WO2017068710A1 - Optical fiber scanner, lighting device, and observation device - Google Patents

Optical fiber scanner, lighting device, and observation device Download PDF

Info

Publication number
WO2017068710A1
WO2017068710A1 PCT/JP2015/079910 JP2015079910W WO2017068710A1 WO 2017068710 A1 WO2017068710 A1 WO 2017068710A1 JP 2015079910 W JP2015079910 W JP 2015079910W WO 2017068710 A1 WO2017068710 A1 WO 2017068710A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
coil spring
piezoelectric element
illumination
light
Prior art date
Application number
PCT/JP2015/079910
Other languages
French (fr)
Japanese (ja)
Inventor
博一 横田
靖明 葛西
博士 鶴田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2015/079910 priority Critical patent/WO2017068710A1/en
Priority to PCT/JP2016/078731 priority patent/WO2017068924A1/en
Priority to JP2017546468A priority patent/JPWO2017068924A1/en
Publication of WO2017068710A1 publication Critical patent/WO2017068710A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications

Definitions

  • the present invention relates to an optical fiber scanner, an illumination device, and an observation device.
  • a cantilever optical fiber and a cylindrical piezoelectric element are held in a cantilever shape by a common base, and vibration generated by the piezoelectric element is transmitted through the base to the cantilever optical fiber.
  • an optical fiber is passed through and bonded to a through hole of a cylindrical ferrule fixed to a base, and a piezoelectric element is fixed to the outer surface of the ferrule.
  • the optical fiber scanner of Patent Document 1 has a structure having a low rigidity as a whole because a gap exists between a cylindrical piezoelectric element and a cantilever optical fiber passing through the inside of the piezoelectric element.
  • a low-rigidity optical fiber scanner tends to generate a low-order vibration mode having a low frequency when resonating, and a high-order vibration mode (a spurious mode) having a high frequency due to the low-order vibration mode.
  • the higher-order vibration mode overlaps with the original vibration mode of the optical fiber, other parts resonate with the vibration of the cantilever optical fiber, and the optical fiber is stably vibrated in a single vibration mode. And light cannot be stably scanned along the desired trajectory.
  • the optical fiber scanner of Patent Document 2 has a structure in which the inner peripheral surface of the through hole of the ferrule and the outer peripheral surface of the optical fiber are bonded over the entire length, vibration of the piezoelectric element can be directly transmitted to the optical fiber.
  • the present invention has been made in view of the above-described circumstances, and efficiently transmits the vibration of the piezoelectric element to the optical fiber and can easily increase the vibration of the tip of the optical fiber.
  • An object is to provide an apparatus and an observation apparatus.
  • One embodiment of the present invention is an elongated optical fiber that guides light and exits from a distal end, and is closely attached to the outer peripheral surface so as to cover the outer peripheral surface of the optical fiber at a position spaced from the distal end to the proximal end side.
  • a coil spring made of an elastic material bonded in a state, and fixed by being bonded to the outer peripheral surface of the coil spring, and by applying an alternating voltage of a predetermined frequency, the optical fiber expands and contracts in the longitudinal direction
  • An optical fiber scanner comprising: a piezoelectric element that generates bending vibration in a direction intersecting the longitudinal direction in the optical fiber via a coil spring; and a fixing portion fixed to the coil spring on a proximal end side of the piezoelectric element. is there.
  • the position of the fixing portion is a node, and the frequency equal to the frequency of the alternating voltage is set.
  • Bending vibration is generated in the coil spring, and the bending vibration is transmitted to the optical fiber.
  • the portion on the tip side of the coil spring of the optical fiber is supported by the coil spring in a cantilever shape with the tip being a free end, and therefore the direction in which the tip of the optical fiber intersects with the longitudinal direction by the bending vibration transmitted from the coil spring
  • the light emitted from the tip of the optical fiber is scanned in a direction crossing the traveling direction of the light.
  • the optical fiber scanner since a coil spring is provided between the piezoelectric element and the optical fiber, the optical fiber scanner has a structure that is higher in rigidity than the single optical fiber as a whole. It is hard to do. Further, since the coil spring has a natural frequency different from the frequency of the alternating voltage, the coil spring does not resonate with the bending vibration of the protruding portion of the optical fiber.
  • the protruding portion of the optical fiber continues to vibrate stably in the vibration mode having a single frequency. Accordingly, it is possible to stably obtain a desired scanning locus by stabilizing the vibration of the optical fiber.
  • the coil spring has low bending rigidity, bending vibration due to the piezoelectric element is hardly hindered, and the amplitude of vibration at the tip of the optical fiber can be efficiently increased.
  • the coil spring may be a close coil spring in which the wire members constituting the coil spring are substantially in close contact with each other.
  • the said coil spring may space apart the wire which comprises this coil spring.
  • the said coil spring may space apart the wire which comprises this coil spring with a fixed pitch space
  • the coil spring may be a square spring having a rectangular cross section.
  • the natural frequency of the said coil spring is larger than the natural frequency of the said optical fiber.
  • the other aspect of this invention is an illuminating device provided with the light source which generates illumination light, and one of the said optical fiber scanners which scan the illumination light from this light source.
  • the illumination device, a light detection unit that detects return light that returns from the subject when the subject is irradiated with illumination light from the illumination device, and the piezoelectric element includes the predetermined element.
  • a voltage supply unit that supplies an alternating voltage having a frequency of.
  • the present invention it is possible to efficiently transmit the vibration of the piezoelectric element to the optical fiber and to easily increase the vibration of the tip of the optical fiber.
  • FIG. 1 is an overall configuration diagram of an observation apparatus including an optical fiber scanner and an illumination device according to an embodiment of the present invention. It is a longitudinal cross-sectional view along the longitudinal axis which shows the internal structure of the insertion part front-end
  • the observation device 100 includes an endoscope 20, a control device main body 30, and a display 40, and is emitted from the distal end of an insertion portion 20a of the endoscope 20.
  • This is an optical scanning endoscope apparatus that scans a laser beam L along a spiral scanning locus B on a subject A to acquire an image of the subject A.
  • the observation device 100 includes a light source 1 that generates illumination light, an illumination device 3 that irradiates the subject A with illumination light, and a subject A that is irradiated with the illumination light.
  • a photodetector (photodetector) 5 such as a photodiode that detects return light returning from the light source, and a drive control device (voltage supply unit) 7 that drives and controls the illumination device 3 and the photodetector 5 are provided.
  • the illuminating device 3 includes an optical fiber scanner 10 having an illuminating optical fiber 11 that guides the illuminating light emitted from the light source 1 and emits the illuminating light from the distal end, and is disposed closer to the distal end than the illuminating optical fiber 11.
  • a condensing lens 13 that condenses the illumination light emitted from the optical fiber 11, an elongated cylindrical frame (outer cylinder) 15 that houses the optical fiber scanner 10 and the condensing lens 13, and an outer peripheral surface of the frame 15
  • a plurality of optical fibers for detection 17 are provided which are arranged in the circumferential direction on the top and guide return light (for example, reflected light or fluorescent light of illumination light) from the subject A to the photodetector 5.
  • the light source 1 and the photodetector 5 are disposed on the proximal end side of the optical fiber scanner 10.
  • the optical fiber scanner 10 includes an illumination optical fiber (optical fiber) 11 such as a multimode fiber or a single mode fiber, and a distal end to a proximal end side of the illumination optical fiber 11.
  • a coil spring 21 disposed in close contact with the outer peripheral surface so as to surround the outer peripheral surface of the illumination optical fiber 11 at an interval, and four piezoelectric elements 23A and 23B fixed to the outer surface of the coil spring 21;
  • a fixing portion 25 for fixing the proximal end portion of the coil spring 21 to the frame body 15 and lead wires 27A and 27B for supplying an alternating voltage to the piezoelectric elements 23A and 23B are provided.
  • the illumination optical fiber 11 is made of an elongated glass material and is arranged along the longitudinal direction of the frame 15.
  • the tip of the illumination optical fiber 11 is disposed near the tip of the inside of the frame 15.
  • the base end of the illumination optical fiber 11 extends from the base end of the frame 15 to the outside and is connected to the light source 1.
  • the longitudinal direction of the illumination optical fiber 11 is defined as a Z direction
  • two radial directions of the illumination optical fiber 11 that are orthogonal to each other are defined as an X direction and a Y direction.
  • the coil spring 21 is a close-contact coil spring having an inner diameter dimension substantially equal to or smaller than the outer diameter dimension of the illumination optical fiber 11 in a free state, and having the adjacent wire rods in close contact with each other, and allows the illumination optical fiber 11 to penetrate inside.
  • the inner surface of the illumination optical fiber 11 is disposed in close contact with the outer peripheral surface.
  • the inner surface of the coil spring 21 and the outer peripheral surface of the illumination optical fiber 11 are bonded and fixed to each other with an epoxy adhesive.
  • the distal end portion of the illumination optical fiber 11 projecting from the distal end surface of the coil spring 21 to the distal end side is referred to as a projecting portion 11a.
  • the coil spring 21 is made of a material having high rigidity, for example, a material selected from metal (iron, aluminum alloy, titanium, etc.), synthetic resin (hard plastic), glass, and carbon. As will be described later, when the coil spring 21 is used as a common GND, the coil spring 21 needs to be made of a conductive metal material or coated with a conductive metal material. .
  • the piezoelectric elements 23A and 23B are rectangular flat plates made of a piezoelectric ceramic material such as lead zirconate titanate (PZT), for example.
  • the piezoelectric elements 23A and 23B are subjected to + electrode processing on the front surface and ⁇ electrode processing on the back surface, and are thereby polarized in the thickness direction from the + pole toward the ⁇ pole.
  • An arrow P in the figure indicates the polarization direction of the piezoelectric elements 23A and 23B.
  • the four piezoelectric elements are composed of two A-phase piezoelectric elements 23A and two B-phase piezoelectric elements 23B. As shown in FIG. 3, the A-phase piezoelectric elements 23 ⁇ / b> A and the B-phase piezoelectric elements 23 ⁇ / b> B are alternately arranged at equal intervals in the circumferential direction of the coil spring 21, and are electrically conductive on the outer peripheral surface of the coil spring 21. It is fixed with adhesive.
  • the two A-phase piezoelectric elements 23A facing each other in the X direction are arranged so that the polarization direction is the same in the X direction, and the two B-phase piezoelectric elements 23B facing each other in the Y direction are The polarization direction is arranged to face the same direction as the Y direction.
  • the fixing portion 25 is a cylindrical member having a through hole 26, and is electrically conductive in a state in which the base end portion of the coil spring 21 located on the base end side with respect to the piezoelectric elements 23A and 23B is fitted into the through hole 26. It is fixed with an adhesive.
  • the outer peripheral surface of the fixing portion 25 is fixed to the inner wall of the frame body 15.
  • the coil spring 21 is supported by the fixed portion 25 in a cantilever shape with the tip as a free end
  • the protruding portion 11a of the illumination optical fiber 11 is supported by the coil spring 21 in a cantilever shape with the tip as a free end. It is supported.
  • the fixed portion 25 is electrically connected to the electrodes on the coil spring 21 side of the four piezoelectric elements 23A and 23B via the coil spring 21 and functions as a common GND when driving the piezoelectric elements 23A and 23B. It is like that.
  • a lead wire 27A for A phase is bonded to the two A phase piezoelectric elements 23A by a conductive adhesive.
  • B-phase lead wires 27B are joined to the two B-phase piezoelectric elements 23B by a conductive adhesive.
  • a GND lead wire (not shown) is joined to the fixing portion 25.
  • grooves extending in the Z direction are formed at four locations spaced in the circumferential direction, and one lead wire 27A, 27B is accommodated in each groove.
  • the lead wires 27A and 27B and the GND lead wire are connected to the drive control device 7.
  • the projecting portion 11a and the coil spring 21 of the illumination optical fiber 11 have a cantilever structure with each tip as a free end. Therefore, the natural frequencies F1 and F2 (Hz) of the protruding portion 11a of the illumination optical fiber 11 and the coil spring 21 are the Young's modulus E (N / m2), the cross-sectional secondary moment I (m4), and the break in the XY plane.
  • E Young's modulus
  • I the cross-sectional secondary moment
  • Kg / m3
  • the drive control device 7 applies an A-phase alternating voltage having a predetermined drive frequency to the A-phase piezoelectric element 23A via the lead wire 27A, and applies a predetermined voltage to the B-phase piezoelectric element 23B via the lead wire 27B.
  • a B-phase alternating voltage having a driving frequency of 2 is applied.
  • the predetermined drive frequency is set to a frequency equal to or close to the natural frequency F1 of the protruding portion 11a of the illumination optical fiber 11.
  • the drive controller 7 supplies the lead wires 27A and 27B with an A-phase alternating voltage and a B-phase alternating voltage whose phases are different from each other by ⁇ / 2 and whose amplitude changes in a sine wave shape over time.
  • the coil spring 21 has a natural frequency F2 that is different from a predetermined drive frequency of the alternating voltage, that is, a natural frequency F2 that is larger than the natural frequency F1 of the protruding portion 11a of the illumination optical fiber 11. Designed to be
  • the drive control device 7 is operated to supply illumination light from the light source 1 to the illumination optical fiber 11 and through the lead wires 27A and 27B.
  • an alternating voltage having a predetermined drive frequency is applied to the piezoelectric elements 23A and 23B.
  • the A-phase piezoelectric element 23A to which the A-phase alternating voltage is applied vibrates and expands in the Z direction orthogonal to the polarization direction.
  • one of the two piezoelectric elements 23A is contracted in the Z direction and the other is expanded in the Z direction, so that the coil spring 21 is excited to bend in the X direction with the position of the fixing portion 25 as a node.
  • the protrusion 11a bends and vibrates in the X direction at a frequency equal to the drive frequency of the alternating voltage, and the tip of the illumination optical fiber 11 is in the X direction. And the illumination light emitted from the tip is linearly scanned in the X direction.
  • the B-phase piezoelectric element 23B to which the B-phase alternating voltage is applied vibrates and expands in the Z direction orthogonal to the polarization direction.
  • one of the two piezoelectric elements 23 ⁇ / b> B contracts in the Z direction and the other extends in the Z direction, so that the coil spring 21 is excited to bend in the Y direction with the position of the fixing portion 25 as a node.
  • the protrusion 11a bends and vibrates in the Y direction at a frequency equal to the drive frequency of the alternating voltage, and the illumination light emitted from the tip is in the Y direction.
  • the phase of the A-phase alternating voltage and the phase of the B-phase alternating voltage are shifted from each other by ⁇ / 2, and the amplitudes of the A-phase alternating voltage and the B-phase alternating voltage change in a sine wave shape over time.
  • the tip of the illumination optical fiber 11 vibrates along a spiral locus, and the illumination light is scanned two-dimensionally on the subject A along the spiral locus.
  • the drive frequency is equal to or near the natural frequency F1 of the protrusion 11a, the protrusion 11a can be excited efficiently.
  • the return light from the subject A is received by a plurality of detection optical fibers 17 and the intensity thereof is detected by the photodetector 5.
  • the drive control device 7 causes the light detector 5 to detect the return light in synchronization with the scanning period of the illumination light, and generates an image of the subject A by associating the detected intensity of the return light with the scanning position of the illumination light. .
  • the coil spring 21 is provided between the piezoelectric elements 23A and 23B and the illumination optical fiber 11, the optical fiber scanner 10 as a whole is more than the illumination optical fiber 11 alone. Since it has a highly rigid structure, it is difficult to generate a low-order vibration mode having a frequency lower than the drive frequency. Furthermore, since the natural frequency F2 of the coil spring 21 is set larger than the drive frequency of the alternating voltage, the coil spring 21 vibrates in resonance with the vibration at the drive frequency of the protruding portion 11a of the illumination optical fiber 11. Is prevented.
  • the protrusion part 11a of the optical fiber 11 for illumination can be continuously vibrated with a predetermined drive frequency, and illumination light can be stably scanned along a desired spiral path.
  • the coil spring 21 is adhered between the piezoelectric elements 23A and 23B and the illumination optical fiber 11, the vibration of the piezoelectric elements 23A and 23B can be transmitted to the illumination optical fiber 11 more directly. And the coil spring 21 can suppress bending rigidity sufficiently low compared with the ferrule which consists of a cylindrical rigid body. Therefore, the vibration of the illumination optical fiber 11 is not hindered by the coil spring 21, and there is an advantage that the amplitude of the vibration of the protruding portion 11a can be easily increased.
  • the coil spring 21 is a close coil spring in which the wire constituting the coil spring 21 is in close contact with the wire adjacent in the longitudinal direction, the inner diameter of the coil spring 21 and the wire diameter of the wire are used. Is made constant, the contact area between the piezoelectric elements 23A and 23B and the coil spring 21 and the contact area between the coil spring 21 and the illumination optical fiber 11 can be maximized. Thereby, there exists an advantage that the vibration of piezoelectric element 23A, 23B can be more efficiently transmitted to the optical fiber 11 for illumination. In order to further increase the contact area, it is effective to reduce the wire diameter of the coil spring 21 and increase the number of turns.
  • a close-contact coil spring is employed as the coil spring 21.
  • a structure in which adjacent wires are separated from each other may be employed.
  • the wire rods have a predetermined pitch interval. Thereby, the contact state between the piezoelectric elements 23A and 23B and the coil spring 21, the coil spring 21 and the illumination optical fiber 11 can be made uniform, and the illumination optical fiber 11 can be stably held.
  • the coil spring 21 as shown in FIG. 5, a square spring having a rectangular cross section may be adopted.
  • the piezoelectric elements 23A and 23B and the coil spring 21, and the coil spring 21 and the illumination optical fiber 11 are brought into surface contact, so that the contact area can be further increased, and the vibration of the piezoelectric elements 23A and 23B can be increased.
  • the vibration of the piezoelectric elements 23A and 23B can be increased.

Abstract

To achieve the objective of efficiently transmitting vibrations of a piezoelectric element to an optical fiber and easily increasing vibrations at the tip of the optical fiber, an optical fiber scanner (10) according to the present invention is provided with: a long, narrow optical fiber (11) that conducts light and emits light from the tip; a coil spring (21) that comprises an elastic material that is closely adhered to the outer peripheral surface of the optical fiber (11) so as to cover the outer peripheral surface at a position that is spaced apart from the tip toward the base end side; a piezoelectric element (23A) that is fixed by being adhered to the outer peripheral surface of the coil spring (21), undergoes stretching vibration in the length direction of the optical fiber (11) due to the application of an alternating voltage of a prescribed frequency, and generates, in the optical fiber (11) via the coil spring (21), bending vibration in a direction that intersects with the length direction; and a fixed part that is fixed to the coil spring (21) further to the base end side than the piezoelectric element (23A).

Description

光ファイバスキャナ、照明装置および観察装置Optical fiber scanner, illumination device and observation device
 本発明は、光ファイバスキャナ、照明装置および観察装置に関するものである。 The present invention relates to an optical fiber scanner, an illumination device, and an observation device.
 片持梁光ファイバをチタン酸ジルコン酸鉛(PZT)アクチュエータ(以下、圧電素子という。)によって屈曲振動させて、片持梁光ファイバの先端から射出される光を走査する光ファイバスキャナが知られている(例えば、特許文献1、2参照。)。 2. Description of the Related Art An optical fiber scanner that scans light emitted from the tip of a cantilever optical fiber by bending and vibrating a cantilever optical fiber by a lead zirconate titanate (PZT) actuator (hereinafter referred to as a piezoelectric element) is known. (For example, refer to Patent Documents 1 and 2.)
 特許文献1の光ファイバスキャナは、片持梁光ファイバおよび筒状の圧電素子を共通のベースによって片持ち梁状に保持し、圧電素子が発生した振動を、ベースを介して片持梁光ファイバに伝達している。
 また、特許文献2の光ファイバスキャナは、ベースに固定された筒状のフェルールの貫通孔に光ファイバを貫通させて接着し、フェルールの外面に圧電素子を固定している。 
In the optical fiber scanner of Patent Document 1, a cantilever optical fiber and a cylindrical piezoelectric element are held in a cantilever shape by a common base, and vibration generated by the piezoelectric element is transmitted through the base to the cantilever optical fiber. To communicate.
In the optical fiber scanner of Patent Document 2, an optical fiber is passed through and bonded to a through hole of a cylindrical ferrule fixed to a base, and a piezoelectric element is fixed to the outer surface of the ferrule.
特許第5069105号公報Japanese Patent No. 5069105 国際公開第2013/069382号International Publication No. 2013/069382
 特許文献1の光ファイバスキャナは、筒状の圧電素子と該圧電素子の内側を通る片持梁光ファイバとの間に空隙が存在し、全体として剛性の低い構造となっている。低剛性の光ファイバスキャナは、共振したときに周波数の低い低次の振動モードが発生し易く、さらに低次の振動モードに起因して周波数の高い高次の振動モード(スプリアスモード)が発生する。高次の振動モードが光ファイバの本来の振動モードと重なる場合には、片持梁光ファイバの振動に他の部分が共鳴してしまい、単一の振動モードで光ファイバを安定的に振動させることができず、光を所望の軌跡に沿って安定的に走査することができない。 The optical fiber scanner of Patent Document 1 has a structure having a low rigidity as a whole because a gap exists between a cylindrical piezoelectric element and a cantilever optical fiber passing through the inside of the piezoelectric element. A low-rigidity optical fiber scanner tends to generate a low-order vibration mode having a low frequency when resonating, and a high-order vibration mode (a spurious mode) having a high frequency due to the low-order vibration mode. . When the higher-order vibration mode overlaps with the original vibration mode of the optical fiber, other parts resonate with the vibration of the cantilever optical fiber, and the optical fiber is stably vibrated in a single vibration mode. And light cannot be stably scanned along the desired trajectory.
 また、特許文献2の光ファイバスキャナは、フェルールの貫通孔内周面と光ファイバの外周面とを全長にわたって接着する構造であるため、圧電素子の振動を光ファイバに直接的に伝達することができる反面、フェルールの剛性が支配的となって光ファイバの先端の振動を増大させることが難しい。  In addition, since the optical fiber scanner of Patent Document 2 has a structure in which the inner peripheral surface of the through hole of the ferrule and the outer peripheral surface of the optical fiber are bonded over the entire length, vibration of the piezoelectric element can be directly transmitted to the optical fiber. On the other hand, it is difficult to increase the vibration of the tip of the optical fiber because the rigidity of the ferrule is dominant. *
 本発明は、上述した事情に鑑みてなされたものであって、圧電素子の振動を光ファイバに効率よく伝達するとともに、光ファイバの先端の振動を容易に増大させることができる光ファイバスキャナ、照明装置および観察装置を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and efficiently transmits the vibration of the piezoelectric element to the optical fiber and can easily increase the vibration of the tip of the optical fiber. An object is to provide an apparatus and an observation apparatus.
 本発明の一態様は、光を導光して先端から射出する細長い光ファイバと、前記先端から基端側に間隔をあけた位置において前記光ファイバの外周面を覆うように該外周面に密着状態に接着された弾性材料からなるコイルバネと、該コイルバネの外周面に接着されることにより固定され、所定の周波数の交番電圧が印加されることによって前記光ファイバの長手方向に伸縮振動して前記コイルバネを介して前記光ファイバに、前記長手方向に交差する方向の屈曲振動を発生させる圧電素子と、該圧電素子よりも基端側において前記コイルバネに固定された固定部とを備える光ファイバスキャナである。 One embodiment of the present invention is an elongated optical fiber that guides light and exits from a distal end, and is closely attached to the outer peripheral surface so as to cover the outer peripheral surface of the optical fiber at a position spaced from the distal end to the proximal end side. A coil spring made of an elastic material bonded in a state, and fixed by being bonded to the outer peripheral surface of the coil spring, and by applying an alternating voltage of a predetermined frequency, the optical fiber expands and contracts in the longitudinal direction, and An optical fiber scanner comprising: a piezoelectric element that generates bending vibration in a direction intersecting the longitudinal direction in the optical fiber via a coil spring; and a fixing portion fixed to the coil spring on a proximal end side of the piezoelectric element. is there.
 本態様によれば、固定部を介してコイルバネの基端部を周囲の部材に固定した状態において圧電素子に交番電圧を印加すると、固定部の位置を節とし、交番電圧の周波数に等しい周波数の屈曲振動がコイルバネに発生し、該屈曲振動が光ファイバに伝達される。光ファイバのコイルバネよりも先端側の部分は、先端が自由端となる片持ち梁状にコイルバネによって支持されているので、コイルバネから伝達された屈曲振動によって光ファイバの先端が長手方向に交差する方向に振動し、光ファイバの先端から射出される光が該光の進行方向に交差する方向に走査される。 According to this aspect, when an alternating voltage is applied to the piezoelectric element in a state where the proximal end portion of the coil spring is fixed to the surrounding member via the fixing portion, the position of the fixing portion is a node, and the frequency equal to the frequency of the alternating voltage is set. Bending vibration is generated in the coil spring, and the bending vibration is transmitted to the optical fiber. The portion on the tip side of the coil spring of the optical fiber is supported by the coil spring in a cantilever shape with the tip being a free end, and therefore the direction in which the tip of the optical fiber intersects with the longitudinal direction by the bending vibration transmitted from the coil spring The light emitted from the tip of the optical fiber is scanned in a direction crossing the traveling direction of the light.
 この場合に、圧電素子と光ファイバとの間にコイルバネが設けられていることにより、光ファイバスキャナは全体として光ファイバ単体よりも剛性の高い構造となっているので、低次モードの振動が発生し難い。さらに、コイルバネは交番電圧の周波数とは異なる固有振動数を有しているので、光ファイバの突出部の屈曲振動にコイルバネが共鳴振動することがない。 In this case, since a coil spring is provided between the piezoelectric element and the optical fiber, the optical fiber scanner has a structure that is higher in rigidity than the single optical fiber as a whole. It is hard to do. Further, since the coil spring has a natural frequency different from the frequency of the alternating voltage, the coil spring does not resonate with the bending vibration of the protruding portion of the optical fiber.
 したがって、所定の周波数以外の周波数の振動モードの発生が防止され、光ファイバの突出部は、単一の周波数の振動モードで安定的に振動し続ける。これにより、光ファイバの振動を安定させて所望の走査軌跡を安定的に得ることができる。
 また、コイルバネは、曲げ剛性が低いので、圧電素子による屈曲振動が阻害され難く、光ファイバの先端の振動の振幅を効率よく増大させることができる。
Therefore, generation of vibration modes having frequencies other than the predetermined frequency is prevented, and the protruding portion of the optical fiber continues to vibrate stably in the vibration mode having a single frequency. Accordingly, it is possible to stably obtain a desired scanning locus by stabilizing the vibration of the optical fiber.
In addition, since the coil spring has low bending rigidity, bending vibration due to the piezoelectric element is hardly hindered, and the amplitude of vibration at the tip of the optical fiber can be efficiently increased.
 上記態様においては、前記コイルバネが、該コイルバネを構成する線材どうしを略密着させた密着コイルバネであってもよい。
 このようにすることで、圧電素子とコイルバネおよびコイルバネと光ファイバとの接触面積を増大させることができ、圧電素子の振動をより直接的に光ファイバに伝達することができ、光ファイバの先端の振動の振幅を効率よく増大させることができる。
In the above aspect, the coil spring may be a close coil spring in which the wire members constituting the coil spring are substantially in close contact with each other.
By doing so, the contact area between the piezoelectric element and the coil spring and between the coil spring and the optical fiber can be increased, the vibration of the piezoelectric element can be transmitted more directly to the optical fiber, and the tip of the optical fiber can be transmitted. The amplitude of vibration can be increased efficiently.
 また,上記態様においては、前記コイルバネが、該コイルバネを構成する線材どうしを離間させていてもよい。
 このようにすることで、コイルバネの剛性を低減し、光ファイバの曲がり易さを向上することができる。これにより、光ファイバの先端の振動の振幅を増大させ易くすることができる。
Moreover, in the said aspect, the said coil spring may space apart the wire which comprises this coil spring.
By doing in this way, the rigidity of a coil spring can be reduced and the bendability of an optical fiber can be improved. Thereby, it is possible to easily increase the amplitude of vibration at the tip of the optical fiber.
 また、上記態様においては、前記コイルバネが、該コイルバネを構成する線材どうしを一定のピッチ間隔をあけて離間させていてもよい。
 このようにすることで、圧電素子と光ファイバとの間に挟まれるコイルバネの圧電素子および光ファイバとの接触状態を一様にすることができ、光ファイバを安定して保持することができる。
Moreover, in the said aspect, the said coil spring may space apart the wire which comprises this coil spring with a fixed pitch space | interval.
By doing so, the contact state between the piezoelectric element of the coil spring and the optical fiber sandwiched between the piezoelectric element and the optical fiber can be made uniform, and the optical fiber can be stably held.
 また、前記コイルバネが、矩形断面を有する角バネであってもよい。
 このようにすることで、圧電素子とコイルバネとの接触およびコイルバネと光ファイバとの接触を面接触とすることができ、接触面積を増大させて、より効果的に振動を伝達し、光ファイバの先端の振動の振幅を効率よく増大させることができる。
The coil spring may be a square spring having a rectangular cross section.
By doing so, the contact between the piezoelectric element and the coil spring and the contact between the coil spring and the optical fiber can be made a surface contact, increasing the contact area and transmitting vibration more effectively. The amplitude of the vibration at the tip can be increased efficiently.
 また、上記態様においては、前記コイルバネの固有振動数が、前記光ファイバの固有振動数より大きいことが好ましい。
 このようにすることで、光ファイバの振動をより安定させることができる。
Moreover, in the said aspect, it is preferable that the natural frequency of the said coil spring is larger than the natural frequency of the said optical fiber.
By doing in this way, the vibration of an optical fiber can be stabilized more.
 また、本発明の他の態様は、照明光を発生する光源と、該光源からの照明光を走査させる上記いずれかの光ファイバスキャナとを備える照明装置である。
 また、本発明の他の態様は、上記照明装置と、該照明装置からの照明光が被写体に照射されることにより、被写体から戻る戻り光を検出する光検出部と、前記圧電素子に前記所定の周波数の交番電圧を供給する電圧供給部とを備える観察装置である。
Moreover, the other aspect of this invention is an illuminating device provided with the light source which generates illumination light, and one of the said optical fiber scanners which scan the illumination light from this light source.
According to another aspect of the present invention, the illumination device, a light detection unit that detects return light that returns from the subject when the subject is irradiated with illumination light from the illumination device, and the piezoelectric element includes the predetermined element. And a voltage supply unit that supplies an alternating voltage having a frequency of.
 本発明によれば、圧電素子の振動を光ファイバに効率よく伝達するとともに、光ファイバの先端の振動を容易に増大させることができるという効果を奏する。 According to the present invention, it is possible to efficiently transmit the vibration of the piezoelectric element to the optical fiber and to easily increase the vibration of the tip of the optical fiber.
本発明の一実施形態に係る光ファイバスキャナおよび照明装置を備える観察装置の全体構成図である。1 is an overall configuration diagram of an observation apparatus including an optical fiber scanner and an illumination device according to an embodiment of the present invention. 図1の観察装置の内視鏡の挿入部先端の内部構成を示す長手軸に沿った縦断面図である。It is a longitudinal cross-sectional view along the longitudinal axis which shows the internal structure of the insertion part front-end | tip of the endoscope of the observation apparatus of FIG. 図1の観察装置を先端側から長手軸方向に見た正面図である。It is the front view which looked at the observation apparatus of FIG. 1 from the front end side in the longitudinal axis direction. 図1の観察装置の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the observation apparatus of FIG. 図2の光ファイバスキャナの変形例を示す側面図である。It is a side view which shows the modification of the optical fiber scanner of FIG.
 本発明の一実施形態に係る光ファイバスキャナ10、照明装置3および観察装置100について図面を参照して以下に説明する。
 本実施形態に係る観察装置100は、図1に示されるように、内視鏡20と、制御装置本体30と、ディスプレイ40とを備え、内視鏡20の挿入部20aの先端から射出されるレーザ光Lを被写体A上でスパイラル状の走査軌跡Bに沿って走査し、被写体Aの画像を取得する光走査型内視鏡装置である。
An optical fiber scanner 10, an illumination device 3, and an observation device 100 according to an embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the observation device 100 according to the present embodiment includes an endoscope 20, a control device main body 30, and a display 40, and is emitted from the distal end of an insertion portion 20a of the endoscope 20. This is an optical scanning endoscope apparatus that scans a laser beam L along a spiral scanning locus B on a subject A to acquire an image of the subject A.
 本実施形態に係る観察装置100は、図2に示されるように、照明光を発生させる光源1と、被写体Aに照明光を照射する照明装置3と、照明光が照射されることによって被写体Aから戻る戻り光を検出するフォトダイオードのような光検出器(光検出部)5と、照明装置3および光検出器5を駆動制御する駆動制御装置(電圧供給部)7とを備えている。 As shown in FIG. 2, the observation device 100 according to the present embodiment includes a light source 1 that generates illumination light, an illumination device 3 that irradiates the subject A with illumination light, and a subject A that is irradiated with the illumination light. A photodetector (photodetector) 5 such as a photodiode that detects return light returning from the light source, and a drive control device (voltage supply unit) 7 that drives and controls the illumination device 3 and the photodetector 5 are provided.
 照明装置3は、光源1から発せられた照明光を導光して先端から射出する照明用光ファイバ11を有する光ファイバスキャナ10と、照明用光ファイバ11よりも先端側に配置され、照明用光ファイバ11から射出された照明光を集光させる集光レンズ13と、光ファイバスキャナ10および集光レンズ13を収納する細長い筒状の枠体(外筒)15と、枠体15の外周面上に周方向に配列して設けられ、被写体Aからの戻り光(例えば、照明光の反射光または蛍光)を光検出器5に導光する複数の検出用光ファイバ17とを備えている。 The illuminating device 3 includes an optical fiber scanner 10 having an illuminating optical fiber 11 that guides the illuminating light emitted from the light source 1 and emits the illuminating light from the distal end, and is disposed closer to the distal end than the illuminating optical fiber 11. A condensing lens 13 that condenses the illumination light emitted from the optical fiber 11, an elongated cylindrical frame (outer cylinder) 15 that houses the optical fiber scanner 10 and the condensing lens 13, and an outer peripheral surface of the frame 15 A plurality of optical fibers for detection 17 are provided which are arranged in the circumferential direction on the top and guide return light (for example, reflected light or fluorescent light of illumination light) from the subject A to the photodetector 5.
 光源1および光検出器5は、光ファイバスキャナ10の基端側に配置されている。
 光ファイバスキャナ10は、図2および図3に示されるように、マルチモードファイバまたはシングルモードファイバのような照明用光ファイバ(光ファイバ)11と、照明用光ファイバ11の先端から基端側に間隔をあけた位置に照明用光ファイバ11の外周面を取り巻くように外周面に密着状態に配置されたコイルバネ21と、該コイルバネ21の外面に固定された4枚の圧電素子23A,23Bと、コイルバネ21の基端部を枠体15に固定する固定部25と、圧電素子23A,23Bに交番電圧を供給するためのリード線27A,27Bとを備えている。
The light source 1 and the photodetector 5 are disposed on the proximal end side of the optical fiber scanner 10.
As shown in FIGS. 2 and 3, the optical fiber scanner 10 includes an illumination optical fiber (optical fiber) 11 such as a multimode fiber or a single mode fiber, and a distal end to a proximal end side of the illumination optical fiber 11. A coil spring 21 disposed in close contact with the outer peripheral surface so as to surround the outer peripheral surface of the illumination optical fiber 11 at an interval, and four piezoelectric elements 23A and 23B fixed to the outer surface of the coil spring 21; A fixing portion 25 for fixing the proximal end portion of the coil spring 21 to the frame body 15 and lead wires 27A and 27B for supplying an alternating voltage to the piezoelectric elements 23A and 23B are provided.
 照明用光ファイバ11は、細長いガラス材からなり、枠体15の長手方向に沿って配されている。照明用光ファイバ11の先端は枠体15の内部の先端部近傍に配されている。照明用光ファイバ11の基端は枠体15の基端から外部へ延びて光源1に接続されている。以下、照明用光ファイバ11の長手方向をZ方向とし、照明用光ファイバ11の互いに直交する2つの半径方向をX方向およびY方向とする。 The illumination optical fiber 11 is made of an elongated glass material and is arranged along the longitudinal direction of the frame 15. The tip of the illumination optical fiber 11 is disposed near the tip of the inside of the frame 15. The base end of the illumination optical fiber 11 extends from the base end of the frame 15 to the outside and is connected to the light source 1. Hereinafter, the longitudinal direction of the illumination optical fiber 11 is defined as a Z direction, and two radial directions of the illumination optical fiber 11 that are orthogonal to each other are defined as an X direction and a Y direction.
 コイルバネ21は、自由状態において照明用光ファイバ11の外径寸法と略同等以下の内径寸法を有するとともに、隣接する線材を密着させた密着コイルバネであり、内側に照明用光ファイバ11を貫通させることで、照明用光ファイバ11の外周面に内面を密着させた状態に配置されている。コイルバネ21の内面と照明用光ファイバ11の外周面とは、エポキシ系接着剤によって互いに接着固定されている。以下、コイルバネ21の先端面から先端側に突出している照明用光ファイバ11の先端部分を突出部11aという。 The coil spring 21 is a close-contact coil spring having an inner diameter dimension substantially equal to or smaller than the outer diameter dimension of the illumination optical fiber 11 in a free state, and having the adjacent wire rods in close contact with each other, and allows the illumination optical fiber 11 to penetrate inside. Thus, the inner surface of the illumination optical fiber 11 is disposed in close contact with the outer peripheral surface. The inner surface of the coil spring 21 and the outer peripheral surface of the illumination optical fiber 11 are bonded and fixed to each other with an epoxy adhesive. Hereinafter, the distal end portion of the illumination optical fiber 11 projecting from the distal end surface of the coil spring 21 to the distal end side is referred to as a projecting portion 11a.
 コイルバネ21は、剛性が高い材質、例えば、金属(鉄、アルミニウム合金、チタン等)、合成樹脂(硬性プラスチック)、ガラスおよびカーボンから選択される材質により構成されている。後述するように、コイルバネ21を共通GNDとして用いる場合には、コイルバネ21は導電性の金属材料で構成されていることあるいは、導電性の金属材料からなるコーティングが施されていることが必要である。 The coil spring 21 is made of a material having high rigidity, for example, a material selected from metal (iron, aluminum alloy, titanium, etc.), synthetic resin (hard plastic), glass, and carbon. As will be described later, when the coil spring 21 is used as a common GND, the coil spring 21 needs to be made of a conductive metal material or coated with a conductive metal material. .
 圧電素子23A,23Bは、例えば、チタン酸ジルコン酸鉛(PZT)などの圧電セラミックス材料からなる矩形の平板状である。圧電素子23A,23Bは、表面に+の電極処理が施され、裏面に-の電極処理が施されており、これによって+極から-極に向かって板厚方向に分極している。図中の矢印Pは、圧電素子23A,23Bの分極方向を示している。 The piezoelectric elements 23A and 23B are rectangular flat plates made of a piezoelectric ceramic material such as lead zirconate titanate (PZT), for example. The piezoelectric elements 23A and 23B are subjected to + electrode processing on the front surface and − electrode processing on the back surface, and are thereby polarized in the thickness direction from the + pole toward the − pole. An arrow P in the figure indicates the polarization direction of the piezoelectric elements 23A and 23B.
 4枚の圧電素子は、2枚のA相用の圧電素子23Aと2枚のB相用の圧電素子23Bとからなる。A相用の圧電素子23AおよびB相用の圧電素子23Bは、図3に示されるように、コイルバネ21の周方向に均等な間隔をあけて交互に配列し、コイルバネ21の外周面に導電性の接着剤により固定されている。X方向に互いに対向する2枚のA相用の圧電素子23Aは、分極方向がX方向の同一方向を向くように配置され、Y方向に互いに対向する2枚のB相用の圧電素子23Bは、分極方向がY方向の同一方向を向くように配置されている。 The four piezoelectric elements are composed of two A-phase piezoelectric elements 23A and two B-phase piezoelectric elements 23B. As shown in FIG. 3, the A-phase piezoelectric elements 23 </ b> A and the B-phase piezoelectric elements 23 </ b> B are alternately arranged at equal intervals in the circumferential direction of the coil spring 21, and are electrically conductive on the outer peripheral surface of the coil spring 21. It is fixed with adhesive. The two A-phase piezoelectric elements 23A facing each other in the X direction are arranged so that the polarization direction is the same in the X direction, and the two B-phase piezoelectric elements 23B facing each other in the Y direction are The polarization direction is arranged to face the same direction as the Y direction.
 固定部25は、貫通孔26を有する円筒状の部材であり、圧電素子23A,23Bよりも基端側に位置するコイルバネ21の基端部を貫通孔26に嵌合させた状態で導電性の接着剤により固定している。固定部25の外周面は、枠体15の内壁に固定されている。これにより、コイルバネ21は、先端を自由端とする片持ち梁状に固定部25によって支持され、照明用光ファイバ11の突出部11aは、先端を自由端とする片持ち梁状にコイルバネ21によって支持されている。また、固定部25は、コイルバネ21を介して4枚の圧電素子23A,23Bのコイルバネ21側の電極と電気的に接続されており、圧電素子23A,23Bを駆動する際の共通GNDとして機能するようになっている。 The fixing portion 25 is a cylindrical member having a through hole 26, and is electrically conductive in a state in which the base end portion of the coil spring 21 located on the base end side with respect to the piezoelectric elements 23A and 23B is fitted into the through hole 26. It is fixed with an adhesive. The outer peripheral surface of the fixing portion 25 is fixed to the inner wall of the frame body 15. As a result, the coil spring 21 is supported by the fixed portion 25 in a cantilever shape with the tip as a free end, and the protruding portion 11a of the illumination optical fiber 11 is supported by the coil spring 21 in a cantilever shape with the tip as a free end. It is supported. The fixed portion 25 is electrically connected to the electrodes on the coil spring 21 side of the four piezoelectric elements 23A and 23B via the coil spring 21 and functions as a common GND when driving the piezoelectric elements 23A and 23B. It is like that.
 2枚のA相用の圧電素子23Aには、A相用のリード線27Aが導電性接着剤によって接合されている。2枚のB相用の圧電素子23Bには、B相用のリード線27Bが導電性接着剤によって接合されている。固定部25には、GNDリード線(図示略)が接合されている。固定部25には、周方向に間隔をあけた4箇所にZ方向に延びる溝が形成されており、各溝内にリード線27A,27Bが1本ずつ収容されている。各リード線27A,27BおよびGNDリード線は、駆動制御装置7に接続されている。 A lead wire 27A for A phase is bonded to the two A phase piezoelectric elements 23A by a conductive adhesive. B-phase lead wires 27B are joined to the two B-phase piezoelectric elements 23B by a conductive adhesive. A GND lead wire (not shown) is joined to the fixing portion 25. In the fixing portion 25, grooves extending in the Z direction are formed at four locations spaced in the circumferential direction, and one lead wire 27A, 27B is accommodated in each groove. The lead wires 27A and 27B and the GND lead wire are connected to the drive control device 7.
 照明用光ファイバ11の突出部11aおよびコイルバネ21は、上述のように、各々の先端を自由端とする片持ち梁構造を有する。したがって、照明用光ファイバ11の突出部11aおよびコイルバネ21の固有振動数F1,F2(Hz)は、各々のヤング率E(N/m2)、断面2次モーメントI(m4)、XY平面における断面積A(m2)、Z方向の長さL(m)、密度ρ(Kg/m3)を用いて、下式(1)によってそれぞれ表される。λは、振動モードによって決まる無次元の係数である。 As described above, the projecting portion 11a and the coil spring 21 of the illumination optical fiber 11 have a cantilever structure with each tip as a free end. Therefore, the natural frequencies F1 and F2 (Hz) of the protruding portion 11a of the illumination optical fiber 11 and the coil spring 21 are the Young's modulus E (N / m2), the cross-sectional secondary moment I (m4), and the break in the XY plane. Using the area A (m2), the length L (m) in the Z direction, and the density ρ (Kg / m3), each is represented by the following formula (1). λ is a dimensionless coefficient determined by the vibration mode.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 駆動制御装置7は、リード線27Aを介してA相用の圧電素子23Aに所定の駆動周波数を有するA相の交番電圧を印加し、リード線27Bを介してB相用の圧電素子23Bに所定の駆動周波数を有するB相の交番電圧を印加する。所定の駆動周波数は、照明用光ファイバ11の突出部11aの固有振動数F1と等しい周波数または固有振動数F1の近傍の周波数に設定される。駆動制御装置7は、位相が互いにπ/2だけ異なり、かつ、振幅が正弦波状に時間変化するA相の交番電圧およびB相の交番電圧を各リード線27A,27Bに供給する。 The drive control device 7 applies an A-phase alternating voltage having a predetermined drive frequency to the A-phase piezoelectric element 23A via the lead wire 27A, and applies a predetermined voltage to the B-phase piezoelectric element 23B via the lead wire 27B. A B-phase alternating voltage having a driving frequency of 2 is applied. The predetermined drive frequency is set to a frequency equal to or close to the natural frequency F1 of the protruding portion 11a of the illumination optical fiber 11. The drive controller 7 supplies the lead wires 27A and 27B with an A-phase alternating voltage and a B-phase alternating voltage whose phases are different from each other by π / 2 and whose amplitude changes in a sine wave shape over time.
 ここで、コイルバネ21は、交番電圧の所定の駆動周波数とは異なる固有振動数F2を有するように、すなわち、照明用光ファイバ11の突出部11aの固有振動数F1より大きな固有振動数F2を有するように設計されている。 Here, the coil spring 21 has a natural frequency F2 that is different from a predetermined drive frequency of the alternating voltage, that is, a natural frequency F2 that is larger than the natural frequency F1 of the protruding portion 11a of the illumination optical fiber 11. Designed to be
 次に、このように構成された光ファイバスキャナ10、照明装置3および観察装置100の作用について説明する。
 本実施形態に係る観察装置100を用いて被写体Aを観察するには、駆動制御装置7を作動させ、光源1から照明用光ファイバ11に照明光を供給させるとともに、リード線27A,27Bを介して圧電素子23A,23Bに所定の駆動周波数を有する交番電圧を印加させる。
Next, operations of the optical fiber scanner 10, the illumination device 3, and the observation device 100 configured as described above will be described.
In order to observe the subject A using the observation apparatus 100 according to the present embodiment, the drive control device 7 is operated to supply illumination light from the light source 1 to the illumination optical fiber 11 and through the lead wires 27A and 27B. Thus, an alternating voltage having a predetermined drive frequency is applied to the piezoelectric elements 23A and 23B.
 A相の交番電圧が印加されたA相用の圧電素子23Aは、分極方向に直交するZ方向に伸縮振動する。このときに、2枚の圧電素子23Aのうち、一方がZ方向に縮み、他方がZ方向に伸びることにより、コイルバネ21に、固定部25の位置を節とするX方向の屈曲振動が励起される。そして、コイルバネ21の屈曲振動が照明用光ファイバ11に伝達されることにより、突出部11aが交番電圧の駆動周波数と等しい周波数でX方向に屈曲振動して照明用光ファイバ11の先端がX方向に振動し、先端から射出される照明光がX方向に直線的に走査される。 The A-phase piezoelectric element 23A to which the A-phase alternating voltage is applied vibrates and expands in the Z direction orthogonal to the polarization direction. At this time, one of the two piezoelectric elements 23A is contracted in the Z direction and the other is expanded in the Z direction, so that the coil spring 21 is excited to bend in the X direction with the position of the fixing portion 25 as a node. The Then, when the bending vibration of the coil spring 21 is transmitted to the illumination optical fiber 11, the protrusion 11a bends and vibrates in the X direction at a frequency equal to the drive frequency of the alternating voltage, and the tip of the illumination optical fiber 11 is in the X direction. And the illumination light emitted from the tip is linearly scanned in the X direction.
 B相の交番電圧が印加されたB相用の圧電素子23Bは、分極方向に直交するZ方向に伸縮振動する。このときに、2枚の圧電素子23Bのうち、一方がZ方向に縮み、他方がZ方向に伸びることにより、コイルバネ21に固定部25の位置を節とするY方向の屈曲振動が励起される。そして、コイルバネ21の屈曲振動が照明用光ファイバ11に伝達されることにより、突出部11aが交番電圧の駆動周波数と等しい周波数でY方向に屈曲振動し、先端から射出される照明光がY方向に直線的に走査される。 The B-phase piezoelectric element 23B to which the B-phase alternating voltage is applied vibrates and expands in the Z direction orthogonal to the polarization direction. At this time, one of the two piezoelectric elements 23 </ b> B contracts in the Z direction and the other extends in the Z direction, so that the coil spring 21 is excited to bend in the Y direction with the position of the fixing portion 25 as a node. . Then, when the bending vibration of the coil spring 21 is transmitted to the illumination optical fiber 11, the protrusion 11a bends and vibrates in the Y direction at a frequency equal to the drive frequency of the alternating voltage, and the illumination light emitted from the tip is in the Y direction. Are scanned linearly.
 ここで、A相の交番電圧の位相とB相の交番電圧の位相とは互いにπ/2ずれており、かつ、A相の交番電圧およびB相の交番電圧の振幅が正弦波状に時間変化することによって、照明用光ファイバ11の先端がスパイラル状の軌跡に沿って振動し、照明光が被写体A上においてスパイラル状の軌跡に沿って2次元的に走査される。また、駆動周波数は突出部11aの固有振動数F1と等しいまたは近傍の周波数であるので、突出部11aを効率的に励振させることができる。 Here, the phase of the A-phase alternating voltage and the phase of the B-phase alternating voltage are shifted from each other by π / 2, and the amplitudes of the A-phase alternating voltage and the B-phase alternating voltage change in a sine wave shape over time. As a result, the tip of the illumination optical fiber 11 vibrates along a spiral locus, and the illumination light is scanned two-dimensionally on the subject A along the spiral locus. Moreover, since the drive frequency is equal to or near the natural frequency F1 of the protrusion 11a, the protrusion 11a can be excited efficiently.
 被写体Aからの戻り光は、複数本の検出用光ファイバ17によって受光され、その強度が光検出器5によって検出される。駆動制御装置7は、照明光の走査周期と同期して光検出器5に戻り光を検出させ、検出された戻り光の強度を照明光の走査位置と対応付けることによって被写体Aの画像を生成する。 The return light from the subject A is received by a plurality of detection optical fibers 17 and the intensity thereof is detected by the photodetector 5. The drive control device 7 causes the light detector 5 to detect the return light in synchronization with the scanning period of the illumination light, and generates an image of the subject A by associating the detected intensity of the return light with the scanning position of the illumination light. .
 この場合に、本実施形態によれば、圧電素子23A,23Bと照明用光ファイバ11との間にコイルバネ21が設けられていることにより、光ファイバスキャナ10は全体として照明用光ファイバ11単体よりも剛性の高い構造を有するので、駆動周波数よりも低い周波数の低次の振動モードが発生し難い。さらに、コイルバネ21の固有振動数F2が交番電圧の駆動周波数より大きく設定されているので、照明用光ファイバ11の突出部11aの駆動周波数での振動に共鳴してコイルバネ21が振動してしまうことが防止される。 In this case, according to this embodiment, since the coil spring 21 is provided between the piezoelectric elements 23A and 23B and the illumination optical fiber 11, the optical fiber scanner 10 as a whole is more than the illumination optical fiber 11 alone. Since it has a highly rigid structure, it is difficult to generate a low-order vibration mode having a frequency lower than the drive frequency. Furthermore, since the natural frequency F2 of the coil spring 21 is set larger than the drive frequency of the alternating voltage, the coil spring 21 vibrates in resonance with the vibration at the drive frequency of the protruding portion 11a of the illumination optical fiber 11. Is prevented.
 したがって、駆動周波数とは異なる周波数の振動モードが発生してしまうことがなく、照明用光ファイバ11には単一の振動モードのみが発生する。これにより、照明用光ファイバ11の突出部11aを所定の駆動周波数で安定的に振動させ続けることができ、所望のスパイラル状の軌跡に沿って照明光を安定的に走査することができる。 Therefore, a vibration mode having a frequency different from the drive frequency is not generated, and only a single vibration mode is generated in the illumination optical fiber 11. Thereby, the protrusion part 11a of the optical fiber 11 for illumination can be continuously vibrated with a predetermined drive frequency, and illumination light can be stably scanned along a desired spiral path.
 また、圧電素子23A,23Bと照明用光ファイバ11との間にコイルバネ21を接着しているので、圧電素子23A,23Bの振動をより直接的に照明用光ファイバ11に伝達することができる。そして、コイルバネ21は、円筒状の剛体からなるフェルールと比較して曲げ剛性を十分に低く抑えることができる。したがって、照明用光ファイバ11の振動がコイルバネ21によって阻害されることがなく、突出部11aの振動の振幅を容易に増大させることができるという利点がある。 Further, since the coil spring 21 is adhered between the piezoelectric elements 23A and 23B and the illumination optical fiber 11, the vibration of the piezoelectric elements 23A and 23B can be transmitted to the illumination optical fiber 11 more directly. And the coil spring 21 can suppress bending rigidity sufficiently low compared with the ferrule which consists of a cylindrical rigid body. Therefore, the vibration of the illumination optical fiber 11 is not hindered by the coil spring 21, and there is an advantage that the amplitude of the vibration of the protruding portion 11a can be easily increased.
 また、本実施形態においては、コイルバネ21として、該コイルバネ21を構成する線材が長手方向に隣接する線材と略密着している密着コイルバネを採用しているので、コイルバネ21の内径および線材の線径を一定とした場合には、圧電素子23A,23Bとコイルバネ21との接触面積、コイルバネ21と照明用光ファイバ11との接触面積を最大限に増大させることができる。これにより、圧電素子23A,23Bの振動をより効率的に照明用光ファイバ11に伝達することができるという利点がある。
 なお、接触面積をさらに増大させるには、コイルバネ21の線径を小さくして巻き数を増大させることが有効である。
Moreover, in this embodiment, since the coil spring 21 is a close coil spring in which the wire constituting the coil spring 21 is in close contact with the wire adjacent in the longitudinal direction, the inner diameter of the coil spring 21 and the wire diameter of the wire are used. Is made constant, the contact area between the piezoelectric elements 23A and 23B and the coil spring 21 and the contact area between the coil spring 21 and the illumination optical fiber 11 can be maximized. Thereby, there exists an advantage that the vibration of piezoelectric element 23A, 23B can be more efficiently transmitted to the optical fiber 11 for illumination.
In order to further increase the contact area, it is effective to reduce the wire diameter of the coil spring 21 and increase the number of turns.
 また、本実施形態においては、コイルバネ21として密着コイルバネを採用したが、これに代えて、図4に示されるように、隣接する線材どうしが離間しているものを採用してもよい。このようにすることで、接触面積は密着コイルバネより低減するが、コイルバネ21が曲がり易くなり、照明用光ファイバ11の振動の振幅を増大させ易くすることができるという利点がある。また、線材どうしが間隔をあけているので、固定部25側からの不要振動を減衰させ、照明用光ファイバ11の先端に伝わり難くすることもできる。 In the present embodiment, a close-contact coil spring is employed as the coil spring 21. Alternatively, as shown in FIG. 4, a structure in which adjacent wires are separated from each other may be employed. By doing in this way, although a contact area reduces compared with a close_contact | adherence coil spring, the coil spring 21 becomes easy to bend and there exists an advantage that the amplitude of the vibration of the optical fiber 11 for illumination can be made easy to increase. In addition, since the wires are spaced apart from each other, unnecessary vibration from the fixed portion 25 side can be attenuated and can be made difficult to be transmitted to the tip of the illumination optical fiber 11.
 この場合に、線材どうしが所定のピッチ間隔をあけていることが好ましい。これにより、圧電素子23A,23Bとコイルバネ21、コイルバネ21と照明用光ファイバ11との接触状態を一様にすることができ、照明用光ファイバ11を安定して保持することができる。 In this case, it is preferable that the wire rods have a predetermined pitch interval. Thereby, the contact state between the piezoelectric elements 23A and 23B and the coil spring 21, the coil spring 21 and the illumination optical fiber 11 can be made uniform, and the illumination optical fiber 11 can be stably held.
 また、コイルバネ21として、図5に示されるように、矩形断面を有する角バネを採用することにしてもよい。このようにすることで、圧電素子23A,23Bとコイルバネ21、コイルバネ21と照明用光ファイバ11とが面接触させられるので、接触面積をさらに増大させることができ、圧電素子23A,23Bの振動を、より直接的に照明用光ファイバ11に伝達することができるという利点がある。 Further, as the coil spring 21, as shown in FIG. 5, a square spring having a rectangular cross section may be adopted. By doing so, the piezoelectric elements 23A and 23B and the coil spring 21, and the coil spring 21 and the illumination optical fiber 11 are brought into surface contact, so that the contact area can be further increased, and the vibration of the piezoelectric elements 23A and 23B can be increased. There is an advantage that it can be transmitted to the illumination optical fiber 11 more directly.
 1 光源
 3 照明装置
 5 光検出部
 7 駆動制御装置(電圧供給部)
 10 光ファイバスキャナ
 11 照明用光ファイバ(光ファイバ)
 21 コイルバネ
 23A,23B 圧電素子
 25 固定部
 100 観察装置
 A 被写体
DESCRIPTION OF SYMBOLS 1 Light source 3 Illuminating device 5 Light detection part 7 Drive control apparatus (voltage supply part)
10 Optical fiber scanner 11 Illumination optical fiber (optical fiber)
21 Coil springs 23A, 23B Piezoelectric element 25 Fixed portion 100 Observation device A Subject

Claims (8)

  1.  光を導光して先端から射出する細長い光ファイバと、
     前記先端から基端側に間隔をあけた位置において前記光ファイバの外周面を覆うように該外周面に密着状態に接着された弾性材料からなるコイルバネと、
     該コイルバネの外周面に接着されることにより固定され、所定の周波数の交番電圧が印加されることによって前記光ファイバの長手方向に伸縮振動して前記コイルバネを介して前記光ファイバに、前記長手方向に交差する方向の屈曲振動を発生させる圧電素子と、
     該圧電素子よりも基端側において前記コイルバネに固定された固定部とを備える光ファイバスキャナ。
    An elongated optical fiber that guides light and emits it from the tip;
    A coil spring made of an elastic material adhered in close contact with the outer peripheral surface so as to cover the outer peripheral surface of the optical fiber at a position spaced from the distal end to the proximal end side;
    The coil spring is fixed by being bonded to the outer peripheral surface, and when an alternating voltage having a predetermined frequency is applied, it expands and contracts in the longitudinal direction of the optical fiber, and the longitudinal direction of the optical fiber passes through the coil spring. A piezoelectric element that generates a bending vibration in a direction intersecting with
    An optical fiber scanner comprising: a fixed portion fixed to the coil spring on a proximal end side with respect to the piezoelectric element.
  2.  前記コイルバネが、該コイルバネを構成する線材どうしを略密着させた密着コイルバネである請求項1に記載の光ファイバスキャナ。 2. The optical fiber scanner according to claim 1, wherein the coil spring is a close-contact coil spring in which the wire members constituting the coil spring are substantially in close contact with each other.
  3.  前記コイルバネが、該コイルバネを構成する線材どうしを離間させている請求項1に記載の光ファイバスキャナ。 2. The optical fiber scanner according to claim 1, wherein the coil spring separates wire members constituting the coil spring.
  4.  前記コイルバネが、該コイルバネを構成する線材どうしを一定のピッチ間隔をあけて離間させている請求項3に記載の光ファイバスキャナ。 4. The optical fiber scanner according to claim 3, wherein the coil spring separates the wires constituting the coil spring with a constant pitch interval.
  5.  前記コイルバネが、矩形断面を有する角バネである請求項1から請求項4のいずれかに記載の光ファイバスキャナ。 The optical fiber scanner according to any one of claims 1 to 4, wherein the coil spring is a square spring having a rectangular cross section.
  6.  前記コイルバネの固有振動数が、前記光ファイバの固有振動数より大きい請求項1から請求項5のいずれかに記載の光ファイバスキャナ。 The optical fiber scanner according to any one of claims 1 to 5, wherein a natural frequency of the coil spring is larger than a natural frequency of the optical fiber.
  7.  照明光を発生する光源と、
     該光源からの照明光を走査させる請求項1から請求項6のいずれかに記載の光ファイバスキャナとを備える照明装置。
    A light source that generates illumination light;
    An illumination device comprising: the optical fiber scanner according to claim 1, which scans illumination light from the light source.
  8.  請求項7に記載の照明装置と、
     該照明装置からの照明光が被写体に照射されることにより、被写体から戻る戻り光を検出する光検出部と、
     前記圧電素子に前記所定の周波数の交番電圧を供給する電圧供給部とを備える観察装置。
     
    A lighting device according to claim 7;
    A light detection unit that detects return light returning from the subject by irradiating the subject with illumination light from the illumination device; and
    An observation apparatus comprising: a voltage supply unit that supplies an alternating voltage having the predetermined frequency to the piezoelectric element.
PCT/JP2015/079910 2015-10-23 2015-10-23 Optical fiber scanner, lighting device, and observation device WO2017068710A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/079910 WO2017068710A1 (en) 2015-10-23 2015-10-23 Optical fiber scanner, lighting device, and observation device
PCT/JP2016/078731 WO2017068924A1 (en) 2015-10-23 2016-09-28 Optical fiber scanner, lighting device, and observation device
JP2017546468A JPWO2017068924A1 (en) 2015-10-23 2016-09-28 Optical fiber scanner, illumination device and observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079910 WO2017068710A1 (en) 2015-10-23 2015-10-23 Optical fiber scanner, lighting device, and observation device

Publications (1)

Publication Number Publication Date
WO2017068710A1 true WO2017068710A1 (en) 2017-04-27

Family

ID=58556787

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/079910 WO2017068710A1 (en) 2015-10-23 2015-10-23 Optical fiber scanner, lighting device, and observation device
PCT/JP2016/078731 WO2017068924A1 (en) 2015-10-23 2016-09-28 Optical fiber scanner, lighting device, and observation device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078731 WO2017068924A1 (en) 2015-10-23 2016-09-28 Optical fiber scanner, lighting device, and observation device

Country Status (2)

Country Link
JP (1) JPWO2017068924A1 (en)
WO (2) WO2017068710A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741027B (en) * 2020-05-27 2024-03-08 成都理想境界科技有限公司 Grating type scanning actuator and optical fiber scanner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162090A (en) * 2009-01-13 2010-07-29 Hoya Corp Optical scanning endoscope
JP2010162089A (en) * 2009-01-13 2010-07-29 Hoya Corp Optical scanning endoscope
JP2011156235A (en) * 2010-02-02 2011-08-18 Hoya Corp Optical-scanning endoscope, optical-scanning endoscope drive unit, and optical-scanning endoscope system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617057B2 (en) * 2012-10-11 2014-10-29 オリンパスメディカルシステムズ株式会社 Endoscope device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162090A (en) * 2009-01-13 2010-07-29 Hoya Corp Optical scanning endoscope
JP2010162089A (en) * 2009-01-13 2010-07-29 Hoya Corp Optical scanning endoscope
JP2011156235A (en) * 2010-02-02 2011-08-18 Hoya Corp Optical-scanning endoscope, optical-scanning endoscope drive unit, and optical-scanning endoscope system

Also Published As

Publication number Publication date
JPWO2017068924A1 (en) 2018-08-09
WO2017068924A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6274949B2 (en) Optical fiber scanner, illumination device and observation device
JP6129050B2 (en) Optical fiber scanner, illumination device and observation device
JP6120624B2 (en) Optical fiber scanner, illumination device and observation device
WO2014054524A1 (en) Optical fiber scanner
JP6498214B2 (en) Optical fiber scanner, illumination device and observation device
WO2015129391A1 (en) Optical fiber scanner, lighting device, and observation device
WO2016075758A1 (en) Optical fiber scanner, illumination device, and observation apparatus
US20170242239A1 (en) Optical-fiber scanner, illumination apparatus, and observation apparatus
WO2017068924A1 (en) Optical fiber scanner, lighting device, and observation device
US20180252910A1 (en) Optical fiber scanner, illumination device, and observation device
JP6865221B2 (en) Fiber optic scanner, lighting and observation equipment
US20190235231A1 (en) Optical fiber scanner, illumination device, and observation device
WO2017068651A1 (en) Optical fiber scanner, illumination device, and observation device
WO2016189627A1 (en) Optical fiber scanner, illumination device, and observation device
JP6103871B2 (en) Fiber optic scanner
WO2018092302A1 (en) Optical scanning device and assembly adjusting method for optical scanning device
WO2017183157A1 (en) Optical fiber scanner, illumination device, and observation device
WO2017168809A1 (en) Optical fibre scanner, illumination device, and observation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP