WO2017068223A1 - Biocidas naturales de amplio espectro - Google Patents

Biocidas naturales de amplio espectro Download PDF

Info

Publication number
WO2017068223A1
WO2017068223A1 PCT/ES2016/070746 ES2016070746W WO2017068223A1 WO 2017068223 A1 WO2017068223 A1 WO 2017068223A1 ES 2016070746 W ES2016070746 W ES 2016070746W WO 2017068223 A1 WO2017068223 A1 WO 2017068223A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
fermentation product
fermentation
strain
Prior art date
Application number
PCT/ES2016/070746
Other languages
English (en)
French (fr)
Other versions
WO2017068223A8 (es
Inventor
Azucena GONZÁLEZ COLOMA
María Fe ANDRES YEVES
Carmen Elisa Diaz Hernandez
Matías REINA ARTILES
Rodney LACRET PIMIENTA
Raimundo Cabrera Perez
Cristina GIMENEZ MARIÑO
Nutan Kaushik
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad De La Laguna
The Energy And Resources Institute (Teri)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad De La Laguna, The Energy And Resources Institute (Teri) filed Critical Consejo Superior De Investigaciones Científicas
Priority to EP16805478.1A priority Critical patent/EP3366136A1/en
Priority to US15/769,674 priority patent/US20180312880A1/en
Priority to CA3002123A priority patent/CA3002123A1/en
Priority to BR112018007820-4A priority patent/BR112018007820A2/pt
Publication of WO2017068223A1 publication Critical patent/WO2017068223A1/es
Publication of WO2017068223A8 publication Critical patent/WO2017068223A8/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N35/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical
    • A01N35/06Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical containing keto or thioketo groups as part of a ring, e.g. cyclohexanone, quinone; Derivatives thereof, e.g. ketals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • A01N31/16Oxygen or sulfur directly attached to an aromatic ring system with two or more oxygen or sulfur atoms directly attached to the same aromatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/30Microbial fungi; Substances produced thereby or obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N2300/00Combinations or mixtures of active ingredients covered by classes A01N27/00 - A01N65/48 with other active or formulation relevant ingredients, e.g. specific carrier materials or surfactants, covered by classes A01N25/00 - A01N65/48
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/12Powders or granules
    • A01N25/14Powders or granules wettable

Definitions

  • the invention is within the field of agriculture, and more specifically, in the field of biocides comprising substances produced or extracted from
  • a fermentation product with a broad spectrum biocidal activity and a method of obtaining it is proposed.
  • the fermentation product is characterized by comprising at least one new compound of formula (I), which is also claimed, and the compound of formula (II) which gives the fermentation product its characteristic biocidal activity.
  • the invention also provides a particular strain of Stemphylium solani, and biocidal compositions comprising the fermentation product, the compound of formula (I) and / or the strain of the invention.
  • the invention also relates to the use of the fermentation product, of the compound of formula (I) and / or of the strain of the invention, either directly or through a biocidal composition comprising them, as biocides and a method of broad spectrum for the control of organisms harmful to plants.
  • Endophytic fungi are a polyphytic group with a high degree of diversity that is functionally characterized by their ability to inhabit plant tissues without causing apparent damage. Endophytic fungal colonization can contribute to the adaptation of the host plant to stress situations and in many cases the tolerance of the host plant to biotic stress has been correlated with the presence of fungal natural products (Aly et al. 2010. Funga! Diversity 41, 1-16).
  • the genus Stemphylium is composed of filamentous fungi and saprophytes of the Hifomicetes group that are widely distributed throughout the world, associated with decaying vegetation. In agriculture, Stemphylium species are responsible for diseases in many crops, to which they cause foliar damage, and are dispersed through the seeds.
  • the present invention provides in a first aspect a fermentation product comprising a compound of formula (I):
  • R is selected from H and OH, or an isomer, or a salt or a solvate thereof.
  • the present invention also provides a fermentation product of an endophytic fungus of the Stemphylium solani species with broad spectrum biocidal activity, characterized in that it comprises a compound of formula (I):
  • R is selected from H and OH, or an isomer, or a salt or a solvate thereof.
  • the invention provides the new compound of formula (I)
  • R is selected from H and OH, or an isomer, or a salt or a solvate thereof.
  • the invention provides a method of obtaining the fermentation product defined in the first aspect of the invention, which comprises (a) a fermentation step comprising culturing the fermenting microorganism in a suitable culture medium and under suitable conditions ; and optionally (b) one or more extraction stages.
  • the endophytic fungus that is used in the process of obtaining is S. solani strain Aa22 with deposit number CECT 20941.
  • the inventors of the present invention have proven that the fermentation product resulting from the process of the third aspect of the invention and comprising the compound of formula (I) and, optionally, the compound of formula ( II) has a manifestly improved activity (see Examples 4 to 6).
  • the invention provides a fermentation product, which is an extract comprising the compound of formula (I) as defined in the second aspect of the invention, obtainable by the method as defined in the third aspect of the invention.
  • the present invention provides a method of preparing a compound of formula (I) as defined in the second aspect of the invention, which comprises the step of isolating the compound of formula (I) from the fermentation product resulting from step (b), (i.1.), (i.2) or (c) defined below.
  • the present invention provides an isolated strain of the endophytic fungus of the Stemphylium solani species deposited in the Spanish Type Culture Collection with the deposit number CECT20941 or a mutant thereof that maintains the ability to produce the compound of formula ( I).
  • the present invention provides the use of a fermentation product as defined in the first aspect of the invention, or of the fermentation product as defined in the fourth aspect of the invention, or of the compound of general formula (I) as defined in the second aspect of the invention, or of the compound of formula (II) as defined below, or of the Stemphylium solani strain of the sixth aspect of the invention as a broad spectrum biocidal agent.
  • the invention relates to the use of the fermentation product, or of the compounds of formulas (I) or (II), isolated or in combination, or of the Stemphylium solani strain of the invention to make a composition broad spectrum biocide.
  • the invention provides a biocidal composition comprising the fermentation product as defined in the first aspect of the invention, or the fermentation product as defined in the fourth aspect of the invention, or the compound of formula ( I) as defined in the second aspect of the invention, or the compound of formula (II) as defined below, or the Stemphylium solani strain of the sixth aspect of the invention.
  • the invention provides the use of the fermentation product of the invention, or of the compound of the invention, or of a compound of formula (II) either in isolation or in combination, or of the Stemphylium solani strain of the invention to make a biocidal composition.
  • the invention relates to the use of the biocidal composition as a broad spectrum biocidal agent for the control of at least one category of harmful organisms that affect plants, and which are selected from insects - pest, fungi and nematodes. , preferably all of them simultaneously.
  • the invention provides a method of control of harmful organisms that affect plants, hereinafter method of control of the invention, which comprises administering an effective dose of the fermentation product as defined in the first aspect of the invention, or of the fermentation product as defined in the fourth aspect of the invention, or of the compound of formula (I) as defined in the second aspect of the invention, or of the compound of formula (II) as defined below, of the Stemphylium solani strain as defined in the sixth aspect of the invention, or of the biocidal composition as defined in the ninth aspect of the invention.
  • the technical problem that the present invention solves is the search for new natural products that are effective biocides.
  • the present inventors have identified a series of fermentation products, extracts and compounds that have a broad spectrum biocidal activity, which allows simultaneous control of several harmful organisms that affect plants. Therefore, the present invention is an effective alternative to synthetic chemical biocides.
  • the present invention is based on the discovery of a product of
  • the fermentation product preferably it is S. solani strain Aa22 with CECT 20941, and it can simultaneously comprise at least one compound of formula (I) and a compound of formula (II), which provide it with a surprising broad spectrum biocidal activity against phytopathogenic fungi, pest insects and the phytopathogenic nematode Meloidogyne javanica (see Examples 4 to 6).
  • the main technical advantages of the fermentation product, its use for the control of harmful organisms that affect plants and their process of obtaining, are listed below:
  • results generated are extrapolar to other fermentation products that comprise the compound of formula (I) and, optionally, the compound of formula (II).
  • the invention provides a fermentation product of a fermenting microorganism comprising a compound of formula (I):
  • R is selected from H and OH, or an isomer, or a salt or a solvate thereof.
  • “fermentation product” means a fermentation product that is the result of the action of a fermenting microorganism which, by growing in a suitable culture medium, it has the ability to synthesize at least one compound of formula (I).
  • the concept of "fermentation product” includes the product directly obtained from the fermentation process, as well as those obtained after subjecting the product resulting from the fermentation process to later stages of extraction, purification and / or concentration.
  • the fermentation product of the invention can be in crystalline form, as free compounds or as solvates. Solvation methods are generally known in the state of the art.
  • fertilizing microorganism means any microorganism, or combination of microorganisms, with the power to ferment and produce, during that process, a compound of formula (I).
  • “fermentation product” means a product that is the result of the action of an endophytic fungus of the species Stemphylum solani, which when grown on a culture medium has the ability to synthesize at least one compound of formula (I).
  • the endophytic fungus is S. solani strain Aa22 with CECT 20941.
  • the fermentation product can be a dry extract obtained by extraction with organic solvent prior filtration, or a lyophilisate.
  • the fermentation product comprises a compound of formula (la), or an isomer, a salt or a solvate of (la), and / or a compound of formula (Ib), or an isomer, a salt or a solvate of (Ib):
  • the fermentation product further comprises a compound of formula (II):
  • all the compounds included in the scope of the invention can include isomers, depending on the presence of multiple bonds, including optical isomers or enantiomers, depending on the presence of chiral centers.
  • the individual isomers, enantiomers or diastereoisomers and mixtures thereof fall within the scope of the present invention, that is, the term isomer also refers to any mixture of isomers, such as diastereomers, racemic, etc., even their optically isomers. assets or mixtures in different proportions thereof.
  • the individual enantiomers or diastereoisomers, as well as mixtures thereof, can be separated by conventional techniques.
  • the fermentation product is a fermentation extract.
  • extract of fermentation is used with its conventional meaning to refer to preparations of liquid, semi-solid or solid consistency, which are concentrated or not concentrated, obtained by subjecting the product obtained from the fermentation process to one or more extraction stages
  • Appropriate means for carrying out the extraction steps include, by example, the use of organic solvents, microwaves or fluid extraction
  • the fermentation product is free of the fermenting microorganism.
  • the term "fermentation microorganism free fermentation product” means the product resulting from subjecting the product from the fermentation and / or purification or concentration stage to a stage of elimination of the microorganism, so that the The resulting fermentation product lacks viable cells, mycelia or endospores.
  • the fermentation product comprises the inactivated fermenting microorganism.
  • the concept "fermentation product comprising the inactivated fermenting microorganism” refers to a fermentation product according to the first aspect of the invention in which the microorganism has been inactivated at a stage subsequent to the fermentation stage.
  • the term "inactivated” means that the microorganism is not able to form colonies.
  • the inactivated microorganisms have the cell membrane intact or broken.
  • the first aspect of the invention optionally in combination with any of the embodiments provided above and below, the
  • Fermenting microorganism is a fungus.
  • Fermenting microorganism is an endophyte fungus.
  • Fermenting microorganism is an endophytic fungus of the genus Stemphylium.
  • Termentator microorganism is an endophyte fungus of the Stemphylium solani species.
  • Termentator microorganism is the strain of Stemphylium solani CECT 20941.
  • the invention relates to a compound of formula (I):
  • R is selected from H and OH, or an isomer, a salt or a solvate thereof, which has a broad spectrum biocidal activity, hereinafter comprised of the invention, and which is comprised in the fermentation product of the invention, either alone or in combination with at least the compound of formula (II) as defined herein.
  • the invention provides a method of obtaining the fermentation product defined in the first aspect of the invention, which comprises (a) a fermentation stage comprising culturing the fermenting microorganism in a suitable culture medium and under suitable conditions; and optionally (b) one or more extraction stages.
  • the process of the invention allows the fermentation product of the invention to comprise a compound of formula (I) where R is H and / or another compound of formula (I) where R is OH, or an isomer, or a salt or solvate thereof.
  • the process of the invention achieves that additionally, the fermentation product of the invention comprises the compound of formula (II).
  • the person skilled in the art can design the most suitable culture medium for the particular fermenting microorganism that has the ability to produce the compound of formula (la), that of formula (Ib ), either the ability to produce both (la) and (Ib), or the ability to produce (la), (Ib), or (la) and (Ib), together with the compound of formula (II).
  • the microorganism requires a carbon source from which to extract the energy necessary for its metabolism.
  • the most common sources of carbon are carbohydrates, such as starch and sugars. In the search for new carbon sources, the use of lignocellulosic resources (cereal straws, trees and their waste, etc.), the main source of renewable biomass, is being studied recently.
  • Nitrogen in particular, must be provided in varying proportions in the form of protein nitrogen obtained from by-products of the corn industry, yeast extract or others, and not protein (ammonium salts, urea, etc.). The other two elements are delivered as phosphate and sulfate salts, respectively.
  • micronutrients vitamins, iron, cobalt, copper, zinc, etc.
  • the fermentation can be of several types, including liquid fermentations, solid state fermentation (FES), or submerged solid fermentation (FSS).
  • the person skilled in the art is able to adjust the main variables that are temperature, acidity and oxygen pressure, which are determined by the very nature of the microorganism.
  • the fermentation step is carried out in a culture medium comprising the nutrients necessary for the growth of the fungus (including sources of carbon, nitrogen, phosphorus, sulfur and micronutrients (vitamins , iron, cobalt, copper, zinc, etc)).
  • nutrients necessary for the growth of the fungus including sources of carbon, nitrogen, phosphorus, sulfur and micronutrients (vitamins , iron, cobalt, copper, zinc, etc)).
  • the fermentation stage is carried out in a culture medium comprising the nutrients necessary for the growth of the fungus (including carbon sources, nitrogen , phosphorus, sulfur and micronutrients (vitamins, iron, cobalt, copper, zinc, etc)).
  • solid plant product referred to in this embodiment of the third aspect of the invention, is understood a part of a plant (fruit, seed (including cereal grains such as rice, corn, wheat, etc.), leaves , stems, roots, tubers, derived products (flour, bran, pulp), as well as by-products (bagasse, straw, peels, husks, pulp, biomass, liquor, mucilage, alperujo, fiber, lignocellulosic residues).
  • the fermentation step is carried out in the presence of a solid vegetable product that is a cereal that can be whole (ie, as is isolated from nature) or processed (by example ground).
  • a cereal that can be whole (ie, as is isolated from nature) or processed (by example ground).
  • Illustrative and non-limiting examples of cereals include rice.
  • the quantity and treatment to which the cereal must be submitted prior to its use in cultivation, are routine acts for the person skilled in the art.
  • Fermentation is carried out at room temperature (ie, at a temperature between 20-27 ° C).
  • the fermentation step is carried out at room temperature (ie, at a temperature between 24-27 ° C).
  • step (b) of extracting the fermentation product is carried out by extraction with suitable organic solvents.
  • solvent there are three types of solvent, depending on their polarity: (a) protics (for example water, carboxylic acids, alcohols, amines), which are characterized by having a functional group capable of yielding protons (for example OH, NH, SH) , as well as the ability to form hydrogen bonds; (b) polar aprotic (for example DMSO, DMF, HMPA, nitriles, ketones, nitro compounds) which are characterized by lacking functional groups capable of yielding protons and having a high dielectric constant; and (c) apolar aprotic (for example (aliphatic, aromatic, halogenated), ethers, esters, alkyl halides) which are characterized by lacking functional groups capable of yielding protons and a low dielectric constant.
  • protics for example water, carboxylic acids, alcohols, amines
  • polar aprotic for example DMSO, DMF, HMPA, nitriles, ketones, nitro compounds
  • the solvent or solvent mixtures that are used to carry out the extraction are of the aprotic polar type.
  • the organic solvent with which the extraction of the fermentation product is carried out is with ethyl acetate.
  • the method comprises a stage prior to step (a) in which the fermenting microorganism is grown in a suitable culture medium until get an optimal amount of mycelium formed to start stage (a).
  • the method further comprises a step (i.1), in which the fermenting microorganism is eliminated.
  • the removal of the microorganism from the fermentation product can be carried out using well established techniques, such as ultracentrifugation or filtration.
  • the method further comprises a step (i.2.), In which the fermenting microorganism is inactivated.
  • the inactivation of the microorganism can be carried out using techniques well known to those skilled in the art, such as cell lysis.
  • the process comprises a subsequent step (d) of purification of the fermentation product resulting from step (b), (i.1. ) or (i.2.).
  • step (d) of purification is carried out by chromatographic techniques wherein the eluate corresponds to the purified fraction of the fermentation product of the invention.
  • the eluent for carrying out the chromatographic separation may be organic solvents of increasing polarities (for example, hexane, dichloromethane, ethyl acetate, acetone, methanol, etc.) or combinations thereof.
  • the method further comprises a drying stage of the product resulting from step (b), (i.1.), (I. 2.), and / or (d).
  • the drying step of the fermentation product comprises the extraction with organic solvent and its
  • organic solvents examples include dichloromethane, ethyl ether and, preferably, ethyl acetate.
  • the fermenting microorganism is a fungus.
  • the fermenting microorganism is an endophytic fungus.
  • the type of fungus and its interaction with the host plant confers certain characteristics that allow the more or less favorable production of certain compounds.
  • the microorganism is a species of Stemphylum solani, which due to its interaction with the host plant, is efficient in the production of the compounds of formula (I) and (II).
  • the fermenting microorganism is S. solani strain Aa22 isolated from Artemisia leaves. absinthium deposited on September 25, 2015 in the Spanish Type Crops Collection with CECT 20941, following the Budapest Treaty on
  • Strains of S. solani can be isolated from other plants such as, for example, Arabidopsis thaliana,
  • Examples of culture media that allow fermentation by the fungi of the Stemphyium solani species are YMB (broth yeast extract and malt extract), the media cited in the references Molitor et al. (2012. J. Nat. Prod. 75, 1265-1269) and Buckel et al. (2013. Phytochemistry 89, 96-103); those cited in document W02002017937 A1 or any other commercial culture medium for fungi
  • the endophytic fungus is the Aa22 strain of Stemphyium solani isolated from plant material of Artemisia absinthium deposited in the Spanish Type Culture Collection with CECT 20941 on September 25, 2015, grown using a YMB.
  • the endophyte fungus is the Aa22 strain of Stemphyium solani isolated from plant material of Artemisia absinthium deposited in the Spanish Type Culture Collection with CECT 20941 on September 25, 2015, grown using a YMB at a stage prior to fermentation
  • the endophytic fungus is the Aa22 strain of Stemphyium solani isolated from plant material of Artemisia absinthium deposited in the Spanish Type Culture Collection with CECT 20941 dated September 25, 2015 which (1) is grown in a YMB culture medium, (2) is subsequently subjected to fermentation in the presence of rice, and (3) the product resulting from fermentation is subjected to an extraction with a suitable organic solvent. Stage (1) is carried out until the fungus is brought to the optimum stage for the inoculation of stage (2) and the production, in the desired amount in stage (2), of the compound of formula (I) and, optionally, of the compound of formula (II).
  • Step (3) can be carried out in the presence of a solvent or mixture of aprotic polar solvents. In another embodiment, step (3) is carried out in the presence of ethyl acetate.
  • the endophytic fungus is the Aa22 strain of Stemphylum solani isolated from plant material of Artemisia absinthium deposited in the Spanish Type Culture Collection with CECT 20941 dated September 25, 2015 (1) is grown in YMB, then (2) is fermented in the presence of rice, and (3) the product resulting from the
  • Fermentation is subjected to 1, 2 or 3 extraction steps with a suitable organic solvent. If two or three extraction steps are carried out, each of them is carried out using the same solvent or different solvents. In another embodiment of step (3), each extraction stage is carried out with a solvent or mixture of aprotic polar solvents. In another embodiment of step (3), each extraction step is carried out in the presence of ethyl acetate.
  • the method is one in which the endophytic fungus is the Aa22 strain of Stemphylum solani isolated from plant material of Artemisia absinthium deposited in the Spanish Type Culture Collection with CECT 20941 on September 25, 2015 and the fungus culture is carried out in a YMB medium, the subsequent fermentation in the presence of rice, and the extraction of the product resulting from the fermentation comprising 3 extraction steps with a suitable organic solvent.
  • the endophytic fungus is the Aa22 strain of Stemphylum solani isolated from plant material of Artemisia absinthium deposited in the Spanish Type Culture Collection with CECT 20941 on September 25, 2015 and the fungus culture is carried out in a YMB medium, the subsequent fermentation in the presence of rice, and the extraction of the product resulting from the fermentation comprising 3 extraction steps with a suitable organic solvent.
  • the procedure is one in which the endophytic fungus is the Aa22 strain of Stemphylum solani isolated from plant material of Artemisia absinthium deposited in the Spanish Type Culture Collection with CECT 20941 on September 25, 2015 and is It carries out the cultivation of the fungus in a YMB medium, the subsequent fermentation in the presence of rice, and the extraction of the product resulting from the fermentation comprising 3 extraction stages with a suitable aprotic polar solvent.
  • the method is one in which the endophytic fungus is Stemphylum solani strain Aa22 isolated from plant material of Artemisia absinthium deposited in the Spanish Type Culture Collection with CECT 20941 on September 25, 2015 and fungus culture is carried out in a YMB medium, subsequent fermentation in the presence of rice, and extraction of the product resulting from the fermentation comprising 3 stages of extraction with ethyl acetate.
  • the present invention provides a fermentation product comprising the compound of formula (I) as defined in the second aspect of the invention, obtainable by the process as defined in the third aspect of the invention.
  • the fermentation product further comprises the compound of formula (II) as defined above.
  • the present invention provides a method of preparing a compound of formula (I) as defined in the second aspect of the invention or of the compound of formula (II) as defined above, comprising the isolation step of the compound of formula (I) or of the compound of formula (II) from the product resulting from step (b), (i. l), (i.2) or (d) defined above.
  • isolation of compounds (I) and (II) can be carried out by fractionation techniques, including chromatography.
  • Fractionation techniques known to any person skilled in the art, and which make it possible to obtain the compounds included in the scope of the invention, are for example and without limitation, liquid vacuum chromatography (VLC), column chromatography (CC) , column chromatography (CC) using different solid phases (Silica Gel, Sephadex LH-20) and high performance liquid chromatography (HPLC), eluting with different polarity gradients by different combinations of organic solvents.
  • VLC liquid vacuum chromatography
  • CC column chromatography
  • HPLC high performance liquid chromatography
  • the isolation of the compounds (I) and (II) is carried out by chromatography. In another embodiment of the fifth aspect of the invention, the isolation of compounds (I) and (II) is carried out by silica gel column chromatography, using solvent mixtures of increasing polarity. In other embodiment of the fifth aspect of the invention, the isolation of the compounds (I) and (II) is carried out by chromatographic separation on a silica gel column of the product resulting from step (b), (i.1.) or ( i.2.).), using solvent mixtures of increasing polarity of n-hexane / ethyl acetate and acetone.
  • chromatographic separation is carried out on a silica gel column using increasing polarity gradients from n-hexane / ethyl acetate 90: 10 (v / v) to 50:50 (v / v).
  • silica gel chromatography is carried out using increasing polarity gradients from n-hexane / ethyl acetate 90: 10 (v / v) to 60:40 (v / v)).
  • the extract loaded on the column is subjected to an elution with 100% acetone.
  • v / v means the volume ratio of the solvents that constitute the mobile phase of the chromatography necessary to separate the fractions with the compounds of formula (I) and / or (II).
  • sica gel column chromatographic separation using increasing polarity mixtures of n-hexane / ethyl acetate, acetone and / or methanol / water comprises carrying out the separation on a silica gel chromatography column using n-hexane / ethyl acetate, acetone or methanol / water, or by performing the elution at various stages, combining the eluents.
  • the person skilled in the art, making use of his knowledge can optimize relationships between the different solvents and can establish the order of the eluents according to the nature of the molecule to elute.
  • the process is to obtain a compound of formula (la) comprising (i) subjecting the fermentation product resulting from step (b) to chromatographic separation on silica gel column using increasing polarity mixtures of n-hexane / ethyl acetate and, subsequently, acetone (ii) collect the fraction eluted with acetone, (iii) subject the eluate resulting from step (ii) to silica gel chromatography with mixtures of increasing polarity of n-hexane /ethyl acetate; and (iv) collect the less polar fractions.
  • step (i) comprises carrying out a silica gel chromatography is carried out using increasing polarity gradients from n-hexane / ethyl acetate 90: 10 (v / v) to 60: 40
  • step (i) it comprises, after elution with hexane / ethyl acetate, elution with 100% acetone.
  • step (iii) comprises subjecting the fraction eluted with acetone to separation by silica gel chromatography using increasing polarity gradients from n-hexane / ethyl acetate 80:20 (v / v) to 10 : 90% (v / v) and, optionally, subject to a drying stage.
  • the process is to obtain a compound of formula (Ib) comprising step (v) subjecting the fermentation product resulting from step (b) to chromatographic separation on silica gel column using increasing mixtures in n-hexane / ethyl acetate polarity and, subsequently, acetone (vi) collect the eluted fraction with acetone, and (vii) subject the eluate resulting from step (vi) to silica gel chromatography with mixtures of increasing polarity of n-hexane / ethyl acetate; and (viii) collect the most polar fractions and subject them to molecular exclusion chromatography (Sephadex LH-20) with n-hexane / dichloromethane / methanol (for example at a 2: 1: 1 ratio (v: v: v)).
  • step (v) subjecting the fermentation product resulting from step (b) to chromatographic separation on silica gel column using increasing mixtures in n
  • step (v) comprises conducting a silica gel chromatography is carried out using increasing polarity gradients from n-hexane / ethyl acetate 90:10 (v / v) to 60: 40 (v / v).
  • step (v) comprises, after elution with hexane / ethyl acetate, elution with 100% acetone.
  • step (iii) comprises subjecting the fraction eluted with acetone to separation by silica gel chromatography using increasing polarity gradients from n-hexane / ethyl acetate 80:20 (v / v) to 10 : 90 (v / v).
  • step (iii) comprises subjecting the fraction eluted with acetone to separation by silica gel chromatography using increasing polarity gradients from n-hexane / ethyl acetate 50:50 (v / v) to 20 : 80 (v / v) and, optionally, subject to a drying stage.
  • the process is to obtain a compound of formula (II) comprising step (ix) subjecting the fermentation product resulting from step (b) to silica gel column chromatography using increasing mixtures in polarity of n-hexane / ethyl acetate from 90:10 (v / v) to 60:40; (x) subjecting the eluate resulting from step (ix) to silica gel column chromatography with mixtures of increasing polarity of n-hexane / acetone from 90: 10 (v / v) to 100% acetone; (xi) collect the most polar fraction (corresponding to the fractions eluted at 100% acetone) and, optionally, dry.
  • the process is to obtain a compound of formula (II) comprising step (ix) subjecting the fermentation product resulting from step (b) to silica gel column chromatography using increasing mixtures in polarity of n-hexane / ethyl acetate from 90: 10 (v / v) to 60:40; (x) subjecting the eluate resulting from step (ix) to silica gel column chromatography with mixtures of increasing polarity of n-hexane / acetone from 98: 2 (v / v) to 90: 10 acetone; (xi) collect the eluted fractions at 94: 6 to 92: 8 (v / v) of n-hexane / acetone and subject them to silica gel column chromatography with mixtures of increasing polarity of n-hexane / dichloromethane, from 50 : 50 (v / v) at 100% dichloromethane,
  • the process is to obtain a compound of formula (II) comprising step (ix) subjecting the fermentation product resulting from step (b) to silica gel column chromatography using increasing mixtures in polarity of n-hexane / ethyl acetate from 90: 10 (v / v) to 60:40 (xiii); subject the eluate resulting from elution with n-hexane / ethyl acetate 80:20 (v / v) to silica gel column chromatography with a mixture of n-hexane / dichloromethane / methanol (50:25:25 (v / v)); (xiv) collect the eluate; and optionally, subject to a drying step
  • the process comprises an additional stage of purification, concentration and / or drying of the fractions collected in steps (iv), (viii), (xi), (xii) and (xiv) .
  • Purification, concentration and drying techniques are well known to those skilled in the art and have also been referred to above herein.
  • the present invention provides an isolated strain of the endophytic fungus of the Stemphylium solani species deposited in the Spanish Type Culture Collection with the deposit number CECT20941 or a mutant thereof that maintains the ability to produce the compound of formula ( I).
  • mutant means a fungus that is obtained from the strain
  • CECT20941 of the invention and characterized by maintaining the production capacity of the compound of formula (I) of the invention and, optionally, of the compound of formula (II).
  • a mutant of CECT20941 of Stemphylium solani is understood as a "variant" CECT20941 of Stemphylium solani.
  • mutants that retain the characteristics and advantages of the strain of the invention can be obtained routinely, for example by spontaneous mutagenesis or directed mutation, using the strain of the invention as a starting material.
  • the present invention provides the use of a fermentation product as defined in the first aspect of the invention, or of the fermentation product as defined in the fourth aspect of the invention, or of the compound of general formula ( I) as defined in the second aspect of the invention, or of the compound of formula (II) as defined below, or of the Stemphylium solani strain of the sixth aspect of the invention as a biocidal agent.
  • the present invention provides fermentation products and compounds (and consequently the deposited strain that also produces them) that give rise to a broad spectrum biocidal activity.
  • Broad spectrum biocidal activity means the ability to simultaneously control more than one different category of organisms harmful to plants. Said control includes the prevention of the action or the direct destruction of said organisms harmful to public health and also to
  • Examples of categories of organisms harmful to plants include, but are not limited to, pest insects, fungi or nematodes.
  • the pest insects that are included in the scope of this invention are herbivorous pest insects with different trophic adaptations, whether chewing or sucking (aphids), and which can have a high incidence on horticultural crops causing serious economic losses, develop resistance to synthetic insecticides and present virus transmission capacity.
  • herbivorous pest insects with different trophic adaptations are examples, by way of illustration and not limitation, of herbivorous pest insects with different trophic adaptations, are examples, by way of illustration and not limitation, of herbivorous pest insects with different trophic adaptations, are
  • the activity against these herbivorous pest insects can be determined by different types of bioassays that include anti-food activity (inhibition of feeding and / or settlement in the case of aphids), repellent or toxic, among others.
  • the fungi belong to species of phytopathogenic fungi. Examples, by way of illustration and not limitation, of fungi against which the fermented product of the invention is effective are Fusarium oxysporum, Fusarium moniliforme, Fusarium solani and Botrytis cinerea.
  • the activity against fungi can be determined, for example, by assays of inhibition of mycelium growth in plaque.
  • the nematodes that are included in the scope of the invention are root nodule forming nematodes (Meloidogyne sp).
  • An example of a nodule-forming nematode is the Meloidogine javanica, a polyphagous species, capable of parasitizing more than 3,000 species of crop plants, including extensive, horticultural and fruit crops, seriously affecting production (Agrios. 2005. Plant Pathology, Fifth edition, Elsevier / Academic, Amsterdam), and causing losses
  • nematicidal activity can be determined, for example, by determining the percentage of infective juveniles (J2) killed after 72 hours after application of the fermentation product, compound of formula (I) , strain or biocidal composition of the invention.
  • the invention provides a biocidal composition comprising the fermentation product as defined in the first aspect of the invention, or the fermentation product as defined in the fourth aspect of the invention, or the compound of formula ( I) as defined in the second aspect of the invention, or the compound of formula (II) as defined below, or the Stemphylium solani strain of the sixth aspect of the invention.
  • the biocidal composition of the invention can additionally comprise various vehicles and agents that facilitate its conservation, handling and application.
  • phytosanitary products solid vehicles, liquid vehicles, gaseous vehicles, etc. are usually used, and, if necessary, surfactants and auxiliary agents for the formulation of phytosanitary compositions such as, for example, an additive for formulating forms such as emulsifiable concentrates, wettable powders, flowable liquids (eg, water suspension, water emulsion, etc.), powders, aerosols, ULV and the like.
  • surfactants and auxiliary agents for the formulation of phytosanitary compositions such as, for example, an additive for formulating forms such as emulsifiable concentrates, wettable powders, flowable liquids (eg, water suspension, water emulsion, etc.), powders, aerosols, ULV and the like.
  • solid carriers examples include fine powders or clay granules (eg kaolin clay, diatomaceous earth, synthetic hydrated silicon oxide, bentonite, Fubasami clay, acid clay, etc.), talc, ceramics and other inorganic minerals (eg, sericite, quartz, sulfur, active carbon, calcium carbonate, hydrated silica, etc.), commercial fertilizers (eg, ammonium sulfate, ammonium phosphate, ammonium nitrate, urea, ammonium chloride, etc.) and Similar.
  • clay granules eg kaolin clay, diatomaceous earth, synthetic hydrated silicon oxide, bentonite, Fubasami clay, acid clay, etc.
  • talc ceramics and other inorganic minerals
  • ceramics and other inorganic minerals eg, sericite, quartz, sulfur, active carbon, calcium carbonate, hydrated silica, etc.
  • commercial fertilizers eg, ammonium sulfate, ammonium phosphate
  • liquid carriers examples include water, alcohols (eg, methanol, ethanol, etc.), ketones (eg, acetone, methyl ethyl ketone, etc.), aromatic hydrocarbons (eg, benzene, toluene , xylene, ethylbenzene, methylnaphthalene, etc.), aliphatic hydrocarbons (eg hexane, cyclohexane, kerosene, gas oil, etc.), esters (eg, ethyl acetate, butyl acetate, etc.), nitriles (eg, acetonitrile, isobutyronitrile , etc.), ethers (eg, diisopropyl ether, dioxane etc.), acid amides (eg, N, N-dimethylformamide, ⁇ , ⁇ -dimethylacetamide, etc.), halogenated hydrocarbons
  • alcohols eg,
  • gaseous vehicle examples include spray agent, including flon gas, butane gas, LPG (liquid petroleum gas), dimethyl ether, carbon dioxide gas and the like.
  • spray agent including flon gas, butane gas, LPG (liquid petroleum gas), dimethyl ether, carbon dioxide gas and the like.
  • surfactant examples include alkyl sulfates, alkyl sulfonate salts, alkyl aryl sulfonates, alkyl aryl esters, polyoxyethylene compounds thereof, polyethylene glycol esters, polyhydric alcohol esters, derivatives of sugar alcohol and the like.
  • auxiliary agent for the formulation as fixing agent and dispersion agent included in the invention examples include casein, gelatin, polysaccharides (eg, starch powder, gum arabic, cellulose derivative, alginic acid, etc.), derivatives of lignin, bentonite, sugars, synthetic water-soluble polymers (eg, vinyl polyol, vinyl polypyrrolidone, acrylic polyacids, etc.) and the like.
  • stabilizers examples include PAP (isopropyl acid phosphate), BHT (2,6-di-tert-butyl-4-methylphenol), BHA (mixture of 2-tert-butyl-4- methoxyphenol and 3-tert-butyl-4-methoxyphenol), vegetable oils, mineral oils, surfactants, fatty acids or esters thereof and the like.
  • the fermentation product of the invention, the compound of the invention, the compound of general formula (II) and the biocidal composition of the invention can be used in conjunction with at least one additional active ingredient.
  • additional active ingredient are nematicides, insecticides, acaricides, fungicides, herbicides, plant growth regulators, synergists, fertilizers, soil conditioners and animal baits.
  • the present invention provides the use of the fermentation product of the invention, or of the compound of the invention, or of a compound of formula (II) either in isolation or in combination, to make a biocidal composition.
  • the invention relates to the use as a broad-spectrum biocidal agent for the control of harmful organisms, which affect plants, hereinafter use of the invention, the fermentation product of the invention, or the compound of the invention.
  • invention of a compound of formula (II), of the strain of the invention, or of the biocidal composition of the invention, either in isolation or in combination.
  • the use of the invention is simultaneously effective against more than one category of harmful organisms, which are selected from pest insects, fungi and at least one nematode.
  • the use of the invention as a broad spectrum biocidal agent comprises at least the fermentation product of the invention, the compound (I) of the invention, a compound of formula (II), or the strain of the invention and is simultaneously active against pest insects and fungi.
  • the use of the invention as a broad spectrum biocidal agent comprises at least the fermentation product of the invention, the compound
  • the use of the invention comprises at least the fermentation product as defined in the first and fourth aspects, and is active
  • the use of the invention comprises at least one compound of formula (I) and is simultaneously active against pest insects, fungi and at least one nematode. In another particular embodiment, the use of the invention comprises at least one compound of formula (la) and is simultaneously active against pest insects, fungi and at least one nematode.
  • the use of the invention comprises the compound of formula
  • the invention relates to a method of control of broad spectrum of harmful organisms affecting plants, hereinafter method of control of the invention, which comprises administering an effective dose of the biocidal composition of the invention, or of the fermentation product of the invention, or of the compound of the invention, of a compound of formula (II), or of the strain of the invention, either in isolation or in combination, to the plant or substrate (understood as the material that serves as a "seat" for a plant).
  • the control method of the invention is simultaneously effective against more than one category of harmful organisms, which are selected from pest insects, fungi and at least one nematode.
  • control method of the invention is active.
  • control method of the invention is active.
  • the application can be directly sprayed where the harmful organism is located (either in the plant, or in the substrate).
  • the "effective dose” is the amount that shows efficacy in the control of harmful organisms.
  • the person skilled in the art can routinely determine the effective dose. Factors that determine the amount necessary to apply are: (a) if the biocidal composition of the invention is used, or the fermentation product of the invention, or the compound (I) of the invention, the strain or a compound of formula ( II), either in isolation or in combination, (b) the type of formulation, (c) time, (d) where and how it is applied, (e) type of harmful organism that affects the plant and (f ) of the degree of damage.
  • control method is a preventive method, that is, the fermentation product, compound (I), compound (II), strain or biocidal composition is applied in the substrate or in those areas of the plant that are those that colonize the harmful organisms, said application being carried out before the harmful organisms have started the damage to the plant.
  • control method is a treatment method, that is to say that the fermentation product, compound (I), compound (II) strain or biocidal composition is applied in those areas of the plant already damaged by colonization by harmful organisms.
  • Example 1 Isolation and identification of the Aa22 strain of the endophyte S fungus.
  • the Aa22 strain of the endophyte fungus S. solani was isolated from Artemisia absinthium leaves collected in Terceira (Azores Islands, Macaronesia region). The fresh plant material was superficially sterilized with sodium hypochlorite (65%), ethanol (75%) and sterile distilled water. Small samples of explants (leaves and stems) were incubated at 27 ° C in the dark in two culture media (PDA and YMB) in petri dishes with 50 mg / l of antibiotic to prevent contamination. The pure Aa22 strain of S. solani was obtained by individually isolating a colony grown in YMB medium and replicated under the same conditions for maintenance.
  • the morphological identification of the fungus strain was performed under a microscope according to the characteristics of the mycelium, spores and reproductive structures, staining small samples of the isolated colonies with methylene blue. Likewise, its identification was carried out at the molecular level with the amplification (PCR) and sequencing of the ribosomal ITS region of the rDNA extracted from a sample of the mycelium (Arenal et al. 2000. Mycological Research 104, 2000, 301-303; Giménez 2006. Bioactive products of Canarian plants and their endophytic fungi: detection of activity and use in the control of pests and agricultural diseases Doctoral thesis, University of La Website).
  • the ITS1-5.8S-ITS2 sequence of the rDNA was compared with those published in the NCBI (National Center for Biotechnology Information) databases (GenBank accession number JF913269.1). Once the Aa22 strain of the S. solani endophyte fungus was identified, it was deposited in the Spanish Type Culture Collection (CECT) on September 25, 2015, corresponding to the accession number CECT 20941, following the Budapest Treaty on International Recognition of the Deposit of Microorganisms for the purposes of the Patent Procedure.
  • Example 2 Obtaining the fermentation product of the Aa22 strain of S. solani
  • the 1 H and 13 C NMR spectra of the compounds identified in the different fractions of the crude extract were recorded in Bruker Advance and AMX-500 spectrometers, at 400 and 500 MHz for 1 H and at 100 and 125 MHz for 13 C respectively.
  • the products were dissolved in deuterochloroform (CDCI 3 ) containing tetramethylsilane (TMS) as the internal reference standard.
  • TMS tetramethylsilane
  • the multiplicity of the 13 C signals were determined with broadband decoupling experiments (DEPT).
  • the two-dimensional (2D) programs used in the NMR experiments (COZY, NOESY, HSQC and HMBC) were those provided by Bruker.
  • the high and low resolution mass spectra were recorded on a Micromass Autospec® spectrometer using the electronic impact technique (IE-MS) at 70 eV and a temperature of 220 ° C.
  • IE-MS electronic impact technique
  • Preparative and semi-preparative chromatographs were carried out in a flash liquid chromatography equipment (Flash Master Personal, Jones Chromatography) on silica columns (Isolute flash silica, 20 g / 70 mL, International Sorbent Technology Ltd. Arlington, USA).
  • VLC Vacuum
  • CC column
  • silica gel 0.025-0.04 and 0.040-0.015 mm silica gel 0.025-0.04 and 0.040-0.015 mm
  • Pharmacia Fine Chemicals Sephadex LH-20 molecular exclusion chromatography
  • the crude extract was analyzed by LC-MS.
  • VLC liquid vacuum chromatography
  • the H2 fraction (n-hexane / AcOEt, 5: 1, 0.575 g) was column chromatographed (CC) with silica gel using n-hexane / acetone mixtures (2-10%). Once the most polar fraction was identified, 42 mg of stemfol were obtained by drying it in a rotary evaporator (Stodola et al. 1973. Phytochemistry 12, 1797-1798, Marumo et al. 1985. Agrie. Biol.
  • the H6 fraction (100% acetone, 0.452 g) was chromatographed on a silica gel CC eluted with increasing polarity mixtures of n-hexane / ethyl acetate 20-100% (80:20 (v / v) at 100% of ethyl acetate).
  • the stemfol was isolated from the crude extract as a white solid.
  • the high resolution mass spectrum showed a molecular ion at 236.1772 miz (caled. 236.1776) that was in accordance with molecular formula C15H24O2.
  • the absorption bands in the IR spectrum at 3300 and 1630 errf 1 indicated the presence of hydroxyl groups and double bonds, respectively.
  • Its 1 H NMR spectrum showed characteristic signals of two alkyl chains (butyl and n-pentyl), the signal of a singlet that integrated two protons at ⁇ 6.22 (H-4, H-6) and two hydroxy groups at ⁇ 4.62 (2H, s, OH).
  • the 13 C NMR spectrum showed twelve signals corresponding to a methyl group, seven methylenes, a methine group and three quaternary carbons, which agreed with the correlations observed in the HSQC experiment.
  • the signals at ⁇ 108.1, 1 14.1, 142.1 and 154.4 due to aromatic carbons confirmed the presence of the phenyl 1, 3-dihydroxy-2,5-tetrasustiuido group.
  • botryosum (Marumo et al. 1985. Agrie. Biol. Chem. 49, 1521-1522). Your data
  • the stemfolone A was isolated from the crude extract as a brown amorphous solid. Its molecular formula was determined as Ci 5 H 2 603 ([M] + , m / z 254.1888) (caled. 254.1882) by high resolution mass spectrometry. The IR spectrum showed absorption bands at 3443, 1673 and 1650 cm “1 attributable to hydroxyl groups, carbonyl groups and double bonds, respectively.
  • the 13 C NMR spectrum showed the presence of fifteen signals that were assigned to two methyl, eight methyl, two methyl and three quaternary carbons, according to an HSQC experiment.
  • the resonances at ⁇ 73.9 (C-5) and ⁇ 79.6 (C-6) indicated the existence of two carbon atoms attached to oxygen.
  • Also noteworthy in this spectrum are the chemical shifts at ⁇ 122.5 (C-2) and 164.2 (C-3) due to carbons of a double bond attached to an electron acceptor group and the signal at ⁇ 201.3 (C-1) of a carbonyl group.
  • the location of the different functional groups was established based on the
  • the stemfolone B was isolated from the crude extract as a brown amorphous solid.
  • the molecular formula was determined as Ci 5 H 26 0 4 from the molecular ion am / z 270.1833 (caled. 270.1831) in the high resolution mass spectrum.
  • the infrared spectrum absorptions at 3418, 1673, 1651 cm “1 indicated the presence of hydroxyl groups, carbonyl groups and double bonds, respectively.
  • signals similar to those of stemfolone A. were observed.
  • Example 4 Activity against pest insects The breeding and maintenance of insects was carried out in a temperature controlled chamber at 24 + 1 ° C, 60-70% relative humidity and a photoperiod of 16: 8 hours (light: darkness). The larvae of S. littoralis were maintained on a semi-synthetic diet (Poitut and Bues. 1970. Ann. Zool. Ecol. Anim. 2, 79-91) and aphids M. persicae and
  • Rhopalosiphum padi on its host plants pepper -Capsicum annum L.- and barley -Hordeum vulgare L.- respectively.
  • the trials of anti-food activity were performed with newly emerged larvae of the sixth stage of S. littoralis and aphid adult aphids.
  • the upper surface of leaf discs (1.0 cm 2 ) of pepper (Capsicum annum L.) were treated with 10 ⁇ of a solution (10 mg / ml for extracts and 5 mg / ml for pure products).
  • Each test consisted of 5 Petri dishes with two larvae per plate (S. littoralis) or twenty boxes (2x2 cm) with ten aphids of M. persicae or R.
  • Compounds with a Fl / SI> 70% were tested in a dose-response experiment to calculate their relative potency (EC 50 , is the effective dose for a 50% reduction in feed).
  • the nematode population (M. javanica) was kept in growth chambers on tomato plants - Lycopersicon esculentum (var. Marmande) - at 25 ° C and a relative humidity of 70%. The tests were performed according to the methodology described for M.
  • the phytotoxic activity of the crude extract, fractions and pure compounds was evaluated against Lactuca sativa Maria seeds (Fito, Spain)
  • the experiments were carried out in 12-well plates (Falcon), applying 20 ⁇ (10 ⁇ 9 / ⁇ ) on 2.5 cm diameter paper discs placed at the bottom of each well. 500 ⁇ of distilled water, 10/5 seeds, and the plates were incubated in a growth chamber at 25 ° C, 70% relative humidity and a photoperiod 16:08 L: O. Seed germination was counted. for six days and elongation of the roots at the end of the experiment. Data were analyzed by analysis of variance (ANOVA). As a positive control of germination inhibition, juglone was used (5 ⁇ 9 / ⁇ : germination less than 5%.
  • ANOVA analysis of variance
  • L. sativa (lettuce) is used as a dicotyledonous plant model in phytotoxicity tests.
  • R is selected from H and OH, or an isomer, or a salt or a solvate thereof.
  • Clause 2 Fermentation product according to Clause 1, characterized in that it simultaneously comprises a compound of formula (I) where R is H, and another compound of formula (I) where R is OH, or an isomer, or a salt or a solvate of them.
  • Clause 3 Fermentation product according to any of Clauses 1 and 2, characterized in that it additionally comprises another compound with a broad spectrum biocidal activity of formula (II):
  • R is selected from H and OH, or an isomer, or a salt or a solvate thereof.
  • Clause 5. Procedure for obtaining the fermentation product defined according to any of Clauses 1 to 3, characterized in that it comprises cultivating mycelium of an endophytic fungus of the Stemphylium solani species in a culture medium.
  • Clause 6. Procedure for obtaining according to Clause 5, characterized in that it additionally comprises a drying stage that uses a technique that is selected between extraction with organic solvent prior filtration or lyophilization.
  • Clause 7. Procedure according to Clause 6, characterized in that the endophytic fungus is the Aa22 strain of Stemphylium solani with deposit number CECT 20941.
  • Clause 9. Broad spectrum biocidal composition
  • Clause 10. Use of the biocidal composition according to Clause 9 as a broad spectrum biocidal agent for the simultaneous control of more than one category of harmful organisms that affect plants.
  • Clause 1 1.- Use according to Clause 10, characterized in that the categories of harmful organisms that affect plants are selected from insect-pests, fungi and nematodes.
  • Clause 12. Use according to any of Clauses 10 and 1 1, characterized in that the categories of harmful organisms are simultaneously insect-pests, fungi and nematodes.
  • Clause 13. Method for the simultaneous control of more than one category of harmful organisms that affect plants, which comprises administering an effective dose of a fermentation product as defined according to Clauses 1 to 3, or of a compound of general formula (I) as defined in Clause 4, or of a compound of formula (II) as defined in Clause 3.
  • Clause 14 Control method according to Clause 13, characterized in that the categories of harmful organisms that affect plants are selected from insect-pests, fungi and nematodes.
  • Clause 15. - Control method according to any of Clauses 13 and 14,
  • the categories of harmful organisms are simultaneously pest insects, fungi and nematodes.

Abstract

En el campo de la agricultura los organismos perjudiciales para la vegetación constituyen un importante problema en relación con la productividad de las cosechas. La presente invención se relaciona con un producto de fermentación obtenido a partir de hongos endófitos de la familia Stemphylium solani,que puede comprender un nuevo compuesto de fórmula (I) y un segundo compuesto conocido de fórmula (II), y que presenta actividad biocida simultáneamente contra más de una categoría de organismos perjudiciales que afectan a plantas y que preferentemente se seleccionan entre insectos-plaga, hongos y nematodos. Tanto el producto de fermentación, como los compuestos incluidos en el ámbito de la invención, se usan en la elaboración de una composición biocida de amplio espectro. Finalmente, la invención también incluye el procedimiento de obtención del producto de fermentación y el nuevo compuesto de fórmula (I).

Description

BIOCIDAS NATURALES DE AMPLIO ESPECTRO
D E S C R I P C I Ó N SECTOR DE LA INVENCION
La invención se sitúa dentro del campo de la agricultura, y más concretamente, en el sector de los biocidas que comprenden sustancias producidas o extraídas de
microorganismos. Se propone un producto de fermentación con actividad biocida de amplio espectro y un método de obtención del mismo. El producto de fermentación se caracteriza por comprender al menos un nuevo compuesto de fórmula (I), que también se reivindica, y al compuesto de fórmula (II) que dotan al producto de fermentación de su característica actividad biocida. La invención también proporciona una cepa particular de Stemphylium solani, y composiciones biocidas que comprenden el producto de fermentación, el compuesto de fórmula (I) y/o la cepa de la invención. Finalmente, la invención también se refiere al uso del producto de fermentación, del compuesto de fórmula (I) y/o de la cepa de la invención, ya sea directamente o a través de una composición biocida que los comprenda, como biocidas y a un método de amplio espectro para el control de organismos perjudiciales para las plantas.
ESTADO DE LA TECNICA
Los hongos endófitos son un grupo polifiiético con un alto grado de diversidad que se caracteriza funcionalmente por su capacidad para habitar en los tejidos de las plantas sin causar daños aparentes. La colonización por hongos endófitos puede contribuir a la adaptación de la planta huésped a situaciones de estrés y en muchos casos se ha correlacionado la tolerancia de la planta huésped a estrés biótico con la presencia de productos naturales fúngicos (Aly et al. 2010. Funga! Diversity 41 , 1-16). El género Stemphylium está compuesto por hongos filamentosos y saprofitos del grupo Hifomicetes que se distribuyen ampliamente en todo el mundo, asociados a vegetación en descomposición. En agricultura, las especies de Stemphylium son responsables de enfermedades en muchos cultivos, a los que causan daños foliares, y se dispersan a través de las semillas. A partir de los metabolitos producidos por las especies de Stemphylium de mayor importancia fitopatogénica: S. botryosum, S. herbarum, S. alfalfae, S. sarciniforme, se han identificado cinco compuestos mayoritarios, stemfilina, stemfiloxina II, stemfiperilenol, stemfol y un compuesto relacionado (Barash et al. 1975. Plant Physiol. 55, 646-651 ; Andersen et al. 1995. Mycol. Res. 99, 672-676; Solfrizzo et al. 1994. Nat. Toxins 2, 14- 18). Por otro lado, se ha descrito la producción de taxol por una especie de Stemphylium sp. aislada como endófito de Taxus baccata (Mirjalili et al. 2012. FEMS Microbio!.
Lett. 328, 122-9). Varias especies de Stemphylium han sido aisladas como endófitos de distintas plantas, por ejemplo, en la planta endémica australiana Eremophilia longifolia (Zaferanloo et al. 2013. World J Microbiol. Biotechnol. 29, 335-345); en Vitis vinífera (González y Tello. 20 1. Funga! Diversity 47:29-42); e incluso se ha identificado alguna cepa de S. solani en Arabidopsis thaliana (García et ai. 2012. Funga! Diversity. DOI : 10.1007/s13225-012- 0219-0).
Por otra parte, a partir de los extractos de Síemphyiium giobuiiferum procedentes de Mentha puiegium {Debbab et al. 2009. J. Nat. Prod. 72, 626-31 ), se han identificado los compuestos: alterporriol G y su isómero terporriol H, altersolanoL altersolanoi L, stemfipirona, 6-metoxilalaternina, macrosporina, altersolanol A, alterporriol E, alterporriol D, alterporriol A, alterporriol B y altersolanol J.
La agricultura se enfrenta constantemente a serios problemas relacionados con la incidencia de plagas y ataques de organismos patógenos con la consiguiente reducción de la productividad. Aunque tradicionalmente el método habitual para el control de organismos perjudiciales que afectan a plantas ha sido la aplicación de productos químicos de síntesis, que además de su alto precio económico implica un grave coste ambiental, el nuevo entorno regulatorio, véase por ejemplo tanto a nivel nacional como europeo el Reglamento (CE) N° 1107/2009, ha limitado drásticamente el número de materias activas y la disponibilidad de los productos fitosanitarios destinados al control de las enfermedades causadas por estos organismos perjudiciales.
Dentro de este escenario, la búsqueda de compuestos activos, alternativos y eficaces, que tengan poca persistencia en el medio, que reduzcan la aparición de resistencias cruzadas, que no presenten efectos citotóxicos indeseables y que tengan su origen en por ejemplo, hongos endófitos, parece ser una buena alternativa. Adicionalmente, sería altamente deseable que estos compuestos fuesen de amplio espectro, es decir, fuesen activos contra diferentes organismos perjudiciales de forma simultánea. EXPLICACION DE LA INVENCION
La presente invención proporciona en un primer aspecto un producto de fermentación que comprende un compuesto de fórmula (I):
Figure imgf000004_0001
(i)
donde R se selecciona entre H y OH, o un isómero, o una sal o un solvato del mismo.
La presente invención también proporciona un producto de fermentación de un hongo endófito de la especie Stemphylium solani con actividad biocida de amplio espectro, caracterizado por que comprende un compuesto de fórmula (I):
Figure imgf000004_0002
(l)
donde R se selecciona entre H y OH, o un isómero, o una sal o un solvato del mismo.
En un segundo aspecto, la invención proporciona el nuevo compuesto de fórmula (I)
Figure imgf000005_0001
(l)
donde R se selecciona entre H y OH, o un isómero, o una sal o un solvato del mismo.
En un tercer aspecto, la invención proporciona un procedimiento de obtención del producto de fermentación definido en el primer aspecto de la invención, que comprende (a) una etapa de fermentación que comprende cultivar el microorganismo fermentador en un medio de cultivo adecuado y en condiciones adecuadas; y opcionalmente (b) una o más etapas de extracción.
Preferentemente, el hongo endófito que se utiliza en el procedimiento de obtención es la cepa Aa22 de S. solani con número de depósito CECT 20941.
Aunque tanto los compuestos de fórmula (I) de la invención como el compuesto de fórmula (II)
Figure imgf000005_0002
(ll)
por separado presentan actividad biocida de amplio espectro, los inventores de la presente invención han comprobado que el producto de fermentación resultante del procedimiento del tercer aspecto de la invención y que comprende el compuesto de fórmula (I) y, opcionalmente, el compuesto de fórmula (II) presenta una actividad manifiestamente mejorada (ver Ejemplos 4 a 6).
Así, en un cuarto aspecto, la invención proporciona un producto de fermentación, que es un extracto que comprende el compuesto de fórmula (I) según se define en el segundo aspecto de la invención, obtenible mediante el procedimiento según se define en el tercer aspecto de la invención.
En un quinto aspecto la presente invención proporciona un procedimiento de preparación de un compuesto de fórmula (I) según se define en el segundo aspecto de la invención, que comprende la etapa de aislamiento del compuesto de fórmula (I) a partir del producto de fermentación resultante de la etapa (b), (i.1.), (i.2) o (c) definidas más abajo.
En un sexto aspecto la presente invención proporciona una cepa aislada del hongo endófito de la especie Stemphylium solani depositada en la Colección Española de Cultivos Tipo con el número de depósito CECT20941 o un muíante de la misma que mantiene la capacidad de producir el compuesto de fórmula (I).
Como se demuestra más abajo, los productos de fermentación de la invención, así como los compuestos de fórmula (I) muestran un efecto biocida de amplio espectro.
Por lo tanto, en un séptimo aspecto la presente invención proporciona el uso de un producto de fermentación según se define en el primer aspecto de la invención, o del producto de fermentación según se define en el cuarto aspecto de la invención, o del compuesto de fórmula general (I) según se define en el segundo aspecto de la invención, o del compuesto de fórmula (II) según se define más abajo, o de la cepa de Stemphylium solani del sexto aspecto de la invención como agente biocida de amplio espectro.
En un octavo aspecto, la invención se relaciona con el uso del producto de fermentación, o de los compuestos de fórmulas (I) o (II), aislados o en combinación, o de la cepa de Stemphylium solani de la invención para elaborar una composición biocida de amplio espectro.
En un noveno aspecto, la invención proporciona una composición biocida que comprende el producto de fermentación según se define en el primer aspecto de la invención, o el producto de fermentación según se define en el cuarto aspecto de la invención, o el compuesto de fórmula (I) según se define en el segundo aspecto de la invención, o el compuesto de fórmula (II) según se define más abajo, o la cepa de Stemphylium solani del sexto aspecto de la invención. En un décimo aspecto la invención proporciona el uso del producto de fermentación de la invención, o del compuesto de la invención, o de un compuesto de fórmula (II) ya sea de forma aislada o en combinación, o de la cepa de Stemphylium solani de la invención para elaborar una composición biocida.
En un undécimo aspecto, la invención se relaciona con el uso de la composición biocida como agente biocida de amplio espectro para el control de al menos una categoría de organismos perjudiciales que afectan a plantas, y que se seleccionan entre insectos- plaga, hongos y nematodos, preferentemente todos ellos de forma simultánea.
En un último aspecto, la invención proporciona un método de control de organismos perjudiciales que afectan a plantas, en adelante método de control de la invención, que comprende administrar una dosis eficaz del producto de fermentación según se define en el primer aspecto de la invención, o del producto de fermentación según se define en el cuarto aspecto de la invención, o del compuesto de fórmula (I) según se define en el segundo aspecto de la invención, o del compuesto de fórmula (II) según se define más abajo, de la cepa de Stemphylium solani según se define en el sexto aspecto de la invención, o de la composición biocida según se define en el noveno aspecto de la invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El problema técnico que resuelve la presente invención es la búsqueda de nuevos productos naturales que sean biocidas efectivos.
Sorprendentemente, los presentes inventores han identificado una serie de productos de fermentación, extractos y compuestos que tienen una actividad biocida de amplio espectro, lo que permite el control simultáneo de varios organismos perjudiciales que afectan a las plantas. Por lo tanto, la presente invención supone una alternativa efectiva a los biocidas químicos de síntesis.
La presente invención se fundamenta en el descubrimiento de un producto de
fermentación de un hongo endófito de la especie Stemphylium solani, que
preferentemente es la cepa Aa22 de S. solani con CECT 20941 , y que puede comprender simultáneamente al menos un compuesto de fórmula (I) y un compuesto de fórmula (II), que le dotan de una sorprendente actividad biocida de amplio espectro contra hongos fitopatógenos, insectos-plaga y el nematodo fitopatógeno Meloidogyne javanica (ver Ejemplos 4 a 6). Las principales ventajas técnicas del producto de fermentación, de su uso para el control de organismos perjudiciales que afectan a plantas y de su procedimiento de obtención, se enumeran a continuación:
-es de amplio espectro, actuando simultáneamente de forma efectiva contra insectos-plaga, hongos y nematodos,
-se obtiene de fuentes naturales, por procedimientos sencillos y económicos, y
-se puede obtener a gran escala por fermentación del hongo en biorreactores, pudiéndose manipular las condiciones de fermentación para aumentar la producción de componentes activos.
Los resultados generados son extrapolares a otros productos de fermentación que comprendan el compuesto de fórmula (I) y, opcionalmente, el compuesto de fórmula (II).
En un primer aspecto, la invención proporciona un producto de fermentación de un microorganismo fermentador que comprende un compuesto de fórmula (I):
Figure imgf000008_0001
donde R se selecciona entre H y OH, o un isómero, o una sal o un solvato del mismo.
En una realización de la invención, opcionalmente en combinación con cualquiera de las realizaciones posteriores, por "producto de fermentación" se entiende un producto de fermentación que es el resultado de la acción de un microorganismo fermentador el cual, al crecer en un medio de cultivo adecuado, tiene la capacidad de sintetizar al menos un compuesto de fórmula (I). El concepto de "producto de fermentación" incluye el producto directamente obtenido del proceso de fermentación, así como los obtenidos tras someter el producto resultante del proceso de fermentación a etapas posteriores de extracción, purificación y/o concentración. Así, el producto de fermentación de la invención puede estar en forma cristalina, como compuestos libres o como solvatos. Los métodos de solvatación se conocen generalmente en el estado de la técnica.
En la presente invención por "microorganismo fermentador" se entiende cualquier microorganismo, o combinación de microorganismos, con la facultad de fermentar y de producir, durante ese proceso, un compuesto de fórmula (I).
En otra realización, opcionalmente en combinación con cualquiera de las realizaciones posteriores, por "producto de fermentación" se entiende un producto que es el resultado de la acción de un hongo endófito de la especie Stemphylum solani, que al crecer sobre un medio de cultivo tiene la capacidad de sintetizar al menos un compuesto de fórmula (I). Preferentemente el hongo endófito es la cepa Aa22 de S. solani con CECT 20941. El producto de fermentación puede ser un extracto seco obtenido por extracción con solvente orgánico previa filtración, o un liofilizado.
En una realización del primer aspecto, el producto de fermentación comprende un compuesto de fórmula (la), o un isómero, una sal o un solvato de (la), y/o un compuesto de fórmula (Ib), o un isómero, una sal o un solvato de (Ib):
Figure imgf000009_0001
En una realización del primer aspecto, opcionalmente en combinación con cualquiera de las realizaciones que se proporcionan arriba o abajo, el producto de fermentación comprende adicionalmente un compuesto de fórmula (II):
Figure imgf000010_0001
(ll) isómero, o una sal o un solvato del mismo.
De forma general, todos los compuestos que se incluyen en el ámbito de la invención pueden incluir isómeros, dependiendo de la presencia de enlaces múltiples, incluyendo isómeros ópticos o enantiómeros, dependiendo de la presencia de centros quirales. Los isómeros, enantiómeros o diastereoisómeros individuales y las mezclas de los mismos caen dentro del alcance de la presente invención, es decir, el término isómero también se refiere a cualquier mezcla de isómeros, como diastereómeros, racémicos, etc., incluso a sus isómeros ópticamente activos o las mezclas en distintas proporciones de los mismos. Los enantiómeros o diastereoisómeros individuales, así como sus mezclas, pueden separarse mediante técnicas convencionales.
Asimismo, dentro del alcance de esta invención se encuentran las sales y solvatos aceptables de todos los compuestos que se incluyen en el ámbito de la invención o de cualquier otro compuesto que, cuando se aplica a un organismo perjudicial para las plantas, es capaz de proporcionar (directamente o indirectamente) un compuesto según se describe en el presente documento.
En otra realización del primer aspecto de la invención, opcionalmente en combinación con cualquiera de las realizaciones que se proporcionan arriba o abajo, el producto de fermentación es un extracto de fermentación.
En la presente invención el término "extracto" de fermentación se utiliza con su significado convencional para referirse a preparaciones de consistencia líquida, semisólida o sólida, que se presentan concentradas o sin concentrar, obtenidas sometiendo el producto obtenido del proceso de fermentación a una o varias etapas de extracción. Medios apropiados para llevar a cabo las etapas de extracción incluyen, por ejemplo, el uso de disolventes orgánicos, microondas o extracción con fluidos
supercríticos.
En otra realización del primer aspecto de la invención, opcionalmente en combinación con cualquiera de las realizaciones que se proporcionan arriba o abajo, el producto de fermentación está libre del microorganismo fermentador.
En la presente invención por concepto "producto de fermentación libre de microorganismo fermentador" se entiende el producto resultante de someter al producto procedente de la etapa de fermentación y/o de purificación o concentración, a una etapa de eliminación del microorganismo, de manera que el producto de fermentación resultante carece de células viables, micelios o endosporas.
En otra realización del primer aspecto de la invención, opcionalmente en combinación con cualquiera de las realizaciones que se proporcionan arriba o abajo, el producto de fermentación comprende el microorganismo fermentador inactivado.
En la presente invención, el concepto "producto de fermentación que comprende el microorganismo fermentador inactivado" se refiere a un producto de fermentación según el primer aspecto de la invención en el que el microorganismo ha sido inactivado en una etapa posterior a la etapa de fermentación. El término "inactivado" significa que el microorganismo no es capaz de formar colonias. En una realización, los microorganismos inactivados tienen la membrana celular intacta o rota. En otra realización del primer aspecto de la invención, opcionalmente en combinación con cualquiera de las realizaciones que se proporcionan arriba y abajo, el
microorganismo fermentador es un hongo.
En otra realización del primer aspecto de la invención, opcionalmente en combinación con cualquiera de las realizaciones que se proporcionan arriba y abajo, el
microorganismo fermentador es un hongo endófito.
En otra realización del primer aspecto de la invención, opcionalmente en combinación con cualquiera de las realizaciones que se proporcionan arriba y abajo, el
microorganismo fermentador es un hongo endófito del género Stemphylium. En otra realización del primer aspecto de la invención, opcionalmente en combinación con cualquiera de las realizaciones que se proporcionan arriba y abajo, el
microorganismo termentador es un hongo endófito de la especie Stemphylium solani.
En otra realización del primer aspecto de la invención, opcionalmente en combinación con cualquiera de las realizaciones que se proporcionan arriba y abajo, el
microorganismo termentador es la cepa de Stemphylium solani CECT 20941. En un segundo aspecto, la invención se refiere a un compuesto de fórmula (I):
Figure imgf000012_0001
donde R se selecciona entre H y OH, o un isómero, una sal o un solvato del mismo, que cuenta con actividad biocida de amplio espectro, en adelante compuesto de la invención, y que está comprendido en el producto de fermentación de la invención, ya sea solo o combinado con al menos el compuesto de fórmula (II) según se define en este documento.
Si bien el compuesto de fórmula (I) ha sido aislado de un producto de fermentación, el experto en la materia, haciendo uso de su conocimiento general, puede preparar dicho compuesto mediante otros medios. En el ámbito de la presente invención, las expresiones "compuesto de fórmula (I) donde R=H", "Stemfolona A", y compuesto de fórmula (la), se utilizan indistintamente; del mismo modo "compuesto de fórmula (I) donde R=OH", "Stemfolona B"y compuesto de fórmula (Ib), se utilizan indistintamente; del mismo modo "compuesto de fórmula (II)" y "Stemfof se utilizan indistintamente.
En un tercer aspecto, la invención proporciona un procedimiento de obtención del producto de fermentación definido en el primer aspecto de la invención, que comprende (a) una etapa de fermentación que comprende cultivar el microorganismo fermentador en un medio de cultivo adecuado y en condiciones adecuadas; y opcionalmente (b) una o más etapas de extracción. En una realización particular, el procedimiento de la invención permite que el producto de fermentación de la invención comprenda un compuesto de fórmula (I) donde R es H y/o otro compuesto de fórmula (I) donde R es OH, o un isómero, o una sal o un solvato de los mismos. En otra realización más particular de la anterior, el procedimiento de la invención consigue que adicionalmente, el producto de fermentación de la invención comprenda el compuesto de fórmula (II).
Si bien existen medios de cultivo comerciales útiles en procesos de fermentación, el experto en la materia puede diseñar el medio de cultivo más adecuado para el microorganismo fermentador particular que tiene la capacidad de producir el compuesto de fórmula (la), el de fórmula (Ib), o bien la capacidad de producir tanto (la) como (Ib), o la capacidad de producir (la), (Ib), o (la) y (Ib), junto con el compuesto de fórmula (II). Así, para que tenga lugar la fermentación, el microorganismo requiere de una fuente de carbono de la cual extraer la energía necesaria para su metabolismo. Las fuentes de carbono más comunes son los hidratos de carbono, tales como almidón y azúcares. En la búsqueda de nuevas fuentes de carbono, se está estudiando, desde hace poco, la utilización de recursos lignocelulósicos (pajas de cereales, árboles y sus residuos, etc.), principal fuente de biomasa renovable.
Muchas de estas fuentes de carbono requieren un pretratamiento previo a su utilización; es el caso, por ejemplo, del almidón que debe ser cocido e hidrolizado hasta glucosa antes de ser trasformado en etanol por los microorganismos que realizan esta
transformación. Es también el caso de la celulosa y de los substratos lignocelulósicos en general, los cuales necesitan drásticos tratamientos físicos y/o químicos antes de ser utilizables con este fin.
Otros nutrientes que son necesarios en cantidades importantes para el crecimiento microbiano son el nitrógeno, el fósforo y el azufre. Estos elementos son incorporados las moléculas estructurales y funcionales de la célula. El nitrógeno, en particular, debe ser provisto en proporciones variables bajo la forma de nitrógeno proteico obtenidos a partir de subproductos de la industria del maíz, extracto de levadura u otros, y no proteico (sales de amonio, urea, etc.). Los otros dos elementos son entregados como sales de fosfato y sulfato, respectivamente.
Por último, una serie de micronutrientes (vitaminas, hierro, cobalto, cobre, zinc, etc.), deben ser suministrados al medio. La fermentación puede ser de varios tipos, incluyendo fermentaciones líquidas, fermentación en estado sólido (FES), o fermentación sólida sumergida (FSS).
En cuanto a las condiciones de la reacción de fermentación, el experto en la materia es capaz de ajusfar las principales variables que son temperatura, acidez y presión de oxígeno, las cuales vienen determinados por la propia naturaleza del microorganismo.
En una realización del procedimiento del tercer aspecto de la invención, la etapa de fermentación se lleva a cabo en un medio de cultivo que comprende los nutrientes necesarios para el crecimiento del hongo (incluyendo fuentes de carbono, nitrógeno, fósforo, azufre y micronutrientes (vitaminas, hierro, cobalto, cobre, zinc, etc)).
En una realización del procedimiento del tercer aspecto de la invención, cuando el microorganismo fermentador es un hongo, la etapa de fermentación se lleva a cabo en un medio de cultivo que comprende los nutrientes necesarios para el crecimiento del hongo (incluyendo fuentes de carbono, nitrógeno, fósforo, azufre y micronutrientes (vitaminas, hierro, cobalto, cobre, zinc, etc)).
En una realización del procedimiento del tercer aspecto de la invención, cuando el microorganismo fermentador es un hongo, la etapa de fermentación se lleva a cabo en presencia de un producto vegetal sólido. En la presente invención, por "producto vegetal sólido ", referido en esta realización del tercer aspecto de la invención, se entiende una parte de una planta (fruto, semilla (incluyendo granos de cereales como arroz, maíz, trigo, etc), hojas, tallos, raíces, tubérculos, productos derivados (harina, salvado, pulpa), así como subproductos (bagazo, paja, peladuras, cáscaras, pulpa, biomasa, licor, mucílago, alperujo, fibra, residuos lignocelulósicos). En una realización del procedimiento del tercer aspecto de la invención, cuando el microorganismo termentador es un hongo, la etapa de fermentación se lleva a cabo en presencia de un producto sólido vegetal que es un cereal que puede estar entero (i.e., tal cual aislado de la naturaleza) o procesado (por ejemplo, molido). Ejemplos ilustrativos y no limitativos de cereales incluyen el arroz. La cantidad y tratamiento al que hay que someter al cereal previamente a su uso en el cultivo, son actos rutinarios para el experto en la materia.
En una realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, la etapa de
fermentación se lleva a cabo en la oscuridad.
En una realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, la etapa de
fermentación se lleva a cabo a temperatura ambiente (i.e., a una temperatura entre 20-27 °C). En una realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, la etapa de fermentación se lleva a cabo a temperatura ambiente (i.e., a una temperatura entre 24-27 °C). En otra realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, la etapa (b) de extracción del producto de fermentación se lleva a cabo mediante extracción con disolventes orgánicos adecuados. Existen tres tipos de disolvente, en función de su polaridad: (a) próticos (por ejemplo agua, ácidos carboxílicos, alcoholes, aminas), que se caracterizan por poseer un grupo funcional capaz de ceder protones (por ejemplo OH, NH, SH), así como por la capacidad de formar puentes de hidrógeno; (b) apróticos polares (por ejemplo DMSO, DMF, HMPA, nitrilos, cetonas, nitrocompuestos) que se caracterizan por carecer de grupos funcionales capaces de ceder protones y por tener una constante diélectrica alta; y (c) apróticos apolares (por ejemplo (alifáticos, aromáticos, halogenados), éteres, ésteres, halogenuros de alquilo) que se caracterizan por carecer de grupos funcionales capaces de ceder protones y una constante dieléctrica baja. En una realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, el disolvente o mezclas de disolventes que se utilizan para llevar a cabo la extracción son de tipo polar aprótico. En otra realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, el disolvente orgánico con el que se lleva a cabo la extracción del producto de fermentación es con acetato de etilo.
En una realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, el procedimiento comprende una etapa previa a la etapa (a) en la que se hace crecer el microorganismo fermentador en un medio de cultivo adecuado hasta conseguir que se forme una cantidad de micelio óptima para iniciar la etapa (a). En una realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, el procedimiento comprende adicionalmente una etapa (i.1), en la que se elimina el microorganismo fermentador. La eliminación del microorganismo del producto de fermentación se puede llevar a cabo usando técnicas bien establecidas, tales como ultracentrifugación o filtración.
En otra realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, el procedimiento comprende adicionalmente una etapa (i.2.), en la que se inactiva el microorganismo fermentador.
La inactivación del microorganismo se puede llevar a cabo usando técnicas bien conocidas por el experto en la materia, tales como la lisis celular.
En otra realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, el procedimiento comprende una etapa (d) posterior de purificación del producto de fermentación resultante de la etapa (b), (i.1.) o (i.2.). En otra realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, la etapa (d) de purificación se lleva a cabo mediante técnicas cromatográficas en donde el eluato corresponde con la fracción purificada del producto de fermentación de la invención. El eluyente para llevar a cabo la separación cromatográfica puede ser disolventes orgánicos de polaridades crecientes (por ejemplo, hexano, diclorometano, acetato de etilo, acetona, metanol, etc) o combinaciones de los mismos.
En otra realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, el procedimiento comprende adicionalmente una etapa de secado del producto resultante de la etapa (b), (i.1.), (i.2.), y/o (d).
En otra realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, la etapa de secado del producto de fermentación comprende la extracción con solvente orgánico y su
concentración previa filtración del micelio; o, alternativamente, por secado al vacío (por ejemplo mediante uso de rotavapor).
Ejemplos de solventes orgánicos que se utilizan en el ámbito de la invención son diclorometano, éter etílico y, preferentemente, acetato de etilo.
En otra realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, el microorganismo fermentador es un hongo. En otra realización del procedimiento del tercer aspecto, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, el microorganismo fermentador es un hongo endófito.
El tipo de hongo y su interacción con la planta hospedadora confiere unas características determinadas que posibilitan la producción más o menos favorable de determinados compuestos.
En otra realización del tercer aspecto de la invención, el microorganismo es una especie de Stemphylum solani, la cual debido a su interacción con la planta hospedadora, es eficiente en la producción de los compuestos de fórmula (I) y (II). Preferentemente, el microorganismo fermentador es la cepa Aa22 de S. solani aislada de hojas de Artemisia absinthium depositada en fecha 25 de septiembre de 2015 en la Colección Española de Cultivos Tipo con CECT 20941 , siguiendo el Tratado de Budapest sobre el
Reconocimiento Internacional del Depósito de Microorganismos a los fines del
Procedimiento en materia de Patentes.
Se pueden aislar cepas de S. solani de otras plantas como por ejemplo, Arabidopsis thaliana,
Ejemplos de medios de cultivo que permiten la fermentación por parte de los hongos del especie Stemphyium solani son YMB (caldo extracto de levadura y extracto de malta), los medios citados en las referencias Molitor et al. (2012. J. Nat. Prod. 75, 1265-1269) y Buckel et al. (2013. Phytochemistry 89, 96-103); los que se citan en el documento W02002017937 A1 o cualquier otro medio de cultivo comercial para hongos
fitopatógenos.
En una realización particular, el hongo endófito es la cepa Aa22 de Stemphyium solani aislada de material vegetal de Artemisia absinthium depositada en la Colección Española de Cultivos Tipo con CECT 20941 en fecha 25 de septiembre de 2015 se cultiva utilizando un YMB.
En una realización particular, el hongo endófito es la cepa Aa22 de Stemphyium solani aislada de material vegetal de Artemisia absinthium depositada en la Colección Española de Cultivos Tipo con CECT 20941 en fecha 25 de septiembre de 2015 se cultiva utilizando un YMB en una etapa previa a la fermentación.
En otra realización particular del tercer aspecto de la invención, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, el hongo endófito es la cepa Aa22 de Stemphyium solani aislada de material vegetal de Artemisia absinthium depositada en la Colección Española de Cultivos Tipo con CECT 20941 en fecha 25 de septiembre de 2015 el cual (1) se hace crecer en un medio de cultivo YMB, (2) posteriormente se somete a fermentación en presencia de arroz, y (3) el producto resultante de la fermentación se somete a una extracción con un disolvente orgánico adecuado. La etapa (1) se lleva a cabo hasta conseguir llevar al hongo al estadio óptimo para la inoculación de la etapa (2) y la producción, en la cantidad deseada en la etapa (2), del compuesto de fórmula (I) y, opcionalmente, del compuesto de fórmula (II) . La etapa (3) se puede llevar a cabo en presencia de un disolvente o mezcla de disolventes polares apróticos. En otra realización, la etapa (3) se lleva a cabo en presencia de acetato de etilo. En otra realización particular del tercer aspecto de la invención, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, el hongo endófito es la cepa Aa22 de Stemphylum solani aislada de material vegetal de Artemisia absinthium depositada en la Colección Española de Cultivos Tipo con CECT 20941 en fecha 25 de septiembre de 2015 (1) se hacer crecer en YMB, posteriormente (2) se somete a fermentación en presencia de arroz, y (3) el producto resultante de la
fermentación se somete a 1 , 2 ó 3 etapas de extracción con un disolvente orgánico adecuado. Si se llevan a cabo dos ó tres etapas de extracción, cada una de ellas se lleva a cabo usando el mismo disolvente o diferentes disolventes. En otra realización de la etapa (3), cada etapa de extracción se lleva a cabo con un disolvente o mezcla de disolventes polares apróticos. En otra realización de la etapa (3), cada etapa de extracción se lleva a cabo en presencia de acetato de etilo.
En otra realización particular del tercer aspecto de la invención, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, el procedimiento es uno en el que el hongo endófito es la cepa Aa22 de Stemphylum solani aislada de material vegetal de Artemisia absinthium depositada en la Colección Española de Cultivos Tipo con CECT 20941 en fecha 25 de septiembre de 2015 y se lleva a cabo el cultivo del hongo en un medio YMB, la posterior fermentación en presencia de arroz, y la extracción del producto resultante de la fermentación que comprende 3 etapas de extracción con un disolvente orgánico adecuado. En otra realización particular del tercer aspecto de la invención, opcionalmente en combinación con cualquiera de las
realizaciones proporcionadas arriba o abajo, el procedimiento es uno en el que el hongo endófito es la cepa Aa22 de Stemphylum solani aislada de material vegetal de Artemisia absinthium depositada en la Colección Española de Cultivos Tipo con CECT 20941 en fecha 25 de septiembre de 2015 y se lleva a cabo el cultivo del hongo en un medio YMB, la posterior fermentación en presencia de arroz, y la extracción del producto resultante de la fermentación que comprende 3 etapas de extracción con un disolvente polar aprótico adecuado. En otra realización particular del tercer aspecto de la invención, opcionalmente en combinación con cualquiera de las realizaciones proporcionadas arriba o abajo, el procedimiento es uno en el que el hongo endófito es la cepa Aa22 de Stemphylum solani aislada de material vegetal de Artemisia absinthium depositada en la Colección Española de Cultivos Tipo con CECT 20941 en fecha 25 de septiembre de 2015 y se lleva a cabo el cultivo del hongo en un medio YMB, la posterior fermentación en presencia de arroz, y la extracción del producto resultante de la fermentación que comprende 3 etapas de extracción con acetato de etilo.
En un cuarto aspecto, la presente invención proporciona un producto de fermentación que comprende el compuesto de fórmula (I) según se define en el segundo aspecto de la invención, obtenible mediante el procedimiento según se define en el tercer aspecto de la invención.
En una realización del cuarto aspecto de la invención, el producto de fermentación comprende adicionalmente el compuesto de fórmula (II) según se define más arriba. En un quinto aspecto la presente invención proporciona un procedimiento de preparación de un compuesto de fórmula (I) según se define en el segundo aspecto de la invención o del compuesto de fórmula (II) según se define más arriba, que comprende la etapa de aislamiento del compuesto de fórmula (I) o del compuesto de fórmula (II) a partir del producto resultante de la etapa (b), (i. l), (i.2) o (d) definidas más arriba.
El aislamiento de los compuestos (I) y (II) se puede llevar a cabo por técnicas de fraccionamiento, incluyendo cromatografía.
Técnicas de fraccionamiento conocidas por cualquier experto en el estado de la técnica, y que permiten obtener a los compuestos incluidos en el ámbito de la invención, son por ejemplo y sin limitarse, cromatografía líquida de vacío (VLC), cromatografía en columna (CC), cromatografía en columna (CC) empleando diferentes fases sólidas (Gel de Sílice, Sephadex LH-20) y cromatografía líquida de alta resolución (HPLC), eluyéndose con distintos gradientes de polaridad mediante diferentes combinaciones de disolventes orgánicos.
En una realización del quinto aspecto de la invención, el aislamiento de los compuestos (I) y (II) se lleva a cabo por cromatografía. En otra realización del quinto aspecto de la invención, el aislamiento de los compuestos (I) y (II) se lleva a cabo por cromatografía en columna de sílica gel, usando mezclas de disolvente de polaridad creciente. En otra realización del quinto aspecto de la invención, el aislamiento de los compuestos (I) y (II) se lleva a cabo por separación cromatográfica en columna de sílica gel del producto resultante de la etapa (b), (i.1.) o (i.2.).), usando mezclas de disolvente de polaridad creciente de n-hexano/acetato de etilo y acetona. En una realización del quinto aspecto, la separación cromatográfica se lleva a cabo en columna de sílica gel usando gradientes crecientes en polaridad desde n-hexano/acetato de etilo 90: 10 (v/v) hasta 50:50 (v/v). En otra realización del quinto aspecto, la cromatografía en gel de sílice se lleva a cabo usando gradientes crecientes en polaridad desde n-hexano/acetato de etilo 90: 10 (v/v) hasta 60:40 (v/v)). En otra realización del quinto aspecto de la invención, posteriormente a la elución con hexano/acetato de etilo, se somete al extracto cargado en la columna a una elución con acetona al 100%.
En la presente invención por "v/v" se entiende la relación de volúmenes de los disolventes que constituyen la fase móvil de la cromatografía necesaria para separar las fracciones con los compuestos de fórmula (I) y/o (II).
En la presente invención la "separación cromatográfica en columna de sílica gel usando mezclas crecientes en polaridad de n-hexano/acetato de etilo, acetona y/o metanol/agua" comprende llevar a cabo la separación en una columna de cromatografía de sílica gel usando n-hexano/acetato de etilo, acetona o metanol/agua, o bien llevando a cabo la elución en varios estadios, combinando los eluyentes. El experto en la materia, haciendo uso de su conocimiento, puede optimizar relaciones entre los diferentes solventes y puede establecer el orden de los eluyentes en función de la naturaleza de la molécula a eluir.
En una realización del quinto aspecto, el procedimiento es de obtención de un compuesto de fórmula (la) que comprende (i) someter el producto de fermentación resultante de la etapa (b) a separación cromatográfica en columna de sílica gel usando mezclas crecientes en polaridad de n-hexano/acetato de etilo y, posteriormente, acetona (ii) recoger la fracción eluída con acetona, (iii) someter el eluato resultante de la etapa (ii) a cromatografía de sílica gel con mezclas de polaridad creciente de n-hexano/acetato de etilo; y (iv) recoger las fracciones menos polares. En una realización del quinto aspecto, la etapa (i) comprende llevar a cabo una cromatografía en gel de sílice se lleva a cabo usando gradientes crecientes en polaridad desde n-hexano/acetato de etilo 90: 10 (v/v) hasta 60:40. En otra realización del quinto aspecto de la invención, la etapa (i) comprende, posteriormente a la elución con hexano/acetato de etilo, la elución con acetona al 100%. En otra realización del quinto aspecto, la etapa (iii) comprende someter la fracción eluida con acetona a separación mediante cromatografía en gel de sílice usando gradientes crecientes en polaridad desde n-hexano/acetato de etilo 80:20 (v/v) hasta 10:90% (v/v) y, opcionalmente, someter a una etapa de secado.
En otra realización del quinto aspecto, el procedimiento es de obtención de un compuesto de fórmula (Ib) que comprende la etapa (v) someter el producto de fermentación resultante de la etapa (b) a separación cromatográfica en columna de sílica gel usando mezclas crecientes en polaridad de n-hexano/acetato de etilo y, posteriormente, acetona (vi) recoger la fracción eluída con acetona, y (vii) someter el eluato resultante de la etapa (vi) a cromatografía de sílica gel con mezclas de polaridad creciente de n-hexano/acetato de etilo; y (viii) recoger las fracciones más polares y someterlas a cromatografía de exclusión molecular (Sephadex LH-20) con n-hexano/diclorometano/metanol (por ejemplo a una relación 2:1 : 1 (v:v:v)). En una realización del quinto aspecto, la etapa (v) comprende llevar a cabo una cromatografía en gel de sílice se lleva a cabo usando gradientes crecientes en polaridad desde n-hexano/acetato de etilo 90:10 (v/v) hasta 60:40 (v/v). En otra realización del quinto aspecto de la invención, la etapa (v) comprende, posteriormente a la elución con hexano/acetato de etilo la elución con acetona al 100%. En otra realización del quinto aspecto, la etapa (iii) comprende someter la fracción eluida con acetona a separación mediante cromatografía en gel de sílice usando gradientes crecientes en polaridad desde n-hexano/acetato de etilo 80:20(v/v) hasta 10:90 (v/v). En otra realización del quinto aspecto, la etapa (iii) comprende someter la fracción eluida con acetona a separación mediante cromatografía en gel de sílice usando gradientes crecientes en polaridad desde n-hexano/acetato de etilo 50:50 (v/v) hasta 20:80 (v/v) y, opcionalmente, someter a una etapa de secado.
En otra realización del quinto aspecto, el procedimiento es de obtención de un compuesto de fórmula (II) que comprende la etapa (ix) someter el producto de fermentación resultante de la etapa (b) a cromatografía en columna de sílica gel usando mezclas crecientes en polaridad de n-hexano/acetato de etilo desde 90:10 (v/v) hasta 60:40; (x) someter el eluato resultante de la etapa (ix) a cromatografía en columna de sílica gel con mezclas de polaridad creciente de n-hexano/acetona desde 90: 10 (v/v) a 100% de acetona; (xi) recoger la fracción más polar (correspondiente a las fracciones eluidas a 100% de acetona) y, opcionalmente, secar. En otra realización del quinto aspecto, el procedimiento es de obtención de un compuesto de fórmula (II) que comprende la etapa (ix) someter el producto de fermentación resultante de la etapa (b) a cromatografía en columna de sílica gel usando mezclas crecientes en polaridad de n-hexano/acetato de etilo desde 90: 10 (v/v) hasta 60:40; (x) someter el eluato resultante de la etapa (ix) a cromatografía en columna de sílica gel con mezclas de polaridad creciente de n-hexano/acetona desde 98:2 (v/v) a 90: 10 de acetona; (xi) recoger las fracciones eluídas a 94:6 a 92:8 (v/v)de n-hexano/acetona y someterlas a cromatografía en columna de gel de sílice con mezclas de polaridad creciente de n-hexano/diclorometano, desde 50:50 (v/v) a 100% de diclorometano, y (xii) recoger las fracciones de menor polaridad (50:50); y opcionalmente, someterlas a una etapa de secado.
En otra realización del quinto aspecto, el procedimiento es de obtención de un compuesto de fórmula (II) que comprende la etapa (ix) someter el producto de fermentación resultante de la etapa (b) a cromatografía en columna de sílica gel usando mezclas crecientes en polaridad de n-hexano/acetato de etilo desde 90: 10 (v/v) hasta 60:40 (xiii); someter el eluato resultante de la elución con n-hexano/acetato de etilo 80:20 (v/v) a cromatografía en columna de sílica gel con una mezcla de n- hexano/diclorometano/metanol (50:25:25 (v/v)); (xiv) recoger el eluato; y opcionalmente, someter a una etapa de secado
En otra realización del quinto aspecto de la invención, el procedimiento comprende una etapa adicional de purificación, concentración y/o secado de las fracciones recogidas en las etapas (iv), (viii), (xi), (xii) y (xiv). Técnicas de purificación, concentración y secados son bien conocidas por el experto en la materia y se han referido también más arriba en el presente documento.
En un sexto aspecto la presente invención proporciona una cepa aislada del hongo endófito de la especie Stemphylium solani depositada en la Colección Española de Cultivos Tipo con el número de depósito CECT20941 o un muíante de la misma que mantenga la capacidad de producir el compuesto de fórmula (I).
Por el término "muíante" se entiende un hongo que se obíiene a partir de la cepa
CECT20941 de la invención y que se caracíeriza por maníener la capacidad producíora del compuesío de formula (I) de la invención y, opcionalmeníe del compuesío de formula (II). Un muíante de CECT20941 de Stemphylium solani se entiende como una "variante" CECT20941 de Stemphylium solani. El experto en la materia entenderá que los mutantes que retienen las características y ventajas de la cepa de la invención se pueden obtener de manera rutinaria, por ejemplo por mutagenesis espontánea o mutación dirigida, usando la cepa de la invención como material de partida.
En un séptimo aspecto, la presente invención proporciona el uso de un producto de fermentación según se define en el primer aspecto de la invención, o del producto de fermentación según se define en el cuarto aspecto de la invención, o del compuesto de fórmula general (I) según se define en el segundo aspecto de la invención, o del compuesto de fórmula (II) según se define más abajo, o de la cepa de Stemphylium solani del sexto aspecto de la invención como agente biocida.
Como se ha indicado más arriba, la presente invención proporciona productos de fermentación y compuestos (y en consecuencia la cepa depositada que también los produce) que dan lugar a una actividad biocida de amplio espectro.
Por "actividad biocida de amplio espectro" se entiende la capacidad de controlar simultáneamente a más de una categoría distinta de organismos perjudiciales para las plantas. Dicho control comprende la prevención de la acción o la destrucción directa de dichos organismos perjudiciales para la salud pública y también para
la agricultura durante la producción, pero también se extiende al almacenamiento, transporte, distribución y elaboración de productos agrícolas y sus derivados. Ejemplos de categorías de organismos perjudiciales para las plantas, incluyen sin limitarse, insectos-plaga, hongos o nematodos.
Preferentemente, los insectos-plaga que se incluyen en el ámbito de esta invención, son insectos-plaga herbívoros con diferentes adaptaciones tróficas, ya sean masticadores o chupadores (áfidos), y que pueden presentar una alta incidencia sobre cultivos hortícolas provocando graves pérdidas económicas, desarrollar resistencias a insecticidas de síntesis y presentar capacidad de transmisión de virus. Ejemplos, a título ilustrativo y no limitativo, de insectos-plaga herbívoros con diferentes adaptaciones tróficas, son
Spodoptera littoralis, Myzus persicae y Rhopalosiphum padi. La actividad contra estos insectos-plaga herbívoros se puede determinar mediante diferentes tipos de bioensayos que incluyen actividad antialimentaria (inhibición de la alimentación y/o asentamiento en el caso de áfidos), repelente o tóxica, entre otras. Preferentemente, los hongos pertenecen a especies de hongos fitopatógenos. Ejemplos, a título ilustrativo y no limitativo, de hongos contra los que es efectivo el producto fermentado de la invención son Fusarium oxysporum, Fusarium moniliforme, Fusarium solani y Botrytis cinérea. La actividad contra hongos se puede determinar, por ejemplo, mediante ensayos de inhibición del crecimiento del micelio en placa.
Preferentemente, los nematodos que se incluyen en el ámbito de la invención son nematodos formadores de nodulos de las raíces (Meloidogyne sp). Un ejemplo de nematodo formador de nodulos es la especie Meloidogine javanica, polífaga, con capacidad de parasitar más de 3.000 especies de plantas de cultivo, que incluyen cultivos extensivos, hortícolas y frutales, afectando gravemente la producción (Agrios. 2005. Plant Pathology, Fifth edition, Elsevier/Academic, Amsterdam), y causando pérdidas
económicas anuales de miles de millones de euros (Singh et al. 2013. OEPP/EPPO Bulletin 43 (2), 334-374).
La actividad contra nematodos se relaciona con la toxicidad, es decir, capacidad para interrumpir una fase concreta del ciclo de vida del nematodo impidiendo su desarrollo. En el ámbito de la invención, la actividad nematicida se puede determinar, por ejemplo, a través de la determinación del porcentaje de juveniles infectivos (J2) muertos tras las 72 horas posteriores a la aplicación del producto de fermentación, compuesto de fórmula (I), cepa o composición biocida de la invención.
En un noveno aspecto, la invención proporciona una composición biocida que comprende el producto de fermentación según se define en el primer aspecto de la invención, o el producto de fermentación según se define en el cuarto aspecto de la invención, o el compuesto de fórmula (I) según se define en el segundo aspecto de la invención, o el compuesto de fórmula (II) según se define más abajo, o la cepa de Stemphylium solani del sexto aspecto de la invención. La composición biocida de la invención adicionalmente puede comprender diversos vehículos y agentes que faciliten su conservación, manejo y aplicación.
Como el experto en el estado de la técnica conocerá, en la aplicación de fitosanitarios habitualmente se utilizan vehículos sólidos, vehículos líquidos, vehículos gaseosos, etc., y, si es necesario, agentes tensioactivos y agentes auxiliares para la formulación de composiciones fitosanitarias como, por ejemplo, un aditivo para formular formas tales como concentrados emulsionables, polvos humectables, líquidos fluibles, (v.g., suspensión en agua, emulsión en agua, etc.), polvos, aerosoles, ULV y similares.
Ejemplos de vehículo sólido que se incluyen en el ámbito de la invención son polvos finos o gránulos de arcillas (v.g. arcilla de caolín, tierra de diatomeas, óxido de silicio hidratado sintético, bentonita, arcilla Fubasami, arcilla ácida, etc.), talcos, cerámicas y otros minerales inorgánicos (v.g., sericita, cuarzo, azufre, carbono activo, carbonato cálcico, sílice hidratada, etc.), fertilizantes comerciales (v.g., sulfato amónico, fosfato amónico, nitrato amónico, urea, cloruro amónico, etc.) y similares.
Ejemplos de vehículo líquido que se incluyen en el ámbito de la invención son agua, alcoholes (v.g., metanol, etanol, etc.), cetonas (v.g., acetona, metil etil cetona, etc.), hidrocarburos aromáticos (v.g, benceno, tolueno, xileno, etilbenceno, metilnaftaleno, etc.), hidrocarburos alifáticos (v.g. hexano, ciclohexano, kerosina, gas oil, etc), ésteres (v.g., acetato de etilo, acetato de butilo, etc.), nitrilos (v.g, acetonitrilo, isobutironitrilo, etc.), éteres (v.g, éter diisopropílico, dioxano etc.), amidas de ácido (v.g, N,N-dimetilformamida, Ν,Ν-dimetilacetamida, etc.), hidrocarburos halogenados (v.g., dicloroetano, tricloroetano, tetracloruro de carbono, etc. ), sulfóxido de dimetilo, aceites vegetales (v. g., aceite de soja, aceite de semilla de algodón, etc.) y similares.
Ejemplos de vehículo gaseoso que se incluyen en el ámbito de la invención son agente de pulverizado, incluyendo gas flon, gas butano, LPG (gas de petróleo liquificado), éter dimetílico, gas de dióxido de carbono y similares.
Ejemplos de agente tensioactivo que se incluyen en el ámbito de la invención son sulfatos de alquilo, sales de sulfonato de alquilo, alquil aril sulfonatos, ésteres alquil arílicos, compuestos de polioxietileno de los mismos, ésteres polietilen glicólicos, ésteres de alcohol polihidroxílico, derivados de alcohol de azúcar y similares. Ejemplos de agente auxiliar para la formulación como agente de fijación y agente de dispersión que se incluyen en la invención son caseína, gelatina, polisacáridos (v.g., polvo de almidón, goma arábiga, derivado de celulosa, ácido algínico, etc.), derivados de lignina, bentonita, azúcares, polímeros hidrosolubles sintéticos (v.g., polialcohol vinílico, polipirrolidona de vinilo, poliácidos acrílicos, etc.) y similares.
Ejemplos de estabilizantes que se incluyen en el ámbito de la invención son PAP (fosfato de ácido isopropílico), BHT (2,6-di-terc-butil-4-metilfenol), BHA (mezcla de 2-terc-butil-4- metoxifenol y 3-terc-butil-4-metoxifenol), aceites vegetales, aceites minerales, agentes tensioactivos, ácidos grasos o ésteres de los mismos y similares.
El producto de fermentación de la invención, el compuesto de la invención, el compuesto de fórmula general (II) y la composición biocida de la invención se pueden utilizar conjuntamente con al menos otro ingrediente activo adicional. Ejemplos de ingrediente activo adicional son nematicidas, insecticidas, acaricidas, fungicidas, herbicidas, reguladores del crecimiento de la planta, sinérgicos, fertilizantes, acondicionadores del suelo y cebos para animales. En un décimo aspecto la presente invención proporciona el uso del producto de fermentación de la invención, o del compuesto de la invención, o de un compuesto de fórmula (II) ya sea de forma aislada o en combinación, para elaborar una composición biocida. En un undécimo aspecto, la invención se relaciona con el uso como agente biocida de amplio espectro para el control de organismos perjudiciales, que afectan a plantas, en adelante uso de la invención, del producto de fermentación de la invención, o del compuesto de la invención, de un compuesto de fórmula (II), de la cepa de la invención, o de la composición biocida de la invención, ya sea de forma aislada o en combinación. Preferentemente, el uso de la invención es efectivo simultáneamente contra más de una categoría de organismos perjudiciales, que se seleccionan entre insectos-plaga, hongos y al menos un nematodo.
En una realización particular, el uso de la invención como agente biocida de amplio espectro comprende al menos el producto de fermentación de la invención, el compuesto (I) de la invención, un compuesto de fórmula (II), o la cepa de la invención y es activo simultáneamente contra insectos-plaga y hongos.
En una realización particular, el uso de la invención como agente biocida de amplio espectro comprende al menos el producto de fermentación de la invención, el compuesto
(I) de la invención, un compuesto de fórmula (II), o la cepa de la invención y es activo simultáneamente contra al menos, insectos-plaga, hongos y al menos un nematodo.
En otra realización particular, el uso de la invención comprende al menos el producto de fermentación según se define en el primer y cuarto aspectos, y es activo
simultáneamente contra insectos-plaga, hongos y al menos un nematodo. En otra realización particular, el uso de la invención comprende al menos un compuesto de fórmula (I) y es activo simultáneamente contra insectos-plaga, hongos y al menos un nematodo. En otra realización particular, el uso de la invención comprende al menos un compuesto de fórmula (la) y es activo simultáneamente contra insectos-plaga, hongos y al menos un nematodo.
En otra realización particular, el uso de la invención comprende el compuesto de fórmula
(II) y es activo simultáneamente contra insectos-plaga y hongos.
En un último aspecto, la invención se relaciona con un método de control de amplio espectro de organismos perjudiciales que afectan a plantas, en adelante método de control de la invención, que comprende administrar una dosis eficaz de la composición biocida de la invención, o del producto de fermentación de la invención, o del compuesto de la invención, de un compuesto de fórmula (II), o de la cepa de la invención, ya sea de forma aislada o en combinación, a la planta o al sustrato (entendido como el material que sirve de "asiento" para una planta). Preferentemente, el método de control de la invención es efectivo simultáneamente contra más de una categoría de organismos perjudiciales, que se seleccionan entre insectos-plaga, hongos y al menos un nematodo.
En una realización particular, el método de control de la invención es activo
simultáneamente contra insectos-plaga y hongos.
En una realización particular, el método de control de la invención es activo
simultáneamente contra al menos, insectos-plaga, hongos y al menos un nematodo. La aplicación puede ser directamente por rociado donde se localice el organismo perjudicial (ya sea en la planta, o en el sustrato). La "dosis eficaz" es la cantidad que muestra eficacia en el control de organismos perjudiciales. El experto en la materia puede determinar de manera rutinaria la dosis efectiva. Factores que determinan la cantidad necesaria a aplicar son: (a) si se utiliza la composición biocida de la invención, o el producto de fermentación de la invención, o el compuesto (I) de la invención, la cepa o un compuesto de fórmula (II), ya sea de forma aislada o en combinación, (b) el tipo de formulación, (c) el tiempo, (d) dónde y cómo se aplica, (e) tipo de organismo perjudicial que afecta a la planta y (f) del grado de daño.
En una realización, el método de control es un método preventivo, es decir, que se aplica el producto de fermentación, compuesto (I), compuesto (II), cepa o composición biocida en el sustrato o en aquellas zonas de la planta que son las que colonizan los organismos perjudiciales, dicha aplicación llevándose a cabo antes de que tenga los organismos perjudiciales inicien el daño en la planta.
Alternativamente, en otra realización, el método de control es un método de tratamiento, es decir que se aplica el producto de fermentación, compuesto (I), compuesto (II) cepa o composición biocida en aquellas zonas de la planta ya dañadas por la colonización por parte los organismos perjudiciales.
A lo largo de la descripción y de las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas. Para el experto en la materia, otros aspectos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. MODOS DE REALIZACION DE LA INVENCION
A) OBTENCIÓN DE UN PRODUCTO DE FERMENTACIÓN Y CARACTERIZACIÓN DE SUS COMPUESTOS CON ACTIVIDAD BIOCIDA
Ejemplo 1 , Aislamiento e identificación de la cepa Aa22 del hongo endófito S.
solani
La cepa Aa22 del hongo endófito S. solani fue aislada de hojas de Artemisia absinthium recolectadas en Terceira (Islas Azores, región Macaronesia). El material vegetal fresco se esterilizó superficialmente con hipoclorito de sodio (65%), etanol (75%) y agua destilada estéril. Pequeñas muestras de explantos (hojas y tallos) se incubaron a 27°C en oscuridad en dos medios de cultivo (PDA y YMB) en placas petri con 50 mg/l de antibiótico para prevenir su contaminación. La cepa pura Aa22 de S. solani se obtuvo aislando individualmente una colonia crecida en medio YMB y se replicó en las mismas condiciones para su mantenimiento.
La identificación morfológica de la cepa del hongo se realizó en un microscopio atendiendo a las características del micelio, esporas y estructuras reproductivas, tiñendo pequeñas muestras de las colonias aisladas con azul de metileno. Así mismo, se llevó a cabo su identificación a nivel molecular con la amplificación (PCR) y secuenciación de la región ITS ribosomal del ADNr extraído de una muestra del micelio (Arenal et al. 2000. Mycological Research 104, 2000, 301-303; Giménez. 2006. Productos bioactivos de plantas canarias y sus hongos endófitos: detección de actividad y utilización en el control de plagas y enfermedades agrícolas. Tesis doctoral, Universidad de La Laguna). Se comparó la secuencia ITS1-5.8S-ITS2 del ADNr con las publicadas en las bases de datos del NCBI (National Center for Biotechnology Information) (número de acceso GenBank JF913269.1). Una vez identificada la cepa Aa22 del hongo endófito S. solani, esta fue depositada en la Colección Española de Cultivos Tipo (CECT) en fecha 25 de septiembre de 2015 correspondiéndole el número de acceso CECT 20941 , siguiendo el Tratado de Budapest sobre el Reconocimiento Internacional del Depósito de Microorganismos a los fines del Procedimiento en materia de Patentes. Ejemplo 2. Obtención del producto de fermentación de la cepa Aa22 de S. solani
De un cultivo de dos semanas en medio YMB (caldo extracto de levadura y extracto de malta al que se adiciona agar) en placa petri de la cepa Aa22 de S. solani, se tomaron seis muestras de fragmentos (2.5x2.5 cm) de micelio fresco y se inocularon en doce erlenmeyers esterilizados (6 fragmentos en cada erlenmeyer) con 100 g de arroz y 30 mi de agua destilada (para prevenir la deshidratación del arroz). Después de tres semanas de incubación en oscuridad a 25°C, el cultivo se extrajo tres veces con acetato de etilo. Para ello, se añadió acetato de etilo hasta cubrir totalmente el medio de cultivo (120 mi) y se dejó en maceración 48 horas. Posteriormente se filtró la suspensión a través de un embudo con papel de filtro recogiendo el contenido en un recipiente. Este proceso de extracción con acetato de etilo se realizó tres veces.
El filtrado se llevó a sequedad (para evaporar el acetato de etilo) a vacío en un rotavapor para obtener el extracto crudo (4.58 g).
Ejemplo 3, Aislamiento y caracterización de los compuestos con actividad biocida del extracto crudo
Técnicas experimentales
Los espectros de RMN de 1 H y 13C de los compuestos identificados en las distintas fracciones del extracto crudo se registraron en espectrómetros Bruker Advance y AMX- 500, a 400 y 500 MHz para el 1 H y a 100 y 125 MHz para el 13C, respectivamente. Los productos se disolvieron en deuterocloroformo (CDCI3) que contenía tetrametilsilano (TMS) como patrón interno de referencia. La multiplicidad de las señales de 13C se determinaron con experimentos de desacoplamiento de banda ancha (DEPT, Delay enhancement of polarization transfer). Los programas bidimensionales (2D) usados en los experimentos de RMN (COSY, NOESY, HSQC y HMBC) fueron los proporcionados por la firma Bruker. Los espectros de masas de alta y de baja resolución se registraron en un espectrómetro Micromass Autospec® utilizando la técnica de impacto electrónico (IE-MS) a 70 eV y una temperatura de 220°C. Las cromatografías preparativas y semipreparativas se llevaron a cabo en un equipo de cromatografía líquida flash (Flash Master Personal, Jones Chromatography) sobre columnnas de silica (Isolute flash silica, 20 g/70 mL, International Sorbent Technology Ltd. Tucson, USA). En las cromatografías líquidas a vacío (VLC) y en columna (CC) se utilizó gel de sílice 0.025-0.04 y 0.040-0.015 mm (Macherey-Nagel GmbH&Co.KG, Duren, Germany) y como soporte en las cromatografías de exclusión molecular Sephadex LH-20 (Pharmacia Fine Chemicals). La visualizacion de los compuestos en las cromatografías en capa fina (TLC) se realizó con una disolución de H2S04 (5%) y vainillina (5%) en EtOH.
Por su parte, el extracto crudo se analizó por LC-MS.
3.A. Aislamiento de compuestos con actividad biocida a partir del extracto crudo
La fracción soluble en metanol (4.09 g) del extracto crudo (4.58 g) obtenida según el Ejemplo 2, fue cromatografiada en sílica gel (0.3 kg) mediante una cromatografía líquida de vacío (VLC) utilizando como eluyente mezclas crecientes en polaridad de n- hexano/acetato de etilo, acetona y metanol/ agua dando lugar a 8 fracciones: H1-H2-H3- H4-H5-H6 y H8.
La fracción H2 (n-hexano/ AcOEt, 5: 1 , 0.575 g) fue cromatografiada en columna (CC) con gel de sílice empleando mezclas de n-hexano/acetona (del 2-10%). Identificada la fracción más polar se obtuvieron 42 mg de stemfol sometiéndola a secado en rotavapor (Stodola et al.1973. Phytochemistry 12, 1797-1798, Marumo et al. 1985. Agrie. Biol.
Chem. 49, 1521-1522). Las otras fracciones se reunieron en 6 fracciones (H2A-H2F). La fracción H2E (0.053 g) (94:6 a 92:8 (v/v) de n-hexano/acetona) fue nuevamente cromatografiada sobre una columna de gel de sílice usando mezclas de n- hexano/diclorometano (50:50 (v/v) a 100 % de diclorometano).. En las fracciones de menor polaridad (50% de diclorometano) se obtuvieron, tras someterlas a secado rotavapor, 21 mg del stemfol.
De la fracción H3 (n-hexano/ AcOEt, 4: 1 , 107 mg) mediante cromatografía en Sephadex LH-20 con una mezcla de n-hexano/diclorometano/metanol (2: 1 :1) se aisló de nuevo el stemfol, tras someter las fracciones recogidas a sequedad en rotavapor (74.3 mg).
La fracción H6 (acetona 100%, 0,452 g) se cromatografió sobre una CC de sílica gel eluída con mezclas crecientes en polaridad de n-hexano/acetato de etilo 20-100% (80:20 (v/v) a 100% de acetato de etilo). En las fracciones menos polares (EtOAc 20-30%) obtenidas a partir de esta fracción 6 se aisló la stemfolona A (19 mg) mediante secado en rotavapor y de las más polares (EtOAc 50-80%) se obtuvieron, mediante secado en rotavapor, 1 1 mg de la stemfolona B mediante cromatografía en Sephadex LH-20 con n- hexano/diclorometano/metanol (2: 1 : 1). 3.B. Caracterización de los compuestos con actividad biocida
Stemfol
El stemfol se aisló a partir del extracto crudo como un sólido blanco. El espectro de masas de alta resolución mostró un ión molecular a 236.1772 miz (caled. 236.1776) que estaba de acuerdo con la fórmula molecular C15H24O2. Las bandas de absorción en el espectro de IR a 3300 y 1630 errf1 indicaban la presencia de grupos hidroxilos y dobles enlaces, respectivamente. Su espectro de RMN de 1 H presentaba señales características de dos cadenas alquílicas (butilo y n-pentilo), la señal de un singulete que integraba por dos protones a δ 6.22 (H-4, H-6) y dos grupos hidroxílicos a δ 4.62 (2H, s, OH). El desplazamiento químico y la multiplicidad sugerían la presencia de un anillo 1 ,3- dihidroxifenilo-2,5-tetrasustiuido. Esta propuesta fue confirmada por la similitud de sus datos espectroscópicos con los publicados para compuestos análogos (Pohanka et al. 2006. J Nat Prod.69, 654-657).
El espectro de RMN 13C mostró doce señales correspondientes a un grupo metilo, siete metilenos, un grupo metino y tres carbonos cuaternarios, que estaban de acuerdo con las correlaciones observadas en el experimento HSQC. Las señales a δ 108.1 , 1 14.1 , 142.1 y 154.4 debidas a carbonos aromáticos confirmaban la presencia del grupo fenilo 1 ,3- dihidroxi-2,5-tetrasustiuido.
La posición relativa de los sustituyentes fue confirmada en el experimento HMBC, con las correlaciones observadas entre los protones a δ 2.58 (H-1 ') y δ 6.22 (H-4, H-6) con las señales a δ 154.4 (C-1 , C-3) y δ 1 12.5 (C-2), y del protón a δ 2.44 (H-1 ") con δ 108.1 (C- 4, C-6) y 5 142.2 (C-5).
Estos datos están de acuerdo con el stemfol, compuesto aislado anteriormente de los hongos S. majusculum (Stodola et al.1973. Phytochemistry 12, 1797-1798) y S.
botryosum (Marumo et al. 1985. Agrie. Biol. Chem. 49, 1521-1522). Sus datos
espectroscópicos de RMN 2D permitieron asignar todas las señales de protones y carbonos presentes en la molécula (ver Tabla 1) e identificar su estructura como la 5- butil-2-pentilresorcina.
Stemfol. IR (film) vmax, 3300, 2850 1630 1588, 1430, 1270 cm"1 ; para datos 1 H NMR (CDCI3, 500 MHz) ver Tabla 1 ; para datos 13C NMR (CDCI3, 125 MHz) ver Tabla 1 ; HREIMS m/z 236.1771 [M]+ (calculado para C15H24O2, 236.1776); EIMS 70 eV m/z (reí. int.): 236 [M+] (16), 194 (16), 193 (100), 180 (45), 137 (7), 123 (1 1), 91 (3), 77 (4).
Tabla 1. Datos espectroscópicos de 1 H NMR y13C NMR del stemfol
Figure imgf000034_0001
Stemfolona A
La stemfolona A fue aislada a partir del extracto crudo como un sólido amorfo de color marrón. Su fórmula molecular se determinó como Ci5H2603 ([M] +,m/z 254.1888) (caled. 254.1882) por espectometría de masas de alta resolución. El espectro de IR mostró bandas de absorción a 3443, 1673 y 1650 cm"1 atribuibles a grupos hidroxilos, grupo carbonilo y dobles enlaces, respectivamente.
En el espectro de 1 H-RMN se observaron señales de dos cadenas alifáticas que integraban por un total de veinte protones, un grupo metileno a δ 2.47 (1 H, dd, J = 18.0 Hz, J = 10 Hz, H-4ax) y 5 2.61 (1 H, dd, J = 18.0Hz, J = 6.0 Hz, H-4ec), y un metino unido a un átomo de oxígeno a δ 3.98 (1 H, dd, J = 10.0 Hz, J = 6.0 Hz, H-5). Asimismo, se observó a campo bajo la señal de un protón olefínico a δ 5.89 (1 H, bs, H-2), sugiriendo la presencia de un doble enlace trisustituido. El espectro de RMN de 1H -2D-COSY mostraba, como en el stemfol, la presencia de fragmentos alifáticos butilo y pentilo que se determinaron por las correlaciones observadas en los sistemas spin entre H-1"-H3-4" y H-1 '- H3-5', respectivamente. Otra serie de correlaciones que aparecen en este espectro estaban de acuerdo con un agrupamiento -CH=C— CH2-CH-(0)-. Así, el sistema geminal a δ 2.47 (Η-4'ax) y5 2.61 (H-4 ec) mostraba un acoplamiento con las señales a δ 3.98 (H- 5) y δ 5.89 (H-2).
El espectro de RMN de 13C mostró la presencia de quince señales que se asignaron a dos metilos, ocho metilenos, dos metinos y tres carbonos cuaternarios, de acuerdo con un experimento HSQC. Las resonancias a δ 73.9 (C-5) y δ 79.6 (C-6) indicaron la existencia de dos átomos de carbono unidos al oxígeno. Destacan también en este espectro los desplazamientos químicos a δ 122.5(C-2) y 164.2 (C-3) debido a carbonos de un doble enlace unido a un grupo aceptor de electrones y la señal a δ 201.3 (C-1) de un grupo carbonilo. La localización de los distintos grupos funcionales se estableció en base a las
correlaciones mostradas en el experimento HMBC. Así, se observaron conectividades entre H-2 (δ 5.89), H-4 (δ 2.47 y 2.61 δ) y H-5 (δ 3.98) con C-6 (δ 79.6), de H-1 " (δ 1.95) con C-1 (δ 200.1) y C-6 (δ 79.6), y de H-1 ' (δ 2.23) con C-2 (δ 122.5) y C-3 (δ 164.5). Las correlaciones de los experimentos HMBC y RMN-2D-COSY de 1 H sugerían la presencia de un esqueleto 6-butil-3-pentilciclohexeno. La estereoquímica de C-5 y C-6 se dedujo por los efectos NOE observados en la irradiación de H-4ax con H-1 " y de H-4ec con H-5. La posición relativa de las cadenas alquílicas butilo y pentilo fue confirmada por los efectos NOE observados entre los protones H-2 y H-1 ', H-4 y H-T. Estos datos espectroscópicos permitieron determinar la estructura de un compuesto como el 6-butil- 5,6-dihidroxi-3-pentylcyclohex-2-en-1-ona, no descrito anteriormente en la bibliografía y al que hemos denominado stemfolona A. Stemfolona A. [a]D +4.4 (c 0.08, CHCI3); IR (film) vmax3443, 2957, 2930, 2861 , 1673, 1650, 1626, 1467, 1378, 1257, 1142, 1075 cm"1 ; para datos 1 H NMR (CDCI3, 500 MHz) ver Tabla 3; para datos 13C NMR (CDCI3, 125 MHz) ver Tabla 3; HREIMS m/z 254.1888 [M]+ (calculado para C15H26O3, 254.1882); EIMS 70 eV m/z (reí. int.): 254 [M+] (5), 198 [M- C4H8]+ (35), 179 (8), 169 [M-C4H8-C2H5]+ (33), 151 (21), 139 [M+H-C6H1202]+
fragmentación retro-Diels Alder (100), 124 (22), 116 (58), 95 (20), 85 (54), 74 (55).
Stemfolona B
La stemfolona B se aisló a partir del extracto crudo como un sólido amorfo de color marrón. La fórmula molecular se determinó como Ci5H2604 a partir del ion molecular am/z 270.1833 (caled. 270.1831) en el espectro de masas de alta resolución. Las absorciones del espectro de infrarrojo a 3418, 1673, 1651 cm"1 indicaron la presencia de grupos hidroxilo, grupo carbonilo y dobles enlaces, respectivamente. En su espectro de RMN de 1 H se observaron señales similares a las de la stemfolona A. La diferencia más significativa entre los dos espectros fue la presencia de una señal a δ 3.81 (1 H, td, J = 12.0 Hz, J = 6.0 Hz, H-4') que sugería la presencia de un grupo hidroxilo adicional que podría estar situado en C-3 o C-4. La correlación observada en el experimento HMBC entre los grupos metilo en 51.19 (3H, d, H-5') y la señal en δ 67.7 confirma la posición del grupo hidroxilo en C-4. Por otro lado, el efecto NOE entre H-1 y H-4, así como las constantes de acoplamiento de H-3 permitió determinar la estereoquímica relativa en C-2 y C-3. En base a los datos anteriores la estructura de este compuesto fue asignada como 6-butil-5,6-dihidroxi-3-(4-hidroxipentil)ciclohex-2-en-1-ona. Es la primera vez que este compuesto se aisla como producto natural y lo denominamos stemfolona B. Stemfolona B. [a]D +12.5 (c 0.056, CHCI3); IR (film) vmax3418, 295, 2931 , 2872, 1673, 1667,1651 , 1626, 1433, 1377, 1260, 1 138, 1076 cm"1 ; para datos 1 H NMR (CDCI3, 500 MHz) ver Tabla 3; para datos 13C NMR (CDCI3, 125 MHz) ver Tabla 3; HREIMS m/z 270.1833 [M]+ (calculado para C15H26O4, 270.1831); EIMS 70 eV m/z (reí. int.): 270 [M+] (7), 252 [Μ-Η2Ο (14), 197 [M+H-H20-2C2H4]+ (35), 179 [M+H-2H20-2C2H4]+ (12), 167 [M-H20-2C2H4-C4H9]+ (33), 155 (17), 149 (26), 137 (21), 125 (10), 116 [Μ-Οι ι Η1803 fragmentación retro-Diels Alder (100), 109(28), 95 (54), 85 (85), 74 (96).
Tabla 2. Datos espectroscópicos de1 H NMR y13C NMR de la stemfolona A y B.
Figure imgf000037_0001
B) ACTIVIDAD BIOCIDA
Ejemplo 4. Actividad contra insectos-plaga La cría y mantenimiento de los insectos se llevó a cabo en una cámara de temperatura controlada a 24+1°C, 60-70% de humedad relativa y un fotoperiodo de 16:8 horas (luz:oscuridad). Las larvas de S. littoralis se mantuvieron con una dieta semisintética (Poitut y Bues. 1970. Ann. Zool. Ecol. Anim. 2, 79-91) y los áfidos M. persicae y
Rhopalosiphum padi sobre sus plantas huésped, pimiento -Capsicum annum L.- y cebada -Hordeum vulgare L.- respectivamente. Los ensayos de actividad anti-alimentaria se realizaron con larvas recién emergidas del sexto estadio de S. littoralis y pulgones adultos ápteros. La superficie superior de discos de hoja (1.0 cm2) de pimiento (Capsicum annum L.), fueron tratados con 10 μΙ de una solución (10 mg/ml para extractos y 5 mg/ml para productos puros). Cada ensayo consistió en 5 placas Petri con dos larvas por placa (S. littoralis) o veinte cajas (2x2 cm) con diez áfidos de M. persicae o R. padi incubados en una cámara de crecimiento en las mismas condiciones descritas para la cría de los insectos. Una vez consumido el 75% de la superficie de los discos control (S. littoralis) o después de 24 h (M. persicae o R. padi) se calculó el índice de consumo (%FI) o de asentamiento (% de SI), respectivamente. % Fl = [1 - (T / C) x 100], donde T y C son el consumo de discos de hojas tratadas y control; % de SI = [1 - (% T / C %)], donde % C y % T son el porcentaje de áfidos asentados en los discos de hojas control y tratadas (Burgueño et al. 2008. J. Chem. Ecol. 34, 766-771). Los compuestos con un Fl / SI > 70 % se ensayaron en un experimento de dosis - respuesta para calcular su potencia relativa (EC50, es la dosis efectiva para una reducción de un 50 % de la alimentación).
Tabla 3. Actividad contra insectos-plaga del extracto crudo (100 μg/cm2), de las fracciones H1-H8 [100 μg/cm2] y de los compuestos con actividad biocida (50 μg/cm2).
Figure imgf000039_0001
Ejemplo 5. Actividad anísfúngsca
Los hongos fitopatogenos Fusarium moniliforme (Sheldon) [CECT 2152], F. oxysporum fs. lycopersici (Escalda) [CECT 2715] y F. solani (Mart) [CECT 2199] proceden de la Colección Española de Cultivos Tipo (CET). La cepa de Botrytis cinérea Pers. :Fr.
(B05.10) es una donación del Departamento de Bioquímica de la Universidad de La
Laguna (ULL). Para su mantenimiento las cepas se cultivaron en medio sólido comercial PDA a 25°C (Fusarium) o temperatura ambiente (Botrytis), y posterior conservación a - 30°C en viales con glicerol al 18%. Para determinar la actividad antifúngica se empleó el método de dilución en agar (Murabayashi et al. 1991. J. Pesticide Sci. 16, 419-427). Muestras del extracto crudo seco obtenido según el Ejemplo 2 se incorporaron en el medio de cultivo (5 mi) a 5 concentraciones diferentes (1 , 0,5, 0, 1 , 0,05 y 0,01 mg/ml). De forma paralela, se prepararon controles con etanol a una concentración del 2 %. La siembra de los organismos diana se realizó por picadura (Fusarium) o con discos de 5 mm de diámetro (β. cinérea). Las colonias cultivadas en placas de Petri e incubadas durante 48 h fueron digitalizadas y se midieron empleando el programa ImageJ 1.43. El porcentaje de inhibición (% I) se calculó como: % I = (C-T/C) x 100, donde C es el diámetro de las colonias del control y T de las colonias de las muestras ensayadas. La dosis efectiva de inhibición de crecimiento (EC50) se determinó por análisis de regresión lineal (% de inhibición del log de la dosis).
Tabla 4. Actividad antifúngica del extracto crudo, de las fracciones H1-H8 y de los compuestos (utilizando 0.5 mg/ml). aEnsayado a 0.1 mg/ml.
Figure imgf000040_0001
0.01 (0.005- 0.53 (0.53-
0.02 (0.020-0.021 )
0.024) 0.54)
56.21 ±1.50
Stemfolona
na na na 0.43 (0.42- A2
0.43)
49.94±4.40a
Stemfolona B 4.20±1.14a 1 1.88±3.67
0.21 (0.21 -0.22) ijemplo 6, Actividad nematicsda
La población de nematodos (M. javanica) se mantuvo en cámaras de crecimiento sobre plantas de tomate -Lycopersicon esculentum (var. Marmande)- a 25 °C y una humedad relativa del 70%. Los ensayos se realizaron según la metodología descrita para M.
javanica (Andrés et al. 2012. Phytochem. Rev. 1 1 , 371-390) utilizando la fase biológica de juveniles infectivos (J2). La actividad del extracto crudo seco obtenido según el Ejemplo 2, de sus fracciones y de los compuestos con actividad biocida se cuantificó a una concentración final por pocilio de 1.0/0.5 y 0.25 mg/ml, respectivamente. Cada tratamiento se repitió cuatro veces y la actividad nematicida se determinó a partir del porcentaje de juveniles infectivos muertos después de 72h. En los casos en los que se determinó una tasa de mortalidad > 99% se realizaron experimentos de dosis-respuesta para determinar LC50 y LC90.
Tabla 5. Actividad nematicida del extracto crudo, de las fracciones H1-H8 y de los compuestos
Extracto M. javanica
crudo/fracción/ mg/ml % paralyzed
compuesto
Extracto crudo 1 94.82 ± 0.75
H1 1 0.41 ± 1.60
H2 1 7.46 ± 1.79
H3 1 0.00 ± 0.00 H4 0.00 ± 0.00
H5 10.39 ± 1.87
H6 1 1.14 ± 3.23
H7 0.98 ± 1.42
H8 1.80 ± 0.65
Stemfol 0,5 1.24 ± 0.68
0,5 83.05 ± 3.15
Stemfolona A
0,25 2.8 ± 0.5
Stemfolona B 0,5 1.24 ± 0.9
Ejemplo 7: Ensayo de fitotoxicidad
La actividad fitotóxica del extracto crudo, fracciones y compuestos puros (obtenido según el Ejemplo 2 y 3) fue evaluado frente a semillas de Lactuca sativa Teresa (Fito, España)
Los experimentos se realizaron en placas de 12 pocilios (Falcon), aplicando 20 μΙ (10 μ9/μΙ) sobre discos de papel de 2,5 cm de diámetro colocados en el fondo de cada pocilio. Se le añadió 500 μΙ de agua destilada, 10/5 semillas, y las placas se incubaron en una cámara de crecimiento a 25 °C, 70% humedad relativa y un fotoperiodo 16:08 L: O. La germinación de las semillas se contabilizó durante seis días y la elongación de las raíces al final del experimento. Los datos se analizaron mediante análisis de varianza (ANOVA). Como control positivo de la inhibición de la germinación se empleó la juglona (5 μ9/μΙ: germinación inferior al 5%.
Los resultados se resumen en la Tabla 6:
Tabla 6. Efectos fitotóxicos de los extractos y fracciones del hongo Aa22 (100 μ9/μΙ) y compuestos (5 μ9/μΙ) en Lactuca sativa
Germinación Crecimiento
Muestra (%C) (%C)
72h Ráiz
Extracto
completo 100 ± 0,00 221 ,64 ± 19,78
Aa22
H1 100 ± 0,00 104,77 ± 8,74
H4 100 ± 0,00 133,66 ± 13,09
H5 100 ± 0,00 137,41 ± 13, 10
H6 102,63 ± 4,08 246,57 ± 13.61
H7 100 ± 0,00 197,65 ± 16, 18
H8 100 ± 0,00 104,77± 9,29
II 100 ± 0,00 140,73± 13,16
la 97,50 ±3,54 230,26 ± 21 ,33
Ib 100 ± 0,00 109,26± 9,57
Los ensayos muestran ausencia de efectos fitotóxicos del extracto, fracciones y compuestos la, Ib y II sobre la germinación y el desarrollo radicular de la planta Lactuca sativa. L. sativa (lechuga) se usa como modelo de planta dicotiledónea en ensayos de fitotoxicidad.
Por razones de exhaustividad, se exponen a continuación diversos aspectos de la invención en las siguientes cláusulas:
Cláusula 1.- Producto de fermentación de un hongo endófito de la especie Stemphylium solani con actividad biocida de amplio espectro, caracterizado por que comprende un compuesto de fórmula (I):
Figure imgf000044_0001
(l)
donde R se selecciona entre H y OH, o un isómero, o una sal o un solvato del mismo.
Cláusula 2.- Producto de fermentación según la Cláusula 1 , caracterizado por que comprende simultáneamente un compuesto de fórmula (I) donde R es H, y otro compuesto de fórmula (I) donde R es OH , o un isómero, o una sal o un solvato de los mismos.
Cláusula 3.- Producto de fermentación según cualquiera de las Cláusulas 1 y 2, caracterizado por que adicionalmente comprende otro compuesto con actividad biocida de amplio espectro de fórmula (II):
Figure imgf000044_0002
o un isómero, o una sal o un solvato del mismo. Cláusula 4. -Compuesto de fórmula (I):
Figure imgf000044_0003
(l)
donde R se selecciona entre H y OH, o un isómero, o una sal o un solvato del mismo.
Cláusula 5.- Procedimiento de obtención del producto de fermentación definido según cualquiera de las Cláusulas 1 a 3, caracterizado por que comprende cultivar micelio de un hongo endófito de la especie Stemphylium solani en un medio de cultivo. Cláusula 6.- Procedimiento de obtención según la Cláusula 5, caracterizado por que adicionalmente comprende una etapa de secado que utiliza una técnica que se selecciona entre extracción con solvente orgánico previa filtración o bien liofilización.
Cláusula 7.- Procedimiento según la Cláusula 6, caracterizado por que el hongo endófito es la cepa Aa22 de Stemphylium solani con número de depósito CECT 20941.
Cláusula 8.- Uso de un producto de fermentación tal y como se define según las
Cláusulas 1 a 3, de un compuesto de fórmula general (I) según se define en la Cláusula 4, o de un compuesto de fórmula (II) tal y como se define en la Cláusula 3 para elaborar una composición biocida de amplio espectro.
Cláusula 9.- Composición biocida de amplio espectro que comprende un producto de fermentación tal y como se define según las Cláusulas 1 a 3, o un compuesto de fórmula general (I) según se define en la Cláusula 4, o un compuesto de fórmula (II) tal y como se define en la Cláusula 3.
Cláusula 10.- Uso de la composición biocida según la Cláusula 9 como agente biocida de amplio espectro para el control simultáneo de más de una categoría de organismos perjudiciales que afectan a plantas.
Cláusula 1 1.- Uso según la Cláusula 10, caracterizado por que las categorías de organismos perjudiciales que afectan a las plantas se seleccionan entre insectos-plaga, hongos y nematodos. Cláusula 12.- Uso según cualquiera de las Cláusulas 10 y 1 1 , caracterizado por que las categorías de organismos perjudiciales son simultáneamente insectos-plaga, hongos y nematodos. Cláusula 13.- Método para el control simultáneo de más de una categoría de organismos perjudiciales que afectan a plantas, que comprende administrar una dosis eficaz de un producto de fermentación tal y como se define según las Cláusulas 1 a 3, o de un compuesto de fórmula general (I) según se define en la Cláusula 4, o de un compuesto de fórmula (II) tal y como se define en la Cláusula 3.
Cláusula 14.- Método de control según la Cláusula 13, caracterizado por que las categorías de organismos perjudiciales que afectan a las plantas se seleccionan entre insectos-plaga, hongos y nematodos. Cláusula 15.- Método de control según cualquiera de las Cláusulas 13 y 14,
caracterizado por que las categorías de organismos perjudiciales son simultáneamente insectos-plaga, hongos y nematodos.

Claims

REIVINDICACIONES
1.- Producto de fermentación de un microorganismo fermentador que comprende compuesto de fórmula (I):
Figure imgf000047_0001
donde R se selecciona entre H y OH, o un isómero, o una sal o un solvato del mismo.
2.- Producto de fermentación según la reivindicación 1 , que comprende un compuesto de fórmula (la), o un isómero, una sal o un solvato de (la), y un compuesto de fórmula (Ib), o un isómero, una sal o un solvato de (Ib):
Figure imgf000047_0002
(la) (Ib)
3.- Producto de fermentación según cualquiera de las reivindicaciones 1 y 2, que comprende adicionalmente un compuesto de fórmula (II):
Figure imgf000047_0003
(II)
o un isómero, o una sal o un solvato del mismo.
4. - Producto de fermentación según cualquiera de las reivindicaciones 1-3, que es un extracto.
5. - Producto de fermentación según cualquiera de las reivindicaciones 1-4, que está libre del microorganismo fermentador.
6. - Producto de fermentación según cualquiera de las reivindicaciones 1-4, que comprende el microorganismo fermentador inactivado.
7. - Producto de fermentación según cualquiera de las reivindicaciones 1-6, en donde el microorganismo fermentador es un hongo.
8. - Producto de fermentación según la reivindicación 7, en donde el hongo es un hongo endófito.
9. - Producto de fermentación según la reivindicación 8, en donde el hongo endófito es del género Stemphylium.
10. - Producto de fermentación según la reivindicación 9, en donde el hongo endófito es una cepa de Stemphylium solani.
1 1. - Producto de fermentación según la reivindicación 10, en donde el hongo endófito es la cepa de Stemphylium solani CECT 20941.
12. -Compuesto de fórmula (I):
Figure imgf000048_0001
(i)
donde R se selecciona entre H y OH, isómero, o una sal o un solvato del mismo.
13. - Procedimiento de obtención del producto de fermentación definido según cualquiera de las reivindicaciones 1 a 1 1 , que comprende (a) una etapa de fermentación que comprende cultivar el microorganismo fermentador en un medio de cultivo que de lugar a la producción de un compuesto de fórmula (I); y, opcionalmente, (b) una o más etapas de extracción.
14. - Procedimiento según la reivindicación 13, en donde la etapa de fermentación se lleva a cabo en presencia de un cereal.
15.- Procedimiento según cualquiera de las reivindicaciones 13 a 14, en donde la etapa de fermentación se lleva a cabo en la oscuridad.
16. - Procedimiento según cualquiera de las reivindicaciones 13 a 15, en donde la etapa de fermentación se lleva a cabo a temperatura ambiente.
17. - Procedimiento según cualquiera de las reivindicaciones 13 a 16, en donde la etapa (b) de extracción del producto de fermentación se lleva a cabo mediante decantación usando un disolvente o mezcla de disolventes polares apróticos.
18.- Procedimiento según cualquiera de las reivindicaciones 13 a 17, que comprende una etapa previa a la etapa (a) en la que se hace crecer el microorganismo fermentador en un medio de cultivo.
19. - Procedimiento según cualquiera de las reivindicaciones 13 a 18, que comprende adicionalmente una etapa (i.1), posterior a la etapa(a) de fermentación, en la que se elimina el microorganismo fermentador.
20. - Procedimiento según cualquiera de las reivindicaciones 13 a 18, que comprende adicionalmente una etapa (i.2) posterior a la etapa(a) de fermentación, en la que se inactiva el microorganismo fermentador.
21.- Procedimiento según cualquiera de las reivindicaciones 13 a 20, que comprende una etapa (c) de purificación del extracto resultante de la etapa (b), (i.1.) o (i.2.).
22.- Procedimiento según la reivindicación 21 , en donde la etapa (c) de purificación se lleva a cabo mediante cromatografía.
23. - Procedimiento según cualquiera de las reivindicaciones 13 a 22, que comprende adicionalmente una etapa de secado del extracto resultante de la etapa (b), (i. l), (i.2.), y/o (d).
24. - Procedimiento según la reivindicación 23, en donde la etapa de secado del extracto comprende es de secado al vacío.
25. - Procedimiento según cualquiera de las reivindicaciones 13 a 24, en donde el microorganismo fermentador es un hongo, preferiblemente un hongo endófito, preferiblemente es una cepa de Stemphylium, preferiblemente una cepa de Stemphylium solani, preferiblemente es una cepa de Stemphylium solani con el número de depósito CECT 20941.
26. - Un producto de fermentación que comprende el compuesto de fórmula (I) según se define en la reivindicación 12, obtenible mediante el procedimiento según se define en cualquiera de las reivindicaciones 13-25.
27. - Producto de fermentación según la reivindicación 26, que comprende adicionalmente el compuesto de fórmula (II) según se define en la reivindicación 3.
28. - Procedimiento de preparación de un compuesto de fórmula (I) según se define en la reivindicación 12, que comprende la etapa de aislamiento del compuesto de fórmula (I) a partir del producto resultante de la etapa (b), (i. l), (i.2) o (c) definidas en las
reivindicaciones 13 a 24.
29. - Cepa aislada del hongo endófito de la especie Stemphylium solani depositada en la Colección Española de Cultivos Tipo con el número de depósito CECT20941 o un muíante de la misma que mantiene la capacidad de producir el compuesto de fórmula (I).
30. - Una composición biocida que comprende el producto de fermentación según se define en cualquiera de las reivindicaciones 1 a 1 1 , o el producto de fermentación según se define en cualquiera de las reivindicaciones 26-27, o el compuesto de fórmula (I) según se define en la reivindicación 12, o el compuesto de fórmula (II) según se define en la reivindicación 3, o la cepa de Stemphylium solani de la reivindicación 29.
31.- Uso de un producto de fermentación según se define en las reivindicaciones 1 a 1 1 , o del producto de fermentación según se define en cualquiera de las reivindicaciones 26- 27, o del compuesto de fórmula general (I) según se define en la reivindicación 12, o del compuesto de fórmula (II) según se define en la reivindicación 3, o de la cepa de
Stemphylium solani de la reivindicación 28 como agente biocida.
32.- Uso de un producto de fermentación según se define en las reivindicaciones 1 a 1 1 , o del producto de fermentación según se define en cualquiera de las reivindicaciones 26- 27, o del compuesto de fórmula general (I) según se define en la reivindicación 12, o del compuesto de fórmula (II) según se define en la reivindicación 3, o de la cepa de
Stemphylium solani de la reivindicación 28 o de la composición biocida según se define en la reivindicación 30, para el control simultáneo de más de una categoría de organismos perjudiciales que afectan a plantas.
33. - Uso según cualquiera de las reivindicaciones 31-32, en donde las categorías de organismos perjudiciales que afectan a las plantas se seleccionan entre insectos-plaga, hongos y nematodos.
34. - Uso según cualquiera de las reivindicaciones 31-33, en donde las categorías de organismos perjudiciales son simultáneamente insectos-plaga, hongos y nematodos.
35.- Método de control de organismos perjudiciales que afectan a plantas que comprende administrar una dosis eficaz del producto de fermentación según se define en cualquiera de las reivindicaciones 1-1 1 , o del producto de fermentación según se define en las reivindicaciones 26-27, o del compuesto de fórmula (I) según se define en la
reivindicación 12, o del compuesto de fórmula (II) según se define en la reivindicación 3, o de la cepa de Stemphylium solani según se define en la reivindicación 28, o de la composición biocida según se define en la reivindicación 30.
36.- Método de la reivindicación 35, que es efectivo simultáneamente contra más de una categoría de organismos perjudiciales.
37. - Método de control según cualquiera de las reivindicaciones 35-36, en donde las categorías de organismos perjudiciales que afectan a las plantas se seleccionan entre insectos-plaga, hongos y nematodos.
38. - Método de control según cualquiera de las reivindicaciones 35-37, en donde las categorías de organismos perjudiciales son simultáneamente insectos-plaga, hongos y nematodos.
PCT/ES2016/070746 2015-10-23 2016-10-21 Biocidas naturales de amplio espectro WO2017068223A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16805478.1A EP3366136A1 (en) 2015-10-23 2016-10-21 Natural broad-spectrum biocides
US15/769,674 US20180312880A1 (en) 2015-10-23 2016-10-21 Natural broad-spectrum biocides
CA3002123A CA3002123A1 (en) 2015-10-23 2016-10-21 Natural broad-spectrum biocides
BR112018007820-4A BR112018007820A2 (pt) 2015-10-23 2016-10-21 biocidas naturais de amplo espectro

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201531527A ES2610186B1 (es) 2015-10-23 2015-10-23 Biocidas naturales de amplio espectro procedentes del hongo endófito stemphylium solani
ESP201531527 2015-10-23

Publications (2)

Publication Number Publication Date
WO2017068223A1 true WO2017068223A1 (es) 2017-04-27
WO2017068223A8 WO2017068223A8 (es) 2018-05-11

Family

ID=57471912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070746 WO2017068223A1 (es) 2015-10-23 2016-10-21 Biocidas naturales de amplio espectro

Country Status (9)

Country Link
US (1) US20180312880A1 (es)
EP (1) EP3366136A1 (es)
AR (1) AR106443A1 (es)
BR (1) BR112018007820A2 (es)
CA (1) CA3002123A1 (es)
ES (1) ES2610186B1 (es)
MA (1) MA44477A (es)
UY (1) UY36960A (es)
WO (1) WO2017068223A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107915616A (zh) * 2017-10-18 2018-04-17 浙江大学 一种化合物及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017937A1 (en) 2000-09-01 2002-03-07 Fundação Oswaldo Cruz - FIOCRUZ Extracts from the fungus guignardia sp., their uses in pharmaceutical compositions, new isolate compound from the extract of the fungus guignardia sp. and its use in pharmaceutical compositions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036629A (en) * 1971-06-14 1977-07-19 Mobil Oil Corporation 3-(3,4-Epoxy-4-methylcyclohexyl)butyl esters
US4036639A (en) * 1973-09-10 1977-07-19 Sherritt Gordon Mines Limited Production of copper
DE102009022618A1 (de) * 2009-05-26 2010-12-02 Leibniz-Institut Für Pflanzenbiochemie Hydropyronderivate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017937A1 (en) 2000-09-01 2002-03-07 Fundação Oswaldo Cruz - FIOCRUZ Extracts from the fungus guignardia sp., their uses in pharmaceutical compositions, new isolate compound from the extract of the fungus guignardia sp. and its use in pharmaceutical compositions

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
AGRIOS: "Plant Pathology", 2005, ELSEVIER/ACADEMIC
ALY, FUNGAL DIVERSITY, vol. 41, 2010, pages 1 - 16
ANDERSEN B ET AL: "Metabolite profiles of common Stemphylium species", MYCOLOGICAL RESEARCH, ELSEVIER, GB, vol. 99, no. 6, 1 June 1995 (1995-06-01), pages 672 - 676, XP025927238, ISSN: 0953-7562, [retrieved on 19950601], DOI: 10.1016/S0953-7562(09)80526-1 *
ANDERSEN ET AL., MYCOL. RES., vol. 99, 1995, pages 672 - 676
ANDRES ET AL., PHYTOCHEM. REV., vol. 11, 2012, pages 371 - 390
ARENAL ET AL., MYCOLOGICAL RESEARCH, vol. 104, 2000, pages 301 - 303
BARASH ET AL., PLANT PHYSIOL., vol. 55, 1975, pages 646 - 651
BIRGITTE ANDERSEN ET AL: "Natural Occurrence of Fungi and Fungal Metabolites in Moldy Tomatoes", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 52, no. 25, 15 December 2004 (2004-12-15), US, pages 7507 - 7513, XP055334181, ISSN: 0021-8561, DOI: 10.1021/jf048727k *
BUCKEL ET AL., PHYTOCHEMISTRY, vol. 89, 2013, pages 96 - 103
BURGUEÑO ET AL., J. CHEM. ECOL., vol. 34, 2008, pages 766 - 771
COLECCIÓN ESPAÑOLA DE CULTIVOS TIPO CON CECT 20941, 25 September 2015 (2015-09-25)
DEBBAB ET AL., J. NAT. PROD., vol. 72, 2009, pages 626 - 31
GARCÍA ET AL., FUNGAL DIVERSITY, 2012
GIMÉNEZ: "Productos bioactivos de plantas canarias y sus hongos endófitos: detección de actividad y utilización en el control de plagas y enfermedades agrícolas", TESIS DOCTORAL, 2006
GONZÁLEZ; TELLO, FUNGAL DIVERSITY, vol. 47, 2011, pages 29 - 42
LA COLECCIÓN ESPAÑOLA DE CULTIVOS TIPO CON CECT 20941, 25 September 2015 (2015-09-25)
MARUMO ET AL., AGRIC. BIOL. CHEM., vol. 49, 1985, pages 1521 - 1522
MARUMO ET AL.: "Stemphol from Pleospora herbarum as a self-inhibitor", AGRIC. BIOL. CHEM., vol. 49, no. 5, 1985, pages 1521 - 1522, XP009193007 *
MIRJALILI ET AL., FEMS MICROBIOL. LETT, vol. 328, 2012, pages 122 - 9
MOLITOR ET AL., J. NAT. PROD., vol. 75, 2012, pages 1265 - 1269
MURABAYASHI ET AL., J. PESTICIDE SCI., vol. 16, 1991, pages 419 - 427
POHANKA ET AL., J NAT PROD., vol. 69, 2006, pages 654 - 657
POITUT; BUES, ANN. ZOOL. ECOL. ANIM., vol. 2, 1970, pages 79 - 91
SINGH ET AL., OEPPIEPPO BULLETIN, vol. 43, no. 2, 2013, pages 334 - 374
SOLFRIZZO ET AL., NAT. TOXINS, vol. 2, 1994, pages 14 - 18
SOLFRIZZO ET AL.: "Production of a toxin stemphol by Stemphylium species", NAT. TOXINS, vol. 2, 1994, pages 14 - 18, XP009193009 *
STODOLA ET AL., PHYTOCHEMISFRY, vol. 12, 1973, pages 1797 - 1798
XUE-MING ZHOU ET AL: "Two new stemphol sulfates from the mangrove endophytic fungus Stemphylium sp. 33231", THE JOURNAL OF ANTIBIOTICS, vol. 68, no. 8, 25 February 2015 (2015-02-25), GB, pages 501 - 503, XP055334277, ISSN: 0021-8820, DOI: 10.1038/ja.2015.16 *
ZAFERANLOO ET AL., WORLD J MICROBIOL. BIOTECHNOL., vol. 29, 2013, pages 335 - 345

Also Published As

Publication number Publication date
AR106443A1 (es) 2018-01-17
ES2610186B1 (es) 2018-09-06
CA3002123A1 (en) 2017-04-27
US20180312880A1 (en) 2018-11-01
WO2017068223A8 (es) 2018-05-11
UY36960A (es) 2017-05-31
BR112018007820A2 (pt) 2018-10-30
ES2610186A2 (es) 2017-04-26
ES2610186R1 (es) 2017-09-15
EP3366136A1 (en) 2018-08-29
MA44477A (fr) 2021-04-07

Similar Documents

Publication Publication Date Title
CN103261398B (zh) 伯克霍尔德氏菌属的分离细菌菌株及其农药代谢物
JP2016183157A (ja) ブルクホルデリア(Burkholderia)属の単離細菌株及びそれに由来する殺有害生物性代謝物の製剤及び使用
Wicklow et al. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize
Rahman et al. Induction of systemic resistance in cotton by the plant growth promoting rhizobacterium and seaweed against charcoal rot disease
Wani et al. Porostereum sp., associated with saffron (Crocus sativus L.), is a latent pathogen capable of producing phytotoxic chlorinated aromatic compounds
KR101877932B1 (ko) 그람미신 화합물을 유효성분으로 함유하는 선충 방제용 조성물 및 이의 용도
Rieger et al. Caripyrin, a new inhibitor of infection-related morphogenesis in the rice blast fungus Magnaporthe oryzae
WO2017068223A1 (es) Biocidas naturales de amplio espectro
US20100285054A1 (en) Antimicrobial Composition Comprising Fungal Extract, Process for Producing Fungal Extract and Method for Protecting Organisms
KR100459066B1 (ko) 케토미움 글로보숨 f0142 및 이에 의해 생산된 케토비리딘 a 및 b를 이용한 식물병의 생물학적 방제 방법
KR100832745B1 (ko) 리그난계 화합물, 레조시놀계 화합물 또는 이를 포함하는육두구 추출물을 함유하는 식물병 방제용 조성물 및 이를이용한 식물병 방제방법
Shiono et al. Two Cyathane‐Type Diterpenoids from the Liquid Culture of Strobilurus tenacellus
HU209950B (en) Microbiological process for producing agriculturally acceptable active ingredients and fungicid composition containing them
KR20050119800A (ko) 그리세오풀빈을 생산하는 자일라리아 속 ah001 균주,이를 포함하는 식물병 방제용 제제 및 이를 이용하여식물병을 방제하는 방법
González-Coloma et al. Biocides naturals a large spectre
JPH0613542B2 (ja) 新規化合物No.51262物質、その製法並びにそれを有効成分とする除草剤及び植物調節剤
KR102509349B1 (ko) 스트렙토마이세스 속 돌연변이주 u67-46 균주를 이용한 작물관리용 조성물의 제조방법
KR102509351B1 (ko) 스트렙토마이세스 속 돌연변이주 u67-46 균주 또는 이의 배양액을 포함하는 작물관리용 조성물 및 이를 이용한 해충방제 방법
KR100543977B1 (ko) 키틴합성효소 ⅱ의 저해 활성을 지니는 홀아비꽃대추출물과 이로부터 분리된 신규 활성 화합물
KR100327510B1 (ko) 식물병원 진균에 항균활성을 가지는 마이크로모노스포라 코에루리아 에이오58 균주 및 이 균주로부터 생산되는 항생물질의 제조방법
KR100313414B1 (ko) 믹소코쿠스 스티피타투스 균주로부터 생산되는 신규 항균 활성화합물 및 이를 함유하는 농업용 살균제
Belkacem Chemical identification of secondary metabolites from microorganism, evaluation of their effects on pharmaceutical and argronomic fields
ES2565516B1 (es) Productos biocidas y su uso para el control de fitopatógenos yorganismos plaga que afectan a plantas
KR100489914B1 (ko) 고추 역병균에 항균활성을 갖는 신규 레체발리에리아 에어로콜로니제네스 vk-a9 균주 및 이 균주로부터생산되는 신규 항생물질의 제조방법
KR20230001353A (ko) 트리코더마 롱기브라키아툼 균주로부터 유래된 살균 화합물을 포함하는 식물병 방제용 조성물 및 이를 이용한 식물병 방제 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16805478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3002123

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15769674

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018007820

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016805478

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112018007820

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180418