WO2017068665A1 - Injection casting device and melt supply method in said device - Google Patents

Injection casting device and melt supply method in said device Download PDF

Info

Publication number
WO2017068665A1
WO2017068665A1 PCT/JP2015/079702 JP2015079702W WO2017068665A1 WO 2017068665 A1 WO2017068665 A1 WO 2017068665A1 JP 2015079702 W JP2015079702 W JP 2015079702W WO 2017068665 A1 WO2017068665 A1 WO 2017068665A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
injection
injection sleeve
molten metal
ladle
Prior art date
Application number
PCT/JP2015/079702
Other languages
French (fr)
Japanese (ja)
Inventor
幸久 長子
保治 長子
康則 西川
Original Assignee
ティファ(タイランド) カンパニー リミテッド
蔦機械金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティファ(タイランド) カンパニー リミテッド, 蔦機械金属株式会社 filed Critical ティファ(タイランド) カンパニー リミテッド
Priority to JP2017546326A priority Critical patent/JP6383115B2/en
Priority to PCT/JP2015/079702 priority patent/WO2017068665A1/en
Publication of WO2017068665A1 publication Critical patent/WO2017068665A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/10Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with horizontal press motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations

Definitions

  • the molten metal supplied to the injection sleeve is injection-filled from the injection sleeve into the mold cavity and solidified to obtain a product having a desired shape.
  • the present invention relates to an injection casting apparatus that is advantageous in terms of equipment costs and can be performed while suppressing generation of objects and air entrainment, and a hot water supply method in the apparatus.
  • Conventional injection casting apparatuses that perform die casting are generally horizontally fixed and horizontally cast.
  • the molten metal is supplied to the injection sleeve (also referred to as a plunger sleeve) in this horizontal casting type injection casting apparatus by the method disclosed in Patent Document 1 below, that is, a pouring port provided on the outer periphery of the rear portion of the injection sleeve.
  • a method of pouring the molten metal into the injection sleeve is used.
  • Patent Document 2 discloses that the hot water is gently supplied to the injection sleeve. A hot water supply method that suppresses problems is proposed.
  • a hopper whose lower end is inserted into the pouring port is used together, and the hot water supply port at the lower end of the hopper is arranged near the lower inner wall surface of the injection sleeve, and the supply of the molten metal is started via the hopper.
  • the hot water supply is continued while raising the position of the hopper so that the distance from the hot water inlet to the hot water surface in the injection sleeve is kept substantially equal to the distance from the hot water inlet at the start of hot water supply to the lower inner wall surface of the injection sleeve.
  • a pouring port is provided on the outer periphery of the rear portion of the injection sleeve and hot water is supplied to the injection sleeve from there, but the pouring port at the tip of the injection sleeve is also used as the pouring port.
  • a method of pouring molten metal from the gate into the injection sleeve is also known.
  • a vertically arranged injection sleeve is detached from a mold when hot water is supplied, and the injection sleeve is slightly inclined to supply hot water from the tip (upper end) of the sleeve.
  • the outlet is also used as a pouring gate.
  • Patent Document 1 In the method of Patent Document 1 in which the molten metal is simply poured into the injection sleeve from the pouring port on the outer periphery of the rear portion of the injection sleeve, air is easily involved in the molten metal and the molten metal is easily oxidized. If air or oxide is mixed into the molten metal injected from the injection sleeve, the product becomes a defective product with insufficient strength.
  • the problem is small compared to the method of Patent Document 1, but it is a problem in securing reliability, particularly in the casting of a metal having a low kinematic viscosity, such as aluminum or an aluminum alloy, or in the formation of a product having a shape that easily generates nests. Is not preferable.
  • Patent Document 2 since the method of Patent Document 2 is hot water supply via a hopper, there is a concern about a decrease in the temperature of the molten metal and a decrease in the fluidity due thereto, and in casting the molten metal into a large volume cavity, the decrease in the fluidity of the molten metal is This is not preferable because it leads to an increase in injection pressure.
  • the molten metal surface area of the molten metal in the injection sleeve when the hot water supply to the injection sleeve is completed is larger than that of the vertical injection casting apparatus, and solidified pieces (break chill) Layer) hinders the compression of the molten metal by the injection tip (plunger tip), and the compressibility of the molten metal pushed out from the injection sleeve deteriorates, and the phenomenon that air is entrained in the molten metal and fine solidified pieces are mixed into the molten metal. A situation that flows into the cavity also occurs.
  • the hot water supply in the vertical injection casting apparatus that also serves as the pouring outlet of the injection sleeve is because the area of the molten metal surface formed in the injection sleeve is significantly smaller than that of the lateral casting type casting apparatus, Solidified pieces generated in the molten metal are reduced as compared with a horizontal casting type casting apparatus.
  • this vertical injection casting apparatus has a complicated structure and high equipment costs. Further, since the supply of the molten metal to the injection sleeve becomes a drop-in supply, air entrainment due to foaming of the molten metal is likely to occur at this time.
  • Patent Document 3 adopts a method in which the injection tip is raised to start hot water supply, and then the hot water supply is advanced while lowering the injection tip to reduce the fall distance of the molten metal and keep the distance constant. ing.
  • Patent Document 4 employs a method of removing the oxide film on the melt surface in the injection sleeve, which still occurs in the method of Patent Document 3, by attaching it to an oxide film removing device installed in a ladle.
  • An object of the present invention is to provide an injection casting apparatus and a hot water supply method capable of producing a product having excellent strength by enabling supply of molten metal to an injection sleeve while suppressing generation of oxides and air entrainment.
  • the present invention provides the following tilt type injection casting apparatus.
  • the injection casting apparatus includes a gantry having a movable frame that can rotate with a horizontal support shaft as a fulcrum, a undulation drive mechanism that raises the movable frame from a horizontal posture to a vertical posture or a position having an arbitrary inclination angle, A mold, an injection sleeve, and an injection tip that are assembled to the movable frame, a tip drive mechanism that advances the injection tip to push out the molten metal supplied to the injection sleeve, and the injection sleeve It is equipped with a ladle for pouring molten metal from the outlet.
  • the mold is composed of a fixed platen attached to the movable frame, a fixed mold that is individually supported by the movable platen, and a movable mold, and the fixed mold and the movable mold that move toward and away from each other by the movement of the movable platen.
  • a molding cavity is created between the mold.
  • the tip of the injection sleeve is connected to the fixed mold, and when the movable mold is separated from the fixed mold, the hot water outlet at the tip is opened to the outside.
  • the tip drive mechanism is preferably composed of a link mechanism, a drive source that operates the link mechanism, and a movable block that receives power through the link mechanism to displace the injection tip.
  • the drive mechanism of the link mechanism is composed of a ball screw, a motor for rotating the ball screw, and a movable body screwed into the ball screw, or a hydraulic or electric cylinder actuator capable of stroke control. Etc.
  • the link mechanism includes first and second links arranged in parallel, one end pivotally connected to the movable body and the other end pivotally connected to the movable block, one end being in the middle of the second link, and the other end being the movable body. It is preferable that a third link pivotally connected to the gantry in front of the moving direction is provided, and the second link and the third link constitute a toggle mechanism.
  • the ladle is provided with a pipe path protruding from the fuselage at the upper end edge of the fuselage, and has a hot water inlet inclined at a predetermined angle in a specific direction with respect to the horizontal upper surface of the ladle at the tip of the pipe path.
  • the direction of inclination of the hot water supply port is the direction in which the upper end of the hot water supply port protrudes forward with respect to the lower end of the hot water supply port (this is the rotation fulcrum of the ladle and the starting point of the molten metal outflow from the ladle).
  • the ladle has a fixed support bar having a rotation support point of the ladle on the extension of the axial center on the base end side, and the rotation angle (tilt angle) of the ladle is changed by rotating the fixed support bar.
  • the base end side of the fixed support rod refers to the side that is rotationally driven by the drive source.
  • Such an injection casting apparatus can supply hot water to the injection sleeve by the following method.
  • the movable frame is tilted with the ladle until the molten metal position of the molten metal in the ladle is higher than the lower part (bottom) of the starting end of the outflow passage from the ladle, and the molten frame in the ladle is tilted. Pour into the injection sleeve.
  • the melt surface position of the molten metal in the ladle is above the lower part of the starting end of the outflow path from the ladle by the molten metal starting to flow out of the ladle. Further, since the shape of the ladle, the amount of molten metal drawn by the ladle, the wall frictional force of the outflow passage, and the like are known, it is possible to detect from the inclination angle of the ladle.
  • the movable frame has an inclination angle (hereinafter referred to as “the molten metal supplied to the injection sleeve” in the vicinity of the lower end of the hot water outlet of the ladle and the flow rate of the molten metal in the injection sleeve is 50 cm / sec or less.
  • the inclination angle of the injection sleeve may be controlled.
  • the flow rate at this time can be confirmed by a method such as measuring the melt flowing out from the hot water inlet of the ladle with a non-contact type flow rate sensor attached to the ladle.
  • a ladle described later having a pipe path can also measure the flow velocity of the molten metal flowing through the pipe path with the entrance on the body side of the pipe path as a confirmation surface.
  • the ladle is rotated a little until the molten metal surface in the ladle is above the lower part of the starting edge of the outflow path of the ladle.
  • the movable frame is gradually raised until a hot water pool is formed in the injection sleeve where the lower half of the end face of the injection tip inserted into the injection sleeve contacts.
  • the angle of inclination of the injection sleeve and the angle of inclination of the ladle are gradually increased.
  • the formation of the hot water pool in the injection sleeve means that the inclination angle of the injection sleeve, the inner diameter of the injection sleeve and the standby position of the injection tip, the supply amount per unit time of the molten metal flowing into the injection sleeve, and the supply It can be known from the time, and it is also possible to detect that the molten metal surface position has risen to the set position by inserting a sensor into the injection sleeve.
  • the molten metal supplied to the injection sleeve is kept near the lower end of the hot water outlet of the ladle, and the flow velocity of 50 cm / sec or less is maintained.
  • the ladle is also rotated in synchronization with the increase in the inclination angle of the injection sleeve to increase the flow rate of the molten metal into the injection sleeve.
  • the hot water supply is completed when the inclination angle of the injection sleeve and the rotation angle of the ladle reach the specified values, and then the ladle is retracted, the movable mold is butted against the fixed mold, and the mold is clamped by the apparatus for injection.
  • the molten metal in the sleeve is injected and filled into the mold cavity.
  • the molten metal is supplied from the ladle to the injection sleeve with the injection sleeve placed in a low inclination angle position in which the molten metal surface position in the ladle is slightly above the molten metal surface position in the injection sleeve. it can.
  • the phenomenon of rolling up can be eliminated.
  • the ladle hot water supply port can be brought into contact with the inner surface of the injection sleeve to supply it in a flowing manner, and foaming due to dropping of the molten metal can be eliminated.
  • the remaining amount of air in the injection sleeve at the time of completion of hot water supply can be reduced (the filling rate of molten metal in the injection sleeve can be 80%. The remaining is residual air).
  • the hot water outlet inclined at a predetermined angle in the above-mentioned direction with respect to the horizontal upper surface of the ladle, and the hot water outlet at the tip of the pipe path the hot water outlet is submerged under the surface of the molten metal in the molten pool,
  • the ladle is rotated with the lower end of the hot water supply port as a fulcrum, and the molten metal (no hot water) not touching the air (no oxide is generated) under the surface can be pumped to the trunk through the pipe path.
  • the entire end face of the hot water inlet of the ladle is brought into contact with the molten metal surface in the injection sleeve at a position where the inclination angle of the injection sleeve and the rotation angle of the ladle are increased to some extent, and the molten metal supplied thereafter is supplied. It is also possible to make it flow into the hot water so as to sink into the hot water, and these synergistic effects can further enhance the effects of preventing the oxide from being mixed into the product and preventing the formation of nests caused by air entrainment.
  • the injection casting apparatus can reduce the inclination angle of the injection sleeve in such a case so that the molten metal flows into the cavity without causing any trouble.
  • the chip drive mechanism a mechanism that employs the link mechanism, a drive source, and a movable block, especially a link mechanism that includes a toggle mechanism, amplifies the power of the drive source with the link mechanism.
  • the injection tip can be driven, the mechanism can be easily simplified and miniaturized, and the position of the injection tip can be accurately controlled.
  • FIG. 7 is an explanatory diagram of a procedure for drawing a molten metal using a ladle in FIG. 6.
  • FIG. 7 is an explanatory diagram of a procedure for drawing a molten metal using a ladle in FIG. 6.
  • FIG. 7 is an explanatory diagram of a procedure for drawing a molten metal using a ladle in FIG. 6.
  • FIG. 7 is an explanatory diagram of a procedure for drawing a molten metal using a ladle in FIG. 6.
  • FIG. 7 is an explanatory diagram of a procedure for drawing a molten metal using a ladle in FIG. 6.
  • An injection casting apparatus 1 shown in FIGS. 1 and 2 includes a gantry 2, an undulating drive mechanism 3 (see FIG. 3 at the same time), a mold 4, an injection sleeve 5 and an injection tip 6 shown in detail in FIGS.
  • the chip driving mechanism 7 and the ladle 8 shown in FIGS. 6 to 9 are combined.
  • the gantry 2 is configured by combining a base portion 2 a whose position is fixed and a movable frame 2 c that moves using a horizontal support shaft 2 b supported by the base portion as a rotation fulcrum. ing.
  • the movable frame 2c of the illustrated apparatus can undulate between a horizontal posture with an inclination angle of 0 ° and an inclination angle of 45 °.
  • a fixed platen 4f and a movable platen 4g are assembled to the movable frame 2c.
  • the undulation drive mechanism 3 shown in FIGS. 1 to 3 is a cylinder actuator (trunnion hydraulic cylinder) 3a, which is attached to the base portion 2a with a variable inclination angle.
  • the output rod Or of the cylinder actuator is connected to the rear side of the support point by the horizontal support shaft 2b of the movable frame 2c.
  • the movable frame 2c of the illustrated injection casting apparatus rises to a position where the maximum inclination angle is 45 °.
  • the movable frame 2c is a undulating drive mechanism having a structure different from that of the illustrated undulating drive mechanism 3.
  • the movable frame 2c is fixed to the movable frame 2c using the horizontal support shaft 2b as a rotation axis, and the shaft is combined with a gear and a servo motor. It is also possible to stand up to an inclination angle of 90 ° by rotating with the above mechanism.
  • the mold 4 includes a fixed mold 4a supported by the fixed platen 4f on the movable frame and a movable mold 4b supported by the movable platen 4g (see FIGS. 1 and 2).
  • a cavity 9 (see FIGS. 17 and 18) serving as a molding space for the product is created between the fixed mold 4a and the movable mold 4b that are brought into contact with and separated from each other by the movement of the movable platen 4g.
  • the mold 4 includes a runner 4 c extending from the upper end of the outlet 5 a of the injection sleeve 5 to the cavity 9, and a gas vent (such as a chill vent or an air) communicating with the runner 4 c via the cavity 9. Vent) 4d is provided.
  • 4e is a gate (gate) of the cavity 9, and 4h is an extrusion pin.
  • the molten metal in the injection sleeve 5 is pushed by the injection tip 6 and flows in the order of the tap 5a, the tap 4c and the tap 4e in the mold, and is introduced into the cavity 9.
  • the degassing part 4d is a normally open passage, and air remaining in the injection sleeve at the start of injection is discharged out of the machine through the degassing part 4d.
  • the tip of the injection sleeve 5 is connected to the fixed mold 4a (see FIGS. 11 to 18). As shown in FIG. 11, the tap 5 a at the tip of the injection sleeve 5 has a mating surface with the movable mold 4 b of the fixed mold 4 a when the movable mold 4 b is separated from the fixed mold 4 a ( It is open to the parting surface and the mold-sliding surface.
  • the tip of the injection tip 6 is inserted into the injection sleeve 5.
  • the chip drive mechanism 7 is shown in detail in FIGS. 4 and 5, that is, a link mechanism 7a, a drive source 7b for operating the link mechanism, and the injection chip 6 displaced by receiving power through the link mechanism 7a.
  • a combination of movable blocks 7c is provided.
  • the link mechanism 7a includes a first link 7a-1 and a second link 7a-2 arranged in parallel, one end of which is pivotally coupled to a movable body 7b-3 as a drive source and the other end of which is coupled to a movable block 7c.
  • the second link 7a-2 includes a third link 7a-3 pivotally coupled to the movable frame 2c at the other end of the second link 7a-2 in the moving direction of the movable body 7b-3.
  • the three links 7a-3 constitute a toggle mechanism.
  • Pa is a connecting shaft obtained by connecting the second link 7a-2 to the movable body 7b-3
  • Pb is a connecting shaft obtained by connecting the third link 7a-3 to the second link 7a-2
  • Pc is a connecting shaft in which the second link 7a-2 is coupled to the movable block 7c.
  • Pd is a connecting shaft that connects the third link 7a-3 to the movable frame 2c
  • Pe is a connecting shaft that connects the first link 7a-1 to the movable body 7b-3
  • Pf is the first link. This is a connecting shaft in which 7a-1 is coupled to the movable block 7c.
  • connection axis Pd is at the midpoint of the axis C2 connecting the centers of the connection axes Pa and Pc.
  • An axis C4 connecting the centers of the connecting shafts Pc and Pd is parallel to the axis C1 of the injection sleeve 5.
  • the axis C3 is perpendicular to the axis C1 of the injection sleeve 5. Further, the axis of the motor 7b-2 and the ball screw 7b-1 and the axis of the output rod of the cylinder actuator 7b-4 described later are parallel to an axis C3 connecting the centers of the connecting axes Pa and Pc. Furthermore, the axis C5 connecting the centers of the connecting axes Pe and Pa and the axis C6 connecting the centers of the connecting axes Pf and Pc are parallel.
  • the drive source 7b may use a cylinder actuator 7b-4 as shown in FIGS. 20 and 21 that can perform stroke control.
  • a hydraulic cylinder is preferable because a large output can be obtained, but an electric cylinder can also be used.
  • the injection tip 6 pushed by the movable block 7 c advances in the injection sleeve 5 and injects the molten metal supplied to the injection sleeve 5 toward the cavity 9.
  • FIG. 5 shows a state where the injection tip 6 is changed from the position of FIG. Adjustment (fluctuation) of the standby position is also performed by driving the injection tip 6 with the tip drive mechanism 7.
  • the position of the hot water surface in the injection sleeve is always near the tip of the injection sleeve when the hot water supply is completed, and the hot water does not spill. To be done. Thereby, the molten metal filling rate of the injection sleeve can be increased.
  • the ladle 8 is provided with a devised shape.
  • the ladle 8 shown in FIGS. 6 to 9 includes a pipe path 8b parallel to the upper surface of the ladle at the periphery of the cup-shaped body 8a having an upper end opening, and a specific direction with respect to the horizontal upper surface of the ladle at the tip of the pipe path 8b.
  • 8d is a bracket provided so as to protrude to the outside of the body 8a
  • 8e is a spill prevention wall for preventing the molten metal in the body 8a from spilling outside when the ladle 8 is tilted to the maximum.
  • the hot water supply port 8c is inclined in a direction in which the upper end T of the hot water supply port protrudes forward with respect to the lower end Le of the hot water supply port.
  • ⁇ 3 is 65 °.
  • the illustrated ladle 8 is a ladle for an injection casting apparatus in which the inclination angle ⁇ 4 of the peripheral wall of the body 8a is set to 60 ° or less with respect to the horizontal upper surface of the ladle and the injection sleeve is inclined at an inclination angle of 45 ° when hot water supply is completed.
  • the maximum rotation angle is set to 20 °.
  • the illustrated ladle 8 when the lower inner surface of the peripheral wall of the body 8a is horizontal, there is an upper end of the spill prevention wall 8e above the inner surface in the horizontal state, and the prevention wall 8e functions as a kind of weir. .
  • the length of the pipe path 8b from the end on the body side to the rotation support point of the ladle is preferably 20 mm or more. The longer the length, the deeper the hot water inlet 8c at the tip of the pipe path can be submerged by the molten metal in the pool when the ladle 8 draws the molten metal in the pool.
  • the maximum length of the pipe path 8b is set to a length that does not hinder the ladle rotation when the molten metal is supplied from the ladle to the injection sleeve.
  • the illustrated ladle 8 has a fixed support rod 10 (see FIGS. 6 and 7).
  • the fixed support rod 10 has a front end portion 10a (which is parallel to the rear end portion 10f) protruding from a bracket 8d provided so as to protrude from the rear portion of the ladle body 8a (the side having the hot water supply port is considered to be the front portion). It is connected.
  • the fixed support rod 10 has an upward bent portion 10b, an intermediate portion 10c extending rearward, a forward bent portion 10d, and a downward bent portion 10e for height adjustment in order from the front end side to the rear end portion 10.
  • the lower end Le of the hot water outlet 8c of the ladle is formed on the extension of the axial center of the rear end portion 10f.
  • a ladle rotation drive source (not shown; the articulated robot is also considered as one of the rotation drive sources) of the hot water supply device is connected to the rear end portion 10f of the fixed support rod 10, and this rear end portion 10f (that is, hot water supply)
  • the ladle 8 is rotated with the lower end Le) of the mouth as a fulcrum.
  • the molten metal in the pool is made into the ladle 8 with the lower end Le of the hot water supply port 8c as the rotation fulcrum of the ladle while avoiding the interference of the fixed support rod with the peripheral wall of the molten metal pool. Can be pumped up.
  • the ladle 8 is lowered in a state of being rotated by 90 ° from the horizontal posture, and the hot water supply port 8c of the ladle is submerged in the molten metal Mm in the molten metal pool 11 as shown in the drawing.
  • the sinking amount of the hot water supply port 8c with respect to the molten metal Mm is 20 mm or more. If the sinking amount is large, it is easy to maintain the sinking state of the hot water supply port 8c with respect to the molten metal Mm when the molten metal is pumped through the pipe path 8b.
  • the molten metal Mm flows into the ladle body 8a from the hot water supply port 8b.
  • the flow rate of the molten metal Mm into the ladle body is preferably controlled to 50 cm / sec or less.
  • the inflow speed can be reduced to 50 cm / sec or less by appropriately designing the cross-sectional areas of the pipe path 8b and the hot water supply port 8c and controlling the attitude and rotation speed of the ladle during pumping.
  • the molten metal Mm pumped to the ladle 8 by this method is only the hot water below the surface of the bath where no oxide is generated, and this also suppresses the mixing of the oxide into the product.
  • FIG. 10D shows a state where the molten metal is pumped in a certain amount with respect to the ladle 8.
  • the amount of pumping at this time can be adjusted by controlling the final rotational posture and the descending amount of the ladle 8.
  • the ladle 8 that has drawn the molten metal is returned to a horizontal posture, and is moved between the fixed mold 4a and the movable mold 4b of the injection casting apparatus 1 and set at a predetermined position for hot water supply as shown in FIG.
  • the injection sleeve 5 and the ladle 8 are both in a horizontal posture, and the lower end Le of the hot water outlet 8c of the ladle contacts the inner surface of the injection sleeve 5 in the vicinity of the open hot water outlet 5a of the injection sleeve 5.
  • all the inclination angles said below are angles with respect to a horizontal plane.
  • the movable frame 2c of the gantry (see FIGS. 1 to 3) is tilted several degrees with the relative position to the ladle 8 fixed (with the ladle 8 left in the set state).
  • the molten metal surface supplied to the injection sleeve is ladle.
  • the inclination angle of the injection sleeve 5 at the initial stage of hot water supply is not limited to 5 °, the molten metal in the ladle can flow out toward the injection sleeve 5 at an inclination angle of that degree.
  • the ladle 8 is also rotated slightly until the molten metal surface position in the ladle 8 is above the lower end of the root of the pipe path 8b.
  • the initial flow rate of the molten metal to the injection sleeve may be controlled to 50 cm / sec or less.
  • the flow rate is 50 cm / sec or less, the above-described swells and jumps are prevented even for molten aluminum or aluminum alloy. This can also be confirmed by computer simulation analysis.
  • the optimum value of the flow velocity is determined based on the casting result by the prototype device (actual machine).
  • a flow rate of 50 cm / sec or less is a speed that can also be applied to hot water supplies of copper, cast iron, steel, and the like.
  • the inclination angle of the gantry 2 (inclination angle of the injection sleeve) is gradually increased (see FIG. 13) and synchronized with the increase of the inclination angle of the injection sleeve 5 from the middle. Then, the ladle 8 is also rotated (see FIG. 14).
  • the molten metal inflow speed of 50 cm / sec or less is maintained by gently changing the inclination angle of the injection sleeve and the rotation angle of the ladle.
  • the molten metal in the ladle may be spilled outside without passing through the pipe path.
  • the flow rate is preferably 50 cm / sec or less.
  • the hot water level in the injection sleeve 5 rises, and a hot water pool in which the lower half of the end face of the injection tip 6 contacts is formed in the injection sleeve 5.
  • the inflow speed is gradually increased by increasing the inclination angle of the injection sleeve and the rotation angle of the ladle.
  • the ladle 8 having the pipe path 8b has the entire surface of the end surface of the hot water inlet 8c of the molten metal supplied to the injection sleeve 5. It contacts the molten metal surface (see FIG. 15). This situation can be known from the inclination angle of the injection sleeve 5, the rotation angle of the ladle 8, and the amount of molten metal supplied to the injection sleeve 5.
  • the molten metal supplied thereafter flows into the injection sleeve so as to sink into the supplied molten metal.
  • the hot water supply speed (hot water flow rate) is increased, and the hot water supply is completed at a position where the inclination angle of the injection sleeve 5 and the rotation angle of the ladle 8 reach the set values (see FIG. 16).
  • the inclination angle of the injection sleeve 5 and the rotation angle of the ladle 8 are set in a range in which the angle obtained by adding them does not exceed 90 °.
  • Hot water supply was performed with the position where the filling rate of the molten metal with respect to the injection sleeve was 75% (this was a position retracted 20 mm from the outlet of the injection sleeve) at the hot water surface position when the hot water supply was completed. Under this condition, the injection sleeve maximum hot water supply mass is 2.27 kg.
  • the hot water supply in this test is such that the lower end Le (the ladle rotation fulcrum) of the hot water outlet of the ladle 8 from which a fixed amount of molten metal has been drawn from the molten metal pool with respect to the injection sleeve 5 in a horizontal posture, Were in contact with each other horizontally.
  • the contact of the lower end Le of the ladle hot water inlet with the injection sleeve 5 at this time was the inner surface of the injection sleeve at a position retracted 20 mm from the hot water outlet 5a of the injection sleeve to prevent the hot water from spilling.
  • the molten metal in the ladle 8 began to flow with respect to the injection sleeve 5.
  • the measured value of the flow rate of the molten metal at this time was 20 cm / sec.
  • the inclination angle of the injection sleeve 5 and the inclination angle of the ladle were increased while maintaining the state in which the molten metal Mm supplied to the injection sleeve 5 was near the lower end of the hot water inlet 8c of the ladle 8.
  • the ladle was rotated in synchronization with the increase in the inclination angle of the injection sleeve.
  • the ladle rotation angle ⁇ is increased by 1 ° every time the injection sleeve inclination angle ⁇ increases by 5 °.
  • the hot water supply port 8 c comes into contact with the molten metal surface of the molten metal Mm soaked in the hot water in the injection sleeve 5.
  • the dollar 8 is evacuated to the outside of the movable frame 2c. After that, as shown in FIG. 17, the movable mold 4b moves from the initial position where the injection sleeve 5 keeps the inclined posture when the hot water supply is completed, and is abutted against the fixed mold 4a. The mold is clamped by a machine.
  • the injection tip 6 is driven, and injection filling of the molten metal into the cavity 9 is performed.
  • the injection filling of the molten metal into the cavity is performed under the condition that the injection sleeve 5 maintains the inclined posture when the molten metal supply is completed.
  • the air remaining in the injection sleeve 5 is pushed and moved by the molten metal, and flows in the order of the hot water outlet 5, the runner 4 c and the cavity 9 prior to the molten metal, and is discharged from the degassing part 4 d to the outside of the mold. Can do.
  • the injection sleeve 5 since the injection sleeve 5 is inclined, the number of solidified pieces formed on the molten metal surface in the injection sleeve is less than that of the horizontal casting type casting apparatus, and the possibility that the solidified pieces entrap residual air in the molten metal was broken. The possibility that the solidified pieces mix with the molten metal and flow into the cavity is reduced.
  • the movable frame 2c of the gantry is returned to the horizontal posture within the supplied molten metal solidification time, and the mold is opened and molded after the molten metal in the cavity 9 is cooled and solidified. Take out the product.
  • the inclination angle ⁇ with respect to the horizontal plane of the depressed portion of the cavity 9 in FIG. 18 can be set to 0 ° or an angle close to 0 ° to prevent the molten metal Mm from dropping from the gate 4e.
  • the inclination angle of the injection sleeve when the molten metal starts to flow from the ladle into the injection sleeve was set to 5 °, and the flow rate of the molten metal to the injection sleeve was set to 20 cm / sec.
  • the amount of gas per 100 g (inclusion gas amount) of the obtained products (2 pieces, sample 1: total weight 778.3 g, sample 2: total weight 775.4 g) was measured by a gas amount measuring device (manufactured by Kyoritsu Co., Ltd.) GV700).
  • the gas amount measuring device GV700 described here is manufactured by the office Kobe Giken Co., Ltd., which requested the measurement, as a special order from Kyoritsu Co., Ltd., and is not a commercial product.
  • a gas per 100 g of a heat sink vacuum cast product (sample A: total weight 962.4 g, sample B: total weight 966.7 g) made of an aluminum alloy cast using a conventional vertical die casting machine. The amount was also measured using the gas amount measuring device.
  • the gas amount of the heat sink vacuum casting was 10.0 cm 3/100 g for sample A and 5.9 cm 3/100 g for sample B.
  • the product supplied with hot water by the method of the present invention using the apparatus of the present invention is 1.1 cm 3/100 g for sample 1 and 2.2 cm 3/100 g for sample 2 even though it is not a vacuum cast product. Therefore, the amount of gas included was much smaller than that of the conventional method.
  • the molten metal was supplied to the injection sleeve by the method of the present invention from the ladle that had been subjected to quantitative pumping via the pipe path. Also in this test, the molten metal began to be supplied from the ladle at an injection sleeve inclination angle of 5 ° and an inflow rate of molten metal to the injection sleeve of 20 cm / sec.
  • sample A total weight 1633.9 g
  • sample B total weight 1630.5 g
  • sample C cast using a conventional vertical die casting machine (manufactured by Ube Industries) : 3 pieces having a total weight of 1626.6 g)
  • the gas amount per 100 g of the weight was also measured.
  • the gear case cast by the conventional method was 5.5 cm3 / 100 g for sample A, 7.8 cm3 / 100 g for sample B, and 6.0 cm3 / 100 g for sample C.
  • the adapter which performed hot water supply by the method of the present invention using the apparatus provided with the ladle with the pipe route of the present invention has a sample 1 of 0.9 cm3 / 100 g and a sample 2 of 0.8 cm3 / 100 g.
  • the amount of inclusion gas was much smaller.
  • the amount of inclusion gas was further reduced from the amount of inclusion gas in evaluation test No. 1 using a conventional ladle without a pipe path.
  • the strength of the mounting seat B having the bolt hole of the foot of the adapter A (see FIG. 19) manufactured by the evaluation test method 2 was measured. The strength was evaluated based on the load when the mounting seat B was folded off from the lower end of the standing wall of the foot having a 90 ° crossing angle.
  • the strength of the two adapters cast using the conventional vertical die casting machine was 28.9 kN and 30.5 kN, whereas hot water was supplied by the method of the present invention and the apparatus of the present invention.
  • the strength of the adapter 3 casted at 34.0 kN, 34.8 kN, and 35.0 kN was about 15% higher than that of the conventional method.
  • the injection casting apparatus of the present invention can be cast using the hot water supply method of the present invention in combination with the above-described injection sleeve 5 by installing a conventional lateral casting type die casting machine on the movable frame 2c. High quality products can be cast.
  • injection sleeve 5 is added to an existing gravity casting mold or low-pressure casting mold, and injection casting is possible by installing the mold on the fixed platen 4f and the movable platen 4g of the apparatus of the present invention. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

Provided is an injection casting device and a melt supply method capable of manufacturing a product having excellent strength in which molten metal is fed to an injection sleeve while generation of oxides and inclusion of air are minimized. The injection casting device is provided with a frame (2) having a movable frame (2c), an erectable drive mechanism (3), a mold (4), an injection sleeve in which a melt outlet is opened in the joining surface between a fixed mold (4a) and a movable mold (4b), an injection tip, a tip drive mechanism (7), and a ladle. Pouring of the metal melt from the ladle to the injection sleeve by way of the melt outlet is started with the injection sleeve in a low-slope angle orientation, supply is thereafter continued while the injection sleeve is raised up, and the label is rotated in synchronicity with an increase in the slope angle of the injection sleeve at a midway point of supply to accelerate supply.

Description

射出鋳造装置とその装置における給湯方法Injection casting apparatus and hot water supply method in the apparatus
 この発明は、射出スリーブに供給された金属の溶湯を射出スリーブから金型のキャビティに射出充填し、それを固化させて所望形状の製品を得るダイカスト成形において、射出スリーブに対する溶湯の供給を、酸化物の発生と空気の巻き込みを抑制しながら行えるようにした設備費面でも有利な射出鋳造装置とその装置における給湯方法に関する。 In this invention, the molten metal supplied to the injection sleeve is injection-filled from the injection sleeve into the mold cavity and solidified to obtain a product having a desired shape. The present invention relates to an injection casting apparatus that is advantageous in terms of equipment costs and can be performed while suppressing generation of objects and air entrainment, and a hot water supply method in the apparatus.
 ダイカスト成形を行う従来の射出鋳造装置は、水平固定の横鋳込み式のものが一般的である。この横鋳込み式の射出鋳造装置における射出スリーブ(プランジャスリーブとも称される)への溶湯の供給は、下記特許文献1などに開示されている方法、即ち、射出スリーブの後部外周に設けた注湯口から溶湯を射出スリーブ内に流し入れる(流し落とす)方法が通常採られている。 従 来 Conventional injection casting apparatuses that perform die casting are generally horizontally fixed and horizontally cast. The molten metal is supplied to the injection sleeve (also referred to as a plunger sleeve) in this horizontal casting type injection casting apparatus by the method disclosed in Patent Document 1 below, that is, a pouring port provided on the outer periphery of the rear portion of the injection sleeve. Usually, a method of pouring the molten metal into the injection sleeve is used.
 その注湯口からの射出スリーブ内への単純な流し入れでは溶湯に対する空気の巻き込みや溶湯の酸化が起こりやすいことから、下記特許文献2は、射出スリーブへの給湯が穏やかになされるようにして上記の不具合を抑制する給湯方法を提案している。 Since simple air pouring from the pouring port into the injection sleeve tends to cause air entrainment or oxidation of the molten metal, the following Patent Document 2 discloses that the hot water is gently supplied to the injection sleeve. A hot water supply method that suppresses problems is proposed.
 その給湯方法では、下端側が注湯口に差し込まれるホッパーを併用し、そのホッパーの下端の給湯口を射出スリーブの下側内壁面近くに配置してホッパー経由で溶湯の供給を開始する。 In the hot water supply method, a hopper whose lower end is inserted into the pouring port is used together, and the hot water supply port at the lower end of the hopper is arranged near the lower inner wall surface of the injection sleeve, and the supply of the molten metal is started via the hopper.
 そして、前記給湯口から射出スリーブ内湯面までの距離が給湯開始時の給湯口から射出スリーブの下側内壁面までの距離とほぼ同等に保たれるようにホッパーの位置を上昇させながら給湯を続行する。 The hot water supply is continued while raising the position of the hopper so that the distance from the hot water inlet to the hot water surface in the injection sleeve is kept substantially equal to the distance from the hot water inlet at the start of hot water supply to the lower inner wall surface of the injection sleeve. To do.
 横鋳込み式の鋳造装置では、上述したように、射出スリーブの後部外周に注湯口を設けてそこから射出スリーブへの給湯を行うが、射出スリーブ先端の出湯口を注湯口として兼用し、その出湯口から射出スリーブ内に溶湯を流し入れる方法も知られている。 In the horizontal casting type casting apparatus, as described above, a pouring port is provided on the outer periphery of the rear portion of the injection sleeve and hot water is supplied to the injection sleeve from there, but the pouring port at the tip of the injection sleeve is also used as the pouring port. A method of pouring molten metal from the gate into the injection sleeve is also known.
 例えば、下記特許文献3,4などに記載された縦型射出鋳造装置は、給湯時に垂直配置の射出スリーブを金型から離脱させ、その射出スリーブを少し傾けてスリーブの先端(上端)から給湯するものであり、この装置では、出湯口が注湯口として兼用される。 For example, in the vertical injection casting apparatus described in Patent Documents 3 and 4 and the like below, a vertically arranged injection sleeve is detached from a mold when hot water is supplied, and the injection sleeve is slightly inclined to supply hot water from the tip (upper end) of the sleeve. In this apparatus, the outlet is also used as a pouring gate.
特開2005-21902号公報Japanese Patent Laying-Open No. 2005-21902 特開2005-118813号公報Japanese Patent Laid-Open No. 2005-118813 特開2001-113355号公報JP 2001-113355 A 特開2006-110569号公報Japanese Patent Laid-Open No. 2006-110568
 射出スリーブの後部外周の注湯口から射出スリーブ内に溶湯を単純に流し入れる特許文献1の方法では、溶湯に対する空気の巻き込みや溶湯の酸化が起こりやすい。射出スリーブから射出される溶湯に空気や酸化物が混じり込むと、製品は強度の不足した欠陥品となる。 In the method of Patent Document 1 in which the molten metal is simply poured into the injection sleeve from the pouring port on the outer periphery of the rear portion of the injection sleeve, air is easily involved in the molten metal and the molten metal is easily oxidized. If air or oxide is mixed into the molten metal injected from the injection sleeve, the product becomes a defective product with insufficient strength.
 特許文献2の方法は、その問題の解決策として提案されているが、ラドルからホッパーへの溶湯の供給が、溶湯を注ぎ入れる方法でなされるため、溶湯がホッパーに落ち込んだときにその溶湯に空気が巻き込まれ、溶湯の酸化も促進される。 Although the method of patent document 2 is proposed as a solution of the problem, since supply of the molten metal from the ladle to the hopper is performed by a method of pouring the molten metal, when the molten metal falls into the hopper, the molten metal is supplied to the molten metal. Air is entrained and the oxidation of the molten metal is also promoted.
 その不具合は特許文献1の方法に比べれば小さいが、動粘度の小さい金属、例えば、アルミやアルミ合金などの鋳造や巣の発生し易い形状を有する製品の成形では特に、信頼性の確保に問題が生じて好ましくない。 The problem is small compared to the method of Patent Document 1, but it is a problem in securing reliability, particularly in the casting of a metal having a low kinematic viscosity, such as aluminum or an aluminum alloy, or in the formation of a product having a shape that easily generates nests. Is not preferable.
 また、特許文献2の方法は、ホッパー経由での給湯であるので、溶湯の温度低下、それによる流動性の低下が懸念され、容積の大きなキャビティに対する溶湯の鋳込みでは、溶湯の流動性の低下は射出圧の増加に繋がって好ましくない。 In addition, since the method of Patent Document 2 is hot water supply via a hopper, there is a concern about a decrease in the temperature of the molten metal and a decrease in the fluidity due thereto, and in casting the molten metal into a large volume cavity, the decrease in the fluidity of the molten metal is This is not preferable because it leads to an increase in injection pressure.
 これに加え、横鋳込み式の鋳造装置の場合、射出スリーブへの給湯完了時の射出スリーブ内溶湯の湯面部面積が縦型射出鋳造装置に比べて大きく、その湯面部に生じる凝固片(破断チル層)が射出チップ(プランジャチップ)による溶湯圧縮の妨げとなって射出スリーブから押し出される溶湯の圧縮性が悪化し、その溶湯に空気が巻き込まれる現象や細かくちぎれた凝固片が溶湯に混じり込んでキャビティに流れる事態も起こる。 In addition, in the case of a horizontal casting type casting apparatus, the molten metal surface area of the molten metal in the injection sleeve when the hot water supply to the injection sleeve is completed is larger than that of the vertical injection casting apparatus, and solidified pieces (break chill) Layer) hinders the compression of the molten metal by the injection tip (plunger tip), and the compressibility of the molten metal pushed out from the injection sleeve deteriorates, and the phenomenon that air is entrained in the molten metal and fine solidified pieces are mixed into the molten metal. A situation that flows into the cavity also occurs.
 一方、射出スリーブの出湯口を注湯口として兼用する縦型射出鋳造装置での給湯は、射出スリーブ内に形成される湯面の面積が横鋳込み式の鋳造装置に比べて大幅に小さくなるため、溶湯内に生じる凝固片が横鋳込み式の鋳造装置に比べて少なくなる。 On the other hand, the hot water supply in the vertical injection casting apparatus that also serves as the pouring outlet of the injection sleeve is because the area of the molten metal surface formed in the injection sleeve is significantly smaller than that of the lateral casting type casting apparatus, Solidified pieces generated in the molten metal are reduced as compared with a horizontal casting type casting apparatus.
 しかしながら、この縦型射出鋳造装置は構造が複雑で設備費が高くつく。また、射出スリーブへの溶湯の供給が落とし込み供給となるため、このときに溶湯の泡立ちによる空気巻き込みが起こりやすい。 However, this vertical injection casting apparatus has a complicated structure and high equipment costs. Further, since the supply of the molten metal to the injection sleeve becomes a drop-in supply, air entrainment due to foaming of the molten metal is likely to occur at this time.
 そこで、特許文献3は、射出チップを上昇させて給湯を開始し、その後、射出チップを降下させながら給湯を進めることで溶湯の落下距離を小さくし、かつ、その距離一定に保つ方法を採用している。 Therefore, Patent Document 3 adopts a method in which the injection tip is raised to start hot water supply, and then the hot water supply is advanced while lowering the injection tip to reduce the fall distance of the molten metal and keep the distance constant. ing.
 また、特許文献4は、特許文献3の方法でもなお発生する射出スリーブ内溶湯液面の酸化膜をラドルに設置した酸化膜除去装置に付着させて除去する方法を採用している。 Further, Patent Document 4 employs a method of removing the oxide film on the melt surface in the injection sleeve, which still occurs in the method of Patent Document 3, by attaching it to an oxide film removing device installed in a ladle.
 しかしながら、これ等の方法は、基本が落とし込み給湯であるため、給湯初期の溶湯が射出チップに突き当たり、反転して巻き上がる現象が起こる。そのため、ある程度の溶湯酸化と空気巻き込みが避けられない。 However, since the basic method of these methods is dropping hot water supply, a phenomenon occurs in which the molten metal in the initial stage of hot water supply hits the injection tip and is reversed and rolled up. Therefore, a certain amount of molten metal oxidation and air entrainment are inevitable.
 この発明は、射出スリーブに対する溶湯の供給を、酸化物の発生と空気の巻き込みを抑えながら行えるようにして強度に優れた製品を製造できる射出鋳造装置と給湯方法を提供することを目的とする。 An object of the present invention is to provide an injection casting apparatus and a hot water supply method capable of producing a product having excellent strength by enabling supply of molten metal to an injection sleeve while suppressing generation of oxides and air entrainment.
 上記の課題を解決するため、この発明においては、下記の傾動式の射出鋳造装置を提供する。 In order to solve the above problems, the present invention provides the following tilt type injection casting apparatus.
 その射出鋳造装置は、水平支軸を支点にして回動可能な可動フレームを有する架台と、前記可動フレームを水平姿勢から垂直姿勢又は任意の傾斜角を持つ位置まで起立させる起伏駆動機構と、各々が前記可動フレームに組み付けられる金型、射出スリーブ及び射出チップと、前記射出チップを前進させて射出スリーブに供給された金属の溶湯を押し出すチップ駆動機構と、前記射出スリーブに対してその射出スリーブの出湯口から溶湯を流し入れるラドルを具備する。 The injection casting apparatus includes a gantry having a movable frame that can rotate with a horizontal support shaft as a fulcrum, a undulation drive mechanism that raises the movable frame from a horizontal posture to a vertical posture or a position having an arbitrary inclination angle, A mold, an injection sleeve, and an injection tip that are assembled to the movable frame, a tip drive mechanism that advances the injection tip to push out the molten metal supplied to the injection sleeve, and the injection sleeve It is equipped with a ladle for pouring molten metal from the outlet.
 前記金型は、前記可動フレームに取り付けられた固定プラテンと可動プラテンに個別に支持される固定金型と可動金型とで構成され、可動プラテンの移動によって互いに接離するこの固定金型と可動金型との間に成形用のキャビティが作り出される。 The mold is composed of a fixed platen attached to the movable frame, a fixed mold that is individually supported by the movable platen, and a movable mold, and the fixed mold and the movable mold that move toward and away from each other by the movement of the movable platen. A molding cavity is created between the mold.
 前記射出スリーブは、先端側が前記固定金型に接続されており、前記可動金型が固定金型から開離したときに先端の出湯口が外部に開放される。 The tip of the injection sleeve is connected to the fixed mold, and when the movable mold is separated from the fixed mold, the hot water outlet at the tip is opened to the outside.
 前記チップ駆動機構は、リンク機構とそのリンク機構を作動させる駆動源と、前記リンク機構経由で動力を受けて射出チップを変位させる可動ブロックとで構成されるものが望ましい。 The tip drive mechanism is preferably composed of a link mechanism, a drive source that operates the link mechanism, and a movable block that receives power through the link mechanism to displace the injection tip.
 リンク機構の駆動源は、ボールねじと、そのボールねじを回転させるモータと、ボールねじに螺合させた可動体とで構成されるものや、ストローク制御の可能な油圧式或いは電動式のシリンダアクチュエータなどがよい。 The drive mechanism of the link mechanism is composed of a ball screw, a motor for rotating the ball screw, and a movable body screwed into the ball screw, or a hydraulic or electric cylinder actuator capable of stroke control. Etc.
 リンク機構は、一端が前記可動体に、他端が前記可動ブロックにそれぞれピボット結合された平行配置の第1及び第2リンクと、一端が第2リンクの長手途中に、他端が前記可動体の移動方向前方において前記架台にそれぞれピボット結合された第3リンクを備え、前記第2リンクと第3リンクがトグル機構を構成したものが好ましい。 The link mechanism includes first and second links arranged in parallel, one end pivotally connected to the movable body and the other end pivotally connected to the movable block, one end being in the middle of the second link, and the other end being the movable body. It is preferable that a third link pivotally connected to the gantry in front of the moving direction is provided, and the second link and the third link constitute a toggle mechanism.
 また、前記ラドルは、胴体から突き出した管経路を胴体の上端縁に備え、その管経路の先端に、水平なラドル上面に対して特定の方向に所定角度傾いた給湯口を有するものが好ましい。 Further, it is preferable that the ladle is provided with a pipe path protruding from the fuselage at the upper end edge of the fuselage, and has a hot water inlet inclined at a predetermined angle in a specific direction with respect to the horizontal upper surface of the ladle at the tip of the pipe path.
 ここで言う給湯口の傾き方向は、給湯口の下端(ここがラドルの回転支点となり、かつラドルからの溶湯流出始点となる)に対してその給湯口の上端が前に突き出る方向である。 Here, the direction of inclination of the hot water supply port is the direction in which the upper end of the hot water supply port protrudes forward with respect to the lower end of the hot water supply port (this is the rotation fulcrum of the ladle and the starting point of the molten metal outflow from the ladle).
 そのラドルは、基端側の軸心の延長上にラドルの回転支点がある固定支持棒を有し、その固定支持棒を回転させることでラドルの回転角(傾き角)を変化させるものがさらに好ましい。固定支持棒の基端側とは、駆動源によって回転駆動される側を言う。 The ladle has a fixed support bar having a rotation support point of the ladle on the extension of the axial center on the base end side, and the rotation angle (tilt angle) of the ladle is changed by rotating the fixed support bar. preferable. The base end side of the fixed support rod refers to the side that is rotationally driven by the drive source.
 かかる射出鋳造装置は、射出スリーブに対する給湯を以下の方法で行うことができる。
 まず、架台の可動フレームを水平にして可動金型を固定金型から開離させ、この状態で定量の金属の溶湯を汲み上げたラドルを給湯口が射出スリーブの出湯口に入り込んで給湯口の下端が射出スリーブの内面に接するようにセットする。
Such an injection casting apparatus can supply hot water to the injection sleeve by the following method.
First, the movable frame of the gantry is leveled and the movable mold is separated from the fixed mold. In this state, the ladle pumped up a certain amount of molten metal enters the outlet of the injection sleeve, and the lower end of the hot water outlet Set so that is in contact with the inner surface of the injection sleeve.
 次いで、そのセット状態を維持してラドル内溶湯の湯面位置がラドルからの流出路の始端の下部(底)よりも上になるまでラドルを伴わせて前記可動フレームを傾け、ラドル内の溶湯を射出スリーブ内に流し入れる。 Next, the movable frame is tilted with the ladle until the molten metal position of the molten metal in the ladle is higher than the lower part (bottom) of the starting end of the outflow passage from the ladle, and the molten frame in the ladle is tilted. Pour into the injection sleeve.
 ラドル内溶湯の湯面位置がラドルからの流出路の始端の下部よりも上になったことは、ラドルから溶湯が流出し始めたことによって確認することができる。また、ラドルの形状、ラドルによる溶湯の汲み取り量、流出路の壁面摩擦力などがわかっているので、ラドルの傾き角などからも検知することも可能である。 It can be confirmed that the melt surface position of the molten metal in the ladle is above the lower part of the starting end of the outflow path from the ladle by the molten metal starting to flow out of the ladle. Further, since the shape of the ladle, the amount of molten metal drawn by the ladle, the wall frictional force of the outflow passage, and the like are known, it is possible to detect from the inclination angle of the ladle.
 このとき、可動フレームは、射出スリーブに供給された溶湯の湯面がラドルの給湯口の下端付近にあって射出スリーブ内での溶湯の流速が50cm/sec以下となるように傾斜角(以下では射出スリーブの傾斜角と言う)を制御するとよい。 At this time, the movable frame has an inclination angle (hereinafter referred to as “the molten metal supplied to the injection sleeve” in the vicinity of the lower end of the hot water outlet of the ladle and the flow rate of the molten metal in the injection sleeve is 50 cm / sec or less. The inclination angle of the injection sleeve) may be controlled.
 このときの流速の確認は、ラドルの給湯口から流れ出る溶湯をラドルに取り付けた非接触子式流速センサで計測するなどの方法で行える。管経路を有する後述のラドルも、管経路の胴体部側の入り口を確認面にして管経路を通して流れる溶湯の流速を計測することができる。 ¡The flow rate at this time can be confirmed by a method such as measuring the melt flowing out from the hot water inlet of the ladle with a non-contact type flow rate sensor attached to the ladle. A ladle described later having a pipe path can also measure the flow velocity of the molten metal flowing through the pipe path with the entrance on the body side of the pipe path as a confirmation surface.
 また、可動フレームの傾斜だけではラドル内溶湯が流れ出ない場合には、ラドル内湯面位置がラドルの流出路始端の下部よりも上になるところまでラドルも少し回転させる。 Also, if the molten metal in the ladle does not flow out only by tilting the movable frame, the ladle is rotated a little until the molten metal surface in the ladle is above the lower part of the starting edge of the outflow path of the ladle.
 このようにしてラドル内の溶湯が射出スリーブに流れ出したら、射出スリーブに挿入された射出チップの端面の下側半分程度が接触する湯溜りが射出スリーブ内にできるまで可動フレームを徐々に起き上がらせて射出スリーブの傾斜角とラドルの傾斜角を次第に増大させる。 When the molten metal in the ladle flows out to the injection sleeve in this manner, the movable frame is gradually raised until a hot water pool is formed in the injection sleeve where the lower half of the end face of the injection tip inserted into the injection sleeve contacts. The angle of inclination of the injection sleeve and the angle of inclination of the ladle are gradually increased.
 射出スリーブ内に前記湯溜りが形成されたことは、射出スリーブの傾斜角、射出スリーブの内径と射出チップの待機位置、射出スリーブに流入する溶湯の予め求めた単位時間当たりの供給量、及び供給時間から知ることができるし、湯面位置が設定位置まで上昇したことを射出スリーブにセンサを挿入して検知することも可能である。 The formation of the hot water pool in the injection sleeve means that the inclination angle of the injection sleeve, the inner diameter of the injection sleeve and the standby position of the injection tip, the supply amount per unit time of the molten metal flowing into the injection sleeve, and the supply It can be known from the time, and it is also possible to detect that the molten metal surface position has risen to the set position by inserting a sensor into the injection sleeve.
 その湯溜りができるまでは、射出スリーブに供給された溶湯の湯面がラドルの給湯口の下端付近にあるようにして50cm/sec以下の流速を保持する。 Until the hot water pool is formed, the molten metal supplied to the injection sleeve is kept near the lower end of the hot water outlet of the ladle, and the flow velocity of 50 cm / sec or less is maintained.
 この後、射出チップの端面の半分程度が接触する湯溜りが射出スリーブ内にできたらラドルも射出スリーブの傾斜角増加に同期させて回転させ、射出スリーブに対する溶湯の流入速度を早める。 After this, if a hot water puddle where about half of the end face of the injection tip contacts the inside of the injection sleeve, the ladle is also rotated in synchronization with the increase in the inclination angle of the injection sleeve to increase the flow rate of the molten metal into the injection sleeve.
 そして、射出スリーブの傾斜角とラドルの回転角が規定値に達したところで給湯を完了し、その後、ラドルを退避させ、可動金型を固定金型に突き合せ、装置による型締めを行って射出スリーブ内の溶湯を金型のキャビティに射出充填する。 The hot water supply is completed when the inclination angle of the injection sleeve and the rotation angle of the ladle reach the specified values, and then the ladle is retracted, the movable mold is butted against the fixed mold, and the mold is clamped by the apparatus for injection. The molten metal in the sleeve is injected and filled into the mold cavity.
 その射出充填は、架台が傾斜している状態で行うのが好ましい。 It is preferable to perform the injection filling with the gantry tilted.
 この発明の射出鋳造装置は、射出スリーブをラドル内の湯面位置が射出スリーブ内の湯面位置よりも僅かに上となる低傾斜角姿勢にしてその射出スリーブにラドルから溶湯を供給することができる。 In the injection casting apparatus according to the present invention, the molten metal is supplied from the ladle to the injection sleeve with the injection sleeve placed in a low inclination angle position in which the molten metal surface position in the ladle is slightly above the molten metal surface position in the injection sleeve. it can.
 これにより、射出スリーブに流入する溶湯の流速(=射出スリーブ内で流れ下る速度)を遅くして供給初期の溶湯が跳ねるようなうねりを生じる現象や射出スリーブ内に待機している射出チップに衝突して巻き上がる現象を無くすことができる。 As a result, the flow velocity of the molten metal flowing into the injection sleeve (= the velocity flowing down in the injection sleeve) is slowed to cause a phenomenon that the molten metal in the initial stage of supply jumps or collides with the injection tip waiting in the injection sleeve. The phenomenon of rolling up can be eliminated.
 そのうねりや衝突による巻き上がりの低減により、それらの現象に起因した溶湯の酸化、空気の巻き込みが効果的抑制される。 ¡By reducing the swell and rolling-up due to collision, the oxidation of the molten metal and the entrainment of air due to these phenomena are effectively suppressed.
 また、射出スリーブを傾斜させることでラドルの給湯口を射出スリーブの内面に接触させて伝い流しでの供給を行うことができ、溶湯の落下による泡立ちも皆無にすることができる。 In addition, by tilting the injection sleeve, the ladle hot water supply port can be brought into contact with the inner surface of the injection sleeve to supply it in a flowing manner, and foaming due to dropping of the molten metal can be eliminated.
 さらに、射出スリーブを起立させながら給湯を行うので、給湯完了時における射出スリーブ内の空気残留量を低減できる(射出スリーブ内溶湯の充填率80%も可能。残りが残留空気)。 Furthermore, since hot water is supplied while raising the injection sleeve, the remaining amount of air in the injection sleeve at the time of completion of hot water supply can be reduced (the filling rate of molten metal in the injection sleeve can be 80%. The remaining is residual air).
 これに加え、射出スリーブが起立することで射出スリーブ内の湯面面積が横鋳込み式の鋳造装置に比べて減少し、湯面にできる凝固片も少なくなる。これにより、残留空気や凝固片が射出される湯に巻き込まれてキャビティに流れ込む事態も抑制される。 In addition to this, when the injection sleeve stands up, the surface area of the molten metal in the injection sleeve is reduced as compared with the horizontal casting type casting apparatus, and the amount of solidified pieces formed on the molten metal surface is reduced. Thereby, the situation where residual air and solidified pieces are caught in hot water to be injected and flow into the cavity is also suppressed.
 なお、ラドルの水平な上面に対して給湯口が既述の方向に所定角度傾き、その給湯口が管経路の先端にあるラドルは、給湯口を溶湯プール内の溶湯の湯面下に沈め、この状態で給湯口の下端を支点にしてラドルを回転させて空気に触れていない(酸化物が生じていない)湯面下の溶湯(中湯)を管経路を通して胴体に汲み取ることができる。 In addition, the hot water outlet inclined at a predetermined angle in the above-mentioned direction with respect to the horizontal upper surface of the ladle, and the hot water outlet at the tip of the pipe path, the hot water outlet is submerged under the surface of the molten metal in the molten pool, In this state, the ladle is rotated with the lower end of the hot water supply port as a fulcrum, and the molten metal (no hot water) not touching the air (no oxide is generated) under the surface can be pumped to the trunk through the pipe path.
 また、射出スリーブの傾斜角とラドルの回転角がある程度大きくなった位置で射出スリーブ内の湯面に対してラドルの給湯口の端面の全域を接触させ、以後に供給される溶湯を供給済み溶湯の湯中に潜り込むように流入させることも可能になり、これ等の相乗効果で、製品に対する酸化物の混入防止、空気巻き込みが原因となる巣の発生の防止の効果をさらに高めることができる。 Further, the entire end face of the hot water inlet of the ladle is brought into contact with the molten metal surface in the injection sleeve at a position where the inclination angle of the injection sleeve and the rotation angle of the ladle are increased to some extent, and the molten metal supplied thereafter is supplied. It is also possible to make it flow into the hot water so as to sink into the hot water, and these synergistic effects can further enhance the effects of preventing the oxide from being mixed into the product and preventing the formation of nests caused by air entrainment.
 また、ラドルの給湯口の端面の全域が射出スリーブ内の溶湯に漬かった状況では、湯の落下による衝撃や湯跳ねの懸念が皆無となるため、給湯の速度(湯の流速)を速めて給湯時間を短縮することもできる。 In addition, in the situation where the entire end face of the ladle hot water outlet is immersed in the molten metal in the injection sleeve, there is no concern of impact or hot spring splash due to the falling of hot water, so the hot water supply speed (hot water flow rate) is increased. Time can also be shortened.
 生産性向上、射出スリーブに供給された溶湯の酸化抑制、キャビティに対する溶湯射出時の溶湯の流動性維持などを考えると給湯時間は短いほどよく、給湯を途中から加速することでその要求に応えることができる。 Considering improvement of productivity, suppression of oxidation of the molten metal supplied to the injection sleeve, and maintenance of the fluidity of the molten metal when the molten metal is injected into the cavity, the shorter the hot water supply time, the better it is possible to meet the demand by accelerating the hot water supply halfway Can do.
 このほか、キャビティの形状によっては、射出スリーブから押し出された溶湯が湯口(ゲート)からキャビティに対して落ち込むように流れ込む状況が起こることが考えられる。 In addition to this, depending on the shape of the cavity, it is conceivable that the molten metal pushed out from the injection sleeve flows into the cavity from the gate.
 この発明の射出鋳造装置は、そのようなケースでは射出スリーブの傾斜角を小さくしてキャビティへの溶湯の流入形態を不具合の発生しないものにすることもできる。 The injection casting apparatus according to the present invention can reduce the inclination angle of the injection sleeve in such a case so that the molten metal flows into the cavity without causing any trouble.
 また、前記チップ駆動機構として、前記リンク機構、駆動源、及び可動ブロックで構成されるものを採用した機構、中でもトグル機構を含むリンク機構を採用したものは、駆動源の力をリンク機構で増幅して射出チップを駆動することができ、同機構の簡素化や小型化が図り易く、射出チップの正確な位置制御もできる。 Further, as the chip drive mechanism, a mechanism that employs the link mechanism, a drive source, and a movable block, especially a link mechanism that includes a toggle mechanism, amplifies the power of the drive source with the link mechanism. Thus, the injection tip can be driven, the mechanism can be easily simplified and miniaturized, and the position of the injection tip can be accurately controlled.
この発明の射出鋳造装置の一例の全体構成の概要を示す側面図である。It is a side view which shows the outline | summary of the whole structure of an example of the injection casting apparatus of this invention. 図1の射出鋳造装置の可動フレームを傾斜させた状態を示す側面図である。It is a side view which shows the state which inclined the movable frame of the injection casting apparatus of FIG. この発明の射出鋳造装置の架台と起伏駆動機構の一例を簡略化して示す斜視図である。It is a perspective view which simplifies and shows an example of the stand and the undulation drive mechanism of the injection casting apparatus of this invention. 射出スリーブと射出チップとチップ駆動機構の概要を示す一部破断側面図である。It is a partially broken side view which shows the outline | summary of an injection sleeve, an injection tip, and a chip drive mechanism. 射出チップの待機位置を図4の位置から変動させた状態を示す一部破断側面図である。It is a partially broken side view which shows the state which changed the stand-by position of the injection chip | tip from the position of FIG. この発明の射出鋳造装置に設けるラドルの一例を示す斜視図である。It is a perspective view which shows an example of the ladle provided in the injection casting apparatus of this invention. 図6のラドルの正面図である。It is a front view of the ladle of FIG. 図6のラドルの側面図である。It is a side view of the ladle of FIG. 図6のラドルの断面図である。It is sectional drawing of the ladle of FIG. 図6のラドルによる溶湯の汲み取り手順の解説図である。FIG. 7 is an explanatory diagram of a procedure for drawing a molten metal using a ladle in FIG. 6. 図6のラドルによる溶湯の汲み取り手順の解説図である。FIG. 7 is an explanatory diagram of a procedure for drawing a molten metal using a ladle in FIG. 6. 図6のラドルによる溶湯の汲み取り手順の解説図である。FIG. 7 is an explanatory diagram of a procedure for drawing a molten metal using a ladle in FIG. 6. 図6のラドルによる溶湯の汲み取り手順の解説図である。FIG. 7 is an explanatory diagram of a procedure for drawing a molten metal using a ladle in FIG. 6. 図6のラドルによる溶湯の汲み取り手順の解説図である。FIG. 7 is an explanatory diagram of a procedure for drawing a molten metal using a ladle in FIG. 6. 溶湯を汲み取ったラドルを射出スリーブの出湯口を兼用した注湯口にセットした状態を示す説明用の断面図である。It is sectional drawing for description which shows the state which set the ladle which scooped up the molten metal in the pouring gate used also as the tap of the injection sleeve. ラドルと共に射出スリーブを5°傾けた状態を示す説明用の断面図である。It is sectional drawing for description which shows the state which inclined the injection sleeve 5 degrees with the ladle. 射出スリーブ傾斜角10°、ラドル回転角0°の状態を示す説明用の断面図である。It is sectional drawing for description which shows the state of the injection sleeve inclination | tilt angle of 10 degrees and the ladle rotation angle of 0 degrees. 射出スリーブ傾斜角15°、ラドル回転角10°の状態を示す説明用の断面図である。It is sectional drawing for description which shows the state of the injection sleeve inclination | tilt angle of 15 degrees and the ladle rotation angle of 10 degrees. 射出スリーブ傾斜角25°、ラドル回転角16°の状態を示す説明用の断面図である。It is sectional drawing for description which shows the state of the injection sleeve inclination | tilt angle of 25 degrees and the ladle rotation angle of 16 degrees. 射出スリーブ傾斜角45°、ラドル回転角20°の給湯完了状態を示す説明用の断面図である。It is sectional drawing for description which shows the hot water supply completion state of the injection sleeve inclination | tilt angle of 45 degrees and the ladle rotation angle of 20 degrees. 固定金型と可動金型を突き合わせ、型締めを行って射出スリーブからの溶湯の射出を開始した状態を示す説明用の断面図である。It is sectional drawing for description which shows the state which faced the fixed metal mold | die and the movable metal mold | die, performed mold clamping, and started injection of the molten metal from an injection sleeve. キャビティに対して溶湯が落ち込むように流入する状態の説明図である。It is explanatory drawing of the state which flows in so that a molten metal may fall with respect to a cavity. 強度の評価試験のために試作したアダプタの外観形状を示す斜視図である。It is a perspective view which shows the external appearance shape of the adapter prototyped for the strength evaluation test. チップ駆動機構の他の例の概要を示す側面図である。It is a side view which shows the outline | summary of the other example of a chip drive mechanism. 射出チップの待機位置を図20の位置から変動させた状態を示す側面図である。It is a side view which shows the state which changed the stand-by position of the injection chip | tip from the position of FIG.
 以下、この発明を実施するための形態を、添付図面に基づいて説明する。図1及び図2に示した射出鋳造装置1は、架台2、起伏駆動機構3(図3を同時参照)、金型4、図4、図5に詳細を示した射出スリーブ5、射出チップ6、チップ駆動機構7、及び図6~図9に示したラドル8を組み合わせて構成されている。 Hereinafter, modes for carrying out the present invention will be described with reference to the accompanying drawings. An injection casting apparatus 1 shown in FIGS. 1 and 2 includes a gantry 2, an undulating drive mechanism 3 (see FIG. 3 at the same time), a mold 4, an injection sleeve 5 and an injection tip 6 shown in detail in FIGS. The chip driving mechanism 7 and the ladle 8 shown in FIGS. 6 to 9 are combined.
 図3に判り易く示したように、架台2は、位置が固定されるベース部2aと、そのベース部に支持された水平支軸2bを回動支点にして動く可動フレーム2cを組み合わせて構成されている。 As shown in FIG. 3, the gantry 2 is configured by combining a base portion 2 a whose position is fixed and a movable frame 2 c that moves using a horizontal support shaft 2 b supported by the base portion as a rotation fulcrum. ing.
 例示の装置の可動フレーム2cは、傾斜角0°の水平姿勢から傾斜角45°の間で起伏することができる。可動フレーム2cには、固定プラテン4fと可動プラテン4gが組み付けられている。 The movable frame 2c of the illustrated apparatus can undulate between a horizontal posture with an inclination angle of 0 ° and an inclination angle of 45 °. A fixed platen 4f and a movable platen 4g are assembled to the movable frame 2c.
 図1~図3に示した起伏駆動機構3は、シリンダアクチュエータ(トラニオン油圧シリンダ)3aであり、これは、前記ベース部2aに傾斜角可変に取り付けられている。 The undulation drive mechanism 3 shown in FIGS. 1 to 3 is a cylinder actuator (trunnion hydraulic cylinder) 3a, which is attached to the base portion 2a with a variable inclination angle.
 そのシリンダアクチュエータの出力ロッドOrが、図1、図2に示すように、可動フレーム2cの水平支軸2bによる支持点よりも後部側に連結されている。このシリンダアクチュエータ3aを駆動することで図示の射出鋳造装置の可動フレーム2cは、最大傾斜角が45°の位置まで立ち上がる。 As shown in FIGS. 1 and 2, the output rod Or of the cylinder actuator is connected to the rear side of the support point by the horizontal support shaft 2b of the movable frame 2c. By driving the cylinder actuator 3a, the movable frame 2c of the illustrated injection casting apparatus rises to a position where the maximum inclination angle is 45 °.
 なお、可動フレーム2cは、例示の起伏駆動機構3とは構造の異なる起伏駆動機構、例えば、水平支軸2bを回転軸にして可動フレーム2cに固定し、その軸をギヤとサーボモータなどを組み合わせた機構で回転させれば、傾斜角90°まで起立させることも可能である。 The movable frame 2c is a undulating drive mechanism having a structure different from that of the illustrated undulating drive mechanism 3. For example, the movable frame 2c is fixed to the movable frame 2c using the horizontal support shaft 2b as a rotation axis, and the shaft is combined with a gear and a servo motor. It is also possible to stand up to an inclination angle of 90 ° by rotating with the above mechanism.
 金型4は、可動フレーム上の固定プラテン4fに支持される固定金型4aと、可動プラテン4gに支持される可動金型4bとからなる(図1、図2参照)。可動プラテン4gの移動によって互いに接離するこの固定金型4aと可動金型4b間に製品の成形空間となるキャビティ9(図17、図18参照)が作り出される。 The mold 4 includes a fixed mold 4a supported by the fixed platen 4f on the movable frame and a movable mold 4b supported by the movable platen 4g (see FIGS. 1 and 2). A cavity 9 (see FIGS. 17 and 18) serving as a molding space for the product is created between the fixed mold 4a and the movable mold 4b that are brought into contact with and separated from each other by the movement of the movable platen 4g.
 この金型4には、図17に示すように、射出スリーブ5の出湯口5aの上端からキャビティ9に至る湯道4cと、キャビティ9経由で湯道4cに連通するガス抜き部(チルベントやエアーベント)4dが設けられている。4eはキャビティ9の湯口(ゲート)、4hは押し出しピンである。 As shown in FIG. 17, the mold 4 includes a runner 4 c extending from the upper end of the outlet 5 a of the injection sleeve 5 to the cavity 9, and a gas vent (such as a chill vent or an air) communicating with the runner 4 c via the cavity 9. Vent) 4d is provided. 4e is a gate (gate) of the cavity 9, and 4h is an extrusion pin.
 射出スリーブ5内の溶湯は、射出チップ6に押されて出湯口5a、金型内の湯道4c、湯口4eの順に流れてキャビティ9に導入される。 The molten metal in the injection sleeve 5 is pushed by the injection tip 6 and flows in the order of the tap 5a, the tap 4c and the tap 4e in the mold, and is introduced into the cavity 9.
 ガス抜き部4dは常開の通路であり、射出開始時に射出スリーブに残留した空気がそのガス抜き部4dを通じて機外に排出される。 The degassing part 4d is a normally open passage, and air remaining in the injection sleeve at the start of injection is discharged out of the machine through the degassing part 4d.
 射出スリーブ5は、先端部が固定金型4aに連結されている(図11~図18参照)。その射出スリーブ5の先端の出湯口5aは、図11に示すように、可動金型4bが固定金型4aから引き離されているときに、固定金型4aの可動金型4bとの合わせ面(パーティング面や鋳型摺り合せ面と称されている)に開放するようにしてある。 The tip of the injection sleeve 5 is connected to the fixed mold 4a (see FIGS. 11 to 18). As shown in FIG. 11, the tap 5 a at the tip of the injection sleeve 5 has a mating surface with the movable mold 4 b of the fixed mold 4 a when the movable mold 4 b is separated from the fixed mold 4 a ( It is open to the parting surface and the mold-sliding surface.
 射出チップ6は、先端側が射出スリーブ5に挿入されている。 The tip of the injection tip 6 is inserted into the injection sleeve 5.
 チップ駆動機構7は、図4及び図5に詳しく示したもの、即ち、リンク機構7aと、そのリンク機構を作動させる駆動源7bと、前記リンク機構7a経由で動力を受けて射出チップ6を変位させる可動ブロック7cを組み合わせたものが設けられている。 The chip drive mechanism 7 is shown in detail in FIGS. 4 and 5, that is, a link mechanism 7a, a drive source 7b for operating the link mechanism, and the injection chip 6 displaced by receiving power through the link mechanism 7a. A combination of movable blocks 7c is provided.
 リンク機構7aは、一端が駆動源の可動体7b-3に、他端が可動ブロック7cにそれぞれピボット結合された平行配置の第1リンク7a-1及び第2リンク7a-2と、一端が第2リンク7a-2の長手中間部に、他端が可動体7b-3の移動方向前方において可動フレーム2cにそれぞれピボット結合された第3リンク7a-3を備え、第2リンク7a-2と第3リンク7a-3がトグル機構を構成したものになっている。 The link mechanism 7a includes a first link 7a-1 and a second link 7a-2 arranged in parallel, one end of which is pivotally coupled to a movable body 7b-3 as a drive source and the other end of which is coupled to a movable block 7c. The second link 7a-2 includes a third link 7a-3 pivotally coupled to the movable frame 2c at the other end of the second link 7a-2 in the moving direction of the movable body 7b-3. The three links 7a-3 constitute a toggle mechanism.
 図4において、Paは、第2リンク7a-2を可動体7b-3に結合させた連結軸、Pbは、第3リンク7a-3を第2リンク7a-2に結合させた連結軸、Pcは、第2リンク7a-2を可動ブロック7cに結合させた連結軸である。 In FIG. 4, Pa is a connecting shaft obtained by connecting the second link 7a-2 to the movable body 7b-3, Pb is a connecting shaft obtained by connecting the third link 7a-3 to the second link 7a-2, and Pc. Is a connecting shaft in which the second link 7a-2 is coupled to the movable block 7c.
 また、Pdは、第3リンク7a-3を可動フレーム2cに結合させた連結軸、Peは、第1リンク7a-1を可動体7b-3に結合させた連結軸、Pfは、第1リンク7a-1を可動ブロック7cに結合させた連結軸ある。 Pd is a connecting shaft that connects the third link 7a-3 to the movable frame 2c, Pe is a connecting shaft that connects the first link 7a-1 to the movable body 7b-3, and Pf is the first link. This is a connecting shaft in which 7a-1 is coupled to the movable block 7c.
 連結軸Pdの中心は、連結軸Pa、Pcの中心を結ぶ軸線C2の中間点にある。また、連結軸Pc、Pdの中心を結ぶ軸線C4は射出スリーブ5の軸心C1と平行である。 The center of the connection axis Pd is at the midpoint of the axis C2 connecting the centers of the connection axes Pa and Pc. An axis C4 connecting the centers of the connecting shafts Pc and Pd is parallel to the axis C1 of the injection sleeve 5.
 前記軸線C3は射出スリーブ5の軸心C1に対して垂直である。また、モータ7b-2とボールねじ7b-1の軸心及び後述するシリンダアクチュエータ7b-4の出力ロッドの軸心は、連結軸Pa、Pcの中心を結ぶ軸線C3と平行である。さらに、連結軸Pe、Paの中心を結ぶ軸線C5と連結軸Pf、Pcの中心を結ぶ軸線C6は平行である。 The axis C3 is perpendicular to the axis C1 of the injection sleeve 5. Further, the axis of the motor 7b-2 and the ball screw 7b-1 and the axis of the output rod of the cylinder actuator 7b-4 described later are parallel to an axis C3 connecting the centers of the connecting axes Pa and Pc. Furthermore, the axis C5 connecting the centers of the connecting axes Pe and Pa and the axis C6 connecting the centers of the connecting axes Pf and Pc are parallel.
 図4、図5のチップ駆動機構の駆動源7bは、ボールねじ7b-1と、そのボールねじを回転させる回転制御の可能なモータ7b-2と、ボールねじに螺合させた可動体7b-3とで構成されているが、駆動源7bは、ストローク制御の可能な、図20、図21に示すようなシリンダアクチュエータ7b-4を用いてもよい。 4 and 5 includes a ball screw 7b-1, a motor 7b-2 capable of rotation control for rotating the ball screw, and a movable body 7b- screwed to the ball screw. However, the drive source 7b may use a cylinder actuator 7b-4 as shown in FIGS. 20 and 21 that can perform stroke control.
 シリンダアクチュエータ7b-4は、油圧シリンダが大きな出力が得られて好ましいが、電動式のシリンダも使用することができる。 As the cylinder actuator 7b-4, a hydraulic cylinder is preferable because a large output can be obtained, but an electric cylinder can also be used.
 図4、図5のチップ駆動機構7は、ボールねじ7b-1が回転駆動されると可動体7b-3が変位し、その変位力がリンク機構7aにより増幅されて可動ブロック7cに伝わり、その可動ブロック7cに連結された射出チップ6が押し引きされる。 4 and 5, when the ball screw 7b-1 is rotationally driven, the movable body 7b-3 is displaced, and the displacement force is amplified by the link mechanism 7a and transmitted to the movable block 7c. The injection chip 6 connected to the movable block 7c is pushed and pulled.
 可動ブロック7cに押された射出チップ6は、射出スリーブ5内で前進して射出スリーブ5に供給された溶湯をキャビティ9に向けて射出する。 The injection tip 6 pushed by the movable block 7 c advances in the injection sleeve 5 and injects the molten metal supplied to the injection sleeve 5 toward the cavity 9.
 なお、射出チップ6は、キャビティ9の容積に応じて射出スリーブ5内での待機位置が調整される。射出チップ6を図4の位置から変動させた状態を図5に示す。その待機位置の調整(変動)もチップ駆動機構7で射出チップ6を駆動することによってなされる。 The standby position of the injection tip 6 in the injection sleeve 5 is adjusted according to the volume of the cavity 9. FIG. 5 shows a state where the injection tip 6 is changed from the position of FIG. Adjustment (fluctuation) of the standby position is also performed by driving the injection tip 6 with the tip drive mechanism 7.
 キャビティの容積変動に対応させて射出チップ6の待機位置を変える際には、給湯完了時の射出スリーブ内湯面位置が常に射出スリーブの先端近くにあって、しかも湯の零れが起こらない位置に設定されるように行う。これにより、射出スリーブの溶湯充填率を高めることができる。 When changing the standby position of the injection tip 6 corresponding to the cavity volume fluctuation, the position of the hot water surface in the injection sleeve is always near the tip of the injection sleeve when the hot water supply is completed, and the hot water does not spill. To be done. Thereby, the molten metal filling rate of the injection sleeve can be increased.
 ラドル8は、工夫された形状を有するものが設けられている。図6~図9に示したラドル8は、上端開口のカップ状胴体8aの周縁にラドル上面と平行な管経路8bを備え、その管経路8bの先端に水平なラドル上面に対して特定の方向に所定角度傾いた給湯口8cを備えたものになっている。8dは、胴体8aの外部に突出させて設けたブラケット、8eは、ラドル8を最大に傾けたときに胴体8a内の溶湯が外部に零れ出さないようにするための零れ防止壁である。 The ladle 8 is provided with a devised shape. The ladle 8 shown in FIGS. 6 to 9 includes a pipe path 8b parallel to the upper surface of the ladle at the periphery of the cup-shaped body 8a having an upper end opening, and a specific direction with respect to the horizontal upper surface of the ladle at the tip of the pipe path 8b. Is provided with a hot water supply port 8c inclined at a predetermined angle. 8d is a bracket provided so as to protrude to the outside of the body 8a, and 8e is a spill prevention wall for preventing the molten metal in the body 8a from spilling outside when the ladle 8 is tilted to the maximum.
 給湯口8cは、図9に示すように、その給湯口の下端Leに対してその給湯口の上端Tが前に突き出る方向に傾いている。図示のラドル8は、図9の角度θ1=60°(これは55°~60°が適している)、角度θ2=5°に設定されているので、給湯口8cのラドルの上面に対する傾斜角θ3は、65°になっている。 As shown in FIG. 9, the hot water supply port 8c is inclined in a direction in which the upper end T of the hot water supply port protrudes forward with respect to the lower end Le of the hot water supply port. The illustrated ladle 8 is set to an angle θ1 = 60 ° in FIG. 9 (which is preferably 55 ° to 60 °) and an angle θ2 = 5 °, so that the inclination angle of the hot water supply port 8c with respect to the upper surface of the ladle is set. θ3 is 65 °.
 また、図示のラドル8は、水平なラドル上面に対して胴体8aの周壁の傾斜角θ4を60°又はそれ以下に設定して給湯完了時に射出スリーブが傾斜角45°に傾く射出鋳造装置にラドル最大回転角20°の設定にして利用するものにしている。
 図示のラドル8は、胴体8aの周壁の下側の内面が水平になったとき、その水平状態の内面よりも上側に零れ防止壁8eの上端があり、防止壁8eが一種の堰として機能する。
Further, the illustrated ladle 8 is a ladle for an injection casting apparatus in which the inclination angle θ4 of the peripheral wall of the body 8a is set to 60 ° or less with respect to the horizontal upper surface of the ladle and the injection sleeve is inclined at an inclination angle of 45 ° when hot water supply is completed. The maximum rotation angle is set to 20 °.
In the illustrated ladle 8, when the lower inner surface of the peripheral wall of the body 8a is horizontal, there is an upper end of the spill prevention wall 8e above the inner surface in the horizontal state, and the prevention wall 8e functions as a kind of weir. .
 上記管経路8bは、胴体側の端部からラドルの回転支点(給湯口の下端Le)までの長さを20mm以上にするのが好ましい。その長さが長いほどラドル8がプール内の溶湯を汲み取るときに、管経路の先端の給湯口8cをプール内溶湯により深く沈めることができる。 The length of the pipe path 8b from the end on the body side to the rotation support point of the ladle (the lower end Le of the hot water supply port) is preferably 20 mm or more. The longer the length, the deeper the hot water inlet 8c at the tip of the pipe path can be submerged by the molten metal in the pool when the ladle 8 draws the molten metal in the pool.
 その管経路8bの最大長さは、ラドルから射出スリーブに溶湯を供給するときのラドル回転に支障を来たさない長さに設定する。 The maximum length of the pipe path 8b is set to a length that does not hinder the ladle rotation when the molten metal is supplied from the ladle to the injection sleeve.
 図示のラドル8は、固定支持棒10(図6、図7参照)を有する。その固定支持棒10は、先端部10a(これは後端部10fと平行)が、ラドルの胴体8aの後部(給湯口のある側を前部と考えある)に突出させて設けたブラケット8dに連結されている。 The illustrated ladle 8 has a fixed support rod 10 (see FIGS. 6 and 7). The fixed support rod 10 has a front end portion 10a (which is parallel to the rear end portion 10f) protruding from a bracket 8d provided so as to protrude from the rear portion of the ladle body 8a (the side having the hot water supply port is considered to be the front portion). It is connected.
 その固定支持棒10は、後端部10との間に先端側から順に、上向き折り曲部10b、後方に延びる中間部10c、前向き折り曲げ部10d、高さ調整用の下向き折り曲げ部10eが介材される形状にして後端部10fの軸心の延長上にラドルの給湯口8cの下端Leがあるようにしている。 The fixed support rod 10 has an upward bent portion 10b, an intermediate portion 10c extending rearward, a forward bent portion 10d, and a downward bent portion 10e for height adjustment in order from the front end side to the rear end portion 10. The lower end Le of the hot water outlet 8c of the ladle is formed on the extension of the axial center of the rear end portion 10f.
 この固定支持棒10の後端部10fに給湯装置のラドル回転駆動源(図示せず。多関節ロボットも回転駆動源のひとつと考える)が連結され、この後端部10f(これは即ち、給湯口の下端Le)を支点にしてラドル8が回転させられる。 A ladle rotation drive source (not shown; the articulated robot is also considered as one of the rotation drive sources) of the hot water supply device is connected to the rear end portion 10f of the fixed support rod 10, and this rear end portion 10f (that is, hot water supply) The ladle 8 is rotated with the lower end Le) of the mouth as a fulcrum.
 このような形状の固定支持棒10を設けることで、溶湯プールの周壁に対する固定支持棒の干渉を回避しつつ、給湯口8cの下端Leをラドルの回転支点にしてプール内の溶湯をラドル8に汲み取ることができる。 By providing the fixed support rod 10 having such a shape, the molten metal in the pool is made into the ladle 8 with the lower end Le of the hot water supply port 8c as the rotation fulcrum of the ladle while avoiding the interference of the fixed support rod with the peripheral wall of the molten metal pool. Can be pumped up.
 次に、図示のラドルによる溶湯プールからの溶湯Mmの汲み取り動作について説明する。図10Aに示すようにラドル8を水平姿勢から90°近く回転させた状態で降下させ、そのラドルの給湯口8cを図に示すように、溶湯プール11内の溶湯Mmに沈み込ませる。 Next, the operation of pumping the molten metal Mm from the molten metal pool using the illustrated ladle will be described. As shown in FIG. 10A, the ladle 8 is lowered in a state of being rotated by 90 ° from the horizontal posture, and the hot water supply port 8c of the ladle is submerged in the molten metal Mm in the molten metal pool 11 as shown in the drawing.
 このときの給湯口8cの溶湯Mmに対する沈み込み量は、20mm以上確保すると好ましい。沈み込み量が大きければ、この後の管経路8b経由での溶湯の汲み取り時に給湯口8cの溶湯Mmに対する沈み込み状態を維持し易い。 At this time, it is preferable that the sinking amount of the hot water supply port 8c with respect to the molten metal Mm is 20 mm or more. If the sinking amount is large, it is easy to maintain the sinking state of the hot water supply port 8c with respect to the molten metal Mm when the molten metal is pumped through the pipe path 8b.
 この後、固定支持棒8d(に回転力を加えてラドル8を回転させながらラドルの管経路8bの胴体側の端部の下端がプール内溶湯の湯面よりも下になるところまでラドル8の位置をさらに下げる(図10B、図10C参照)。 Thereafter, while rotating the ladle 8 by applying a rotational force to the fixed support rod 8d (the ladle 8 is rotated until the lower end of the body side end of the pipe path 8b of the ladle is below the level of the molten metal in the pool. The position is further lowered (see FIGS. 10B and 10C).
 この操作により、給湯口8bからラドルの胴体8aに溶湯Mmが流入する。このときのラドル胴体に対する溶湯Mmの流入速度も、50cm/sec以下に制御すると好ましい。 By this operation, the molten metal Mm flows into the ladle body 8a from the hot water supply port 8b. At this time, the flow rate of the molten metal Mm into the ladle body is preferably controlled to 50 cm / sec or less.
 その流入速度は、管経路8bや給湯口8cの断面積を適切に設計し、汲み取り中のラドルの姿勢と回転速度を制御することで50cm/sec以下にすることが可能である。 The inflow speed can be reduced to 50 cm / sec or less by appropriately designing the cross-sectional areas of the pipe path 8b and the hot water supply port 8c and controlling the attitude and rotation speed of the ladle during pumping.
 この方法でラドル8に汲み取られる溶湯Mmは、酸化物が生じていない湯面下の中湯のみとなり、このことでも製品に対する酸化物の混入が抑制される。 The molten metal Mm pumped to the ladle 8 by this method is only the hot water below the surface of the bath where no oxide is generated, and this also suppresses the mixing of the oxide into the product.
 図10Dは、ラドル8に対して溶湯が定量汲み取られる状態を示している。このときの汲み取り量は、ラドル8の最終的な回転姿勢と降下量を制御することによって調整することができる。 FIG. 10D shows a state where the molten metal is pumped in a certain amount with respect to the ladle 8. The amount of pumping at this time can be adjusted by controlling the final rotational posture and the descending amount of the ladle 8.
 溶湯を汲み取ったラドル8は、この後、水平姿勢に戻し、図11に示すように、射出鋳造装置1の固定金型4aと可動金型4b間に移動させ、給湯所定位置にセットする。 After that, the ladle 8 that has drawn the molten metal is returned to a horizontal posture, and is moved between the fixed mold 4a and the movable mold 4b of the injection casting apparatus 1 and set at a predetermined position for hot water supply as shown in FIG.
 このときには、射出スリーブ5とラドル8は共に水平姿勢になっており、ラドルの給湯口8cの下端Leが射出スリーブ5の開放された出湯口5aの近傍において射出スリーブ5の内面に接する。なお、以下で言う傾斜角は全て水平面に対する角度とする。 At this time, the injection sleeve 5 and the ladle 8 are both in a horizontal posture, and the lower end Le of the hot water outlet 8c of the ladle contacts the inner surface of the injection sleeve 5 in the vicinity of the open hot water outlet 5a of the injection sleeve 5. In addition, all the inclination angles said below are angles with respect to a horizontal plane.
 そのセットが完了したら、架台の可動フレーム2c(図1~図3参照)をラドル8との相対位置を固定して(ラドル8をセット状態のままにして)数度傾ける。 When the setting is completed, the movable frame 2c of the gantry (see FIGS. 1 to 3) is tilted several degrees with the relative position to the ladle 8 fixed (with the ladle 8 left in the set state).
 このときの射出スリーブの傾斜角(=可動フレームの傾斜角)は、例えば、5°程度でよい。この傾斜により、図12に示すように、ラドル内溶湯Mmの湯面位置が管経路8cの始端の下面よりも少し高くなり、給湯口の下端Leを基点にしてラドル内の溶湯が射出スリーブ5に流れ出す。 At this time, the inclination angle of the injection sleeve (= the inclination angle of the movable frame) may be about 5 °, for example. Due to this inclination, as shown in FIG. 12, the molten metal position of the molten metal Mm in the ladle is slightly higher than the lower surface of the starting end of the pipe path 8c, and the molten metal in the ladle is discharged from the lower end Le of the hot water inlet to the injection sleeve 5. Flows out.
 射出スリーブ5の傾斜角が小さく、かつ、ラドル8内溶湯Mmの湯面位置が射出スリーブ5内の溶湯の湯面位置よりも少し高い状態では、射出スリーブに供給された溶湯の湯面がラドルの給湯口8cの下端付近に維持されてラドル8から供給される溶湯が射出スリーブ5内に低速で流れ込む。 In the state where the inclination angle of the injection sleeve 5 is small and the molten metal surface position of the molten metal Mm in the ladle 8 is slightly higher than the molten metal surface position of the molten metal in the injection sleeve 5, the molten metal surface supplied to the injection sleeve is ladle. The molten metal supplied from the ladle 8 while being maintained near the lower end of the hot water supply port 8 c flows into the injection sleeve 5 at a low speed.
 給湯初期の射出スリーブ5の傾斜角は5°に限定されるものではないが、その程度の傾斜角であれば、ラドル内の溶湯を射出スリーブ5に向けて流れ出させることができる。 Although the inclination angle of the injection sleeve 5 at the initial stage of hot water supply is not limited to 5 °, the molten metal in the ladle can flow out toward the injection sleeve 5 at an inclination angle of that degree.
 このとき、架台の可動フレームの傾斜だけでラドル内溶湯が流れ出なければ、ラドル8内の湯面位置が管経路8bの根元の下端よりも上になるところまでラドル8も少し回転させる。 At this time, if the molten metal in the ladle does not flow out only by the inclination of the movable frame of the gantry, the ladle 8 is also rotated slightly until the molten metal surface position in the ladle 8 is above the lower end of the root of the pipe path 8b.
 射出スリーブに対する溶湯の供給初期の流速は、50cm/sec以下に制御するとよい。 The initial flow rate of the molten metal to the injection sleeve may be controlled to 50 cm / sec or less.
 なぜなら、その流速が50cm/secを超えると動粘度係数の小さいアルミニウムやアルミニウム合金の溶湯は特に、先湯(流出の先端)が跳ねるようなうねりを生じ、さらに、射出チップに衝突して跳ね上がり、射出スリーブ内の空気を湯中に巻き込む。 This is because when the flow velocity exceeds 50 cm / sec, the molten aluminum or aluminum alloy having a small kinematic viscosity coefficient causes a swell that the tip (the tip of the outflow) jumps, and further jumps by colliding with the injection tip, The air in the injection sleeve is caught in hot water.
 これに対し、流速が50cm/sec以下であれば、アルミニウムやアルミニウム合金の溶湯についても上記のうねりや跳ね上がりが防止される。そのことは、コンピュータによるシュミュレーション解析によっても確認することができる。この流速の最適値は、試作装置(実機)による鋳造結果に基づいて確定する。 On the other hand, if the flow rate is 50 cm / sec or less, the above-described swells and jumps are prevented even for molten aluminum or aluminum alloy. This can also be confirmed by computer simulation analysis. The optimum value of the flow velocity is determined based on the casting result by the prototype device (actual machine).
 アルミニウムやアルミニウム合金の動粘度係数は、銅や鋳鉄や鋼の溶湯に比べて小さいので、50cm/sec以下の流速は、銅、鋳鉄、鋼などの給湯においても通用する速度である。 Since the kinematic viscosity coefficient of aluminum or aluminum alloy is smaller than that of a molten metal of copper, cast iron, or steel, a flow rate of 50 cm / sec or less is a speed that can also be applied to hot water supplies of copper, cast iron, steel, and the like.
 射出スリーブ5に流入した溶湯が射出チップ6に到達したら、架台2の傾き角(射出スリーブの傾斜角)を徐々に大きくし(図13参照)、途中から射出スリーブ5の傾斜角の増加に同期させてラドル8も回転させる(図14参照)。 When the molten metal that has flowed into the injection sleeve 5 reaches the injection tip 6, the inclination angle of the gantry 2 (inclination angle of the injection sleeve) is gradually increased (see FIG. 13) and synchronized with the increase of the inclination angle of the injection sleeve 5 from the middle. Then, the ladle 8 is also rotated (see FIG. 14).
 溶湯の湯面が射出チップの径方向中心付近まで上昇する間は、射出スリーブの傾斜角とラドルの回転角を緩やかに変化させて50cm/sec以下の溶湯流入速度を保持する。 While the molten metal surface rises to the vicinity of the radial center of the injection tip, the molten metal inflow speed of 50 cm / sec or less is maintained by gently changing the inclination angle of the injection sleeve and the rotation angle of the ladle.
 なお、図示のラドル8を使用する給湯では、給湯の初期に射出スリーブの傾斜角とラドルの回転角が急に大きくなって射出スリーブ5に対する溶湯の流入速度が50cm/secを超えると、前記零れ防止壁8eを設けても、その零れ防止壁8eの大きさ次第では、ラドル内の溶湯が管経路を通らずに外部に零れだすことが考えられるので、その零れの防止の観点からも給湯初期の流速は50cm/sec以下にするのがよい。 In the hot water supply using the illustrated ladle 8, if the inclination angle of the injection sleeve and the rotation angle of the ladle suddenly increase at the initial stage of the hot water supply and the inflow rate of the molten metal into the injection sleeve 5 exceeds 50 cm / sec, the spilling occurs. Even if the prevention wall 8e is provided, depending on the size of the spill prevention wall 8e, the molten metal in the ladle may be spilled outside without passing through the pipe path. The flow rate is preferably 50 cm / sec or less.
 このようにして給湯が進行すると射出スリーブ5内の湯面が上昇し、射出チップ6の端面の下側半分程度が接触する湯溜りが射出スリーブ5内にできる。 As the hot water supply advances in this way, the hot water level in the injection sleeve 5 rises, and a hot water pool in which the lower half of the end face of the injection tip 6 contacts is formed in the injection sleeve 5.
 その湯溜りができた状態になると射出スリーブ5に対する溶湯の流入速度を上げても溶湯の表面の跳ねるようなうねりは生じない。そこで、射出スリーブの傾斜角とラドルの回転角を大きくして流入速度を次第に早める。 When the hot water pool is in a state, even if the molten metal inflow speed to the injection sleeve 5 is increased, the surface of the molten metal does not swell. Therefore, the inflow speed is gradually increased by increasing the inclination angle of the injection sleeve and the rotation angle of the ladle.
 溶湯の射出スリーブへの供給が進行し、また、ラドルの回転角が大きくなっていくと、管経路8bを有するラドル8は、給湯口8cの端面の全域が射出スリーブ5に供給された溶湯の湯面に接触する(図15参照)。この状況は、射出スリーブ5の傾斜角と、ラドル8の回転角と、射出スリーブ5に対する溶湯の供給量から知ることができる。 When the molten metal is supplied to the injection sleeve and the rotation angle of the ladle is increased, the ladle 8 having the pipe path 8b has the entire surface of the end surface of the hot water inlet 8c of the molten metal supplied to the injection sleeve 5. It contacts the molten metal surface (see FIG. 15). This situation can be known from the inclination angle of the injection sleeve 5, the rotation angle of the ladle 8, and the amount of molten metal supplied to the injection sleeve 5.
 この状況になると以後に供給される溶湯は供給済み溶湯の湯中に潜り込むようにして射出スリーブに流入する。 In this situation, the molten metal supplied thereafter flows into the injection sleeve so as to sink into the supplied molten metal.
 その状況では、湯の落下や湯跳ねは全く起こらない。そこで、給湯の速度(湯の流速)を速め、射出スリーブ5の傾斜角とラドル8の回転角が設定値に到達した位置で給湯を完了する(図16参照)。
 射出スリーブ5の傾斜角とラドル8の回転角は、それらを加算した角度が90°を超えない範囲で設定される。
In that situation, there will be no falling or jumping of hot water. Therefore, the hot water supply speed (hot water flow rate) is increased, and the hot water supply is completed at a position where the inclination angle of the injection sleeve 5 and the rotation angle of the ladle 8 reach the set values (see FIG. 16).
The inclination angle of the injection sleeve 5 and the rotation angle of the ladle 8 are set in a range in which the angle obtained by adding them does not exceed 90 °.
 内径80mmの射出スリーブ5と、図6~図9に示した固定支持棒10を取り付けたラドル8(入口からラドルの回転支点までの管経路長さ=20mm、ラドルの上面に対する給湯口の傾斜角=65°)を有する試作射出鋳造装置を用いて、全鋳込み質量2kgのアルミニウム合金製ダイカスト鋳造品の成形試験を行った。 A ladle 8 having an injection sleeve 5 having an inner diameter of 80 mm and a fixed support rod 10 shown in FIGS. 6 to 9 (pipe path length from the inlet to the rotation fulcrum of the ladle = 20 mm, inclination angle of the hot water inlet with respect to the upper surface of the ladle = 65 °), an aluminum alloy die cast product having a total casting mass of 2 kg was subjected to a forming test.
 射出チップ6を固定金型4aの可動金型4bとの合わせ面と面一箇所にある射出スリーブ5の出湯口5aから230mm後退した位置に待機させ、射出スリーブ傾斜角α=45°のときに射出スリーブに対する溶湯の充填率が75%になる位置(これは射出スリーブの出湯口から20mm後退した位置になる)を給湯完了時の湯面位置とする給湯を行った。この条件では、射出スリーブ最大給湯質量2.27kgとなる。 The injection tip 6 is put on standby at a position retracted 230 mm from the outlet 5a of the injection sleeve 5 which is flush with the mating surface of the fixed mold 4a and the movable mold 4b, and when the injection sleeve inclination angle α = 45 °. Hot water supply was performed with the position where the filling rate of the molten metal with respect to the injection sleeve was 75% (this was a position retracted 20 mm from the outlet of the injection sleeve) at the hot water surface position when the hot water supply was completed. Under this condition, the injection sleeve maximum hot water supply mass is 2.27 kg.
 この試験での給湯は、図11に示すように、水平姿勢にした射出スリーブ5に対し、溶湯プールから定量の溶湯を汲み取ったラドル8の給湯口の下端Le(ラドル回転支点)を、ラドル姿勢を水平にして接触させた。 As shown in FIG. 11, the hot water supply in this test is such that the lower end Le (the ladle rotation fulcrum) of the hot water outlet of the ladle 8 from which a fixed amount of molten metal has been drawn from the molten metal pool with respect to the injection sleeve 5 in a horizontal posture, Were in contact with each other horizontally.
 このときのラドル給湯口の下端Leの射出スリーブ5に対する接触は、湯の零れを防止するために射出スリーブの出湯口5aから20mm後退した位置の内面とした。 The contact of the lower end Le of the ladle hot water inlet with the injection sleeve 5 at this time was the inner surface of the injection sleeve at a position retracted 20 mm from the hot water outlet 5a of the injection sleeve to prevent the hot water from spilling.
 その後、図12に示すように、射出スリーブ5とラドル8の相対位置を固定して架台の可動フレームを5°傾けた(射出スリーブ傾斜角α=5°、このときのラドル回転角は0°)。この操作により、ラドル8内の溶湯が射出スリーブ5に対して流れ始めた。このときの溶湯の流速の測定値は、20cm/secであった。 Thereafter, as shown in FIG. 12, the relative position of the injection sleeve 5 and the ladle 8 was fixed, and the movable frame of the gantry was inclined by 5 ° (injection sleeve inclination angle α = 5 °, and the ladle rotation angle at this time was 0 ° ). By this operation, the molten metal in the ladle 8 began to flow with respect to the injection sleeve 5. The measured value of the flow rate of the molten metal at this time was 20 cm / sec.
 次に、射出スリーブ5に供給された溶湯Mmの湯面がラドル8の給湯口8cの下端付近にある状況を維持して射出スリーブ5の傾斜角とラドルの傾斜角を増加させた。 Next, the inclination angle of the injection sleeve 5 and the inclination angle of the ladle were increased while maintaining the state in which the molten metal Mm supplied to the injection sleeve 5 was near the lower end of the hot water inlet 8c of the ladle 8.
 これにより給湯が進行し、試作鋳造装置においては射出スリーブ傾斜角α=10°(ラドル回転角0°(図13の状態)で射出チップの端面の下側半分程度が接触する湯溜りが射出スリーブ5形成された。 As a result, the hot water supply proceeds, and in the prototype casting apparatus, the injection sleeve has an injection sleeve inclination angle α = 10 ° (a ladle rotation angle of 0 ° (the state shown in FIG. 13)) and a hot water reservoir that contacts the lower half of the end face of the injection tip. 5 formed.
 そこで射出スリーブの傾斜角増加に同期させてラドルも回転させた。これにより、射出スリーブ傾斜角α=15°、ラドル回転角β=10°の時点(図14の状態)で射出スリーブ5に対する溶湯の流入速度は30cm/secとなったが、流入する溶湯の空気を巻き込むようなうねりや跳ねは確認されなかった。 Therefore, the ladle was rotated in synchronization with the increase in the inclination angle of the injection sleeve. As a result, when the injection sleeve inclination angle α = 15 ° and the ladle rotation angle β = 10 ° (state of FIG. 14), the flow rate of the molten metal into the injection sleeve 5 becomes 30 cm / sec. No swells or jumps involving stagnation were found.
 この実施例では、この後、射出スリーブ傾斜角αが5°増す毎にラドル回転角βを1°増加させた。また、試作射出鋳造装置のラドル8は、射出スリーブ傾斜角α=25°、ラドル回転角β=16°の時点(図15の状態)で、給湯口8cの端面の全域が射出スリーブ5に供給された溶湯Mmの湯面に接触して給湯口8cが射出スリーブ5内の湯に漬かった状態になる。 In this embodiment, thereafter, the ladle rotation angle β is increased by 1 ° every time the injection sleeve inclination angle α increases by 5 °. Further, in the ladle 8 of the prototype injection casting apparatus, the entire end face of the hot water supply port 8c is supplied to the injection sleeve 5 when the injection sleeve inclination angle α = 25 ° and the ladle rotation angle β = 16 ° (state of FIG. 15). The hot water supply port 8 c comes into contact with the molten metal surface of the molten metal Mm soaked in the hot water in the injection sleeve 5.
 そのように設計されており、その時点から射出スリーブ5の傾斜角αとラドル8の回転角βを同期させてさらに増加させて溶湯Mmの射出スリーブ5への流入速度を50cm/secまで早めても何ら問題は生じなかった。 It is designed as such, and from that time, the inclining angle α of the injection sleeve 5 and the rotation angle β of the ladle 8 are further increased in synchronization to increase the flow rate of the molten metal Mm into the injection sleeve 5 to 50 cm / sec. There was no problem.
 これは、以後に供給される溶湯が供給済み溶湯の湯中に潜り込むような形で射出スリーブに流入し、湯の落下や湯跳ねが全く起こらない状況になったからである。 This is because the molten metal supplied thereafter flows into the injection sleeve in such a manner as to sink into the molten molten metal that has already been supplied, and no hot water falls or jumps.
 試作した射出鋳造装置は、射出スリーブ傾斜角α=45°、ラドル回転角β=20°のとき(図16の状態)に射出スリーブ5に対するラドル8からの給湯が完了した。 The prototype injection casting apparatus completed the hot water supply from the ladle 8 to the injection sleeve 5 when the injection sleeve inclination angle α = 45 ° and the ladle rotation angle β = 20 ° (state of FIG. 16).
 給湯を終えたドル8は可動フレーム2cの外部に退避する。その後、図17に示すように、射出スリーブ5が給湯完了時の傾斜姿勢を保持している状況下で可動金型4bが最大に開離した初期位置から移動して固定金型4aに突き合わされ、機械による型締めが行われる。 After the hot water supply is completed, the dollar 8 is evacuated to the outside of the movable frame 2c. After that, as shown in FIG. 17, the movable mold 4b moves from the initial position where the injection sleeve 5 keeps the inclined posture when the hot water supply is completed, and is abutted against the fixed mold 4a. The mold is clamped by a machine.
 そして、この後に射出チップ6が駆動され、キャビティ9に対する溶湯の射出充填が実施される。 Then, after this, the injection tip 6 is driven, and injection filling of the molten metal into the cavity 9 is performed.
 キャビティに対する溶湯の射出充填は、射出スリーブ5が溶湯供給完了時の傾斜姿勢を維持している状況下で行う。 The injection filling of the molten metal into the cavity is performed under the condition that the injection sleeve 5 maintains the inclined posture when the molten metal supply is completed.
 これにより、射出スリーブ5内に残留した空気を溶湯で押し動かし、溶湯に先行して出湯口5、湯道4c、キャビティ9の順に流してガス抜き部4dをから全量金型外に排出することができる。 As a result, the air remaining in the injection sleeve 5 is pushed and moved by the molten metal, and flows in the order of the hot water outlet 5, the runner 4 c and the cavity 9 prior to the molten metal, and is discharged from the degassing part 4 d to the outside of the mold. Can do.
 また、射出スリーブ5が傾斜していることで射出スリーブ内の湯面にできる凝固片も横鋳込み式の鋳造装置に比べて少なくなり、凝固片が残留空気を溶湯内に巻き込む可能性やちぎれた凝固片が溶湯に混じり込んでキャビティに流れる可能性も小さくなる。 Further, since the injection sleeve 5 is inclined, the number of solidified pieces formed on the molten metal surface in the injection sleeve is less than that of the horizontal casting type casting apparatus, and the possibility that the solidified pieces entrap residual air in the molten metal was broken. The possibility that the solidified pieces mix with the molten metal and flow into the cavity is reduced.
 キャビティ9への溶湯の射出充填を終えたら、直ちに架台の可動フレーム2cを供給済み溶湯の凝固時間内に水平姿勢に戻し、キャビティ9内の溶湯が冷却、固化するのを待って型開きと成形品の取り出しを行う。 Immediately after the injection and filling of the molten metal into the cavity 9, the movable frame 2c of the gantry is returned to the horizontal posture within the supplied molten metal solidification time, and the mold is opened and molded after the molten metal in the cavity 9 is cooled and solidified. Take out the product.
 なお、キャビティ9の形状によっては、図18に示すように、射出スリーブから押し出された溶湯が湯口4eからキャビティ9に対して落ち込むように流れ込む状況が起こることが考えられる。そのようなときには、射出スリーブを給湯終了位置から倒してその射出スリーブの傾斜角を小さくする。 Note that, depending on the shape of the cavity 9, as shown in FIG. 18, it is conceivable that the molten metal pushed out from the injection sleeve flows into the cavity 9 from the gate 4 e. In such a case, the injection sleeve is tilted from the hot water supply end position to reduce the inclination angle of the injection sleeve.
 これにより、例えば、図18におけるキャビティ9の落ち込み部の水平面に対する傾斜角γを0°或いは0°に近い角度にして湯口4eからのキャビティ9に対する溶湯Mmの落ち込み無くすことができる。 Accordingly, for example, the inclination angle γ with respect to the horizontal plane of the depressed portion of the cavity 9 in FIG. 18 can be set to 0 ° or an angle close to 0 ° to prevent the molten metal Mm from dropping from the gate 4e.
評価試験その1 Evaluation test 1
 試作射出鋳造装置の評価試験を行った結果を以下に示す。
 評価試験は管経路のない従来のラドルで汲み上げたアルミニウム合金の溶湯をこの発明の方法で射出スリーブに供給した。溶湯供給時の射出スリーブ傾斜角、射出スリーブに対する溶湯の流入速度は実施例で述べた条件を適用した(以下の評価試験も同様)。
The results of an evaluation test of the prototype injection casting apparatus are shown below.
In the evaluation test, a molten aluminum alloy pumped by a conventional ladle without a pipe path was supplied to the injection sleeve by the method of the present invention. The conditions described in the examples were applied to the inclination angle of the injection sleeve when the molten metal was supplied and the flow rate of the molten metal into the injection sleeve (the same applies to the following evaluation tests).
 即ち、ラドルから射出スリーブに溶湯が流入し始めるときの射出スリーブの傾斜角は5°とし、射出スリーブに対する溶湯の流入速度を20cm/secにした。 That is, the inclination angle of the injection sleeve when the molten metal starts to flow from the ladle into the injection sleeve was set to 5 °, and the flow rate of the molten metal to the injection sleeve was set to 20 cm / sec.
 射出スリーブが傾斜角=10°(この段階での流速はまだ20cm/sec)に起き上がったところからラドルも回転させて流入を加速し、射出スリーブ傾斜角α=45°、ラドル回転角β=20°で射出スリーブ5に対するラドル8からの給湯を完了した。 When the injection sleeve rises at an inclination angle = 10 ° (the flow velocity at this stage is still 20 cm / sec), the ladle is also rotated to accelerate the inflow, and the injection sleeve inclination angle α = 45 ° and the ladle rotation angle β = 20. The hot water supply from the ladle 8 to the injection sleeve 5 was completed at °.
 この後、給湯完了時の傾斜姿勢を維持して射出スリーブからキャビティへの溶湯の射出充填を行い、取り付け足のあるアダプタを鋳造した。そして得られた製品(2個。試料1:総重量778.3g、試料2:総重量775.4g)について重量100g当たりのガス量(内包ガス量)をガス量測定器((株)共立社製GV700)を用いて測定した。
 ここに記載したガス量測定器GV700は、測定を依頼した株式会社オフィス神戸技研が(株)共立社に特注して製造してもらったものであって、市販品ではない。
Thereafter, the inclined posture at the time of completion of hot water supply was maintained, and injection filling of the molten metal from the injection sleeve to the cavity was performed, and an adapter with a mounting foot was cast. The amount of gas per 100 g (inclusion gas amount) of the obtained products (2 pieces, sample 1: total weight 778.3 g, sample 2: total weight 775.4 g) was measured by a gas amount measuring device (manufactured by Kyoritsu Co., Ltd.) GV700).
The gas amount measuring device GV700 described here is manufactured by the office Kobe Giken Co., Ltd., which requested the measurement, as a special order from Kyoritsu Co., Ltd., and is not a commercial product.
 比較のために、従来の縦型のダイカストマシンを用いて鋳造されたアルミニウム合金製ヒートシンク真空鋳造品(試料A:総重量962.4g、試料B:総重量966.7g)の重量100g当たりのガス量も上記ガス量測定器を用いて測定した。 For comparison, a gas per 100 g of a heat sink vacuum cast product (sample A: total weight 962.4 g, sample B: total weight 966.7 g) made of an aluminum alloy cast using a conventional vertical die casting machine. The amount was also measured using the gas amount measuring device.
 その結果、ヒートシンク真空鋳造品のガス量は、試料Aが10.0cm3/100g、試料Bが5.9cm3/100gであった。 As a result, the gas amount of the heat sink vacuum casting was 10.0 cm 3/100 g for sample A and 5.9 cm 3/100 g for sample B.
 これに対し、本発明の装置を用いて本発明の方法で給湯を行った製品は、真空鋳造品ではないにもかかわらず、試料1が1.1cm3/100g、試料2が2.2cm3/100gであり、従来法によるものに比べて内包ガス量が格段に少なかった。 On the other hand, the product supplied with hot water by the method of the present invention using the apparatus of the present invention is 1.1 cm 3/100 g for sample 1 and 2.2 cm 3/100 g for sample 2 even though it is not a vacuum cast product. Therefore, the amount of gas included was much smaller than that of the conventional method.
評価試験その2 Evaluation test 2
 管経路を有する既述のラドルを備えた試作射出鋳造装置を使用し、管経路経由での定量汲み取りを行ったラドルから本発明の方法で射出スリーブに溶湯を供給した。この試験でも、射出スリーブ傾斜角5°、射出スリーブに対する溶湯の流入速度20cm/secでラドルから溶湯を供給し始めた。 Using the prototype injection casting apparatus provided with the aforementioned ladle having a pipe path, the molten metal was supplied to the injection sleeve by the method of the present invention from the ladle that had been subjected to quantitative pumping via the pipe path. Also in this test, the molten metal began to be supplied from the ladle at an injection sleeve inclination angle of 5 ° and an inflow rate of molten metal to the injection sleeve of 20 cm / sec.
 次いで、射出スリーブ傾斜角α=10°となったところからラドルも回転させて射出スリーブ傾斜角α=15°、ラドル回転角β=10°での流入速度を30cm/secに加速し、射出スリーブ傾斜角α=45°、ラドル回転角β=20°で射出スリーブ5に対するラドル8からの給湯を完了した。 Next, the ladle is rotated from the position where the injection sleeve inclination angle α = 10 °, and the inflow speed at the injection sleeve inclination angle α = 15 ° and the ladle rotation angle β = 10 ° is accelerated to 30 cm / sec. The hot water supply from the ladle 8 to the injection sleeve 5 was completed at the inclination angle α = 45 ° and the ladle rotation angle β = 20 °.
 この後、給湯完了時の傾斜姿勢を維持して射出スリーブからキャビティへの溶湯の射出充填を行い、取り付け足のあるアダプタを鋳造した。そして得られた製品(2個。試料1:総重量767.6g、試料2:総重量753.5g)について重量100g当たりのガス量を測定した。 After this, while maintaining the inclined posture when the hot water supply was completed, the molten metal was injected from the injection sleeve into the cavity, and an adapter with a mounting foot was cast. Then, the amount of gas per 100 g weight was measured for the obtained products (two pieces, sample 1: total weight 767.6 g, sample 2: total weight 753.5 g).
 比較のために、従来の縦型のダイカストマシン(宇部興産機械製)を用いて鋳造されたアルミニウム合金製ギアケース(試料A:総重量1633.9g、試料B:総重量1630.5g、試料C:総重量1626.6gの3個)についても重量100g当たりのガス量を測定した。 For comparison, an aluminum alloy gear case (sample A: total weight 1633.9 g, sample B: total weight 1630.5 g, sample C) cast using a conventional vertical die casting machine (manufactured by Ube Industries) : 3 pieces having a total weight of 1626.6 g), the gas amount per 100 g of the weight was also measured.
 その結果、従来法で鋳造されたギアケースは、試料Aが5.5cm3/100g、試料Bが7.8cm3/100g、試料Cが6.0cm3/100gであった。 As a result, the gear case cast by the conventional method was 5.5 cm3 / 100 g for sample A, 7.8 cm3 / 100 g for sample B, and 6.0 cm3 / 100 g for sample C.
 これに対し、本発明の管経路付きラドルを備えた装置を用いて本発明の方法で給湯を行ったアダプタは、試料1が0.9cm3/100g、試料2が0.8cm3/100gであり、従来法によるものに比べて内包ガス量が格段に少なかった。また、その内包ガス量は、管経路の無い従来ラドルを使用した評価試験その1での内包ガス量よりもさらに低減された。 On the other hand, the adapter which performed hot water supply by the method of the present invention using the apparatus provided with the ladle with the pipe route of the present invention has a sample 1 of 0.9 cm3 / 100 g and a sample 2 of 0.8 cm3 / 100 g. Compared with the conventional method, the amount of inclusion gas was much smaller. Moreover, the amount of inclusion gas was further reduced from the amount of inclusion gas in evaluation test No. 1 using a conventional ladle without a pipe path.
評価試験その3 Evaluation test 3
 評価試験その2の方法で製造したアダプタA(図19参照)の足のボルト穴を有する取り付け座Bの強度を測定した。その強度は、取り付け座Bが90°の交差角を有する足の起立壁下端から折れて外れるときの荷重で評価した。 The strength of the mounting seat B having the bolt hole of the foot of the adapter A (see FIG. 19) manufactured by the evaluation test method 2 was measured. The strength was evaluated based on the load when the mounting seat B was folded off from the lower end of the standing wall of the foot having a 90 ° crossing angle.
 その結果、従来の縦型のダイカストマシンを用いて鋳造された2個のアダプタの強度は28.9kNと30.5kNであったのに対し、この発明の方法で給湯を行ってこの発明の装置で鋳造したアダプタ3の強度は34.0kN、34.8kN、35.0kNであり、従来法によるものに比べて15%程度強度が高かった。 As a result, the strength of the two adapters cast using the conventional vertical die casting machine was 28.9 kN and 30.5 kN, whereas hot water was supplied by the method of the present invention and the apparatus of the present invention. The strength of the adapter 3 casted at 34.0 kN, 34.8 kN, and 35.0 kN was about 15% higher than that of the conventional method.
 これ等の評価試験結果から、本発明の射出鋳造装置と給湯方法の有効性が確認できる。 From these evaluation test results, the effectiveness of the injection casting apparatus and the hot water supply method of the present invention can be confirmed.
 本発明の射出鋳造装置は、可動フレーム2cに従来の横鋳込み式ダイカストマシンを設置し、既述の射出スリーブ5と組み合わせて本発明の給湯方法を用いた鋳造が可能であり、従来法よりも高品質の製品を鋳造することができる。 The injection casting apparatus of the present invention can be cast using the hot water supply method of the present invention in combination with the above-described injection sleeve 5 by installing a conventional lateral casting type die casting machine on the movable frame 2c. High quality products can be cast.
 また、既存の重力鋳造金型や低圧力鋳造金型に既述の射出スリーブ5を追加し、本発明の装置の固定プラテン4fと可動プラテン4gに金型を設置することによる射出鋳造も可能である。 In addition, the above-described injection sleeve 5 is added to an existing gravity casting mold or low-pressure casting mold, and injection casting is possible by installing the mold on the fixed platen 4f and the movable platen 4g of the apparatus of the present invention. is there.
1     射出鋳造装置
2     架台
2a    ベース部
2b    水平支軸
2c    可動フレーム
3     起伏駆動機構
3a    シリンダアクチュエータ
Or    出力ロッド
4     金型
4a    固定金型
4b    可動金型
4c    湯道
4d    ガス抜き部
4e    湯口
4f    固定プラテン
4g    可動プラテン
4h    押し出しピン
5     射出スリーブ
5a    出湯口
6     射出チップ
7     チップ駆動機構
7a    リンク機構
7a-1   第1リンク
7a-2   第2リンク
7a-3   第3リンク
7b    駆動源
7b-1   ボールねじ
7b-2   モータ
7b-3   可動体
7b-4   シリンダアクチュエータ
7c    可動ブロック
Pa    第2リンクを可動体に結合させた連結軸
Pb    第3リンクを第2リンクに結合させた連結軸
Pc    第2リンクを可動ブロックに結合させた連結軸
Pd    第3リンクを可動フレームに結合させた連結軸
Pe    第1リンクを可動体に結合させた連結軸
Pf    第1リンクを可動ブロックに結合させた連結軸
C1    射出スリーブの軸心
C2    PaとPcを結ぶ軸線
C3    PaとPbを結ぶ軸線
C4    PcとPbを結ぶ軸線
C5    PeとPaを結ぶ軸線
C6    PfとPcを結ぶ軸線
8     ラドル
8a    胴体
8b    管経路
8c    給湯口
8d    ブラケット
8e    零れ防止壁
Le    給湯口の下端
T     給湯口の上端
9     キャビティ
10    固定支持棒
10a   先端部
10b   上向き折り曲げ部
10c   中間部
10d   前向き折り曲げ部
10e   下向き折り曲げ部
10f   後端部
11    溶湯プール
A     アダプタ
G     取り付け座
α     射出スリーブ傾斜角
β     ラドル回転角
θ1     管経路屈曲部の水平面に対する屈曲角
θ2     管経路屈曲部に対する給湯口の傾き角
θ3     ラドル上面に対する給湯口の傾き角
θ4     ラドル上面に対する胴部周壁の傾き角
γ     キャビティの水平面に対する傾斜角
DESCRIPTION OF SYMBOLS 1 Injection casting apparatus 2 Base 2a Base part 2b Horizontal support shaft 2c Movable frame 3 Elevating drive mechanism 3a Cylinder actuator Or Output rod 4 Die 4a Fixed mold 4b Movable mold 4c Runway 4d Gas vent 4e Tap 4f Fixed platen 4g Movable platen 4h Extrusion pin 5 Injection sleeve 5a Outlet 6 Injection tip 7 Tip drive mechanism 7a Link mechanism 7a-1 First link 7a-2 Second link 7a-3 Third link 7b Drive source 7b-1 Ball screw 7b-2 Motor 7b-3 Movable body 7b-4 Cylinder actuator 7c Movable block Pa Connecting shaft Pb connecting the second link to the movable body Connecting shaft Pc connecting the third link to the second link Connecting the second link to the movable block Connected shaft P d Connecting shaft Pe connecting the third link to the movable frame Connecting shaft Pf connecting the first link to the movable body Connecting shaft C1 connecting the first link to the movable block C1 The axes C2 Pa and Pc of the injection sleeve Axis line C3 Axis line C4 connecting Pa and Pb Axis line C4 connecting Pc and Pb C5 Axis line connecting Pe and Pa C6 Axis line connecting Pf and Pc 8 Ladle 8a Body 8b Pipe path 8c Hot water inlet 8d Bracket 8e Spill prevention wall Le Hot water outlet Lower end T Upper end of hot water supply port 9 Cavity 10 Fixed support rod 10a Front end portion 10b Upward bent portion 10c Intermediate portion 10d Forward bent portion 10e Downward bent portion 10f Rear end portion 11 Molten pool A Adapter G Mounting seat α Injection sleeve inclination angle β Ladle rotation Angle θ1 Water at the bend of the pipe path Inclination angle with respect to the tilt angle γ horizontal plane of the cavity of the barrel wall against inclination angle θ4 ladle upper surface of the hot water port for the inclination angle θ3 ladle upper surface of the hot water port for the bending angle θ2 pipe path bent portion relative to the surface

Claims (12)

  1.  水平支軸を支点にして回動可能な可動フレーム(2c)を有する架台(2)と、前記可動フレーム(2c)を水平姿勢から任意の傾斜角を持つ位置まで起立させる起伏駆動機構(3)と、各々が前記可動フレーム(2c)に支持される金型(4)、射出スリーブ(5)及び射出チップ(6)と、前記射出チップ(6)を前進させて射出スリーブ(5)に供給された金属の溶湯を押し出すチップ駆動機構(7)と、前記射出スリーブ(5)に対してその射出スリーブの出湯口(5a)から溶湯を流し入れるラドル(8)を具備し、
     前記金型(4)は、固定金型(4a)とその固定金型に接離して固定金型との間にキャビティ(9)を作り出す可動金型(4b)とで構成され、
     前記射出スリーブ(5)は、先端側が前記固定金型(4a)に接続されて前記可動金型(4b)が固定金型から開離したときに前記出湯口(5a)が外部に開放されるものであり、
     前記射出スリーブ(5)が低傾斜角姿勢にある状況下でその射出スリーブの出湯口の内面に給湯口(8c)を接触させた前記ラドル(8)から前記射出スリーブ(5)に対する金属の溶湯(Mm)の流し入れが開始され、
     給湯の前期、即ち、前記射出スリーブ(5)に流入した溶湯の湯面が前記射出チップ(6)の端面の下側半分程度が接触する湯溜りが射出スリーブ(5)内にできるまではラドル(8)内の湯面位置が射出スリーブ(5)内の湯面位置よりも僅かに上になる状況が維持されて射出スリーブ(5)の傾斜角が徐々に増加し、給湯の前期を過ぎると前記射出スリーブ(5)の傾斜角増加に同期して前記ラドル(8)が回転して給湯が加速され、射出スリーブ(5)が所定の傾斜姿勢になった位置で給湯を完了するように構成された射出鋳造装置。
    A gantry (2) having a movable frame (2c) rotatable about a horizontal support shaft, and a hoisting drive mechanism (3) for raising the movable frame (2c) from a horizontal posture to a position having an arbitrary inclination angle. And a mold (4), an injection sleeve (5) and an injection tip (6) each supported by the movable frame (2c), and the injection tip (6) is advanced and supplied to the injection sleeve (5). A chip drive mechanism (7) for extruding the molten metal, and a ladle (8) for pouring the molten metal from the outlet (5a) of the injection sleeve to the injection sleeve (5),
    The mold (4) is composed of a fixed mold (4a) and a movable mold (4b) that creates a cavity (9) between the fixed mold and the fixed mold.
    The injection sleeve (5) has a distal end connected to the fixed mold (4a), and the hot water outlet (5a) is opened to the outside when the movable mold (4b) is separated from the fixed mold. Is,
    A molten metal made from the ladle (8) to the injection sleeve (5) with the hot water supply port (8c) in contact with the inner surface of the discharge port of the injection sleeve under the condition that the injection sleeve (5) is in a low inclination angle posture. (Mm) pouring started,
    In the first half of the hot water supply, that is, until the hot water pool in which the molten metal flowed into the injection sleeve (5) contacts the lower half of the end face of the injection tip (6) is formed in the injection sleeve (5) (8) The situation where the hot water surface position in the injection sleeve (5) is slightly higher than the hot water surface position in the injection sleeve (5) is maintained, and the inclination angle of the injection sleeve (5) gradually increases, passing the first half of the hot water supply. The ladle (8) rotates in synchronism with the increase in the inclination angle of the injection sleeve (5) and the hot water supply is accelerated, so that the hot water supply is completed at a position where the injection sleeve (5) assumes a predetermined inclined posture. Configured injection casting equipment.
  2.  給湯の前期における射出スリーブ(5)の傾斜角制御が、その射出スリーブ(5)に流入する溶湯の流速が50cm/sec以下となるように行われる請求項1に記載の射出鋳造装置。 The injection casting apparatus according to claim 1, wherein the inclination angle control of the injection sleeve (5) in the first stage of hot water supply is performed so that the flow rate of the molten metal flowing into the injection sleeve (5) is 50 cm / sec or less.
  3.  前記ラドル(8)として、胴体から突き出した管経路(8b)を胴体(8a)の上端縁に備え、その管経路(8b)の先端に、水平なラドル上面に対して上側が前に突き出る方向に所定傾いて角度傾いた給湯口(8c)を有し、さらに、基端側の軸心の延長上にラドルの回転支点となる前記給湯口の下端(Le)がある固定支持棒(10)を有し、その固定支持棒(10)を回転させることでラドル回転角を変化させるものを備える請求項1又は2に記載の射出鋳造装置。 As the ladle (8), a pipe path (8b) protruding from the fuselage is provided at the upper end edge of the fuselage (8a), and the upper side of the pipe path (8b) protrudes forward from the upper surface of the horizontal ladle. A fixed support rod (10) having a hot water supply port (8c) inclined at a predetermined angle to the upper end and further having a lower end (Le) of the hot water supply port serving as a rotation fulcrum of the ladle on the extension of the axial center on the base end side The injection casting apparatus according to claim 1, further comprising: a rotating support rod (10) that changes a ladle rotation angle.
  4.  前記管経路(8b)先端の給湯口(8c)の全域が前記射出スリーブ(5)内の溶湯の湯面に接した後の給湯速度が、それまでの給湯速度よりも速くなるように前記射出スリーブ(5)の傾斜角と前記ラドル(8)の回転角が制御される請求項3に記載の射出鋳造装置。 The injection so that the hot water supply speed after the entire area of the hot water supply port (8c) at the tip of the pipe path (8b) is in contact with the surface of the molten metal in the injection sleeve (5) is faster than the hot water supply speed until then. The injection casting apparatus according to claim 3, wherein the inclination angle of the sleeve (5) and the rotation angle of the ladle (8) are controlled.
  5.  前記射出スリーブ(5)の給湯完了時の傾斜姿勢を維持して前記キャビティ(9)に対する射出スリーブ(5)内の溶湯の射出充填が行われるように構成された請求項1~4のいずれかに記載の射出鋳造装置。 The injection sleeve according to any one of claims 1 to 4, wherein the injection sleeve (5) is configured so that the molten metal in the injection sleeve (5) is injected into the cavity (9) while maintaining an inclined posture when the hot water supply is completed. The injection casting apparatus described in 1.
  6.  前記チップ駆動機構(7)が、駆動源(7b)と、前記射出チップ(6)を変位させる可動ブロック(7c)と、前記駆動源(7b)からの動力を増幅して可動ブロック(7c)に伝達するトグル機構の含まれたリンク機構(7a)とで構成された請求項1~5のいずれかに記載の射出鋳造装置。 The chip drive mechanism (7) amplifies the power from the drive source (7b), the movable block (7c) for displacing the injection chip (6), and the drive source (7b), and the movable block (7c) The injection casting apparatus according to any one of claims 1 to 5, comprising a link mechanism (7a) including a toggle mechanism for transmitting to the inside.
  7.  前記駆動源(7b)が、ボールねじ(7b-1)と、そのボールねじを回転させるモータ(7b-2)と、ボールねじに螺合させた可動体(7b-3)とを組み合わせたもの、又はストローク制御の可能な油圧式もしくは電動式のシリンダアクチュエータ(7b-4)である請求項1~5のいずれかに記載の射出鋳造装置。 The drive source (7b) is a combination of a ball screw (7b-1), a motor (7b-2) for rotating the ball screw, and a movable body (7b-3) screwed into the ball screw. The injection casting apparatus according to any one of claims 1 to 5, which is a hydraulic or electric cylinder actuator (7b-4) capable of stroke control.
  8.  請求項1~7のいずれかに記載の射出鋳造装置の射出スリーブ(5)に対する金属溶湯の給湯方法であって、前記射出スリーブ(5)を水平姿勢にしてその射出スリーブ(5)の出湯口(5a)の内面に定量の溶湯を汲み取ったラドル(8)の給湯口(8c)を接触させ、この状態でラドル(8)内の溶湯の湯面位置が射出スリーブ(5)内の湯面位置よりも僅かに上になるところまで、前記射出スリーブ(5)をラドル(8)を伴わせて傾斜させて前記射出スリーブ(5)に対する金属の溶湯(Mm)の流し入れを開始し、
     給湯の前期、即ち、前記射出スリーブ(5)に流入した溶湯の湯面が前記射出チップ(6)の端面の下側半分程度が接触する湯溜りが射出スリーブ(5)内にできるまではラドル(8)内の湯面位置が射出スリーブ(5)内の湯面位置よりも僅かに上になる状況を維持しながら前記射出スリーブ(5)の傾斜角を徐々に増加させ、
     給湯の前期を過ぎたら前記射出スリーブ(5)の傾斜角増加に同期して前記ラドル(8)を回転させて給湯を加速し、射出スリーブ(5)が所定の傾斜姿勢になった位置で給湯を完了する射出鋳造装置における給湯方法。
    A method for supplying molten metal to an injection sleeve (5) of an injection casting apparatus according to any one of claims 1 to 7, wherein the injection sleeve (5) is placed in a horizontal position and the outlet of the injection sleeve (5). The hot water supply port (8c) of the ladle (8) from which a fixed amount of molten metal has been drawn is brought into contact with the inner surface of (5a), and the molten metal surface position in the ladle (8) in this state is the hot water surface in the injection sleeve (5). The injection sleeve (5) is tilted with a ladle (8) until it is slightly above the position to start pouring the molten metal (Mm) into the injection sleeve (5),
    In the first half of the hot water supply, that is, until the hot water pool in which the molten metal flowed into the injection sleeve (5) contacts the lower half of the end face of the injection tip (6) is formed in the injection sleeve (5) (8) Increasing the inclination angle of the injection sleeve (5) gradually while maintaining the situation where the hot water surface position in the injection sleeve (5) is slightly above the hot water surface position in the injection sleeve (5),
    After passing the first half of the hot water supply, the ladle (8) is rotated in synchronization with an increase in the inclination angle of the injection sleeve (5) to accelerate the hot water supply, and the hot water supply is at a position where the injection sleeve (5) is in a predetermined inclined posture. A hot water supply method in an injection casting apparatus.
  9.  給湯の前期における射出スリーブ(5)への流入溶湯の流速を50cm/sec以下にする請求項8に記載の射出鋳造装置における給湯方法。 The hot water supply method in the injection casting apparatus according to claim 8, wherein the flow rate of the molten metal flowing into the injection sleeve (5) in the first half of the hot water supply is 50 cm / sec or less.
  10.  請求項3に記載のラドル(8)を使用し、そのラドルの前記管経路(8b)先端の給湯口(8c)の全域が前記射出スリーブ(5)内の溶湯の湯面に接した後の給湯速度をそれまでの給湯速度よりも速くする請求項8又は請求項9に記載の射出鋳造装置における給湯方法。 The ladle (8) according to claim 3 is used, and the entire area of the hot water supply port (8c) at the tip of the pipe path (8b) of the ladle is in contact with the molten metal surface in the injection sleeve (5). The hot water supply method in the injection casting apparatus according to claim 8 or 9, wherein the hot water supply speed is made faster than the hot water supply speed until then.
  11.  前記ラドル(8)に対する溶湯の汲み取りを、ラドルの給湯口(8c)を溶湯プール(11)内の溶湯の湯面下に沈め、この状態で給湯口(8c)の下端を支点にしてラドル(8)を回転させて湯面下の溶湯をラドルの胴体(8a)に前記管経路(8b)を通して流入させる方法で行う請求項10に記載の射出鋳造装置における給湯方法。 The molten metal is drawn into the ladle (8) by sinking the hot water inlet (8c) of the ladle under the surface of the molten metal in the molten metal pool (11), and in this state with the lower end of the hot water inlet (8c) as a fulcrum ( The hot water supply method in an injection casting apparatus according to claim 10, wherein the method is carried out by rotating 8) and causing the molten metal below the molten metal surface to flow into the ladle body (8a) through the pipe path (8b).
  12.  前記管経路(8b)を通してラドルの胴体(8a)に流入させる溶湯の流速を50cm/sec以下に制御する請求項11に記載の射出鋳造装置における給湯方法。 The hot water supply method in an injection casting apparatus according to claim 11, wherein the flow rate of the molten metal flowing into the body (8a) of the ladle through the pipe path (8b) is controlled to 50 cm / sec or less.
PCT/JP2015/079702 2015-10-21 2015-10-21 Injection casting device and melt supply method in said device WO2017068665A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017546326A JP6383115B2 (en) 2015-10-21 2015-10-21 Injection casting apparatus and hot water supply method in the apparatus
PCT/JP2015/079702 WO2017068665A1 (en) 2015-10-21 2015-10-21 Injection casting device and melt supply method in said device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079702 WO2017068665A1 (en) 2015-10-21 2015-10-21 Injection casting device and melt supply method in said device

Publications (1)

Publication Number Publication Date
WO2017068665A1 true WO2017068665A1 (en) 2017-04-27

Family

ID=58557109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079702 WO2017068665A1 (en) 2015-10-21 2015-10-21 Injection casting device and melt supply method in said device

Country Status (2)

Country Link
JP (1) JP6383115B2 (en)
WO (1) WO2017068665A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113967730A (en) * 2021-10-25 2022-01-25 沈阳铸研科技有限公司 Casting method suitable for investment precision casting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531130A (en) * 1976-06-24 1978-01-07 Toshiba Machine Co Ltd Method and device for die casting
JPH0557416A (en) * 1991-08-29 1993-03-09 Chiyo Tex:Kk Die casting method
JP2004268082A (en) * 2003-03-07 2004-09-30 Fujino Gijutsu Consultant:Kk Tilting casting apparatus and casting method
CA2766281A1 (en) * 2012-01-26 2013-07-26 Peter Y. Inouye A two sleeve metal filling system for filling of injection sleeve with injection piston in the retracted position for inclined cold chamber die casting machines

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4365237B2 (en) * 2003-02-21 2009-11-18 関西ペイント株式会社 Paint supply method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531130A (en) * 1976-06-24 1978-01-07 Toshiba Machine Co Ltd Method and device for die casting
JPH0557416A (en) * 1991-08-29 1993-03-09 Chiyo Tex:Kk Die casting method
JP2004268082A (en) * 2003-03-07 2004-09-30 Fujino Gijutsu Consultant:Kk Tilting casting apparatus and casting method
CA2766281A1 (en) * 2012-01-26 2013-07-26 Peter Y. Inouye A two sleeve metal filling system for filling of injection sleeve with injection piston in the retracted position for inclined cold chamber die casting machines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113967730A (en) * 2021-10-25 2022-01-25 沈阳铸研科技有限公司 Casting method suitable for investment precision casting

Also Published As

Publication number Publication date
JP6383115B2 (en) 2018-08-29
JPWO2017068665A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP2004268082A (en) Tilting casting apparatus and casting method
JP3275052B2 (en) Vertical die casting method and equipment
JP6383115B2 (en) Injection casting apparatus and hot water supply method in the apparatus
JP5642256B1 (en) Hot chamber casting machine for aluminum alloy and hot chamber casting method using aluminum alloy as metal material
JP2004344976A (en) Vertical injection device using gravity feeding
JPH11333552A (en) Automatic molten metal supplying injection device
JP2013035008A (en) Die casting machine and die casting method
JP3842163B2 (en) Die casting apparatus and die casting method
JP7324576B2 (en) die casting machine
JP2003311389A (en) Method for casting metal and casting apparatus used therefor
JP5958207B2 (en) Die casting method
JP3039848B2 (en) Die casting method
JP5754700B2 (en) Molding machine
JP2004344956A (en) Device and method for die casting
JP2020151766A (en) Molten metal supply machine
JPS5855859B2 (en) Horizontal mold clamping, vertical mold die casting method and equipment
KR100913921B1 (en) A device for assembling the centering of submerged nozzle
JPH05161951A (en) Die casting apparatus
JP2012245525A (en) Die casting device and method
JP3906158B2 (en) Casting equipment
JPH10146663A (en) Vertical casting method and device thereof
JP5646378B2 (en) Tilt-type gravity casting equipment and tilt-type gravity casting method
JPH0716721A (en) Production of cast product with a small amount of oxide mixed
JPH0724562A (en) Production of cast product small in quantity of mixed oxide
KR20070115678A (en) Die casting method for preventing air pocket from forming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906671

Country of ref document: EP

Kind code of ref document: A1