WO2017067255A1 - 相干相位敏感光时域反射仪的处理方法及装置 - Google Patents

相干相位敏感光时域反射仪的处理方法及装置 Download PDF

Info

Publication number
WO2017067255A1
WO2017067255A1 PCT/CN2016/091071 CN2016091071W WO2017067255A1 WO 2017067255 A1 WO2017067255 A1 WO 2017067255A1 CN 2016091071 W CN2016091071 W CN 2016091071W WO 2017067255 A1 WO2017067255 A1 WO 2017067255A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
tested
fiber
reflection point
weak reflection
Prior art date
Application number
PCT/CN2016/091071
Other languages
English (en)
French (fr)
Inventor
何祖源
樊昕昱
郭勇
朱松林
印永嘉
刘庆文
马麟
杜江兵
阳光耀
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017067255A1 publication Critical patent/WO2017067255A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means

Definitions

  • the present application relates to, but is not limited to, the field of communications, and in particular, to a method and apparatus for processing a coherent phase sensitive optical time domain reflectometer.
  • Optical time domain reflectometry technology has gained a lot of attention due to its unique characteristics in many sensing fields due to its distributed sensing characteristics.
  • Optical time domain reflectometry (OTDR) technology can be divided into polarized optical time domain reflectometry (P-OTDR) and phase sensitive optical time domain reflectometry (Phase sensitive optical time domain reflectometry). )Wait. among them, Due to its simple implementation, high measurement sensitivity, and the ability to simultaneously sense multiple events, it is widely used in the field of fiber distributed vibration sensing. Among them, based on coherent detection Due to its high signal-to-noise ratio and high spatial resolution, it has become the mainstream of fiber distributed vibration sensing research.
  • vibration sensing technology can be divided into two categories: vibration sensing based on light intensity extraction and vibration sensing based on optical phase extraction.
  • vibration sensing based on optical phase extraction there are many related technologies that can accurately measure the intensity of vibration, but the measurement distance is limited by the phase noise of the laser. When the distance exceeds one kilometer, the signal-to-noise ratio will drop significantly. As for the vibration information cannot be measured.
  • the present application provides a method and apparatus for processing a coherent phase sensitive optical time domain reflectometer.
  • a method of processing a coherent phase sensitive optical time domain reflectometer including: Extracting a phase of the fiber to be tested, wherein the fiber to be tested is provided with an auxiliary weak reflection point, wherein the phase corrects a phase signal of the Rayleigh scattered light in the fiber to be tested by the auxiliary weak reflection point The phase obtained afterwards.
  • the setting of the auxiliary weak reflection point on the optical fiber to be tested includes: setting an auxiliary weak reflection point equidistantly on the optical fiber to be tested.
  • the method further includes: setting a reflection intensity of the auxiliary weak reflection point higher than the Rayleigh scattered light.
  • the reflected intensity of the auxiliary weak reflection point is higher than the Rayleigh scattered light, and the reflection intensity of the auxiliary weak reflection point is 3dB to 10dB higher than the Rayleigh scattered light.
  • Extracting the phase of the fiber to be tested includes one of the following:
  • the phase information of the coherent detection beat signal is obtained by an algorithm.
  • a processing device for a coherent phase-sensitive optical time domain reflectometer including: an optical fiber to be tested, and an auxiliary weak reflection point is disposed on the optical fiber to be tested;
  • the fiber to be tested is set to Connection, wherein, by said Extracting a phase of the fiber to be tested, wherein the auxiliary weak reflection point is used to correct a phase signal of Rayleigh scattered light in the fiber to be tested.
  • the setting the auxiliary weak reflection point on the optical fiber to be tested includes: setting an auxiliary weak reflection point equidistantly on the optical fiber to be tested.
  • the auxiliary weak reflection point comprises: a microsphere surface grinding and polishing PC/PC joint.
  • the auxiliary weak reflection point has a higher reflection intensity than the Rayleigh scattered light.
  • a light mixer the light mixer is set to be Connection, said The phase information of the coherent detection beat signal is obtained by the optical hybrid.
  • phase noise of the laser affects the problem of measuring vibration information, effectively reducing the phase noise of the laser.
  • FIG. 1 is a block diagram showing the structure of a processing apparatus for a coherent phase sensitive optical time domain reflectometer according to an embodiment of the present invention
  • FIG. 3 is a coherent detection according to an embodiment of the present invention Schematic diagram of the device structure
  • Figure 5 is a coherent detection in accordance with an embodiment of the present invention The measurement results are shown in Figure 2.
  • a method for processing a coherent phase sensitive optical time domain reflectometer is provided. Extracting a phase of the fiber to be tested, wherein the fiber to be tested is provided with an auxiliary weak reflection point, and the phase is a phase obtained by correcting a phase signal of the Rayleigh scattered light in the fiber to be tested through the auxiliary weak reflection point .
  • the auxiliary weak reflection points may be equidistantly disposed on the optical fiber to be tested. Moreover, the auxiliary weak reflection point may be set to have a higher reflection intensity than the Rayleigh scattered light, and the auxiliary weak reflection point has a reflection intensity higher than the Rayleigh scattered light by 3 dB to 10 dB.
  • Extracting the phase of the fiber to be tested includes one of: obtaining phase information of the coherent detection beat signal by the optical hybrid; and obtaining phase information of the coherent detection beat signal by an algorithm.
  • FIG. 1 is a block diagram showing a processing apparatus of a coherent phase sensitive optical time domain reflectometer according to an embodiment of the present invention.
  • the apparatus includes: an optical fiber 12 to be tested, and the optical fiber 12 to be tested is provided with an auxiliary device.
  • the fiber to be tested 12 is set to Connection, where, through The phase of the fiber 12 to be tested is extracted.
  • the auxiliary weak reflection point 14 is equidistantly disposed on the optical fiber 12 to be tested.
  • the auxiliary weak reflection point 14 includes a microsphere polishing and polishing PC/PC connector.
  • the auxiliary weak reflection point has a higher reflection intensity than the Rayleigh scattered light.
  • the apparatus may further include: a light mixer, configured to connection. among them, The phase information of the coherent detection beat signal is obtained by the optical hybrid.
  • an auxiliary weak reflection point is set on the optical fiber to be tested, and the phase sensitive optical time domain reflectometer is adopted.
  • the auxiliary weak reflection point can correct the phase signal of the Rayleigh scattered light in the fiber to be tested, and solve the problem.
  • the phase noise of the laser affects the problem of measuring vibration information, effectively reducing the phase noise of the laser.
  • This embodiment is directed to coherent detection Aiming at the problem of phase noise of the source in the phase extraction technique, a compensation method based on Auxiliary Weak Reflection Point (AWRP) is proposed.
  • AWRP Auxiliary Weak Reflection Point
  • FIG. 2 is a coherent detection according to an embodiment of the present invention Schematic diagram of the principle, as shown in Figure 2, in coherent detection
  • the Fiber Under Test (FUT) is equidistantly added with a number of auxiliary weak reflection points. After phase extraction, for any point on the fiber, the phase is the closest weak reflection point closest to the point. The difference in phase replaces its original phase. Since the distance from any point on the fiber to the nearest auxiliary weak reflection point is less than the distance from the light source, the noise of the phase signal accumulated due to the distance increase is compensated to a lower level, overcoming the phase noise of the source phase. The effect significantly improves the effective measurement distance of the optical phase extraction technique.
  • FIG. 3 is a coherent detection according to an embodiment of the present invention Schematic diagram of the device structure, as shown in FIG. 3, includes: a light source device, a Mach-Zehnder interferometer, an auxiliary weak reflection point (AWRP), a photodetection and a data acquisition module;
  • a light source device a Mach-Zehnder interferometer
  • AWRP auxiliary weak reflection point
  • photodetection and a data acquisition module
  • the light source device comprises: a narrow linewidth fiber laser (FL, Fiber Laser); the narrow linewidth fiber laser has a working wavelength of 1550 nm and a line width of less than 1 kHz.
  • FL Fiber Laser
  • the narrow linewidth fiber laser has a working wavelength of 1550 nm and a line width of less than 1 kHz.
  • the Mach-Zehnder interferometer can include: Acousto-Optic Modulator (AOM), RF Driver (Radio Frequency Driver), arbitrary waveform Generator (AWG, Arbitrary Wave Generator), two Erbium Doped Fiber Amplifiers (EDFA), two optical couplers (OC, Optical Coupler) (50/50), one optical circulator (CIR, Circulator) ), fiber to be tested (FUT), polarization controller (BPD, Balanced Photo-Detector).
  • AOM Acousto-Optic Modulator
  • AOM RF Driver
  • AMG Arbitrary Wave Generator
  • EDFA Erbium Doped Fiber Amplifiers
  • OC optical couplers
  • CIR Circulator
  • FUT fiber to be tested
  • BPD polarization controller
  • the 50/50 optical coupler splits the optical signal into reference light and probe light, and the reference light passes through the polarization controller to the second optical coupler.
  • the azimuth modulator is driven by an arbitrary waveform generator and a radio frequency driver to generate a single-frequency pulse signal, and the probe light passes through the acousto-optic modulator to generate a frequency-shifted probe light pulse.
  • the probe light pulse is amplified by the EDFA to increase the power of the probe light pulse.
  • the amplified probe light pulse enters the fiber to be tested from the circulator 1 port, and the Rayleigh backscattered light enters the second EDFA from the circulator 2 port for secondary amplification, and then generates a reference light in the second photocoupler.
  • the beat frequency, the polarization controller is used to adjust the polarization state of the reference light.
  • the auxiliary weak reflection point is a PC (Physical Contact)/PC connector that is connected to each other between the fibers to be tested.
  • the fiber to be tested is a standard single mode fiber.
  • the interconnected PC/PC connectors between the fibers to be tested are adjusted to have a reflection intensity that is 3 dB to 10 dB higher than Rayleigh scattering.
  • Photodetection and data acquisition modules include: Balanced Photodetector (ADC, Analog-to-Digital Converter) and 8-bit, 12, 5GSa/s data acquisition cards.
  • ADC Balanced Photodetector
  • 8-bit 8-bit
  • 5GSa/s data acquisition cards 5GSa/s data acquisition cards.
  • the balanced photodetector is set to photoelectric conversion, and the data acquisition card digitally converts the analog signal for later data processing.
  • This embodiment is capable of compensating for coherent detection
  • the phase noise of the light source extracted by the optical phase realizes high-precision long-distance optical phase extraction of more than ten kilometers and phase standard deviation of 0.3 radians or less.
  • the laser generates continuous light having a wavelength of 1550 nm, and is divided into reference light and probe light by the first 50/50 coupler. After the reference light is adjusted by the polarization controller, it is incident on the second 50/50 coupler.
  • the arbitrary waveform generator and the RF driver generate a single-frequency pulse signal with a carrier frequency of 80 MHz and a width of 100 ns to drive the acousto-optic modulator with a pulse repetition rate of 5 kHz.
  • the sound is modulated by an acousto-optic modulator into a probe light pulse with a frequency shift of 80 MHz and a width of 100 ns.
  • the detection light pulse repetition rate is 5 kHz, and corresponds to a spatial resolution of 10 m in the OTDR.
  • the probe light pulse is amplified by the first EDFA and is incident on the fiber to be tested by the optical circulator 1 port.
  • the Rayleigh scattered light emitted from the circulator 2 port is amplified by the second EDFA and then incident into the second 50/50 coupler, and the reference light is beaten.
  • the beat signal is converted to an electrical signal by a balanced photodetector.
  • ADC Analog-to-Digital Converter
  • the analog to digital converter is synchronized with the acousto-optic modulator by any signal generator.
  • the acquired 80MHz carrier frequency signal is converted into a complex domain signal by Hilbert transform, and the phase signal is obtained.
  • the obtained phase signal is compensated by using the auxiliary weak reflection point of the determined position to obtain the compensated phase signal.
  • the external vibration can be detected and analyzed.
  • the fiber to be tested contains 4 segments of 2km long fiber, a 1km long fiber, and a 400m fiber.
  • a fiber of about 10 m length at 9 km is attached to a piezoelectric ceramic (PZT, Piezoelectric Transducer) to generate a vibration signal. Any signal generator generates a 500 Hz square wave signal that drives the piezoelectric ceramic to produce the corresponding vibration.
  • a PC/PC connector is placed every 2km along the fiber to be tested.
  • the reflection intensity of the connector is set so that the Rayleigh scattering intensity is 3-10dB higher to distinguish the reflected signal from the connector and the Rayleigh scattering signal.
  • Use the set connector and the Fresnel peak at the end of the fiber as the auxiliary weak reflection point. For any point on the fiber, select the nearest auxiliary weak reflection point, and replace the phase of the point with the difference between the two phases. Phase noise compensation.
  • FIG. 4 is a coherent detection according to an embodiment of the present invention Schematic diagram 1 of the measurement results, as shown in Fig. 4, the result of the standard deviation of the signal obtained by the phase extraction of the compensated optical phase before compensation.
  • the noise of the phase signal before compensation increases with the increase of the distance, and the standard deviation of the phase signals at all positions after compensation is less than 0.3 rad.
  • Figure 5 is a coherent detection in accordance with an embodiment of the present invention
  • the second measurement result is shown in Fig. 5.
  • the measurement results of the 500Hz square wave type vibration are given.
  • the fundamental and high harmonics of 500Hz are measured, which proves that the measurement accuracy is very high.
  • the embodiment of the invention proposes a new cancellation coherent detection The method of medium phase noise.
  • the auxiliary weak reflection points including PC/PC connector, Fresnel peak, weak reflection FBG, etc.
  • the phase correction of the auxiliary weak reflection point assists the phase of the Rayleigh scattering signal near the weak reflection point, which can effectively reduce the phase noise.
  • the verification achieves a phase standard deviation of less than 0.3 rad in a measurement range of 10 km without performing averaging processing, and does not require sacrificing vibration frequency responsivity.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present application.
  • modules or steps of the present application can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the application is not limited to any particular combination of hardware and software.
  • the embodiment of the invention provides a processing method and a processing device for a coherent phase sensitive optical time domain reflectometer, which may include: Extracting a phase of the fiber to be tested, wherein the fiber to be tested is provided with an auxiliary weak reflection point, wherein the phase corrects a phase signal of the Rayleigh scattered light in the fiber to be tested by the auxiliary weak reflection point The phase obtained afterwards.
  • the processing method and processing device of the embodiment of the invention solve at least the phase sensitive optical time domain reflectometer technology in the related art
  • the phase noise of the laser affects the problem of measuring vibration information, effectively reducing the phase noise of the laser.

Abstract

本文公布一种相干相位敏感光时域反射仪的处理方法及装置,其中,该方法包括:通过φ-OTDR提取待测光纤的相位,其中,该待测光纤上设置辅助弱反射点,该辅助弱反射点设置为对该待测光纤中的瑞利散射光的相位信号进行校正,解决了相位敏感光时域反射仪技术φ-OTDR中激光器相位噪声影响测量振动信息的问题,有效减小了激光器的相位噪声。

Description

相干相位敏感光时域反射仪的处理方法及装置 技术领域
本申请涉及但不限于通信领域,具体而言,涉及一种相干相位敏感光时域反射仪的处理方法及装置。
背景技术
光时域反射仪技术由于其分布式传感的特性,在许多传感领域有其独特的优势,因而得到了很多关注。光时域反射仪技术(OTDR)根据其实现原理可分为偏振光时域反射仪技术(P-OTDR)、相位敏感光时域反射仪技术(Phase sensitive optical time domain reflectometry,
Figure PCTCN2016091071-appb-000001
)等。其中,
Figure PCTCN2016091071-appb-000002
由于其实现简单,测量灵敏度高,能同时传感多个事件等优势,在光纤分布式振动传感领域被广泛运用。其中,基于相干探测的
Figure PCTCN2016091071-appb-000003
由于其信噪比高、空间分辨率高而成为光纤分布式振动传感研究的主流方向。
基于相干探测
Figure PCTCN2016091071-appb-000004
的振动传感技术可分为两类:基于光强度提取的振动传感与基于光相位提取的振动传感。对于基于光相位提取的振动传感,已有较多相关技术,能准确地测量振动的强度,但是其测量距离受激光器相位噪声限制,当距离超过一公里时,信噪比将显著下降,以至于无法测量振动信息。
针对相关技术中,
Figure PCTCN2016091071-appb-000005
激光器相位噪声影响振动信息测量的问题,目前还没有有效的解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保围。
本申请提供了一种相干相位敏感光时域反射仪的处理方法及装置。
一个方面,提供了一种相干相位敏感光时域反射仪的处理方法,包括:通过
Figure PCTCN2016091071-appb-000006
提取待测光纤的相位,其中,所述待测光纤上设置有辅助弱反射点,所述相位为通过所述辅助弱反射点对所述待测光纤中的瑞利散射光的相位信号进行校正后得到的相位。
其中,所述待测光纤上设置辅助弱反射点包括:在所述待测光纤上等距设置辅助弱反射点。
可选的,还包括:设置所述辅助弱反射点的反射强度高于所述瑞利散射光。
其中,所述辅助弱反射点的反射强度高于所述瑞利散射光包括:所述辅助弱反射点的反射强度比所述瑞利散射光高3dB至10dB。
其中,通过
Figure PCTCN2016091071-appb-000007
提取待测光纤的相位包括以下之一:
通过光混合器获得相干探测拍频信号的相位信息;
通过算法获得相干探测拍频信号的相位信息。
另一个方面,还提供了一种相干相位敏感光时域反射仪的处理装置,包括:待测光纤,所述待测光纤上设置辅助弱反射点;
所述待测光纤设置为与
Figure PCTCN2016091071-appb-000008
连接,其中,通过所述
Figure PCTCN2016091071-appb-000009
提取所述待测光纤的相位,其中,所述辅助弱反射点用于对所述待测光纤中的瑞利散射光的相位信号进行校正。
其中,所述待测光纤上设置所述辅助弱反射点包括:在所述待测光纤上等距设置辅助弱反射点。
其中,所述辅助弱反射点包括:微球面研磨抛光PC/PC接头。
其中,所述辅助弱反射点的反射强度高于所述瑞利散射光。
其中,还包括:光混合器;所述光混合器设置为与所述
Figure PCTCN2016091071-appb-000010
连接,所述
Figure PCTCN2016091071-appb-000011
通过所述光混合器获得相干探测拍频信号的相位信息。
本发明实施例中,通过
Figure PCTCN2016091071-appb-000012
提取待测光纤的相位,其中,该待测光纤上设置辅助弱反射点,该辅助弱反射点用于对该待测光纤中的瑞利散射光的相位信号进行校正,解决了
Figure PCTCN2016091071-appb-000013
中激光器相位噪声影响测量振动信息的问题,有效减小了激光器的相位噪声。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
在附图中:
图1是根据本发明实施例的一种相干相位敏感光时域反射仪的处理装置的结构框图;
图2是根据本发明实施例的相干检测
Figure PCTCN2016091071-appb-000014
的原理示意图;
图3是根据本发明实施例的相干检测
Figure PCTCN2016091071-appb-000015
的装置结构示意图;
图4是根据本发明实施例的相干检测
Figure PCTCN2016091071-appb-000016
的测量结果示意图一;
图5是根据本发明实施例的相干检测
Figure PCTCN2016091071-appb-000017
的测量结果示意图二。
本发明的实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种相干相位敏感光时域反射仪的处理方法,通过
Figure PCTCN2016091071-appb-000018
提取待测光纤的相位,其中,该待测光纤上设置有辅助弱反射点,该相位为通过该辅助弱反射点对该待测光纤中的瑞利散射光的相位信号进行校正后得到的相位。
在本实施例中,可以在该待测光纤上等距设置辅助弱反射点。并且可以设置该辅助弱反射点的反射强度高于该瑞利散射光,该辅助弱反射点的反射强度比该瑞利散射光高3dB至10dB。
在本实施例中,通过
Figure PCTCN2016091071-appb-000019
提取待测光纤的相位包括以下之一:通过光混合器获得相干探测拍频信号的相位信息;通过算法获得相干探测拍频信号的相位信息。
图1是根据本发明实施例的一种相干相位敏感光时域反射仪的处理装置的结构框图,如图1所示,该装置包括:待测光纤12,该待测光纤12上设置有辅助弱反射点14;其中,该辅助弱反射点14用于对该待测光纤中的瑞利散射光的相位信号进行校正。
该待测光纤12设置为与
Figure PCTCN2016091071-appb-000020
连接,其中,通过
Figure PCTCN2016091071-appb-000021
提取该待 测光纤12的相位。
在本实施例中,在该待测光纤12上等距设置辅助弱反射点14。该辅助弱反射点14包括:微球面研磨抛光PC/PC接头。
在本实施例中,该辅助弱反射点的反射强度高于该瑞利散射光。
在本实施例中,该装置还可包括:光混合器,设置为与
Figure PCTCN2016091071-appb-000022
连接。其中,
Figure PCTCN2016091071-appb-000023
通过该光混合器获得相干探测拍频信号的相位信息。
通过上述实施例,在待测光纤上设置辅助弱反射点,通过相位敏感光时域反射仪
Figure PCTCN2016091071-appb-000024
提取待测光纤的相位时,该辅助弱反射点能够对该待测光纤中的瑞利散射光的相位信号进行校正,解决了
Figure PCTCN2016091071-appb-000025
中激光器相位噪声影响测量振动信息的问题,有效减小了激光器的相位噪声。
下面结合优选实施例和实施方式对本发明进行详细说明。
本实施例针对相干检测
Figure PCTCN2016091071-appb-000026
相位提取技术存在的光源相位噪声的问题,提出了一种基于辅助弱反射点(Auxiliary Weak Reflection Point,AWRP)的补偿方法。
图2是根据本发明实施例的相干检测
Figure PCTCN2016091071-appb-000027
的原理示意图,如图2所示,在相干检测
Figure PCTCN2016091071-appb-000028
的待测光纤待测光纤(Fiber Under Test,,FUT)上等距加入若干辅助弱反射点,在进行相位提取后,对于光纤上任意点,用其相位与距离该点最近的辅助弱反射点相位的差代替其原本相位。由于光纤上任意点到与其最近的辅助弱反射点的距离小于到光源的距离,因而由于距离增长所累积的相位信号的噪声被补偿到较低水平,克服了光源相位噪声对相位提取带来的影响,显著提升了光相位提取技术的有效测量距离。
图3是根据本发明实施例的相干检测
Figure PCTCN2016091071-appb-000029
的装置结构示意图,如图3所示,包括:光源装置,马赫-曾德尔干涉仪(Mach-Zehnder interferometer),辅助弱反射点(AWRP),光电探测和数据采集模块;
具体的,光源装置包括:窄线宽光纤激光器(FL,Fiber Laser);该窄线宽光纤激光器工作波长为1550nm,线宽小于1kHz。
具体的,马赫-曾德尔干涉仪可以包括:声光调制器(AOM,Acousto-Optic Modulator),射频驱动器(RF Driver,Radio Frequency Driver),任意波形 发生器(AWG,Arbitrary Wave Generator),两个掺铒光纤放大器(EDFA,Erbium Doped Fiber Amplifier),两个光耦合器(OC,Optical Coupler)(50/50),一个光环行器(CIR,Circulator),待测光纤(FUT),偏振控制器(BPD,Balanced Photo-Detector)。
该50/50光耦合器将光信号分成参考光和探测光,参考光经过偏振控制器到达第二个光耦合器。通过任意波形发生器与射频驱动器产生单频脉冲信号驱动声光调制器,探测光通过声光调制器,产生移频的探测光脉冲。探测光脉冲经过EDFA放大,用于提高探测光脉冲的功率。放大后的探测光脉冲从环行器1端口进入待测光纤,瑞利背向散射光从环行器2端口进入第二个EDFA进行二次放大,然后在第二个光耦合器中与参考光产生拍频,偏振控制器用来调节参考光的偏振态。
辅助弱反射点是待测光纤之间相互连接的PC(Physical Contact)/PC接头。
该待测光纤为标准单模光纤。待测光纤之间相互连接的PC/PC接头被调节以使其反射强度较瑞利散射高3dB至10dB。
光电探测和数据采集模块包括:平衡光电探测器(ADC,Analog-to-Digital Converter)和8-bit,12、5GSa/s数据采集卡。
该平衡光电探测器设置为光电转换,数据采集卡将模拟信号进行数字转换用于后期数据处理。
本实施例能够补偿相干检测
Figure PCTCN2016091071-appb-000030
光相位提取的光源相位噪声,实现十公里以上,相位标准差0.3弧度以下的高精度长距离光相位提取。
如图3所示,在本发明实施例中,激光器产生波长为1550nm的连续光,经过第一个50/50耦合器分为参考光与探测光。参考光经过偏振控制器调节偏振态后,入射至第二个50/50耦合器中。任意波形发生器与射频驱动器产生载频80MHz,宽度100ns的单频脉冲信号驱动声光调制器,脉冲重复率为5kHz。通过声光调制器,将探测光调制成移频80MHz,宽度100ns的探测光脉冲,探测光脉冲重复率为5kHz,在OTDR中对应10m的空间分辨率。探测光脉冲经过第一个EDFA放大后,由光环行器1端口入射至待测光纤中。 环行器2端口出射的瑞利散射光经过第二个EDFA放大后,入射至第二个50/50耦合器中,与参考光拍频。通过一个平衡光电探测器,拍频信号被转换成电信号。通过模数转换器(ADC,Analog-to-Digital Converter),电信号以1GSa/s的采样率与8bit的精度被采集转换为数字信号。模数转换器与声光调制器通过任意信号发生器进行同步。经过希尔伯特变换,采集得到的80MHz载频的信号经过希尔伯特变换,转换成复数域信号,求得其相位信号。利用已确定位置的辅助弱反射点,对所获得的相位信号进行补偿,得到补偿后的相位信号。检测补偿后的相位信号,即可对外界振动进行检测与分析。
待测光纤包含4段2km长的光纤,一段1km长的光纤,一段400m长的光纤。9km处一段约10m长的光纤被贴附于一个压电陶瓷(PZT,Piezoelectric Transducer)上,以产生振动信号。任意信号发生器产生500Hz的方波信号,驱动压电陶瓷产生相应的振动。待测光纤沿线每2km设置一个PC/PC接头,连接头的反射强度经过设置,使得较瑞利散射强度高3~10dB,以区分连接头的反射信号与瑞利散射信号。利用设置的连接头与光纤末端的菲涅尔峰作为辅助弱反射点,对于光纤上的任意点,选取与其最近的辅助弱反射点,用这两者的相位之差代替该点的相位,实现相位噪声补偿。
图4是根据本发明实施例的相干检测
Figure PCTCN2016091071-appb-000031
的测量结果示意图一,如图4所示,在补偿前与补偿后光相位提取得到的信号的标准差沿距离分布的结果。补偿前相位信号的噪声随距离增加而增加,补偿后所有位置的相位信号的标准差均小于0.3rad。
图5是根据本发明实施例的相干检测
Figure PCTCN2016091071-appb-000032
的测量结果示意图二,如图5所示,给出了对500Hz方波型振动的测量结果,500Hz的基波与高次谐波均被测出,证明测量准确度很高。
本发明实施例提出了一种新的消除相干检测
Figure PCTCN2016091071-appb-000033
中相位噪声的方法。通过在探测光纤上以2km间距加入若干个辅助弱反射点(Auxiliary Weak Reflection Point,AWRP),辅助弱反射点包括PC/PC连接头,菲涅尔峰,弱反射FBG等,其反射强度强于瑞利散射。由于光源相位噪声会随着相位测量距离增长而增长,因此,用辅助弱反射点的相位校正辅助弱反射点附近瑞利散射信号的相位,可以有效地减小相位噪声,通过这种方法,前期验证实现了 不进行平均处理的情况下,在10km的测量范围内得到小于0.3rad的相位标准差,且不需要牺牲振动频率响应度。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本发明实施例提供了一种相干相位敏感光时域反射仪的处理方法及处理装置,其中,可包括:通过
Figure PCTCN2016091071-appb-000034
提取待测光纤的相位,其中,所述待测光纤上设置有辅助弱反射点,所述相位为通过所述辅助弱反射点对所述待测光纤中的瑞利散射光的相位信号进行校正后得到的相位。本发明实施例的处理方法及处理装置,至少解决了相关技术中相位敏感光时域反射仪技术
Figure PCTCN2016091071-appb-000035
中激光器相位噪声影响测量振动信息的问题,有效减小了激光器的相位噪声。

Claims (10)

  1. 一种相干相位敏感光时域反射仪的处理方法,包括:
    通过相位敏感光时域反射仪
    Figure PCTCN2016091071-appb-100001
    提取待测光纤的相位,其中,所述待测光纤上设置有辅助弱反射点,所述相位为通过所述辅助弱反射点对所述待测光纤中的瑞利散射光的相位信号进行校正后得到的相位。
  2. 根据权利要求1所述的方法,其中,所述待测光纤上设置辅助弱反射点包括:在所述待测光纤上等距设置辅助弱反射点。
  3. 根据权利要求1所述的方法,还包括:
    设置所述辅助弱反射点的反射强度高于所述瑞利散射光。
  4. 根据权利要求3所述的方法,其中,所述辅助弱反射点的反射强度高于所述瑞利散射光包括:
    所述辅助弱反射点的反射强度比所述瑞利散射光高3dB至10dB。
  5. 根据权利要求1所述的方法,其中,所述通过
    Figure PCTCN2016091071-appb-100002
    提取待测光纤的相位包括以下之一:
    通过光混合器获得相干探测拍频信号的相位信息;
    通过算法获得相干探测拍频信号的相位信息。
  6. 一种相干相位敏感光时域反射仪的处理装置,包括:待测光纤,所述待测光纤上设置辅助弱反射点;
    所述待测光纤与相位敏感光时域反射仪
    Figure PCTCN2016091071-appb-100003
    连接,其中,通过相位敏感光时域反射仪
    Figure PCTCN2016091071-appb-100004
    提取所述待测光纤的相位,其中,所述辅助弱反射点用于对所述待测光纤中的瑞利散射光的相位信号进行校正。
  7. 根据权利要求6所述的装置,所述待测光纤上设置所述辅助弱反射点包括:
    在所述待测光纤上等距设置辅助弱反射点。
  8. 根据权利要求6所述的装置,所述辅助弱反射点包括:
    微球面研磨抛光PC/PC接头。
  9. 根据权利要求6所述的装置,其中,所述辅助弱反射点的反射强度高于所述瑞利散射光。
  10. 根据权利要求6所述的装置,还包括:光混合器;
    所述光混合器设置为与所述
    Figure PCTCN2016091071-appb-100005
    连接,所述
    Figure PCTCN2016091071-appb-100006
    通过所述光混合器获得相干探测拍频信号的相位信息。
PCT/CN2016/091071 2015-10-20 2016-07-22 相干相位敏感光时域反射仪的处理方法及装置 WO2017067255A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510685764.3A CN106595837A (zh) 2015-10-20 2015-10-20 相干相位敏感光时域反射仪的处理方法及装置
CN201510685764.3 2015-10-20

Publications (1)

Publication Number Publication Date
WO2017067255A1 true WO2017067255A1 (zh) 2017-04-27

Family

ID=58555451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091071 WO2017067255A1 (zh) 2015-10-20 2016-07-22 相干相位敏感光时域反射仪的处理方法及装置

Country Status (2)

Country Link
CN (1) CN106595837A (zh)
WO (1) WO2017067255A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654641A (zh) * 2021-08-13 2021-11-16 南京法艾博光电科技有限公司 一种分布式光纤振动传感系统和解调方法
CN113701793A (zh) * 2021-08-09 2021-11-26 南京大学 相位敏感型光时域反射系统中非硬件实现相位锁定的方法
US11592354B2 (en) 2021-02-03 2023-02-28 Nokia Solutions And Networks Oy Phase-distortion mitigation for an optical vector network analyzer
CN113654641B (zh) * 2021-08-13 2024-04-26 南京法艾博光电科技有限公司 一种分布式光纤振动传感系统和解调方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729737B1 (ja) * 2019-03-13 2020-07-22 沖電気工業株式会社 光コヒーレントセンサ
CN112710379B (zh) * 2019-10-25 2023-08-01 中兴通讯股份有限公司 光纤扰动事件的相位获取方法、装置和存储介质
CN110926510B (zh) * 2019-11-27 2021-07-30 南京大学 一种基于辅助光减小φ-otdr相位解缠绕限制的相位信号求解方法及装置
CN114050867B (zh) * 2022-01-07 2022-04-22 高勘(广州)技术有限公司 信号补偿方法、装置、设备及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056143A1 (en) * 2006-11-08 2008-05-15 Fotech Solutions Limited Detecting a disturbance in the phase of light propagating in an optical waveguide
CN102102999A (zh) * 2010-12-16 2011-06-22 华中科技大学 基于非等间隔弱布拉格反射光纤光栅阵列的传感复用系统
CN102706437A (zh) * 2012-06-13 2012-10-03 扬州森斯光电科技有限公司 一种超长距离相敏光时域反射系统
CN102914321A (zh) * 2012-10-15 2013-02-06 武汉理工大学 一种极弱光纤光栅传感系统及其查询方法
CN103152097A (zh) * 2013-03-12 2013-06-12 电子科技大学 一种采用随机激光放大的长距离偏振及相位敏感光时域反射计
CN104990620A (zh) * 2015-07-03 2015-10-21 南京大学 基于布拉格光纤光栅阵列的相敏光时域反射装置及方法
CN105181111A (zh) * 2015-09-21 2015-12-23 电子科技大学 一种超弱光纤光栅阵列同φ-otdr相结合的光纤振动传感系统
CN105547460A (zh) * 2016-01-21 2016-05-04 南京大学 融合弱反射光栅的双脉冲相位敏感光时域反射计及其方法
CN105806465A (zh) * 2016-03-11 2016-07-27 南京大学 一种基于固定反射点的新型φ-otdr探测装置及其探测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2190262B (en) * 1986-05-09 1990-09-05 Stc Plc Sensor
JP4728412B2 (ja) * 2009-03-06 2011-07-20 日本電信電話株式会社 Otdr測定器、光通信線路監視システム、及び光通信線路監視方法
CN201753600U (zh) * 2010-06-22 2011-03-02 河北钢铁集团矿业有限公司 一种矿山竖井变形光纤监测装置
CN102226703B (zh) * 2011-03-29 2013-09-25 宁波诺驰光电科技发展有限公司 一种分布式光纤多参量传感器及多参量测量方法
CN102628698B (zh) * 2012-04-06 2015-02-18 中国科学院上海光学精密机械研究所 分布式光纤传感器及信息解调方法
CN103033842B (zh) * 2012-12-18 2016-01-20 电子科技大学 时分复用阵列式光纤光栅地震波实时监测系统
CN104180833A (zh) * 2014-07-18 2014-12-03 中国科学院上海光学精密机械研究所 温度和应变同时传感的光时域反射计

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056143A1 (en) * 2006-11-08 2008-05-15 Fotech Solutions Limited Detecting a disturbance in the phase of light propagating in an optical waveguide
CN102102999A (zh) * 2010-12-16 2011-06-22 华中科技大学 基于非等间隔弱布拉格反射光纤光栅阵列的传感复用系统
CN102706437A (zh) * 2012-06-13 2012-10-03 扬州森斯光电科技有限公司 一种超长距离相敏光时域反射系统
CN102914321A (zh) * 2012-10-15 2013-02-06 武汉理工大学 一种极弱光纤光栅传感系统及其查询方法
CN103152097A (zh) * 2013-03-12 2013-06-12 电子科技大学 一种采用随机激光放大的长距离偏振及相位敏感光时域反射计
CN104990620A (zh) * 2015-07-03 2015-10-21 南京大学 基于布拉格光纤光栅阵列的相敏光时域反射装置及方法
CN105181111A (zh) * 2015-09-21 2015-12-23 电子科技大学 一种超弱光纤光栅阵列同φ-otdr相结合的光纤振动传感系统
CN105547460A (zh) * 2016-01-21 2016-05-04 南京大学 融合弱反射光栅的双脉冲相位敏感光时域反射计及其方法
CN105806465A (zh) * 2016-03-11 2016-07-27 南京大学 一种基于固定反射点的新型φ-otdr探测装置及其探测方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PENG, ZHENGPU ET AL.: "Long Distance Phase-Sensitive Optical Time-Domain Reflectometer Based on Heterodyne Detection and Forward Raman Amplification", JOURNAL OF OPTOELECTRONICS·LASE, vol. 4, no. 25, 30 April 2014 (2014-04-30), pages 724 - 729 *
WANG, C. ET AL.: "Distributed OTDR-interferometric sensing network with identical ultra-weak fiber bragg gratings", OPTICS EXPRESS, vol. 22, no. 23, 2 November 2015 (2015-11-02), pages 29038 - 29046, XP055377525 *
ZHANG, YANJUN ET AL.: "Distributed Temperature Sensor System Based on Weak Reflection Fiber Gratings Combined with WDM and OTDR", OPTO- ELECTRONIC ENGINEERING, vol. 8, no. 39, 31 August 2012 (2012-08-31), pages 69 - 74 *
ZHANG, YANJUN ET AL.: "High-Speed High-Multiplexing Distributed Temperature Sensor Network Based on Weak-Reflection Fiber Gratings", CHINESE JOURNAL OF LASERS, vol. 4, no. 40, 30 April 2013 (2013-04-30), pages 0405006 - 1 -0405006-6 *
ZHU, F. ET AL.: "Improved O-OTDR Sensing System for High-Precision Dynamic Strain Measurement Based on ultra-Weak Fiber Bragg Grating Array", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 23, no. 33, 1 December 2015 (2015-12-01), pages 4775 - 4780, XP011587934 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11592354B2 (en) 2021-02-03 2023-02-28 Nokia Solutions And Networks Oy Phase-distortion mitigation for an optical vector network analyzer
CN113701793A (zh) * 2021-08-09 2021-11-26 南京大学 相位敏感型光时域反射系统中非硬件实现相位锁定的方法
CN113701793B (zh) * 2021-08-09 2022-05-06 南京大学 相位敏感型光时域反射系统中非硬件实现相位锁定的方法
CN113654641A (zh) * 2021-08-13 2021-11-16 南京法艾博光电科技有限公司 一种分布式光纤振动传感系统和解调方法
CN113654641B (zh) * 2021-08-13 2024-04-26 南京法艾博光电科技有限公司 一种分布式光纤振动传感系统和解调方法

Also Published As

Publication number Publication date
CN106595837A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2017067255A1 (zh) 相干相位敏感光时域反射仪的处理方法及装置
Muanenda Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry
US8144334B2 (en) Fiber-optic, digital system for laser Doppler vibrometers (LDVs)
JP6552983B2 (ja) ブリルアン散乱測定方法およびブリルアン散乱測定装置
US9784567B2 (en) Distributed brillouin sensing using correlation
US10162245B2 (en) Distributed acoustic sensing system based on delayed optical hybrid phase demodulator
JP2016524715A (ja) 光パルス圧縮反射装置
Shang et al. Optical fiber distributed acoustic sensing based on the self-interference of Rayleigh backscattering
CN106556415A (zh) 激光器相位噪声消除装置、系统及方法
Chen et al. Distributed fiber-optic acoustic sensor with sub-nano strain resolution based on time-gated digital OFDR
CN107036734A (zh) 一种全分布式光纤温度或应变的传感方法与传感器
JP7435160B2 (ja) 光ファイバ振動検知装置及び振動検知方法
JP5332103B2 (ja) 光波レーダ装置
WO2020084825A1 (ja) 光パルス試験装置及び光パルス試験方法
Yu et al. Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm
Yang et al. A PGC demodulation based on differential-cross-multiplying (DCM) and arctangent (ATAN) algorithm with low harmonic distortion and high stability
CN104931126A (zh) 一种基于超声波外调制的激光干涉振动检测装置
Yang et al. Polarization fading elimination in phase-extracted OTDR for distributed fiber-optic vibration sensing
US20220128383A1 (en) OTDR measurement via wavelength/frequency sweeping in phase-sensitive DAS/DVS systems
CN204730935U (zh) 基于超声波外调制的激光干涉振动检测装置
CN213842395U (zh) 动静态联合测量分布式光纤传感系统
KR20210024830A (ko) 분포형 음향 센서에서 진동 신호 추출을 위한 위상 검출기 및 위상 검출 방법
Yang et al. Distributed fiber vibration sensing based on phase extraction from phase-sensitive OTDR with phase noise compensation
US11473983B2 (en) Suppression of noise and cross-talk in brillouin fiber sensors
Yu et al. Real-time vibration locating phase-sensitive OTDR based on envelope extraction and undersampling technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16856690

Country of ref document: EP

Kind code of ref document: A1