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered
heterocycloalkyl)-Ci-4 alkyl-, halo, CN, NHOR , ORg, SRg, C(0)Rg, C(0)NRgRg, C(0)ORg, OC(0)Rg, OC(0)NRgRg, NHRg, NRgRg, NRgC(0)Rg, NRgC(0)NRgRg, NRgC(0)ORg, C(=NRg)NRgRg, NRgC(=NRg)NRgRg, S(0)Rg, S(0)NRgRg, S(0)2Rg, NRgS(0)2Rg,
NR S(0)2NR R , and S(0)2NRgRg; wherein the C M alkyl, C M haloalkyl, C2-e alkenyl, C2-e alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, C0-10 aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rf are each optionally substituted with 1 , 2, 3, 4, or 5 Rn substituents independently selected from C 1-4 alkyl, C M haloalkyl, halo, CN, NHOR0, OR0, SR°, C(O)R0, C(O)NR0R°, C(O)OR0,
OC(0)R°, OC(0)NR°R°, NHR°, NR°R°, NR0C(O)R°, NR0C(O)NR°R°, NR°C(0)OR°, C(=NR°)NR°R°, NR0C(=NR°)NR°R0, S(O)R0, S(O)NR0R°, S(O)2R0, NR0S(O)2R°,
NR°S(0)2NR°R°, and S(O)2NR0R°;
each R is independently selected from H, Ci-6 alkyl, C 1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10
membered heterocycloalkyl, Ce-ιο ary 1-C 1-4 alky 1-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R are each optionally substituted with 1-3 Rp substituents independently selected from Ci-6 alkyl, Ci-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C6-io aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl- , (5-10 membered heteroaryl)-C 1-4 alkyl-, (4-10 membered heterocycloalkyl)-C 1-4 alkyl-, halo, CN, NHORr, ORr, SRr, C(0)Rr, C(0)NR¾r, C(0)ORr, OC(0)Rr, OC(0)NR¾r, NHRr, NRrRr, NRrC(0)Rr, NRrC(0)NRrRr, NRrC(0)ORr, C(=NRr)NRrRr, NRrC(=NRr)NRrRr, NRrC(=NOH)NRrRr, NRrC(=NCN)NRrRr, S(0)Rr, S(0)NRrRr, S(0)2Rr, NRrS(0)2Rr, NRrS(0)2NRrRr and S(0)2NRrRr, wherein the Ci-e alkyl, Ci-e haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rp is optionally substituted with 1, 2 or 3 Rq substituents;
or any two Ra substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, 7-, 8-, 9- or 10-membered heterocycloalkyl group optionally substituted with 1, 2 or 3 Rh substituents independently selected from Ci-6 alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce-ιο aryl, 5-6 membered heteroaryl, Ce-ιο aryl-Ci-4alkyl-, C3-10 cycloalkyl-C 1-4 alkyl-, (5-6 membered heteroaryl)-C 1-4 alkyl-, (4-7 membered
heterocycloalkyl)-Ci-4 alkyl-, Ci-6 haloalkyl, Ci-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, halo, CN, OR1, SR NHOR1, C(0)R\ C(0)NRiRi, C(0)ORi, OC(0)R\ OC(0)NRiRi, NHR', NR'R1, NR'C^R1, NRiC(0)NRiRi, NRiC(0)ORi, C(=NRi)NRiRi, NRiC(=NRi)NRiRi, S(0)R
S^NR'R1, S(0)2R\ NR^O^R1, Ν^δ(0)2Ν^, and δ(0)2Ν^, wherein the Ci-e alkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce-ιο aryl, 5-6 membered heteroaryl, Ce-ιο aryl-Ci-4alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-6 membered heteroaryl)-Ci-4 alkyl-, (4-7 membered heterocycloalkyl)-Ci-4 alkyl- of Rh are each further optionally substituted by 1, 2, or 3 Ri substituents independently selected from C3-6
cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, 4-7 membered heterocycloalkyl, C2-4 alkenyl, C2-4 alkynyl, halo, CM alkyl, Ci-4 haloalkyl, CN, NHORk, ORk, SRk, C(0)Rk, C(0)NRkRk, C(0)ORk, OC(0)Rk, OC(0)NRkRk, NHRk, NRkRk, NRkC(0)Rk,
NRkC(0)NRkRk, NRkC(0)ORk, C(=NRk)NRkRk, NRkC (=NRk)NRkRk, S(0)Rk, S(0)NRkRk, S(0)2Rk, NRkS(0)2Rk, NRkS(0)2NRkRk, and S(0)2NRkRk, wherein the CM alkyl, C3-6 cycloalkyl, Ce-ιο aryl, 5- or 6-membered heteroaryl, 4-6 membered heterocycloalkyl, C2-4 alkenyl, C2-4 alkynyl, Ci-4 haloalkyl, and Ci-4 haloalkoxy of Rj are each optionally substituted
with 1, 2 or 3 independently selected R substituents; or two Rh groups attached to the same carbon atom of the 4- to 10-membered heterocycloalkyl taken together with the carbon atom to which they are attached form a C3-6 cycloalkyl or 4- to 6-membered heterocycloalkyl having 1-2 heteroatoms as ring members selected from O, N or S;
or any two Rc substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two Re substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two R substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two R1 substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two Rk substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two R° substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents; and
each Re, R1, Rk, R° or Rp is independently selected from H, C1-4 alkyl, C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, 4-7 membered heterocycloalkyl, C1-4 haloalkyl, C2-4 alkenyl, and C2-4 alkynyl, wherein the C1-4 alkyl, C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, 4-7 membered heterocycloalkyl, C2-4 alkenyl, and C2-4 alkynyl of Re, R1, Rk, R° or Rp are each optionally substituted with 1, 2 or 3 Rq substituents;
each Rq is independently selected from OH, CN, -COOH, NH2, halo, C 1-6 haloalkyl, Ci-6 alkyl, Ci-6 alkoxy, Ci-6 alkylthio, phenyl, 5-6 membered heteroaryl, 4-6 membered heterocycloalkyl, C3-6 cycloalkyl, NHR12, NR12R12, and Ci-4 haloalkoxy, wherein the Ci-6 alkyl, phenyl, C3-6 cycloalkyl, 4-6 membered heterocycloalkyl, and 5-6 membered heteroaryl of Rq are each optionally substituted with halo, OH, CN, -COOH, NH2, Ci-4 alkyl, Ci-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, phenyl, C3-10 cycloalkyl, 5-6 membered heteroaryl and 4-6 membered heterocycloalkyl and each R12 is independently Ci-6 alkyl;
=is a single bond or a double bond to maintain ring A being aromatic; and with the proviso that the compound is other than 6-(6-chloro-3-methylimidazol[l ,2- a]pyridine-2-yl)-4-(4-chlorophenyl)-(l , l-dimethylethoxy)-2,5-dimethyl-3-pyridineacetic acid or 6-(6-chloroimidazol[l,2-a]pyridine-2-yl)-4-(4-chlorophenyl)-(l, l -dimethylethoxy)-2,5- dimethyl-3-pyridineacetic acid, or enantiomers thereof.
2. The compound of claim 1, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein:
one of Y1 and Y2 is N and the other of Y1 and Y2 is C;
X1 is N or CR1;
X2 is N or CR2;
X3 is N or CR3;
X4 is N or CR4;
X5 is N or CR5;
X6 is N or CR6;
Cy is Ce-ιο aryl, C3-10 cycloalkyl, 5- to 14-membered heteroaryl, or 4- to 10-membered heterocycloalkyl, each of which is optionally substituted with 1 to 4 independently selected R7 substituents;
Z1 is N or CR8a;
Z2 is N or CR8b;
Z3 is N or CR8c;
R1, R2, R8a, R8b and R8c are each independently selected from H, Ci-4 alkyl, C3-4 cycloalkyl, C2-4 alkenyl, C2-4 alkynyl, halo, CN, OH, C1-4 alkoxy, Cw haloalkyl, C1-4 haloalkoxy, NH2, -NH-Ci-4 alkyl, -N(Ci-4 alkyl)2, NHOR10, C(0)R10, C(O)NR10R10, C(0)OR10, OC(0)R10, OC(O)NR10R10, NR10C(O)R10, NR10C(O)OR10, NR10C(O)NR10R10, C(=NR10)R10, C(=NR10)NR10R10, NR10C(=NR10)NR10R10, NR10S(O)R10, NR10S(O)2R10, NR10S(O)2NR10R10, S(0)R10, S(O)NR10R10, S(0)2R10, and S(O)2NR10R10, wherein each R10 is independently selected from H and C1-4 alkyl optionally substituted with 1 or 2 groups independently selected from halo, OH, CN and C1-4 alkoxy; and wherein the C1-4 alkyl, C3-4 cycloalkyl, C2-4 alkenyl and C2-4 alkynyl of R1, R2, R8a, R8b and R8c are each optionally substituted with 1 or 2 substituents independently selected from halo, OH, CN and C1-4 alkoxy;
R9 is Ci-4 alkyl, halo, CN, OH, cyclopropyl, C2-4 alkynyl, C1-4 alkoxy, Ci-4 haloalkyl, Ci-4 haloalkoxy, NH2, -NH-Ci-4 alkyl, -N(Ci-4 alkyl)2, NHOR11, C(0)Rn, C(0)NRnRn,
C(0)ORn, OC(0)Rn, OC(0)NRnRn, NRnC(0)Rn, NRnC(0)ORn, NR^C^NR11!*.11, C(=NR11)R11, C(=NR11)NR11R11, NR11C(=NR11)NR11R11, NRnS(0)Rn, NR^ O^R11,
wherein Ci-4 alkyl, cyclopropyl, C2-4 alkynyl and C1-4 alkoxy of R9 are each optionally substituted with 1 or 2 substituents selected from halo, OH, CN and OCH3 and each R11 is independently selected from H and C1-4 alkyl optionally substituted with 1 or 2 halo, OH, CN or OCH3 substituents;
R3, R4, R5, R6 and R7 are each independently selected from H, halo, Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-C 1-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered
heterocycloalkyl)-Ci-4 alkyl-, CN, NO2, ORa, SRa, NHORa, C(0)Ra, C(0)NRaRa, C(0)ORa, OC(0)Ra, OC(0)NRaRa, NHRa, NRaRa, NRaC(0)Ra, NRaC(0)ORa, NRaC(0)NRaRa, C(=NRa)Ra, C(=NRa)NRaRa, NRaC(=NRa)NRaRa, NRaS(0)Ra, NRaS(0)2Ra, NRaS(0)2NRaRa, S(0)Ra, S(0)NRaRa, S(0)2Ra, and S(0)2NRaRa, wherein the Ci-e alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R3, R4, R5, R6 and R7 are each optionally substituted with 1, 2, 3, or 4 Rb substituents, with the proviso that at least one of R3, R4, R5 and R6 is other than H;
or two adjacent R7 substituents on the Cy ring, taken together with the atoms to which they are attached, form a fused phenyl ring, a fused 5-, 6- or 7-membered heterocycloalkyl ring, a fused 5- or 6-membered heteroaryl ring or a fused C3-6 cycloalkyl ring, wherein the fused 5-, 6- or 7-membered heterocycloalkyl ring and fused 5- or 6-membered heteroaryl ring each have 1-4 heteroatoms as ring members selected from N, O and S and wherein the fused phenyl ring, fused 5-, 6- or 7-membered heterocycloalkyl ring, fused 5- or 6-membered heteroaryl ring and fused C3-6 cycloalkyl ring are each optionally substituted with 1, 2 or 3 independently selected Rb substituents;
each Ra is independently selected from H, CN, Ci-6 alkyl, C 1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10
membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Ra are each optionally substituted with 1, 2, 3, 4, or 5 Rd substituents;
each Rd is independently selected from Ci-4 alkyl, Ci-4 haloalkyl, halo, C3-10
cycloalkyl, 4-10 membered heterocycloalkyl, CN, NH2, NHORe, ORe, SRe, C(0)Re,
C(0)NReRe, C(0)ORe, OC(0)Re, OC(0)NReRe, NHRe, NReRe, NReC(0)Re, NReC(0)NReRe, NReC(0)ORe, C(=NRe)NReRe, NReC(=NRe)NReRe, S(0)Re, S(0)NReRe, S(0)2Re,
NReS(0)2Re, NReS(0)2NReRe, and S(0)2NReRe, wherein the C M alkyl, C3-10 cycloalkyl and 4-10 membered heterocycloalkyl of Rd are each further optionally substituted with 1 -3 independently selected Rq substituents;
each Rb substituent is independently selected from halo, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 haloalkoxy, C6-io aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, CN, OH, NH2, N02, NHORc, ORc, SRC, C(0)Rc, C(0)NRcRc, C(0)ORc, OC(0)Rc, OC(0)NRcRc, C(=NRC)NRCRC, NRCC(=NRC)NRCRC, NHRC, NRCRC, NRcC(0)Rc, NRcC(0)ORc, NRcC(0)NRcRc, NRcS(0)Rc, NRcS(0)2Rc, NRcS(0)2NRcRc, S(0)Rc, S(0)NRcRc, S(0)2Rc and S(0)2NRcRc; wherein the Ci-4 alkyl, C 1-4 haloalkyl, C 1-4 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl- , (5-10 membered heteroaryl)-Ci-4 alkyl-and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rb are each further optionally substituted with 1 -3 independently selected Rd substituents; each Rc is independently selected from H, Ci-6 alkyl, C 1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rc are each optionally substituted with 1, 2, 3, 4, or 5 Rf substituents independently selected from Ci-4 alkyl, C 1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10
cycloalkyl-C 1-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered
heterocycloalkyl)-Ci-4 alkyl-, halo, CN, NHOR , ORg, SRg, C(0)Rg, C(0)NRgRg, C(0)ORg, OC(0)Rg, OC(0)NRgRg, NHRg, NRgRg, NRgC(0)Rg, NRgC(0)NRgRg, NRgC(0)ORg, C(=NRg)NRgRg, NRgC(=NRg)NRgRg, S(0)Rg, S(0)NRgRg, S(0)2Rg, NRgS(0)2Rg,
NR¾(0)2NRgRg, and S(0)2NR¾g; wherein the CM alkyl, Ci-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rf are each optionally substituted with 1, 2, 3, 4, or 5 Rn substituents independently selected from C1-4 alkyl, Ci-4 haloalkyl, halo, CN, NHOR0, OR0, SR°, C(O)R0, C(O)NR0R°, C(O)OR0,
OC(0)R°, OC(0)NR°R°, NHR°, NR°R°, NR0C(O)R°, NR0C(O)NR°R°, NR°C(0)OR°, C(=NR°)NR°R°, NR0C(=NR°)NR°R0, S(O)R0, S(O)NR0R°, S(O)2R0, NR0S(O)2R°,
NR0S(O)2NR°R0, and S(O)2NR0R°;
each R is independently selected from H, Ci-6 alkyl, Ci-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rg are each optionally substituted with 1-3 independently selected Rp substituents;
or any two Ra substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, 7-, 8-, 9- or 10-membered heterocycloalkyl group optionally substituted with 1, 2 or 3 Rh substituents independently selected from Ci-6 alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce-ιο aryl, 5-6 membered heteroaryl, C3-10 cycloalkyl-Ci-4 alkyl-, (5-6 membered heteroaryl)-Ci-4 alkyl-, (4-7 membered heterocycloalkyl)-Ci-4 alkyl-, Ci-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, halo, CN, OR1, SR NHOR1, C(0)R\ C(0)NR1R1, C(0)OR1, OC(0)R\ OC(0)NR1R1, NHR1, NR'R1, NR'C^R1, NRiC(0)NRiRi, NRiC(0)ORi, C(=NRi)NRiRi, NRiC(=NRi)NRiRi, S(0)R\ S^NR'R1, S(0)2R\ NR^O^R1,
NR^O^NRiR1, and δ(0)2Ν^^, wherein the Ci-e alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce-ιο aryl, 5-6 membered heteroaryl, C3-10 cycloalkyl-Ci-4 alkyl-, (5-6 membered heteroaryl)-Ci-4 alkyl-, (4-7 membered heterocycloalkyl)-Ci-4 alkyl- of Rh are each further optionally substituted by 1, 2, or 3 RJ substituents independently selected from C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, C2-4 alkenyl, C2-4 alkynyl, halo, C1-4 alkyl, Ci-4 haloalkyl, CN, NHORk, ORk, SRk, C(0)Rk, C(0)NRkRk, C(0)ORk, OC(0)Rk,
OC(0)NRkRk, NHRk, NRkRk, NRkC(0)Rk, NRkC(0)NRkRk, NRkC(0)ORk, C(=NRk)NRkRk, NRkC(=NRk)NRkRk, S(0)Rk, S(0)NRkRk, S(0)2Rk, NRkS(0)2Rk, NRkS(0)2NRkRk, and S(0)2NRkRk; or two Rh groups attached to the same carbon atom of the 4- to 10-membered
heterocycloalkyl taken together with the carbon atom to which they are attached form a C3-6 cycloalkyl or 4- to 6-membered heterocycloalkyl having 1-2 heteroatoms as ring members selected from O, N or S;
or any two Rc substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two Re substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two R substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two R1 substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two Rk substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two R° substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents; and
each Re, R1, Rk, R° or Rp is independently selected from H, C1-4 alkyl, C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, C1-4 haloalkyl, C2-4 alkenyl, and C2-4 alkynyl, wherein the Ci-4 alkyl, C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, C2-4 alkenyl, and C2-4 alkynyl of Re, R1, Rk, R° or Rp are each optionally substituted with 1, 2 or 3 Rq substituents; each R¾ is independently selected from OH, CN, -COOH, NH2, halo, C 1-6 haloalkyl, Ci-6 alkyl, Ci-6 alkoxy, Ci-6 haloalkoxy, Ci-6 alkylthio, phenyl, 5-6 membered heteroaryl, 4-6 membered heterocycloalkyl, C3-6 cycloalkyl, NHR12, NR12R12, and Ci-4 haloalkoxy, wherein the Ci-6 alkyl, phenyl, C3-6 cycloalkyl, 4-6 membered heterocycloalkyl, and 5-6 membered heteroaryl of Rq are each optionally substituted with halo, OH, CN, -COOH, NH2, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, phenyl, C3-10 cycloalkyl and 4-6 membered heterocycloalkyl and each R12 is independently Ci-6 alkyl; and
=^is a single bond or a double bond to maintain ring A being aromatic.
3. The compound of claim 1 or 2, having Formula (I):
or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein:
one of Y1 and Y2 is N and the other of Y1 and Y2 is C;
X1 is N or CR1;
X2 is N or CR2;
X3 is N or CR3;
X4 is N or CR4;
X5 is N or CR5;
X6 is N or CR6;
R1, R2 and R8 are each independently selected from H, Ci-4 alkyl, C3-4 cycloalkyl, C2-4 alkenyl, C2-4 alkynyl, halo, CN, OH, Ci-4 alkoxy, Ci-4 haloalkyl, Ci-4 haloalkoxy, NH2, -NH- Ci-4 alkyl, -N(Ci-4 alkyl)2, NHOR10, C(0)R10, C(O)NR10R10, C(0)OR10, OC(0)R10,
OC(O)NR10R10, NR10C(O)R10, NR10C(O)OR10, NR10C(O)NR10R10, C(=NR10)R10,
C(=NR10)NR10R10, NR10C(=NR10)NR10R10, NR10S(O)R10, NR10S(O)2R10,
NR10S(O)2NR10R10, S(0)R10, S(O)NR10R10, S(0)2R10, and S(O)2NR10R10, wherein each R10 is independently selected from H and C1-4 alkyl optionally substituted with 1 or 2 groups independently selected from halo, OH, CN and C1-4 alkoxy; and wherein the C1-4 alkyl, C3-4 cycloalkyl, C2-4 alkenyl and C2-4 alkynyl of R1, R2 or R8 are each optionally substituted with 1 or 2 substituents independently selected from halo, OH, CN and C1-4 alkoxy;
R9 is Ci-4 alkyl, halo, CN, OH, cyclopropyl, C2-4 alkynyl, C1-4 alkoxy, Ci-4 haloalkyl, Ci-4 haloalkoxy, NH2, -NH-Ci-4 alkyl, -N(Ci-4 alkyl)2, NHOR11, C(0)Rn, C(0)NRnRn, C(0)ORn, OC(0)Rn, OC(0)NRnRn, NRnC(0)Rn, NRnC(0)ORn, NR11C(0)NR11R11, C(=NR11)R11, C(=NR11)NR11R11, NR11C(=NR11)NR11R11, NRnS(0)Rn, NR^CO^R11, NR11S(0)2NR11R11, S(0)Rn, S(0)NRnRn, S(0)2Rn, and SCO^NR11^1, wherein each R11 is independently selected from H and C1-4 alkyl optionally substituted with 1 or 2 halo, OH, CN
R3, R4, R5, R6 and R7 are each independently selected from H, halo, Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10
cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered
heterocycloalkyl)-Ci-4 alkyl-, CN, NC , ORa, SRa, NHORa, C(0)Ra, C(0)NRaRa, C(0)ORa, OC(0)Ra, OC(0)NRaRa, NHRa, NRaRa, NRaC(0)Ra, NRaC(0)ORa, NRaC(0)NRaRa, C(=NRa)Ra, C(=NRa)NRaRa, NRaC(=NRa)NRaRa, NRaS(0)Ra, NRaS(0)2Ra, NRaS(0)2NRaRa, S(0)Ra, S(0)NRaRa, S(0)2Ra, and S(0)2NRaRa, wherein the Ci-e alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R3, R4, R5, R6 and R7 are each optionally substituted with 1, 2, 3, or 4 Rb substituents, with the proviso that at least one of R3, R4, R5 and R6 is other than H;
or two adjacent R7 substituents on the phenyl ring, taken together with the carbon atoms to which they are attached, form a fused phenyl ring, a fused 5-, 6- or 7-membered heterocycloalkyl ring, a fused 5- or 6-membered heteroaryl ring or a fused C5-6 cycloalkyl ring, wherein the fused 5-, 6- or 7-membered heterocycloalkyl ring and fused 5- or 6- membered heteroaryl ring each have 1-4 heteroatoms as ring members selected from N, O and S and wherein the fused phenyl ring, fused 5-, 6- or 7-membered heterocycloalkyl ring, fused 5- or 6-membered heteroaryl ring and fused C5-6 cycloalkyl ring are each optionally substituted with 1 or 2 independently selected Rq substituents;
each Ra is independently selected from H, CN, Ci-6 alkyl, Ci-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Ra are each optionally substituted with 1, 2, 3, 4, or 5 Rd substituents;
each Rd is independently selected from C 1-4 alkyl, Ci-4 haloalkyl, halo, C3-10
cycloalkyl, 4-10 membered heterocycloalkyl, CN, NH2, NHORe, ORe, SRe, C(0)Re,
C(0)NReRe, C(0)ORe, OC(0)Re, OC(0)NReRe, NHRe, NReRe, NReC(0)Re, NReC(0)NReRe, NReC(0)ORe, C(=NRe)NReRe, NReC(=NRe)NReRe, S(0)Re, S(0)NReRe, S(0)2Re,
NReS(0)2Re, NReS(0)2NReRe, and S(0)2NReRe, wherein the C M alkyl, C3-10 cycloalkyl and 4-10 membered heterocycloalkyl of Rd are each further optionally substituted with 1 -3 independently selected Rq substituents;
each Rb substituent is independently selected from halo, Ci-4 alkyl, Ci-4 haloalkyl, Ci-4 haloalkoxy, C6-io aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, CN, OH, NH2, NO2, NHORc, ORc, SRC, C(0)Rc, C(0)NRcRc, C(0)ORc, OC(0)Rc, OC(0)NRcRc, C(=NRC)NRCRC, NRCC(=NRC)NRCRC, NHRC, NRCRC, NRcC(0)Rc, NRcC(0)ORc, NRcC(0)NRcRc, NRcS(0)Rc, NRcS(0)2Rc, NRcS(0)2NRcRc, S(0)Rc, S(0)NRcRc, S(0)2Rc and S(0)2NRcRc; wherein the Ci-4 alkyl, C1-4 haloalkyl, C 1-4 haloalkoxy, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl- , (5-10 membered heteroaryl)-Ci-4 alkyl-and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rb are each further optionally substituted with 1-3 independently selected Rd substituents; each Rc is independently selected from H, Ci-6 alkyl, C 1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rc are each optionally substituted with 1, 2, 3, 4, or 5 Rf substituents independently selected from Ci-4 alkyl, C1-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-C 1-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, (4-10 membered
heterocycloalkyl)-Ci-4 alkyl-, halo, CN, NHOR , ORg, SRg, C(0)Rg, C(0)NRgRg, C(0)ORg, OC(0)Rg, OC(0)NRgRg, NHRg, NRgRg, NRgC(0)Rg, NRgC(0)NRgRg, NRgC(0)ORg, C(=NRg)NRgRg, NRgC(=NRg)NRgRg, S(0)Rg, S(0)NRgRg, S(0)2Rg, NRgS(0)2Rg,
NRgS(0)2NRgRg, and S(0)2NRgRg; wherein the CM alkyl, CM haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rf are each optionally substituted with 1, 2, 3, 4, or 5 Rn substituents independently selected from C1-4 alkyl, CM haloalkyl, halo, CN, NHOR0, OR0, SR°, C(O)R0, C(O)NR0R°, C(O)OR0,
OC(0)R°, OC(0)NR°R°, NHR°, NR°R°, NR0C(O)R°, NR0C(O)NR°R°, NR°C(0)OR°, C(=NR°)NR°R°, NR0C(=NR°)NR°R0, S(O)R0, S(O)NR0R°, S(O)2R0, NR0S(O)2R°,
NR°S(0)2NR°R°, and S(0)2NR°R°;
each R is independently selected from H, Ci-6 alkyl, Ci-4 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered
heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, wherein the Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-ιο aryl, C3-10 cycloalkyl, 5-10 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-C 1-4 alkyl-, C3-io cycloalkyl-Ci-4 alkyl-, (5-10 membered heteroaryl)-Ci-4 alkyl- and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of Rg are each optionally substituted with 1-3 independently selected Rp substituents;
or any two Ra substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, 7-, 8-, 9- or 10-membered heterocycloalkyl group optionally substituted with 1, 2 or 3 Rh substituents independently selected from Ci-6 alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce-ιο aryl, 5-6 membered heteroaryl, C3-10 cycloalkyl-Ci-4 alkyl-, (5-6 membered heteroaryl)-Ci-4 alkyl-, (4-7 membered heterocycloalkyl)-Ci-4 alkyl-, Ci-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, halo, CN, OR1, SR, NHOR, C(0)R, C(0)NRR, C(0)OR, OC(0)R, OC C N , NHR', NRR, N C C , N C C N , NRC(0)OR, C(=NR)NRR, NRiC(=NR1)NRiRi, S(0)R, SiOJNR'R', S(0)2R, NRS(0)2R,
N S O^N , and S O^N , wherein the Ci-e alkyl, C3-10 cycloalkyl, 4-7 membered heterocycloalkyl, Ce-ιο aryl, 5-6 membered heteroaryl, C3-10 cycloalkyl-Ci-4 alkyl-, (5-6 membered heteroaryl)-Ci-4 alkyl-, (4-7 membered heterocycloalkyl)-Ci-4 alkyl- of Rh are each further optionally substituted by 1 , 2, or 3 Ri substituents independently selected from C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, C2-4 alkenyl, C2-4 alkynyl, halo, C 1-4 alkyl, CM haloalkyl, CN, NHORk, ORk, SRk, C(0)Rk, C(0)NRkRk, C(0)ORk, OC(0)Rk,
OC(0)NRkRk, NHRk, NRkRk, NRkC(0)Rk, NRkC(0)NRkRk, NRkC(0)ORk, C(=NRk)NRkRk, NRkC(=NRk)NRkRk, S(0)Rk, S(0)NRkRk, S(0)2Rk, NRkS(0)2Rk, NRkS(0)2NRkRk, and S(0)2NRkRk; or two Rh groups attached to the same carbon atom of the 4- to 10-membered heterocycloalkyl taken together with the carbon atom to which they are attached form a C3-6 cycloalkyl or 4- to 6-membered heterocycloalkyl having 1 -2 heteroatoms as ring members selected from O, N or S;
or any two Rc substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents;
or any two Re substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1 , 2, or 3 independently selected Rh substituents;
or any two R substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two R1 substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two Rk substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents;
or any two R° substituents together with the nitrogen atom to which they are attached form a 4-, 5-, 6-, or 7-membered heterocycloalkyl group optionally substituted with 1, 2, or 3 independently selected Rh substituents; and
each Re, R1, Rk, R° or Rp is independently selected from H, Ci-4 alkyl, C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, C1-4 haloalkyl, C2-4 alkenyl, and C2-4 alkynyl, wherein the Ci-4 alkyl, C3-6 cycloalkyl, Ce-ιο aryl, 5 or 6-membered heteroaryl, C2-4 alkenyl, and C2-4 alkynyl of Re, R1, Rk, R° or Rp are each optionally substituted with 1, 2 or 3 Rq substituents; each R¾ is independently selected from OH, CN, -COOH, NH2, halo, CM alkyl, CM alkoxy, C1-4 alkylthio, phenyl, 5-6 membered heteroaryl, C3-6 cycloalkyl, NHR12, NR12R12, and Ci-4 haloalkoxy, wherein the C1-4 alkyl, phenyl and 5-6 membered heteroaryl of Rq are each optionally substituted with OH, CN, -COOH, NH2, C1-4 alkoxy, C3-10 cycloalkyl and 4-6 membered heterocycloalkyl and each R12 is independently Ci-6 alkyl;
=is a single bond or a double bond to maintain ring A being aromatic;
the subscript n is an integer of 1, 2, 3, 4 or 5; and
the subscript m is an integer of 1, 2 or 3.
4. The compound of any one of claims 1-3, having Formula (II):
wherein R4 is halo, Ci-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, Ci-6 haloalkyl, Ci-6
haloalkoxy, C6-io aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered
heteroaryl)-Ci-4 alkyl-, (4-10 membered heterocycloalkyl)-Ci-4 alkyl-, CN, N02, ORa, SRa, NHORa, C(0)Ra, C(0)NRaRa, C(0)ORa, OC(0)Ra, OC(0)NRaRa, NHRa, NRaRa,
NRaC(0)Ra, NRaC(0)ORa, NRaC(0)NRaRa, C(=NRa)Ra, C(=NRa)NRaRa,
NRaC(=NRa)NRaRa, NRaS(0)Ra, NRaS(0)2Ra, NRaS(0)2NRaRa, S(0)Ra, S(0)NRaRa, S(0)2Ra, and S(0)2NRaRa, wherein the Ci-e alkyl, C2-6 alkenyl, C2-6 alkynyl, Ce-io aryl, C3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, Ce-ιο aryl-Ci-4 alkyl-, C3-10 cycloalkyl-Ci-4 alkyl-, (5-14 membered heteroaryl)-Ci-4 alkyl-, and (4-10 membered heterocycloalkyl)-Ci-4 alkyl- of R4 are each optionally substituted with 1, 2, 3, or 4 Rb substituents, or a pharmaceutically acceptable salt or a stereoisomer thereof.
5. The compound of any one of claims 1-4, having Formula (III):
or a pharmaceutically acceptable salt or a stereoisomer thereof.
6. The compound of any one of claims 1-5, having Formula (IV):
7. The compound of any one of claims 1-4, having Formula (V):
or a pharmaceutically acceptable salt or a stereoisomer thereof.
8. The compound of any one of claims 1-4, having Formula (VI):
or a pharmaceutically acceptable salt or a stereoisomer thereof. salt
10. The compound of any one of claims 1-9, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein R1, R2, R3 and R5 are each H.
11. The compound of any one of claims 1-8, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein X1 is N, X2 is CH, X3, X5 and X6 are each CH, Y1 is N and Y2 is C.
12. The compound of any one of claims 1-8, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein X1 is CH, X2 is CH, X3, X5 and X6 are each CH, Y1 is C and Y2 is N.
13. The compound of any one of claims 1-8, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein X1 is CH, X2 is CH, X and X6 are each CH, X5 is N, Y1 is C and Y2 is N.
14. The compound of any one of claims 1-8, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein X1 is N, X2 is CH, X3 and X6 are each N, X5 is CH, Y1 is N and Y2 is C.
15. The compound of any one of claims 1-8, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein X1 is N, X2 is CH, X3 and X5 are each CH, X6 is N, Y1 is N and Y2 is C.
16. The compound of any one of claims 1-8, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein X1 is N, X2 is CH, X3 and X6 are each CH, X5 is N, Y1 is N and Y2 is C.
17. The compound of any one of claims 1-8, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein X1 is N, X2 is CH, X5 and X6 are each CH, X3 is N, Y1 is N and Y2 is C.
18. The compound of any one of claims 1-8, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein X1 and X2 are each N, X3, X5 and X6 are each CH, Y1 is C and Y2 is N.
19. The compound of any one of claims 1-8, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein X1 and X2 are each N, X3 is CH, X5 is N, X6 is CR6, Y1 is C and Y2 is N.
20. The compound of any one of claims 1-8, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein X1 is N, X2 is CH, X3 and X5 are each CH, X6 is CR6, Y1 is N and Y2 is C.
21. The compound of any one of claims 1-8, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein X1 and X2 are each N, X3 and X5 are each CH, X6 is CR6, Y1 is N and Y2 is C.
22. The compound of any one of claims 1-21, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein R4 is -CH2-Rb.
23. The compound of claim 22, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein Rb is -NRCRC.
24. The compound of any of claims 1-23, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein R4 is 2-hydroxyethylaminomethyl, 2- hydroxyethyl(methyl)aminomethyl, 2-carboxypiperidin-l -ylmethyl,
(cyanomethyl)aminomethyl, (S)-2-carboxypiperidin-l -ylmethyl or (R)-2-carboxypiperidin-l- ylmethyl.
25. The compound of claim 1, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein the compound is selected from:
2-({[2-(2-methylbiphenyl-3-yl)imidazo[l ,2-a]pyridin-6-yl]methyl} amino)ethanol;
2-({ [2-(2-methylbiphenyl-3-yl)indolizin-7-yl]methyl} amino)ethanol;
(2S)-l -{ [2-(2-methylbiphenyl-3-yl)indolizin-7-yl]methyl}piperidine-2-carboxylic acid;
(2S)-l- { [6-(2-methylbiphenyl-3-yl)pyrrolo[l,2-c]pyrimidin-3-yl]methyl}piperidine-2- carboxylic acid;
2-((6-(2-methylbiphenyl-3-yl)imidazo[l ,2-b] [1 ,2,4]triazin-2-yl)methylamino)ethanol;
2-((6-(2-methylbiphenyl-3-yl)imidazo[l ,2-b] [l ,2,4]triazin-2- yl)methylamino)acetonitrile;
2-((6-(2-methylbiphenyl-3-yl)imidazo[l ,2-b] [l ,2,4]triazin-2- yl)methylamino)acetamide;
2-(methyl((6-(2-methylbiphenyl-3-yl)imidazo[l,2-b][l,2,4]triazin-2- yl)methyl)amino)ethanol;
2-((8-methyl-2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyridin-6- yl)methylamino)ethanol;
(S)-l-((8-methyl-2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyridin-6- yl)methyl)piperidine-2-carboxylic acid;
2-((8-chloro-2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyridin-6- yl)methylamino)ethanol;
2-({[2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyrimidin-6-yl]methyl}amino)ethanol;
2-({[2-(2-methylbiphenyl-3-yl)imidazo[l,2-a]pyrazin-6-yl]methyl}amino)ethanol;
(^-l-((2-(2-methylbiphenyl-3-yl)imidazo[l,2-b]pyridazin-6-yl)methyl)piperidine-2- carboxylic acid;
2-({[2-(2-methylbiphenyl-3-yl)imidazo[l,2-b]pyridazin-6-yl]methyl}amino)ethanol;
2-( { [2-(2-methy lbipheny 1-3 -y 1)[ 1 ,2,4] triazolo[ 1 ,5 -a] py ridin-7- yl]methyl}amino)ethanol;
(2S)-l-{[2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-a]pyridin-7- yl]methyl}piperidine-2-carboxylic acid;
2-( { [2-(2-methy lbipheny 1-3 -y 1)[ 1 ,2,4] triazolo[ 1 ,5 -a] py ridin-6- yl]methyl}amino)ethanol;
(25 -l-{[2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-a]pyridin-6- yl]methyl}piperidine-2-carboxylic acid; and
2-({[5-methyl-2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5-c]pyrimidin-7- yl]methyl}amino)ethanol.
26. The compound of claim 1, or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein the compound is selected from:
2-({[8-chloro-2-(2-methylbiphenyl-3-yl)-[l,2,4]triazolo[l,5-a]pyridin-6- yl]methyl}amino)ethanol;
2-({[8-[(2-methoxyethyl)amino]-2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5- a] py ridin-6-y 1] methyl } amino)ethanol;
4-[6-{[(2-hydroxyethyl)amino]methyl}-2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5- a]pyridin-8-yl]butanenitrile;
[6-{[(2-hydroxyethyl)amino]methyl}-2-(2-methylbiphenyl-3-yl)[l,2,4]triazolo[l,5- a]pyridin-8-yl]acetonitrile;
2-(8-chloro-6-{[(2-hydroxyethyl)amino]methyl} [l,2,4]triazolo[l,5-a]pyridin-2-yl)-6- (2,3-dihydro-l,4-benzodioxin-6-yl)benzonitrile;
2-[2-cyano-3-(2,3-dihydro-l,4-benzodioxin-6-yl)phenyl]-6-{[(2- hydroxyethyl)amino]methyl} [l,2,4]triazolo[l,5-a]pyridine-8-carbonitrile; and
2-(8-(cyanomethyl)-6-{[(2-hydroxyethyl)amino]methyl} [l,2,4]triazolo[l,5-a]pyridin- 2-yl)-6-(2,3-dihydro-l,4-benzodioxin-6-yl)benzonitrile.
27. A pharmaceutical composition comprising a compound of any one of claims 1-26, or a pharmaceutically acceptable salt or a stereoisomer thereof.
28. A method of inhibiting PD-1/PD-L1 interaction, said method comprising administering to an individual a compound of any one of claims 1-26, or a pharmaceutically acceptable salt or a stereoisomer thereof.
29. A method of treating a disease or disorder associated with inhibition of PD- 1/PD-Ll interaction, said method comprising administering to a patient in need thereof a therapeutically effective amount of a compound of any one of claims 1-26, or a
pharmaceutically acceptable salt or a stereoisomer thereof, or a composition of claim 27.
30. The method of claim 29, wherein the disease or disorder is a viral infection or cancer.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES16787687T ES2928164T3 (en) | 2015-10-19 | 2016-10-18 | Heterocyclic compounds as immunomodulators |
EP16787687.9A EP3365340B1 (en) | 2015-10-19 | 2016-10-18 | Heterocyclic compounds as immunomodulators |
HK19100636.9A HK1258272A1 (en) | 2015-10-19 | 2019-01-15 | Heterocyclic compounds as immunomodulators |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562243307P | 2015-10-19 | 2015-10-19 | |
US62/243,307 | 2015-10-19 | ||
US201662322949P | 2016-04-15 | 2016-04-15 | |
US62/322,949 | 2016-04-15 | ||
US201662385053P | 2016-09-08 | 2016-09-08 | |
US62/385,053 | 2016-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017070089A1 true WO2017070089A1 (en) | 2017-04-27 |
Family
ID=57206446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2016/057487 WO2017070089A1 (en) | 2015-10-19 | 2016-10-18 | Heterocyclic compounds as immunomodulators |
Country Status (7)
Country | Link |
---|---|
US (3) | US20170107216A1 (en) |
EP (1) | EP3365340B1 (en) |
ES (1) | ES2928164T3 (en) |
HK (1) | HK1258272A1 (en) |
MA (1) | MA52119A (en) |
TW (1) | TW201718581A (en) |
WO (1) | WO2017070089A1 (en) |
Cited By (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018005374A1 (en) | 2016-06-27 | 2018-01-04 | Chemocentryx, Inc. | Immunomodulator compounds |
WO2018119236A1 (en) * | 2016-12-22 | 2018-06-28 | Incyte Corporation | Triazolo[1,5-a]pyridine derivatives as immunomodulators |
WO2018195321A1 (en) | 2017-04-20 | 2018-10-25 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
WO2019032547A1 (en) | 2017-08-08 | 2019-02-14 | Chemocentryx, Inc. | Macrocyclic immunomodulators |
CN109776377A (en) * | 2019-02-01 | 2019-05-21 | 沈阳药科大学 | Indoline-like compound and its preparation method and application |
US10308644B2 (en) | 2016-12-22 | 2019-06-04 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
WO2019160882A1 (en) | 2018-02-13 | 2019-08-22 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
WO2019165043A2 (en) | 2018-02-22 | 2019-08-29 | Chemocentryx, Inc. | Indane-amines as pd-l1 antagonists |
WO2019165374A1 (en) | 2018-02-26 | 2019-08-29 | Gilead Sciences, Inc. | Substituted pyrrolizine compounds as hbv replication inhibitors |
WO2019193543A1 (en) | 2018-04-06 | 2019-10-10 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3'3'-cyclic dinucleotides |
WO2019193542A1 (en) | 2018-04-06 | 2019-10-10 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2'3'-cyclic dinucleotides |
WO2019193533A1 (en) | 2018-04-06 | 2019-10-10 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2'2'-cyclic dinucleotides |
WO2019195181A1 (en) | 2018-04-05 | 2019-10-10 | Gilead Sciences, Inc. | Antibodies and fragments thereof that bind hepatitis b virus protein x |
WO2019200247A1 (en) | 2018-04-12 | 2019-10-17 | Precision Biosciences, Inc. | Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome |
WO2019204609A1 (en) | 2018-04-19 | 2019-10-24 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
WO2019211799A1 (en) | 2018-05-03 | 2019-11-07 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide |
WO2019230919A1 (en) | 2018-05-31 | 2019-12-05 | 小野薬品工業株式会社 | Biomarker for judging efficacy of immune checkpoint inhibitor |
WO2019232319A1 (en) | 2018-05-31 | 2019-12-05 | Peloton Therapeutics, Inc. | Compositions and methods for inhibiting cd73 |
WO2020014643A1 (en) | 2018-07-13 | 2020-01-16 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
WO2020011243A1 (en) * | 2018-07-12 | 2020-01-16 | Betta Pharmaceuticals Co., Ltd | Immunomodulators, compositions and methods thereof |
WO2020028097A1 (en) | 2018-08-01 | 2020-02-06 | Gilead Sciences, Inc. | Solid forms of (r)-11-(methoxymethyl)-12-(3-methoxypropoxy)-3,3-dimethyl-8-0x0-2,3,8,13b-tetrahydro-1h-pyrido[2,1-a]pyrrolo[1,2-c] phthalazine-7-c arboxylic acid |
US10618916B2 (en) | 2018-05-11 | 2020-04-14 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
WO2020075790A1 (en) | 2018-10-11 | 2020-04-16 | 小野薬品工業株式会社 | Sting-agonist compound |
WO2020086556A1 (en) | 2018-10-24 | 2020-04-30 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
WO2020088357A1 (en) | 2018-11-02 | 2020-05-07 | 上海再极医药科技有限公司 | Diphenyl-like compound, intermediate thereof, preparation method therefor, pharmaceutical composition thereof and uses thereof |
WO2020092621A1 (en) | 2018-10-31 | 2020-05-07 | Gilead Sciences, Inc. | Substituted 6-azabenzimidazole compounds as hpk1 inhibitors |
WO2020092528A1 (en) | 2018-10-31 | 2020-05-07 | Gilead Sciences, Inc. | Substituted 6-azabenzimidazole compounds having hpk1 inhibitory activity |
US10662416B2 (en) | 2016-10-14 | 2020-05-26 | Precision Biosciences, Inc. | Engineered meganucleases specific for recognition sequences in the hepatitis B virus genome |
KR20200057700A (en) * | 2017-07-28 | 2020-05-26 | 케모센트릭스, 인크. | Immunomodulator compounds |
US10669271B2 (en) | 2018-03-30 | 2020-06-02 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
WO2020178770A1 (en) | 2019-03-07 | 2020-09-10 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3'3'-cyclic dinucleotides and prodrugs thereof |
WO2020178769A1 (en) | 2019-03-07 | 2020-09-10 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2'3'-cyclic dinucleotides and prodrugs thereof |
WO2020178768A1 (en) | 2019-03-07 | 2020-09-10 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator |
WO2020192570A1 (en) | 2019-03-22 | 2020-10-01 | 上海再极医药科技有限公司 | Small-molecule inhibitor of pd-1/pd-l1, pharmaceutical composition thereof with pd-l1 antibody, and application of same |
US10806785B2 (en) | 2016-12-22 | 2020-10-20 | Incyte Corporation | Immunomodulator compounds and methods of use |
WO2020214663A1 (en) | 2019-04-17 | 2020-10-22 | Gilead Sciences, Inc. | Solid forms of a toll-like receptor modulator |
WO2020214652A1 (en) | 2019-04-17 | 2020-10-22 | Gilead Sciences, Inc. | Solid forms of a toll-like receptor modulator |
WO2020237025A1 (en) | 2019-05-23 | 2020-11-26 | Gilead Sciences, Inc. | Substituted exo-methylene-oxindoles which are hpk1/map4k1 inhibitors |
WO2021007386A1 (en) | 2019-07-10 | 2021-01-14 | Chemocentryx, Inc. | Indanes as pd-l1 inhibitors |
WO2021011891A1 (en) | 2019-07-18 | 2021-01-21 | Gilead Sciences, Inc. | Long-acting formulations of tenofovir alafenamide |
WO2021025031A1 (en) | 2019-08-05 | 2021-02-11 | 小野薬品工業株式会社 | Biomarker for accessing efficacy of immune checkpoint inhibitor |
WO2021034804A1 (en) | 2019-08-19 | 2021-02-25 | Gilead Sciences, Inc. | Pharmaceutical formulations of tenofovir alafenamide |
US10966999B2 (en) | 2017-12-20 | 2021-04-06 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein |
WO2021067181A1 (en) | 2019-09-30 | 2021-04-08 | Gilead Sciences, Inc. | Hbv vaccines and methods treating hbv |
WO2021113765A1 (en) | 2019-12-06 | 2021-06-10 | Precision Biosciences, Inc. | Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome |
WO2021136354A1 (en) | 2020-01-03 | 2021-07-08 | 上海翰森生物医药科技有限公司 | Biphenyl derivative inhibitor, preparation method therefor and use thereof |
WO2021138512A1 (en) | 2020-01-03 | 2021-07-08 | Incyte Corporation | Combination therapy comprising a2a/a2b and pd-1/pd-l1 inhibitors |
WO2021188959A1 (en) | 2020-03-20 | 2021-09-23 | Gilead Sciences, Inc. | Prodrugs of 4'-c-substituted-2-halo-2'-deoxyadenosine nucleosides and methods of making and using the same |
WO2021205631A1 (en) | 2020-04-10 | 2021-10-14 | 小野薬品工業株式会社 | Sting agonistic compound |
WO2021206158A1 (en) | 2020-04-10 | 2021-10-14 | 小野薬品工業株式会社 | Method of cancer therapy |
WO2021226206A2 (en) | 2020-05-05 | 2021-11-11 | Teon Therapeutics, Inc. | Cannabinoid receptor type 2 (cb2) modulators and uses thereof |
US11203610B2 (en) | 2017-12-20 | 2021-12-21 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein |
US11266643B2 (en) | 2019-05-15 | 2022-03-08 | Chemocentryx, Inc. | Triaryl compounds for treatment of PD-L1 diseases |
WO2022052926A1 (en) | 2020-09-09 | 2022-03-17 | 广州再极医药科技有限公司 | Aromatic ethylene compound and preparation method therefor, and intermediate, pharmaceutical composition, and application thereof |
WO2022147092A1 (en) | 2020-12-29 | 2022-07-07 | Incyte Corporation | Combination therapy comprising a2a/a2b inhibitors, pd-1/pd-l1 inhibitors, and anti-cd73 antibodies |
US11401279B2 (en) | 2019-09-30 | 2022-08-02 | Incyte Corporation | Pyrido[3,2-d]pyrimidine compounds as immunomodulators |
US11407749B2 (en) | 2015-10-19 | 2022-08-09 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11465981B2 (en) | 2016-12-22 | 2022-10-11 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11485708B2 (en) | 2019-06-20 | 2022-11-01 | Chemocentryx, Inc. | Compounds for treatment of PD-L1 diseases |
WO2022241134A1 (en) | 2021-05-13 | 2022-11-17 | Gilead Sciences, Inc. | COMBINATION OF A TLR8 MODULATING COMPOUND AND ANTI-HBV siRNA THERAPEUTICS |
WO2022261301A1 (en) | 2021-06-11 | 2022-12-15 | Gilead Sciences, Inc. | Combination mcl-1 inhibitors with anti-cancer agents |
WO2022261310A1 (en) | 2021-06-11 | 2022-12-15 | Gilead Sciences, Inc. | Combination mcl-1 inhibitors with anti-body drug conjugates |
US11535615B2 (en) | 2015-12-22 | 2022-12-27 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
WO2022271650A1 (en) | 2021-06-23 | 2022-12-29 | Gilead Sciences, Inc. | Diacylglyercol kinase modulating compounds |
WO2022271659A1 (en) | 2021-06-23 | 2022-12-29 | Gilead Sciences, Inc. | Diacylglyercol kinase modulating compounds |
WO2022271684A1 (en) | 2021-06-23 | 2022-12-29 | Gilead Sciences, Inc. | Diacylglyercol kinase modulating compounds |
WO2022271677A1 (en) | 2021-06-23 | 2022-12-29 | Gilead Sciences, Inc. | Diacylglyercol kinase modulating compounds |
US11572366B2 (en) | 2015-11-19 | 2023-02-07 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
WO2023034530A1 (en) | 2021-09-02 | 2023-03-09 | Teon Therapeutics, Inc. | Methods of improving growth and function of immune cells |
US11608337B2 (en) | 2016-05-06 | 2023-03-21 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11613536B2 (en) | 2016-08-29 | 2023-03-28 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
WO2023081730A1 (en) | 2021-11-03 | 2023-05-11 | Teon Therapeutics, Inc. | 4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide derivatives as cannabinoid cb2 receptor modulators for the treatment of cancer |
WO2023097211A1 (en) | 2021-11-24 | 2023-06-01 | The University Of Southern California | Methods for enhancing immune checkpoint inhibitor therapy |
US11673883B2 (en) | 2016-05-26 | 2023-06-13 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11673894B2 (en) | 2018-02-27 | 2023-06-13 | Incyte Corporation | Imidazopyrimidines and triazolopyrimidines as A2A / A2B inhibitors |
US11713307B2 (en) | 2019-10-16 | 2023-08-01 | Chemocentryx, Inc. | Heteroaryl-biphenyl amides for the treatment of PD-L1 diseases |
US11718605B2 (en) | 2016-07-14 | 2023-08-08 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11753406B2 (en) | 2019-08-09 | 2023-09-12 | Incyte Corporation | Salts of a PD-1/PD-L1 inhibitor |
US11760756B2 (en) | 2020-11-06 | 2023-09-19 | Incyte Corporation | Crystalline form of a PD-1/PD-L1 inhibitor |
US11780836B2 (en) | 2020-11-06 | 2023-10-10 | Incyte Corporation | Process of preparing a PD-1/PD-L1 inhibitor |
US11866429B2 (en) | 2019-10-16 | 2024-01-09 | Chemocentryx, Inc. | Heteroaryl-biphenyl amines for the treatment of PD-L1 diseases |
US11866434B2 (en) | 2020-11-06 | 2024-01-09 | Incyte Corporation | Process for making a PD-1/PD-L1 inhibitor and salts and crystalline forms thereof |
US11866451B2 (en) | 2019-11-11 | 2024-01-09 | Incyte Corporation | Salts and crystalline forms of a PD-1/PD-L1 inhibitor |
US11873304B2 (en) | 2018-05-18 | 2024-01-16 | Incyte Corporation | Fused pyrimidine derivatives as A2A/A2B inhibitors |
US11873309B2 (en) | 2016-06-20 | 2024-01-16 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
WO2024015372A1 (en) | 2022-07-14 | 2024-01-18 | Teon Therapeutics, Inc. | Adenosine receptor antagonists and uses thereof |
US11884665B2 (en) | 2019-01-29 | 2024-01-30 | Incyte Corporation | Pyrazolopyridines and triazolopyridines as A2A / A2B inhibitors |
US11999740B2 (en) | 2018-07-05 | 2024-06-04 | Incyte Corporation | Fused pyrazine derivatives as A2A / A2B inhibitors |
US12116417B2 (en) | 2017-11-14 | 2024-10-15 | GC Cell Corporation | Anti-HER2 antibody or antigen-binding fragment thereof, and chimeric antigen receptor comprising same |
Families Citing this family (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8754114B2 (en) | 2010-12-22 | 2014-06-17 | Incyte Corporation | Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3 |
ES2704744T3 (en) | 2012-06-13 | 2019-03-19 | Incyte Holdings Corp | Substituted tricyclic compounds as FGFR inhibitors |
CN109776525B (en) | 2013-04-19 | 2022-01-21 | 因赛特控股公司 | Bicyclic heterocycles as FGFR inhibitors |
US10851105B2 (en) | 2014-10-22 | 2020-12-01 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
MA41551A (en) | 2015-02-20 | 2017-12-26 | Incyte Corp | BICYCLIC HETEROCYCLES USED AS FGFR4 INHIBITORS |
AU2016219822B2 (en) | 2015-02-20 | 2020-07-09 | Incyte Holdings Corporation | Bicyclic heterocycles as FGFR inhibitors |
US11130740B2 (en) | 2017-04-25 | 2021-09-28 | Arbutus Biopharma Corporation | Substituted 2,3-dihydro-1H-indene analogs and methods using same |
AR111960A1 (en) | 2017-05-26 | 2019-09-04 | Incyte Corp | CRYSTALLINE FORMS OF A FGFR INHIBITOR AND PROCESSES FOR ITS PREPARATION |
WO2019191624A1 (en) | 2018-03-29 | 2019-10-03 | Arbutus Biopharma, Inc. | Substituted 1,1'-biphenyl compounds, analogues thereof, and methods using same |
BR112020022392A2 (en) | 2018-05-04 | 2021-02-02 | Incyte Corporation | solid forms of a fgfr inhibitor and processes for preparing them |
MX2020011639A (en) | 2018-05-04 | 2021-02-15 | Incyte Corp | Salts of an fgfr inhibitor. |
MA53726A (en) | 2018-09-25 | 2022-05-11 | Incyte Corp | PYRAZOLO[4,3-D]PYRIMIDINE COMPOUNDS AS ALK2 AND/OR FGFR MODULATORS |
US11066404B2 (en) | 2018-10-11 | 2021-07-20 | Incyte Corporation | Dihydropyrido[2,3-d]pyrimidinone compounds as CDK2 inhibitors |
MX2021007426A (en) | 2018-12-20 | 2021-09-08 | Incyte Corp | Imidazopyridazine and imidazopyridine compounds as inhibitors of activin receptor-like kinase-2. |
TW202045181A (en) | 2019-02-15 | 2020-12-16 | 美商英塞特公司 | Cyclin-dependent kinase 2 biomarkers and uses thereof |
WO2020168197A1 (en) | 2019-02-15 | 2020-08-20 | Incyte Corporation | Pyrrolo[2,3-d]pyrimidinone compounds as cdk2 inhibitors |
US11472791B2 (en) | 2019-03-05 | 2022-10-18 | Incyte Corporation | Pyrazolyl pyrimidinylamine compounds as CDK2 inhibitors |
WO2020185532A1 (en) | 2019-03-08 | 2020-09-17 | Incyte Corporation | Methods of treating cancer with an fgfr inhibitor |
US11919904B2 (en) | 2019-03-29 | 2024-03-05 | Incyte Corporation | Sulfonylamide compounds as CDK2 inhibitors |
US11447494B2 (en) | 2019-05-01 | 2022-09-20 | Incyte Corporation | Tricyclic amine compounds as CDK2 inhibitors |
WO2020223469A1 (en) | 2019-05-01 | 2020-11-05 | Incyte Corporation | N-(1-(methylsulfonyl)piperidin-4-yl)-4,5-di hydro-1h-imidazo[4,5-h]quinazolin-8-amine derivatives and related compounds as cyclin-dependent kinase 2 (cdk2) inhibitors for treating cancer |
US11591329B2 (en) | 2019-07-09 | 2023-02-28 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
CN116348458A (en) | 2019-08-14 | 2023-06-27 | 因赛特公司 | Imidazolylpyrimidinylamine compounds as CDK2 inhibitors |
WO2021067374A1 (en) | 2019-10-01 | 2021-04-08 | Incyte Corporation | Bicyclic heterocycles as fgfr inhibitors |
CR20220170A (en) | 2019-10-11 | 2022-10-10 | Incyte Corp | Bicyclic amines as cdk2 inhibitors |
IL291901A (en) | 2019-10-14 | 2022-06-01 | Incyte Corp | Bicyclic heterocycles as fgfr inhibitors |
WO2021076728A1 (en) | 2019-10-16 | 2021-04-22 | Incyte Corporation | Bicyclic heterocycles as fgfr inhibitors |
WO2021092159A1 (en) * | 2019-11-07 | 2021-05-14 | The Regents Of The University Of Colorado A Body Corporate | Papd5 inhibition as a treatment for dyskeratosis congenita, aplastic anemia and myelodysplastic syndrome caused by reduced telomerase rna levels |
KR20220131900A (en) | 2019-12-04 | 2022-09-29 | 인사이트 코포레이션 | Derivatives of FGFR inhibitors |
WO2021113479A1 (en) | 2019-12-04 | 2021-06-10 | Incyte Corporation | Tricyclic heterocycles as fgfr inhibitors |
TW202140471A (en) | 2020-01-10 | 2021-11-01 | 美商英塞特公司 | Tricyclic compounds as inhibitors of kras |
WO2021146424A1 (en) | 2020-01-15 | 2021-07-22 | Incyte Corporation | Bicyclic heterocycles as fgfr inhibitors |
WO2021150613A1 (en) | 2020-01-20 | 2021-07-29 | Incyte Corporation | Spiro compounds as inhibitors of kras |
TW202140487A (en) | 2020-02-06 | 2021-11-01 | 美商英塞特公司 | Salts and solid forms and processes of preparing a pi3k inhibitor |
US20210275666A1 (en) | 2020-03-06 | 2021-09-09 | Incyte Corporation | Combination therapy comprising axl/mer and pd-1/pd-l1 inhibitors |
CN113493469A (en) * | 2020-03-18 | 2021-10-12 | 成都倍特药业股份有限公司 | Compound capable of being used as immunomodulator, preparation method and application thereof |
US20210355121A1 (en) | 2020-04-16 | 2021-11-18 | Incyte Corporation | Fused tricyclic kras inhibitors |
US11739102B2 (en) | 2020-05-13 | 2023-08-29 | Incyte Corporation | Fused pyrimidine compounds as KRAS inhibitors |
CA3184811A1 (en) | 2020-06-12 | 2021-12-16 | Incyte Corporation | Imidazopyridazine compounds with activity as alk2 inhibitors |
US11753413B2 (en) | 2020-06-19 | 2023-09-12 | Incyte Corporation | Substituted pyrrolo[2,1-f][1,2,4]triazine compounds as JAK2 V617F inhibitors |
US11691971B2 (en) | 2020-06-19 | 2023-07-04 | Incyte Corporation | Naphthyridinone compounds as JAK2 V617F inhibitors |
US11767323B2 (en) | 2020-07-02 | 2023-09-26 | Incyte Corporation | Tricyclic pyridone compounds as JAK2 V617F inhibitors |
JP2023533724A (en) | 2020-07-02 | 2023-08-04 | インサイト・コーポレイション | Tricyclic urea compounds as JAK2 V617F inhibitors |
WO2022046989A1 (en) | 2020-08-27 | 2022-03-03 | Incyte Corporation | Tricyclic urea compounds as jak2 v617f inhibitors |
US11999752B2 (en) | 2020-08-28 | 2024-06-04 | Incyte Corporation | Vinyl imidazole compounds as inhibitors of KRAS |
WO2022072783A1 (en) | 2020-10-02 | 2022-04-07 | Incyte Corporation | Bicyclic dione compounds as inhibitors of kras |
CN114507227B (en) * | 2020-11-17 | 2024-06-21 | 中国医学科学院药物研究所 | Benzisothiazole compound, preparation method, pharmaceutical composition and application thereof |
WO2022140231A1 (en) | 2020-12-21 | 2022-06-30 | Incyte Corporation | Deazaguaine compounds as jak2 v617f inhibitors |
US11958861B2 (en) | 2021-02-25 | 2024-04-16 | Incyte Corporation | Spirocyclic lactams as JAK2 V617F inhibitors |
US12077539B2 (en) | 2021-03-22 | 2024-09-03 | Incyte Corporation | Imidazole and triazole KRAS inhibitors |
CA3215903A1 (en) | 2021-04-12 | 2022-10-20 | Incyte Corporation | Combination therapy comprising an fgfr inhibitor and a nectin-4 targeting agent |
EP4352059A1 (en) | 2021-06-09 | 2024-04-17 | Incyte Corporation | Tricyclic heterocycles as fgfr inhibitors |
CA3220155A1 (en) | 2021-06-09 | 2022-12-15 | Incyte Corporation | Tricyclic heterocycles as fgfr inhibitors |
US11981671B2 (en) | 2021-06-21 | 2024-05-14 | Incyte Corporation | Bicyclic pyrazolyl amines as CDK2 inhibitors |
KR20240032915A (en) | 2021-07-07 | 2024-03-12 | 인사이트 코포레이션 | Tricyclic compounds as inhibitors of KRAS |
EP4370515A1 (en) | 2021-07-14 | 2024-05-22 | Incyte Corporation | Tricyclic compounds as inhibitors of kras |
EP4396187A1 (en) | 2021-08-31 | 2024-07-10 | Incyte Corporation | Naphthyridine compounds as inhibitors of kras |
CN113773273B (en) * | 2021-09-15 | 2023-04-11 | 沈阳药科大学 | Benzisothiazole compound, preparation method and application thereof |
WO2023049697A1 (en) | 2021-09-21 | 2023-03-30 | Incyte Corporation | Hetero-tricyclic compounds as inhibitors of kras |
WO2023050104A1 (en) * | 2021-09-28 | 2023-04-06 | 中国医学科学院药物研究所 | Indoline derivative, preparation method therefor, pharmaceutical composition, and use |
WO2023056421A1 (en) | 2021-10-01 | 2023-04-06 | Incyte Corporation | Pyrazoloquinoline kras inhibitors |
KR20240101561A (en) | 2021-10-14 | 2024-07-02 | 인사이트 코포레이션 | Quinoline compounds as inhibitors of KRAS |
IL312886A (en) | 2021-11-22 | 2024-07-01 | Incyte Corp | Combination therapy comprising an fgfr inhibitor and a kras inhibitor |
US11976073B2 (en) | 2021-12-10 | 2024-05-07 | Incyte Corporation | Bicyclic amines as CDK2 inhibitors |
IL313735A (en) | 2021-12-22 | 2024-08-01 | Incyte Corp | Salts and solid forms of an fgfr inhibitor and processes of preparing thereof |
WO2023178285A1 (en) | 2022-03-17 | 2023-09-21 | Incyte Corporation | Tricyclic urea compounds as jak2 v617f inhibitors |
US20230399342A1 (en) | 2022-06-08 | 2023-12-14 | Incyte Corporation | Tricyclic triazolo compounds as dgk inhibitors |
WO2024015731A1 (en) | 2022-07-11 | 2024-01-18 | Incyte Corporation | Fused tricyclic compounds as inhibitors of kras g12v mutants |
US20240190876A1 (en) | 2022-10-21 | 2024-06-13 | Incyte Corporation | Tricyclic Urea Compounds As JAK2 V617F Inhibitors |
US20240217989A1 (en) | 2022-11-18 | 2024-07-04 | Incyte Corporation | Heteroaryl Fluoroalkenes As DGK Inhibitors |
TW202428575A (en) | 2023-01-12 | 2024-07-16 | 美商英塞特公司 | Heteroaryl fluoroalkenes as dgk inhibitors |
US20240317744A1 (en) | 2023-03-13 | 2024-09-26 | Incyte Corporation | Bicyclic Ureas As Kinase Inhibitors |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002000196A2 (en) | 2000-06-28 | 2002-01-03 | Smithkline Beecham P.L.C. | Wet milling process |
US20100292227A1 (en) * | 2009-05-15 | 2010-11-18 | Boehringer Ingleheim International Gmbh | Inhibitors of human immunodeficiency virus replication |
US20140288094A1 (en) * | 2011-09-22 | 2014-09-25 | Merck Sharp & Dohme Corp | Pyrazolopyridyl compounds as aldosterone synthase inhibitors |
US20150291549A1 (en) * | 2014-04-14 | 2015-10-15 | Bristol-Myers Squibb Company | Compounds Useful as Immunomodulators |
Family Cites Families (328)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3272781A (en) | 1963-08-07 | 1966-09-13 | American Potash & Chem Corp | Boroureas of phosphinoborine polymers |
FR1425700A (en) | 1965-02-22 | 1966-01-24 | Basf Ag | Compounds forming metal complexes and method of preparing and using them |
US4208328A (en) | 1978-04-27 | 1980-06-17 | General Electric Company | Alkyl 3,5-dihydroxy-4-(2-benzothiazolyl)benzoates |
US4789711A (en) | 1986-12-02 | 1988-12-06 | Ciba-Geigy Corporation | Multifunctional epoxide resins |
JPH0611031Y2 (en) | 1988-02-27 | 1994-03-23 | タマパック株式会社 | Golf putting green |
DE3828535A1 (en) | 1988-08-23 | 1990-03-08 | Basf Ag | BENZIMIDAZOLE-2-CARBON-ACIDANILIDE, THEIR USE AS ANTI-LIGHTING AGENT FOR ORGANIC MATERIAL AND ORGANIC MATERIAL STABILIZED THEREOF |
US5077164A (en) | 1989-06-21 | 1991-12-31 | Minolta Camera Kabushiki Kaisha | Photosensitive member containing an azo dye |
EP0644460B1 (en) | 1993-09-20 | 1999-12-08 | Fuji Photo Film Co., Ltd. | Positive working photoresist composition |
JP3461397B2 (en) | 1995-01-11 | 2003-10-27 | 富士写真フイルム株式会社 | Positive photoresist composition |
WO1998027108A2 (en) | 1996-12-16 | 1998-06-25 | Fujisawa Pharmaceutical Co., Ltd. | New amide compounds and their use as nitric oxide synthase inhibitors |
JPH10316853A (en) | 1997-05-15 | 1998-12-02 | Sumitomo Bakelite Co Ltd | Resin composition for interlaminar insulating membrane for multilayer interconnection of semiconductor, and production of the insulating membrane |
WO1999018096A1 (en) | 1997-10-02 | 1999-04-15 | Merck & Co., Inc. | Inhibitors of prenyl-protein transferase |
WO1999044992A1 (en) | 1998-03-05 | 1999-09-10 | Nissan Chemical Industries, Ltd. | Anilide compounds and herbicide |
JP2000128987A (en) | 1998-10-28 | 2000-05-09 | Sumitomo Bakelite Co Ltd | Polybenzoxazole precursor and polybenzoxazole |
JP2000128984A (en) | 1998-10-28 | 2000-05-09 | Sumitomo Bakelite Co Ltd | Polybenzoxazole precursor and resin |
JP2000128986A (en) | 1998-10-28 | 2000-05-09 | Sumitomo Bakelite Co Ltd | Polybenzoxazole precursor and polybenzoxazole |
US6297351B1 (en) | 1998-12-17 | 2001-10-02 | Sumitomo Bakelite Company Limited | Polybenzoxazole resin and precursor thereof |
US6867200B1 (en) | 1998-12-18 | 2005-03-15 | Axys Pharmaceuticals, Inc. | (Hetero)aryl-bicyclic heteroaryl derivatives, their preparation and their use as protease inhibitors |
JP2000212281A (en) | 1999-01-27 | 2000-08-02 | Sumitomo Bakelite Co Ltd | Polybenzoxazole precursor and polybenzoxazole resin |
AU6000900A (en) | 1999-07-23 | 2001-02-13 | Astrazeneca Uk Limited | Carbazole derivatives and their use as neuropeptide y5 receptor ligands |
JP2001114893A (en) | 1999-10-15 | 2001-04-24 | Sumitomo Bakelite Co Ltd | Polybenzoxazole resin and its precursor |
US6372907B1 (en) | 1999-11-03 | 2002-04-16 | Apptera Corporation | Water-soluble rhodamine dye peptide conjugates |
JP2001163975A (en) | 1999-12-03 | 2001-06-19 | Sumitomo Bakelite Co Ltd | Polybenzoxazole resin and its precursor |
ID30204A (en) | 1999-12-27 | 2001-11-15 | Japan Tobacco Inc | COMPOUNDS OF DIFFUSED RING AND ITS USE AS A MEDICINE |
ATE372337T1 (en) | 2000-02-01 | 2007-09-15 | Abbott Gmbh & Co Kg | HETEROCYCLIC COMPOUNDS AND THEIR APPLICATION AS PARP INHIBITORS |
US6521618B2 (en) | 2000-03-28 | 2003-02-18 | Wyeth | 3-cyanoquinolines, 3-cyano-1,6-naphthyridines, and 3-cyano-1,7-naphthyridines as protein kinase inhibitors |
DE60128211T2 (en) | 2000-03-31 | 2008-01-10 | Ortho-Mcneil Pharmaceutical, Inc. | PHENYL-SUBSTITUTED IMIDAZOPYRIDINE |
WO2001081312A2 (en) | 2000-04-24 | 2001-11-01 | Merck Frosst Canada & Co. | Method of treatment using phenyl and biaryl derivatives as prostaglandin e inhibitors and compounds useful therefore |
AU2001294515A1 (en) | 2000-08-11 | 2002-02-25 | The Regents Of The University Of California | Use of stat-6 inhibitors as therapeutic agents |
AU2002224927A1 (en) | 2000-12-13 | 2002-06-24 | Basf Aktiengesellschaft | Use of substituted imidazoazines, novel imidazoazines, methods for the production thereof, and agents containing these compounds |
US6919352B2 (en) | 2000-12-15 | 2005-07-19 | Smithkline Beecham Corporation | Pyrazolopyridinyl pyridine and pyrimidine therapeutic compounds |
SE0100567D0 (en) | 2001-02-20 | 2001-02-20 | Astrazeneca Ab | Compounds |
DE60204674T2 (en) | 2001-03-14 | 2006-05-18 | Eli Lilly And Co., Indianapolis | RETINOID X RECEPTOR MODULATORS |
EP1372643A1 (en) | 2001-03-30 | 2004-01-02 | Smithkline Beecham Corporation | Pyrazolopyridines, process for their preparation and use as therapeutic compounds |
ATE332301T1 (en) | 2001-04-10 | 2006-07-15 | Smithkline Beecham Corp | ANTIVIRAL PYRAZOLOPYRIDINE COMPOUNDS |
JP2002316966A (en) | 2001-04-19 | 2002-10-31 | Ueno Seiyaku Oyo Kenkyusho:Kk | Binaphthol derivative and method for producing the same |
ES2242028T3 (en) | 2001-04-27 | 2005-11-01 | Smithkline Beecham Corporation | DERIVATIVES OF PIRAZOLO (1,5-A) PIRIDINA. |
AR035543A1 (en) | 2001-06-26 | 2004-06-16 | Japan Tobacco Inc | THERAPEUTIC AGENT FOR HEPATITIS C THAT INCLUDES A CONDENSED RING COMPOUND, CONDENSED RING COMPOUND, PHARMACEUTICAL COMPOSITION THAT UNDERSTANDS, BENZIMIDAZOL, THIAZOL AND BIFENYL COMPOUNDS USED AS INTERMEDIARY COMPARTMENTS OF COMPARTMENTS |
EP1423389B1 (en) | 2001-09-07 | 2007-06-06 | SmithKline Beecham Corporation | Pyrazolo-pyridines for the treatment of herpes infections |
TWI320039B (en) | 2001-09-21 | 2010-02-01 | Lactam-containing compounds and derivatives thereof as factor xa inhibitors | |
WO2003030901A1 (en) | 2001-10-09 | 2003-04-17 | Pharmacia & Upjohn Company | Arylsulphonyl-substituted tetrahydro- and hexahydro-carbazoles as 5-ht-6 receptor ligands |
US20030143199A1 (en) | 2001-10-09 | 2003-07-31 | Carson Dennis A. | Use of STAT-6 inhibitors as therapeutic agents |
JP4024579B2 (en) | 2002-01-22 | 2007-12-19 | 住友ベークライト株式会社 | Plastic optical waveguide material and optical waveguide |
NZ561851A (en) | 2002-04-11 | 2009-05-31 | Vertex Pharma | Inhibitors of serine proteases, particularly hepatitis C virus NS3 - NS4 protease |
KR20040097375A (en) | 2002-04-23 | 2004-11-17 | 시오노기 앤드 컴파니, 리미티드 | Pyrazolo[1, 5-a]pyrimidine derivative and NAD(P)H oxidase inhibitor containing the same |
WO2004007472A1 (en) | 2002-07-10 | 2004-01-22 | Ono Pharmaceutical Co., Ltd. | Ccr4 antagonist and medicinal use thereof |
AU2003249244A1 (en) | 2002-07-15 | 2004-02-02 | Combinatorx, Incorporated | Methods for the treatment of neoplasms |
JP2004059761A (en) | 2002-07-30 | 2004-02-26 | Sumitomo Bakelite Co Ltd | Polybenzoxazole resin, its precursor, and optical waveguide material and optical waveguide using these |
JP2004091369A (en) | 2002-08-30 | 2004-03-25 | Sumitomo Pharmaceut Co Ltd | New biphenyl compound |
US20050260126A1 (en) | 2002-08-30 | 2005-11-24 | Yukitsuka Kudo | Diagnostic probes and remedies for diseases with accumulation of prion protein, and stains for prion protein |
WO2004033454A1 (en) | 2002-10-03 | 2004-04-22 | Smithkline Beecham Corporation | Therapeutic compounds based on pyrazolopyridine derivatives |
EP1551842A1 (en) | 2002-10-15 | 2005-07-13 | Smithkline Beecham Corporation | Pyradazine compounds as gsk-3 inhibitors |
KR100624406B1 (en) | 2002-12-30 | 2006-09-18 | 삼성에스디아이 주식회사 | Biphenyl derivatives and organo-electroluminescent device employing the same |
US7320989B2 (en) | 2003-02-28 | 2008-01-22 | Encysive Pharmaceuticals, Inc. | Pyridine, pyrimidine, quinoline, quinazoline, and naphthalene urotensin-II receptor antagonists |
US7078419B2 (en) | 2003-03-10 | 2006-07-18 | Boehringer Ingelheim Pharmaceuticals, Inc. | Cytokine inhibitors |
TW200505902A (en) | 2003-03-20 | 2005-02-16 | Schering Corp | Cannabinoid receptor ligands |
JP4595288B2 (en) | 2003-03-25 | 2010-12-08 | 住友ベークライト株式会社 | Polybenzoxazole resin, precursor thereof, optical waveguide material using the same, and optical waveguide |
DK1620429T3 (en) | 2003-04-11 | 2009-05-18 | Glenmark Pharmaceuticals Sa | New heterocyclic compounds useful in the treatment of inflammatory and allergic diseases, methods of their preparation and pharmaceutical compositions containing them |
CL2004001120A1 (en) | 2003-05-19 | 2005-04-15 | Irm Llc | COMPOUNDS DERIVED FROM AMINA REPLACED WITH HETEROCICLES, IMMUNOSUPPRESSORS; PHARMACEUTICAL COMPOSITION; AND USE TO TREAT DISEASES MEDIATED BY LYMPHOCYTE INTERACTIONS, SUCH AS AUTOIMMUNE, INFLAMMATORY, INFECTIOUS, CANCER DISEASES. |
JP2005002330A (en) | 2003-05-19 | 2005-01-06 | Sumitomo Electric Ind Ltd | Optical resin material, optical element, optical module, precursor of fluorinated polymer, and fluorinated polymer |
US7405295B2 (en) | 2003-06-04 | 2008-07-29 | Cgi Pharmaceuticals, Inc. | Certain imidazo[1,2-a]pyrazin-8-ylamines and method of inhibition of Bruton's tyrosine kinase by such compounds |
US20060183746A1 (en) | 2003-06-04 | 2006-08-17 | Currie Kevin S | Certain imidazo[1,2-a]pyrazin-8-ylamines and method of inhibition of Bruton's tyrosine kinase by such compounds |
WO2005005429A1 (en) | 2003-06-30 | 2005-01-20 | Cellular Genomics, Inc. | Certain heterocyclic substituted imidazo[1,2-a]pyrazin-8-ylamines and methods of inhibition of bruton’s tyrosine kinase by such compounds |
WO2005004863A1 (en) | 2003-07-11 | 2005-01-20 | Merck Patent Gmbh | Benzimidazole carboxamides as raf kinase inhibitors |
WO2005007111A2 (en) | 2003-07-11 | 2005-01-27 | Bristol-Myers Squibb Company | Tetrahydroquinoline derivatives as cannabinoid receptor modulators |
JPWO2005012221A1 (en) | 2003-08-04 | 2006-09-14 | 小野薬品工業株式会社 | Diphenyl ether compound, its production method and use |
WO2005014543A1 (en) | 2003-08-06 | 2005-02-17 | Japan Tobacco Inc. | Condensed ring compound and use thereof as hcv polymerase inhibitor |
US7504401B2 (en) | 2003-08-29 | 2009-03-17 | Locus Pharmaceuticals, Inc. | Anti-cancer agents and uses thereof |
CN102060806A (en) | 2003-09-11 | 2011-05-18 | iTherX药品公司 | Cytokine inhibitors |
EP1673343A4 (en) | 2003-10-08 | 2008-09-10 | Irm Llc | Compounds and compositions as protein kinase inhibitors |
JPWO2005040135A1 (en) | 2003-10-24 | 2007-03-08 | 小野薬品工業株式会社 | Anti-stress drugs and their medicinal uses |
WO2005047290A2 (en) | 2003-11-11 | 2005-05-26 | Cellular Genomics Inc. | Imidazo[1,2-a] pyrazin-8-ylamines as kinase inhibitors |
EP1699763A1 (en) | 2003-12-23 | 2006-09-13 | Basf Aktiengesellschaft | 3-trifluoromethyl picolinic acid anilides, and use thereof as fungicides |
WO2005079802A1 (en) | 2004-02-12 | 2005-09-01 | Merck & Co., Inc. | Bipyridyl amides as modulators of metabotropic glutamate receptor-5 |
WO2005077948A1 (en) | 2004-02-16 | 2005-08-25 | Daiichi Pharmaceutical Co., Ltd. | Fungicidal heterocyclic compounds |
GB0403864D0 (en) | 2004-02-20 | 2004-03-24 | Ucl Ventures | Modulator |
JP2005248082A (en) | 2004-03-05 | 2005-09-15 | Sumitomo Electric Ind Ltd | Manufacturing process of polybenzoxazole resin precursor and manufacturing process of polybenzoxazole resin |
CN1930159A (en) | 2004-03-08 | 2007-03-14 | 北卡罗来纳大学查珀尔希尔分校 | Novel dicationic imidazo[1,2-a]pyridines and 5,6,7,8,-tetrahydro-imidazo[1,2,-a]pyridines as antiprotozoal agents |
US20050250820A1 (en) | 2004-03-08 | 2005-11-10 | Amgen Inc. | Therapeutic modulation of PPARgamma activity |
JP2007531753A (en) | 2004-03-31 | 2007-11-08 | ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ | Non-imidazole heterocyclic compounds |
JP2005290301A (en) | 2004-04-02 | 2005-10-20 | Sumitomo Electric Ind Ltd | Method for manufacturing polybenzoxazol resin precursor and polybenzoxazol resin |
WO2005099656A2 (en) | 2004-04-06 | 2005-10-27 | The Procter & Gamble Company | Keratin dyeing compounds, keratin dyeing compositions containing them, and use thereof |
CA2562075C (en) | 2004-04-20 | 2012-08-14 | Transtech Pharma, Inc. | Substituted thiazole and pyrimidine derivatives as melanocortin receptor modulators |
DE102004021716A1 (en) | 2004-04-30 | 2005-12-01 | Grünenthal GmbH | Substituted imidazo [1,2-a] pyridine compounds and drugs containing substituted imidazo [1,2-a] pyridine compounds |
EP1745036A2 (en) | 2004-05-03 | 2007-01-24 | Boehringer Ingelheim Pharmaceuticals Inc. | Cytokine inhibitors |
PE20060748A1 (en) | 2004-09-21 | 2006-10-01 | Smithkline Beecham Corp | INDOLCARBOXAMIDE DERIVATIVES AS KINASE INHIBITORS IKK2 |
AU2005286727A1 (en) | 2004-09-23 | 2006-03-30 | Wyeth | Carbazole and cyclopentaindole derivatives to treat infection with Hepatitis C virus |
EP1812439B2 (en) | 2004-10-15 | 2017-12-06 | Takeda Pharmaceutical Company Limited | Kinase inhibitors |
WO2006053121A2 (en) | 2004-11-10 | 2006-05-18 | Cgi Pharmaceuticals, Inc. | Imidazo[1 , 2-a] pyrazin-8-ylamines useful as modulators of kinase activity |
DE102004054665A1 (en) | 2004-11-12 | 2006-05-18 | Bayer Cropscience Gmbh | Substituted bicyclic and tricyclic pyrazole derivatives Methods for the preparation and use as herbicides and plant growth regulators |
EP1853590A1 (en) | 2005-03-03 | 2007-11-14 | Sirtris Pharmaceuticals, Inc. | Fused heterocyclic compounds and their use as sirtuin modulators |
KR101357524B1 (en) | 2005-03-10 | 2014-02-03 | 질레드 코네티컷 인코포레이티드 | Certain Substituted Amides, Method of Making, And Method of Use Thereof |
JP2006290883A (en) | 2005-03-17 | 2006-10-26 | Nippon Nohyaku Co Ltd | Substituted heterocycle carboxylic anilide derivative, its intermediate and chemical for agriculture and horticulture and method for using the same |
WO2006125101A2 (en) | 2005-05-20 | 2006-11-23 | Array Biopharma Inc. | Raf inhibitor compounds and methods of use thereof |
US20080220968A1 (en) | 2005-07-05 | 2008-09-11 | Ge Healthcare Bio-Sciences Ab | [1, 2, 4] Triazolo [1, 5-A] Pyrimidine Derivatives as Chromatographic Adsorbent for the Selective Adsorption of Igg |
WO2007034282A2 (en) | 2005-09-19 | 2007-03-29 | Pfizer Products Inc. | Diaryl-imidazole compounds condensed with a heterocycle as c3a receptor antagonists |
US20070078136A1 (en) | 2005-09-22 | 2007-04-05 | Bristol-Myers Squibb Company | Fused heterocyclic compounds useful as kinase modulators |
US7723336B2 (en) | 2005-09-22 | 2010-05-25 | Bristol-Myers Squibb Company | Fused heterocyclic compounds useful as kinase modulators |
CN103936690B (en) | 2005-10-25 | 2016-06-08 | 盐野义制药株式会社 | Aminodihydrothiazine derivatives |
JP5249772B2 (en) | 2005-11-22 | 2013-07-31 | メルク・シャープ・アンド・ドーム・コーポレーション | Tricyclic compounds useful as inhibitors of kinases |
WO2007067711A2 (en) | 2005-12-08 | 2007-06-14 | Amphora Discovery Corporation | Certain chemical entities, compositions, and methods for modulating trpv1 |
US20090281120A1 (en) | 2005-12-12 | 2009-11-12 | Ono Pharmaceutical Co., Ltd | Bicyclic heterocyclic compound |
US20090281075A1 (en) | 2006-02-17 | 2009-11-12 | Pharmacopeia, Inc. | Isomeric purinones and 1h-imidazopyridinones as pkc-theta inhibitors |
WO2007096764A2 (en) | 2006-02-27 | 2007-08-30 | Glenmark Pharmaceuticals S.A. | Bicyclic heteroaryl derivatives as cannabinoid receptor modulators |
US20090304821A1 (en) | 2006-03-08 | 2009-12-10 | Takeda Pharmaceutical Company Limited | Pharmaceutical Combination |
RU2008143179A (en) | 2006-03-31 | 2010-05-10 | Новартис АГ (CH) | ORGANIC COMPOUNDS |
WO2008118122A2 (en) | 2006-05-08 | 2008-10-02 | Molecular Neuroimaging, Llc | Compounds and amyloid probes thereof for therapeutic and imaging uses |
AU2007257959A1 (en) | 2006-06-09 | 2007-12-21 | Kemia, Inc. | Therapy using cytokine inhibitors |
US20080280891A1 (en) | 2006-06-27 | 2008-11-13 | Locus Pharmaceuticals, Inc. | Anti-cancer agents and uses thereof |
JP2009544625A (en) | 2006-07-20 | 2009-12-17 | メーメット・カーラマン | Benzothiophene inhibitors of RHO kinase |
DE102006035018B4 (en) | 2006-07-28 | 2009-07-23 | Novaled Ag | Oxazole triplet emitter for OLED applications |
WO2008021745A2 (en) | 2006-08-16 | 2008-02-21 | Itherx Pharmaceuticals, Inc. | Hepatitis c virus entry inhibitors |
TWI389895B (en) | 2006-08-21 | 2013-03-21 | Infinity Discovery Inc | Compounds and methods for inhibiting the interaction of bcl proteins with binding partners |
WO2008027812A2 (en) | 2006-08-28 | 2008-03-06 | Forest Laboratories Holdings Limited | Imidazopyridine and imidazopyrimidine derivatives |
JP2010502751A (en) | 2006-09-11 | 2010-01-28 | シージーアイ ファーマシューティカルズ,インコーポレイティド | Kinase inhibitors and methods of using and identifying kinase inhibitors |
US7838523B2 (en) | 2006-09-11 | 2010-11-23 | Cgi Pharmaceuticals, Inc. | Certain substituted amides, method of making, and method of use thereof |
PE20081370A1 (en) | 2006-09-11 | 2008-11-28 | Cgi Pharmaceuticals Inc | CERTAIN AMIDAS SUBSTITUTED, METHOD OF PREPARATION AND METHOD OF USE OF THE SAME |
PE20080839A1 (en) | 2006-09-11 | 2008-08-23 | Cgi Pharmaceuticals Inc | CERTAIN AMIDAS SUBSTITUTED, METHOD OF PREPARATION AND METHOD OF USE OF THE SAME |
JP2010502689A (en) | 2006-09-11 | 2010-01-28 | マトリックス ラボラトリーズ リミテッド | Dibenzofuran derivatives as inhibitors of PDE-4 and PDE-10 |
FR2906250B1 (en) | 2006-09-22 | 2008-10-31 | Sanofi Aventis Sa | DERIVATIVES OF 2-ARYL-6PHENYL-IMIDAZO (1,2-A) PYRIDINES, THEIR PREPARATION AND THEIR THERAPEUTIC USE |
MX2009004289A (en) | 2006-10-27 | 2009-05-05 | Wyeth Corp | Tricyclic compounds as matrix metalloproteinase inhibitors. |
SI2089364T1 (en) | 2006-11-08 | 2013-10-30 | Bristol-Myers Squibb Company | Pyridinone compounds |
GB0623209D0 (en) | 2006-11-21 | 2007-01-03 | F2G Ltd | Antifungal agents |
WO2008064318A2 (en) | 2006-11-22 | 2008-05-29 | University Of Medicine And Dentistry Of New Jersey | Peripheral opioid receptor active compounds |
WO2008064317A1 (en) | 2006-11-22 | 2008-05-29 | University Of Medicine And Dentistry Of New Jersey | Lipophilic opioid receptor active compounds |
EP2102177A1 (en) | 2006-12-14 | 2009-09-23 | Boehringer Ingelheim International GmbH | Benzoxazoles useful in the treatment of inflammation |
US8513270B2 (en) | 2006-12-22 | 2013-08-20 | Incyte Corporation | Substituted heterocycles as Janus kinase inhibitors |
EP2137158A4 (en) | 2007-02-28 | 2012-04-18 | Methylgene Inc | Small molecule inhibitors of protein arginine methyltransferases (prmts) |
EP1964840A1 (en) | 2007-02-28 | 2008-09-03 | sanofi-aventis | Imidazo[1,2-a]pyridines and their use as pharmaceuticals |
EP1964841A1 (en) | 2007-02-28 | 2008-09-03 | sanofi-aventis | Imidazo[1,2-a]azine and their use as pharmaceuticals |
JP2008218327A (en) | 2007-03-07 | 2008-09-18 | Hitachi Ltd | Electrolyte, electrolyte film, film-electrode assembly using the same, fuel cell power supply, and fuel cell power supply system |
JP2010120852A (en) | 2007-03-09 | 2010-06-03 | Daiichi Sankyo Co Ltd | New diamide derivative |
PE20091225A1 (en) | 2007-03-22 | 2009-09-16 | Astrazeneca Ab | QUINOLINE DERIVATIVES AS ANTAGONISTS OF THE P2X7 RECEPTOR |
EP2147914B1 (en) | 2007-04-24 | 2014-06-04 | Shionogi&Co., Ltd. | Aminodihydrothiazine derivatives substituted with cyclic groups |
JP5383483B2 (en) | 2007-04-24 | 2014-01-08 | 塩野義製薬株式会社 | Pharmaceutical composition for the treatment of Alzheimer's disease |
WO2008134553A1 (en) | 2007-04-26 | 2008-11-06 | Xenon Pharmaceuticals Inc. | Methods of using bicyclic compounds in treating sodium channel-mediated diseases |
US20110206607A1 (en) | 2007-05-10 | 2011-08-25 | Roger Olsson | Imidazol (1,2-a)pyridines and related compounds with activity at cannabinoid cb2 receptors |
WO2009027733A1 (en) | 2007-08-24 | 2009-03-05 | Astrazeneca Ab | (2-pyridin-3-ylimidazo[1,2-b]pyridazin-6-yl) urea derivatives as antibacterial agents |
ATE505454T1 (en) | 2007-09-20 | 2011-04-15 | Amgen Inc | 1-(4-(4-BENZYLBENZAMIDE)-BENZYL)-AZETIDINE-3-CARBOXYLIC ACID DERIVATIVES AND CORRESPONDING COMPOUNDS AS S1P RECEPTOR MODULATORS FOR THE TREATMENT OF IMMUNE DISEASES |
CL2008002793A1 (en) | 2007-09-20 | 2009-09-04 | Cgi Pharmaceuticals Inc | Compounds derived from substituted amides, inhibitors of btk activity; pharmaceutical composition comprising them; Useful in the treatment of cancer, bone disorders, autoimmune diseases, among others |
DE102007048716A1 (en) | 2007-10-11 | 2009-04-23 | Merck Patent Gmbh | Imidazo [1,2-a] pyrimidine derivatives |
TW200932219A (en) | 2007-10-24 | 2009-08-01 | Astellas Pharma Inc | Oxadiazolidinedione compound |
EP2215085B1 (en) | 2007-10-25 | 2011-09-07 | AstraZeneca AB | Pyridine and pyrazine derivatives useful in the treatment of cell proliferative disorders |
US7868001B2 (en) | 2007-11-02 | 2011-01-11 | Hutchison Medipharma Enterprises Limited | Cytokine inhibitors |
WO2009062059A2 (en) | 2007-11-08 | 2009-05-14 | Pharmacopeia, Inc. | Isomeric purinones and 1h-imidazopyridinones as pkc-theta inhibitors |
CA2707491A1 (en) | 2007-12-13 | 2009-06-18 | Merck Sharp & Dohme Corp. | Inhibitors of janus kinases |
RU2364597C1 (en) | 2007-12-14 | 2009-08-20 | Андрей Александрович Иващенко | HETEROCYCLIC INHIBITORS OF Hh-SYGNAL CASCADE, BASED ON THEM MEDICINAL COMPOSITIONS AND METHOD OF TREATING DISEASES INDUCED BY ABBARANT ACTIVITY OF Hh-SIGNAL SYSTEM |
EA201000949A1 (en) | 2007-12-19 | 2011-02-28 | Зингента Партисипейшнс Аг | INSECTICIDE CONNECTIONS |
US8492379B2 (en) | 2007-12-21 | 2013-07-23 | The University Of Sydney | Translocator protein ligands |
JP2011507910A (en) | 2007-12-21 | 2011-03-10 | ユニバーシティー オブ ロチェスター | Methods for changing the lifetime of eukaryotes |
RU2476431C2 (en) | 2008-01-18 | 2013-02-27 | Эйсай Ар Энд Ди Менеджмент Ко., Лтд. | Condensed aminohydrothiazine derivative |
JP5381718B2 (en) | 2008-01-31 | 2014-01-08 | コニカミノルタ株式会社 | Halopolycyclic aromatic compound and method for producing the same |
MX2010009416A (en) | 2008-02-26 | 2010-09-24 | Novartis Ag | Heterocyclic compounds as inhibitors of cxcr2. |
EP2095818A1 (en) | 2008-02-29 | 2009-09-02 | AEterna Zentaris GmbH | Use of LHRH antagonists at non-castrating doses |
FR2928921B1 (en) | 2008-03-21 | 2010-04-23 | Sanofi Aventis | POLYSUBSTITUTED DERIVATIVES OF 2-ARYL-6-PHENYL-IMIDAZO-1,2-A! PYRIDINES, THEIR PREPARATION AND THEIR THERAPEUTIC USE |
FR2928924B1 (en) | 2008-03-21 | 2010-04-23 | Sanofi Aventis | POLYSUBSTITUTED DERIVATIVES OF 6-HETEROARYL-IMIDAZO-1,2-A! PYRIDINES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION |
FR2928922B1 (en) | 2008-03-21 | 2010-04-23 | Sanofi Aventis | DERIVATIVES OF POLYSUBSTITUTED 2-ARYL-6-PHENYL-IMIDAZO-1,2-A! PYRIDINES, THEIR PREPARATION AND THEIR THERAPEUTIC USE |
US8461163B2 (en) | 2008-03-31 | 2013-06-11 | Takeda Pharmaceutical Company Limited | Substituted N-(pyrazolo[1,5-a]pyrimidin-5-yl)amides as inhibitors of apoptosis signal-regulating kinase 1 |
KR101034351B1 (en) | 2008-05-14 | 2011-05-16 | 한국화학연구원 | Novel benzoxazole-pyridine derivatives or pharmaceutically acceptable salt thereof, preparation method thereof and pharmaceutical composition for the prevention and treatment of abnormal cell growth diseases containing the same as an active ingredient |
AU2009249186B2 (en) | 2008-05-19 | 2014-05-22 | Sunovion Pharmaceuticals Inc. | Imidazo [1, 2-a] pyridine compounds as GABA-A receptor modulators |
US20110077248A1 (en) | 2008-05-29 | 2011-03-31 | Sirtris Pharmaceuticals, Inc. | Imidazopyridine and related analogs as sirtuin modulators |
JP2011529073A (en) | 2008-07-24 | 2011-12-01 | ブリストル−マイヤーズ スクイブ カンパニー | Fused heterocyclic compounds useful as kinase regulators |
US9643922B2 (en) | 2008-08-18 | 2017-05-09 | Yale University | MIF modulators |
US9540322B2 (en) | 2008-08-18 | 2017-01-10 | Yale University | MIF modulators |
JP2011231017A (en) | 2008-09-09 | 2011-11-17 | Nissan Chem Ind Ltd | Process for producing optically active epoxy compound and optically active sulfoxide compound, ligand and complex for use in the process, and process for producing the complex |
US8598174B2 (en) | 2008-11-12 | 2013-12-03 | Genetech, Inc. | Pyridazinones, method of making, and method of use thereof |
ES2403633T3 (en) | 2008-12-04 | 2013-05-20 | Proximagen Limited | Imidazopyridine Compounds |
AR074830A1 (en) | 2008-12-19 | 2011-02-16 | Cephalon Inc | PIRROLOTRIAZINAS AS ALK AND JAK2 INHIBITORS |
PE20110819A1 (en) | 2008-12-19 | 2011-11-02 | Bristol Myers Squibb Co | CARBAZOL CARBOXAMIDE COMPOUNDS USEFUL AS KINASE INHIBITORS |
JP5557849B2 (en) | 2008-12-19 | 2014-07-23 | ブリストル−マイヤーズ スクイブ カンパニー | Carbazole and carboline kinase inhibitors |
JP5624275B2 (en) | 2008-12-22 | 2014-11-12 | ユー・ディー・シー アイルランド リミテッド | Organic electroluminescence device |
JP2012513409A (en) | 2008-12-23 | 2012-06-14 | アボット・ラボラトリーズ | Antiviral compounds |
WO2010074284A1 (en) | 2008-12-26 | 2010-07-01 | 味の素株式会社 | Pyrazolopyrimidine compound |
JP2010202530A (en) | 2009-02-27 | 2010-09-16 | Tokyo Institute Of Technology | Heterocycle-containing aromatic compound, and optical material |
WO2010104307A2 (en) | 2009-03-07 | 2010-09-16 | 주식회사 메디젠텍 | Pharmaceutical compositions for treating or preventing diseases caused by the translocation of gsk3 from the cell nucleus to the cytoplasm, containing compounds for inhibiting the translocation of gsk3 from the cell nucleus to the cytoplasm |
EP2414328B1 (en) | 2009-04-02 | 2021-05-26 | Merck Serono S.A. | Dihydroorotate dehydrogenase inhibitors |
BRPI1014572B8 (en) | 2009-04-16 | 2022-07-19 | Fundacion Centro Nac De Investigaciones Oncologicas Carlos Iii | IMIDAZOPYRAZINES FOR USE AS KINASE INHIBITORS |
JP2012532102A (en) | 2009-06-30 | 2012-12-13 | シガ・テクノロジーズ・インコーポレーテッド | Treatment and prevention of dengue virus infection |
US8993604B2 (en) | 2009-06-30 | 2015-03-31 | Siga Technologies, Inc. | Treatment and prevention of dengue virus infections |
TWI598347B (en) | 2009-07-13 | 2017-09-11 | 基利科學股份有限公司 | Apoptosis signal-regulating kinase inhibitors |
JP2011057661A (en) | 2009-08-14 | 2011-03-24 | Bayer Cropscience Ag | Pesticidal carboxamides |
UA108363C2 (en) | 2009-10-08 | 2015-04-27 | IMINOTIADIASIADIOXIDE OXIDES AS BACE INHIBITORS, COMPOSITIONS THEREOF AND THEIR APPLICATIONS | |
WO2011047129A1 (en) | 2009-10-15 | 2011-04-21 | Southern Research Institute | Treatment of neurodegenerative diseases, causation of memory enhancement, and assay for screening compounds for such |
WO2011047319A2 (en) | 2009-10-16 | 2011-04-21 | Rib-X Pharmaceuticals, Inc. | Antimicrobial compounds and methods of making and using the same |
WO2011050245A1 (en) | 2009-10-23 | 2011-04-28 | Yangbo Feng | Bicyclic heteroaryls as kinase inhibitors |
WO2011078221A1 (en) | 2009-12-24 | 2011-06-30 | 味の素株式会社 | Imidazopyridazine compounds |
US20130022629A1 (en) | 2010-01-04 | 2013-01-24 | Sharpe Arlene H | Modulators of Immunoinhibitory Receptor PD-1, and Methods of Use Thereof |
US20130085133A1 (en) | 2010-02-08 | 2013-04-04 | Sourthern Research Institute Office of Commercialization and Intellectual Prop. | Anti-viral treatment and assay to screenfor anti-viral agent |
TW201136919A (en) | 2010-03-02 | 2011-11-01 | Merck Sharp & Amp Dohme Corp | Inhibitors of hepatitis C virus NS5B polymerase |
KR101720824B1 (en) | 2010-03-04 | 2017-03-28 | 머크 샤프 앤드 돔 코포레이션 | - inhibitors of catechol -methyl transferase and their use in the treatment of psychotic disorders |
NZ602311A (en) | 2010-03-18 | 2014-08-29 | Pasteur Institut Korea | Anti-infective compounds |
US8410117B2 (en) | 2010-03-26 | 2013-04-02 | Hoffmann-La Roche Inc. | Imidazopyrimidine derivatives |
EP2582668B1 (en) | 2010-06-16 | 2016-01-13 | Bristol-Myers Squibb Company | Carboline carboxamide compounds useful as kinase inhibitors |
CN102295642B (en) | 2010-06-25 | 2016-04-06 | 中国人民解放军军事医学科学院毒物药物研究所 | 2-Aryimidazole is [1,2-a] pyridine-3-acetamide, Preparation Method And The Use also |
EP2402345A1 (en) | 2010-06-29 | 2012-01-04 | Basf Se | Pyrazole fused bicyclic compounds |
CN101891895B (en) | 2010-07-28 | 2011-11-30 | 南京航空航天大学 | Benzothiazole derivatives metal coordination polymer based on bridged bis-salicylaldehyde structure as well as manufacture method and application thereof |
WO2012016133A2 (en) | 2010-07-29 | 2012-02-02 | President And Fellows Of Harvard College | Ros1 kinase inhibitors for the treatment of glioblastoma and other p53-deficient cancers |
US8633200B2 (en) | 2010-09-08 | 2014-01-21 | Bristol-Myers Squibb Company | Inhibitors of human immunodeficiency virus replication |
CN101993415B (en) | 2010-09-15 | 2013-08-14 | 北京韩美药品有限公司 | Compound as Hedgehog path inhibitor, medicine composition containing same and application thereof |
US8921381B2 (en) | 2010-10-04 | 2014-12-30 | Baruch S. Blumberg Institute | Inhibitors of secretion of hepatitis B virus antigens |
WO2012052745A1 (en) | 2010-10-21 | 2012-04-26 | Centro Nacional De Investigaciones Oncológicas (Cnio) | Combinations of pi3k inhibitors with a second anti -tumor agent |
EP2444084A1 (en) | 2010-10-21 | 2012-04-25 | Centro Nacional de Investigaciones Oncológicas (CNIO) | Use of PI3K inibitors for the treatment of obesity |
CN103282034A (en) | 2010-11-18 | 2013-09-04 | 利亘制药公司 | Use of hematopoietic growth factor mimetics |
US20130253011A1 (en) | 2010-12-17 | 2013-09-26 | Syngenta Participations Ag | Insecticidal compounds |
TWI617559B (en) | 2010-12-22 | 2018-03-11 | 江蘇恆瑞醫藥股份有限公司 | 2-arylimidazo[1,2-b]pyridazine, 2-phenylimidazo[1,2-a]pyridine, and 2-phenylimidazo[1,2-a]pyrazine derivatives |
KR20140027090A (en) | 2011-01-04 | 2014-03-06 | 노파르티스 아게 | Indole compounds or analogues thereof useful for the treatment of age-related macular degeneration (amd) |
US9018395B2 (en) | 2011-01-27 | 2015-04-28 | Université de Montréal | Pyrazolopyridine and pyrazolopyrimidine derivatives as melanocortin-4 receptor modulators |
US8921368B2 (en) | 2011-03-17 | 2014-12-30 | Bristol-Myers Squibb Company | Pyrrolopyridazine JAK3 inhibitors and their use for the treatment of inflammatory and autoimmune diseases |
WO2012129562A2 (en) | 2011-03-24 | 2012-09-27 | The Scripps Research Institute | Compounds and methods for inducing chondrogenesis |
MX2013011947A (en) | 2011-04-13 | 2014-01-16 | Merck Sharp & Dohme | 5-substituted iminothiazines and their mono-and dioxides as bace inhibitors,compositions,and their use. |
CN102796103A (en) | 2011-05-23 | 2012-11-28 | 南京英派药业有限公司 | 6-(aryl formyl) imidazo [1,2-a] pyrimidine and 6-(aryl formyl) [1,2,4] triazol [4,3-a] pyrimidine serving as Hedgehog inhibitors and application thereof |
PT2713722T (en) | 2011-05-31 | 2017-06-27 | Receptos Llc | Novel glp-1 receptor stabilizers and modulators |
GB201109763D0 (en) | 2011-06-10 | 2011-07-27 | Ucl Business Plc | Compounds |
WO2012175991A1 (en) | 2011-06-24 | 2012-12-27 | Pharminox Limited | Fused pentacyclic anti - proliferative compounds |
KR20140058543A (en) | 2011-07-08 | 2014-05-14 | 노파르티스 아게 | Novel pyrrolo pyrimidine derivatives |
EP2548877A1 (en) | 2011-07-19 | 2013-01-23 | MSD Oss B.V. | 4-(5-Membered fused pyridinyl)benzamides as BTK-inhibitors |
WO2013033901A1 (en) | 2011-09-08 | 2013-03-14 | Merck Sharp & Dohme Corp. | Heterocyclic-substituted benzofuran derivatives and methods of use thereof for the treatment of viral diseases |
WO2013040528A1 (en) | 2011-09-16 | 2013-03-21 | Microbiotix, Inc. | Antimicrobial compounds |
JP6040677B2 (en) | 2011-09-29 | 2016-12-07 | 東洋インキScホールディングス株式会社 | Resin composition for solar cell encapsulant |
EP2766358B1 (en) | 2011-10-13 | 2016-06-22 | Novartis AG | Novel oxazine derivatives and their use in the treatment of disease |
KR20140077965A (en) | 2011-10-20 | 2014-06-24 | 글락소스미스클라인 엘엘씨 | Substituted bicyclic aza-heterocycles and analogues as sirtuin modulators |
CA2852615A1 (en) | 2011-10-21 | 2013-04-25 | Torrent Pharmaceuticals Limited | Novel substituted imidazopyrimidines as gpbar1 receptor modulators |
WO2013120040A1 (en) | 2012-02-10 | 2013-08-15 | Children's Medical Center Corporation | Targeted pathway inhibition to improve muscle structure, function and activity in muscular dystrophy |
US9034882B2 (en) | 2012-03-05 | 2015-05-19 | Bristol-Myers Squibb Company | Inhibitors of human immunodeficiency virus replication |
US20150011751A1 (en) | 2012-03-09 | 2015-01-08 | Carna Biosciences, Inc. | Novel triazine derivative |
SG11201401189WA (en) | 2012-04-20 | 2014-09-26 | Gilead Sciences Inc | Benzothiazol- 6 -yl acetic acid derivatives and their use for treating an hiv infection |
WO2013157021A1 (en) | 2012-04-20 | 2013-10-24 | Advinus Therapeutics Limited | Bicyclic compounds, compositions and medicinal applications thereof |
WO2013163404A1 (en) | 2012-04-27 | 2013-10-31 | The Uab Research Foundation | TREATING VIRAL INFECTIONS HAVING VIRAL RNAs TRANSLATED BY A NON-IRES MEDIATED MECHANISM |
JP6168055B2 (en) | 2012-06-18 | 2017-07-26 | 住友化学株式会社 | Fused heterocyclic compounds |
WO2014007228A1 (en) | 2012-07-03 | 2014-01-09 | 小野薬品工業株式会社 | Compound having agonistic activity on somatostatin receptor, and use thereof for medical purposes |
CN104619709B (en) | 2012-07-13 | 2016-11-09 | Ucb生物制药私人有限公司 | Imidazopyridine derivatives as TNF active regulator |
GB201212513D0 (en) | 2012-07-13 | 2012-08-29 | Ucb Pharma Sa | Therapeutic agents |
JP2015178457A (en) | 2012-07-25 | 2015-10-08 | 杏林製薬株式会社 | Pyrazolopyridine derivative and pharmacologically permissible salt of the same |
US9428511B2 (en) | 2012-09-06 | 2016-08-30 | Bristol-Myers Squibb Company | Imidazopyridazine JAK3 inhibitors and their use for the treatment of inflammatory and autoimmune diseases |
LT2900657T (en) | 2012-09-26 | 2020-05-25 | F. Hoffmann-La Roche Ag | Cyclic ether pyrazol-4-yl-heterocyclyl-carboxamide compounds and methods of use |
WO2014061693A1 (en) | 2012-10-17 | 2014-04-24 | 塩野義製薬株式会社 | Novel non-aromatic carbocyclic or non-aromatic heterocyclic derivative |
WO2014081878A2 (en) | 2012-11-21 | 2014-05-30 | Stategics, Inc. | Substituted triazolo-pyrimidine compounds for modulating cell proliferation, differentiation and survival |
JP6037804B2 (en) | 2012-12-03 | 2016-12-07 | 富士フイルム株式会社 | Gas separation membrane |
KR102403306B1 (en) | 2013-01-15 | 2022-06-02 | 인사이트 홀딩스 코포레이션 | Thiazolecarboxamides and pyridinecarboxamide compounds useful as pim kinase inhibitors |
RU2015132181A (en) | 2013-01-22 | 2017-03-02 | Ф. Хоффманн-Ля Рош Аг | Fluorine- [1,3] -OXASINES AS BACE1 INHIBITORS |
CN103933036B (en) | 2013-01-23 | 2017-10-13 | 中国人民解放军军事医学科学院毒物药物研究所 | 2 Aryimidazoles simultaneously the acetamide derivative of [1,2 α] pyridine 3 prepare preventing and treating PTSD medicine in purposes |
EP2950814A4 (en) | 2013-01-31 | 2016-06-08 | Univ Jefferson | Pd-l1 and pd-l2-based fusion proteins and uses thereof |
JP5642323B1 (en) | 2013-02-27 | 2014-12-17 | 持田製薬株式会社 | New pyrazole derivatives |
SG11201507196WA (en) | 2013-03-08 | 2015-10-29 | Amgen Inc | Perfluorinated cyclopropyl fused 1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use |
US20160050895A1 (en) | 2013-03-13 | 2016-02-25 | Australian Nuclear Science And Technology Organization | Transgenic non-human organisms with non-functional tspo genes |
CN104045552B (en) | 2013-03-13 | 2019-06-11 | 江苏先声药业有限公司 | Medicinal compound as neuroprotective agent |
ES2623904T3 (en) | 2013-03-14 | 2017-07-12 | VIIV Healthcare UK (No.5) Limited | Human immunodeficiency virus replication inhibitors |
EP2970173B1 (en) | 2013-03-14 | 2018-05-09 | Curadev Pharma Private Ltd. | Inhibitors of the kynurenine pathway |
KR20150131211A (en) | 2013-03-14 | 2015-11-24 | 켈탁시스, 인코퍼레이티드 | Inhibitors of leukotriene a4 hydrolase |
ES2705247T3 (en) | 2013-03-14 | 2019-03-22 | Univ Columbia | 4-phenylpiperidines, their preparation and use |
US9308236B2 (en) | 2013-03-15 | 2016-04-12 | Bristol-Myers Squibb Company | Macrocyclic inhibitors of the PD-1/PD-L1 and CD80(B7-1)/PD-L1 protein/protein interactions |
WO2014181287A1 (en) | 2013-05-09 | 2014-11-13 | Piramal Enterprises Limited | Heterocyclyl compounds and uses thereof |
NZ754039A (en) | 2013-06-26 | 2021-06-25 | Abbvie Inc | Primary carboxamides as btk inhibitors |
HUE049733T2 (en) | 2013-07-02 | 2020-10-28 | Syngenta Participations Ag | Pesticidally active bi- or tricyclic heterocycles with sulfur containing substituents |
JP6503336B2 (en) | 2013-07-17 | 2019-04-17 | 大塚製薬株式会社 | Cyanotriazole compound |
RU2016105108A (en) | 2013-07-25 | 2017-08-30 | Дана-Фарбер Кэнсер Инститьют, Инк. | TRANSCRIPTION FACTOR INHIBITORS AND THEIR APPLICATION |
EP2835375A1 (en) | 2013-08-09 | 2015-02-11 | Fundació Institut Català d'Investigació Química | Bis-salphen compounds and carbonaceous material composites comprising them |
KR101715090B1 (en) | 2013-08-28 | 2017-03-13 | 한국화학연구원 | Novel compound or pharmaceutically acceptable salt thereof and pharmaceutical composition for prevention or treatment of disease caused by influenza virus infection containing the same as an active ingredient |
WO2015034820A1 (en) | 2013-09-04 | 2015-03-12 | Bristol-Myers Squibb Company | Compounds useful as immunomodulators |
SG11201601682RA (en) | 2013-09-06 | 2016-04-28 | Aurigene Discovery Tech Ltd | 1,2,4-oxadiazole derivatives as immunomodulators |
EP3385257A1 (en) | 2013-09-06 | 2018-10-10 | Aurigene Discovery Technologies Limited | 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives as immunomodulators |
WO2015036927A1 (en) | 2013-09-10 | 2015-03-19 | Aurigene Discovery Technologies Limited | Immunomodulating peptidomimetic derivatives |
JP6336870B2 (en) | 2013-09-30 | 2018-06-06 | 日本ポリプロ株式会社 | Biphenol compound, olefin polymerization catalyst using the same, and process for producing olefin polymer |
FR3012140B1 (en) | 2013-10-18 | 2016-08-26 | Arkema France | UNIT AND PROCESS FOR THE PURIFICATION OF RAW METHYL METHACRYLATE |
GB201321733D0 (en) | 2013-12-09 | 2014-01-22 | Ucb Pharma Sa | Therapeutic agents |
GB201321746D0 (en) | 2013-12-09 | 2014-01-22 | Ucb Pharma Sa | Therapeutic agents |
GB201321736D0 (en) | 2013-12-09 | 2014-01-22 | Ucb Pharma Sa | Therapeutic agents |
WO2015095337A2 (en) | 2013-12-18 | 2015-06-25 | The Rockefeller University | PYRAZOLO[1,5-a]PYRIMIDINECARBOXAMIDE DERIVATIVES FOR TREATING COGNITIVE IMPAIRMENT |
CN106061965A (en) | 2014-01-03 | 2016-10-26 | 拜耳动物保健有限责任公司 | Novel pyrazolyl-heteroarylamides as pesticides |
EP3105251A4 (en) | 2014-02-10 | 2017-11-15 | Merck Sharp & Dohme Corp. | Antibodies that bind to human tau and assay for quantifying human tau using the antibodies |
JP2017508788A (en) | 2014-02-25 | 2017-03-30 | アキリオン ファーマシューティカルズ,インコーポレーテッド | Ether compounds for the treatment of complement-mediated disorders |
JP6490464B2 (en) | 2014-03-26 | 2019-03-27 | 三井化学株式会社 | Transition metal compound, catalyst for olefin polymerization, and process for producing olefin polymer |
PT3125883T (en) | 2014-04-04 | 2020-10-12 | Iomet Pharma Ltd | Indole derivatives for use in medicine |
WO2015197028A1 (en) | 2014-06-28 | 2015-12-30 | Sunshine Lake Pharma Co., Ltd. | Compounds as hepatitis c virus (hcv) inhibitors and uses thereof in medicine |
CN104211726B (en) | 2014-08-11 | 2017-06-16 | 中南民族大学 | The tooth double-core titanium complex of non-luxuriant class three, Preparation method and use |
WO2016044604A1 (en) | 2014-09-17 | 2016-03-24 | Epizyme, Inc. | Carm1 inhibitors and uses thereof |
AR102177A1 (en) | 2014-10-06 | 2017-02-08 | Merck Patent Gmbh | HETEROARILO COMPOUNDS AS BTK INHIBITORS AND USES OF THE SAME |
CA2968884A1 (en) | 2014-12-10 | 2016-06-16 | Massachusetts Institute Of Technology | Fused 1,3-azole derivatives useful for the treatment of proliferative diseases |
JP6853619B2 (en) | 2015-01-16 | 2021-03-31 | 大塚製薬株式会社 | Pharmaceutical use of cyanotriazole compounds |
WO2016118404A1 (en) | 2015-01-20 | 2016-07-28 | Merck Sharp & Dohme Corp. | Iminothiadiazine dioxides bearing an amine-linked substituent as bace inhibitors, compositions, and their use |
WO2016116525A1 (en) | 2015-01-20 | 2016-07-28 | Cynora Gmbh | Organic molecules, in particular for use in optoelectronic components |
WO2016156282A1 (en) | 2015-04-02 | 2016-10-06 | Bayer Cropscience Aktiengesellschaft | Novel triazole compounds for controlling phytopathogenic harmful fungi |
WO2017035405A1 (en) | 2015-08-26 | 2017-03-02 | Achillion Pharmaceuticals, Inc. | Amino compounds for treatment of immune and inflammatory disorders |
US10745382B2 (en) | 2015-10-15 | 2020-08-18 | Bristol-Myers Squibb Company | Compounds useful as immunomodulators |
TW201718581A (en) | 2015-10-19 | 2017-06-01 | 英塞特公司 | Heterocyclic compounds as immunomodulators |
WO2017070320A1 (en) | 2015-10-21 | 2017-04-27 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Phenyl indole allosteric inhibitors of p97 atpase |
KR101717601B1 (en) | 2015-11-10 | 2017-03-20 | 한국화학연구원 | Novel compound or pharmaceutically acceptable salt thereof and pharmaceutical composition for prevention or treatment of disease caused by influenza virus infection containing the same as an active ingredient |
LT3377488T (en) | 2015-11-19 | 2023-01-10 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
WO2017106634A1 (en) | 2015-12-17 | 2017-06-22 | Incyte Corporation | N-phenyl-pyridine-2-carboxamide derivatives and their use as pd-1/pd-l1 protein/protein interaction modulators |
WO2017107052A1 (en) | 2015-12-22 | 2017-06-29 | Merck Sharp & Dohme Corp. | Soluble guanylate cyclase stimulators |
CN108463109B (en) | 2015-12-22 | 2022-04-29 | 先正达参股股份有限公司 | Pesticidally active pyrazole derivatives |
SI3394033T1 (en) | 2015-12-22 | 2021-03-31 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
EP3393457A1 (en) | 2015-12-22 | 2018-10-31 | Synthon B.V. | Pharmaceutical composition comprising amorphous lenalidomide and an antioxidant |
SG10202111399YA (en) | 2015-12-22 | 2021-11-29 | Immatics Biotechnologies Gmbh | Peptides and combination of peptides for use in immunotherapy against breast cancer and other cancers |
KR101653560B1 (en) | 2016-02-02 | 2016-09-12 | 한국화학연구원 | Novel compound or pharmaceutically acceptable salt thereof and pharmaceutical composition for prevention or treatment of disease caused by influenza virus infection containing the same as an active ingredient |
MA44860A (en) | 2016-05-06 | 2019-03-13 | Incyte Holdings Corp | HETEROCYCLIC COMPOUNDS USED AS IMMUNOMODULATORS |
WO2017205464A1 (en) | 2016-05-26 | 2017-11-30 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
ES2793773T3 (en) | 2016-06-20 | 2020-11-16 | Elanco Us Inc | PEGYLATED PORCINE INTERFERON AND METHODS OF USING IT |
EP3472168B1 (en) | 2016-06-20 | 2024-01-10 | Novartis AG | Crystalline forms of triazolopyrimidine compound |
EP4137489A1 (en) | 2016-06-20 | 2023-02-22 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
CN116554168A (en) | 2016-06-21 | 2023-08-08 | X4 制药有限公司 | CXCR4 inhibitors and uses thereof |
WO2018013789A1 (en) | 2016-07-14 | 2018-01-18 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
EP3493804A1 (en) | 2016-08-03 | 2019-06-12 | Arising International, Inc. | Symmetric or semi-symmetric compounds useful as immunomodulators |
EP3504198B1 (en) | 2016-08-29 | 2023-01-25 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
BR112019003885A2 (en) | 2016-08-30 | 2019-05-28 | Tetraphase Pharmaceuticals Inc | tetracycline compounds and treatment methods |
TWI795381B (en) | 2016-12-21 | 2023-03-11 | 比利時商健生藥品公司 | Pyrazole derivatives as malt1 inhibitors |
AU2017383236B2 (en) | 2016-12-21 | 2022-02-10 | Acerta Pharma B.V. | Imidazopyrazine inhibitors of Bruton's tyrosine kinase |
PT3559009T (en) | 2016-12-22 | 2021-05-04 | Calithera Biosciences Inc | Compositions and methods for inhibiting arginase activity |
WO2018119263A1 (en) | 2016-12-22 | 2018-06-28 | Incyte Corporation | Heterocyclic compounds derivatives as pd-l1 internalization inducers |
US20180179202A1 (en) | 2016-12-22 | 2018-06-28 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
ES2874756T3 (en) | 2016-12-22 | 2021-11-05 | Incyte Corp | Triazolo [1,5-A] pyridine derivatives as immunomodulators |
TWI798192B (en) | 2016-12-22 | 2023-04-11 | 美商英塞特公司 | Immunomodulator compounds and methods of use |
US20180179179A1 (en) | 2016-12-22 | 2018-06-28 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
MX2019007416A (en) | 2016-12-22 | 2019-12-11 | Incyte Corp | Benzooxazole derivatives as immunomodulators. |
JOP20180040A1 (en) | 2017-04-20 | 2019-01-30 | Gilead Sciences Inc | Pd-1/pd-l1 inhibitors |
JP7185681B2 (en) | 2017-07-28 | 2022-12-07 | ケモセントリックス,インコーポレイティド | immunomodulatory compounds |
WO2019032547A1 (en) | 2017-08-08 | 2019-02-14 | Chemocentryx, Inc. | Macrocyclic immunomodulators |
WO2019034172A1 (en) | 2017-08-18 | 2019-02-21 | 上海轶诺药业有限公司 | Compound having pd-l1 inhibitory activity, preparation method therefor and use thereof |
ES2940750T3 (en) | 2018-03-30 | 2023-05-11 | Incyte Corp | Heterocyclic compounds as immunomodulators |
JP2021520342A (en) | 2018-04-03 | 2021-08-19 | ベータ ファーマシューティカルズ カンパニー リミテッド | Immunomodulators, compositions and methods thereof |
TWI712412B (en) | 2018-04-19 | 2020-12-11 | 美商基利科學股份有限公司 | Pd-1/pd-l1 inhibitors |
HRP20230306T1 (en) | 2018-05-11 | 2023-05-12 | Incyte Corporation | Tetrahydro-imidazo[4,5-c]pyridine derivatives as pd-l1 immunomodulators |
CN112955435B (en) | 2018-10-24 | 2024-09-06 | 吉利德科学公司 | PD-1/PD-L1 inhibitors |
CN111138301B (en) | 2018-11-02 | 2024-01-05 | 上海再极医药科技有限公司 | Biphenyl compound, intermediate, preparation method, pharmaceutical composition and application |
MX2021009246A (en) | 2019-01-31 | 2021-09-08 | Betta Pharmaceuticals Co Ltd | Immunomodulators, compositions and methods thereof. |
CA3150434A1 (en) | 2019-08-09 | 2021-02-18 | Incyte Corporation | Salts of a pd-1/pd-l1 inhibitor |
TW202126652A (en) | 2019-09-30 | 2021-07-16 | 美商英塞特公司 | Pyrido[3,2-d]pyrimidine compounds as immunomodulators |
KR20220101664A (en) | 2019-11-11 | 2022-07-19 | 인사이트 코포레이션 | Salts and crystalline forms of PD-1/PD-L1 inhibitors |
-
2016
- 2016-10-18 TW TW105133530A patent/TW201718581A/en unknown
- 2016-10-18 MA MA052119A patent/MA52119A/en unknown
- 2016-10-18 EP EP16787687.9A patent/EP3365340B1/en active Active
- 2016-10-18 ES ES16787687T patent/ES2928164T3/en active Active
- 2016-10-18 WO PCT/US2016/057487 patent/WO2017070089A1/en active Application Filing
- 2016-10-18 US US15/296,234 patent/US20170107216A1/en not_active Abandoned
-
2018
- 2018-06-12 US US16/005,961 patent/US20190144439A1/en not_active Abandoned
-
2019
- 2019-01-15 HK HK19100636.9A patent/HK1258272A1/en unknown
-
2020
- 2020-12-11 US US17/119,488 patent/US11407749B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002000196A2 (en) | 2000-06-28 | 2002-01-03 | Smithkline Beecham P.L.C. | Wet milling process |
US20100292227A1 (en) * | 2009-05-15 | 2010-11-18 | Boehringer Ingleheim International Gmbh | Inhibitors of human immunodeficiency virus replication |
US20140288094A1 (en) * | 2011-09-22 | 2014-09-25 | Merck Sharp & Dohme Corp | Pyrazolopyridyl compounds as aldosterone synthase inhibitors |
US20150291549A1 (en) * | 2014-04-14 | 2015-10-15 | Bristol-Myers Squibb Company | Compounds Useful as Immunomodulators |
Non-Patent Citations (29)
Title |
---|
"Remington's Pharmaceutical Sciences", 1985, MACK PUBLISHING COMPANY, EASTON, pages: 1418 |
BARBER ET AL., NATURE, vol. 439, 2006, pages 682 - 7 |
BERGE ET AL., J. PHARM. SCI., vol. 66, no. 1, 1977, pages 1 - 19 |
BLANK ET AL., CANCER RES, vol. 64, no. 3, 2004, pages 1140 - 5 |
BLOM ET AL.: "Optimizing Preparative LC-MS Configurations and Methods for Parallel Synthesis Purification", J. COMBI. CHEM., vol. 5, 2003, pages 670 - 83 |
BLOM ET AL.: "Preparative LC-MS Purification: Improved Compound Specific Method Optimization", J. COMBI. CHEM., vol. 6, 2004, pages 874 - 883 |
CARTER ET AL., EUR J IMMUNOL, vol. 32, no. 3, 2002, pages 634 - 43 |
FREEMAN ET AL., J EXP MED, vol. 192, no. 7, 2000, pages 1027 - 34 |
GREENWALD ET AL., ANNU. REV. IMMUNOL, vol. 23, 2005, pages 515 - 548 |
HUANG ET AL., ONCOL REP, 2015 |
IWAI ET AL., PNAS, vol. 99, no. 19, 2002, pages 12293 - 7 |
K. BLOM: "Two-Pump At Column Dilution Configuration for Preparative LC-MS", J. COMBI. CHEM., vol. 4, 2002, pages 295 - 301 |
KOCIENSKI: "Protecting Groups", 2007, THIEME |
LATCHMAN ET AL., NAT IMMUNOL, vol. 2, 2001, pages 261 - 268 |
NAKAE ET AL., J IMMUNOL, vol. 177, 2006, pages 566 - 73 |
NISHIMURA ET AL., IMMUNITY, vol. 11, 1999, pages 141 - 151 |
NISHIMURA ET AL., SCIENCE, vol. 291, 2001, pages 319 - 322 |
OKAZAKI; HONJO, TRENDS IMMUNOL, 2006, pages 195 - 201 |
PARRY ET AL., MOL CELL BIOL, 2005, pages 9543 - 9553 |
PETURSSION ET AL.: "Protecting Groups in Carbohydrate Chemistry", J. CHEM. EDUC., vol. 74, no. 11, 1997, pages 1297 |
POSTOW ET AL., J. CLINICAL ONCOL, 2015, pages 1 - 9 |
POSTOW ET AL., J. CLINICAL ONCOLOGY, 2015, pages 1 - 9 |
ROBERTSON: "Protecting Group Chemistry", 2000, OXFORD UNIVERSITY PRESS |
SABATIER ET AL., ONCOTARGET, vol. 6, no. 7, 2015, pages 5449 - 5464 |
SHARPE ET AL., NAT IMMUNOL, vol. 8, 2007, pages 239 - 245 |
SMITH ET AL.: "March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure", 2007, WILEY |
STAHL ET AL.: "Handbook of Pharmaceutical Salts: Properties, Selection, and Use", 2002, WILEY |
WANG ET AL., EUR J SURG ONCOL, 2015 |
WUTS ET AL.: "Protective Groups in Organic Synthesis", 2006, WILEY |
Cited By (141)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11407749B2 (en) | 2015-10-19 | 2022-08-09 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11572366B2 (en) | 2015-11-19 | 2023-02-07 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11535615B2 (en) | 2015-12-22 | 2022-12-27 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11866435B2 (en) | 2015-12-22 | 2024-01-09 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11608337B2 (en) | 2016-05-06 | 2023-03-21 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11673883B2 (en) | 2016-05-26 | 2023-06-13 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11873309B2 (en) | 2016-06-20 | 2024-01-16 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US10639284B2 (en) | 2016-06-27 | 2020-05-05 | Chemocentryx, Inc. | Immunomodulator compounds |
US11793771B2 (en) | 2016-06-27 | 2023-10-24 | Chemocentryx, Inc. | Immunomodulator compounds |
US11426364B2 (en) | 2016-06-27 | 2022-08-30 | Chemocentryx, Inc. | Immunomodulator compounds |
WO2018005374A1 (en) | 2016-06-27 | 2018-01-04 | Chemocentryx, Inc. | Immunomodulator compounds |
US11718605B2 (en) | 2016-07-14 | 2023-08-08 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11613536B2 (en) | 2016-08-29 | 2023-03-28 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11274285B2 (en) | 2016-10-14 | 2022-03-15 | Precision Biosciences, Inc. | Engineered meganucleases specific for recognition sequences in the Hepatitis B virus genome |
US10662416B2 (en) | 2016-10-14 | 2020-05-26 | Precision Biosciences, Inc. | Engineered meganucleases specific for recognition sequences in the hepatitis B virus genome |
EP4223369A1 (en) * | 2016-12-22 | 2023-08-09 | Incyte Corporation | Immunomodulator compounds and methods of use |
US10793565B2 (en) | 2016-12-22 | 2020-10-06 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11787793B2 (en) | 2016-12-22 | 2023-10-17 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11339149B2 (en) | 2016-12-22 | 2022-05-24 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US10308644B2 (en) | 2016-12-22 | 2019-06-04 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
JP7101678B2 (en) | 2016-12-22 | 2022-07-15 | インサイト・コーポレイション | Heterocyclic compounds as immunomodulators |
WO2018119236A1 (en) * | 2016-12-22 | 2018-06-28 | Incyte Corporation | Triazolo[1,5-a]pyridine derivatives as immunomodulators |
JP2020504737A (en) * | 2016-12-22 | 2020-02-13 | インサイト・コーポレイションIncyte Corporation | Heterocyclic compounds as immunomodulators |
US10806785B2 (en) | 2016-12-22 | 2020-10-20 | Incyte Corporation | Immunomodulator compounds and methods of use |
US10800768B2 (en) | 2016-12-22 | 2020-10-13 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11566026B2 (en) | 2016-12-22 | 2023-01-31 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11465981B2 (en) | 2016-12-22 | 2022-10-11 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
WO2018195321A1 (en) | 2017-04-20 | 2018-10-25 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
EP4026835A2 (en) | 2017-04-20 | 2022-07-13 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
CN111225896A (en) * | 2017-07-28 | 2020-06-02 | 凯莫森特里克斯股份有限公司 | Immunomodulatory compounds |
KR102647257B1 (en) | 2017-07-28 | 2024-03-13 | 케모센트릭스, 인크. | immunomodulator compounds |
US10919852B2 (en) | 2017-07-28 | 2021-02-16 | Chemocentryx, Inc. | Immunomodulator compounds |
CN111225896B (en) * | 2017-07-28 | 2024-03-26 | 凯莫森特里克斯股份有限公司 | Immunomodulatory compounds |
KR20200057700A (en) * | 2017-07-28 | 2020-05-26 | 케모센트릭스, 인크. | Immunomodulator compounds |
AU2018306619B2 (en) * | 2017-07-28 | 2022-06-02 | Chemocentryx, Inc. | Immunomodulator compounds |
EP3658522A4 (en) * | 2017-07-28 | 2020-11-25 | ChemoCentryx, Inc. | Immunomodulator compounds |
US11708326B2 (en) | 2017-07-28 | 2023-07-25 | Chemocentryx, Inc. | Immunomodulator compounds |
CN111225665B (en) * | 2017-08-08 | 2023-12-08 | 凯莫森特里克斯股份有限公司 | Macrocyclic immunomodulators |
CN111225665A (en) * | 2017-08-08 | 2020-06-02 | 凯莫森特里克斯股份有限公司 | Macrocyclic immunomodulators |
US11059834B2 (en) | 2017-08-08 | 2021-07-13 | Chemocentryx, Inc. | Macrocyclic immunomodulators |
KR20200056989A (en) * | 2017-08-08 | 2020-05-25 | 케모센트릭스, 인크. | Macrocyclic immunomodulator |
US10392405B2 (en) | 2017-08-08 | 2019-08-27 | Chemocentryx, Inc. | Macrocyclic immunomodulators |
KR102670486B1 (en) | 2017-08-08 | 2024-05-28 | 케모센트릭스, 인크. | Macrocyclic immunomodulators |
US11691985B2 (en) | 2017-08-08 | 2023-07-04 | Chemocentryx, Inc. | Macrocyclic immunomodulators |
WO2019032547A1 (en) | 2017-08-08 | 2019-02-14 | Chemocentryx, Inc. | Macrocyclic immunomodulators |
US12116417B2 (en) | 2017-11-14 | 2024-10-15 | GC Cell Corporation | Anti-HER2 antibody or antigen-binding fragment thereof, and chimeric antigen receptor comprising same |
US11203610B2 (en) | 2017-12-20 | 2021-12-21 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein |
US10966999B2 (en) | 2017-12-20 | 2021-04-06 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein |
WO2019160882A1 (en) | 2018-02-13 | 2019-08-22 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
EP4227302A1 (en) | 2018-02-13 | 2023-08-16 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
US10710986B2 (en) | 2018-02-13 | 2020-07-14 | Gilead Sciences, Inc. | PD-1/PD-L1 inhibitors |
US11555029B2 (en) | 2018-02-13 | 2023-01-17 | Gilead Sciences, Inc. | PD-1/PD-L1 inhibitors |
US10568874B2 (en) | 2018-02-22 | 2020-02-25 | Chemocentryx, Inc. | Indane-amines as PD-L1 antagonists |
WO2019165043A2 (en) | 2018-02-22 | 2019-08-29 | Chemocentryx, Inc. | Indane-amines as pd-l1 antagonists |
US11759458B2 (en) | 2018-02-22 | 2023-09-19 | Chemocentryx, Inc. | Indane-amines as PD-L1 antagonists |
US11135210B2 (en) | 2018-02-22 | 2021-10-05 | Chemocentryx, Inc. | Indane-amines as PD-L1 antagonists |
WO2019165374A1 (en) | 2018-02-26 | 2019-08-29 | Gilead Sciences, Inc. | Substituted pyrrolizine compounds as hbv replication inhibitors |
US11673894B2 (en) | 2018-02-27 | 2023-06-13 | Incyte Corporation | Imidazopyrimidines and triazolopyrimidines as A2A / A2B inhibitors |
US10669271B2 (en) | 2018-03-30 | 2020-06-02 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11124511B2 (en) | 2018-03-30 | 2021-09-21 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
WO2019195181A1 (en) | 2018-04-05 | 2019-10-10 | Gilead Sciences, Inc. | Antibodies and fragments thereof that bind hepatitis b virus protein x |
US11292812B2 (en) | 2018-04-06 | 2022-04-05 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3′3′-cyclic dinucleotides |
WO2019193543A1 (en) | 2018-04-06 | 2019-10-10 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3'3'-cyclic dinucleotides |
WO2019193542A1 (en) | 2018-04-06 | 2019-10-10 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2'3'-cyclic dinucleotides |
WO2019193533A1 (en) | 2018-04-06 | 2019-10-10 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2'2'-cyclic dinucleotides |
US11149052B2 (en) | 2018-04-06 | 2021-10-19 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2′3′-cyclic dinucleotides |
US11788077B2 (en) | 2018-04-12 | 2023-10-17 | Precision Biosciences, Inc. | Polynucleotides encoding optimized engineered meganucleases having specificity for a recognition sequence in the Hepatitis B virus genome |
WO2019200247A1 (en) | 2018-04-12 | 2019-10-17 | Precision Biosciences, Inc. | Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome |
US11142750B2 (en) | 2018-04-12 | 2021-10-12 | Precision Biosciences, Inc. | Optimized engineered meganucleases having specificity for a recognition sequence in the Hepatitis B virus genome |
WO2019204609A1 (en) | 2018-04-19 | 2019-10-24 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
US10899735B2 (en) | 2018-04-19 | 2021-01-26 | Gilead Sciences, Inc. | PD-1/PD-L1 inhibitors |
WO2019211799A1 (en) | 2018-05-03 | 2019-11-07 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide |
US10906920B2 (en) | 2018-05-11 | 2021-02-02 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US10618916B2 (en) | 2018-05-11 | 2020-04-14 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11414433B2 (en) | 2018-05-11 | 2022-08-16 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
US11873304B2 (en) | 2018-05-18 | 2024-01-16 | Incyte Corporation | Fused pyrimidine derivatives as A2A/A2B inhibitors |
WO2019232319A1 (en) | 2018-05-31 | 2019-12-05 | Peloton Therapeutics, Inc. | Compositions and methods for inhibiting cd73 |
WO2019230919A1 (en) | 2018-05-31 | 2019-12-05 | 小野薬品工業株式会社 | Biomarker for judging efficacy of immune checkpoint inhibitor |
US11999740B2 (en) | 2018-07-05 | 2024-06-04 | Incyte Corporation | Fused pyrazine derivatives as A2A / A2B inhibitors |
WO2020011243A1 (en) * | 2018-07-12 | 2020-01-16 | Betta Pharmaceuticals Co., Ltd | Immunomodulators, compositions and methods thereof |
EP4234030A2 (en) | 2018-07-13 | 2023-08-30 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
WO2020014643A1 (en) | 2018-07-13 | 2020-01-16 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
US10774071B2 (en) | 2018-07-13 | 2020-09-15 | Gilead Sciences, Inc. | PD-1/PD-L1 inhibitors |
WO2020028097A1 (en) | 2018-08-01 | 2020-02-06 | Gilead Sciences, Inc. | Solid forms of (r)-11-(methoxymethyl)-12-(3-methoxypropoxy)-3,3-dimethyl-8-0x0-2,3,8,13b-tetrahydro-1h-pyrido[2,1-a]pyrrolo[1,2-c] phthalazine-7-c arboxylic acid |
WO2020075790A1 (en) | 2018-10-11 | 2020-04-16 | 小野薬品工業株式会社 | Sting-agonist compound |
WO2020086556A1 (en) | 2018-10-24 | 2020-04-30 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
US11236085B2 (en) | 2018-10-24 | 2022-02-01 | Gilead Sciences, Inc. | PD-1/PD-L1 inhibitors |
EP4371987A1 (en) | 2018-10-31 | 2024-05-22 | Gilead Sciences, Inc. | Substituted 6-azabenzimidazole compounds as hpk1 inhibitors |
WO2020092621A1 (en) | 2018-10-31 | 2020-05-07 | Gilead Sciences, Inc. | Substituted 6-azabenzimidazole compounds as hpk1 inhibitors |
WO2020092528A1 (en) | 2018-10-31 | 2020-05-07 | Gilead Sciences, Inc. | Substituted 6-azabenzimidazole compounds having hpk1 inhibitory activity |
WO2020088357A1 (en) | 2018-11-02 | 2020-05-07 | 上海再极医药科技有限公司 | Diphenyl-like compound, intermediate thereof, preparation method therefor, pharmaceutical composition thereof and uses thereof |
US11884665B2 (en) | 2019-01-29 | 2024-01-30 | Incyte Corporation | Pyrazolopyridines and triazolopyridines as A2A / A2B inhibitors |
CN109776377B (en) * | 2019-02-01 | 2021-08-24 | 沈阳药科大学 | Indoline compound and preparation method and application thereof |
CN109776377A (en) * | 2019-02-01 | 2019-05-21 | 沈阳药科大学 | Indoline-like compound and its preparation method and application |
US11766447B2 (en) | 2019-03-07 | 2023-09-26 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3′3′-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator |
WO2020178769A1 (en) | 2019-03-07 | 2020-09-10 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2'3'-cyclic dinucleotides and prodrugs thereof |
WO2020178770A1 (en) | 2019-03-07 | 2020-09-10 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3'3'-cyclic dinucleotides and prodrugs thereof |
WO2020178768A1 (en) | 2019-03-07 | 2020-09-10 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator |
WO2020192570A1 (en) | 2019-03-22 | 2020-10-01 | 上海再极医药科技有限公司 | Small-molecule inhibitor of pd-1/pd-l1, pharmaceutical composition thereof with pd-l1 antibody, and application of same |
WO2020214663A1 (en) | 2019-04-17 | 2020-10-22 | Gilead Sciences, Inc. | Solid forms of a toll-like receptor modulator |
WO2020214652A1 (en) | 2019-04-17 | 2020-10-22 | Gilead Sciences, Inc. | Solid forms of a toll-like receptor modulator |
US11266643B2 (en) | 2019-05-15 | 2022-03-08 | Chemocentryx, Inc. | Triaryl compounds for treatment of PD-L1 diseases |
WO2020237025A1 (en) | 2019-05-23 | 2020-11-26 | Gilead Sciences, Inc. | Substituted exo-methylene-oxindoles which are hpk1/map4k1 inhibitors |
US11485708B2 (en) | 2019-06-20 | 2022-11-01 | Chemocentryx, Inc. | Compounds for treatment of PD-L1 diseases |
US11872217B2 (en) | 2019-07-10 | 2024-01-16 | Chemocentryx, Inc. | Indanes as PD-L1 inhibitors |
WO2021007386A1 (en) | 2019-07-10 | 2021-01-14 | Chemocentryx, Inc. | Indanes as pd-l1 inhibitors |
WO2021011891A1 (en) | 2019-07-18 | 2021-01-21 | Gilead Sciences, Inc. | Long-acting formulations of tenofovir alafenamide |
WO2021025031A1 (en) | 2019-08-05 | 2021-02-11 | 小野薬品工業株式会社 | Biomarker for accessing efficacy of immune checkpoint inhibitor |
US11753406B2 (en) | 2019-08-09 | 2023-09-12 | Incyte Corporation | Salts of a PD-1/PD-L1 inhibitor |
WO2021034804A1 (en) | 2019-08-19 | 2021-02-25 | Gilead Sciences, Inc. | Pharmaceutical formulations of tenofovir alafenamide |
WO2021067181A1 (en) | 2019-09-30 | 2021-04-08 | Gilead Sciences, Inc. | Hbv vaccines and methods treating hbv |
US11401279B2 (en) | 2019-09-30 | 2022-08-02 | Incyte Corporation | Pyrido[3,2-d]pyrimidine compounds as immunomodulators |
US11713307B2 (en) | 2019-10-16 | 2023-08-01 | Chemocentryx, Inc. | Heteroaryl-biphenyl amides for the treatment of PD-L1 diseases |
US11866429B2 (en) | 2019-10-16 | 2024-01-09 | Chemocentryx, Inc. | Heteroaryl-biphenyl amines for the treatment of PD-L1 diseases |
US11866451B2 (en) | 2019-11-11 | 2024-01-09 | Incyte Corporation | Salts and crystalline forms of a PD-1/PD-L1 inhibitor |
WO2021113765A1 (en) | 2019-12-06 | 2021-06-10 | Precision Biosciences, Inc. | Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome |
WO2021136354A1 (en) | 2020-01-03 | 2021-07-08 | 上海翰森生物医药科技有限公司 | Biphenyl derivative inhibitor, preparation method therefor and use thereof |
WO2021138512A1 (en) | 2020-01-03 | 2021-07-08 | Incyte Corporation | Combination therapy comprising a2a/a2b and pd-1/pd-l1 inhibitors |
WO2021188959A1 (en) | 2020-03-20 | 2021-09-23 | Gilead Sciences, Inc. | Prodrugs of 4'-c-substituted-2-halo-2'-deoxyadenosine nucleosides and methods of making and using the same |
WO2021206158A1 (en) | 2020-04-10 | 2021-10-14 | 小野薬品工業株式会社 | Method of cancer therapy |
WO2021205631A1 (en) | 2020-04-10 | 2021-10-14 | 小野薬品工業株式会社 | Sting agonistic compound |
WO2021226206A2 (en) | 2020-05-05 | 2021-11-11 | Teon Therapeutics, Inc. | Cannabinoid receptor type 2 (cb2) modulators and uses thereof |
WO2022052926A1 (en) | 2020-09-09 | 2022-03-17 | 广州再极医药科技有限公司 | Aromatic ethylene compound and preparation method therefor, and intermediate, pharmaceutical composition, and application thereof |
US11780836B2 (en) | 2020-11-06 | 2023-10-10 | Incyte Corporation | Process of preparing a PD-1/PD-L1 inhibitor |
US12084443B2 (en) | 2020-11-06 | 2024-09-10 | Incyte Corporation | Process of preparing a PD-1/PD-L1 inhibitor |
US11760756B2 (en) | 2020-11-06 | 2023-09-19 | Incyte Corporation | Crystalline form of a PD-1/PD-L1 inhibitor |
US11866434B2 (en) | 2020-11-06 | 2024-01-09 | Incyte Corporation | Process for making a PD-1/PD-L1 inhibitor and salts and crystalline forms thereof |
WO2022147092A1 (en) | 2020-12-29 | 2022-07-07 | Incyte Corporation | Combination therapy comprising a2a/a2b inhibitors, pd-1/pd-l1 inhibitors, and anti-cd73 antibodies |
WO2022241134A1 (en) | 2021-05-13 | 2022-11-17 | Gilead Sciences, Inc. | COMBINATION OF A TLR8 MODULATING COMPOUND AND ANTI-HBV siRNA THERAPEUTICS |
US11931424B2 (en) | 2021-06-11 | 2024-03-19 | Gilead Sciences, Inc. | Combination MCL-1 inhibitors with anti-body drug conjugates |
US11957693B2 (en) | 2021-06-11 | 2024-04-16 | Gilead Sciences, Inc. | Combination MCL-1 inhibitors with anti-cancer agents |
WO2022261301A1 (en) | 2021-06-11 | 2022-12-15 | Gilead Sciences, Inc. | Combination mcl-1 inhibitors with anti-cancer agents |
WO2022261310A1 (en) | 2021-06-11 | 2022-12-15 | Gilead Sciences, Inc. | Combination mcl-1 inhibitors with anti-body drug conjugates |
WO2022271650A1 (en) | 2021-06-23 | 2022-12-29 | Gilead Sciences, Inc. | Diacylglyercol kinase modulating compounds |
WO2022271659A1 (en) | 2021-06-23 | 2022-12-29 | Gilead Sciences, Inc. | Diacylglyercol kinase modulating compounds |
WO2022271677A1 (en) | 2021-06-23 | 2022-12-29 | Gilead Sciences, Inc. | Diacylglyercol kinase modulating compounds |
WO2022271684A1 (en) | 2021-06-23 | 2022-12-29 | Gilead Sciences, Inc. | Diacylglyercol kinase modulating compounds |
WO2023034530A1 (en) | 2021-09-02 | 2023-03-09 | Teon Therapeutics, Inc. | Methods of improving growth and function of immune cells |
WO2023081730A1 (en) | 2021-11-03 | 2023-05-11 | Teon Therapeutics, Inc. | 4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide derivatives as cannabinoid cb2 receptor modulators for the treatment of cancer |
WO2023097211A1 (en) | 2021-11-24 | 2023-06-01 | The University Of Southern California | Methods for enhancing immune checkpoint inhibitor therapy |
WO2024015372A1 (en) | 2022-07-14 | 2024-01-18 | Teon Therapeutics, Inc. | Adenosine receptor antagonists and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201718581A (en) | 2017-06-01 |
MA52119A (en) | 2018-08-29 |
US11407749B2 (en) | 2022-08-09 |
US20170107216A1 (en) | 2017-04-20 |
ES2928164T3 (en) | 2022-11-15 |
US20210347771A1 (en) | 2021-11-11 |
US20190144439A1 (en) | 2019-05-16 |
EP3365340A1 (en) | 2018-08-29 |
EP3365340B1 (en) | 2022-08-10 |
HK1258272A1 (en) | 2019-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11407749B2 (en) | Heterocyclic compounds as immunomodulators | |
AU2021250978B2 (en) | Heterocyclic compounds as immunomodulators | |
US11866435B2 (en) | Heterocyclic compounds as immunomodulators | |
US10793565B2 (en) | Heterocyclic compounds as immunomodulators | |
EP3558973B1 (en) | Pyridine derivatives as immunomodulators | |
EP3452476B1 (en) | Heterocyclic compounds as immunomodulators | |
AU2016358100B2 (en) | Heterocyclic compounds as immunomodulators | |
NZ788114A (en) | Heterocyclic compounds as immunomodulators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16787687 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016787687 Country of ref document: EP |