WO2017069526A1 - Apparatus for processing raw material, method of processing raw material, and granules manufactured using same - Google Patents

Apparatus for processing raw material, method of processing raw material, and granules manufactured using same Download PDF

Info

Publication number
WO2017069526A1
WO2017069526A1 PCT/KR2016/011801 KR2016011801W WO2017069526A1 WO 2017069526 A1 WO2017069526 A1 WO 2017069526A1 KR 2016011801 W KR2016011801 W KR 2016011801W WO 2017069526 A1 WO2017069526 A1 WO 2017069526A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
granules
iron
binder
primary
Prior art date
Application number
PCT/KR2016/011801
Other languages
French (fr)
Korean (ko)
Inventor
정병준
지윤경
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201680061936.2A priority Critical patent/CN108138257A/en
Priority to EP16857784.9A priority patent/EP3366791A1/en
Priority to JP2018520616A priority patent/JP6734370B2/en
Publication of WO2017069526A1 publication Critical patent/WO2017069526A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2413Binding; Briquetting ; Granulating enduration of pellets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic

Definitions

  • the present invention relates to a raw material processing apparatus, a raw material processing method, and a granulated product manufactured using the same, and more particularly, a raw material processing apparatus capable of producing granulated materials having excellent strength by using an ultra fine raw material such as ultra fine iron ore. It relates to a raw material processing method and granules produced using the same.
  • sintered fine iron ore is manufactured to a size suitable for blast furnace use.
  • iron ore, secondary raw materials, and fuels powder coke, anthracite coal), etc. are put in a drum mixer, mixed and humidified (raw material weight ratio of about 7 to 8%), and the sintered blended raw materials are pseudo-granulated to be fixed on the sintered truck.
  • Charging at a height and firing of the sintered blended raw material proceeds by forcibly sucking air from below after surface ignition by the ignition furnace, and a sintered ore is manufactured.
  • the sintered ore is cooled in a cooler through a crusher of the light distribution unit, classified into a particle size of 5 to 50 mm that is easy for charging and reaction in the blast furnace, and then transferred to the blast furnace.
  • the process of preparing a sintered blended raw material for producing a sintered ore is a process of mixing iron ore as a main raw material, limestone as a raw material, quicklime and silica, and coke acting as a fuel during sintering, assembling a mixture of main raw materials, subsidiary materials and coke. It includes the process of doing. And the granulated material produced by this process is charged into the sintering machine and sintered.
  • the coke contained in the granulated material is brought into contact with oxygen in the air to generate a flame, and as the flame is advanced, the sintered compound raw material charged into the sinterer is sintered. .
  • pellet feed is an ultra fine iron ore having a particle size of 0.15 mm or less and contains nearly 70% of iron (T.Fe) component.
  • T.Fe iron
  • the granules for the raw material for sintering compounding are manufactured by applying a conventional granulation process without selectively granulating the pellet feed, such as quicklime to secure granularity and strength. Expensive binders are used in large quantities.
  • the present invention provides a raw material processing apparatus, a raw material processing method, and a granulated product manufactured using the same, which can improve the strength of a granulated product made of an ultrafine raw material.
  • the present invention provides a raw material processing apparatus, a raw material processing method, and a granulated product manufactured using the same, which can improve the strength of the granulated product and improve the operation efficiency using the granulated product.
  • a raw material processing apparatus an apparatus for processing a raw material for producing a sintered ore, comprising: a primary granulator for assembling an iron-containing fine powder raw material and a binder to produce a primary granulated product; A secondary granulator for forming a secondary granule by forming a coating layer including at least one of quicklime and slaked lime on the surface of the primary granule; It may include a curing device for curing the secondary granules.
  • It may include a mixer for mixing the iron-containing fine powder raw material and the binder.
  • the primary granulator and the secondary granulator may include a moisture supplier for supplying moisture.
  • the curing machine may include a transfer path for transferring the secondary granules manufactured in the secondary granulator, and an exhaust gas supply for supplying exhaust gas to the transfer path.
  • the exhaust gas supply may supply the exhaust gas generated in the lime firing process.
  • a raw material processing method a method for processing a raw material for the production of sintered ore, the process of preparing an iron-containing ultra-fine powder raw material and the binder; Mixing the iron-containing ultrafine powder and a binder in a mixer; Preparing a primary granule by injecting the iron-containing fine powder raw material and a binder into a primary granulator; Preparing at least one of the primary granules, quicklime (CaO) and slaked lime (Ca (OH) 2 ) to a secondary granulator to produce a secondary granule; And curing the secondary granules with CO 2 .
  • the iron-containing fine powder raw material may have a particle size of more than 0 mm to 4 mm or less.
  • the iron-containing fine powder raw material may include at least one of iron ore, pellet feed and steelmaking by-products.
  • the binder may include at least one of molasses, ultrafine limestone, bentonite, ladle slag, fly ash, and a polymer organic binder.
  • the binder may be used in an amount of 0.1 to 5% by weight based on the weight of the iron-containing ultrafine powder.
  • Water may be supplied in the process of manufacturing the primary granules and the secondary granules.
  • the secondary granules may be manufactured to a size of 10 mm or less.
  • the exhaust gas may be an exhaust gas generated in a lime firing process.
  • the exhaust gas may have a CO 2 concentration of 3 to 7%.
  • the exhaust gas may contain 3 to 10% moisture.
  • the exhaust gas of 50 to 100 °C can be supplied to the secondary granules.
  • the curing may be performed in a process of transferring to the reservoir for storing the secondary assembly.
  • a coating layer including calcium carbonate may be formed on the surface of the primary granule.
  • the granulated material according to the embodiment of the present invention may be manufactured by the above-described raw material processing method, and may be formed to have a diameter of 10 mm or less.
  • the granulated material may have a coating layer having a thickness of 0.25 to 1 mm, and the coating layer may include calcium carbonate (CaCO 3 ).
  • the granules may be manufactured using the ultrafine iron ore such that the coating layer containing quicklime or slaked lime on the surface of the primary granules.
  • the ultrafine iron ore such that the coating layer containing quicklime or slaked lime on the surface of the primary granules.
  • 1 is a view showing a sintered ore manufacturing equipment.
  • FIG. 2 is a view conceptually showing a raw material processing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a raw material processing method according to an embodiment of the present invention.
  • FIG. 4 is a view conceptually showing a granule manufactured by the raw material processing method according to an embodiment of the present invention.
  • the ultrafine powder having a particle size of more than 0 mm to 4 mm may be used as a raw material to prepare a sintered ore by making granules.
  • a strength of the granulated product may be increased by forming a coating layer on the surface of the granulated product.
  • FIG. 1 is a view showing a sintered ore manufacturing equipment
  • FIG. 2 is a view conceptually showing a raw material processing apparatus according to an embodiment of the present invention
  • Figure 3 is a flow chart for explaining a raw material processing method according to an embodiment of the present invention
  • 4 is a view conceptually showing a granule manufactured by the raw material processing method according to an embodiment of the present invention.
  • a sintered ore manufacturing facility includes a moving path (not shown) for forming a closed loop, a sintered bogie 300 moving in an endless orbit manner along the moving path, and disposed on the moving path.
  • the raw material supply unit 100 for charging the sintering raw material into the sintering bogie 300, and the ignition furnace 200 and the sintering bogie 300 to ignite by spraying the flame on the surface layer of the raw material in the sintering bogie 300 It includes a plurality of wind box 400.
  • the raw material supply unit 100 in the sintered trolley 300 moving along the movement path
  • one side of the raw material supply unit 100 that is, the front direction of the moving direction of the sintered trolley 300.
  • the surface layer portion of the sintered compound raw material in the sintered trolley 300 is ignited in the ignition furnace 200 located. After the ignition, the sintered trolley 300 moves along the movement path, and the sintered blend 300 is sintered by the inside of the sintered trolley 300 by the wind box 400 under the moving path, and the sintered ore is manufactured.
  • the raw material of the sintered ore may be used for the top light and the sintered blended raw material.
  • the upper light is generated after the production of the sintered ore and means a sintered ore having a predetermined size, for example, about 10 to 15 mm, selected by the sorter 560.
  • the upper light is stored in the upper optical hopper 110 of one side of the surge hopper 120 for storing the sintered compound raw material, and is charged to the bottom of the sintered bogie 300 before charging the sintered compound raw material to the sintered bogie 300.
  • the raw material for sintering blend includes iron ore, quicklime, limestone, silica, coke, coal and the like, it means that they are mixed uniformly. At this time, coke and coal may be used as fuel.
  • the sintered compound raw material is charged to the upper part of the upper light in the sintered trolley 300 by the charging device 130, each raw material constituting them has a particle size of, for example, 10mm or less.
  • an extremely fine raw material having a very small particle diameter for example, greater than 0 to 4 mm or less, deteriorates the air permeability in the sintered bogie 300 during sintering, so that the sintered blend raw material is subjected to a separate processing process, that is, an assembly process.
  • a separate processing process that is, an assembly process.
  • the strength of the granules is not very good because the fine powder is assembled into a granulator and used as it is. Therefore, in the present invention, the strength of the granulated product can be improved by forming a coating layer on the surface of the granulated product after the curing process after preparing the granulated product using the ultrafine powder.
  • a raw material processing apparatus for preparing a sintered blend raw material may be configured as follows.
  • the raw material processing apparatus 500 mixes raw materials supplied from the raw material reservoirs 520, 522, 524, 526, and 528 and the raw material reservoirs 520, 522, 524, 526, and 528. It includes a primary mixer 530, a granulation unit 540 for assembling ultrafine raw materials to produce granules, and a secondary mixer 550 for mixing the raw materials and granules mixed in the primary mixer 530. can do.
  • the raw material reservoirs 520, 522, 524, 526, and 528 include an iron ore storage hopper for storing iron ore, a limestone hopper for storing limestone, a 522, a silica ore hopper for storing quartz, and coke Or a fuel hopper 526 for storing fuel such as coal and a semi-light hopper 528 for storing semi-glossy.
  • the semi-light hopper 528 receives the semi-light from the storage hoppers 510 and 512 for storing the semi-reflected light generated after the manufacture of the blast furnace semi-light or sintered ore.
  • the primary mixer 530 serves to uniformly mix each raw material discharged from each hopper of the raw material reservoirs 520, 522, 524, 526, and 528.
  • the secondary mixer 550 uniformly mixes the mixture discharged from the primary mixer 530 and the granules produced in the granulation unit 540 to produce a sintered blended raw material.
  • the prepared sintered blended raw material is stored in the surge hopper 120 of the raw material supply unit 100 of the sintered ore manufacturing equipment.
  • the granulation unit 540 includes a first hopper 541 for storing the ultra fine raw material and the binder, a mixer 542 for uniformly mixing the ultra fine raw material and the binder discharged from the first hopper 541, and the ultra fine raw material. And a primary granulator 543 for assembling a mixture of a binder and a primary granule, a second hopper 544 for storing quicklime and slaked lime, and a primary granule manufactured in the primary granulator 543. It may include a secondary granulator 545 for producing the secondary granules using at least one of quicklime and slaked lime and a curing machine 546 for curing the secondary granules.
  • the first hopper 541 may be configured in plural to store the ultra fine raw material and the binder, respectively, and may discharge the ultra fine raw material and the binder by a predetermined amount to the mixer 542.
  • the ultrafine raw material may be an iron-containing ultrafine raw material containing iron, and may have a particle size of more than 0 to 4 mm or less.
  • Iron-containing ultrafine raw materials may include iron ore, pellet feed, steelmaking by-products, etc., and steelmaking by-products may include dust or sludge.
  • the binder may include at least one of molasses, microanalytical lime, bentonite, ladle slag, fly ash, and a polymer organic binder, and may be used in a solid state or a liquid state.
  • the mixer 542 may be a 'high speed agitation mixer' for rapidly stirring the iron-containing ultrafine powder and the binder supplied from the first hopper 541.
  • the mixer 542 stirs the ferrous fine powder raw material supplied from the first hopper 541 and the binder at high speed to uniformly mix the same.
  • the mixer 542 has a cylindrical shape having an internal space, and may be provided with a stirring means, for example, a blade (not shown) for mixing the inputted raw materials.
  • the mixer 542 may be provided with a nozzle for spraying water on the mixture of the ultra-ferrous iron raw material and the binder.
  • the primary granulator 543 is a pelletizer used in a typical selective assembly facility, and has an internal space in which a mixture is charged, and a rotating fan (not shown) is installed therein, and is mixed in the mixer 542.
  • the mixture of the ultrafine iron-containing raw material and the binder flows on a rotating fan to gradually grow particles to granulate to prepare a primary granule.
  • the primary granulator 543 may be provided with a moisture supply for supplying moisture in the primary granulator 543 so that the iron-containing ultrafine raw material and the binder can be easily combined.
  • the secondary granulator 545 may be formed to have almost the same configuration as the primary granulator 543.
  • the secondary granulator 545 manufactures the secondary granules using at least one of the primary granules manufactured in the primary granulator 543 and the quicklime and slaked lime supplied from the second hopper 544.
  • the secondary granules may be formed by using a primary granule having a relatively large particle as a nucleus, and having quick particle or slaked lime having a smaller particle size attached to the surface of the primary granule.
  • the secondary granulator 545 may be provided with a moisture supply for supplying moisture in the secondary granulator 545 so that quick lime or slaked lime can be easily attached to the surface of the primary granule.
  • the curing machine 546 may include a transport path for transporting the secondary granules manufactured by the secondary granulator 545, and a gas containing at least one of carbon and oxygen in the secondary assembly transported along the transport path. And an exhaust gas supply for supplying exhaust gas containing CO 2 .
  • the transport path may be a conveyor belt or the like, and the exhaust gas supplier may be formed to inject the exhaust gas onto the transport path.
  • the exhaust gas supplier may supply various exhaust gases generated in the steelmaking process, and in the embodiment of the present invention, may supply exhaust gases generated in the lime firing process.
  • the raw material processing method according to an embodiment of the present invention, the process of preparing a main raw material (S100), the primary mixing process of mixing the main raw material (S110), to prepare a granulated material by assembling the ultra fine raw materials Process (S120), the secondary raw material mixing the raw material and the granulated material to produce a sintered blending raw material (S130) and the step of storing the sintered blended raw material in a reservoir, that is, surge hopper 120 (S140) have.
  • quicklime and slaked lime are used in addition to the ultrafine iron-containing raw materials. Therefore, when preparing main raw materials, quicklime or slaked lime is not provided separately or less than the amount prepared when preparing the raw material for sintering compounding. can do.
  • the process of manufacturing the granulated product is as follows.
  • the process of manufacturing the granulated material (S120), the process of preparing the iron-containing fine powder, binder and quicklime and hydrated lime (S121), the process of mixing the iron-containing fine powder and the binder (S122), and the iron-containing fine powder Preparation of primary granules using a mixture of binders (S123), and quicklime on the surface of the primary granules using any one of the primary granules, quicklime (CaO) and slaked lime (Ca (OH) 2 )
  • Iron-containing ultrafine raw materials may include iron ore, pellet feed, steelmaking by-products having a particle size greater than 0 to 4 mm or less.
  • the steelmaking by-product may be dust or sludge containing an iron component.
  • iron ore and steelmaking by-products are used as the iron-containing fine powder
  • iron ore may be included in an amount of about 50 to 90% by weight based on the total weight of the iron-containing fine powder.
  • the content of iron ore is less than the suggested range, the iron content in the sintered ore decreases, and when more than the suggested range, the strength of the granules is lowered.
  • the binder may be at least one of molasses, microanalytical lime, bentonite, ladle slag, fly ash, and a polymer organic binder.
  • the binder may be used in the liquid state or the solid state.
  • the binder may be used in an amount of 0.1 to 5% by weight based on the weight of the iron-containing fine powder raw material. At this time, when the binder is in the liquid state, it is preferable to use it in the range of about 0.1 to 1% by weight, and in the solid state, it is preferable to use it in the range of 5% by weight or less.
  • the binder When the binder is in a liquid state, if the binder is used in a smaller or larger range than the suggested range, the assemblability of the assembly may be degraded in the subsequent assembly process. In addition, when the binder is in a solid state, when the binder is used in less than the indicated range, the granularity of the granules may be reduced, and when the binder is used in a larger range, the assembly of the granule may be improved, but it may be performed later. As the binder is removed in the high temperature process, the strength of the granules may be lowered, and when the sintered ore manufactured using the same is used in the steelmaking process, a large amount of steel slag may occur.
  • Quicklime and slaked lime are materials for forming a coating layer on the surface of a granule when the granule is manufactured.
  • Quicklime and slaked lime may have a particle size of greater than 0 to about 0.25 mm. If the particle size of quicklime and hydrated lime is larger than the suggested range, it is difficult to form a coating layer having a uniform thickness, and there is a problem that it is difficult to effectively increase the strength of the granules by delaying the reaction time with CO 2 during the curing process.
  • the iron-containing fine powder raw material and the binder are supplied to the mixer 542 to be uniformly mixed.
  • the mixture of the iron-containing fine powder raw material and the binder is charged into a primary granulator 543 to prepare a primary granule composed of the iron-containing fine powder raw material and the binder.
  • the primary granules When the primary granules are manufactured, the primary granules are charged into the secondary granulator 545, and at least one of quicklime and slaked lime is charged to prepare the secondary granules.
  • the secondary granules form a coating layer containing either quicklime or hydrated lime on the surface of the primary granules, and supply the moisture to the secondary granulator 545 so that quicklime or hydrated lime can be easily attached to the surface of the primary granules. Can be.
  • the secondary granules may be formed to have a particle size of 10 mm or less, and preferably, a ratio having a particle size of about 1 to 8 mm may be about 70 to 90%.
  • a ratio having a particle size of about 1 to 8 mm may be about 70 to 90%.
  • the ratio having a particle size of about 1 to 8 mm may be larger than the indicated range, but it is impossible due to the capability of the installation itself.
  • the coating layer formed on the surface of the primary assembly by the secondary assembly process may be formed to a thickness of about 0.25 to 1 mm. If the thickness of the coating layer is smaller than the suggested range, the coating layer is not partially formed on the surface of the primary assembly, so that the strength of the final fabricated assembly cannot be improved as desired, and if the coating layer is larger than the suggested range, the strength of the assembly can be improved. However, the effect is insignificant and there is a problem that the production cost increases with the use of quicklime or slaked lime.
  • the secondary granules are transferred to the secondary mixer 550 so as to uniformly mix the secondary granules.
  • the secondary granules are cured by supplying flue gas containing CO 2 to a transfer path through which the secondary granules are transferred.
  • the flue gas supplied to the secondary granulated product may be flue gas generated in various processes, and in the present embodiment, flue gas generated in a lime firing process for preparing quicklime may be used.
  • Flue gas generated in the lime firing process is a high temperature of about 300 °C, if the direct supply of such exhaust gas to the secondary assembly has a problem that the transport path to the secondary assembly is transported may be damaged.
  • the secondary granules contain a predetermined amount of water, when a high temperature exhaust gas is supplied, there is a problem in that the secondary granules may be differentiated as the moisture in the secondary granules rapidly evaporates.
  • the flue gas generated in the lime calcination process contains about 20% of CO 2 concentration and about 15% of moisture.
  • concentration of CO 2 in the flue gas and the moisture content may be reduced to some extent.
  • a secondary gas can be supplied with a flue gas having a CO 2 concentration of 10% or less, preferably 3-7%, and a water content of 10% or less, preferably 3-10%.
  • the coating layer formed on the surface of the secondary granules that is, the surface of the primary granules is cured by forming CO 2 and calcium carbonate (CaCO 3 ) by the reaction of Equation 1 and 2 below. This may improve the strength of the secondary assembly.
  • the granulated material thus prepared is supplied to the secondary mixer 550, mixed with the main raw materials mixed in the primary mixer 530, prepared as a sintered compound raw material, and then charged into the surge hopper 120.
  • the primary granules were prepared using iron ore, dust and sludge each having a composition ratio of 2: 1: 1, and molasses as a binder.
  • the secondary granules were prepared by forming a coating layer on the surface of the primary granules using quicklime having a particle size of 0.25 mm or less. At this time, the secondary granules were prepared by varying the thickness of the coating layer.
  • Secondary assemblies were prepared with varying thicknesses of the coating layers of 0.25 mm, 0.5 mm, 1.0 mm and 1.5 mm.
  • the strength represents the ratio of the granules having a particle size of 4 mm or more by dropping 300 g of granules having a particle size of 4 ⁇ 6.3 mm five times at a height of 2 m.
  • Experimental Example 1 Experimental Example 2
  • Experimental Example 3 Experimental Example 4 Coating layer thickness (mm) 0.25 0.5 1.0 1.5 burglar(%) 80.9 83.7 85.3 85.5
  • a secondary granule was prepared in which a coating layer of 1.0 mm was formed on the surface of the primary granule.
  • the secondary granules prepared as described above were supplied with exhaust gas to perform a curing process, but the curing process was performed while changing the concentration of CO 2 in the exhaust gas. Thereafter, the strength of the granulated material was measured, and the strength was measured in the same manner as in Experimental Examples 1 to 4.
  • the strength of the granules is improved as the concentration of CO 2 in the exhaust gas increases.
  • the strength of the granulated material is reduced. That is, the strength of the granulated product is increased up to about 5% of the CO 2 concentration in the flue gas, but the strength of the granulated product is decreased when the CO 2 concentration is 7%.
  • the curing process can be performed by controlling the CO 2 concentration in the exhaust gas in the range of about 3 to 7%.
  • a secondary granule was prepared in which a coating layer of 1.0 mm was formed on the surface of the primary granule.
  • the secondary granules thus prepared were supplied with exhaust gas to perform a curing process, but the curing process was performed while changing the moisture content of the exhaust gas. Thereafter, the strength of the granulated material was measured, and the strength was measured in the same manner as in Experimental Examples 1 to 8.
  • the strength of the granules is lowered as the moisture content of the exhaust gas increases.
  • the exhaust gas contains a certain amount of moisture, but there is a problem that it is difficult to completely remove it. Therefore, as shown in Table 3, even if the moisture contained in the flue gas to some extent does not significantly affect the strength of the granules, the granules can be cured by adjusting the moisture in the flue gas within a certain range, such as 3 to 10%. .
  • Such moisture content control in the flue gas may be performed by introducing air to cool the flue gas.
  • the raw material processing apparatus, the raw material processing method, and the granulated material produced using the same according to the present invention can be used as a blended raw material for producing a sintered ore.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treating Waste Gases (AREA)
  • Glanulating (AREA)

Abstract

The present invention relates to an apparatus for processing a raw material, a method for processing a raw material, and granules manufactured using the same, and the method for processing a raw material for manufacturing sintered ore comprises the steps of: preparing a ferruginous ultrafine raw material and a binder; mixing the ferruginous ultrafine raw material and the binder in a mixer; manufacturing primary granules by inserting the ferruginous ultrafine raw material and the binder into a first granulator; manufacturing secondary granules by inserting the first granules and quicklime (CaO) and/or slaked lime (Ca(OH)2) into a second granulator; and curing the secondary granules with CO2, thereby manufacturing the granules of excellent strength by using an ultrafine material such as ultrafine iron ore.

Description

원료 처리 장치, 원료 처리 방법 및 이를 이용하여 제조된 조립물Raw material processing apparatus, raw material processing method and granules manufactured using the same
본 발명은 원료 처리 장치, 원료 처리 방법 및 이를 이용하여 제조된 조립물에 관한 것으로, 보다 상세하게는 극미분 철광석 등과 같은 극미분 원료를 이용하여 강도가 우수한 조립물을 제조할 수 있는 원료 처리 장치, 원료 처리 방법 및 이를 이용하여 제조된 조립물에 관한 것이다. The present invention relates to a raw material processing apparatus, a raw material processing method, and a granulated product manufactured using the same, and more particularly, a raw material processing apparatus capable of producing granulated materials having excellent strength by using an ultra fine raw material such as ultra fine iron ore. It relates to a raw material processing method and granules produced using the same.
소결광 제조 공정은 미립의 분철광석을 소결하여 고로 사용에 적합한 크기로 제조한다. 이러한 소결 공정에서는 분철광석, 부원료 및 연료(분코크스, 무연탄) 등을 드럼 믹서에 넣어 혼합 및 조습(원료중량비 약 7∼8%)을 실시하여 소결 배합 원료를 의사 입자화시켜 소결대차 상에 일정 높이로 장입하고, 점화로에 의해 표면 점화 후 하방으로부터 공기를 강제 흡인하면서 소결 배합 원료의 소성이 진행되고 소결광이 제조된다. 소결이 완료된 소결광은 배광부의 크러셔(crusher)를 거쳐 냉각기(cooler)에서 냉각되고, 고로 내 장입 및 반응에 용이한 5∼50㎜의 입도로 분급되어 고로로 이송된다. 소결광을 제조하기 위한 소결용 배합 원료의 제조 공정은 일반적으로 주원료인 철광석, 부원료인 석회석, 생석회 및 규석, 소결 시 연료로 작용하는 코크스를 혼합하는 과정, 주원료, 부원료 및 코크스가 혼합된 혼합물을 조립하는 과정을 포함한다. 그리고 이와 같은 과정으로 제조된 조립물은 소결기 내로 장입되어 소결된다. 즉, 소결기 하부를 흡인에 의해 공기를 흡입하면, 조립물 내에 포함된 코크스가 공기 중 산소와 접촉되어 화염이 발생되고, 상기 화염이 전진함에 따라 소결기 내부에 장입된 소결 배합 원료가 소결된다.In the sintered ore manufacturing process, sintered fine iron ore is manufactured to a size suitable for blast furnace use. In this sintering process, iron ore, secondary raw materials, and fuels (powder coke, anthracite coal), etc. are put in a drum mixer, mixed and humidified (raw material weight ratio of about 7 to 8%), and the sintered blended raw materials are pseudo-granulated to be fixed on the sintered truck. Charging at a height and firing of the sintered blended raw material proceeds by forcibly sucking air from below after surface ignition by the ignition furnace, and a sintered ore is manufactured. After sintering is completed, the sintered ore is cooled in a cooler through a crusher of the light distribution unit, classified into a particle size of 5 to 50 mm that is easy for charging and reaction in the blast furnace, and then transferred to the blast furnace. Generally, the process of preparing a sintered blended raw material for producing a sintered ore is a process of mixing iron ore as a main raw material, limestone as a raw material, quicklime and silica, and coke acting as a fuel during sintering, assembling a mixture of main raw materials, subsidiary materials and coke. It includes the process of doing. And the granulated material produced by this process is charged into the sintering machine and sintered. That is, when the air is sucked through the lower part of the sinterer, the coke contained in the granulated material is brought into contact with oxygen in the air to generate a flame, and as the flame is advanced, the sintered compound raw material charged into the sinterer is sintered. .
한편, 소결용 배합 원료 중 주원료인 철광석 대신 저가의 철원을 사용하여 제조비용을 절감하려는 방안이 강구되고 있다. 이러한 저가의 철원 중 펠렛 피드(Pellet Feed)는 0.15㎜ 이하의 입도를 갖는 극미분 철광석으로서 70%에 가까운 철(T.Fe) 성분을 함유하고 있다. 그런데 펠렛 피드가 소결 배합 원료로 다량 사용할 때 펠렛 피드를 선택적으로 조립화시키는 과정 없이 기존의 조립화 공정을 적용하여 소결 배합 원료용 조립물을 제조하는 경우에는 조립성 및 강도를 확보하기 위하여 생석회 등과 같은 고가의 결합재가 다량 사용된다. 이에 제조 비용이 증가하게 되어 비교적 저가인 펠렛 피드의 사용이 무의미해지는 문제점이 있다. 또한, 펠렛 피드를 이용하여 조립물을 제조하는 경우, 원하는 크기 및 강도를 갖게 하기 위해서는 적어도 10기 이상의 조립기가 필요하게 되어 설비를 구축하기 위한 공간 및 비용이 막대하게 소요되는 문제점도 있다. Meanwhile, a method of reducing manufacturing cost by using an inexpensive iron source instead of iron ore, which is a main raw material, for sintering blended raw materials has been devised. Among such low-cost iron sources, pellet feed is an ultra fine iron ore having a particle size of 0.15 mm or less and contains nearly 70% of iron (T.Fe) component. However, when pellet feed is used as a raw material for sintering compounding, when the granules for the raw material for sintering compounding are manufactured by applying a conventional granulation process without selectively granulating the pellet feed, such as quicklime to secure granularity and strength. Expensive binders are used in large quantities. This increases the manufacturing cost, there is a problem that the use of relatively inexpensive pellet feed is meaningless. In addition, in the case of manufacturing the granulated material using the pellet feed, at least 10 or more granulators are required to have a desired size and strength, and there is a problem in that space and cost for building a facility are enormous.
본 발명은 극미분 원료로 제조된 조립물의 강도를 향상시킬 수 있는 원료 처리 장치, 원료 처리 방법 및 이를 이용하여 제조된 조립물을 제공한다. The present invention provides a raw material processing apparatus, a raw material processing method, and a granulated product manufactured using the same, which can improve the strength of a granulated product made of an ultrafine raw material.
본 발명은 조립물의 강도를 향상시켜 조립물을 이용한 조업 효율을 향상시킬 수 있는 원료 처리 장치, 원료 처리 방법 및 이를 이용하여 제조된 조립물을 제공한다. The present invention provides a raw material processing apparatus, a raw material processing method, and a granulated product manufactured using the same, which can improve the strength of the granulated product and improve the operation efficiency using the granulated product.
본 발명의 실시 형태에 따른 원료 처리 장치는, 소결광을 제조하기 위한 원료를 처리하는 장치로서, 함철 극미분 원료와 결합재를 조립하여 1차 조립물을 제조하는 1차 조립기; 상기 1차 조립물의 표면에 생석회와 소석회 중 적어도 어느 하나를 포함하는 코팅층을 형성하여 2차 조립물을 제조하는 2차 조립기; 2차 조립물을 양생하는 양생기;를 포함할 수 있다. A raw material processing apparatus according to an embodiment of the present invention, an apparatus for processing a raw material for producing a sintered ore, comprising: a primary granulator for assembling an iron-containing fine powder raw material and a binder to produce a primary granulated product; A secondary granulator for forming a secondary granule by forming a coating layer including at least one of quicklime and slaked lime on the surface of the primary granule; It may include a curing device for curing the secondary granules.
상기 함철 극미분 원료와 결합재를 혼합하는 혼합기를 포함할 수 있다. It may include a mixer for mixing the iron-containing fine powder raw material and the binder.
상기 1차 조립기와 상기 2차 조립기는 수분을 공급하는 수분 공급기를 포함할 수 있다. The primary granulator and the secondary granulator may include a moisture supplier for supplying moisture.
상기 양생기는 상기 2차 조립기에서 제조되는 2차 조립물을 이송하는 이송 경로와, 상기 이송 경로에 배가스를 공급하는 배가스 공급기를 포함할 수 있다.The curing machine may include a transfer path for transferring the secondary granules manufactured in the secondary granulator, and an exhaust gas supply for supplying exhaust gas to the transfer path.
상기 배가스 공급기는 석회 소성 공정에서 발생하는 배가스를 공급할 수 있다. The exhaust gas supply may supply the exhaust gas generated in the lime firing process.
본 발명의 실시 형태에 따른 원료 처리 방법은, 소결광 제조를 위한 원료를 처리하는 방법으로서, 함철 극미분 원료와 결합재를 마련하는 과정; 혼합기에서 상기 함철 극미분 원료와 결합재를 혼합하는 과정; 상기 함철 극미분 원료와 결합재를 1차 조립기에 투입하여 1차 조립물을 제조하는 과정; 상기 1차 조립물과, 생석회(CaO)와 소석회(Ca(OH)2) 중 적어도 어느 하나를 2차 조립기에 투입하여 2차 조립물을 제조하는 과정; 및 상기 2차 조립물을 CO2로 양생하는 과정;을 포함할 수 있다. A raw material processing method according to an embodiment of the present invention, a method for processing a raw material for the production of sintered ore, the process of preparing an iron-containing ultra-fine powder raw material and the binder; Mixing the iron-containing ultrafine powder and a binder in a mixer; Preparing a primary granule by injecting the iron-containing fine powder raw material and a binder into a primary granulator; Preparing at least one of the primary granules, quicklime (CaO) and slaked lime (Ca (OH) 2 ) to a secondary granulator to produce a secondary granule; And curing the secondary granules with CO 2 .
상기 함철 극미분 원료는 0㎜ 초과 내지 4㎜ 이하의 입도를 가질 수 있다. The iron-containing fine powder raw material may have a particle size of more than 0 mm to 4 mm or less.
상기 함철 극미분 원료는 철광석, 펠렛피드 및 제강 부산물 중 적어도 어느 하나를 포함할 수 있다. The iron-containing fine powder raw material may include at least one of iron ore, pellet feed and steelmaking by-products.
상기 결합재는 당밀, 극미분 석회석, 벤토나이트, 래들 슬래그, 플라이 애쉬(fly ash) 및 고분자 유기 바인더 중 적어도 어느 하나를 포함할 수 있다. The binder may include at least one of molasses, ultrafine limestone, bentonite, ladle slag, fly ash, and a polymer organic binder.
상기 결합재는 상기 함철 극미분 원료의 중량에 대해서 0.1 내지 5중량% 사용될 수 있다. The binder may be used in an amount of 0.1 to 5% by weight based on the weight of the iron-containing ultrafine powder.
상기 1차 조립물 및 상기 2차 조립물을 제조하는 과정에서 수분을 공급할 수 있다. Water may be supplied in the process of manufacturing the primary granules and the secondary granules.
상기 2차 조립물을 제조하는 과정에서 상기 2차 조립물을 10㎜ 이하의 크기로 제조할 수 있다. In the process of manufacturing the secondary granules, the secondary granules may be manufactured to a size of 10 mm or less.
상기 양생하는 과정에서 상기 2차 조립물에 CO2를 포함하는 배가스를 공급할 수 있다. In the curing process, it is possible to supply the exhaust gas containing CO 2 to the secondary assembly.
상기 배가스는 석회 소성 공정에서 발생하는 배가스일 수 있다.The exhaust gas may be an exhaust gas generated in a lime firing process.
상기 배가스는 3 내지 7%의 CO2 농도를 가질 수 있다. The exhaust gas may have a CO 2 concentration of 3 to 7%.
상기 배가스는 3 내지 10%의 수분을 함유할 수 있다. The exhaust gas may contain 3 to 10% moisture.
상기 양생하는 과정에서 50 내지 100℃의 배가스를 상기 2차 조립물에 공급할 수 있다. In the curing process, the exhaust gas of 50 to 100 ℃ can be supplied to the secondary granules.
상기 양생하는 과정은 상기 2차 조립물을 저장하는 저장기로 이송하는 과정에서 수행할 수 있다. The curing may be performed in a process of transferring to the reservoir for storing the secondary assembly.
상기 양생하는 과정에서 상기 1차 조립물의 표면에 탄산칼슘을 포함하는 코팅층이 형성될 수 있다. In the curing process, a coating layer including calcium carbonate may be formed on the surface of the primary granule.
본 발명의 실시 예에 따른 조립물은 전술한 원료 처리 방법으로 제조될 수 있으며, 10㎜ 이하의 직경을 갖도록 형성될 수 있다. The granulated material according to the embodiment of the present invention may be manufactured by the above-described raw material processing method, and may be formed to have a diameter of 10 mm or less.
상기 조립물은 표면에 0.25 내지 1㎜ 두께의 코팅층이 형성될 수 있고, 상기 코팅층은 탄산칼슘(CaCO3)을 포함할 수 있다.The granulated material may have a coating layer having a thickness of 0.25 to 1 mm, and the coating layer may include calcium carbonate (CaCO 3 ).
본 발명의 실시형태들에 의하면, 분철광석과 펠렛 피드 등과 같은 극미분 원료를 이용하여 제조된 조립물의 강도를 향상시킬 수 있다. 극미분 원료를 이용하여 1차 조립물을 제조한 후, 1차 조립물 표면에 생석회나 소석회을 포함하는 코팅층이 와 같은 극미분 철광석을 이용하여 조립물을 제조할 수 있다. 이렇게 제조된 조립물은 고가의 바인더를 소량 이용하더라도 우수한 강도 및 생산성의 확보가 가능하다. According to embodiments of the present invention, it is possible to improve the strength of the granules produced by using the finely divided raw materials such as iron ore and pellet feed. After the primary granules are prepared using the ultrafine raw materials, the granules may be manufactured using the ultrafine iron ore such that the coating layer containing quicklime or slaked lime on the surface of the primary granules. Thus manufactured granules can be secured excellent strength and productivity even if a small amount of expensive binders.
도 1은 소결광 제조 설비를 나타내는 도면.1 is a view showing a sintered ore manufacturing equipment.
도 2은 본 발명의 실시 예에 따른 원료 처리 장치를 개념적으로 보여주는 도면.2 is a view conceptually showing a raw material processing apparatus according to an embodiment of the present invention.
도 3은 본 발명의 실시 예에 따른 원료 처리 방법을 설명하기 위한 순서도.3 is a flowchart illustrating a raw material processing method according to an embodiment of the present invention.
도 4는 본 발명의 실시 예에 따른 원료 처리 방법으로 제조된 조립물을 개념적으로 보여주는 도면.4 is a view conceptually showing a granule manufactured by the raw material processing method according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention, and to those skilled in the art the scope of the invention. It is provided for complete information.
본 발명의 실시 예에서는 0㎜ 초과 내지 4㎜ 이하의 입도를 갖는 극미분 원료를 조립물로 만들어 소결광을 제조하는데 원료로 사용할 수 있다. 이를 위하여 극미분 원료, 예컨대 함철 극미분 원료를 이용하여 조립물을 만들고 이를 CO2를 이용하여 양생함으로써 조립물의 표면에 코팅층을 형성하여 조립물의 강도를 증가시킬 수 있다. In an embodiment of the present invention, the ultrafine powder having a particle size of more than 0 mm to 4 mm may be used as a raw material to prepare a sintered ore by making granules. To this end, by forming a granulated material using an ultra fine raw material, for example, iron-containing fine powder raw material, and curing it using CO 2 , a strength of the granulated product may be increased by forming a coating layer on the surface of the granulated product.
도 1은 소결광 제조 설비를 나타내는 도면이고, 도 2은 본 발명의 실시 예에 따른 원료 처리 장치를 개념적으로 보여주는 도면이고, 도 3은 본 발명의 실시 예에 따른 원료 처리 방법을 설명하기 위한 순서도이고, 도 4는 본 발명의 실시 예에 따른 원료 처리 방법으로 제조된 조립물을 개념적으로 보여주는 도면이다.1 is a view showing a sintered ore manufacturing equipment, FIG. 2 is a view conceptually showing a raw material processing apparatus according to an embodiment of the present invention, Figure 3 is a flow chart for explaining a raw material processing method according to an embodiment of the present invention. 4 is a view conceptually showing a granule manufactured by the raw material processing method according to an embodiment of the present invention.
먼저, 도 1을 참조하면, 소결광 제조 설비는, 폐루프를 형성하는 이동경로(미도시)와, 이동경로를 따라 무한궤도방식으로 이동하는 소결대차(300)와, 이동경로 상에 배치되어 이동하는 소결대차(300) 내에 소결 원료를 장입하는 원료공급부(100)와, 소결대차(300) 내 원료의 표층에 화염을 분사하여 점화시키는 점화로(200) 및 소결대차(300) 내부를 흡인하는 복수의 윈드 박스(400)를 포함한다. First, referring to FIG. 1, a sintered ore manufacturing facility includes a moving path (not shown) for forming a closed loop, a sintered bogie 300 moving in an endless orbit manner along the moving path, and disposed on the moving path. The raw material supply unit 100 for charging the sintering raw material into the sintering bogie 300, and the ignition furnace 200 and the sintering bogie 300 to ignite by spraying the flame on the surface layer of the raw material in the sintering bogie 300 It includes a plurality of wind box 400.
이동경로를 따라 이동하는 소결대차(300) 내에 원료공급부(100)에 의해 상부광과 소결배합원료가 장입되면, 원료공급부(100)의 일측, 즉 소결대차(300)의 이동방향에 대해서 전방에 위치하는 점화로(200)에서 소결대차(300) 내의 소결배합 원료의 표층부를 점화시킨다. 점화된 이후 소결대차(300)는 이동경로를 따라 이동하게 되고, 이동경로 하부의 윈드 박스(400)에 의해 소결대차(300) 내부가 흡인되면서 소결배합 원료의 소결이 이루어지며 소결광이 제조된다. When the upper light and the sintered blended raw material are charged by the raw material supply unit 100 in the sintered trolley 300 moving along the movement path, one side of the raw material supply unit 100, that is, the front direction of the moving direction of the sintered trolley 300. The surface layer portion of the sintered compound raw material in the sintered trolley 300 is ignited in the ignition furnace 200 located. After the ignition, the sintered trolley 300 moves along the movement path, and the sintered blend 300 is sintered by the inside of the sintered trolley 300 by the wind box 400 under the moving path, and the sintered ore is manufactured.
한편, 소결광의 원료는 상부광과 소결배합원료가 사용될 수 있다. 상부광은 소결광 제조 후 발생하는 것으로 선별기(560)에 의해 선별된 일정 크기, 예컨대 10 내지 15㎜ 정도의 크기를 갖는 소결광을 의미한다. 상부광은 소결배합 원료를 저장하는 써지호퍼(120) 일측의 상부광호퍼(110)에 저장되며, 소결배합원료를 소결대차(300)에 장입하기 전 소결대차(300)의 바닥에 장입된다. 그리고 소결배합 원료는 철광석, 생석회, 석회석, 규석, 코크스, 석탄 등을 포함하며, 이들을 균일하게 혼합한 것을 의미한다. 이때, 코크스와 석탄은 연료로 사용될 수 있다. 이러한 소결배합 원료는 장입기(130)에 의해 소결대차(300) 내 상부광 상부에 장입되며, 이들을 구성하는 각각의 원료는 일정 크기, 예컨대 10㎜ 이하의 입경을 갖는다. 그러나 앞서 배경기술에서 설명한 바와 같이 입경이 매우 작은, 예컨대 0 초과 내지 4㎜ 이하의 극미분 원료는 소결 시 소결대차(300) 내 통기성을 악화시키므로 별도의 가공 공정, 즉 조립 공정을 거쳐 소결배합 원료로 사용될 수 있다. 그러나 일반적인 조립공정은 극미분 원료를 조립기에 조립하여 그대로 사용하기 때문에 조립물의 강도가 그리 좋지 못하다. 따라서 본 발명에서는 극미분 원료를 이용하여 조립물을 제조한 후 양생 과정을 거쳐 조립물의 표면에 코팅층을 형성함으로써 조립물의 강도를 향상시킬 수 있다. On the other hand, the raw material of the sintered ore may be used for the top light and the sintered blended raw material. The upper light is generated after the production of the sintered ore and means a sintered ore having a predetermined size, for example, about 10 to 15 mm, selected by the sorter 560. The upper light is stored in the upper optical hopper 110 of one side of the surge hopper 120 for storing the sintered compound raw material, and is charged to the bottom of the sintered bogie 300 before charging the sintered compound raw material to the sintered bogie 300. And the raw material for sintering blend includes iron ore, quicklime, limestone, silica, coke, coal and the like, it means that they are mixed uniformly. At this time, coke and coal may be used as fuel. The sintered compound raw material is charged to the upper part of the upper light in the sintered trolley 300 by the charging device 130, each raw material constituting them has a particle size of, for example, 10mm or less. However, as described in the background art, an extremely fine raw material having a very small particle diameter, for example, greater than 0 to 4 mm or less, deteriorates the air permeability in the sintered bogie 300 during sintering, so that the sintered blend raw material is subjected to a separate processing process, that is, an assembly process. Can be used as However, in the general assembly process, the strength of the granules is not very good because the fine powder is assembled into a granulator and used as it is. Therefore, in the present invention, the strength of the granulated product can be improved by forming a coating layer on the surface of the granulated product after the curing process after preparing the granulated product using the ultrafine powder.
이하에서는 소결배합 원료를 마련하기 위한 원료 처리 장치는 다음과 같이 구성될 수 있다. Hereinafter, a raw material processing apparatus for preparing a sintered blend raw material may be configured as follows.
도 2를 참조하면, 원료처리장치(500)는 원료저장기(520, 522, 524, 526, 528)와, 원료저장기(520, 522, 524, 526, 528)에서 공급되는 원료를 혼합하는 1차 혼합기(530)와, 극미분 원료를 조립하여 조립물을 제조하는 조립부(540)와, 1차 혼합기(530)에서 혼합된 원료와 조립물을 혼합하는 2차 혼합기(550)를 포함할 수 있다. 2, the raw material processing apparatus 500 mixes raw materials supplied from the raw material reservoirs 520, 522, 524, 526, and 528 and the raw material reservoirs 520, 522, 524, 526, and 528. It includes a primary mixer 530, a granulation unit 540 for assembling ultrafine raw materials to produce granules, and a secondary mixer 550 for mixing the raw materials and granules mixed in the primary mixer 530. can do.
원료저장기(520, 522, 524, 526, 528)는 철광석을 저장하는 철광석 저장호퍼(520)와, 석회석을 저장하는 석회석 호퍼(522)와, 규석을 저장하는 규석 호퍼(524)와, 코크스나 석탄 등의 연료를 저장하는 연료 호퍼(526) 및 반광을 저장하는 반광 호퍼(528)를 포함할 수 있다. 이때, 반광 호퍼(528)는 고로 반광이나 소결광 제조 후 발생하는 자체 반광을 저장하는 저장호퍼(510, 512)로부터 반광을 공급받는다. The raw material reservoirs 520, 522, 524, 526, and 528 include an iron ore storage hopper for storing iron ore, a limestone hopper for storing limestone, a 522, a silica ore hopper for storing quartz, and coke Or a fuel hopper 526 for storing fuel such as coal and a semi-light hopper 528 for storing semi-glossy. At this time, the semi-light hopper 528 receives the semi-light from the storage hoppers 510 and 512 for storing the semi-reflected light generated after the manufacture of the blast furnace semi-light or sintered ore.
1차 혼합기(530)는 원료저장기(520, 522, 524, 526, 528)의 각 호퍼에서 배출되는 각각의 원료를 균일하게 혼합하는 역할을 한다. The primary mixer 530 serves to uniformly mix each raw material discharged from each hopper of the raw material reservoirs 520, 522, 524, 526, and 528.
2차 혼합기(550)는 1차 혼합기(530)에서 배출된 혼합물과 조립부(540)에서 제조된 조립물을 균일하게 혼합하여 소결배합 원료를 제조한다. 제조된 소결배합 원료는 소결광 제조설비의 원료공급부(100)의 써지호퍼(120)에 저장된다. The secondary mixer 550 uniformly mixes the mixture discharged from the primary mixer 530 and the granules produced in the granulation unit 540 to produce a sintered blended raw material. The prepared sintered blended raw material is stored in the surge hopper 120 of the raw material supply unit 100 of the sintered ore manufacturing equipment.
조립부(540)는 극미분 원료와 결합재를 저장하는 제1호퍼(541)와, 제1호퍼(541)에서 배출되는 극미분 원료와 결합재를 균일하게 혼합하는 혼합기(542)와, 극미분 원료와 결합재의 혼합물을 조립하여 1차 조립물을 제조하는 1차 조립기(543)와, 생석회와 소석회를 저장하는 제2호퍼(544)와, 1차 조립기(543)에서 제조된 1차 조립물과 생석회 및 소석회 중 적어도 어느 하나를 이용하여 2차 조립물을 제조하는 2차 조립기(545) 및 2차 조립물을 양생하는 양생기(546)를 포함할 수 있다. The granulation unit 540 includes a first hopper 541 for storing the ultra fine raw material and the binder, a mixer 542 for uniformly mixing the ultra fine raw material and the binder discharged from the first hopper 541, and the ultra fine raw material. And a primary granulator 543 for assembling a mixture of a binder and a primary granule, a second hopper 544 for storing quicklime and slaked lime, and a primary granule manufactured in the primary granulator 543. It may include a secondary granulator 545 for producing the secondary granules using at least one of quicklime and slaked lime and a curing machine 546 for curing the secondary granules.
제1호퍼(541)는 극미분 원료와, 결합재를 각각 저장하도록 복수개로 구성될 수 있으며, 극미분 원료와 결합재를 혼합기(542)로 일정량씩 배출시킬 수 있다. 이때, 극미분 원료는 철을 함유하는 함철 극미분 원료일 수 있으며, 0 초과 내지 4㎜ 이하의 입자 크기를 가질 수 있다. 함철 극미분 원료는 철광석, 펠렛 피드, 제강 부산물 등을 포함할 수 있으며, 제강 부산물은 더스트나 슬러지 등을 포함할 수 있다. The first hopper 541 may be configured in plural to store the ultra fine raw material and the binder, respectively, and may discharge the ultra fine raw material and the binder by a predetermined amount to the mixer 542. In this case, the ultrafine raw material may be an iron-containing ultrafine raw material containing iron, and may have a particle size of more than 0 to 4 mm or less. Iron-containing ultrafine raw materials may include iron ore, pellet feed, steelmaking by-products, etc., and steelmaking by-products may include dust or sludge.
결합재는 당밀, 극미분석회석, 벤토나이트, 래들슬래그, 플라이 애쉬(fly ash) 및 고분자 유기 바인더 중 적어도 어느 하나를 포함할 수 있으며, 고체 상태나 액체 상태로 사용될 수 있다. The binder may include at least one of molasses, microanalytical lime, bentonite, ladle slag, fly ash, and a polymer organic binder, and may be used in a solid state or a liquid state.
혼합기(542)는 제1호퍼(541)에서 공급되는 함철 극미분 원료와 결합재를 고속으로 교반하는 '고속 교반 믹서'일 수 있다. 혼합기(542)는 제1호퍼(541)에서 공급되는 함철 극미분 원료와, 결합재를 고속으로 교반하여 균일하게 혼합한다. 혼합기(542)는 내부 공간을 가지는 통 형상이며, 투입된 원료들을 혼합하는 교반 수단, 예컨대 블레이드(미도시)가 설치될 수 있다. 이때, 혼합기(542)에는 함철 극미분 원료와, 결합재의 혼합물에 물을 분사하기 위한 노즐이 구비될 수도 있다. The mixer 542 may be a 'high speed agitation mixer' for rapidly stirring the iron-containing ultrafine powder and the binder supplied from the first hopper 541. The mixer 542 stirs the ferrous fine powder raw material supplied from the first hopper 541 and the binder at high speed to uniformly mix the same. The mixer 542 has a cylindrical shape having an internal space, and may be provided with a stirring means, for example, a blade (not shown) for mixing the inputted raw materials. At this time, the mixer 542 may be provided with a nozzle for spraying water on the mixture of the ultra-ferrous iron raw material and the binder.
1차 조립기(543)는 통상적인 선택조립설비에서 사용되는 조립기(Pelletizer)로서, 혼합물이 장입되는 내부 공간을 가지고, 그 내부에 회전 팬(미도시)이 설치되며, 혼합기(542)에서 혼합된 함철 극미분 원료와 결합재의 혼합물은 회전 팬 위를 유동하면서 입자가 점진적으로 성장하여 조립이 이루어져 1차 조립물이 제조된다. 이때, 1차 조립기(543)에는 함철 극미분 원료와 결합재가 용이하게 결합할 수 있도록 1차 조립기(543) 내에 수분을 공급하는 수분 공급기가 구비될 수 있다. The primary granulator 543 is a pelletizer used in a typical selective assembly facility, and has an internal space in which a mixture is charged, and a rotating fan (not shown) is installed therein, and is mixed in the mixer 542. The mixture of the ultrafine iron-containing raw material and the binder flows on a rotating fan to gradually grow particles to granulate to prepare a primary granule. At this time, the primary granulator 543 may be provided with a moisture supply for supplying moisture in the primary granulator 543 so that the iron-containing ultrafine raw material and the binder can be easily combined.
2차 조립기(545)는 1차 조립기(543)와 거의 동일한 구성을 갖도록 형성될 수 있다. The secondary granulator 545 may be formed to have almost the same configuration as the primary granulator 543.
2차 조립기(545)는 1차 조립기(543)에서 제조된 1차 조립물과 제2호퍼(544)에서 공급되는 생석회와 소석회 중 적어도 어느 하나를 이용하여 2차 조립물을 제조한다. 2차 조립물은 상대적으로 입자가 크기가 큰 1차 조립물이 핵으로 사용되고, 상대적으로 입자 크기가 작은 생석회나 소석회가 1차 조립물의 표면에 부착되어 형성될 수 있다. The secondary granulator 545 manufactures the secondary granules using at least one of the primary granules manufactured in the primary granulator 543 and the quicklime and slaked lime supplied from the second hopper 544. The secondary granules may be formed by using a primary granule having a relatively large particle as a nucleus, and having quick particle or slaked lime having a smaller particle size attached to the surface of the primary granule.
이때, 2차 조립기(545)에는 생석회나 소석회가 1차 조립물의 표면에 용이하게 부착될 수 있도록 2차 조립기(545) 내에 수분을 공급하는 수분 공급기가 구비될 수 있다. At this time, the secondary granulator 545 may be provided with a moisture supply for supplying moisture in the secondary granulator 545 so that quick lime or slaked lime can be easily attached to the surface of the primary granule.
양생기(546)는 2차 조립기(545)에서 제조된 2차 조립물을 이송하는 이송경로와, 이송경로를 따라 이송되는 2차 조립물에 탄소 및 산소 중 적어도 어느 하나를 함유하는 가스, 예컨대 CO2를 함유하는 배가스를 공급하기 위한 배가스 공급기를 포함할 수 있다. 이때, 이송경로는 컨베이어 벨트 등일 수 있으며, 배가스 공급기는 이송경로 상에 배가스를 분사하도록 형성될 수 있다. The curing machine 546 may include a transport path for transporting the secondary granules manufactured by the secondary granulator 545, and a gas containing at least one of carbon and oxygen in the secondary assembly transported along the transport path. And an exhaust gas supply for supplying exhaust gas containing CO 2 . In this case, the transport path may be a conveyor belt or the like, and the exhaust gas supplier may be formed to inject the exhaust gas onto the transport path.
배가스 공급기는 제철공정에서 발생하는 다양한 배가스를 공급할 수 있으며, 본 발명의 실시 예에서는 석회 소성 공정에서 발생하는 배가스를 공급할 수 있다. The exhaust gas supplier may supply various exhaust gases generated in the steelmaking process, and in the embodiment of the present invention, may supply exhaust gases generated in the lime firing process.
이하에서는 전술한 원료 처리 장치를 이용하여 원료를 처리하는 방법에 대해서 설명한다. Hereinafter, the method of processing a raw material using the above-mentioned raw material processing apparatus is demonstrated.
도 3을 참조하면, 본 발명의 실시 예에 따른 원료 처리 방법은, 주원료를 마련하는 과정(S100), 주원료를 혼합하는 1차 혼합 과정(S110), 극미분 원료를 조립하여 조립물을 제조하는 과정(S120), 주원료와 조립물을 혼합하여 소결배합 원료를 제조하는 2차 혼합과정(S130) 및 소결배합 원료를 저장기, 즉 써지호퍼(120)에 저장하는 과정(S140)을 포함할 수 있다. Referring to Figure 3, the raw material processing method according to an embodiment of the present invention, the process of preparing a main raw material (S100), the primary mixing process of mixing the main raw material (S110), to prepare a granulated material by assembling the ultra fine raw materials Process (S120), the secondary raw material mixing the raw material and the granulated material to produce a sintered blending raw material (S130) and the step of storing the sintered blended raw material in a reservoir, that is, surge hopper 120 (S140) have.
여기에서 조립물을 제조하는 과정 이외에 나머지 공정들은 일반적인 소결배합 원료를 제조하는 과정과 거의 유사하다. In addition to the process of manufacturing a granulated material here, the remaining processes are almost similar to the process of manufacturing a general sintered compound raw material.
다만, 조립물을 제조할 때 함철 극미분 원료 외에 생석회 및 소석회 중 적어도 어느 하나를 사용하고 있으므로, 주원료를 마련할 때 생석회나 소석회는 별도로 마련하지 않거나 기존 소결배합 원료 마련시 마련되는 양보다 적게 마련할 수 있다. However, in the manufacture of granules, at least one of quicklime and slaked lime is used in addition to the ultrafine iron-containing raw materials. Therefore, when preparing main raw materials, quicklime or slaked lime is not provided separately or less than the amount prepared when preparing the raw material for sintering compounding. can do.
조립물을 제조하는 과정은 다음과 같다. The process of manufacturing the granulated product is as follows.
조립물을 제조하는 과정(S120)은, 함철 극미분 원료, 결합재 및 생석회와 소석회를 마련하는 과정(S121)과, 함철 극미분 원료와 결합재를 혼합하는 과정(S122)과, 함철 극미분 원료와 결합재의 혼합물을 이용하여 1차 조립물을 제조하는 과정(S123)과, 1차 조립물과 생석회(CaO)와 소석회(Ca(OH)2) 중 어느 하나를 이용하여 1차 조립물의 표면에 생석회와 소석회 중 어느 하나를 함유하는 코팅층이 형성되는 2차 조립물을 제조하는 과정(S124)과, 2차 조립물을 CO2로 양생하는 과정(S125)을 포함한다. The process of manufacturing the granulated material (S120), the process of preparing the iron-containing fine powder, binder and quicklime and hydrated lime (S121), the process of mixing the iron-containing fine powder and the binder (S122), and the iron-containing fine powder Preparation of primary granules using a mixture of binders (S123), and quicklime on the surface of the primary granules using any one of the primary granules, quicklime (CaO) and slaked lime (Ca (OH) 2 ) And a step (S124) of preparing a secondary granule in which a coating layer containing any one of slaked lime is formed, and a step (S125) of curing the secondary granule with CO 2 .
함철 극미분 원료는 0 초과 내지 4㎜ 이하의 입자 크기를 갖는 철광석, 펠렛 피드, 제강 부산물을 포함할 수 있다. 이때, 제강 부산물은 철 성분을 함유하는 더스트나 슬러지일 수 있다. Iron-containing ultrafine raw materials may include iron ore, pellet feed, steelmaking by-products having a particle size greater than 0 to 4 mm or less. In this case, the steelmaking by-product may be dust or sludge containing an iron component.
함철 극미분 원료로 철광석과 제강 부산물을 사용하는 경우, 철광석이 함철 극미분 원료 전체 중량에 대해서 50 내지 90중량% 정도 포함되도록 할 수 있다. 철광석의 함량이 제시된 범위보다 적은 경우에는 소결광 내 철함량이 감소하게 되고, 제시된 범위보다 많은 경우에는 조립물의 강도가 저하되는 문제점이 있다. When iron ore and steelmaking by-products are used as the iron-containing fine powder, iron ore may be included in an amount of about 50 to 90% by weight based on the total weight of the iron-containing fine powder. When the content of iron ore is less than the suggested range, the iron content in the sintered ore decreases, and when more than the suggested range, the strength of the granules is lowered.
결합재는 당밀, 극미분석회석, 벤토나이트, 래들슬래그, 플라이 애쉬(fly ash) 및 고분자 유기 바인더 중 적어도 어느 하나가 사용될 수 있다. 이 경우 결합재는 액체 상태 또는 고체 상태로 사용될 수 있다. 결합재는 함철 극미분 원료의 중량에 대해서 0.1 내지 5중량% 사용될 수 있다. 이때, 결합재가 액체 상태인 경우에는 0.1 내지 1중량% 정도의 범위로 사용하는 것이 좋고, 고체 상태인 경우에는 5중량% 이하의 범위로 사용하는 것이 좋다. 결합재가 액체 상태인 경우, 결합재가 제시된 범위보다 적거나 많이 사용되면 이후 조립과정에서 조립물의 조립성이 저하될 수 있다. 또한, 결합재가 고체 상태인 경우, 결합재가 제시된 범위보다 적게 사용되는 경우에는 조립물의 조립성이 저하되고, 제시된 범위보다 많이 사용되는 경우에는 조립물의 조립성이 향상될 수는 있으나 이후 수행될 수 있는 고온 공정에서 결합재가 제거되면서 조립물의 강도가 저하될 수 있고, 이를 이용하여 제조되는 소결광을 제강공정에 이용하는 경우 다량의 제강 슬래그가 발생할 수 있는 문제점이 있다. The binder may be at least one of molasses, microanalytical lime, bentonite, ladle slag, fly ash, and a polymer organic binder. In this case, the binder may be used in the liquid state or the solid state. The binder may be used in an amount of 0.1 to 5% by weight based on the weight of the iron-containing fine powder raw material. At this time, when the binder is in the liquid state, it is preferable to use it in the range of about 0.1 to 1% by weight, and in the solid state, it is preferable to use it in the range of 5% by weight or less. When the binder is in a liquid state, if the binder is used in a smaller or larger range than the suggested range, the assemblability of the assembly may be degraded in the subsequent assembly process. In addition, when the binder is in a solid state, when the binder is used in less than the indicated range, the granularity of the granules may be reduced, and when the binder is used in a larger range, the assembly of the granule may be improved, but it may be performed later. As the binder is removed in the high temperature process, the strength of the granules may be lowered, and when the sintered ore manufactured using the same is used in the steelmaking process, a large amount of steel slag may occur.
생석회와 소석회는 조립물을 제조할 때 조립물의 표면에 코팅층을 형성하기 위한 재료이다. 생석회와 소석회는 0 초과 내지 0.25㎜ 정도의 입자 크기를 가질 수 있다. 생석회와 소석회의 입자 크기가 제시된 범위보다 큰 경우에는 균일한 두께의 코팅층을 형성하기 어렵고, 양생 공정 시 CO2와의 반응 시간이 지연되어 조립물의 강도를 효과적으로 높이기 어려운 문제점이 있다. Quicklime and slaked lime are materials for forming a coating layer on the surface of a granule when the granule is manufactured. Quicklime and slaked lime may have a particle size of greater than 0 to about 0.25 mm. If the particle size of quicklime and hydrated lime is larger than the suggested range, it is difficult to form a coating layer having a uniform thickness, and there is a problem that it is difficult to effectively increase the strength of the granules by delaying the reaction time with CO 2 during the curing process.
이와 같이 조립물을 제조하기 위한 원료가 마련되면, 함철 극미분 원료와 결합재를 혼합기(542)에 공급하여 균일하게 혼합시킨다. In this way, when the raw material for producing the granulated material is provided, the iron-containing fine powder raw material and the binder are supplied to the mixer 542 to be uniformly mixed.
이후, 함철 극미분 원료와 결합재의 혼합물을 1차 조립기(543)에 장입하여 함철 극미분 원료와 결합재로 이루어진 1차 조립물을 제조한다. Subsequently, the mixture of the iron-containing fine powder raw material and the binder is charged into a primary granulator 543 to prepare a primary granule composed of the iron-containing fine powder raw material and the binder.
1차 조립물이 제조되면 2차 조립기(545)에 1차 조립물을 장입하고, 생석회와 소석회 중 적어도 어느 하나를 장입하여 2차 조립물을 제조한다. 2차 조립물은 1차 조립물 표면에 생석회와 소석회 중 어느 하나를 포함하는 코팅층을 형성하는 것으로, 생석회나 소석회가 1차 조립물의 표면에 부착이 용이하도록 2차 조립기(545)에 수분을 공급할 수 있다. When the primary granules are manufactured, the primary granules are charged into the secondary granulator 545, and at least one of quicklime and slaked lime is charged to prepare the secondary granules. The secondary granules form a coating layer containing either quicklime or hydrated lime on the surface of the primary granules, and supply the moisture to the secondary granulator 545 so that quicklime or hydrated lime can be easily attached to the surface of the primary granules. Can be.
2차 조립물은 10㎜ 이하의 입자 크기를 갖도록 형성될 수 있으며, 바람직하게는 입자 크기가 1 내지 8㎜ 정도인 비율이 70 내지 90% 정도가 되도록 할 수 있다. 입자 크기가 1 내지 8㎜ 정도인 비율이 제시된 범위보다 작은 경우에는 이후 소결배합 원료 중 미분 함량이 지나치게 많아져 소결대차(300) 내 통기성이 악화될 수 있다. 또한, 입자 크기가 1 내지 8㎜ 정도인 비율이 제시된 범위보다 크면 좋지만, 설비 자체의 능력상 불가능하다. The secondary granules may be formed to have a particle size of 10 mm or less, and preferably, a ratio having a particle size of about 1 to 8 mm may be about 70 to 90%. When the ratio of the particle size of about 1 to 8 mm is smaller than the suggested range, the fine powder content of the sintered blend raw material may be excessively increased, and thus the air permeability in the sintered bogie 300 may be deteriorated. In addition, the ratio having a particle size of about 1 to 8 mm may be larger than the indicated range, but it is impossible due to the capability of the installation itself.
또한, 2차 조립 공정에 의해 1차 조립물 표면에 형성되는 코팅층은 0.25 내지 1㎜ 정도의 두께로 형성될 수 있다. 코팅층 두께가 제시된 범위보다 작은 경우에는 1차 조립물 표면에 코팅층이 부분적으로 형성되지 않아 최종적으로 제조되는 조립물의 강도를 원하는 만큼 향상시킬 수 없고, 제시된 범위보다 큰 경우에는 조립물의 강도가 개선될 수는 있으나 그 효과가 미미하며 생석회나 소석회의 사용량 증가에 따라 생산비용이 증가하는 문제점이 있다. In addition, the coating layer formed on the surface of the primary assembly by the secondary assembly process may be formed to a thickness of about 0.25 to 1 mm. If the thickness of the coating layer is smaller than the suggested range, the coating layer is not partially formed on the surface of the primary assembly, so that the strength of the final fabricated assembly cannot be improved as desired, and if the coating layer is larger than the suggested range, the strength of the assembly can be improved. However, the effect is insignificant and there is a problem that the production cost increases with the use of quicklime or slaked lime.
이렇게 2차 조립물이 제조되면 2차 조립물을 주원료와 균일하게 혼합하도록 2차 혼합기(550)로 이송한다. When the secondary granules are manufactured as described above, the secondary granules are transferred to the secondary mixer 550 so as to uniformly mix the secondary granules.
2차 조립물을 2차 혼합기(550)로 이송하는 과정에서 2차 조립물이 이송되는 이송 경로에 CO2를 함유하는 배가스를 공급하여 2차 조립물을 양생시킨다. 이때, 2차 조립물에 공급되는 배가스는 다양한 공정에서 발생하는 배가스일 수 있으며, 본 실시 예에서는 생석회를 제조하기 위한 석회 소성 공정에서 발생하는 배가스를 사용할 수 있다. In the process of transferring the secondary granules to the secondary mixer 550, the secondary granules are cured by supplying flue gas containing CO 2 to a transfer path through which the secondary granules are transferred. In this case, the flue gas supplied to the secondary granulated product may be flue gas generated in various processes, and in the present embodiment, flue gas generated in a lime firing process for preparing quicklime may be used.
석회 소성 공정에서 발생하는 배가스는 통상 300℃ 정도의 고온으로, 이러한 배가스를 2차 조립물에 직접 공급하게 되면 2차 조립물이 이송되는 이송 경로가 손상될 수 있는 문제점이 있다. 또한, 2차 조립물에는 소정의 수분이 함유되어 있는데 고온의 배가스가 공급되면 2차 조립물 내 수분이 급격하게 증발되면서 2차 조립물이 분화될 수 있는 문제점이 있다. Flue gas generated in the lime firing process is a high temperature of about 300 ℃, if the direct supply of such exhaust gas to the secondary assembly has a problem that the transport path to the secondary assembly is transported may be damaged. In addition, although the secondary granules contain a predetermined amount of water, when a high temperature exhaust gas is supplied, there is a problem in that the secondary granules may be differentiated as the moisture in the secondary granules rapidly evaporates.
따라서 본 발명에서는 석회 소성 공정에서 발생하는 300℃ 정도의 배가스에 공기를 혼합하여 100℃ 이하, 예컨대 50 내지 100℃ 정도로 냉각시켜 2차 조립물에 공급함으로써 2차 조립물의 분화를 억제 혹은 방지할 수 있다. Therefore, in the present invention, by mixing air to the exhaust gas of about 300 ℃ generated in the lime firing process, cooled to about 100 ℃ or less, for example, 50 to 100 ℃ and supplied to the secondary granules to suppress or prevent the differentiation of the secondary granules have.
석회 소성 공정에서 발생하는 배가스는 20% 정도의 CO2 농도와, 15% 정도의 수분을 포함하는데, 배가스에 공기를 혼합하면 배가스 중 CO2의 농도와, 수분 함량이 어느 정도 저감될 수 있다. 이에 양생 공정에서 10% 이하, 바람직하게는 3 내지 7%의 CO2 농도와, 10% 이하, 바람직하게는 3 내지 10%의 수분 함량을 갖는 배가스를 2차 조립물에 공급할 수 있다. The flue gas generated in the lime calcination process contains about 20% of CO 2 concentration and about 15% of moisture. When air is mixed with the flue gas, the concentration of CO 2 in the flue gas and the moisture content may be reduced to some extent. In the curing process, a secondary gas can be supplied with a flue gas having a CO 2 concentration of 10% or less, preferably 3-7%, and a water content of 10% or less, preferably 3-10%.
이와 같은 양생 공정에서 2차 조립물의 표면, 즉 1차 조립물의 표면에 형성되는 코팅층은 CO2와 하기의 식1 및 2와 같은 반응하여 탄산칼슘(CaCO3)을 형성하며 경화되게 된다. 이에 2차 조립물의 강도가 향상될 수 있다. In this curing process, the coating layer formed on the surface of the secondary granules, that is, the surface of the primary granules is cured by forming CO 2 and calcium carbonate (CaCO 3 ) by the reaction of Equation 1 and 2 below. This may improve the strength of the secondary assembly.
식1) CaO + CO2 -> CaCO3 Formula 1) CaO + CO 2- > CaCO 3
식2) Ca(OH)2 + CO2 -> CaCO3 + H2O2) Ca (OH) 2 + CO 2- > CaCO 3 + H 2 O
이렇게 제조된 조립물은 2차 혼합기(550)로 공급되어 1차 혼합기(530)에서 혼합된 주원료와 혼합되어 소결배합 원료로 마련된 후 써지호퍼(120)로 장입된다. The granulated material thus prepared is supplied to the secondary mixer 550, mixed with the main raw materials mixed in the primary mixer 530, prepared as a sintered compound raw material, and then charged into the surge hopper 120.
이하에서는 본 발명에 따른 원료 처리 방법으로 제조된 조립물의 강도 향상을 검증하기 위한 실험 예에 대해서 설명한다. Hereinafter will be described an experimental example for verifying the strength improvement of the granules produced by the raw material processing method according to the present invention.
먼저, 함철 극미분 원료로서 철광석과, 더스트 및 슬러지를 각각 2:1:1의 조성비를 갖도록 사용하고, 결합재로서 당밀을 사용하여 1차 조립물을 제조하였다. First, the primary granules were prepared using iron ore, dust and sludge each having a composition ratio of 2: 1: 1, and molasses as a binder.
다음, 0.25㎜ 이하의 입자 크기를 갖는 생석회를 이용하여 1차 조립물 표면에 코팅층을 형성하여 2차 조립물을 제조하였다. 이때, 코팅층의 두께를 다양하게 변경해가며 2차 조립물을 제조하였다. Next, the secondary granules were prepared by forming a coating layer on the surface of the primary granules using quicklime having a particle size of 0.25 mm or less. At this time, the secondary granules were prepared by varying the thickness of the coating layer.
이후, 석회 소성 공정에서 발생하는 배가스에 공기를 혼입시켜 100℃ 정도로 냉각시킨 후 2차 조립물에 공급하여 양생 공정을 실시하였다. Thereafter, air was mixed into the exhaust gas generated in the lime calcination process, cooled to about 100 ° C., and then supplied to the secondary granulated product to carry out a curing process.
이때, 배가스 중 CO2 농도와 수분 함량을 변경하며 2차 조립물에 공급하여 양생공정을 실시하였다. At this time, the CO 2 concentration and the moisture content of the flue gas was changed and supplied to the secondary granulated material to perform a curing process.
[코팅층 두께 변경][Coating layer thickness change]
코팅층의 두께를 0.25㎜, 0.5㎜, 1.0㎜ 및 1.5㎜로 변경하며 2차 조립물을 제조하였다. Secondary assemblies were prepared with varying thicknesses of the coating layers of 0.25 mm, 0.5 mm, 1.0 mm and 1.5 mm.
이렇게 제조된 2차 조립물을 동일한 조건으로 양생한 후 강도를 측정하였다. 이때, 강도는 4 ~ 6.3㎜ 입자 크기를 갖는 조립물 300g을 2m 높이에서 5회 낙하시켜 4㎜ 이상의 입자 크기를 갖는 조립물의 비율을 나타낸다.After curing the secondary granules thus prepared under the same conditions, the strength was measured. At this time, the strength represents the ratio of the granules having a particle size of 4 mm or more by dropping 300 g of granules having a particle size of 4 ~ 6.3 mm five times at a height of 2 m.
실험 예1Experimental Example 1 실험 예2Experimental Example 2 실험 예3Experimental Example 3 실험 예4Experimental Example 4
코팅층 두께(㎜)Coating layer thickness (mm) 0.250.25 0.50.5 1.01.0 1.51.5
강도(%)burglar(%) 80.980.9 83.783.7 85.385.3 85.585.5
상기 표 1을 살펴보면, 코팅층의 두께가 증가할수록 조립물의 강도가 향상된 것을 알 수 있다. 그러나 코팅층의 두께가 1.0㎜인 실험 예3과 1.5㎜인 실험 예4의 경우, 조립물의 강도가 0.2% 정도 향상되었다. 이는 실험 예2와 실험 예3에 의한 두께 변화량에 대한 강도 변화와 비교하면, 강도 향상 정도가 매우 미미한 것을 알 수 있다. 따라서 통상 양생 과정을 거치지 않은 조립물의 강도가 75% 정도임을 감안하면 조립물의 강도 향상을 위해서는 코팅층을 두께를 1㎜ 이하, 바람직하게는 0.25 내지 1㎜ 정도로 형상하는 것이 좋다. Looking at Table 1, it can be seen that as the thickness of the coating layer increases, the strength of the assembly is improved. However, in Experimental Example 3, in which the thickness of the coating layer was 1.0 mm, and Experimental Example 4, in which the thickness of the coating layer was 1.5 mm, the strength of the granulated product was improved by about 0.2%. This can be seen that the degree of strength improvement is very small compared with the change in strength with respect to the thickness change amount according to Experimental Example 2 and Experimental Example 3. Therefore, considering that the strength of the granules which are not usually cured is about 75%, it is preferable to form the coating layer with a thickness of about 1 mm or less, preferably about 0.25 to 1 mm, in order to improve the strength of the granules.
[배가스 중 CO2 농도 변경][Change of CO 2 Concentration in Flue Gas]
1차 조립물의 표면에 1.0㎜의 코팅층이 형성된 2차 조립물을 제조하였다. A secondary granule was prepared in which a coating layer of 1.0 mm was formed on the surface of the primary granule.
이렇게 제조된 2차 조립물에 배가스를 공급하여 양생 공정을 수행하되, 배가스 중 CO2 농도를 변경해가며 양생 공정을 수행하였다. 이후, 조립물의 강도를 측정하였으며, 강도 측정은 실험 예1 내지 4와 동일한 방법으로 수행하였다. The secondary granules prepared as described above were supplied with exhaust gas to perform a curing process, but the curing process was performed while changing the concentration of CO 2 in the exhaust gas. Thereafter, the strength of the granulated material was measured, and the strength was measured in the same manner as in Experimental Examples 1 to 4.
실험 예5Experimental Example 5 실험 예6Experimental Example 6 실험 예7Experimental Example 7 실험 예8Experimental Example 8
CO2 농도(%)CO 2 concentration (%) 1One 33 55 77
강도(%)burglar(%) 76.576.5 84.384.3 85.585.5 85.185.1
상기 표 2를 살펴보면, 배가스 중 CO2의 농도가 증가할수록 조립물의 강도가 향상됨을 알 수 있다. 그러나 배가스 중 CO2 농도가 어느 정도 증가한 이후에는 조립물의 강도가 저감되고 있다. 즉, 배가스 중 CO2 농도가 5% 정도까지는 조립물의 강도가 증가하였으나, CO2 농도가 7%인 경우에는 조립물의 강도가 감소하고 있다. 그러나 CO2 농도가 7%인 경우도 양생 공정을 거치지 않은 조립물에 비해 우수한 강도를 나타내고 있으므로 배가스 중 CO2 농도를 3 내지 7% 정도의 범위로 제어하여 양생 공정을 수행할 수 있다. Looking at Table 2, it can be seen that the strength of the granules is improved as the concentration of CO 2 in the exhaust gas increases. However, after the CO 2 concentration in the flue gas increases to some extent, the strength of the granulated material is reduced. That is, the strength of the granulated product is increased up to about 5% of the CO 2 concentration in the flue gas, but the strength of the granulated product is decreased when the CO 2 concentration is 7%. However, even when the CO 2 concentration is 7%, it shows excellent strength compared to the granulated material that has not undergone the curing process, and thus the curing process can be performed by controlling the CO 2 concentration in the exhaust gas in the range of about 3 to 7%.
[배가스 중 수분 함량 변경][Moisture Content Change in Flue Gas]
1차 조립물의 표면에 1.0㎜의 코팅층이 형성된 2차 조립물을 제조하였다. A secondary granule was prepared in which a coating layer of 1.0 mm was formed on the surface of the primary granule.
이렇게 제조된 2차 조립물에 배가스를 공급하여 양생 공정을 수행하되, 배가스 중 수분 함량을 변경해가며 양생 공정을 수행하였다. 이후, 조립물의 강도를 측정하였으며, 강도 측정은 실험 예1 내지 8와 동일한 방법으로 수행하였다. The secondary granules thus prepared were supplied with exhaust gas to perform a curing process, but the curing process was performed while changing the moisture content of the exhaust gas. Thereafter, the strength of the granulated material was measured, and the strength was measured in the same manner as in Experimental Examples 1 to 8.
실험 예9Experimental Example 9 실험 예10Experimental Example 10 실험 예11Experimental Example 11 실험 예12Experimental Example 12
수분 함량(%)Moisture content (%) 33 55 1010 1515
강도(%)burglar(%) 85.585.5 85.385.3 85.085.0 82.282.2
상기 표 3을 살펴보면, 배가스 중 수분 함량이 증가할수록 조립물의 강도가 저하되는 것을 알 수 있다. 배가스 중에는 어느 정도의 수분이 함유되어 있으나 이를 완전히 제거하기 어려운 문제점이 있다. 따라서 표 3에 나타난 바와 같이 배가스 내 수분이 어느 정도 함유되어 있는 경우에도 조립물의 강도에 큰 영향을 미치지 않으므로 배가스 내 수분을 일정 범위 내, 예컨대 3 내지 10% 정도로 조절하여 조립물을 양생할 수 있다. 이와 같은 배가스 내 수분 함량 제어는 배가스를 냉각시키기 위해 공기를 유입하는 것에 의해 수행될 수 있다. Looking at Table 3, it can be seen that the strength of the granules is lowered as the moisture content of the exhaust gas increases. The exhaust gas contains a certain amount of moisture, but there is a problem that it is difficult to completely remove it. Therefore, as shown in Table 3, even if the moisture contained in the flue gas to some extent does not significantly affect the strength of the granules, the granules can be cured by adjusting the moisture in the flue gas within a certain range, such as 3 to 10%. . Such moisture content control in the flue gas may be performed by introducing air to cool the flue gas.
이와 같이, 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며, 후술하는 특허청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.As described above, in the detailed description of the present invention, specific embodiments have been described. However, various modifications may be made without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.
본 발명에 따른 원료 처리 장치, 원료 처리 방법 및 이를 이용하여 제조된 조립물은, 소결광을 제조하는데 배합 원료로 사용될 수 있다. The raw material processing apparatus, the raw material processing method, and the granulated material produced using the same according to the present invention can be used as a blended raw material for producing a sintered ore.

Claims (23)

  1. 소결광을 제조하기 위한 원료를 처리하는 장치로서, An apparatus for processing a raw material for producing a sintered ore,
    함철 극미분 원료와 결합재를 조립하여 1차 조립물을 제조하는 1차 조립기;A primary granulator for assembling the iron fine powder and a binder to produce a primary granule;
    상기 1차 조립물의 표면에 생석회와 소석회 중 적어도 어느 하나를 포함하는 코팅층을 형성하여 2차 조립물을 제조하는 2차 조립기;A secondary granulator for forming a secondary granule by forming a coating layer including at least one of quicklime and slaked lime on the surface of the primary granule;
    2차 조립물을 양생하는 양생기;Curing machine to cure the secondary granules;
    를 포함하는 원료 처리 장치. Raw material processing apparatus comprising a.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 함철 극미분 원료와 결합재를 혼합하는 혼합기를 포함하는 원료 처리 장치.Raw material processing apparatus comprising a mixer for mixing the iron-containing fine powder raw material and the binder.
  3. 청구항 2에 있어서, The method according to claim 2,
    상기 1차 조립기와 상기 2차 조립기는 수분을 공급하는 수분 공급기를 포함하는 원료 처리 장치.The primary granulator and the secondary granulator comprises a water supply for supplying water.
  4. 청구항 1 또는 청구항 2에 있어서, The method according to claim 1 or 2,
    상기 양생기는 상기 2차 조립기에서 제조되는 2차 조립물을 이송하는 이송 경로와, 상기 이송 경로에 배가스를 공급하는 배가스 공급기를 포함하는 원료 처리 장치. The curing apparatus includes a transfer path for transferring the secondary granules manufactured in the secondary granulator, and an exhaust gas feeder for supplying exhaust gas to the transfer path.
  5. 청구항 4에 있어서, The method according to claim 4,
    상기 배가스 공급기는 석회 소성 공정에서 발생하는 배가스를 공급하는 원료 처리 장치. The exhaust gas supply unit is a raw material processing device for supplying the exhaust gas generated in the lime firing process.
  6. 소결광 제조를 위한 원료를 처리하는 방법으로서, As a method of processing the raw material for the production of sintered ore,
    함철 극미분 원료와 결합재를 마련하는 과정;Preparing a fine iron-containing raw material and a binder;
    혼합기에서 상기 함철 극미분 원료와 결합재를 혼합하는 과정;Mixing the iron-containing ultrafine powder and a binder in a mixer;
    상기 함철 극미분 원료와 결합재를 1차 조립기에 투입하여 1차 조립물을 제조하는 과정;Preparing a primary granule by injecting the iron-containing fine powder raw material and a binder into a primary granulator;
    상기 1차 조립물과, 생석회(CaO)와 소석회(Ca(OH)2) 중 적어도 어느 하나를 2차 조립기에 투입하여 2차 조립물을 제조하는 과정; 및 Preparing at least one of the primary granules, quicklime (CaO) and slaked lime (Ca (OH) 2 ) to a secondary granulator to produce a secondary granule; And
    상기 2차 조립물을 CO2로 양생하는 과정;을 포함하는 원료 처리 방법. Curing the secondary granules with CO 2 ; Raw material processing method comprising a.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 함철 극미분 원료는 0㎜ 초과 내지 4㎜ 이하의 입도를 갖는 원료 처리 방법.The iron-containing fine powder raw material has a particle size of more than 0 mm to 4 mm or less.
  8. 청구항 7에 있어서, The method according to claim 7,
    상기 함철 극미분 원료는 철광석, 펠렛피드 및 제강 부산물 중 적어도 어느 하나인 원료 처리 방법.The iron-containing ultra-fine powder material is at least one of iron ore, pellet feed and steelmaking by-products.
  9. 청구항 8에 있어서, The method according to claim 8,
    상기 결합재는 당밀, 극미분 석회석, 벤토나이트, 래들 슬래그, 플라이 애쉬(fly ash) 및 고분자 유기 바인더 중 적어도 어느 하나인 원료 처리 방법.The binder is molasses, ultrafine limestone, bentonite, ladle slag, fly ash and at least one of a polymeric organic binder.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 결합재는 상기 함철 극미분 원료의 중량에 대해서 0.1 내지 5중량% 사용되는 원료 처리 방법. The binder is 0.1 to 5% by weight based on the weight of the iron-containing fine powder raw material processing method.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 1차 조립물 및 상기 2차 조립물을 제조하는 과정에서 수분을 공급하는 원료 처리 방법. Raw material processing method for supplying moisture in the process of manufacturing the primary granules and the secondary granules.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 2차 조립물을 제조하는 과정에서 상기 2차 조립물을 10㎜ 이하의 크기로 제조하는 원료 처리 방법. Raw material processing method for manufacturing the secondary granules to a size of 10mm or less in the process of manufacturing the secondary granules.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 양생하는 과정에서 상기 2차 조립물에 CO2를 포함하는 배가스를 공급하는 원료 처리 방법. Raw material processing method for supplying flue gas containing CO 2 to the secondary granules in the curing process.
  14. 청구항 13에 있어서,The method according to claim 13,
    상기 배가스는 석회 소성 공정에서 발생하는 배가스인 원료 처리 방법. The flue gas is a flue gas generated in the lime firing process.
  15. 청구항 14에 있어서,The method according to claim 14,
    상기 배가스는 3 내지 7%의 CO2 농도를 갖는 원료 처리 방법. The flue gas has a CO 2 concentration of 3 to 7%.
  16. 청구항 14에 있어서, The method according to claim 14,
    상기 배가스는 3 내지 10%의 수분을 함유하는 원료 처리 방법.The exhaust gas is a raw material processing method containing 3 to 10% moisture.
  17. 청구항 14에 있어서,The method according to claim 14,
    상기 양생하는 과정에서 50 내지 100℃의 배가스를 상기 2차 조립물에 공급하는 원료 처리 방법.Raw material processing method for supplying the exhaust gas of 50 to 100 ℃ to the secondary granules in the curing process.
  18. 청구항 17에 있어서, The method according to claim 17,
    상기 양생하는 과정은 상기 2차 조립물을 저장하는 저장기로 이송하는 과정에서 수행하는 원료 처리 방법. The curing process is carried out in the process of transferring to the reservoir for storing the secondary granulated material.
  19. 청구항 18에 있어서, The method according to claim 18,
    상기 양생하는 과정에서 상기 1차 조립물의 표면에 탄산칼슘을 포함하는 코팅층이 형성되는 원료 처리 방법.Raw material processing method of forming a coating layer containing calcium carbonate on the surface of the primary granules in the curing process.
  20. 청구항 6 내지 청구항 19 중 어느 하나의 원료 처리 방법으로 제조된 조립물.The granulated material manufactured by the raw material processing method in any one of Claims 6-19.
  21. 청구항 20에 있어서, The method of claim 20,
    상기 조립물은 10㎜ 이하의 직경으로 형성되는 조립물.The granulated body is formed to a diameter of 10mm or less.
  22. 청구항 21에 있어서, The method according to claim 21,
    상기 조립물은 표면에 0.25 내지 1㎜ 두께의 코팅층이 형성되는 조립물.The assembly is an assembly in which a coating layer having a thickness of 0.25 to 1 mm is formed on the surface.
  23. 청구항 22에 있어서, The method according to claim 22,
    상기 코팅층은 탄산칼슘(CaCO3)을 포함하는 조립물.The coating layer granules containing calcium carbonate (CaCO 3 ).
PCT/KR2016/011801 2015-10-23 2016-10-20 Apparatus for processing raw material, method of processing raw material, and granules manufactured using same WO2017069526A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680061936.2A CN108138257A (en) 2015-10-23 2016-10-20 For handling the equipment of raw material, the method for handling raw material and the pellet using its manufacture
EP16857784.9A EP3366791A1 (en) 2015-10-23 2016-10-20 Apparatus for processing raw material, method of processing raw material, and granules manufactured using same
JP2018520616A JP6734370B2 (en) 2015-10-23 2016-10-20 Raw material processing apparatus and raw material processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0147701 2015-10-23
KR1020150147701A KR101696328B1 (en) 2015-10-23 2015-10-23 Apparatus for raw material process, method thereof and pellet

Publications (1)

Publication Number Publication Date
WO2017069526A1 true WO2017069526A1 (en) 2017-04-27

Family

ID=57835460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011801 WO2017069526A1 (en) 2015-10-23 2016-10-20 Apparatus for processing raw material, method of processing raw material, and granules manufactured using same

Country Status (5)

Country Link
EP (1) EP3366791A1 (en)
JP (1) JP6734370B2 (en)
KR (1) KR101696328B1 (en)
CN (1) CN108138257A (en)
WO (1) WO2017069526A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102139635B1 (en) * 2018-07-26 2020-07-30 주식회사 포스코 Method of manufacturing sintered ore and sinter mixture raw material
CN110846498A (en) * 2019-12-03 2020-02-28 马鞍山钢铁股份有限公司 Sintered ore and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900007450B1 (en) * 1987-12-28 1990-10-10 포항종합제철 주식회사 Process for making pallet
JPH0971824A (en) * 1995-09-05 1997-03-18 Nkk Corp Production of non-calcined agglomerate
KR20040050002A (en) * 2002-12-09 2004-06-14 백상진 A method of manufacturing additives for steel-making use
KR20130070827A (en) * 2011-12-20 2013-06-28 주식회사 포스코 Method for manufacturing sintered iron ore using pellet feed
KR20130102150A (en) * 2012-03-07 2013-09-17 김재욱 The lightweight aggregate concrete panel based on a stationary extruder

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2061346C3 (en) * 1970-12-12 1974-10-10 Huettenwerk Oberhausen Ag, 4200 Oberhausen Process for preparing iron ore pellets for direct reduction in fixed and moving beds
US4168966A (en) * 1975-06-14 1979-09-25 Nippon Steel Corporation Agglomerates for use in a blast furnace and method of making the same
IN167132B (en) * 1986-12-15 1990-09-01 Nippon Kokan Kk
DE4234085A1 (en) * 1992-10-09 1994-04-14 Metallgesellschaft Ag Hard-baking of pellets containing iron oxide - with successive utilisation of exhaust heat of the process
JP4599737B2 (en) * 2001-03-23 2010-12-15 Jfeスチール株式会社 Granulation method of sintering raw material
CN100342041C (en) * 2006-01-10 2007-10-10 许贵宾 Method for making fluxed iron ore powder composite pellet
JP2009030114A (en) 2007-07-27 2009-02-12 Jfe Steel Kk Method for producing ore raw material for blast furnace
CN101613800B (en) * 2009-07-17 2011-03-23 重庆瑞帆再生资源开发有限公司 Metallurgical composite pelletizing prepared through twice pelletizing method, as well as preparation method and application thereof
CN102653822B (en) * 2012-04-27 2014-10-01 宝钢集团有限公司 Iron-containing solid byproduct of iron making by smelting reduction and manufacturing method thereof
CN102732670A (en) * 2012-07-11 2012-10-17 河北联合大学 Recycling method for treating iron-bearing dust by utilizing carbonation process
EP2848299B1 (en) * 2013-09-11 2019-08-14 Primetals Technologies Austria GmbH Method and device for producing granulates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900007450B1 (en) * 1987-12-28 1990-10-10 포항종합제철 주식회사 Process for making pallet
JPH0971824A (en) * 1995-09-05 1997-03-18 Nkk Corp Production of non-calcined agglomerate
KR20040050002A (en) * 2002-12-09 2004-06-14 백상진 A method of manufacturing additives for steel-making use
KR20130070827A (en) * 2011-12-20 2013-06-28 주식회사 포스코 Method for manufacturing sintered iron ore using pellet feed
KR20130102150A (en) * 2012-03-07 2013-09-17 김재욱 The lightweight aggregate concrete panel based on a stationary extruder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3366791A4 *

Also Published As

Publication number Publication date
CN108138257A (en) 2018-06-08
JP6734370B2 (en) 2020-08-05
EP3366791A4 (en) 2018-08-29
JP2018537582A (en) 2018-12-20
KR101696328B1 (en) 2017-01-13
EP3366791A1 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
KR20030055357A (en) An apparatus and method for recycling dust and sludge containing iron ironmaking process using coal and fine ore
WO2018097387A1 (en) Granulated product manufacturing apparatus, sintered ore manufacturing apparatus comprising same, and sintered ore manufacturing method
WO2013094861A1 (en) Apparatus for reducing carbon dioxide by using molten slag
WO2017069526A1 (en) Apparatus for processing raw material, method of processing raw material, and granules manufactured using same
WO2014098300A1 (en) Reduced-iron production method and production device
US10407744B2 (en) Production method of granular metallic iron
EP1365036A1 (en) Method of preparing carbonaceous iron oxide pellets with hydrocarbon-type binder
WO2012091407A2 (en) Apparatus for manufacturing molten steel, and method for manufacturing molten steel using same
WO2019103419A1 (en) Device for mixing blended raw materials for sintered ore
CN109735702B (en) Method for manufacturing sintered ore
CN102808080A (en) Method for increasing waste gas circulation sintering utilization coefficient and sintered ore barrate strength
CN109402383B (en) Method and device for optimizing sintering moisture
KR101526451B1 (en) Method for manufacturing sintered ore
WO2019132183A1 (en) Sintered ore manufacturing method and sintered ore manufacturing apparatus
CN107674971B (en) Raw material treatment method
WO2010101412A2 (en) Method for producing artificial lightweight aggregates using cold- or hot-rolled mill sludge
KR20150073451A (en) Manufacturing method of sintered ore
KR100550756B1 (en) Optimum granulation method of inplant by-product
KR101834217B1 (en) Raw material processing apparatus and processing method
CN113249566B (en) Sintering system and method for limonite type laterite-nickel ore
KR102139634B1 (en) Method of manufacturing sintered ore
KR101486869B1 (en) Briquettes for manufacturing sintered ore, manufacturing method of it and method for manufacturing using it
WO2018074700A1 (en) Method for manufacturing molten iron and apparatus for manufacturing molten iron using same
CN113430366A (en) Sintering material using urea as desulfurizer and sintering method
JPS59107036A (en) Non-calcined mini-pellet for raw material to be sintered

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857784

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018520616

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016857784

Country of ref document: EP