WO2017067355A1 - 激光发射装置、激光接收装置及对战设备 - Google Patents

激光发射装置、激光接收装置及对战设备 Download PDF

Info

Publication number
WO2017067355A1
WO2017067355A1 PCT/CN2016/098974 CN2016098974W WO2017067355A1 WO 2017067355 A1 WO2017067355 A1 WO 2017067355A1 CN 2016098974 W CN2016098974 W CN 2016098974W WO 2017067355 A1 WO2017067355 A1 WO 2017067355A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
wide
reflecting surface
cavity
angle
Prior art date
Application number
PCT/CN2016/098974
Other languages
English (en)
French (fr)
Inventor
赵明
杨勇
鲁四喜
荆彦青
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Publication of WO2017067355A1 publication Critical patent/WO2017067355A1/zh
Priority to US15/844,066 priority Critical patent/US10569183B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • H04B10/672Optical arrangements in the receiver for controlling the input optical signal for controlling the power of the input optical signal

Definitions

  • Embodiments of the present invention relate to the field of optical structures, and in particular, to a laser emitting device, a laser receiving device, and a competition device.
  • the laser modulation carrier emission technology is a technology that utilizes the good directivity and low divergence angle characteristics of the laser for data transmission.
  • Laser modulated carrier transmission technology is widely used in the field of device control. For example, when device A transmits data to device B using a laser, device A modulates the laser according to the data to be transmitted, and transmits the modulated laser to device B through the laser emitting device. After the device B receives the laser light through the laser receiving device, the laser is demodulated to acquire data carried in the laser.
  • a single laser emitting device can only emit laser light in a single direction, and a single laser receiving device can only receive laser light from a single direction.
  • a plurality of laser emitting devices and laser receiving devices need to be disposed on the peripheral side of the device, resulting in higher overall energy consumption of the device.
  • embodiments of the present invention provide a laser emitting device, a laser receiving device, and a competition device.
  • the technical solution is as follows:
  • a laser emitting device comprising: a laser emitting component and a wide-angle reflecting surface assembly, wherein a laser emitting direction of the laser emitting component is the same as a laser incident direction of the wide-angle reflecting surface component;
  • a laser emitting component for emitting laser light to the wide-angle emitting surface assembly in a laser emitting direction
  • a wide-angle reflecting surface assembly for receiving laser light emitted by a laser emitting component in a laser emitting direction, and The laser light is reflected toward at least two laser exit directions.
  • a laser receiving apparatus comprising: a wide-angle reflecting surface assembly and a laser receiving unit, the laser emitting direction of the wide-angle reflecting surface assembly being the same as the laser receiving direction of the laser receiving unit ;
  • a wide-angle reflecting surface assembly for reflecting laser light from at least two laser incident directions to the same laser exit direction
  • a laser receiving component for receiving laser light reflected by the wide-angle reflecting surface component in a laser receiving direction.
  • a battle device includes: a battle device body, a laser emitting device and a laser receiving device disposed on the body of the competition device;
  • the laser emitting device and the laser receiving device are both disposed on the top of the competition device body, or the laser emitting device and the laser receiving device are both disposed at the bottom of the competition device body;
  • a laser emitting device comprising the laser emitting device of the first aspect
  • a laser receiving device comprising the laser receiving device according to the second aspect
  • the laser modulation circuit inside the battle equipment is electrically connected to the laser emitting component, and the laser demodulation circuit inside the battle equipment is electrically connected to the laser receiving component.
  • the laser of a single direction is reflected by the wide-angle reflecting surface component, and is emitted toward a plurality of laser emitting directions, thereby realizing a single laser emitting device simultaneously
  • the laser is emitted in multiple directions, thereby reducing the number of laser emitting devices on the device and reducing the overall power consumption of the device;
  • a wide-angle reflecting surface component with laser reflection capability in the laser receiving direction of the laser receiving component The laser light in the incident direction of the laser is reflected by the wide-angle reflecting surface component, and is projected on the laser receiving component along the same laser emitting direction, so that a single laser receiving device simultaneously receives the laser light incident in multiple directions, thereby reducing the laser receiving device on the device.
  • the number of devices reduces the overall power consumption of the device.
  • FIG. 1 is a schematic structural view of a laser emitting device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a laser receiving apparatus according to an embodiment of the present invention.
  • 3A is a schematic structural view of a laser emitting device according to another embodiment of the present invention.
  • FIG. 3B is a schematic structural diagram of a laser emitting device according to still another embodiment of the present invention.
  • 3C is a schematic structural view of a wide-angle reflecting surface assembly according to still another embodiment of the present invention.
  • 3D is a schematic structural view of a wide-angle reflecting surface assembly according to still another embodiment of the present invention.
  • FIG. 4A is a schematic structural diagram of a laser receiving apparatus according to another embodiment of the present invention.
  • 4B is a schematic structural diagram of a laser receiving apparatus according to still another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a process of transmitting laser light by a laser emitting device and a laser receiving device according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a laser emitting device according to an embodiment of the present invention.
  • the laser emitting device includes a laser emitting assembly 110 and a wide-angle reflecting surface assembly 120.
  • the laser emitting assembly 110 is configured to emit laser light to the wide-angle emitting surface assembly 120 in the laser emitting direction.
  • the laser emitting component 110 is a laser emitting tube or a laser emitting head or the like, and the present invention does not limit the type of the laser emitting component 110.
  • the emitting end 111 of the laser emitting unit 110 emits laser light toward the reflecting surface 121 of the wide-angle emitting surface unit 120 in the laser emitting direction (arrow from bottom to top in FIG. 1).
  • the wide-angle reflecting surface assembly 120 receives the laser light emitted by the laser emitting component 110 in the laser emitting direction and reflects the laser light in at least two laser emitting directions, thereby realizing the effect that the unidirectional laser is simultaneously projected in a plurality of directions.
  • the laser light emitted by the laser emitting unit 110 is projected after the reflecting surface 121 of the wide-angle reflecting surface assembly 120, that is, reflected at the reflecting surface 121.
  • the wide-angle reflecting surface assembly 120 is an inverted cone, and the laser light is reflected by the reflecting surface 121 (ie, the tapered surface of the cone), and is divided into a first laser 131 and a second laser 132, wherein the first laser 131
  • the laser light exiting direction is from right to left, and the second laser light 132 is emitted from left to right.
  • the laser light is reflected by the reflective surface, it will be emitted in various directions along the same plane. This embodiment only enters in the above two directions. The invention is not intended to limit the invention.
  • the present embodiment is only described by taking the wide-angle reflecting surface component 120 as an inverted cone.
  • the wide-angle reflecting surface component 120 may further have at least two planar reflecting surfaces.
  • Component such as two mirrors (having two planar reflecting surfaces) symmetrically disposed at a predetermined angle, a positive triangular pyramid assembly having three planar reflecting surfaces, a positive quadrangular pyramid assembly having four planar reflecting surfaces, and the like, the present invention
  • the embodiment is not limited thereto.
  • the single-direction laser can be projected to multiple directions in the same plane after being reflected by the wide-angle reflecting surface component, that is, only the device needs to be projected.
  • the wide-angle reflecting surface component that is, only the device needs to be projected.
  • the laser in a single direction is reflected by the wide-angle reflecting surface component, and is emitted toward the plurality of lasers.
  • the injection enables a single laser emitting device to simultaneously emit laser light in multiple directions, thereby reducing the number of laser emitting devices on the device and reducing the overall power consumption of the device.
  • the laser receiving device provided with the wide-angle reflecting surface assembly reflects the laser light in all directions on the same plane through the wide-angle reflecting surface assembly, so that the laser beams in different directions are the same.
  • the laser exit direction is projected onto the laser receiving assembly, thereby enabling a single laser receiving device to simultaneously receive laser light in multiple directions.
  • FIG. 2 is a schematic structural diagram of a laser receiving apparatus according to an embodiment of the present invention.
  • the laser receiving device includes a wide-angle reflecting surface assembly 210 and a laser receiving assembly 220.
  • the laser emitting direction of the wide-angle reflecting surface assembly 210 is the same as the laser receiving direction of the laser receiving component 220.
  • the wide-angle reflecting surface assembly 210 is configured to reflect laser light from at least two laser incident directions to the same laser emitting direction.
  • the wide-angle reflecting surface assembly 210 is an inverted cone, and the reflecting surface 211 of the wide-angle reflecting surface assembly 210 is a tapered surface of the cone.
  • the first laser light 231 from the same plane with different laser incident directions (the laser incident direction is from left to right) and the second laser 232 (the laser incident direction is from right to left) are reflected by the reflecting surface 211, and the laser emitting directions are changed. From top to bottom. Similarly, after the laser light in the other laser incident direction on the plane is reflected by the reflecting surface 211, the laser emitting directions are changed from top to bottom.
  • the embodiment only takes the wide-angle reflecting surface component 210 as an inverted cone as an example.
  • the wide-angle reflecting surface assembly 210 may also be other components having at least two planar reflecting surfaces, such as two mirror surfaces (having two planar reflecting surfaces at a predetermined angle and symmetrically disposed).
  • a positive triangular pyramid assembly having three planar reflecting surfaces, a positive quadrangular pyramid assembly having four planar reflecting surfaces, and the like are not limited in this embodiment of the present invention.
  • the laser receiving assembly 220 receives the laser light reflected by the wide-angle reflecting surface assembly 210 in the laser receiving direction (ie, the laser emitting direction of the wide-angle reflecting surface assembly 210).
  • the laser receiving component 220 can be a laser receiving tube or a laser receiving head or the like, and the present invention does not limit the type of the laser receiving component 220.
  • the laser receiving unit 220 receives the laser light having a laser emission direction from top to bottom through the receiving end 221.
  • the laser receiving device provided with the laser receiving device shown in FIG. 2 performs laser receiving
  • the laser light from the same plane of the laser light can be simultaneously received, that is, only one laser receiving device needs to be disposed in the device to achieve simultaneous receiving.
  • the laser in each direction significantly reduces the number of laser receiving components in the device and reduces the overall power consumption of the device.
  • the wide-angle reflecting surface assembly having the laser reflecting capability is disposed in the laser receiving direction of the laser receiving component, so that the laser light along the incident direction of the plurality of lasers is reflected by the wide-angle reflecting surface component.
  • the same laser exit direction is projected on the laser receiving component, so that a single laser receiving device simultaneously receives laser light incident in multiple directions, thereby reducing the number of laser receiving devices on the device and reducing the overall power consumption of the device.
  • the above-mentioned laser emitting device and laser receiving device can be integrated to form a laser transceiver device.
  • the laser receiving component can be fabricated using a transparent material, and the laser emitting component is disposed directly under the laser receiving component, so that the laser emitting component can emit laser light through the upper laser receiving component.
  • the invention is not limited thereto.
  • the wide-angle reflecting surface assembly and the laser receiving component are disposed in the same cavity, and the wide-angle reflecting surface component and the laser emitting component are disposed in the cavity.
  • FIG. 3A is a schematic structural view of a laser emitting device according to another embodiment of the present invention.
  • the laser emitting device includes a cavity 310, a laser emitting assembly 320 disposed inside the cavity 310, and a wide-angle reflecting surface assembly 330.
  • the cavity 310 includes a cavity top surface 311, a cavity bottom surface 312 parallel to the cavity top surface 311, and a bit A cavity side 313 between the cavity top surface 311 and the cavity bottom surface 312.
  • the cavity 310 is a cylindrical structure, and the cylindrical top surface of the cylindrical structure is the cavity top surface 311, and the cylindrical bottom surface of the cylindrical structure is the cavity bottom surface 312 of the cavity 310, and the cylindrical structure
  • the cylindrical surface is the cavity side 313 of the cavity 310.
  • the embodiment is described by taking the cavity 310 as a cylindrical structure as an example. In other possible implementations, the cavity 310 may also adopt other polyhedral column structures, which is not limited by the present invention. .
  • the wide-angle reflecting surface assembly 330 may be a conical structure including a conical bottom surface 331 and a conical surface 332 and the conical surface 332 is a wide-angle reflecting surface.
  • the curved reflecting surface of assembly 330 may be a conical structure including a conical bottom surface 331 and a conical surface 332 and the conical surface 332 is a wide-angle reflecting surface.
  • the conical bottom surface 331 of the wide-angle reflecting surface assembly 330 is fixed to the cavity top surface 311, the fixed end of the laser emitting assembly 320 is connected to the cavity bottom surface 312, and the apex 333 of the conical structure faces the emitting end of the laser emitting assembly 320. 321.
  • the angle between the conical bus bar and the conical bottom surface 331 is 45°, and the laser emitting component 320 emits laser light.
  • the direction (from bottom to top) is parallel to the central axis of the conical structure (dashed line inside the conical structure in Fig. 3A), and the angle between the arcuate reflecting surface (conical surface 332) and the direction of laser emission is 45°.
  • the laser light After the laser light is reflected by the curved reflecting surface, it is divided into a first laser 341 (the laser emitting direction is from right to left) and a second laser 342 (the laser emitting direction is from left to right), wherein the laser of the first laser 341 is emitted.
  • the angle between the direction and the curved reflecting surface is 45°
  • the angle between the laser emitting direction of the second laser 342 and the curved reflecting surface is also 45°.
  • the laser emitting direction is perpendicular to the incident direction of the laser and 45° to the curved reflecting surface, so that the reflected laser light is in the same plane (with the bottom surface of the cone). 331 parallel).
  • a predetermined area of the cavity side 313 of the cavity 310 is made of a light transmissive material, and the predetermined area refers to the reflective surface of the wide-angle reflecting surface assembly 330 on the side 313 of the cavity.
  • the projection area refers to the reflective surface of the wide-angle reflecting surface assembly 330 on the side 313 of the cavity.
  • the projected area of the conical structure at the side 313 of the cavity is made of a light transmissive material.
  • the cavity top surface 311 is made of an opaque material.
  • the reflective surface of the wide-angle reflective surface assembly 330 can be not only a curved reflective surface but also at least two planar reflective surfaces.
  • the wide-angle reflective surface assembly 330 is a regular quadrangular pyramid structure.
  • the square pyramid structure includes a square cone bottom surface 334 and four cone surfaces 335, and the four cone surfaces 335 are planar reflection surfaces.
  • the square cone bottom surface 334 of the wide-angle reflecting surface assembly 330 is fixed to the cavity top surface 311; the fixed end of the laser emitting assembly 320 is fixed to the cavity bottom surface 312, and the apex 336 of the regular square pyramid structure faces the emitting end 321 of the laser emitting assembly 320.
  • the laser light emitted from the laser emitting unit 320 is reflected at the four tapered surfaces 335, the laser light is projected toward the respective laser emitting directions of the four tapered surfaces 335.
  • the angle between each tapered surface 335 and the square cone bottom surface 334 is 45°, and the laser light emitted by the laser emitting component 320 is laser.
  • the emission direction is parallel to the central axis of the regular pyramid structure (ie, the line connecting the center of the square cone bottom surface 334 and the apex 336, indicated by a broken line in the figure), and the angle between each plane reflection surface (the cone surface 335) and the laser emission direction is 45.
  • the laser emitting directions are perpendicular to the incident direction of the laser and 45° to the plane reflecting surface, so that the laser light is emitted in four directions on the same plane.
  • the reflected laser light is emitted in four directions on the same plane, which is easy to be considered.
  • the reflected laser edge is reflected. The n directions on the same plane are emitted.
  • the wide-angle reflector assembly can also adopt a one-half or a quarter-cone structure.
  • the reflected laser beam is emitted at 180°; a quarter-cone is used.
  • the reflected laser light is emitted at 90°.
  • the wide-angle reflecting surface assembly 330 may be a half-cone structure, and the laser light reflected by the curved emitting surface (half-conical surface 332) of the one-half conical structure is only from the left side. Shot in the range of 180°.
  • the wide-angle reflecting surface assembly can perform laser reflection using only at least two planar reflecting surfaces in the positive n-pyramid structure, thereby realizing laser emission in a plurality of specified directions.
  • the wide-angle reflecting surface assembly 330 can reflect laser light using only two adjacent planar reflecting surfaces (tapered surfaces 335) of the regular pyramid structure, that is, the wide-angle reflecting surface assembly 330 projects only in two directions specified. laser.
  • the manufacturer can cover the partially reflective surface of the wide-angle reflector assembly with the opaque material, so that the wide-angle reflector assembly performs laser reflection only through the uncovered reflector surface, thereby achieving directional projection of the laser.
  • the wide-angle reflecting surface component when the wide-angle reflecting surface component is capable of reflecting laser light in multiple directions at the same time, The manner in which the partial reflective surface is covered controls the wide-angle reflecting surface assembly to reflect the laser light in a plurality of specified directions, thereby achieving precise directional projection of the laser.
  • FIG. 4A is a schematic structural view of a laser receiving apparatus according to another embodiment of the present invention.
  • the laser receiving device includes a cavity 410, a wide-angle reflecting surface assembly 420 disposed inside the cavity 410, and a laser receiving assembly 430.
  • the cavity 410 includes a cavity top surface 411, a cavity bottom surface 412 that is parallel to the cavity top surface 411, and a cavity side 413 between the cavity top surface 411 and the cavity bottom surface 412.
  • the cavity 410 may be a cylindrical structure, and the cylindrical top surface of the cylindrical structure is the cavity top surface 411, and the cylindrical bottom surface of the cylindrical structure is the cavity bottom surface 412 of the cavity 410, the cylinder
  • the cylindrical surface of the structure is the cavity side 413 of the cavity 410.
  • the wide-angle reflecting surface assembly 420 may be a conical structure including a conical bottom surface 421 and a conical surface 422.
  • the conical bottom surface 421 of the wide-angle reflecting surface assembly 420 is fixed to the cavity top surface 411, the fixed end of the laser receiving assembly 430 is fixed to the cavity bottom surface 412, and the apex 423 of the conical structure faces the receiving end 431 of the laser receiving assembly 430.
  • the conical surface 422 is the arcuate reflecting surface of the wide-angle reflecting surface assembly 420, and the angle between the conical bus bar and the conical bottom surface 421 is 45°.
  • the angle between the curved reflecting surface (the conical surface 422) and the incident direction of the laser is 45°, and between the laser reflecting the arc reflecting surface and the curved reflecting surface The angle is also 45°;
  • first laser 441 (the laser incident direction is left to right) and a second laser 442 (the laser incident direction is right to left) incident in the opposite direction of the same plane (horizontal plane), the first laser 441 and The second laser light 442 is reflected at the conical surface 422, the projection direction of the first laser light 441 is changed from left to right to top to bottom, and the projection direction of the second laser light 442 is changed from right to left to top to bottom.
  • the projection direction of the laser light is changed from top to bottom, that is, the laser light of each laser incident direction on the same plane is projected to the laser receiving component along the same laser emission direction.
  • the reflecting surface of the wide-angle reflecting surface assembly 420 may be not only a curved reflecting surface but also at least two planar reflecting surfaces. As shown in FIG. 4B, the wide-angle reflecting surface assembly 420 is a square pyramid structure, and the square pyramid surface includes a square cone bottom surface 424. And four tapered surfaces 425, and the four tapered surfaces 425 are plane reflecting surfaces.
  • the square cone bottom surface 424 of the wide-angle reflecting surface assembly 420 is fixed to the cavity top surface 411; the fixed end of the laser receiving assembly 430 is fixed to the cavity bottom surface 412, and the vertex 426 of the regular square pyramid structure faces the laser The receiving side 431 of the receiving component 430.
  • the wide-angle reflecting surface assembly 420 receives the laser light from four directions on the same plane, that is, reflects the laser light through the four tapered surfaces 425.
  • the laser light incident on the four tapered surfaces 425 is reflected and projected onto the laser receiving unit 430 in the same laser emission direction.
  • the angle between each tapered surface 425 and the square tapered bottom surface 424 is 45°.
  • the angle between the first laser 441 (from left to right) and the (left) cone 425 on the horizontal plane is 45°, and after being reflected by the (left) cone 425, the projection direction becomes from top to bottom; the same horizontal plane
  • the angle between the upper second laser 442 (from right to left) and the (right) tapered surface 425 is also 45°, and after being reflected by the (right) tapered surface 425, the projection direction also becomes top to bottom.
  • the laser emission direction is parallel to the central axis of the regular quadrangular pyramid structure (the connecting line between the center of the square cone bottom surface 424 and the apex 426, indicated by a broken line in the figure).
  • the four directions of the laser light are reflected by the four tapered surfaces 425, and the projection direction of the laser light of different directions in the same plane is deflected downward by 90°, and is projected at the receiving of the laser receiving component 430 along the direction of the central axis of the positive quadrangular pyramid structure. 431 is measured to achieve the effect of simultaneously receiving the multi-directional laser.
  • a predetermined region of the cavity side surface 413 of the cavity 410 is made of a light transmissive material, which is the reflective surface of the wide-angle reflecting surface assembly 420.
  • the cavity top surface 411 is made of an opaque material.
  • the laser receiving device can receive laser light incident in all directions on the same plane at 360°.
  • the wide-angle reflector assembly can also adopt a one-half or a quarter-cone structure.
  • the laser receiving device can receive the one-half cone structure corresponding to the 180° direction.
  • the laser beam is injected; when the quarter-cone structure is used, the laser receiving device can receive the laser that is incident in the direction of 90° in the quarter-cone structure.
  • the laser receiving device can receive the laser light incident in n directions.
  • the wide-angle reflecting surface component can reflect the laser light using only at least two planes in the positive n-pyramid structure, thereby realizing receiving laser light in a specified direction, which is not limited in the present invention.
  • the manufacturer may cover the partially reflective surface of the wide-angle reflector assembly with an opaque material such that the laser is only reflected by the uncovered reflective surface and projected onto the laser receiving assembly. Thereby directional reception of the laser is achieved.
  • the specified reflecting surface in the wide-angle reflecting surface assembly is controlled to perform laser emission by covering a part of the reflecting surface, thereby realizing precise directional reception of the laser.
  • the laser emitting device and the laser receiving device provided by the above various embodiments may be applied to a competition device, that is, the laser emitting device and the laser receiving device provided by the above embodiments are simultaneously disposed on the competition device.
  • the simulated attack can be launched by the laser between the combat devices (for example, by launching the projectile by laser simulation and causing damage to other combat devices), thereby simulating the effect of the actual battle between the combat devices.
  • the battle equipment can be an intelligent battle toy car or a smart battle toy aircraft and the like.
  • FIG. 5 shows a schematic diagram of a laser emitting device and a laser receiving device for transmitting a laser process according to an embodiment of the present invention.
  • the laser emitting device 510 is disposed on the first competition device, the laser receiving device 520 is disposed on the second competition device, and the laser emitting device 510 and the laser receiving device 520 are at the same level.
  • the first battle device emits laser light 512 (vertically upward) to the wide-angle reflecting surface assembly 513 through the laser emitting unit 511, and the laser light 512 is emitted in the horizontal direction after being reflected by the reflecting surface 513.
  • the laser 512 is projected on the reflecting surface 521 of the wide-angle reflecting surface assembly 521 in the laser receiving device 520. After the reflecting surface 521 is reflected, it is vertically projected downward to the laser receiving component 522, and the second combat device receives the first combat device to transmit. Laser 512.
  • the laser emitting device 510 and the laser receiving device 520 can be disposed at the top of the competition device body at the same time, or can be simultaneously disposed at the bottom of the competition device body, and the present invention does not limit the setting to the position.
  • the competition device equipped with the above-mentioned laser emitting device and laser receiving device can transmit laser light to other combat devices in various directions through the laser emitting device, and can receive laser light transmitted from other combat devices in various directions through the laser receiving device.
  • the laser modulation circuit in the competition device also needs to be electrically connected to the laser emitting component in the laser emitting device.
  • the battle equipment pre-modulates the laser through the laser modulation circuit, and then transmits the modulated laser light through the above-mentioned laser emitting device; correspondingly, the laser demodulation circuit in the competition device also needs to be electrically connected with the laser receiving component in the laser receiving device.
  • the data carried by the laser is demodulated by the laser demodulation circuit, thereby realizing the data transmission between the combat devices. among them,
  • the data carried in the laser includes the type of attack, the value of the damage, and the identity of the attacker.
  • the laser emitting device and the laser receiving device can significantly reduce the power consumption of the combat device.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种激光发射装置、激光接收装置及对战设备,属于光学结构领域。所述激光发射装置包括:激光发射组件(110)和广角反射面组件(120),激光发射组件(110)的激光发射方向与广角反射面组件(120)的激光入射方向相同;激光发射组件(110),用于沿激光发射方向向广角反射面组件(120)发射激光;广角反射面组件(120),用于接收激光发射组件(110)沿激光发射方向发射的所述激光,并向至少两个激光出射方向反射激光。设备上设置单个激光接收装置即可同时接收到来自多个方向的激光,设置单个激光发射装置即可同时向多个方向发射激光,从而减少设备中激光接收装置和激光发射装置的数量,降低设备整体能耗的效果。

Description

激光发射装置、激光接收装置及对战设备
本申请要求于2015年10月19日提交中国专利局、申请号为201510681286.9、发明名称为“激光发射装置、激光接收装置及对战设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及光学结构领域,特别涉及一种激光发射装置、激光接收装置及对战设备。
背景技术
激光调制载波发射技术是一种利用激光良好的方向性和低发散角特性,进行数据传输的技术。
激光调制载波发射技术被广泛使用在设备控制领域。比如,设备A使用激光向设备B传输数据时,设备A根据需要传输的数据对激光进行调制,并通过激光发射装置向设备B发射调制后的激光。设备B通过激光接收装置接收到该激光后,对激光进行解调,即可获取该激光中携带的数据。
由于激光的方向性较好且光束较窄,导致单个激光发射装置仅能够向单一方向发射激光,且单个激光接收装置仅能够接收来自单一方向的激光。为了使设备能够同时向多个方向发射激光,且能够同时接收来自多个方向的激光,设备周侧需要设置多个激光发射装置和激光接收装置,导致设备整体能耗较高。
发明内容
为了解决上述技术中存在的问题,本发明实施例提供了一种激光发射装置、激光接收装置及对战设备。所述技术方案如下:
根据本发明实施例的第一方面,提供一种激光发射装置,所述装置包括:激光发射组件和广角反射面组件,激光发射组件的激光发射方向与广角反射面组件的激光入射方向相同;
激光发射组件,用于沿激光发射方向向广角发射面组件发射激光;
广角反射面组件,用于接收激光发射组件沿激光发射方向发射的激光,并 向至少两个激光出射方向反射激光。
根据本发明实施例的第二方面,提供一种激光接收装置,该激光接收装置包括:广角反射面组件和激光接收组件,该广角反射面组件的激光出射方向与激光接收组件的激光接收方向相同;
广角反射面组件,用于将来自至少两个激光入射方向的激光反射至同一激光出射方向;
激光接收组件,用于沿激光接收方向接收广角反射面组件反射的激光。
根据本发明实施例的第三方面,提供一种对战设备,该对战设备包括:对战设备本体、设置在对战设备本体上的激光发射装置和激光接收装置;
激光发射装置和激光接收装置均设置在对战设备本体的顶部,或,激光发射装置和激光接收装置均设置在对战设备本体的底部;
激光发射装置包括如第一方面所述的激光发射装置;
激光接收装置包括如第二方面所述的激光接收装置;
对战设备内部的激光调制电路与激光发射组件电性相连,对战设备内部的激光解调电路与激光接收组件电性相连。
本发明实施例提供的技术方案带来的有益效果是:
通过在激光发射组件的激光发射方向上设置具有激光反射能力的广角反射面组件,使得单一方向的激光经过广角反射面组件反射后,向多个激光出射方向射出,实现了单个激光发射装置同时向多个方向发射激光,从而减少了设备上激光发射装置的数量,降低了设备的整体功耗;通过在激光接收组件的激光接收方向上设置具有激光反射能力的广角反射面组件,使得沿多个激光入射方向的激光经过广角反射面组件反射后,均沿着同一激光出射方向投射在激光接收组件上,实现了单个激光接收装置同时接收多个方向入射的激光,从而减少了设备上激光接收装置的数量,降低了设备的整体功耗。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例提供的激光发射装置的结构示意图;
图2是本发明一个实施例提供的激光接收装置的结构示意图;
图3A是本发明另一个实施例提供的激光发射装置的结构示意图;
图3B是本发明再一个实施例提供的激光发射装置的结构示意图;
图3C是本发明再一个实施例提供的广角反射面组件的结构示意图;
图3D是本发明再一个实施例提供的广角反射面组件的结构示意图;
图4A是本发明另一个实施例提供的激光接收装置的结构示意图;
图4B是本发明再一个实施例提供的激光接收装置的结构示意图;
图5是本发明一个实施例提供的激光发射装置与激光接收装置传输激光过程的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1示出了本发明一个实施例提供的激光发射装置的结构示意图。该激光发射装置包括激光发射组件110和广角反射面组件120。
其中,激光发射组件110用于沿激光发射方向向广角发射面组件120发射激光。
可选的,该激光发射组件110为激光发射管或激光发射头等等,本发明并不对激光发射组件110的类型进行限定。
如图1所示,激光发射组件110的发射端111沿激光发射方向(图1中从下至上的箭头)向广角发射面组件120的反射面121发射激光。
相应的,广角反射面组件120接收激光发射组件110沿激光发射方向发射的激光,并向至少两个激光出射方向反射该激光,从而实现单向激光同时向多个方向进行投射的效果。
如图1所示,激光发射组件110发射的激光投射在广角反射面组件120的反射面121后,即在反射面121处发生反射。图1中,该广角反射面组件120为倒置的圆锥体,激光经过反射面121(即圆锥体的锥面)反射后,分为了第一激光131和第二激光132,其中,第一激光131的激光出射方向为从右至左,而第二激光132的激光出射方向为从左至右。需要说明的是,该激光在经过反射面反射后,会沿着同一平面的各个方向出射,本实施例仅以上述两个方向进 行示意性说明,并不对本发明构成限定。
需要说明的是,本实施例仅以广角反射面组件120为倒置的圆锥体为例进行说明,在其他可能的实施方式中,该广角反射面组件120还可以为其他具有至少两个平面反射面的组件,比如呈预定夹角且对称设置的两个镜面(具有两个平面反射面)、具有三个平面反射面的正三棱锥组件、具有四个平面反射面的正四棱锥组件等等,本发明实施例并不对此构成限定。
显而易见的,设置有图1所示的激光发射装置的设备进行激光发射时,单方向的激光经过广角反射面组件反射后,可以同时向同一平面内的多个方向进行投射,即设备中仅需要设置一个激光发射组件就能实现同时向多方向发射激光,显著减少设备中激光发射组件的数量,降低设备的整体功耗。
综上所述,本实施例中,通过在激光发射组件的激光发射方向上设置具有激光反射能力的广角反射面组件,使得单一方向的激光经过广角反射面组件反射后,向多个激光出射方向射出,实现了单个激光发射装置同时向多个方向发射激光,从而减少了设备上激光发射装置的数量,降低了设备的整体功耗。
与上述激光发射装置同时向多方向发射激光的原理相反,设置有广角反射面组件的激光接收装置通过该广角反射面组件对同一平面上各个方向的激光进行反射,使得不同方向的激光均以相同的激光出射方向投射在激光接收组件上,从而实现单个激光接收装置同时接收多个方向的激光。
图2示出了本发明一个实施例提供的激光接收装置的结构示意图。该激光接收装置包括广角反射面组件210和激光接收组件220。其中,广角反射面组件210的激光出射方向与激光接收组件220的激光接收方向相同。
其中,广角反射面组件210用于将来自至少两个激光入射方向的激光反射至同一激光出射方向。
如图2所示,广角反射面组件210为倒置的圆锥体,且广角反射面组件210的反射面211位圆锥体的锥面。来自同一平面不同激光入射方向的第一激光231(激光入射方向为从左至右)和第二激光232(激光入射方向为从右至左)经过反射面211反射后,激光出射方向均变为了从上至下。相似的,该平面上其他激光入射方向上的激光经过反射面211反射后,激光出射方向均变为从上至下。
需要说明的是,本实施例仅以广角反射面组件210为倒置的圆锥体为例进 行说明,在其他可能的实施方式中,该广角反射面组件210还可以为其他具有至少两个平面反射面的组件,比如呈预定夹角且对称设置的两个镜面(具有两个平面反射面)、具有三个平面反射面的正三棱锥组件、具有四个平面反射面的正四棱锥组件等等,本发明实施例并不对此构成限定。
相应的,激光接收组件220沿激光接收方向(即广角反射面组件210的激光出射方向)接收广角反射面组件210反射的激光。
其中,该激光接收组件220可以为激光接收管或激光接收头等等,本发明并不对激光接收组件220的类型进行限定。
如图2所示,激光接收组件220通过接收端221接收激光出射方向为从上至下的激光。
显而易见的,设置有图2所示的激光接收装置的设备进行激光接收时,可以同时接收到来自同一平面各个激光入射方向的激光,即设备中仅需要设置一个激光接收装置就能实现同时接收多个方向的激光,显著减少设备中激光接收组件的数量,降低设备的整体功耗。
综上所述,本实施例中,通过在激光接收组件的激光接收方向上设置具有激光反射能力的广角反射面组件,使得沿多个激光入射方向的激光经过广角反射面组件反射后,均沿着同一激光出射方向投射在激光接收组件上,实现了单个激光接收装置同时接收多个方向入射的激光,从而减少了设备上激光接收装置的数量,降低了设备的整体功耗。
需要说明的是,上述激光发射装置和激光接收装置可以进行整合,形成激光收发装置。可选的,对这两个装置进行整合时,可以使用透明材质制作激光接收组件,并将激光发射组件设置在激光接收组件正下方,使得激光发射组件能够透过上方的激光接收组件发射激光,本发明并不对此进行限定。
为了方便将上述实施例提供的激光发射装置和激光接收装置安装到设备上,广角反射面组件和激光接收组件设置在同一腔体中,广角反射面组件和激光发射组件均设置在该腔体中,下面采用示意性实施例进行说明。
图3A示出了本发明另一实施例提供的激光发射装置的结构示意图。该激光发射装置包括腔体310,设置在腔体310内部的激光发射组件320和广角反射面组件330。
腔体310包括腔体顶面311、与腔体顶面311平行的腔体底面312以及位 于腔体顶面311和腔体底面312之间的腔体侧面313。
如图3A所示,该腔体310为圆柱体结构,圆柱体结构的圆柱顶面即为腔体顶面311,圆柱体结构的圆柱底面即为腔体310的腔体底面312,圆柱体结构的圆柱面即为腔体310的腔体侧面313。需要说明的是,本实施例仅以该腔体310为圆柱体结构为例进行说明,在其他可能的实施方式中,该腔体310也可以采用其他多面体立柱结构,本发明并不对此进行限定。
若广角反射面组件330的反射面为弧形反射面,如图3A所示,广角反射面组件330可以为圆锥结构,该圆锥结构包括圆锥底面331和圆锥面332且圆锥面332为广角反射面组件330的弧形反射面。
图3A中,广角反射面组件330的圆锥底面331与腔体顶面311固定,激光发射组件320的固定端与腔体底面312相连,且圆锥结构的顶点333正对激光发射组件320的发射端321。
为了使经过广角反射面组件330反射的激光沿同一平面不同方向出射,图3A所示的圆锥结构中,圆锥母线与圆锥底面331之间的夹角为45°,且激光发射组件320的激光发射方向(从下至上)与圆锥结构的中心轴(图3A中圆锥结构内部的虚线)平行,弧形反射面(圆锥面332)与激光发射方向之间的夹角为45°。激光经过弧形反射面反射后,分为了第一激光341(激光出射方向为从右至左)和第二激光342(激光出射方向为从左至右),其中,第一激光341的激光出射方向与弧形反射面之间的夹角为45°,第二激光342的激光出射方向与弧形反射面之间的夹角也为45°。类似的,激光发射组件320发射的激光在弧形反射面反射后,激光出射方向均与激光入射方向垂直,且与弧形反射面呈45°,使得反射后的激光处于同一平面(与圆锥底面331平行)。
为了使反射后的激光能够透过腔体310投射出去,腔体310的腔体侧面313的预定区域采用透光材料制成,该预定区域指广角反射面组件330的反射面在腔体侧面313的投影区域。
如图3A所示,圆锥结构的高在腔体侧面313的投影区域即采用透光材料制成。同时,为了避免其他激光的干扰,腔体顶面311采用不透光材料制成。
在其他可能的实施方式中,广角反射面组件330的反射面不仅可以为弧形反射面还可以为至少两个平面反射面,如图3B所示,广角反射面组件330为正四棱锥结构,该正四棱锥结构包括正方形锥底面334和四个锥面335,且四个锥面335均为平面反射面。
广角反射面组件330的正方形锥底面334与腔体顶面311固定;激光发射组件320的固定端与腔体底面312固定,且正四棱锥结构的顶点336正对激光发射组件320的发射端321。
激光发射组件320发射的激光在四个锥面335处发生反射后,向四个锥面335各自对应的激光出射方向进行投射。为了使经过反射的激光的处于同一平面上,如图3B所示,正四棱锥结构中,各个锥面335与正方形锥底面334的夹角均为45°,且激光发射组件320发射的激光的激光发射方向与正四棱锥结构的中心轴(即正方形锥底面334中心与顶点336的连接线,图中虚线表示)平行,各个平面反射面(锥面335)与激光发射方向之间的夹角为45°。激光发射组件320发射的激光经过四个平面反射面反射后,激光出射方向均与激光入射方向垂直,且与平面反射面呈45°,使得激光沿同一平面上四个方向射出。
显而易见的,当采用正四棱锥结构作为激光发射组件时,反射后的激光沿同一平面上的四个方向射出,易于思及的,当采用正n棱锥结构作为激光发射组件时,反射后的激光沿同一平面上的n个方向射出。
采用图3A示出的广角反射面组件对激光进行反射时,反射后的激光呈360°射出。在实际实施过程中,该广角反射面组件还可以采用二分之一或四分之一圆锥结构,采用二分之一圆锥结构时,反射后的激光呈180°射出;采用四分之一圆锥结构时,反射后的激光即呈90°射出。如图3C所示,该广角反射面组件330可以为二分之一圆锥结构,经过该二分之一圆锥结构的弧形发射面(二分之一圆锥面332)反射的激光仅从左侧180°范围内射出。
类似的,采用正n棱锥结构作为广角反射面组件时,反射后的激光沿n个方向射出。在实际实施过程中,该广角反射面组件可以仅使用正n棱锥结构中的至少两个平面反射面进行激光的反射,从而实现向多个指定方向发射激光。如图3D所示,该广角反射面组件330可以仅使用正四棱锥结构中相邻的两个平面反射面(锥面335)反射激光,即该广角反射面组件330仅向指定的两个方向投射激光。
可选的,制造人员可以使用不透光材料对广角反射面组件的部分反射面进行遮盖,使得广角反射面组件仅通过未遮盖的反射面进行激光反射,从而实现激光的定向投射。
本实施例中,当广角反射面组件能够同时向多个方向反射激光时,通过遮 盖部分反射面的方式控制广角反射面组件向指定的多个方向反射激光,从而实现了激光的精准定向投射。
如图4A所示,其示出了本发明另一实施例提供的激光接收装置的结构示意图。该激光接收装置包括腔体410、设置在腔体410内部的广角反射面组件420和激光接收组件430。
腔体410包括腔体顶面411、与腔体顶面411平行的腔体底面412以及位于腔体顶面411和腔体底面412之间的腔体侧面413。
如图4A所示,该腔体410可以为圆柱体结构,圆柱体结构的圆柱顶面即为腔体顶面411,圆柱体结构的圆柱底面即为腔体410的腔体底面412,圆柱体结构的圆柱面即为腔体410的腔体侧面413。
若广角反射面组件420的反射面为弧形反射面,如图4A所示,广角反射面组件420可以为圆锥结构,该圆锥结构包括圆锥底面421和圆锥面422。广角反射面组件420的圆锥底面421与腔体顶面411固定,激光接收组件430的固定端与腔体底面412固定,且圆锥结构的顶点423正对激光接收组件430的接收端431。
图4A中,圆锥面422即为广角反射面组件420的弧形反射面,且圆锥母线与圆锥底面421之间的夹角为45°。当水平面上不同方向的激光入射时,弧形反射面(圆锥面422)与激光入射方向之间的夹角为45°,且经过弧形反射面反射的激光的与弧形反射面之间的夹角也为45°;
图4中包含沿着同一平面(水平面)相反方向入射的第一激光441(激光入射方向为从左至右)和第二激光442(激光入射方向为从右至左),第一激光441和第二激光442在圆锥面422处发生反射,第一激光441的投射方向由从左至右改变为从上至下,第二激光442的投射方向由从右至左改变为从上至下。相似的,该平面上其它方向的激光投射在圆锥面422后,激光的投射方向均改变为从上至下,即同一平面上各个激光入射方向的激光均沿同一激光出射方向投射到激光接收组件430上。
广角反射面组件420的反射面不仅可以为弧形反射面还可以为至少两个平面反射面,如图4B所示,广角反射面组件420为正四棱锥结构,该正四棱锥结构包括正方形锥底面424和四个锥面425,且四个锥面425均为平面反射面。
广角反射面组件420的正方形锥底面424与腔体顶面411固定;激光接收组件430的固定端与腔体底面412固定,且正四棱锥结构的顶点426正对激光 接收组件430的接收侧431。
广角反射面组件420接收到来自同一平面上四个方向的激光后,即通过四个锥面425对激光进行反射。
投向四个锥面425的激光经过反射后,沿同一激光出射方向投射到激光接收组件430上。如图4B所示,正四棱锥结构中,各个锥面425与正方形锥底面424的夹角均为45°。水平面上的第一激光441(从左至右)与(左)锥面425之间的夹角为45°,经过(左)锥面425反射后,投射方向变为了从上至下;同一水平面上的第二激光442(从右至左)与(右)锥面425之间的夹角也为45°,经过(右)锥面425反射后,投射方向也变为了从上至下。类似的,同一平面上其他方向的激光经过相应锥面425反射后,激光出射方向均与正四棱锥结构的中心轴(正方形锥底面424中心与顶点426的连接线,图中虚线表示)平行。显而易见的,经过四个锥面425对四个方向的激光进行反射,同一平面不同方向的激光的投射方向向下偏转90°,沿着正四棱锥结构中心轴的方向投射在激光接收组件430的接收测431,从而达到同时接收多方向激光的效果。
与激光发射装置相似的,为了使外界的激光能够透过腔体410,腔体410的腔体侧面413的预定区域采用透光材料制成,该预定区域指广角反射面组件420的反射面在腔体侧面413的投影区域。同时,为了避免其他激光的干扰,腔体顶面411采用不透光材料制成。
采用图4A示出的广角反射面组件,激光接收装置能够360°接收同一平面上各个方向射入的激光。在实际实施过程中,该广角反射面组件还可以采用二分之一或四分之一圆锥结构,采用二分之一圆锥结构时,激光接收装置能够接收二分之一圆锥结构对应180°方向射入的激光;采用四分之一圆锥结构时,激光接收装置能够接收四分之一圆锥结构对应90°方向射入的激光。
类似的,采用正n棱锥结构作为广角反射面组件时,激光接收装置能够接收n个方向射入的激光。在实际实施过程中该广角反射面组件可以仅使用正n棱锥结构中的至少两个平面对激光进行反射,从而实现接收指定方向的激光,本发明并不对此进行限定。
可选的,制造人员可以使用不透光材料对广角反射面组件的部分反射面进行遮盖,使得激光仅通过未遮盖的反射面进行反射,并投射到激光接收组件, 从而实现激光的定向接收。
本实施例中,当广角反射面组件能够同时向多个方向反射激光时,通过遮盖部分反射面的方式控制广角反射面组件中的指定反射面进行激光发射,从而实现了激光的精准定向接收。
在一个可能的实现场景中,上述各个实施例提供的激光发射装置和激光接收装置可以应用到对战设备中,即对战设备上同时设置有上述实施例提供的激光发射装置和激光接收装置。利用该激光发射装置和激光接收装置,对战设备之间即可通过激光发动模拟攻击(比如通过激光模拟发射炮弹并对其他对战设备造成伤害),从而模拟出对战设备之间真实对战的效果。其中,该对战设备可以为智能对战玩具车或智能对战玩具飞机等等。
如图5所示,其示出了本发明一个实施例提供的激光发射装置与激光接收装置传输激光过程的示意图。
激光发射装置510设置在第一对战设备上,激光接收装置520设置在第二对战设备上,且激光发射装置510和激光接收装置520位于同一水平高度。第一对战设备通过激光发射组件511向广角反射面组件513发射激光512(竖直向上),该激光512在反射面513发生反射后,沿着水平方向射出。激光512投射在激光接收装置520中广角反射面组件521的反射面521,在该反射面521发生反射后,竖直向下投射在激光接收组件522,第二对战设备即接收第一对战设备发送的激光512。
作为一种可能的实现方式,激光发射装置510和激光接收装置520可以同时设置在对战设备本体顶部,也可以同时设置在对战设备本体底部,本发明并不对其设置为位置进行限定。安装有上述激光发射装置和激光接收装置的对战设备可以通过激光发射装置向各个方向的其他对战设备发送激光,并可以通过激光接收装置接收各个方向的其他对战设备发送的激光。
当对战设备需要通过激光传输数据时,对战设备中的激光调制电路还需要与激光发射装置中的激光发射组件电性相连。对战设备预先通过激光调制电路对激光进行调制,再通过上述激光发射装置对经过调制的激光进行发射;相应的,对战设备中的激光解调电路还需要与激光接收装置中的激光接收组件电性相连,当通过激光接收组件接收到其它对战设备发射的激光时,通过激光解调电路将激光携带的数据解调出来,从而实现对战设备之间数据的传输。其中, 激光中携带的数据包括攻击类型、伤害数值和发动攻击方标识等等。
显而易见的,对战设备上仅需要设置一个激光接收装置即可接收到各个方向上对战设备发送的激光,仅需要设置一个激光发射装置即可向各个方向的对战设备发送激光,相较于在对战设备本体周测设置多个激光接收管和激光发射管,采用本发明实施例提供的激光发射装置和激光接收装置能够显著降低对战设备的功耗。

Claims (11)

  1. 一种激光发射装置,其特征在于,所述装置包括:激光发射组件和广角反射面组件,所述激光发射组件的激光发射方向与所述广角反射面组件的激光入射方向相同;
    所述激光发射组件,用于沿所述激光发射方向向所述广角发射面组件发射激光;
    所述广角反射面组件,用于接收所述激光发射组件沿所述激光发射方向发射的所述激光,并向至少两个激光出射方向反射所述激光。
  2. 根据权利要求1所述的激光发射装置,其特征在于,所述广角反射面组件的反射面为弧形反射面或至少两个平面反射面;
    所述弧形反射面与所述激光发射方向之间的夹角为45°;所述弧形反射面与所述激光出射方向之间的夹角为45°;
    各个所述平面反射面与所述激光发射方向之间的夹角为45°;各个所述平面反射面与所述激光出射方向之间的夹角为45°。
  3. 根据权利要求1或2所述的激光发射装置,其特征在于,
    所述广角反射面组件为正n棱锥结构,n≥3,n为整数;所述正n棱锥结构包括正n边形锥底面和n个锥面;所述n个锥面构成n个平面反射面,所述n个平面反射面用于向n个所述激光出射方向反射来自所述激光入射方向的所述激光,所述激光入射方向与所述正n棱锥结构的中心轴平行;
    或,
    所述广角反射面组件为圆锥结构;所述圆锥结构包括圆锥底面和圆锥面;所述圆锥面构成弧形反射面,所述弧形反射面用于向同一平面上各个激光出射方向反射来自所述激光入射方向的所述激光,所述激光入射方向与所述圆锥结构的中心轴平行。
  4. 根据权利要求3所述的激光发射装置,其特征在于,所述广角反射面组件和所述激光发射组件设置在同一腔体内,所述腔体包括腔体顶面、与所述腔体顶面平行的腔体底面以及位于所述腔体顶面和所述腔体底面之间的腔体侧 面;
    若所述广角反射面组件为所述正n棱锥结构,所述广角反射面组件的所述正n边形锥底面与所述腔体顶面固定;所述激光发射组件的固定端与所述腔体底面固定;所述正n棱锥结构的顶点正对所述激光发射组件的发射端;
    若所述广角反射面组件为所述圆锥结构,所述广角反射面组件的所述圆锥底面与所述腔体顶面固定;所述激光发射组件的固定端与所述腔体底面固定;所述圆锥结构的顶点正对所述激光发射组件的发射端。
  5. 根据权利要求4所述的激光发射装置,其特征在于,
    所述腔体侧面的预定区域采用透光材料制成,所述预定区域指所述广角反射面组件的反射面在所述腔体侧面的投影区域;
    所述腔体顶面采用不透光材料制成。
  6. 一种激光接收装置,其特征在于,所述装置包括:广角反射面组件和激光接收组件,所述广角反射面组件的激光出射方向与所述激光接收组件的激光接收方向相同;
    所述广角反射面组件,用于将来自至少两个激光入射方向的激光反射至同一所述激光出射方向;
    所述激光接收组件,用于沿所述激光接收方向接收所述广角反射面组件反射的所述激光。
  7. 根据权利要求6所述的激光接收装置,其特征在于,所述广角反射面组件的反射面为弧形反射面或至少两个平面反射面;
    所述弧形反射面与所述激光入射方向之间的夹角为45°;所述弧形反射面与所述激光出射方向之间的夹角为45°;
    各个所述平面反射面与所述激光入射方向之间的夹角为45°;各个所述平面反射面与所述激光出射方向之间的夹角为45°。
  8. 根据权利要求6或7所述的激光接收装置,其特征在于,
    所述广角反射面组件为正n棱锥结构,n≥3,n为整数;所述正n棱锥结构包括正n边形锥底面和n个锥面;所述n个锥面构成n个平面反射面,所述n 个平面反射面用于将从n个所述激光入射方向入射的所述激光反射至同一所述激光出射方向,所述激光出射方向与所述正n棱锥结构的中心轴平行;
    或,
    所述广角反射面组件为圆锥结构;所述圆锥结构包括圆锥底面和圆锥面;所述圆锥面构成所述弧形反射面,所述弧形反射面用于将从同一平面上各个激光入射方向入射的所述激光反射至同一所述激光出射方向,所述激光出射方向与所述圆锥结构的中心轴平行。
  9. 根据权利要求8所述的激光接收装置,其特征在于,所述广角反射面组件和所述激光接收组件设置在同一腔体内,所述腔体包括腔体顶面、与所述腔体顶面平行的腔体底面以及位于所述腔体顶面和所述腔体底面之间的腔体侧面;
    若所述广角反射面组件为所述正n棱锥结构,所述广角反射面组件的所述正n边形锥底面与所述腔体顶面固定;所述激光接收组件的固定端与所述腔体底面固定;所述正n棱锥结构的顶点正对所述激光接收组件的接收端;
    若所述广角反射面组件为所述圆锥结构,所述广角反射面组件的所述圆锥底面与所述腔体顶面固定;所述激光接收组件的固定端与所述腔体底面固定;所述圆锥结构的顶点正对所述激光接收组件的接收端。
  10. 根据权利要求9所述的激光接收装置,其特征在于,
    所述腔体侧面的预定区域采用透光材料制成,所述预定区域指所述广角反射面组件的反射面在所述腔体侧面的投影区域;
    所述腔体顶面采用不透光材料制成。
  11. 一种对战设备,其特征在于,所述对战设备包括:对战设备本体、设置在所述对战设备本体上的激光发射装置和激光接收装置;
    所述激光发射装置和所述激光接收装置均设置在所述对战设备本体的顶部,或,所述激光发射装置和所述激光接收装置均设置在所述对战设备本体的底部;
    所述激光发射装置包括如权利要求1至5任一所述的激光发射装置;
    所述激光接收装置包括如权利要求6至10任一所述的激光接收装置;
    所述对战设备内部的激光调制电路与所述激光发射组件电性相连,所述对战设备内部的激光解调电路与所述激光接收组件电性相连。
PCT/CN2016/098974 2015-10-19 2016-09-14 激光发射装置、激光接收装置及对战设备 WO2017067355A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/844,066 US10569183B2 (en) 2015-10-19 2017-12-15 Information processing system, method, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510681286.9A CN105391495A (zh) 2015-10-19 2015-10-19 激光发射装置、激光接收装置及对战设备
CN201510681286.9 2015-10-19

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098973 Continuation WO2017067354A1 (zh) 2015-10-19 2016-09-14 激光接收结构、对战设备外壳及对战设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/844,066 Continuation US10569183B2 (en) 2015-10-19 2017-12-15 Information processing system, method, and system

Publications (1)

Publication Number Publication Date
WO2017067355A1 true WO2017067355A1 (zh) 2017-04-27

Family

ID=55423363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098974 WO2017067355A1 (zh) 2015-10-19 2016-09-14 激光发射装置、激光接收装置及对战设备

Country Status (2)

Country Link
CN (1) CN105391495A (zh)
WO (1) WO2017067355A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281768A (zh) * 2021-04-08 2021-08-20 杭州巨星科技股份有限公司 一种激光测量系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391495A (zh) * 2015-10-19 2016-03-09 腾讯科技(深圳)有限公司 激光发射装置、激光接收装置及对战设备
US10569183B2 (en) 2015-10-19 2020-02-25 Tencent Technology (Shenzhen) Company Limited Information processing system, method, and system
CN108200418A (zh) * 2018-01-02 2018-06-22 联想(北京)有限公司 电子设备的投影方法和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040085646A1 (en) * 1999-05-17 2004-05-06 Tacklind Christopher A. Projection of laser generated image
CN2699235Y (zh) * 2003-12-02 2005-05-11 西安理工大学 一种激光扫平仪
CN102346034A (zh) * 2011-09-22 2012-02-08 苏州亿帝电子科技有限公司 静态远距离激光平面仪
CN103792653A (zh) * 2014-02-28 2014-05-14 陕西师范大学 多束激光聚光传输装置
US20150117011A1 (en) * 2013-10-30 2015-04-30 Arima Lasers Corp. Laser emitting device
CN105391495A (zh) * 2015-10-19 2016-03-09 腾讯科技(深圳)有限公司 激光发射装置、激光接收装置及对战设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1479079A (zh) * 2003-07-22 2004-03-03 浦建华 产生两个相互垂直的雷射光平面的装置
CN102608685B (zh) * 2006-04-28 2015-01-28 莫戈公司 光反射器装置
DE102010063938A1 (de) * 2010-12-22 2012-06-28 Hilti Aktiengesellschaft Optisches System zur Strahlformung eines Laserstrahls sowie Lasersystem mit einem solchen optischen System
CN202281608U (zh) * 2011-09-22 2012-06-20 苏州亿帝电子科技有限公司 静态远距离激光平面仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040085646A1 (en) * 1999-05-17 2004-05-06 Tacklind Christopher A. Projection of laser generated image
CN2699235Y (zh) * 2003-12-02 2005-05-11 西安理工大学 一种激光扫平仪
CN102346034A (zh) * 2011-09-22 2012-02-08 苏州亿帝电子科技有限公司 静态远距离激光平面仪
US20150117011A1 (en) * 2013-10-30 2015-04-30 Arima Lasers Corp. Laser emitting device
CN103792653A (zh) * 2014-02-28 2014-05-14 陕西师范大学 多束激光聚光传输装置
CN105391495A (zh) * 2015-10-19 2016-03-09 腾讯科技(深圳)有限公司 激光发射装置、激光接收装置及对战设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281768A (zh) * 2021-04-08 2021-08-20 杭州巨星科技股份有限公司 一种激光测量系统

Also Published As

Publication number Publication date
CN105391495A (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
WO2017067355A1 (zh) 激光发射装置、激光接收装置及对战设备
JP2023078283A (ja) コリメートを行うカバー要素によって覆われたスキャンミラーを備えた送信器
TWI644116B (zh) 光學裝置
ES2563169T3 (es) Generador de escenarios de blancos
EP3203259A1 (en) Optical scanning type object detection device
US10048576B2 (en) Laser light source and projection display device
CN108318874A (zh) 一种面阵激光雷达及移动平台
CN207008051U (zh) 一种基于光学相位阵列的激光雷达收发天线
WO2017067354A1 (zh) 激光接收结构、对战设备外壳及对战设备
JPH07218862A (ja) 空間光伝送装置
CN102332953A (zh) 一种用编码成像方式进行激光通信的方法及系统
CN108445469A (zh) 一种多线激光雷达的转镜扫描装置及方法
CN108872965A (zh) 一种激光雷达
US10372026B2 (en) Optical fixing device, light source device, and projection equipment
CN104618015A (zh) 小型化大气激光通信装置及通信方法
CN107664760A (zh) 固态激光雷达及固态激光雷达控制方法
CN106707259A (zh) 激光雷达与激光雷达控制方法
CN217425688U (zh) 光学透镜、激光发射系统及激光收发装置
CN101174900B (zh) 光空间发射模块
CN208314203U (zh) 一种发射镜头、面阵激光雷达及移动平台
CN108663757A (zh) 一种出光角度控制装置
CN105609920A (zh) 一种水下可见光通信接收天线装置
CN107947852A (zh) 基于振镜实现全双工通信的能量与信息复合传输系统
CN110441756A (zh) 数据传输装置及激光雷达系统
CN208125915U (zh) 一种面阵激光雷达及移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.09.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16856788

Country of ref document: EP

Kind code of ref document: A1