WO2017067496A1 - 分配时域资源的方法、基站和用户设备 - Google Patents
分配时域资源的方法、基站和用户设备 Download PDFInfo
- Publication number
- WO2017067496A1 WO2017067496A1 PCT/CN2016/102831 CN2016102831W WO2017067496A1 WO 2017067496 A1 WO2017067496 A1 WO 2017067496A1 CN 2016102831 W CN2016102831 W CN 2016102831W WO 2017067496 A1 WO2017067496 A1 WO 2017067496A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission mode
- time domain
- offset
- transmission
- base station
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
Definitions
- the present invention relates to the field of communications, and in particular, to a method, a base station, and a user equipment for allocating time domain resources.
- D2D Device-to-Device
- D2D technology can not only help operators share heavy network load, Unloading cellular services, complementing existing cellular network architectures and introducing new revenue-generating models, and based on the natural advantages of near-field communication, D2D technology can also improve spectrum efficiency, achieve higher throughput performance and lower transmission delays.
- D2D technology can support direct interaction of information between terminals, avoiding the complete interruption of local communication caused by network defects.
- D2D technology has a very important role in the future evolution of the network, so it has a future fifth-generation (5 th Generation, referred 5G) one of the candidate technology mobile communication technology is widely academia and industry the study.
- 5G fifth-generation
- the research of D2D technology in cellular architecture mainly focuses on single-hop D2D, and the application range of single-hop D2D is relatively limited.
- the application range of D2D technology it is necessary to extend single-hop D2D to multi-hop D2D.
- the problem of resolving inter-station backhaul in UDN is also more inclined to use wireless multi-hop backhaul, which is further It has prompted the multi-hop D2D technology related to wireless multi-hop backhaul to be put on the research agenda.
- one of the issues that needs to be focused on in the multi-hop D2D is how the network side allocates the wireless time domain for each user equipment (User Equipment, UE for short) on a multi-hop D2D communication link. Resources.
- User Equipment User Equipment
- the embodiments of the present invention provide a method for allocating time domain resources, a base station, and a user equipment, which are capable of allocating time domain resources to user equipments on a multi-hop D2D communication link.
- the D2D communication can be applied to the direct interaction of the information between the terminals, and can also be applied to the wireless multi-hop backhaul, and can also be applied to other scenarios that require the use of technologies that do not rely on third-party direct communication between user equipments, and are not limited herein. .
- the first aspect provides a method for allocating time domain resources, where the method is applied to device-to-device D2D communication, and a D2D communication link includes m user equipments, and m is an integer greater than or equal to 2.
- the methods include:
- the base station acquires offset information of the time domain mode, where the offset information includes a first offset between a time domain resource occupied by the D2D link control information SCI and a time domain resource occupied by the transmit data, and two phases are sent. a second offset between the adjacent SCI or the time domain resource occupied by the data, the second offset is greater than the first offset, and the time domain mode includes n transmission modes, the n Each of the transmission modes is used to indicate that the UE sends the time domain resources occupied by the SCI and the data, and n is an integer greater than one;
- the base station sends first transmission mode indication information to the first UE, where the first transmission mode indication information is used to indicate a transmission mode corresponding to the first UE.
- the method further includes: the base station sending the first offset amount and the second offset amount to the m UEs.
- the base station determines each of the at least one second UE except the first UE of the m UEs a transmission mode corresponding to the second UE, where a transmission mode corresponding to each second UE is one of the n transmission modes; and the base station sends to each of the at least one second UE
- the second transmission mode indication information is used to indicate a transmission mode corresponding to each of the second UEs.
- the transmission mode corresponding to the first UE and the second UE corresponding to the first UE of the first UE on the D2D communication link are corresponding to The launch mode is different.
- the first UE is a source UE on the D2D communication link.
- the each of the transmission modes is further used to indicate a time domain resource that is sent by the feedback information.
- the obtaining, by the base station, the offset information of the time domain mode includes: obtaining, by the base station, a time domain mode preset by the system Set the information.
- a method for allocating time domain resources is provided, where the method is applied to device-to-device D2D communication, and a D2D communication link includes m user equipment UEs, and the method is performed by the m UEs. Any UE performs, m is an integer greater than or equal to 2, and the method includes:
- the quantity is an offset between the time domain resources occupied by the adjacent SCI or the data, and the second offset is greater than the first offset
- n is an integer greater than 1;
- the UE determines, according to the time domain mode and the corresponding transmission mode, a time domain resource that is respectively used to send the SCI and the data.
- the acquiring, by the UE, the first offset and the second offset includes: receiving, by the UE, the first offset from the base station And the second offset amount; or, the UE learns offset information of a time domain mode preset by the system.
- the determining, by the UE, the corresponding transmission mode includes:
- the determining, by the UE, the corresponding transmission mode includes:
- the UE receives second transmission mode indication information from the last hop UE, the second transmission Mode indication information is used to indicate the corresponding transmission mode;
- the UE the corresponding transmission mode is different from the previous one hop UE.
- the method further includes:
- the UE the corresponding transmission mode is different from the transmission mode corresponding to the next hop UE.
- the each transmitting mode is further used to indicate that the time domain resource that is used for sending the feedback information is used.
- the time domain resource used by the UE to send feedback information to the UE or the base station is the same as the time domain resource used by the next hop UE to send the SCI.
- a base station including:
- An acquiring unit configured to acquire offset information of a time domain mode, where the offset information includes a first offset between a time domain resource occupied by the D2D link control information SCI and a time domain resource occupied by the transmit data, and Transmitting a second offset between adjacent SCI or data-occupied time domain resources, the second offset is greater than the first offset, and the time domain mode includes n transmit modes, Each of the n transmission modes is used to indicate a time domain resource that the SCI and the data are respectively occupied, and n is an integer greater than one;
- a determining unit configured to determine a transmission mode corresponding to the first UE in the m UEs, where a transmission mode corresponding to the first UE is one of the n transmission modes; m is an integer greater than 1;
- a sending unit configured to send, to the first UE, first transmit mode indication information, where the first transmit mode indication information is used to indicate a transmit mode corresponding to the first UE.
- the m UEs are UEs on a D2D communication link.
- the sending unit is further configured to send the first offset amount and the second offset amount to the m UEs.
- the determining unit is further configured to: determine a transmission mode corresponding to each second UE of the at least one second UE other than the first UE in the m UEs, where each The transmission modes corresponding to the second UEs are one of the n transmission modes;
- the sending unit is further configured to send second transmission mode indication information to each of the at least one second UE, where the second sending mode indication information is used to indicate that each of the second UEs corresponds to Launch mode.
- the transmitting mode corresponding to the first UE and the first UE of the D2D communication link The transmission mode corresponding to the second UE of the adjacent hop is different.
- the first UE is a source UE on the D2D communication link.
- each of the transmitting modes is further used to indicate that the time domain resource that is used for sending the feedback information is used. .
- the acquiring unit is specifically configured to learn the preset time domain mode bias of the system Set the information.
- a fourth aspect provides a user equipment UE, including:
- an acquiring unit configured to acquire a first offset amount, where the offset amount between the time domain resource occupied by the sending SCI and the time domain resource occupied by the sending data,
- the second offset is an offset between an adjacent SCI or a time domain resource occupied by data, and the second offset is greater than the first offset
- a determining unit configured to determine a time domain mode to be adopted according to the first offset amount and the second offset amount, where the time domain mode includes n transmission modes, each of the n transmission modes The mode is used to indicate that the SCI and the data are respectively occupied by the time domain resource, and n is an integer greater than one;
- the determining unit is further configured to determine a corresponding transmission mode, where the corresponding transmission mode is one of the n transmission modes;
- the determining unit is further configured to determine, according to the time domain mode and the transmitting mode, a time domain resource that is respectively used to send the SCI and the data.
- the UE is used as any one of m UEs on a D2D communication link, where m is an integer greater than or equal to 2.
- the acquiring unit is specifically configured to receive the first offset amount and the second offset amount from a base station; or Offset information for the time domain mode preset by the system.
- the acquiring unit is further configured to receive, by the base station, first transmit mode indication information,
- the first transmission mode indication information is used to indicate the corresponding transmission mode
- the determining unit is specifically configured to determine the corresponding transmission mode according to the first transmission mode indication information.
- the acquiring unit is further configured to receive a second transmission mode from the last hop UE Instructing information, the second transmission mode indication information is used to indicate the corresponding transmission mode, and the determining unit is specifically configured to determine the corresponding transmission mode according to the second transmission mode indication information.
- the UE the corresponding transmission mode is different from the previous one hop UE.
- the determining unit is further configured to determine a transmission mode corresponding to the next hop UE, in a fifth possible implementation manner of the fourth aspect,
- the transmission mode corresponding to the next hop UE is one of the n transmission modes
- the UE further includes: a first sending unit, configured to send third transmission mode indication information to the next hop UE,
- the third transmission mode indication information is used to indicate a transmission mode corresponding to the next hop UE.
- the UE the corresponding transmission mode is different from the transmission mode corresponding to the next hop UE.
- the each transmission mode is further used to indicate that the time domain resource that is used for sending the feedback information is used.
- the UE further includes: a second sending unit, configured to send at least one of the feedback information and the SCI, where the uplink PDCCH or the base station sends the time domain resource occupied by the feedback information and the next hop UE sends the SCI occupation
- the time domain resources are the same.
- a base station including a processor, a memory, a bus system, and a transmitter, wherein the processor, the memory, and the transmitter are connected by a bus system, and the memory is configured to store an instruction,
- the processor is configured to execute the instructions stored by the memory such that the base station performs The method of any of the first aspect or the possible implementation of the first aspect.
- a sixth aspect provides a user equipment UE, including a processor, a memory, a bus system, and a transceiver, wherein the processor, the memory, and the transceiver are connected by a bus system, and the memory is configured to store an instruction,
- the processor is operative to execute the instructions stored in the memory, such that the UE performs the method of any of the second aspect or the possible implementation of the second aspect.
- the UE is used as any one of m UEs on a D2D communication link, where m is an integer greater than or equal to 2.
- an embodiment of the present invention provides a readable medium, including a computer executing instruction, when the processor of a base station executes the computer to execute an instruction, the base station performs any one of the foregoing first aspect or the first aspect. The method described in the alternative.
- an embodiment of the present invention provides a readable medium, including computer execution instructions, when the processor of the user equipment executes the computer to execute an instruction, the user equipment performs any of the foregoing second aspect or the second aspect. A method as described in an alternative manner.
- the embodiment of the present invention provides a communication system, where the communication system includes a plurality of user equipments and a base station, and the multiple user equipments may be in the fourth aspect or any one of the fourth aspects.
- the user equipment, and the base station may be the base station described in any of the foregoing third aspect or the third aspect; or
- the plurality of user equipments may be the user equipments described in the foregoing sixth aspect, and the base station may be the base station described in the foregoing fifth aspect.
- the foregoing user equipment may further include the readable medium of the eighth aspect
- the foregoing base station may further include the readable medium of the seventh aspect.
- the time domain mode adopted is determined by acquiring the offset information of the time domain mode, and the transmission mode indication information for indicating the transmission mode is sent to a user equipment on the D2D communication link, which can be a multi-hop D2D communication.
- Each user equipment on the link allocates time domain resources.
- FIG. 1 is a schematic flowchart of a method for allocating time domain resources according to an embodiment of the present invention.
- FIG. 2 is a schematic flowchart of a method for allocating time domain resources according to another embodiment of the present invention.
- FIG 3 is a schematic diagram of a time domain mode in a FDD mode of a method for allocating time domain resources according to an embodiment of the present invention.
- FIG. 4 is a schematic flow chart of a multi-hop D2D communication process according to an embodiment of the present invention.
- FIG. 5 is a schematic diagram of another time domain mode in a FDD mode of a method for allocating time domain resources according to an embodiment of the present invention.
- FIG. 6 is a schematic flowchart of a multi-hop D2D communication process according to an embodiment of the present invention.
- FIG. 7 is a schematic diagram of a time domain mode in a TDD mode of a method for allocating time domain resources according to an embodiment of the present invention.
- FIG. 8 is a schematic flowchart of a multi-hop D2D communication process according to an embodiment of the present invention.
- FIG. 9 is a schematic diagram of another time domain mode in a TDD mode of a method for allocating time domain resources according to an embodiment of the present invention.
- FIG. 10 is a schematic flowchart of a multi-hop D2D communication process according to an embodiment of the present invention.
- FIG. 11 is a schematic block diagram of a base station according to an embodiment of the present invention.
- FIG. 12 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
- FIG. 13 is a schematic block diagram of a base station according to another embodiment of the present invention.
- FIG. 14 is a schematic block diagram of a user equipment according to another embodiment of the present invention.
- the technical solution of the present invention can be applied to various wireless communication systems, such as: Wideband Code Division Multiple Access (WCDMA), High-Speed Packet Access (HSPA), and wireless protection.
- WCDMA Wideband Code Division Multiple Access
- HSPA High-Speed Packet Access
- WIFI Wireless Fidelity
- Bluetooth and Worldwide Interoperability for Microwave Access
- WiMAX Wireless LAN Authentication and Privacy Infrastructure
- WPI Wireless LAN Authentication and Privacy Infrastructure
- LTE Long Term Evolution
- LTE Long Term Evolution
- future networks such as 5G systems, and other communication systems that interconnect terminals wirelessly.
- the base station in the embodiment of the present invention is an access entity in a wireless communication system, and may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or a base station (NodeB) in WCDMA, or may be in LTE.
- BTS Base Transceiver Station
- NodeB base station
- the evolved base station (eNB or e-NodeB, evolved Node B), and the base station in the future network 5G, the present invention is not limited, but for convenience of description, the following embodiments mainly use an eNB as an example for description.
- the UE may be, but not limited to, a mobile station (Mobile Station, MS for short), a mobile terminal (Mobile Terminal), a mobile telephone (Mobile Telephone), a mobile phone (handset), and a portable device (portable).
- Equipment, etc. the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, a computer, etc., and the user equipment can also be portable, pocket-sized, handheld, and built-in. Or on-board mobile devices.
- RAN Radio Access Network
- FIG. 1 is a schematic flowchart of a method 100 of allocating time domain resources according to an embodiment of the present invention.
- the method 100 is applied to device-to-device D2D communication.
- a D2D communication link includes m user equipments UE, and m is an integer greater than or equal to 2.
- method 100 includes the following.
- the base station acquires the offset information of the time domain mode, where the offset information includes a first offset between the time domain resource occupied by the D2D link control information SCI and the time domain resource occupied by the transmit data, and the adjacent offset is sent. a second offset between the SCI or data-occupied time domain resources, the second offset is greater than the first offset, the time domain mode includes n transmit modes, and each of the n transmit modes is used Indicates the time domain resource occupied by the SCI and the data, and n is an integer greater than 1.
- the data here includes D2D data.
- the base station can obtain the offset information of the time domain mode by using various methods. For example, the base station may determine the offset information of the time domain mode according to the service requirement of the D2D communication, the communication environment of the current cell, and a predetermined policy. Alternatively, the offset information of the multiple time domain modes may be pre-stored in the base station. When the time domain resource needs to be allocated to the user equipment of the D2D communication link, the base station selects a time domain mode according to the service requirement and the communication environment of the current cell. Offset information.
- a time domain mode offset information (ie, a first offset amount and a second offset amount) may be pre-configured in the base station, when the time domain resource needs to be allocated to the user equipment of the D2D communication link, the base station The pre-configured offset information can be obtained from memory.
- the offset information of the time domain mode can also be pre-configured in the UE.
- the time domain mode can be defined by a standard or by a network administrator. At this time, since the time domain mode offset information is already pre-configured on the UE side, the base station can The offset information of the time domain mode is not sent to the UE.
- the base station determines a transmission mode corresponding to the first UE in the m UEs, and the transmission mode corresponding to the first UE is one of the n transmission modes.
- the base station sends the first transmission mode indication information to the first UE, where the first transmission mode indication information is used to indicate a transmission mode corresponding to the first UE.
- the method for allocating time domain resources in the embodiment of the present invention determines the adopted time domain mode by acquiring the offset information of the time domain mode, and sends the transmission mode indication information for indicating the transmission mode to a user equipment on the D2D communication link.
- Time domain resources can be allocated for each user equipment on the multi-hop D2D communication link.
- the transmission mode indication information may include an identifier of the transmission mode, and the UE may determine a corresponding transmission mode from the n transmission modes according to the identifier of the transmission mode.
- the identifier of the transmission mode may be a number or a code of the transmission mode.
- the first UE is a source UE on the D2D communication link.
- the source UE refers to the first hop UE (the sender of the first hop) on the D2D communication link.
- the indication of the transmission mode may adopt a chain indication manner.
- the base station transmits transmission mode indication information only to the source UE on the D2D communication link.
- the source UE may determine a transmission mode corresponding to the next hop UE, and notify the next hop UE of the transmission mode, and so on, each hop UE on the D2D communication link.
- the transmission mode corresponding to the next hop UE is determined, and the next hop UE is notified.
- each hop UE determines the transmission mode corresponding to the next hop UE, and may determine according to a preset rule.
- the transmission mode index number of the next hop UE is: (the current UE's transmission mode index number +1) mod The total number of numbers.
- the UEs of adjacent hops on the D2D communication link have different transmission modes.
- the indication of the transmission mode may be in the form of a star indication.
- the method 100 can further include:
- the base station determines a transmission mode corresponding to each second UE of the at least one second UE other than the first UE of the m UEs, and the transmission mode corresponding to each second UE is one of n transmission modes;
- the base station sends second transmission mode indication information to each of the at least one second UE, where the second transmission mode indication information is used to indicate a transmission mode corresponding to the second UE.
- the UE sends the transmission mode indication information to each of the m UEs to notify each UE of the corresponding transmission mode.
- the UEs of adjacent hops on the D2D communication link have different transmission modes.
- the indication of the transmission mode may also adopt a combination of the above star type indication and the chain type indication, and details are not described herein.
- the transmission modes corresponding to the UEs on one D2D communication link cannot be in conflict, or the time domain resources occupied by the transmission modes corresponding to the neighboring UEs on one D2D link cannot collide. For example, at least interval data between the time domain resource occupied by the previous hop UE transmitting data and the time domain resource occupied by the next hop UE transmitting SCI and/or feedback in any adjacent two hop UEs needs to be needed during transmission and reception. Processing time.
- step 110 includes: the base station determining offset information of the time domain mode.
- the base station needs to inform the UE of the time domain mode adopted.
- the method 100 further includes: the base station transmitting the first offset amount and the second offset amount to the m UEs.
- the UE may determine the adopted time domain mode according to the first offset amount and the second offset amount.
- the method for transmitting the first offset amount and the second offset amount to the base station is not limited in the embodiment of the present invention.
- the base station may send the first offset amount and the second offset amount to the m UEs by broadcasting, or the base station may further send the first offset amount and the second offset to the m UEs by using the RRC signaling. the amount.
- the base station can send the first offset amount and the second offset amount to the UE, so that the UE can determine the adopted time domain mode.
- the transmission modes of the UEs before and after the D2D link have a relatively strong coupling relationship.
- the transmission mode of the latter hop UE can be naturally determined accordingly.
- each transmission mode is further used to indicate a time domain resource used for sending feedback information.
- the feedback information may be an acknowledgment (ACK), a negative acknowledgment (NACK), a channel state information (CSI), and the like.
- the feedback information can be used to determine whether to retransmit, thereby improving the reliability of data transmission.
- the intermediate UE on the multi-hop D2D communication link can also send feedback information to the up hop UE. It should be understood that the UE sends feedback information to share time domain resources with the sending SCI. For example, one UE can separately send feedback information and SCI to two UEs at the same time.
- the time domain resource occupied by the data sent by the previous hop UE in any two adjacent hop UEs The time interval between the time domain resources occupied by the next hop UE sending the feedback information and the processing time required for the data to be transmitted and received at least. This ensures that the next hop UE has enough time to process the data packet.
- At least interval feedback information between the time domain resource occupied by the next hop UE in the adjacent two-hop UE and the time domain resource occupied by the SRI in the previous hop UE is transmitted and received during transmission and reception.
- the last hop UE determines, according to the feedback information, whether the data needs to be retransmitted to the next hop UE, or the resource allocation of the data transmission by the previous hop UE according to the feedback information.
- the D2D communication may adopt a Frequency Division Duplex (FDD) or a Time Division Duplex (TDD).
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the available subframes of the D2D communication in the FDD mode are all the subframes in the uplink frequency band, and the available subframes of the D2D communication in the TDD mode are the uplink subframes.
- a plurality of downlink subframes may be spaced between two adjacent uplink subframes, and the downlink subframes are not within the scope considered by the embodiment of the present invention.
- the subframe of the embodiment of the present invention refers to an available subframe of D2D communication.
- the first offset amount is 1 subframe.
- the second offset is 9 subframes.
- first offset may also be other numbers of subframes, such as 2 subframes, or 3 subframes. It should also be understood that the smaller the first offset amount, the smaller the end-to-end transmission delay of data in D2D communication and the higher the transmission efficiency.
- the second offset may also be other numbers of subframes, such as 8 subframes, or 10 subframes, or 11 subframes.
- the first offset is 1 uplink subframe.
- the second offset is 5 uplink subframes.
- the first offset may also be other numbers of uplink subframes, for example, 2 uplink subframes, or 3 uplink subframes.
- the smaller the first offset amount the smaller the end-to-end transmission delay of data in D2D communication, and the higher the transmission efficiency.
- the second offset may also be other numbers of uplink subframes, for example, 6 uplink subframes, or 7 uplink subframes.
- the method for allocating time domain resources in the embodiment of the present invention determines the adopted time domain mode by acquiring the offset information of the time domain mode, and sends the transmission mode indication information for indicating the transmission mode to a user equipment on the D2D communication link.
- Time domain resources can be allocated for each user equipment on the multi-hop D2D communication link.
- method 200 is a schematic flow diagram of a method 200 of allocating time domain resources in accordance with an embodiment of the present invention.
- the method 200 corresponds to the method 100.
- the corresponding description is omitted as appropriate, and the omitted part may refer to the description in the method 100.
- the method 200 is applied to a multi-hop device to device D2D communication, where a D2D communication link includes m user equipment UEs, and the method 200 is performed by any one of the m UEs, where m is an integer greater than or equal to 2.
- method 200 includes the following.
- the UE acquires a first offset amount and a second offset amount, where the first offset amount is an offset between a time domain resource used by the sending SCI and a time domain resource occupied by the sending data, where the second offset is The offset between the two time domain resources occupied by the adjacent SCI or data is sent, and the second offset is greater than the first offset.
- the UE determines a time domain mode to be adopted according to the first offset amount and the second offset amount.
- the time domain mode may include n transmission modes, and each of the n transmission modes is used to indicate a time domain resource respectively used for transmitting the SCI and the data, and n is an integer greater than 1.
- the UE determines a corresponding transmission mode, where the corresponding transmission mode is one of n transmission modes.
- the UE determines, according to the time domain mode and the corresponding transmission mode, a time domain resource that is respectively used to send the SCI and the data.
- the method for allocating time domain resources determines the adopted time domain mode according to the obtained offset information, and determines a corresponding transmission mode, so that the occupied time domain resource can be determined.
- the UE may determine the corresponding transmission mode in a variety of manners.
- the identifier of the corresponding transmission mode may be pre-configured for the UE on each D2D communication link.
- the time domain resources respectively used for sending the SCI and the data may be determined according to the identifier of the corresponding transmission mode and the time domain mode adopted. For example, the UE pre-configures the corresponding transmission mode with the number 1.
- the time domain resource corresponding to the transmission mode numbered 1 in the time domain mode may be further determined.
- step 210 may include the UE receiving the first offset amount and the second offset amount from the base station.
- the UE may also acquire the first offset amount and the second offset amount in other manners, which is not limited by the embodiment of the present invention.
- the first offset amount and the second offset amount may be pre-configured in the UE.
- the first offset amount and the second offset amount may be defined by a standard or may be defined by a network administrator.
- step 230 may further include:
- the UE determines the corresponding transmission mode according to the transmission mode indication information.
- the UE may determine, according to the transmission mode corresponding to the UE in the time domain mode, time domain resources that are respectively used for sending the SCI and the data.
- the UE may be a source UE on the D2D communication link or other UEs.
- step 230 may further include:
- Second transmit mode indication information sent by the last hop UE, where the second transmit mode indication information is used to indicate the corresponding transmit mode
- the UE determines a corresponding transmission mode according to the second transmission mode indication information.
- the method 200 may further include:
- Determining a transmission mode corresponding to the next hop UE, and the transmission mode corresponding to the next hop UE is one of n transmission modes
- third transmission mode indication information transmitting, by the next hop UE, third transmission mode indication information, where the third transmission mode indication information is used to indicate a transmission mode corresponding to the next hop UE.
- the UE may determine the corresponding transmission mode by receiving the transmission mode indication information sent by the base station or the last hop UE.
- the present invention is not limited to this.
- the UE may further determine a transmission mode corresponding to the last hop UE according to the SCI and data sent by the UE of the previous hop, and further determine a corresponding transmission mode according to the transmission mode corresponding to the UE of the previous hop. .
- each transmission mode may also be used to indicate a time domain resource used for sending feedback information.
- the UE may also determine the time domain resource used to transmit the feedback information.
- the time domain resource occupied by the UE sending the feedback information and the time domain resource occupied by the sending SCI may be the same.
- determining the SCI, the data sent to the next hop UE, and the time domain resources respectively occupied by the feedback information of the last hop UE may determine the SCI, the data received from the last hop UE, and the feedback from the next hop UE.
- the time domain resources occupied by the information For example, SCI, data, and feedback information are received on time domain resources that do not transmit SCI, data, and feedback information.
- the transmission mode indication information may include an identification of the transmission mode.
- the identification of the transmission mode may be the number or code of the transmission mode, and the like.
- determining, by the UE according to the transmission mode indication information, the corresponding transmission mode includes:
- the UE determines the corresponding transmission mode from the n transmission modes according to the identifier.
- the UE may further determine the time domain resource used for transmitting the feedback information according to the corresponding transmission mode.
- the time domain resource occupied by the UE transmitting the feedback information to the first UE is the same as the time domain resource occupied by the SCI for transmitting the SCI to the second UE.
- the feedback information may be ACK, NACK, CSI, and the like.
- the first UE is a previous hop UE that sends data to the UE
- the second UE is a next hop UE of the UE.
- the feedback information can be used to determine whether the data is retransmitted, thereby improving the reliability of the data transmission.
- the UE may share the time domain resource when sending the SCI and the feedback information to different UEs. This can reduce the end-to-end data transmission delay and improve the transmission efficiency of multi-hop D2D communication.
- the first offset is 1 subframe.
- the second offset is 9 subframes.
- the D2D communication adopts a time division duplex TDD, and the first offset is 1 uplink subframe.
- the second offset is 5 uplink subframes.
- the method for allocating time domain resources according to the embodiment of the present invention can determine the occupied time domain resource by determining the adopted time domain mode according to the obtained offset information and determining the corresponding transmission mode.
- FIG. 3 is a schematic diagram of a time domain mode in a FDD mode according to a method for allocating time domain resources according to an embodiment of the present invention.
- Each row in FIG. 3 represents a specific transmission mode, which is listed in the embodiment of the present invention. 9 emission modes. It is assumed that UE1 sends data to UE3 through UE2, and the SCI, data, and feedback information are each occupied by one subframe. As shown in FIG. 3, sending SCI and sending feedback information can share time domain resources.
- Each column in Figure 3 represents a contiguous subframe number in the upstream frequency band. It should be understood that the subframe number shown in FIG. 3 is only a schematic description, and is used to indicate the relative relationship between the respective transmission modes, and does not limit the position of the subframe on the absolute time axis. In each transmit mode, the transmission of SCI, data, and feedback information will occupy a particular sub-frame position.
- the time domain mode of the embodiment of the present invention is determined by the two offset parameters shown in Table 1.
- the base station may broadcast the two offset parameters as a radio resource control (Radio Resource Control, RRC for short) parameter in the cell to notify the time domain mode currently used by the UE in the cell.
- RRC Radio Resource Control
- the base station allocates a corresponding transmission mode for each UE on a multi-hop D2D link.
- the UE After the UE is assigned a specific transmission mode in the time domain mode, the UE performs the subframe specified in the transmission mode. SCI, data, and feedback information are transmitted, and the UE receives the SCI, data, and feedback information in a subframe that is not used for transmission in the transmission mode. For example, if a UE is assigned a transmission mode 0 in the time domain mode, it can only transmit SCI/ACK-NACK in subframes 0, 9, ..., and can only transmit data in subframes 1, 10, ... SCI, data, and feedback information can only be received on the remaining subframes that are not used for transmission.
- UE1, UE2, and UE3 are respectively assigned transmission modes 0, 1, 2 in the above-described time domain mode, and the communication process of UE1, UE2, and UE3 on a multi-hop D2D link is performed by this transmission mode allocation.
- the feedback information is ACK/NACK as an example for description.
- UE1 sends SCI 1 corresponding to data 1 to UE2; in subframe 1, UE1 transmits data 1 to UE2; UE2 successfully receives data 1 and then sends ACK to UE1 in subframe 5, and simultaneously transmits data to UE3.
- SCI 2 in subframe 6, UE2 transmits data 1 to UE3; in subframe 9, UE1 transmits SCI3 corresponding to data 2 to UE2; UE3 successfully receives data 1 and sends ACK to UE2 in subframe 10, and UE1 Data 2 is transmitted to UE2 in subframe 10. Subsequent processes are deduced until the transmit mode of the multi-hop link is released (eg, when a session's data transfer is complete).
- the resource allocation of the current single-hop D2D is based on the resource pool, and is periodically repeated by the D2D Link Control (SC) cycle.
- the first part of each SC cycle is the SCI resource pool, and the latter part. It is a D2D data resource pool, and SCI and data can only be transmitted using resources in the corresponding resource pool. If the D2D resource pool in the above single-hop D2D technology is directly applied to the multi-hop D2D, the multi-hop transmission efficiency is lowered. Assuming a multi-hop scenario, UE1 sends data to UE3 through UE2. If the resource allocation method of the current resource pool is directly adopted, the interval between the two hops of one data is the shortest and will be an SC period.
- SC D2D Link Control
- the shortest SC period is also 40ms, which means that if the existing single-hop D2D communication resources are allocated For multi-hop D2D communication, the average data per hop is at least 40ms, and the end-to-end transmission delay is large.
- the interval between two hops of a data is 5 ms, which greatly shortens the end-to-end packet transmission delay and improves the multi-hop transmission efficiency.
- FIG. 5 is a diagram showing another time domain mode in the FDD mode according to the method for allocating time domain resources according to an embodiment of the present invention.
- Each row in FIG. 5 represents a specific transmission mode, and the embodiment of the present invention lists 11 Kind of launch mode. It is assumed that UE1 sends data to UE3 through UE2, and the SCI, data, and feedback information are each occupied by one subframe. As shown in FIG. 5, the SCI is sent and the feedback information is shared to share the time domain resource.
- Each column in Figure 5 represents a contiguous subframe number in the upstream frequency band. It should be understood that the subframe number shown in FIG. 5 is only a schematic description, and is used to indicate the relative relationship between the respective transmission modes, and does not limit the position of the subframe on the absolute time axis. In each transmit mode, the transmission of SCI, data, and feedback information will occupy a particular sub-frame position.
- the time domain mode of the embodiment of the present invention is determined by the two offset parameters shown in Table 2.
- the base station may broadcast the two offset parameters as a radio resource control (Radio Resource Control, RRC for short) parameter in the cell to notify the time domain mode currently used by the UE in the cell.
- RRC Radio Resource Control
- UE1, UE2, and UE3 on a multi-hop D2D communication link are respectively assigned transmission modes 0, 1, 2 in the above time domain mode, and in this transmission mode allocation, UE1 on the multi-hop D2D link.
- the communication process of UE2 and UE3 is shown in FIG. 6. In FIG. 6, only the feedback information is ACK/NACK as an example. .
- UE1 sends SCI 1 corresponding to data 1 to UE2; in subframe 3, UE1 transmits data 1 to UE2; UE2 successfully receives data 1 and then feeds back ACK to UE1 in subframe 5, and simultaneously transmits data to UE3.
- UE1 sends a second data to UE2
- Corresponding SCI 3 In subframe 8, UE2 transmits data 1 to UE3; after UE3 successfully receives data 1, it feeds back ACK to UE2 in subframe 10, and UE1 transmits data 2 to UE2. Subsequent processes are deduced until the transmit mode of the multi-hop link is released (eg, when a session's data transfer is complete).
- the interval between two hops of a data is 7 ms, which also greatly shortens the end-to-end packet transmission delay and improves the multi-hop transmission efficiency.
- a method of allocating time domain resources in an FDD mode according to an embodiment of the present invention is described above with reference to FIGS. 3 through 6.
- a method of allocating time domain resources according to an embodiment of the present invention in a TDD mode will be described below with reference to FIGS. 7 through 10.
- the uplink and downlink subframes in the TDD mode have various configurations, as shown in Table 3.
- the embodiment shown in FIG. 7 and FIG. 8 is only described by taking configuration 1 as an example.
- D represents a downlink subframe
- U represents an uplink subframe
- S represents a special subframe (which can be used as a downlink subframe).
- FIG. 7 shows a time domain mode of the uplink and downlink subframe configuration 1 in the TDD mode in the multi-hop D2D communication.
- Each row in FIG. 7 represents a specific transmission mode, and the embodiment of the present invention lists five transmission modes. It is assumed that UE1 sends data to UE3 through UE2, and the SCI, data, and feedback information are each occupied by one subframe. As shown in FIG. 7, the SCI is sent and the feedback information is shared to share the time domain resources.
- Each column in Figure 7 represents an uplink subframe available for D2D communication. It should be understood that the subframe number shown in FIG. 7 is only a schematic description, and only the uplink subframes available for D2D are separately extracted and consecutively numbered to indicate the relative relationship between the respective transmission modes, and the subframe is not limited.
- the downlink subframes are also spaced on the time axis between the uplink subframes shown in FIG.
- the downlink subframes are also spaced between the available subframes having different padding patterns as shown in FIG. 7, for example, the available sub-frames in FIG. Two downlink subframes and one special subframe are separated between the frame 1 and the available subframe 2.
- the base station may broadcast the two offset parameters as a radio resource control (Radio Resource Control, RRC for short) parameter in the cell to notify the time domain mode currently used by the UE in the cell.
- RRC Radio Resource Control
- UE1, UE2, and UE3 on a D2D communication link are respectively assigned transmission modes 0, 1, 2 in the above time domain mode, and in this transmission mode allocation, UE1, UE2 and on the multi-hop D2D link
- the communication process of UE3 is shown in FIG. 8.
- only the feedback information is ACK/NACK as an example.
- the UE1 sends the SCI 1 corresponding to the data 1 to the UE2; in the uplink subframe 1, the UE1 sends the data 1 to the UE2; after successfully receiving the data 1, the UE2 sends an ACK to the UE1 in the uplink subframe 3, and simultaneously sends the ACK to the UE3.
- the UE2 sends the data 1 to the UE3; in the uplink subframe 5, the UE1 sends the SCI 3 corresponding to the data 2 to the UE2; after the UE3 successfully receives the data 1, the uplink subframe 6 sends an ACK to UE2, while UE1 transmits data 2 to UE2 in uplink subframe 6. Subsequent processes are deduced until the transmit mode of the multi-hop link is released (eg, when a session's data transfer is complete).
- the interval between two hops of a data is 9 ms, which also greatly shortens the end-to-end packet transmission delay and improves the multi-hop transmission efficiency.
- FIG. 9 is another time domain mode of the uplink and downlink subframe configuration 1 in the TDD mode in the multi-hop D2D communication.
- Each row in FIG. 9 represents a specific transmission mode, and the embodiment of the present invention lists seven transmission modes.
- UE1 sends data to UE3 through UE2, and SCI, data, and ACK/NACK Each occupies one subframe.
- SCI is transmitted and the ACK/NACK is transmitted to share the time domain resource.
- Each column in Figure 9 represents an uplink subframe available for D2D communication. It should be understood that the subframe number shown in FIG. 9 is only a schematic description, and only the uplink subframes available for D2D are separately extracted and consecutively numbered to indicate the relative relationship between the respective transmission modes, and the subframe is not limited.
- the downlink subframes are also spaced on the time axis between the uplink subframes shown in FIG. As shown in FIG. 9, the downlink subframes are also spaced between the available subframes having different padding patterns. For example, two downlink subframes and one special subframe are separated between the available subframe 1 and the available subframe 2 in FIG.
- sciDataOffset indicates the offset between the SCI and the data corresponding to the transmission
- adjacentSciOffset indicates the offset between the adjacent SCIs.
- the base station broadcasts two offset parameters as cell-level Radio Resource Control (RRC) parameters in the cell to inform the time domain mode currently used by the UE in the cell.
- RRC Radio Resource Control
- UE1, UE2, and UE3 are respectively assigned transmission modes 0, 1, and 2 in the above-described time domain mode.
- the communication process of UE1, UE2, and UE3 on the multi-hop D2D link is as shown in FIG.
- only the feedback information is ACK/NACK as an example.
- UE1 sends SCI 1 corresponding to data 1 to UE2; in uplink subframe 3, UE1 transmits data 1 to UE2; UE2 successfully receives data 1 and then sends ACK to UE1 in uplink subframe 5, and simultaneously to UE3.
- UE2 sends an ACK while UE1 transmits data 2 to UE2 in uplink subframe 10. Subsequent processes are deduced until the transmit mode of the multi-hop link is released (eg, when a session's data transfer is complete).
- the interval between two hops of a data is 14 ms, and the same This greatly shortens the end-to-end packet transmission delay and improves the multi-hop transmission efficiency.
- the embodiment of the present invention can not only allocate time domain resources for each hop user on the multi-hop D2D communication link, but also shorten the end-to-end transmission delay, thereby improving the transmission efficiency of the data packet.
- FIGS. 1 through 10 A method of allocating time domain resources in accordance with an embodiment of the present invention is described above in connection with FIGS. 1 through 10.
- An apparatus for allocating time domain resources according to an embodiment of the present invention, wherein the apparatus may be a base station or a user equipment, will be described in detail below with reference to FIG. 11 to FIG.
- FIG. 11 is a schematic block diagram of a base station 1100 according to an embodiment of the present invention.
- the base station 1100 is applicable to device-to-device D2D communication, where a D2D communication link includes m user equipments, and m is an integer greater than or equal to 2.
- the base station 1100 is configured to perform the steps of the base station in the above method.
- base station 1100 can include modules corresponding to the steps of the base stations above. The functions implemented by each module can be referred to the description in the above method.
- the base station 1100 may include an obtaining unit 1110, a determining unit 1120, and a transmitting unit 1130.
- the obtaining unit 1110 is configured to acquire the offset information of the time domain mode, where the offset information includes a first offset between the time domain resource occupied by the D2D link control information SCI and the time domain resource occupied by the transmit data, and the sending a second offset between adjacent SCI or data-occupied time domain resources, the second offset is greater than the first offset, and the time domain mode includes n transmit modes, each of the n transmit modes The mode is used to indicate the time domain resource occupied by the sending SCI and the data, and n is an integer greater than 1.
- the determining unit 1120 is configured to determine a transmission mode corresponding to the first UE in the m UEs, and the transmission mode corresponding to the first UE is one of n transmission modes. Where m is an integer greater than one.
- the sending unit 1130 is configured to send first transmit mode indication information to the first UE, where the first transmit mode indication information is used to indicate a transmit mode corresponding to the first UE.
- the m UEs are UEs on one D2D communication link.
- the base station of the embodiment of the present invention determines the adopted time domain mode by acquiring the offset information of the time domain mode, and sends the transmission mode indication information for indicating the transmission mode to one user equipment on the D2D communication link, which can be multi-hop. Each user equipment on the D2D communication link allocates time domain resources.
- the sending unit 1130 is further configured to send the first offset amount and the second offset amount to the m UEs.
- the first UE is a source UE on the D2D communication link.
- the determining unit 1120 is further configured to: determine at least one of the m UEs other than the first UE a transmission mode corresponding to each second UE in the second UE, and a transmission mode corresponding to each second UE is one of n transmission modes; the sending unit 1130 is further configured to: in the at least one second UE Each second UE sends second transmission mode indication information, where the second transmission mode indication information is used to indicate a transmission mode corresponding to each second UE.
- the UEs of adjacent hops on the D2D communication link have different transmission modes.
- each of the n transmission modes is further used to indicate a time domain resource occupied by the sending feedback information.
- the obtaining unit 1110 is specifically configured to learn offset information of a time domain mode preset by the system.
- a base station 1100 in accordance with an embodiment of the present invention may correspond to a base station in a method 100 of allocating time domain resources in accordance with an embodiment of the present invention, and that the above and other operations and/or functions of the various modules in the base station 1100 are respectively implemented for The corresponding process of the method 100 of FIG. 1 is not described herein for the sake of brevity.
- the base station of the embodiment of the present invention determines the adopted time domain mode by acquiring the offset information of the time domain mode, and sends the transmission mode indication information for indicating the transmission mode to one user equipment on the D2D communication link, which can be multi-hop. Each user equipment on the D2D communication link allocates time domain resources.
- FIG. 12 is a schematic block diagram of a user equipment UE 1200 according to an embodiment of the present invention.
- the UE 1200 can be used as any one of the m UEs on a D2D communication link, where m is an integer greater than or equal to 2.
- the UE 1200 is configured to perform the steps of the UE in the above method.
- the UE 1200 can include modules corresponding to the steps of the above UE.
- the functions implemented by each module can be referred to the description in the above method.
- the UE 1200 may include an obtaining unit 1210 and a determining unit 1220.
- the obtaining unit 1210 is configured to obtain a first offset amount and a second offset amount, where the first offset amount is an offset between a time domain resource used by the sending SCI and a time domain resource occupied by the sending data, and the second offset The amount is the amount of offset between the time domain resources used to transmit the adjacent SCI or data, and the second offset is greater than the first offset.
- the determining unit 1220 is configured to determine a time domain mode to be adopted according to the first offset amount and the second offset amount, where the time domain mode includes n transmission modes, and each of the n transmission modes is used to indicate sending the SCI and The time domain resource occupied by the data, n is an integer greater than 1.
- the determining unit 1220 is further configured to determine a corresponding transmission mode, where the corresponding transmission mode is n One of a variety of emission modes;
- the determining unit 1220 is further configured to determine, according to the time domain mode and the corresponding transmission mode, time domain resources that are respectively used to send the SCI and the data.
- the method for allocating time domain resources determines the adopted time domain mode according to the obtained offset information, and determines a corresponding transmission mode, so that the occupied time domain resource can be determined.
- the obtaining unit 1210 is specifically configured to: receive the first offset amount and the second offset amount from the base station; or, obtain the offset information of the time domain mode preset by the system.
- the obtaining unit 1210 is further configured to receive, by the base station, first transmit mode indication information, where the first transmit mode indication information is used to indicate a corresponding transmit mode of the UE, and the determining unit 1220 is specifically configured to indicate according to the first transmit mode.
- the information determines the corresponding transmission mode.
- the obtaining unit 1210 is further configured to receive second transmission mode indication information from the last hop UE, where the second transmission mode indication information is used to indicate the corresponding transmission mode, and the determining unit 1220 is specifically configured to use, according to the second The transmission mode indication information determines the corresponding transmission mode.
- the transmission mode corresponding to the UE is different from the transmission mode corresponding to the last hop UE.
- the determining unit 1220 is further configured to determine a transmission mode corresponding to the next hop UE, and the transmission mode corresponding to the next hop UE is one of n transmission modes.
- the UE 1200 further includes: a sending unit 1230.
- the sending unit 1230 may be configured to send the third transmit mode indication information to the next hop UE, where the third transmit mode indication information is used to indicate a transmit mode corresponding to the next hop UE.
- the transmission mode corresponding to the UE is different from the transmission mode corresponding to the next hop UE.
- the transmitting mode indication information includes an identifier of the transmitting mode
- the determining unit 1220 is specifically configured to: determine, according to the identifier, a corresponding transmitting mode from the n transmitting modes.
- each transmission mode is further used to indicate a time domain resource used for sending feedback information.
- the sending unit 1230 is further configured to send at least one of the feedback information and the SCI.
- the time domain resource used by the sending unit 1230 to send the feedback information to the uplink hop UE or the base station is the same as the time domain resource used by the next hop UE to send the SCI.
- user equipment UE 1200 in accordance with an embodiment of the present invention may correspond to user equipment in method 200 of allocating time domain resources, and the above and other operations and/or functions of various modules in UE 1200, in accordance with an embodiment of the present invention.
- the corresponding processes of the method 200 of FIG. 2 are respectively omitted.
- the user equipment that allocates the time domain resource according to the embodiment of the present invention according to the obtained offset information Determine the time domain mode to be adopted and determine the corresponding transmission mode so that the occupied time domain resources can be determined.
- FIG. 13 is a schematic block diagram of a base station 1300 according to an embodiment of the present invention.
- the base station 1100 is applicable to device-to-device D2D communication, where a D2D communication link includes m user equipments, and m is an integer greater than or equal to 2.
- the base station 1300 includes a processor 1310, a memory 1320, a bus system 1330, and a transmitter 1340.
- the processor 1310, the memory 1320, and the transmitter 1340 are connected by a bus system 1330 for storing instructions, and the processor 1310 is configured to execute the instructions stored by the memory 1320 to perform the steps performed by the base station in the above method. .
- the processor 1310 is configured to:
- the offset information includes a first offset between the time domain resource used for transmitting the D2D link control information SCI and the time domain resource occupied by the transmit data, and sending the adjacent SCI or data a second offset between the occupied time domain resources, the second offset is greater than the first offset, the time domain mode includes n transmission modes, and each of the n transmission modes is used to indicate sending the SCI Time domain resources occupied by the data and n, respectively, an integer greater than one;
- a transmission mode corresponding to the first UE in the m UEs Determining a transmission mode corresponding to the first UE in the m UEs, where a transmission mode corresponding to the first UE is one of n transmission modes; where m is an integer greater than 1;
- the control transmitter 1340 sends first transmission mode indication information to the first UE, where the first transmission mode indication information is used to indicate a transmission mode corresponding to the first UE.
- the m UEs are UEs on one D2D communication link.
- the base station of the embodiment of the present invention determines the adopted time domain mode by acquiring the offset information of the time domain mode, and sends the transmission mode indication information for indicating the transmission mode to one user equipment on the D2D communication link, which can be multi-hop. Each user equipment on the D2D communication link allocates time domain resources.
- the processor 1310 may be a central processing unit (CPU), and the processor 1310 may also be other general-purpose processors and digital signal processors (Digital). Signal Processing (DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete Hardware components, etc.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the processor 1310 may also be a dedicated processor, and the dedicated processor may include At least one of a baseband processing chip, a radio frequency processing chip, and the like is included. Further, the dedicated processor may also include a chip having other dedicated processing functions of the base station.
- the memory 1320 can include read only memory and random access memory and provides instructions and data to the processor 1310. A portion of the memory 1320 may also include a non-volatile random access memory. For example, the memory 1320 can also store information of the device type.
- the bus system 1330 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 1330 in the figure.
- each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1310 or an instruction in a form of software.
- the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
- the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory, or electrically erasable programmable memory, registers, and the like.
- the storage medium is located in the memory 1320, and the processor 1310 reads the information in the memory 1320 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
- the processor 1310 is further configured to: control the transmitter 1340 to send the first offset and the second offset to the m UEs.
- each of the n transmission modes is further used to indicate a time domain resource occupied by the sending feedback information.
- processor 1310 is further configured to:
- the control transmitter sends second transmission mode indication information to each of the at least one second UE, where the second transmission mode indication information is used to indicate a transmission mode corresponding to each second UE.
- the UEs of adjacent hops on the D2D communication link have different transmission modes.
- the first UE is a source UE on the D2D communication link.
- the processor is specifically configured to learn offset information of a time domain mode preset by the system.
- the base station 1300 may correspond to the base station in the method 100 for allocating time domain resources according to an embodiment of the present invention and the base station 1100 according to an embodiment of the present invention, and the above-described sum of the respective modules in the base station 1300
- the other operations and/or functions are respectively implemented in order to implement the corresponding processes of the method 100 of FIG. 1 , and are not described herein for brevity.
- the base station of the embodiment of the present invention determines the adopted time domain mode by acquiring the offset information of the time domain mode, and sends the transmission mode indication information for indicating the transmission mode to one user equipment on the D2D communication link, which can be multi-hop. Each user equipment on the D2D communication link allocates time domain resources.
- FIG. 14 is a schematic block diagram of a user equipment UE 1400 according to an embodiment of the present invention.
- the UE 1400 may be any one of m UEs on a D2D communication link, where m is an integer greater than or equal to 2.
- UE 1400 includes a processor 1410, a memory 1420, a bus system 1430, and a transceiver 1440.
- the processor 1410, the memory 1420, and the transceiver 1440 are connected by a bus system 1430 for storing instructions, and the processor 1410 is configured to execute the instructions stored by the memory 1420 to perform the steps performed by the UE in the above method. .
- the processor 1410 is configured to obtain a first offset amount and a second offset amount, where the first offset amount is an offset between a time domain resource used by the sending SCI and a time domain resource occupied by the sending data, and the second offset The amount is the amount of offset between the time domain resources used to transmit the adjacent SCI or data, and the second offset is greater than the first offset.
- the processor 1410 is configured to acquire a pre-configured first offset amount and a second offset amount.
- the processor 1410 is further configured to determine, according to the first offset amount and the second offset amount, the adopted time domain mode, where the time domain mode includes n transmission modes, and each of the n transmission modes is used to indicate sending The time domain resource occupied by the SCI and the data, respectively, n is an integer greater than one.
- the processor 1410 is further configured to determine a corresponding transmission mode, where the corresponding transmission mode is one of n transmission modes.
- the processor 1410 is further configured to determine, according to the time domain mode and the corresponding transmit mode, time domain resources that are respectively used to send the SCI and the data.
- the processor 1410 is also used to control the transceiver 1440 to send and receive signals.
- the method for allocating time domain resources determines the adopted time domain mode according to the obtained offset information, and determines a corresponding transmission mode, so that the occupied time domain resource can be determined.
- the processor 1410 may be a central processing unit (CPU), and the processor 1410 may also be other general-purpose processors and digital signal processors (Digital). Signal Processing (DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete Hardware components, etc.
- DSP Signal Processing
- ASIC Application Specific Integrated Circuit
- FPGA Field-Programmable Gate Array
- General purpose processor can be micro
- the processor or the processor can also be any conventional processor or the like.
- the processor 1410 may also be a dedicated processor, and the dedicated processor may include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may also include a chip having other dedicated processing functions of the UE.
- the memory 1420 can include read only memory and random access memory and provides instructions and data to the processor 1410. A portion of the memory 1420 can also include a non-volatile random access memory. For example, the memory 1420 can also store information of the device type.
- the bus system 1430 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 1430 in the figure.
- each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1410 or an instruction in a form of software.
- the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
- the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory, or electrically erasable programmable memory, registers, and the like.
- the storage medium is located in the memory 1420, and the processor 1410 reads the information in the memory 1420 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
- processor 1410 is specifically configured to:
- the control transceiver 1440 receives the first transmission mode indication information from the base station, where the first transmission mode indication information is used to indicate the corresponding transmission mode;
- the corresponding transmission mode is determined according to the first transmission mode indication information.
- processor 1410 is specifically configured to:
- the control transceiver 1440 receives the second transmission mode indication information from the last hop UE, where the second transmission mode indication information is used to indicate the corresponding transmission mode;
- the corresponding transmission mode is determined according to the second transmission mode indication information.
- the transmission mode corresponding to the UE is different from the transmission mode corresponding to the last hop UE.
- processor 1410 is further configured to:
- Determining a transmission mode corresponding to the next hop UE, and the transmission mode corresponding to the next hop UE is one of n transmission modes
- the control transmitter 1440 sends a third transmission mode indication information to the next hop UE, where the third transmission mode indication information is used to indicate a transmission mode corresponding to the next hop UE.
- the transmission mode corresponding to the UE is different from the transmission mode corresponding to the next hop UE.
- the transmit mode indication information includes an identifier of the transmit mode
- the processor 1410 is specifically configured to: determine, according to the identifier, a corresponding transmit mode from the n transmit modes.
- each transmission mode is further used to indicate a time domain resource used for sending feedback information.
- the processor 1410 is further configured to control the transceiver 1440 to send at least one of the feedback information and the SCI.
- the time domain resource used by the transceiver 1440 to send the feedback information to the next hop UE is the same as the time domain resource used by the next hop UE to send the SCI.
- transceiver 1440 can also be used to transmit data.
- the user equipment UE 1400 may correspond to user equipment in the method 200 of allocating time domain resources according to an embodiment of the present invention and user equipment 1200 according to an embodiment of the present invention, and each of the UEs 1400
- the foregoing and other operations and/or functions of the modules are respectively implemented in order to implement the corresponding processes of the method 200 of FIG. 2, and are not described herein again for brevity.
- the user equipment that allocates the time domain resource according to the embodiment of the present invention determines the adopted time domain mode according to the acquired offset information, and determines the corresponding transmission mode, so that the occupied time domain resource can be determined.
- the term "and/or” is merely an association relationship describing an associated object, indicating that there may be three relationships.
- a and/or B may indicate that A exists separately, and A and B exist simultaneously, and B cases exist alone.
- the character "/" in this article generally indicates that the contextual object is an "or" relationship.
- B corresponding to A means that B is associated with A, and B can be determined according to A.
- determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
- the disclosed systems, devices, and methods may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of cells is only a logical function division.
- multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
- the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
- a storage medium may be any available media that can be accessed by a computer.
- computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
- Any connection may suitably be a computer readable medium.
- the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), or wireless technologies such as infrared, radio, and microwave.
- coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated medium.
- a disk and a disc include a compact disc (CD), a laser disc, a disc, and a number.
- Words are general-purpose optical discs (DVDs), floppy discs, and Blu-ray discs, in which discs are usually magnetically replicated, while discs use lasers to optically replicate data. Combinations of the above should also be included within the scope of the computer readable media.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例提供了一种分配时域资源的方法、基站和用户设备,该方法包括:获取时域模式的偏置信息,偏置信息包括发送SCI占用的时域资源与发送数据占用的时域资源之间的第一偏置量、以及发送相邻的SCI或数据占用的时域资源之间的第二偏置量,时域模式包括n种发射模式,n种发射模式中的每种发射模式用于指示UE发送SCI和数据分别占用的时域资源,n为大于1的整数;确定m个UE中第一UE对应的发射模式,第一UE对应的发射模式为n种发射模式中的一种;基站向第一UE发送第一发射模式指示信息,第一发射模式指示信息用于指示第一UE对应的发射模式。本发明实施例能够为多跳D2D通信链路上的各用户设备分配时域资源。
Description
本申请要求于2015年10月23日提交中国专利局、申请号为201510697230.2、发明名称为“分配时域资源的方法、基站和用户设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及通信领域,尤其涉及分配时域资源的方法、基站和用户设备。
设备到设备(Device-to-Device,简称D2D),是指实现近距离用户设备间不借助第三方直接通信的技术。随着智能终端的普及,网络中智能终端的数量正处于爆发性增长阶段,此时业界开始重点关注D2D技术的发展,原因是蜂窝架构下的D2D技术不仅能够帮助运营商分担繁重的网络负荷、卸载蜂窝业务、补充现有的蜂窝网络架构并带来新的利润收入模式,而且基于近距离通信的天然优势,D2D技术还可以提升频谱效率、获得较高的吞吐性能和较低的传输时延。此外,在无网络覆盖的情况下(例如灾难场景),D2D技术可以支持终端间信息的直接交互,避免网络瘫痪造成的本地通信的完全中断。由此可见,D2D技术在未来网络的演进中具有非常重要的作用,因此其已经作为未来第五代(5th Generation,简称5G)移动通信技术的候选技术之一被学术界和工业界广泛的研究。
目前D2D技术在蜂窝架构下的研究主要集中在单跳D2D,单跳D2D的应用范围比较局限,为了扩大D2D技术的应用范围,有必要将单跳D2D扩展到多跳D2D。此外,考虑到未来5G网络部署会朝着超密集网络(Ultra Dense Network,简称UDN)的方向发展,而在UDN中解决小站间回传问题也更倾向使用无线多跳回传,这也进一步促使将与无线多跳回传相关的多跳D2D技术提上研究日程。
在有网络覆盖的场景下,多跳D2D中一个需要被重点关注的问题是,网络侧应该如何为一条多跳D2D通信链路上的各跳用户设备(User Equipment,简称UE)分配无线时域资源。
发明内容
本发明实施例提供了一种分配时域资源的方法、基站和用户设备,能够为多跳D2D通信链路上的各用户设备分配时域资源。其中,D2D通信可以应用于终端间信息的直接交互,也可以应用于无线多跳回传,还可以应用于其他需要使用用户设备间不借助第三方直接通信的技术的场景,在此不予限定。
第一方面,提供了一种分配时域资源的方法,所述方法应用于设备到设备D2D通信中,一条D2D通信链路上包括m个用户设备UE,m为大于或等于2的整数,所述方法包括:
基站获取时域模式的偏置信息,所述偏置信息包括发送D2D链路控制信息SCI占用的时域资源与发送数据占用的时域资源之间的第一偏置量、以及发送两个相邻的SCI或数据占用的时域资源之间的第二偏置量,所述第二偏置量大于所述第一偏置量,所述时域模式包括n种发射模式,所述n种发射模式中的每种发射模式用于指示UE发送SCI和数据分别占用的时域资源,n为大于1的整数;
所述基站确定所述m个UE中第一UE对应的发射模式,所述第一UE对应的发射模式为所述n种发射模式中的一种;
所述基站向所述第一UE发送第一发射模式指示信息,所述第一发射模式指示信息用于指示所述第一UE对应的发射模式。
结合第一方面,在第一种可能的实现方式中,还包括:所述基站向所述m个UE发送所述第一偏置量和所述第二偏置量。
结合第一方面或第一种可能的实现方式,在第二种可能的实现方式中,所述基站确定所述m个UE中所述第一UE之外的至少一个第二UE中的每个第二UE对应的发射模式,所述每个第二UE对应的发射模式为所述n种发射模式中的一种;所述基站向所述至少一个第二UE中的每个第二UE发送第二发射模式指示信息,所述第二发送模式指示信息用于指示所述每个第二UE对应的发射模式。
结合第二种可能的实现方式,在第三种可能的实现方式中,所述第一UE对应的发射模式和所述D2D通信链路上所述第一UE的相邻跳第二UE对应的发射模式不同。
结合第一方面或第一种可能的实现方式,在第四种可能的实现方式中,
所述第一UE为所述D2D通信链路上的源UE。
结合第一方面或上述任一种可能的实现方式,在第五种可能的实现方式中,所述每种发射模式还用于指示发送反馈信息占用的时域资源。
结合第一方面或上述任一种可能的实现方式,在第六种可能的实现方式中,所述基站获取时域模式的偏置信息包括:所述基站获知系统预置的时域模式的偏置信息。
第二方面,提供了一种分配时域资源的方法,所述方法应用于设备到设备D2D通信中,一条D2D通信链路上包括m个用户设备UE,所述方法由所述m个UE中的任一UE执行,m为大于或等于2的整数,所述方法包括:
UE获取第一偏置量和第二偏置量,所述第一偏置量为发送SCI占用的时域资源与发送数据占用的时域资源之间的偏置量,所述第二偏置量为发送相邻的SCI或数据占用的时域资源之间的偏置量,所述第二偏置量大于所述第一偏置量;
所述UE根据所述第一偏置量和所述第二偏置量确定采用的时域模式,所述时域模式包括n种发射模式,所述n种发射模式中的每种发射模式用于指示发送SCI和数据分别占用的时域资源,n为大于1的整数;
所述UE确定对应的发射模式,所述对应的发射模式为所述n种发射模式中的一种;
所述UE根据所述时域模式和所述对应的发射模式确定发送SCI和数据分别占用的时域资源。
结合第二方面,在第二方面的第一种可能的实现方式中,所述UE获取第一偏置量和第二偏置量包括:所述UE接收来自基站的所述第一偏置量和所述第二偏置量;或者,所述UE获知系统预置的时域模式的偏置信息。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述UE确定对应的发射模式包括:
所述UE接收来自基站的第一发射模式指示信息,所述第一发射模式指示信息用于指示所述对应的发射模式;
所述UE根据所述第一发射模式指示信息确定所述对应的发射模式。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述UE确定对应的发射模式包括:
所述UE接收来自上一跳UE的第二发射模式指示信息,所述第二发射
模式指示信息用于指示所述对应的发射模式;
所述UE根据所述第二发射模式指示信息确定所述对应的发射模式。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述UE对应的发射模式与所述上一跳UE对应的发射模式不同。
结合第二方面或第二方面的上述任一种可能的实现方式,在第二方面的第五种可能的实现方式中,还包括:
所述UE确定下一跳UE对应的发射模式,所述下一跳UE对应的发射模式为所述n种发射模式中的一种;
向所述下一跳UE发送第三发射模式指示信息,所述第三发射模式指示信息用于指示所述下一跳UE对应的发射模式。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述UE对应的发射模式与所述下一跳UE对应的发射模式不同。
结合第二方面或第二方面的上述任一种可能的实现方式,在第二方面的第七种可能的实现方式中,所述每种发射模式还用于指示发送反馈信息占用的时域资源,所述UE向上一跳UE或基站发送反馈信息占用的时域资源和向下一跳UE发送SCI占用的时域资源相同。
第三方面,提供了一种基站,包括:
获取单元,用于获取时域模式的偏置信息,所述偏置信息包括发送D2D链路控制信息SCI占用的时域资源与发送数据占用的时域资源之间的第一偏置量、以及发送相邻的SCI或数据占用的时域资源之间的第二偏置量,所述第二偏置量大于所述第一偏置量,所述时域模式包括n种发射模式,所述n种发射模式中的每种发射模式用于指示发送SCI和数据分别占用的时域资源,n为大于1的整数;
确定单元,用于确定所述m个UE中第一UE对应的发射模式,所述第一UE对应的发射模式为所述n种发射模式中的一种;m为大于1的整数;
发送单元,用于向所述第一UE发送第一发射模式指示信息,所述第一发射模式指示信息用于指示所述第一UE对应的发射模式。
其中,可选的,m个UE为一条D2D通信链路上的UE。
结合第三方面,在第三方面的第一种可能的实现方式中,所述发送单元还用于,向所述m个UE发送所述第一偏置量和所述第二偏置量。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二
种可能的实现方式中,所述确定单元还用于,确定所述m个UE中所述第一UE之外的至少一个第二UE中的每个第二UE对应的发射模式,所述每个第二UE对应的发射模式为所述n种发射模式中的一种;
所述发送单元还用于,向所述至少一个第二UE中的每个第二UE发送第二发射模式指示信息,所述第二发送模式指示信息用于指示所述每个第二UE对应的发射模式。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述第一UE对应的发射模式和所述D2D通信链路上所述第一UE的相邻跳第二UE对应的发射模式不同。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第四种可能的实现方式中,所述第一UE为所述D2D通信链路上的源UE。
结合第三方面或第三方面的上述任一种可能的实现方式,在第三方面的第五种可能的实现方式中,所述每种发射模式还用于指示发送反馈信息占用的时域资源。
结合第三方面或第三方面的上述任一种可能的实现方式,在第三方面的第六种可能的实现方式中,所述获取单元具体用于,获知系统预置的时域模式的偏置信息。
第四方面,提供了一种用户设备UE,包括:
获取单元,用于获取第一偏置量和第二偏置量,所述第一偏置量为发送SCI占用的时域资源与发送数据占用的时域资源之间的偏置量,所述第二偏置量为发送相邻的SCI或数据占用的时域资源之间的偏置量,所述第二偏置量大于所述第一偏置量;
确定单元,用于根据所述第一偏置量和所述第二偏置量确定采用的时域模式,所述时域模式包括n种发射模式,所述n种发射模式中的每种发射模式用于指示发送SCI和数据分别占用的时域资源,n为大于1的整数;
所述确定单元还用于,确定对应的发射模式,所述对应的发射模式为所述n种发射模式中的一种;
所述确定单元还用于,根据所述时域模式和所述发射模式确定发送SCI和数据分别占用的时域资源。
可选的,所述UE可用于作为一条D2D通信链路上的m个UE中的任一UE,m为大于或等于2的整数。
结合第四方面,在第四方面的第一种可能的实现方式中,所述获取单元具体用于,接收来自基站的所述第一偏置量和所述第二偏置量;或者,获知系统预置的时域模式的偏置信息。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述获取单元还用于,接收来自基站的第一发射模式指示信息,所述第一发射模式指示信息用于指示所述对应的发射模式;所述确定单元具体用于,根据所述第一发射模式指示信息确定所述对应的发射模式。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第三种可能的实现方式中,所述获取单元还用于,接收来自上一跳UE的第二发射模式指示信息,所述第二发射模式指示信息用于指示所述对应的发射模式;所述确定单元具体用于,根据所述第二发射模式指示信息确定所述对应的发射模式。
结合第四方面的第三种可能的实现方式,在第四方面的第四种可能的实现方式中,所述UE对应的发射模式与所述上一跳UE对应的发射模式不同。
结合第四方面或第四方面的上述任一种可能的实现方式,在第四方面的第五种可能的实现方式中,所述确定单元还用于,确定下一跳UE对应的发射模式,所述下一跳UE对应的发射模式为所述n种发射模式中的一种;所述UE还包括:第一发送单元,用于向所述下一跳UE发送第三发射模式指示信息,所述第三发射模式指示信息用于指示所述下一跳UE对应的发射模式。
结合第四方面的第五种可能的实现方式,在第四方面的第六种可能的实现方式中,所述UE对应的发射模式与所述下一跳UE对应的发射模式不同。
结合第四方面或第四方面的上述任一种可能的实现方式,在第四方面的第七种可能的实现方式中,所述每种发射模式还用于指示发送反馈信息占用的时域资源,所述UE还包括:第二发送单元,用于发送反馈信息和SCI中的至少一种,其中向上一跳UE或基站发送反馈信息占用的时域资源和向下一跳UE发送SCI占用的时域资源相同。
第五方面,提供了一种基站,包括处理器、存储器、总线系统和发送器,所述处理器、所述存储器和所述发送器通过总线系统相连,所述存储器用于存储指令,所述处理器用于执行该存储器存储的指令,使得所述基站执行如
第一方面或第一方面可能的实现方式中的任一项所述的方法。
第六方面,提供了一种用户设备UE,包括处理器、存储器、总线系统和收发器,所述处理器、所述存储器和所述收发器通过总线系统相连,所述存储器用于存储指令,所述处理器用于执行该存储器存储的指令,使得所述UE执行如第二方面或第二方面可能的实现方式中的任意一项所述的方法。
可选的,所述UE可用于作为一条D2D通信链路上的m个UE中的任一UE,m为大于或等于2的整数。
第七方面,本发明实施例提供一种可读介质,包括计算机执行指令,当基站的处理器执行所述计算机执行指令时,所述基站执行如上述第一方面或者第一方面的任意一种可选方式中所述的方法。
第八方面,本发明实施例提供一种可读介质,包括计算机执行指令,当用户设备的处理器执行所述计算机执行指令时,所述用户设备执行如上述第二方面或者第二方面的任意一种可选方式中所述的方法。
第九方面,本发明实施例提供一种通信系统,该通信系统包括多个用户设备和基站,该多个用户设备可以为上述第四方面或者第四方面的任意一种可选方式中所述的用户设备,以及该基站可以为上述第三方面或者第三方面的任意一种可选方式中所述的基站;或者,
该多个用户设备可以为上述第六方面所述的用户设备,以及该基站可以为上述第五方面所述的基站。
可选的,上述用户设备还可以包括第八方面所述的可读介质,上述基站还可以包括第七方面所述的可读介质。
基于上述技术方案,通过获取时域模式的偏置信息确定采用的时域模式,并向D2D通信链路上的一个用户设备发送用于指示发射模式的发射模式指示信息,能够为多跳D2D通信链路上的各用户设备分配时域资源。
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的分配时域资源的方法的示意性流程图。
图2是根据本发明另一实施例的分配时域资源的方法的示意性流程图。
图3是根据本发明实施例的分配时域资源的方法在FDD模式下的一种时域模式的示意图。
图4是根据本发明实施例的多跳D2D通信过程的示意性流程图。
图5是根据本发明实施例的分配时域资源的方法在FDD模式下的另一种时域模式的示意图。
图6是根据本发明实施例的多跳D2D通信过程的示意性流程图。
图7是根据本发明实施例的分配时域资源的方法在TDD模式下的一种时域模式的示意图。
图8是根据本发明实施例的多跳D2D通信过程的示意性流程图。
图9是根据本发明实施例的分配时域资源的方法在TDD模式下的另一种时域模式的示意图。
图10是根据本发明实施例的多跳D2D通信过程的示意性流程图。
图11是根据本发明实施例的基站的示意性框图。
图12是根据本发明实施例的用户设备的示意性框图。
图13是根据本发明另一实施例的基站的示意性框图。
图14是根据本发明另一实施例的用户设备的示意性框图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明的技术方案,可以应用于各种无线通信系统,例如:宽带码分多址(WCDMA,Wideband Code Division Multiple Access Wireless)、高速分组接入(High-Speed Packet Access,HSPA)、基于无线保真(Wireless Fidelity,WIFI)、蓝牙(Bluetooth)、及全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)、无线局域网鉴别和保密基础结构(Wireless LAN Authentication and Privacy Infrastructure,WAPI)、长期演进(LTE,long term evolution)网络、未来网络,如5G等等系统以及其它将终端以无线方式互相连接的通信系统。
本发明实施例中的基站,为无线通信系统中的接入实体,可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolved Node B),未来网络5G中的基站,本发明并不限定,但为描述方便,下述实施例主要以eNB为例进行说明。
还应理解,在本申请实施例中,UE可以是但不限于移动台(Mobile Station,简称MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网进行通信,例如,计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
图1是根据本发明实施例的分配时域资源的方法100的示意性流程图。方法100应用于设备到设备D2D通信中,一条D2D通信链路上包括m个用户设备UE,m为大于或等于2的整数。如图1所示,方法100包括如下内容。
110、基站获取时域模式的偏置信息,偏置信息包括发送D2D链路控制信息SCI占用的时域资源与发送数据占用的时域资源之间的第一偏置量、以及发送相邻的SCI或数据占用的时域资源之间的第二偏置量,第二偏置量大于第一偏置量,时域模式包括n种发射模式,n种发射模式中的每种发射模式用于指示发送SCI和数据分别占用的时域资源,n为大于1的整数。
可以理解的是,这里的数据包括D2D数据。
基站可以采用多种方法获取时域模式的偏置信息。例如,基站可以根据D2D通信的业务需求、当前小区的通信环境和预定的策略确定时域模式的偏置信息。或者,可以在基站中预存多种时域模式的偏置信息,当需要为D2D通信链路的用户设备分配时域资源时,基站根据业务需求和当前小区的通信环境从中选择一种时域模式的偏置信息。
再如,可以在基站中预配置一种时域模式的偏置信息(即第一偏置量和第二偏置量),当需要为D2D通信链路的用户设备分配时域资源时,基站可以从存储器中获取该预配置的偏置信息。同样,也可以在UE中预配置该时域模式的偏置信息。该时域模式可以是由标准定义的,也可以是由网络管理员定义的。此时由于时域模式偏置信息已经预配置在UE侧,因此基站可以
不向UE发送时域模式的偏置信息。
120、基站确定m个UE中第一UE对应的发射模式,第一UE对应的发射模式为n种发射模式中的一种。
130、基站向第一UE发送第一发射模式指示信息,第一发射模式指示信息用于指示第一UE对应的发射模式。
本发明实施例的分配时域资源的方法,通过获取时域模式的偏置信息确定采用的时域模式,并向D2D通信链路上的一个用户设备发送用于指示发射模式的发射模式指示信息,能够为多跳D2D通信链路上的各用户设备分配时域资源。
例如,发射模式指示信息可以包括发射模式的标识,UE可以根据发射模式的标识从n种发射模式中确定对应的发射模式。其中,发射模式的标识可以是发射模式的编号或者代码等。
可选地,第一UE为D2D通信链路上的源UE。其中,源UE是指D2D通信链路上的第一跳UE(第一跳的发送方)。
示例的,本发明实施例中,发射模式的指示可以采用链式指示的方式。这种方式下,基站仅向D2D通信链路上的源UE发送发射模式指示信息。源UE根据接收到的发射模式指示信息确定对应的发射模式后可以确定下一跳UE对应的发射模式,并通知下一跳UE该发射模式,以此类推,D2D通信链路上的每跳UE确定下一跳UE对应的发射模式,并通知向下一跳UE。示例的,各跳UE确定下一跳UE对应的发射模式,可以根据预设的规则进行确定,比如,下一跳UE的发射模式索引编号为:(当前UE的发射模式索引编号+1)mod总编号数。D2D通信链路上的相邻跳的UE对应的发射模式不同。
可选地,发射模式的指示可以采用星型指示的方式。这种方式下,方法100还可以包括:
基站确定m个UE中第一UE之外的至少一个第二UE中的每个第二UE对应的发射模式,每个第二UE对应的发射模式为n种发射模式中的一种;
基站向至少一个第二UE中的每个第二UE发送第二发射模式指示信息,第二发送模式指示信息用于指示第二UE对应的发射模式。
也就是说,本发明实施例中,UE向m个UE中的每个UE发送发射模式指示信息,以通知每个UE对应的发射模式。
示例的,D2D通信链路上的相邻跳的UE对应的发射模式不同。
可选地,发射模式的指示还可以采用以上星型指示和链式指示相结合的方式,在此不予赘述。
需要说明的是,一条D2D通信链路上的各个UE对应的发射模式不能发生冲突,或者一条D2D链路上的相邻UE对应的发射模式占用的时域资源不能发生冲突。例如,任意相邻的两跳UE中的上一跳UE发送数据占用的时域资源与下一跳UE发送SCI和/或反馈占用的时域资源之间至少间隔数据在传输与接收过程中需要的处理时长。
可选地,步骤110包括:基站确定时域模式的偏置信息。
如果时域模式的偏置信息是由基站确定的,则基站需要告知UE采用的时域模式。
相应地,方法100还包括:基站向m个UE发送第一偏置量和第二偏置量。UE根据第一偏置量和第二偏置量可以确定采用的时域模式。
本发明实施例对基站发送第一偏置量和第二偏置量的方法不作限定。第一例如,基站可以通过广播向m个UE发送第一偏置量和第二偏置量,或者基站还可以通过无线资源控制信令向m个UE发送第一偏置量和第二偏置量。
本发明实施例中,基站通过向UE发送第一偏置量和第二偏置量,使得UE能够确定采用的时域模式。
应理解,D2D链路上的前后UE的发射模式有着比较强的耦合关系。在某一种时域模式下,前一跳UE的发射模式确定后,后一跳UE的发射模式可以相应地自然确定下来。
可选地,每种发射模式还用于指示发送反馈信息占用的时域资源。
例如,反馈信息可以为确认(Acknowledgement,简称ACK)、否定性确认(Negative ACKnowledgement,简称NACK)、信道状态信息(Channel State Information,简称CSI)等,本发明实施例对此并不限定。其中,反馈信息可以用于确定是否重传,进而提高数据传输的可靠性。
多跳D2D通信链路上的中间UE还可以向上一跳UE发送反馈信息。应理解,UE发送反馈信息可以与发送SCI共享时域资源。例如,一个UE可以同时向两个UE分别发送反馈信息和SCI。
例如,任意相邻的两跳UE中的上一跳UE发送数据占用的时域资源与
下一跳UE发送反馈信息占用的时域资源之间至少间隔数据在传输和接收过程中需要的处理时长。这样能够保证下一跳UE有足够的时间处理数据包。
可选地,任意相邻的两跳UE中的下一跳UE发送反馈信息占用的时域资源与上一跳UE再次发送SCI占用的时域资源之间至少间隔反馈信息在传输和接收过程中需要的处理时长。
这样能够保证上一跳UE在发送新的SCI和数据之前有足够的时间根据下一跳UE的反馈信息执行相应的操作。例如,上一跳UE根据反馈信息确定是否需要向下一跳UE重新发送数据,或者上一跳UE根据反馈信息进行数据传输的资源分配等。
应理解,D2D通信可以采用频分双工(Frequency Division Duplex,简称FDD),也可以采用时分双工(Time Division Duplex,简称TDD)。FDD模式下D2D通信的可用子帧为上行频带下所有的子帧,TDD模式下D2D通信的可用子帧是上行子帧。还应理解,在TDD模式下,两个相邻的上行子帧之间可能间隔若干个下行子帧,下行子帧不在本发明实施例考虑的范围之内。本发明实施例的子帧指的是D2D通信的可用子帧。
可选地,当D2D通信采用FDD时,第一偏置量为1个子帧。第二偏置量为9个子帧。
应理解,第一偏置量也可以为其他数量的子帧,例如2个子帧,或3个子帧。还应理解,第一偏置量越小,则D2D通信中数据的端到端的传输时延越小,传输效率越高。第二偏置量也可以为其他数量的子帧,例如8个子帧,或10个子帧,或11个子帧。
可选地,当D2D通信采用TDD时,第一偏置量为1个上行子帧。第二偏置量为5个上行子帧。应理解,第一偏置量也可以为其他数量的上行子帧,例如2个上行子帧,或3个上行子帧。同样地,第一偏置量越小,则D2D通信中数据的端到端的传输时延越小,传输效率越高。第二偏置量也可以为其他数量的上行子帧,例如6个上行子帧,或7个上行子帧。
本发明实施例的分配时域资源的方法,通过获取时域模式的偏置信息确定采用的时域模式,并向D2D通信链路上的一个用户设备发送用于指示发射模式的发射模式指示信息,能够为多跳D2D通信链路上的各用户设备分配时域资源。
图2是根据本发明实施例的分配时域资源的方法200的示意性流程图。
方法200与方法100相对应,为了描述简洁,在此适当省略相应描述,所省略部分可参考方法100中的描述。方法200应用于多跳设备到设备D2D通信中,一条D2D通信链路上包括m个用户设备UE,方法200由m个UE中的任一UE执行,m为大于或等于2的整数。如图2所示,方法200包括如下内容。
210、UE获取第一偏置量和第二偏置量,第一偏置量为发送SCI占用的时域资源与发送数据占用的时域资源之间的偏置量,第二偏置量为发送相邻的SCI或数据占用的两个时域资源之间的偏置量,第二偏置量大于第一偏置量。
220、UE根据第一偏置量和第二偏置量确定采用的时域模式。
其中,时域模式可以包括n种发射模式,n种发射模式中的每种发射模式用于指示发送SCI和数据分别占用的时域资源,n为大于1的整数。
230、UE确定对应的发射模式,该对应的发射模式为n种发射模式中的一种。
240、UE根据该时域模式和该对应的发射模式确定发送SCI和数据分别占用的时域资源。
本发明实施例的分配时域资源的方法,通过根据获取到的偏置信息确定采用的时域模式,并确定对应的发射模式,从而能够确定占用的时域资源。
相应地,在步骤230中,UE可以采用多种方式来确定对应的发射模式。
可选地,可以为各个D2D通信链路上的UE预先配置对应的发射模式的标识。当UE确定了采用的时域模式后,根据对应的发射模式的标识和采用的时域模式就可以确定发送SCI和数据分别占用的时域资源。例如,UE预先配置对应编号为1的发射模式,当UE确定了采用的时域模式后,就可以进一步确定该时域模式下编号为1的发射模式对应的时域资源。
可选地,步骤210可以包括:UE接收来自基站的第一偏置量和第二偏置量。
应理解,UE还可以采用其他方式获取第一偏置量和第二偏置量,本发明实施例对此并不限定。例如,可以在UE中预配置第一偏置量和第二偏置量。该第一偏置量和第二偏置量可以是由标准定义的,也可以是由网络管理员定义的。
可选地,步骤230还可以包括:
UE接收来自基站的第一发射模式指示信息,第一发射模式指示信息用于指示该对应的发射模式;
UE根据发射模式指示信息确定该对应的发射模式。
UE根据该时域模式中该UE对应的发射模式就可以确定发送SCI和数据分别占用的时域资源。
此时,UE可以为D2D通信链路上的源UE也可以为其他UE。
可选地,步骤230还可以包括:
UE接收上一跳UE发送的第二发射模式指示信息,第二发射模式指示信息用于指示该对应的发射模式;
UE根据第二发射模式指示信息确定对应的发射模式。
可选地,方法200还可以包括:
确定下一跳UE对应的发射模式,下一跳UE对应的发射模式为n种发射模式中的一种;
向下一跳UE发送第三发射模式指示信息,第三发射模式指示信息用于指示下一跳UE对应的发射模式。
也就是说,UE可以通过接收基站或上一跳UE发送的发射模式指示信息来确定对应的发射模式。但本发明对此并不限定,例如,UE还可以根据上一跳UE发送的SCI和数据确定上一跳UE对应的发射模式,进而根据上一跳UE对应的发射模式确定自身对应的发射模式。
可选地,每种发射模式还可以用于指示发送反馈信息占用的时域资源。相应地,在步骤240中,UE还可以确定发送反馈信息占用的时域资源。可选的,UE发送反馈信息占用的时域资源和发送SCI占用的时域资源可以相同。
应理解,确定发送给下一跳UE的SCI、数据以及给上一跳UE的反馈信息分别占用的时域资源就可确定接收来自上一跳UE的SCI、数据以及来自下一跳UE的反馈信息各自占用的时域资源。例如,在不发送SCI、数据以及反馈信息的时域资源上接收SCI、数据以及反馈信息。
发射模式指示信息可以包括发射模式的标识。例如,发射模式的标识可以是发射模式的编号或代码等。
相应地,UE根据发射模式指示信息确定该对应的发射模式包括:
UE根据该标识从n种发射模式中确定该对应的发射模式。
当发射模式还用于指示发送反馈信息占用的时域资源时,相应地,UE根据对应的发射模式还可以确定发送反馈信息占用的时域资源。
UE向第一UE发送反馈信息占用的时域资源和向第二UE发送SCI占用的时域资源相同。其中,反馈信息可以为ACK、NACK、CSI等。例如,第一UE为向该UE发送数据的上一跳UE,第二UE为该UE的下一跳UE。反馈信息可以用于确定数据是否重传,进而提高数据传输的可靠性。
在本发明实施例中,UE向不同UE发送SCI和反馈信息时可以共享时域资源。这样可以降低端到端的数据传输时延,提高多跳D2D通信的传输效率。
可选地,当D2D通信采用频分双工FDD时,第一偏置量为1个子帧。第二偏置量为9个子帧。
可选地,D2D通信采用时分双工TDD,第一偏置量为1个上行子帧。第二偏置量为5个上行子帧。
本发明实施例的分配时域资源的方法,通过根据获取到的偏置信息确定采用的时域模式,并确定对应的发射模式,能够确定占用的时域资源。
下面结合图3至图10示出的具体例子详细描述根据本发明实施例的分配时域资源的方法。
图3所示为根据本发明实施例的分配时域资源的方法在FDD模式下的一种时域模式的示意图,图3中每一行代表一种具体的发射模式,本发明实施例列出了9种发射模式。假设UE1通过UE2将数据发给UE3,且发送SCI、数据以及反馈信息各占一个子帧。如图3所示,发送SCI和发送反馈信息可以共享时域资源。
图3中每一列代表上行频带下的连续子帧号。应理解,图3所示子帧编号仅为示意性的说明,用来表示各个发射模式之间的相对关系,并不限定子帧在绝对时间轴上的位置。每种发射模式下,SCI、数据以及反馈信息的发射将占用特定的子帧位置。本发明实施例的时域模式由表1所示两个偏置参数确定。
表1
RRC参数 | 取值 |
sciDataOffset | 1 |
adjacentSciOffset | 9 |
sciDataOffset表示发送SCI与发送对应的数据之间的偏置量,adjacentSciOffset表示发送相邻SCI之间的偏置量(也可用发送相邻数据之间的偏置量代替,其他示例中也类似)。示例的,基站可以将该两个偏置参数作为小区级别的无线资源控制(Radio Resource Control,简称RRC)参数在小区中广播,以告知小区内UE当前使用的时域模式。
然后,基站为一条多跳D2D链路上的各个UE分配相应的发射模式,当UE被分配了上述时域模式中某个具体的发射模式后,UE将在该发射模式规定的子帧上进行发送SCI、数据以及反馈信息,且UE在该发射模式中不用于发送的子帧进行SCI、数据以及反馈信息的接收。例如,若某UE被分配了该时域模式下的发射模式0,那么其只能在子帧0、9……发射SCI/ACK-NACK,只能在子帧1、10……发送数据,只能在其余不用于发送的子帧上进行SCI、数据以及反馈信息的接收。例如,UE1、UE2、UE3分别被分配了上述时域模式中的发射模式0、1、2,在这种发射模式分配下,一条多跳D2D链路上UE1、UE2和UE3的通信过程由图4所示,图4中仅以反馈信息为ACK/NACK为例进行描述。
在子帧0,UE1向UE2发送数据1对应的SCI 1;在子帧1,UE1向UE2发送数据1;UE2成功接收数据1后在子帧5向UE1发送ACK,并同时向UE3发送数据1对应的SCI 2;在子帧6,UE2向UE3发送数据1;在子帧9,UE1向UE2发送数据2对应的SCI 3;UE3成功接收数据1后在子帧10向UE2发送ACK,同时UE1在子帧10向UE2发送数据2。后续过程以此类推,直至该多跳链路的发射模式被释放(例如当一个会话(session)的数据传输完成)。
另外,目前的单跳D2D的资源分配是基于资源池的方式,以D2D链路控制(Sidelink control,简称SC)周期进行周期性的重复,每个SC周期中前一部分是SCI资源池,后一部分是D2D数据资源池,SCI和数据只能使用相应资源池中的资源进行发射。若将上述单跳D2D技术中的D2D资源池直接应用至多跳D2D,则会导致多跳传输效率的低下。假设一个多跳场景,UE1通过UE2将数据发给UE3。若直接采用目前资源池的资源分配方式,那么一个数据两跳之间的间隔平均下来最短也将会是一个SC周期。目前最短的SC周期也有40ms,意味着如果将现有单跳D2D通信的资源分配方式
应用于多跳D2D通信中,则一个数据每跳平均至少40ms,端到端的传输延时较大。
如图4所示,在本发明实施例中,一个数据两跳之间的间隔为5ms,这样大大缩短了端到端的包传输时延,提高了多跳传输效率。
图5所示为根据本发明实施例的分配时域资源的方法在FDD模式下的另一种时域模式,图5中每一行代表一种具体的发射模式,本发明实施例列出了11种发射模式。假设UE1通过UE2将数据发给UE3,且发送SCI、数据以及反馈信息各占一个子帧。如图5所示,发送SCI和发送反馈信息共享时域资源。
图5中每一列代表上行频带下的连续子帧号。应理解,图5所示子帧编号仅为示意性的说明,用来表示各个发射模式之间的相对关系,并不限定子帧在绝对时间轴上的位置。每种发射模式下,SCI、数据以及反馈信息的发射将占用特定的子帧位置。本发明实施例的时域模式由表2所示两个偏置参数确定。
表2
RRC参数 | 取值 |
sciDataOffset | 3 |
adjacentSciOffset | 11 |
sciDataOffset表示发送SCI与发送对应的数据之间的偏置量,adjacentSciOffset表示发送相邻SCI之间的偏置量(也可用发送相邻数据之间的偏置量代替,其他示例中也类似)。示例的,基站可以将两个偏置参数作为小区级别的无线资源控制(Radio Resource Control,简称RRC)参数在小区中广播,以告知小区内UE当前使用的时域模式。
例如,一条多跳D2D通信链路上的UE1、UE2、UE3分别被分配了上述时域模式中的发射模式0、1、2,在这种发射模式分配下,多跳D2D链路上UE1、UE2和UE3的通信过程由图6所示,图6中仅以反馈信息为ACK/NACK为例进行描述。。
在子帧0,UE1向UE2发送数据1对应的SCI 1;在子帧3,UE1向UE2发送数据1;UE2成功接收数据1后在子帧5向UE1反馈ACK,并同时向UE3发送数据1对应的SCI 2;在子帧7,UE1向UE2发送第二个数据
对应的SCI 3;在子帧8,UE2向UE3发送数据1;UE3成功接收数据1后在子帧10向UE2反馈ACK,同时UE1向UE2发送数据2。后续过程以此类推,直至该多跳链路的发射模式被释放(例如当一个会话(session)的数据传输完成)。
如图6所示,在本发明实施例中,一个数据两跳之间的间隔为7ms,同样大大缩短了端到端的包传输时延,提高了多跳传输效率。
上文结合图3至图6描述了在FDD模式下根据本发明实施例的分配时域资源的方法。下面结合图7至图10描述在TDD模式下根据本发明实施例的分配时域资源的方法。
TDD模式中上下行子帧具有多种配置,如表3所示。图7和图8所示实施例仅以配置1为例进行描述。
表3
其中,D代表下行子帧,U代表上行子帧,S代表特殊子帧(可以当做下行子帧用)。
图7所示为多跳D2D通信中TDD模式上下行子帧配置1的一种时域模式,图7中每一行代表一种具体的发射模式,本发明实施例列出了5种发射模式。假设UE1通过UE2将数据发给UE3,且发送SCI、数据以及反馈信息各占一个子帧。如图7所示,发送SCI和发送反馈信息共享时域资源。
图7中每一列代表D2D通信可用的上行子帧。应理解,图7所示子帧编号仅为示意性的说明,仅对D2D可用的上行子帧单独抽离出来进行连续编号,用来表示各个发射模式之间的相对关系,并不限定子帧在绝对时间轴上的位置,图7中所示上行子帧之间在时间轴上还间隔下行子帧。如图7中所示具有不同填充底纹的可用子帧之间还间隔下行子帧,例如图7中可用子
帧1和可用子帧2之间间隔两个下行子帧和一个特殊子帧,同样,可用子帧3和可用子帧4之间间隔两个下行子帧和一个特殊子帧,可用子帧5和可用子帧6之间间隔两个下行子帧和一个特殊子帧,其他依此类推不再赘述。每种发射模式下,发送SCI、数据以及ACK-NACK将占用特定的上行子帧位置。本发明实施例的时域模式由表4所示两个偏置参数确定。
表4
RRC参数 | 取值 |
sciDataOffset | 1 |
adjacentSciOffset | 5 |
sciDataOffset表示发送SCI与发送对应的数据之间的偏置量,adjacentSciOffset表示发送相邻SCI之间的偏置量(也可用发送相邻数据之间的偏置量代替,其他示例中也类似)。示例的,基站可以将两个偏置参数作为小区级别的无线资源控制(Radio Resource Control,简称RRC)参数在小区中广播,以告知小区内UE当前使用的时域模式。
例如,一条D2D通信链路上的UE1、UE2、UE3分别被分配了上述时域模式中的发射模式0、1、2,在这种发射模式分配下,多跳D2D链路上UE1、UE2和UE3的通信过程由图8所示,图8中仅以反馈信息为ACK/NACK为例进行描述。
在上行子帧0,UE1向UE2发送数据1对应的SCI 1;在上行子帧1,UE1向UE2发送数据1;UE2成功接收数据1后在上行子帧3向UE1发送ACK,并同时向UE3发送第一个数据对应的SCI 2;在上行子帧4,UE2向UE3发送数据1;在上行子帧5,UE1向UE2发送数据2对应的SCI 3;UE3成功接收数据1后在上行子帧6向UE2发送ACK,同时UE1在上行子帧6向UE2发送数据2。后续过程以此类推,直至该多跳链路的发射模式被释放(例如当一个session的数据传输完成)。
如图8所示,本发明实施例中,一个数据两跳之间的间隔为9ms,同样大大缩短了端到端的包传输时延,提高了多跳传输效率。
图9所示为多跳D2D通信中TDD模式上下行子帧配置1的另一种时域模式,图9中每一行代表一种具体的发射模式,本发明实施例列出了7种发射模式。假设UE1通过UE2将数据发给UE3,且SCI、数据以及ACK/NACK
各占一个子帧。如图9所示,发送SCI和发送ACK/NACK共享时域资源。
图9中每一列代表D2D通信可用的上行子帧。应理解,图9所示子帧编号仅为示意性的说明,仅对D2D可用的上行子帧单独抽离出来进行连续编号,用来表示各个发射模式之间的相对关系,并不限定子帧在绝对时间轴上的位置,图9中所示上行子帧之间在时间轴上还间隔下行子帧。如图9中所示具有不同填充底纹的可用子帧之间还间隔下行子帧,例如图9中可用子帧1和可用子帧2之间间隔两个下行子帧和一个特殊子帧,同样,可用子帧3和可用子帧4之间间隔两个下行子帧和一个特殊子帧,可用子帧5和可用子帧6之间两个下行子帧和一个特殊子帧,其他依此类推不再赘述。每种发射模式下,发送SCI、数据以及ACK-NACK将占用特定的上行子帧位置。本发明实施例的时域模式由表5所示两个偏置参数确定。
表5
RRC参数 | 取值 |
sciDataOffset | 3 |
adjacentSciOffset | 7 |
sciDataOffset表示发送SCI与发送对应的数据之间的偏置量,adjacentSciOffset表示发送相邻SCI之间的偏置量。基站将两个偏置参数作为小区级别的无线资源控制(Radio Resource Control,简称RRC)参数在小区中广播,以告知小区内UE当前使用的时域模式。
例如,UE1、UE2、UE3分别被分配了上述时域模式中的发射模式0、1、2,在这种发射模式分配下,多跳D2D链路上UE1、UE2和UE3的通信过程由图10所示,图10中仅以反馈信息为ACK/NACK为例进行描述。
在上行子帧0,UE1向UE2发送数据1对应的SCI 1;在上行子帧3,UE1向UE2发送数据1;UE2成功接收数据1后在上行子帧5向UE1发送ACK,并同时向UE3发送数据1对应的SCI 2;在上行子帧7,UE1向UE2发送数据2对应的SCI 3;在上行子帧8,UE2向UE3发送数据1;UE3成功接收数据1后在上行子帧10向UE2发送ACK,同时UE1在上行子帧10向UE2发送数据2。后续过程以此类推,直至该多跳链路的发射模式被释放(例如当一个session的数据传输完成)。
如图10所示,本发明实施例中,一个数据两跳之间的间隔为14ms,同
样大大缩短了端到端的包传输时延,提高了多跳传输效率。
因此,本发明实施例不仅能够为多跳D2D通信链路上的各跳用户分配时域资源,而且端到端的传输时延短,能够提高数据包的传输效率。
上文结合图1至图10描述了根据本发明实施例的分配时域资源的方法。下面将结合图11至图14详细描述根据本发明实施例的分配时域资源的装置,其中,该装置可以是基站,也可以是用户设备。
图11是根据本发明实施例的基站1100的示意性框图。
可选的,基站1100可应用于设备到设备D2D通信中,一条D2D通信链路上包括m个用户设备UE,m为大于或等于2的整数。该基站1100用于执行以上方法中基站的步骤。相应的,基站1100可以包括和以上基站的步骤相对应的模块。各模块所实现的功能可以参考以上方法中的描述。
示例的,如图11所示,基站1100可以包括获取单元1110、确定单元1120和发送单元1130。
获取单元1110,用于获取时域模式的偏置信息,偏置信息包括发送D2D链路控制信息SCI占用的时域资源与发送数据占用的时域资源之间的第一偏置量、以及发送相邻的SCI或数据占用的时域资源之间的第二偏置量,第二偏置量大于第一偏置量,时域模式包括n种发射模式,n种发射模式中的每种发射模式用于指示发送SCI和数据分别占用的时域资源,n为大于1的整数。
确定单元1120,用于确定m个UE中第一UE对应的发射模式,第一UE对应的发射模式为n种发射模式中的一种。其中,m为大于1的整数。
发送单元1130,用于向第一UE发送第一发射模式指示信息,第一发射模式指示信息用于指示第一UE对应的发射模式。
可选的,m个UE为一条D2D通信链路上的UE。
本发明实施例的基站,通过获取时域模式的偏置信息确定采用的时域模式,并向D2D通信链路上的一个用户设备发送用于指示发射模式的发射模式指示信息,能够为多跳D2D通信链路上的各用户设备分配时域资源。
可选地,发送单元1130还用于,向m个UE发送第一偏置量和第二偏置量。
可选地,第一UE为D2D通信链路上的源UE。
可选地,确定单元1120还用于,确定m个UE中第一UE之外的至少
一个第二UE中的每个第二UE对应的发射模式,每个第二UE对应的发射模式为n种发射模式中的一种;发送单元1130还用于,向至少一个第二UE中的每个第二UE发送第二发射模式指示信息,第二发送模式指示信息用于指示每个第二UE对应的发射模式。
示例地,D2D通信链路上的相邻跳的UE对应的发射模式不同。
可选地,n种发射模式中的每种发射模式还用于指示发送反馈信息占用的时域资源。
可选地,获取单元1110具体用于,获知系统预置的时域模式的偏置信息。
应理解,根据本发明实施例的基站1100可对应于根据本发明实施例的分配时域资源的方法100中的基站,并且基站1100中的各个模块的上述和其它操作和/或功能分别为了实现图1的方法100的相应流程,为了简洁,在此不再赘述。
本发明实施例的基站,通过获取时域模式的偏置信息确定采用的时域模式,并向D2D通信链路上的一个用户设备发送用于指示发射模式的发射模式指示信息,能够为多跳D2D通信链路上的各用户设备分配时域资源。
图12是根据本发明实施例的用户设备UE 1200的示意性框图。
可选的,UE 1200可用于作为一条D2D通信链路上的m个UE中的任一UE,m为大于或等于2的整数。该UE 1200用于执行以上方法中UE的步骤。
相应的,UE 1200可以包括和以上UE的步骤相对应的模块。各模块所实现的功能可以参考以上方法中的描述。示例的,UE 1200可以包括获取单元1210和确定单元1220。
获取单元1210,用于获取第一偏置量和第二偏置量,第一偏置量为发送SCI占用的时域资源与发送数据占用的时域资源之间的偏置量,第二偏置量为发送相邻的SCI或数据占用的时域资源之间的偏置量,第二偏置量大于第一偏置量。
确定单元1220,用于根据第一偏置量和第二偏置量确定采用的时域模式,时域模式包括n种发射模式,n种发射模式中的每种发射模式用于指示发送SCI和数据分别占用的时域资源,n为大于1的整数。
确定单元1220还用于,确定对应的发射模式,该对应的发射模式为n
种发射模式中的一种;
确定单元1220还用于,根据该时域模式和该对应的发射模式确定发送SCI和数据分别占用的时域资源。
本发明实施例的分配时域资源的方法,通过根据获取到的偏置信息确定采用的时域模式,并确定对应的发射模式,从而能够确定占用的时域资源。
可选地,获取单元1210具体用于:接收来自基站的第一偏置量和第二偏置量;或者,获知系统预置的时域模式的偏置信息。
可选地,获取单元1210还用于,接收来自基站的第一发射模式指示信息,第一发射模式指示信息用于指示UE对应的发射模式;确定单元1220具体用于根据该第一发射模式指示信息确定该对应的发射模式。
可选地,获取单元1210还用于,接收来自上一跳UE的第二发射模式指示信息,第二发射模式指示信息用于指示该对应的发射模式;确定单元1220具体用于,根据第二发射模式指示信息确定该对应的发射模式。
可选地,UE对应的发射模式与上一跳UE对应的发射模式不同。
可选地,确定单元1220还用于,确定下一跳UE对应的发射模式,下一跳UE对应的发射模式为n种发射模式中的一种。
相应地,如图12所示,UE 1200还包括:发送单元1230。
可选地,发送单元1230可以用于向下一跳UE发送第三发射模式指示信息,第三发射模式指示信息用于指示下一跳UE对应的发射模式。
示例的,UE对应的发射模式与下一跳UE对应的发射模式不同。
可选地,发射模式指示信息包括发射模式的标识,确定单元1220具体用于:根据标识从n种发射模式中确定对应的发射模式。
可选地,每种发射模式还用于指示发送反馈信息占用的时域资源。
可选地,发送单元1230还可以用于发送反馈信息和SCI中的至少一种。其中,发送单元1230向上一跳UE或基站发送反馈信息占用的时域资源和向下一跳UE发送SCI占用的时域资源相同。
应理解,根据本发明实施例的用户设备UE 1200可对应于根据本发明实施例的分配时域资源的方法200中的用户设备,并且UE 1200中的各个模块的上述和其它操作和/或功能分别为了实现图2的方法200的相应流程,为了简洁,在此不再赘述。
本发明实施例的分配时域资源的用户设备,通过根据获取到的偏置信息
确定采用的时域模式,并确定对应的发射模式,从而能够确定占用的时域资源。
图13是根据本发明实施例的基站1300的示意性框图。
可选的,基站1100可应用于设备到设备D2D通信中,一条D2D通信链路上包括m个用户设备UE,m为大于或等于2的整数。
如图13所示,基站1300包括处理器1310、存储器1320、总线系统1330和发送器1340。其中,处理器1310、存储器1320和发送器1340通过总线系统1330相连,该存储器1320用于存储指令,该处理器1310用于执行该存储器1320存储的指令,以执行以上方法中基站所执行的步骤。示例的,
处理器1310,用于:
获取时域模式的偏置信息,偏置信息包括发送D2D链路控制信息SCI占用的时域资源与发送数据占用的时域资源之间的第一偏置量、以及发送相邻的SCI或数据占用的时域资源之间的第二偏置量,第二偏置量大于第一偏置量,时域模式包括n种发射模式,n种发射模式中的每种发射模式用于指示发送SCI和数据分别占用的时域资源,n为大于1的整数;
确定m个UE中第一UE对应的发射模式,第一UE对应的发射模式为n种发射模式中的一种;其中,m为大于1的整数;
控制发送器1340向第一UE发送第一发射模式指示信息,第一发射模式指示信息用于指示第一UE对应的发射模式。
可选的,m个UE为一条D2D通信链路上的UE。
本发明实施例的基站,通过获取时域模式的偏置信息确定采用的时域模式,并向D2D通信链路上的一个用户设备发送用于指示发射模式的发射模式指示信息,能够为多跳D2D通信链路上的各用户设备分配时域资源。
应理解,在本发明实施例中,可选的,该处理器1310可以是中央处理单元(Central Processing Unit,简称CPU),该处理器1310还可以是其他通用处理器、数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可选的,所述处理器1310也可以为专用处理器,该专用处理器可以包
括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有基站其他专用处理功能的芯片。
该存储器1320可以包括只读存储器和随机存取存储器,并向处理器1310提供指令和数据。存储器1320的一部分还可以包括非易失性随机存取存储器。例如,存储器1320还可以存储设备类型的信息。
该总线系统1330除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统1330。
在实现过程中,上述方法的各步骤可以通过处理器1310中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1320,处理器1310读取存储器1320中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,处理器1310还用于,控制发送器1340向m个UE发送第一偏置量和第二偏置量。
可选地,n种发射模式中的每种发射模式还用于指示发送反馈信息占用的时域资源。
可选地,处理器1310还用于:
确定m个UE中第一UE之外的至少一个第二UE中的每个第二UE对应的发射模式,每个第二UE对应的发射模式为n种发射模式中的一种;
控制发送器向至少一个第二UE中的每个第二UE发送第二发射模式指示信息,第二发送模式指示信息用于指示每个第二UE对应的发射模式。
示例地,D2D通信链路上的相邻跳的UE对应的发射模式不同。
可选地,第一UE为D2D通信链路上的源UE。
可选地,处理器具体用于,获知系统预置的时域模式的偏置信息。
应理解,根据本发明实施例的基站1300可对应于根据本发明实施例的分配时域资源的方法100中的基站和根据本发明实施例的基站1100,并且基站1300中的各个模块的上述和其它操作和/或功能分别为了实现图1的方法100的相应流程,为了简洁,在此不再赘述。
本发明实施例的基站,通过获取时域模式的偏置信息确定采用的时域模式,并向D2D通信链路上的一个用户设备发送用于指示发射模式的发射模式指示信息,能够为多跳D2D通信链路上的各用户设备分配时域资源。
图14是根据本发明实施例的用户设备UE 1400的示意性框图。
可选的,UE 1400可为一条D2D通信链路上的m个UE中的任一UE,m为大于或等于2的整数。
如图14所示,UE 1400包括处理器1410、存储器1420、总线系统1430和收发器1440。其中,处理器1410、存储器1420和收发器1440通过总线系统1430相连,该存储器1420用于存储指令,该处理器1410用于执行该存储器1420存储的指令,以执行以上方法中UE所执行的步骤。示例的,
处理器1410,用于获取第一偏置量和第二偏置量,第一偏置量为发送SCI占用的时域资源与发送数据占用的时域资源之间的偏置量,第二偏置量为发送相邻的SCI或数据占用的时域资源之间的偏置量,第二偏置量大于第一偏置量。
例如,处理器1410用于获取预配置好的第一偏置量和第二偏置量。
处理器1410还用于,根据第一偏置量和第二偏置量确定采用的时域模式,该时域模式包括n种发射模式,n种发射模式中的每种发射模式用于指示发送SCI和数据分别占用的时域资源,n为大于1的整数。
处理器1410还用于,确定对应的发射模式,该对应的发射模式为n种发射模式中的一种。
处理器1410还用于,根据该时域模式和该对应的发射模式确定发送SCI和数据分别占用的时域资源。
处理器1410还用于控制收发器1440收发信号。
本发明实施例的分配时域资源的方法,通过根据获取到的偏置信息确定采用的时域模式,并确定对应的发射模式,从而能够确定占用的时域资源。
应理解,在本发明实施例中,可选的,该处理器1410可以是中央处理单元(Central Processing Unit,简称CPU),该处理器1410还可以是其他通用处理器、数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处
理器或者该处理器也可以是任何常规的处理器等。
可选的,所述处理器1410也可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有UE其他专用处理功能的芯片。
该存储器1420可以包括只读存储器和随机存取存储器,并向处理器1410提供指令和数据。存储器1420的一部分还可以包括非易失性随机存取存储器。例如,存储器1420还可以存储设备类型的信息。
该总线系统1430除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统1430。
在实现过程中,上述方法的各步骤可以通过处理器1410中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1420,处理器1410读取存储器1420中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,处理器1410具体用于:
控制收发器1440接收来自基站的第一发射模式指示信息,第一发射模式指示信息用于指示该对应的发射模式;
根据第一发射模式指示信息确定该对应的发射模式。
可选地,处理器1410具体用于:
控制收发器1440接收来自上一跳UE的第二发射模式指示信息,第二发射模式指示信息用于指示该对应的发射模式;
根据第二发射模式指示信息确定该对应的发射模式。
示例地,UE对应的发射模式与上一跳UE对应的发射模式不同。
可选地,处理器1410还用于:
确定下一跳UE对应的发射模式,下一跳UE对应的发射模式为n种发射模式中的一种;
控制发送器1440向下一跳UE发送第三发射模式指示信息,第三发射模式指示信息用于指示下一跳UE对应的发射模式。
示例地,UE对应的发射模式与下一跳UE对应的发射模式不同。
可选地,发射模式指示信息包括发射模式的标识,处理器1410具体用于:根据标识从n种发射模式中确定对应的发射模式。
可选地,每种发射模式还用于指示发送反馈信息占用的时域资源。
可选地,处理器1410还用于控制收发器1440发送反馈信息和SCI中的至少一种。其中,收发器1440向上一跳UE发送反馈信息占用的时域资源和向下一跳UE发送SCI占用的时域资源相同。
可选地,收发器1440还可以用于发送数据。
应理解,根据本发明实施例的用户设备UE 1400可对应于根据本发明实施例的分配时域资源的方法200中的用户设备和根据本发明实施例的用户设备1200,并且UE 1400中的各个模块的上述和其它操作和/或功能分别为了实现图2的方法200的相应流程,为了简洁,在此不再赘述。
本发明实施例的分配时域资源的用户设备,通过根据获取到的偏置信息确定采用的时域模式,并确定对应的发射模式,从而能够确定占用的时域资源。
应理解,在本发明实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对
应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(Digital Subscriber Line,简称DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数
字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (17)
- 一种分配时域资源的方法,其特征在于,所述方法应用于设备到设备D2D通信中,一条D2D通信链路上包括m个用户设备UE,m为大于或等于2的整数,所述方法包括:基站获取时域模式的偏置信息,所述偏置信息包括发送D2D链路控制信息SCI占用的时域资源与发送数据占用的时域资源之间的第一偏置量、以及发送两个相邻的SCI或数据占用的时域资源之间的第二偏置量,所述第二偏置量大于所述第一偏置量,所述时域模式包括n种发射模式,所述n种发射模式中的每种发射模式用于指示发送SCI和数据分别占用的时域资源,n为大于1的整数;所述基站确定所述m个UE中第一UE对应的发射模式,所述第一UE对应的发射模式为所述n种发射模式中的一种;所述基站向所述第一UE发送第一发射模式指示信息,所述第一发射模式指示信息用于指示所述第一UE对应的发射模式。
- 根据权利要求1所述的方法,其特征在于,还包括:所述基站向所述m个UE发送所述第一偏置量和所述第二偏置量。
- 根据权利要求1或2所述的方法,其特征在于,还包括:所述基站确定所述m个UE中所述第一UE之外的至少一个第二UE中的每个第二UE对应的发射模式,所述每个第二UE对应的发射模式为所述n种发射模式中的一种;所述基站向所述至少一个第二UE中的每个第二UE发送第二发射模式指示信息,所述第二发送模式指示信息用于指示所述每个第二UE对应的发射模式。
- 根据权利要求3所述的方法,其特征在于,所述第一UE对应的发射模式和所述D2D通信链路上所述第一UE的相邻跳第二UE对应的发射模式不同。
- 根据权利要求1或2所述的方法,其特征在于,所述第一UE为所述D2D通信链路上的源UE。
- 根据权利要求1至5中任一项所述的方法,其特征在于,所述每种发射模式还用于指示发送反馈信息占用的时域资源。
- 根据权利要求1至6中任一项所述的方法,其特征在于,所述基站获取时域模式的偏置信息包括:所述基站获知系统预置的时域模式的偏置信息。
- 一种分配时域资源的方法,其特征在于,所述方法应用于设备到设备D2D通信中,一条D2D通信链路上包括m个用户设备UE,所述方法由所述m个UE中的任一UE执行,m为大于或等于2的整数,所述方法包括:UE获取第一偏置量和第二偏置量,所述第一偏置量为发送SCI占用的时域资源与发送数据占用的时域资源之间的偏置量,所述第二偏置量为发送两个相邻的SCI或数据占用的时域资源之间的偏置量,所述第二偏置量大于所述第一偏置量;所述UE根据所述第一偏置量和所述第二偏置量确定采用的时域模式,所述时域模式包括n种发射模式,所述n种发射模式中的每种发射模式用于指示发送SCI和数据分别占用的时域资源,n为大于1的整数;所述UE确定对应的发射模式,所述对应的发射模式为所述n种发射模式中的一种;所述UE根据所述时域模式和所述对应的发射模式确定发送SCI和数据分别占用的时域资源。
- 根据权利要求8所述的方法,其特征在于,所述UE获取第一偏置量和第二偏置量包括:所述UE接收来自基站的所述第一偏置量和所述第二偏置量;或者,所述UE获知系统预置的时域模式的偏置信息。
- 根据权利要求8或9所述的方法,其特征在于,所述UE确定对应的发射模式包括:所述UE接收来自基站的第一发射模式指示信息,所述第一发射模式指示信息用于指示所述对应的发射模式;所述UE根据所述第一发射模式指示信息确定所述对应的发射模式。
- 根据权利要求8或9所述的方法,其特征在于,所述UE确定对应的发射模式包括:所述UE接收来自上一跳UE的第二发射模式指示信息,所述第二发射模式指示信息用于指示所述对应的发射模式;所述UE根据所述第二发射模式指示信息确定所述对应的发射模式。
- 根据权利要求11所述的方法,其特征在于,所述UE对应的发射模式与所述上一跳UE对应的发射模式不同。
- 根据权利要求8至12中任一项所述的方法,其特征在于,还包括:所述UE确定下一跳UE对应的发射模式,所述下一跳UE对应的发射模式为所述n种发射模式中的一种;向所述下一跳UE发送第三发射模式指示信息,所述第三发射模式指示信息用于指示所述下一跳UE对应的发射模式。
- 根据权利要求13所述的方法,其特征在于,所述UE对应的发射模式与所述下一跳UE对应的发射模式不同。
- 根据权利要求8至14中任一项所述的方法,其特征在于,所述每种发射模式还用于指示发送反馈信息占用的时域资源,所述UE向上一跳UE或基站发送反馈信息占用的时域资源和向下一跳UE发送SCI占用的时域资源相同。
- 一种基站,其特征在于,包括处理器、存储器、总线系统和发送器,所述处理器、所述存储器和所述发送器通过总线系统相连,所述存储器用于存储指令,所述处理器用于执行该存储器存储的指令,使得所述基站执行如权利要求1至7任意一项所述的方法。
- 一种用户设备UE,其特征在于,包括处理器、存储器、总线系统和收发器,所述处理器、所述存储器和所述收发器通过总线系统相连,所述存储器用于存储指令,所述处理器用于执行该存储器存储的指令,使得所述UE执行如权利要求8至15任意一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510697230.2 | 2015-10-23 | ||
CN201510697230.2A CN106612554B (zh) | 2015-10-23 | 2015-10-23 | 分配时域资源的方法、基站和用户设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017067496A1 true WO2017067496A1 (zh) | 2017-04-27 |
Family
ID=58556694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/102831 WO2017067496A1 (zh) | 2015-10-23 | 2016-10-21 | 分配时域资源的方法、基站和用户设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106612554B (zh) |
WO (1) | WO2017067496A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109286980A (zh) * | 2017-07-19 | 2019-01-29 | 普天信息技术有限公司 | 一种业务信道时域位置指示方法、基站和用户设备 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019192003A1 (zh) * | 2018-04-04 | 2019-10-10 | 华为技术有限公司 | 资源分配的方法和装置 |
CN111436150B (zh) * | 2019-01-11 | 2022-04-12 | 中国移动通信有限公司研究院 | 信息传输方法、传输调度方法、终端及网络侧设备 |
WO2020198947A1 (en) * | 2019-03-29 | 2020-10-08 | Lenovo (Beijing) Limited | Apparatus and method of scheduling multi-tti transmissions |
EP4075906A4 (en) * | 2019-12-31 | 2022-12-07 | Huawei Technologies Co., Ltd. | METHOD AND APPARATUS FOR MULTI-HOP TRANSMISSION |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103079262A (zh) * | 2012-12-28 | 2013-05-01 | 浙江大学 | 蜂窝系统中d2d用户的模式选择和资源分配方法 |
CN104410975A (zh) * | 2014-11-06 | 2015-03-11 | 东莞宇龙通信科技有限公司 | 资源配置方法、系统、具有基站功能的设备和终端 |
CN104427631A (zh) * | 2013-09-05 | 2015-03-18 | 上海朗帛通信技术有限公司 | 一种d2d传输方法和装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102638893B (zh) * | 2012-03-31 | 2014-09-10 | 南京邮电大学 | 直通蜂窝系统中基站联合直通终端优化资源分配方法 |
WO2014137160A1 (ko) * | 2013-03-05 | 2014-09-12 | 엘지전자 주식회사 | 슬롯 기반의 d2d 통신 방법 및 장치 |
CN104619008B (zh) * | 2013-11-01 | 2019-04-23 | 中兴通讯股份有限公司 | 设备到设备组播/广播通信处理方法、装置及用户设备 |
CN104812025B (zh) * | 2014-01-28 | 2019-12-31 | 中兴通讯股份有限公司 | 设备间发现及通信方法和系统 |
CN104936294B (zh) * | 2014-03-20 | 2020-05-19 | 中兴通讯股份有限公司 | 一种蜂窝通信和设备到设备通信共存的方法及系统、装置 |
-
2015
- 2015-10-23 CN CN201510697230.2A patent/CN106612554B/zh active Active
-
2016
- 2016-10-21 WO PCT/CN2016/102831 patent/WO2017067496A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103079262A (zh) * | 2012-12-28 | 2013-05-01 | 浙江大学 | 蜂窝系统中d2d用户的模式选择和资源分配方法 |
CN104427631A (zh) * | 2013-09-05 | 2015-03-18 | 上海朗帛通信技术有限公司 | 一种d2d传输方法和装置 |
CN104410975A (zh) * | 2014-11-06 | 2015-03-11 | 东莞宇龙通信科技有限公司 | 资源配置方法、系统、具有基站功能的设备和终端 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109286980A (zh) * | 2017-07-19 | 2019-01-29 | 普天信息技术有限公司 | 一种业务信道时域位置指示方法、基站和用户设备 |
Also Published As
Publication number | Publication date |
---|---|
CN106612554A (zh) | 2017-05-03 |
CN106612554B (zh) | 2020-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7208324B2 (ja) | サービス伝送方法及び装置 | |
US12089202B2 (en) | Method and apparatus for a sidelink transmission | |
JP6472537B2 (ja) | データ伝送方法、ユーザ機器、及び基地局 | |
WO2020047856A1 (zh) | 配置信息的传输方法和终端设备 | |
US10623981B2 (en) | Information transmission method, apparatus, and system | |
WO2017067496A1 (zh) | 分配时域资源的方法、基站和用户设备 | |
WO2016161623A1 (zh) | 发现信号的传输方法、装置以及通信系统 | |
WO2014000514A1 (zh) | 设备间通信方法、用户设备和基站 | |
WO2019157936A1 (zh) | 一种信号传输方法及装置 | |
WO2016134526A1 (zh) | 随机接入方法、用户设备及基站 | |
US20170048906A1 (en) | Operation method of communication node supporting device to device communication in communication network | |
JP2019507968A (ja) | サービス伝送のための方法、移動局及びネットワークデバイス | |
TW201705788A (zh) | 處理用於非執照服務細胞的上鏈路功率控制的裝置及方法 | |
JP6697095B2 (ja) | 通信方法と通信装置 | |
JP2017175348A (ja) | デバイス・ツー・デバイス通信に関するリソーススケジューリングのための装置及び方法 | |
CN111819900A (zh) | 时分双工通信中的所配置的授权 | |
JP2019502278A (ja) | 無線通信の方法、ネットワーク装置及び端末機器 | |
JP7419553B2 (ja) | フィードバックリソース決定方法およびフィードバックリソース決定装置 | |
WO2019213975A1 (zh) | 一种信息传输方法和通信设备以及网络设备 | |
WO2019192004A1 (zh) | 一种数据发送方法、信息发送方法及装置 | |
JP7352647B2 (ja) | リソース割り当て方法ならびにデバイス、記憶媒体および端末 | |
CN109906646B (zh) | 信息传输方法、基站和终端设备 | |
KR20220141795A (ko) | 하이브리드 자동 재전송 요청 응답 코드북의 결정 방법, 장치 및 그 디바이스 | |
CN111277371A (zh) | 数据传输方法及设备 | |
JP2023541109A (ja) | 通信方法及び装置、及び、読み取り可能な記憶媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16856927 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16856927 Country of ref document: EP Kind code of ref document: A1 |