WO2017067001A1 - 一种数据传输方法以及光传输设备 - Google Patents

一种数据传输方法以及光传输设备 Download PDF

Info

Publication number
WO2017067001A1
WO2017067001A1 PCT/CN2015/092734 CN2015092734W WO2017067001A1 WO 2017067001 A1 WO2017067001 A1 WO 2017067001A1 CN 2015092734 W CN2015092734 W CN 2015092734W WO 2017067001 A1 WO2017067001 A1 WO 2017067001A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
subcarrier
optical
optical transmission
service data
Prior art date
Application number
PCT/CN2015/092734
Other languages
English (en)
French (fr)
Inventor
曾理
满江伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580082869.8A priority Critical patent/CN107925503B/zh
Priority to PCT/CN2015/092734 priority patent/WO2017067001A1/zh
Publication of WO2017067001A1 publication Critical patent/WO2017067001A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to the field of communications, and in particular, to a data transmission method and an optical transmission device.
  • the customer service goes to the broadband and ultra-wideband interfaces.
  • the interface refers to the interface of the home broadband access or the interface of the enterprise broadband access.
  • the home broadband 100M uses fiber access as the main mode
  • the enterprise broadband uses the optical interface of 1G/10G
  • the 3G/4G/5G interface uses more than 6G optical interfaces, and the optical interface gradually becomes the most important access method for the customer interface.
  • OTN International full name, Optical Transmission Network: Chinese full name, optical transmission network
  • OTN mapping multiplexing for the broadband IP service bearer different granular containers are defined for mapping, and different data containers and multi-level multiplexing are constructed for different service particles. .
  • ODUK For example, for GE (English name, Gigabit Ethernet: Chinese full name, Gigabit Ethernet), services with different rates of 10GE, 40GE, 100GE, respectively, define different ODUKs. Different ODUKs are mapped in the electrical domain through time domain multiplexing. OTU light wavelength.
  • the particle container ODUK with different capacities is defined in the prior art, and is gradually multiplexed to the large particle container through the small particle container. Therefore, when data processing and exchange is performed on the particle container in the large particle container, multiple levels of complexing are required. The use and demultiplexing increases the complexity of the electrical chip.
  • the large particle container is directly mapped to the large-capacity light wavelength, and the sub-particle container needs to be operated, the information carried by the optical wavelength is required to be photoelectrically converted, and the cost of additional photoelectric/electrical light conversion is introduced.
  • a time domain multiplexing method is adopted. When the sub-particle container is operated, it is necessary to perform time domain demultiplexing operation on the large particle container in the electric domain, and the complexity in the multiplexing process is also increased.
  • the large particle container can not be processed by the multiplexed large particle container.
  • the present invention provides a data transmission method and an optical transmission device capable of simplifying mapping and multiplexing of a client interface line interface, reducing power consumption, delay, and network cost.
  • a first aspect of the embodiments of the present invention provides a data transmission method, including:
  • mapping customer service data to at least one target subcarrier where the at least one target subcarrier is used to carry the customer service data, and the at least one target subcarrier is an electronic carrier located in an electrical domain of the optical transmission network, or Said at least one target subcarrier is a photo subcarrier located in an optical domain of the optical transmission network;
  • the at least one sub-band is emitted into the fiber channel.
  • the mapping the customer service data to the at least one target subcarrier comprises:
  • the customer traffic data is mapped onto the photo subcarriers.
  • the method further includes:
  • the at least one target subcarrier Generating the at least one target subcarrier, wherein if the wavelet band includes at least two of the target subcarriers, the at least two target subcarriers are orthogonal to each other.
  • a second aspect of the embodiments of the present invention provides an optical transmission device, including:
  • a first mapping unit configured to map customer service data to at least one target subcarrier, where the at least one target subcarrier is used to carry the customer service data, and the at least one target subcarrier is an electronic device located in an electrical domain of the optical transmission network
  • the carrier, or the at least one target subcarrier is a photo subcarrier located in an optical domain of the optical transmission network;
  • a second mapping unit configured to map the at least one target subcarrier to at least one subband by frequency division multiplexing
  • a transmitting unit configured to transmit the at least one sub-band into the fiber channel.
  • the first mapping unit is further configured to map the customer service data to at least one of the electronic carriers in the electrical domain;
  • the first mapping unit is further configured to map the customer service data to the photo subcarrier in the optical domain.
  • the optical transmission device further includes:
  • a generating unit configured to generate the at least one target subcarrier, where if the wavelet band includes at least two target subcarriers, the target subcarriers included in the subbands are mutually Orthogonal.
  • a third aspect of the embodiments of the present invention provides an optical transmission device.
  • the processor is configured to map customer service data to at least one target subcarrier, where the at least one target subcarrier is used to carry the customer service data, where the at least one target subcarrier is located in an electrical domain of the optical transmission network.
  • An electronic carrier, or the at least one target subcarrier is a photo subcarrier located in an optical domain of the optical transmission network;
  • the processor is further configured to map the at least one target subcarrier to at least one subband by frequency division multiplexing
  • the transmitter is configured to transmit the at least one sub-band into a fiber channel.
  • the processor is further configured to map the customer service data to at least one of the electronic carriers in the electrical domain;
  • the processor is further configured to map the customer service data onto the photo subcarrier in the optical domain.
  • the optical transmission device further includes a light source device, the light source device is configured to generate the at least one target subcarrier, and the light source device is a laser light source or a multi-wave light source, wherein if the wavelet band includes at least two For the target subcarriers, the target subcarriers included in the subbands are orthogonal to each other.
  • the processor is a passive optical filter, and at least one of the passive optical filters is disposed corresponding to the sub-band;
  • the passive optical filter is configured to demultiplex the wavelet band onto the photo subcarrier, and the passive optical filter is further configured to map the photo subcarrier to the The wavelet is on the belt.
  • An optical transmission device according to any one of the third aspect of the present invention, which is the second implementation manner of the third aspect of the embodiments of the present invention,
  • the processor is a light modulator and a light detector, and at least one of the light modulator and the light detector is disposed corresponding to the wavelet band;
  • the photodetector is configured to demultiplex the wavelet band onto the electronic carrier
  • the optical modulator is configured to map the electronic carrier to the sub-band by frequency division multiplexing.
  • the present invention provides a data transmission method and an optical transmission device, which can map customer service data to a target subcarrier, and map the target subcarrier to a wavelet band by means of frequency division multiplexing, so that Each of the target subcarriers and the subbands can be multiplexed in a frequency division multiplexing manner in a multiplexing process, from the low order of the target subcarriers to the high order of the subbands In the multiplexing process, or in the process of demultiplexing the high-order sub-waveband to the low-order target sub-carrier, the target sub-carrier in the corresponding frequency band may be directly operated or changed without being high.
  • Each of the target subcarriers located in the wavelet band in the embodiment of the present invention can be independently seen, and can independently operate the target subcarrier.
  • the low-order particle containers contained in the high-order particle containers can be independently operated and processed.
  • FIG. 1 is a schematic diagram of a mechanism of an OTN optical transmission network shown in the prior art
  • FIG. 2 is a flow chart of steps of an embodiment of a data transmission method provided by the present invention.
  • FIG. 3 is a flow chart of steps of another embodiment of a data transmission method according to the present invention.
  • FIG. 4 is a schematic structural diagram of an OADM for implementing a data transmission method according to an embodiment of the present invention
  • FIG. 5 is a flow chart of steps of another embodiment of a data transmission method according to the present invention.
  • FIG. 6 is a schematic structural diagram of an embodiment of an optical transmission device according to the present invention.
  • FIG. 7 is a schematic structural diagram of another embodiment of an optical transmission device according to the present invention.
  • FIG. 8 is a schematic structural diagram of an embodiment of an optical transmission device according to the present invention.
  • FIG. 9 is a schematic structural diagram of another embodiment of an optical transmission device according to the present invention.
  • FIG. 10 is a schematic structural diagram of another embodiment of an optical transmission device according to the present invention.
  • the hierarchical structure of the OTN network is divided into two parts: the OTN channel layer in the electrical domain and the OTN optical transmission layer in the optical domain.
  • LO ODUx (English full name, Low Order Optical Channel DataUnit-x: Chinese full name, low-order optical channel data unit x) can be used to adapt customer service data, and mapping and packaging of customer service data is realized.
  • Map LO ODUx to HO ODUk (English full name, High Order Optical Channel Data Unit-k: high-order optical channel data unit k), and encapsulate HO ODUk into HO OTUk (high-order optical channel transmission unit k), and adopt HO OTUk adaptation.
  • the LO ODUx may include ODU0, ODU1, ODU2, ODU3, and ODUflex.
  • the HO ODUk contains ODU1, ODU2, ODU3, and ODU4 at fixed rate levels.
  • the OTN adapts to the optical layer spectrum bandwidth resources by using fixed rate classes such as OTU1 (2.5G), OTU2 (10G), OTU3 (40G), and OTU4 (100G), and OTU1 (2.5G), OTU2 (10G) ), OTU3 (40G), OTU4 (100G) occupy one 50 GHz optical spectrum bandwidth resource at equal intervals.
  • fixed rate classes such as OTU1 (2.5G), OTU2 (10G), OTU3 (40G), OTU4 (100G) occupy one 50 GHz optical spectrum bandwidth resource at equal intervals.
  • ODUK can load SDH (English full name, Synchronous Digital Hierarchy: Chinese full name, synchronous digital system) signals, Ethernet signals, and other digital service signals at a specified rate.
  • SDH Synchronous Digital Hierarchy: Chinese full name, synchronous digital system
  • the OTUK is used to establish a digital link on the OTN optical transport network, carrying ODUK on the digital link.
  • the OTUK acts as a carrier to complete the transmission of ODUK in the OTN optical domain.
  • the optical transmission network of the OTN is divided into an inter-domain interface and an intra-domain interface according to the connection function of the transmission physical interface.
  • the embodiment of the present invention provides a metropolitan bearer mechanism for all-optical mapping and multiplexing, which simplifies the mapping and multiplexing of the client interface to the line interface, and reduces the Power consumption, delay, and network cost.
  • the data transmission method provided by the embodiment of the present invention will be described below with reference to FIG. 2 .
  • the target subcarrier is used to carry the customer service data.
  • the low-order optical channel data units in the electrical domain are formed into electronic carriers in the electrical domain, that is, the target sub-carriers are electronic carriers located in the electrical domain of the optical transmission network;
  • the low-order particles in the optical domain for carrying signals are formed into optical sub-carriers in the optical domain, that is, the target sub-carriers are photo-subcarriers located in the optical domain of the optical transmission network.
  • the wavelet band includes at least one of the target subcarriers.
  • the wavelet band may correspond to one of the target subcarriers, or the wavelet band may correspond to a plurality of the target subcarriers.
  • each of the target subcarriers included in the subbands can be independently seen and can be operated independently.
  • the Fibre Channel is configured to carry the customer service data.
  • the target subcarriers are mapped to the at least one subband by frequency division multiplexing, so that each of the target subcarriers and the subbands can be in a multiplexing process.
  • Multiplexing in a frequency division multiplexing manner in the multiplexing process from the low-order target subcarrier to the high-order sub-band, or from the higher-order wavelet to the lower-order
  • the target subcarrier in the corresponding frequency band can be directly operated or changed without the need for the high order sub-carrier.
  • Each of the target subcarriers located in the wavelet band in the embodiment of the present invention is independent, and can independently operate the target subcarriers.
  • the prior art can only operate on the outer particle container, and the low-order particle container contained in the high-order particle container cannot be independently operated and processed.
  • the following describes how the data transmission is implemented when the target subcarrier is an electronic carrier located in the electrical domain of the optical transmission network, as shown in FIG.
  • This embodiment does not limit how to generate the target subcarrier, for example, the target subcarrier is generated by a light source device.
  • the light source device is a laser light source or a multi-wave light source.
  • the target subcarrier generated by the light source device is an electronic carrier located in an electrical domain.
  • the customer service data may be GE
  • the service rate may be 10GE, 40GE, or 100GE.
  • This embodiment does not limit the customer service data.
  • the customer service data is mapped to at least one of the electronic carriers by electrical processing in the electrical domain.
  • one of the customer service data may correspond to one of the electronic carriers, or one of the customer service data corresponds to multiple electronic carriers.
  • one of the customer service data corresponds to multiple electronic carriers, multiple electronic carriers are bundled with each other or electronic carriers are cascaded.
  • mapping customer service data to the target subcarrier is:
  • the customer service data is serially converted and coded and modulated, and the light source device generates a plurality of target subcarriers separated by a clock frequency interval ⁇ f by an external reference clock.
  • the coded modulated bit data is mapped onto a designated target subcarrier.
  • Different customer service data can be mapped to consecutive multiple target subcarriers, and all target subcarriers are inverse Fourier transformed to form a baseband signal, which is output through a high speed digital-to-analog converter.
  • the receiving process is reversed, and is not described in detail in this embodiment.
  • the at least one target subcarrier is modulated onto at least one subband.
  • the modulation method can be NRZ (English name, Non-Return to Zero: Chinese abbreviation, no return to zero code), PAM4 (English full name, Pulse Amplitude Modulation: Chinese abbreviation, modulation code format), QAM (English full name , Quadrature Amplitude Modulation: Chinese full name, quadrature amplitude modulation, etc., which is not limited in this embodiment.
  • the target subcarrier is super-multiplexed onto the wavelet band.
  • At least one optical modulator is disposed corresponding to the wavelet band, and the optical modulator is configured to map the electronic carrier to the sub-band by frequency division multiplexing.
  • the wavelet band includes at least two target subcarriers
  • the at least two target subcarriers are orthogonal to each other.
  • the target subcarriers in the corresponding frequency bands can be directly operated or changed without using high-order wavelets. Demultiplexing.
  • the sub-waveband can be demultiplexed by at least one photodetector corresponding to the sub-band;
  • the photodetector is configured to demultiplex the wavelet band onto the electronic carrier.
  • the at least one sub-band is transmitted into the fiber channel.
  • step 304 in this embodiment please refer to step 203 shown in FIG. 2, which is not specifically described in this embodiment.
  • the optical modulator disposed corresponding to the sub-band can map the target sub-carrier to the sub-band by frequency division multiplexing, so that each of the target sub-carriers and the The sub-bands can be multiplexed in a frequency division multiplexing manner in the multiplexing process, in the multiplexing process from the low-order target subcarriers to the high-order sub-bands, or by high
  • the target sub-carriers in the corresponding frequency band may be directly operated or changed, and the high-order sub-bands need not be completely solved. Pick up.
  • FIG. 3 The embodiment shown in FIG. 3 is further described in detail below in conjunction with a specific application scenario:
  • the application is applied to the optical add/drop multiplexer OADM as an example. It should be clarified that the application scenario is merely exemplary and not limited.
  • the OADM in this application scenario may include a subband demultiplexing module 401 and a subband multiplexing module 402;
  • the subband demultiplexing module 401 and the subband multiplexing module 402 are located in an optical domain of the optical transmission network of the OTN.
  • the subband demultiplexing module 401 can download a subband
  • the subband multiplexing module 402 can upload a subband.
  • the subband demultiplexing module 401 and the subband multiplexing module 402 perform up and down of the subband by the passive optical filter 403.
  • the passive optical filter 403 can achieve punch-through for other sub-bands that are not downloaded.
  • the sub-band is first downloaded through the passive optical filter 403, and the sub-band is received by the sub-band receiving module 404;
  • the subband receiving module 404 is located in both the optical domain and the electrical domain.
  • the subband receiving module 404 is capable of photoelectrically converting the received subband and outputting a baseband signal of the dense electronic carrier.
  • the subband demultiplexing module 401 demultiplexes the dense electronic carrier.
  • the sub-band demultiplexing module 401 can be provided with a DSP with a high-speed DAC (English full name, Digital to analog converter), full name, digital signal processing: full name, digital signal Processing) the chip, and the sub-band demultiplexing module 401 is located in the optical domain.
  • DAC English full name, Digital to analog converter
  • the dense electronic carrier is first multiplexed into a dense carrier baseband signal by the subband multiplexing module 402;
  • the subband multiplexing module 402 is provided with a DSP chip with a high speed DAC.
  • the subband transmit module 405 receives the baseband signal of the dense carrier for photoelectric modulation to become a subband signal
  • the passive optical filter 403 uploads the formed sub-bands into the fiber channel and multiplexes them with other sub-bands.
  • the following describes how the data transmission is implemented when the target subcarrier is a photo subcarrier located in the optical domain of the optical transmission network, as shown in FIG.
  • This embodiment does not limit how to generate the target subcarrier, for example, the target subcarrier is generated by a light source device.
  • the light source device is a laser light source or a multi-wave light source.
  • the target subcarrier generated by the light source device is a photo subcarrier located in an optical domain.
  • the customer service data is directly mapped to the photo subcarriers located in the optical domain.
  • customer service data is mapped to at least one of the photo subcarriers.
  • the broadband service data of the broadband and ultra-wideband can be directly mapped to the optical subcarriers in the optical domain, and the mapping of the customer interface to the optical subcarriers can be directly implemented, thereby scheduling in the optical domain, and implementing the end-to-end of the client interface.
  • Optical connection
  • the customer service data is directly mapped to the photo subcarrier, avoiding multi-layer electrical multiplexing, and reducing power consumption and processing delay of the end station and the intermediate node.
  • the photon carrier size in this embodiment is flexible and flexible, and can support mapping of various customer service data, and is simple and efficient in the process of demultiplexing and demapping.
  • At least one passive optical filter is disposed corresponding to the wavelet band, and the passive optical filter is configured to map the customer service data onto the photo subcarrier.
  • one of the customer service data may correspond to one of the photo subcarriers, or one of the customer service data corresponds to multiple photo subcarriers.
  • one of the customer service data corresponds to multiple photo subcarriers
  • multiple photo subcarriers are bundled with each other or electronic carriers are cascaded.
  • the at least one target subcarrier is modulated onto at least one subband.
  • the modulation method can be NRZ (English full name, Non-Return to Zero: Chinese abbreviation, no return to zero code), PAM4 (English full name, Pulse Amplitude Modulation: Chinese abbreviation, Modulation code format), QAM (English full name, Quadrature Amplitude Modulation: Chinese full name, quadrature amplitude modulation), etc., which are not limited in this embodiment.
  • the target subcarrier is super-multiplexed onto the wavelet band.
  • the wavelet band includes at least two target subcarriers
  • the at least two target subcarriers are orthogonal to each other.
  • At least one passive optical filter is disposed corresponding to the wavelet band.
  • the passive optical filter is configured to map the customer service data to the photo subcarrier, and the passive optical filter is further configured to map the photo subcarrier to the wavelet by frequency division multiplexing. Bring it.
  • the target subcarriers in the corresponding frequency bands can be directly operated or changed without using high-order wavelets. Demultiplexing.
  • the at least one sub-band is transmitted into the fiber channel.
  • the customer service data carried by each sub-band is loaded onto the channel of the light-emitting unit through the sub-band transmitting module of the light for transmission.
  • a passive optical filter corresponding to the sub-band is configured to map the target sub-carrier to the sub-band by frequency division multiplexing, so that each of the target sub-carriers And the wavelet band can be multiplexed in a frequency division multiplexing manner in the multiplexing process, in the multiplexing process from the low-order target subcarrier to the high-order wavelet band, or During the process of demultiplexing the high-order sub-bands to the low-order target sub-carriers, the target sub-carriers in the corresponding frequency bands can be directly operated or changed without performing high-order sub-bands. Demultiplexing.
  • FIG. 5 The specific application scenario shown in FIG. 5 is shown in FIG. 4 , and details are not described herein.
  • the application scenario is different from the application scenario in FIG. 3 in that:
  • the subband receiving module 404 is capable of photoelectrically converting the received subband and outputting a baseband signal of the dense photonic carrier.
  • the subband demultiplexing module 401 is capable of demultiplexing dense photonic carriers.
  • the dense photon carriers are first multiplexed into the dense carrier baseband signals by the subband multiplexing module 402.
  • the optical transmission device provided by the present invention is described below with reference to the embodiment shown in FIG. 6.
  • the optical transmission device can reduce the photoelectric mapping demapping and multi-level electrical layer multiplexing of the intermediate node, and simplify the customer interface to the line interface. Mapping and multiplexing to reduce power consumption, latency and network costs.
  • the optical transmission device shown in FIG. 6 When the optical transmission device shown in FIG. 6 is used to implement the data transmission method shown in FIG. 2, the optical transmission device includes:
  • a first mapping unit 601 configured to map customer service data to at least one target subcarrier, where the at least one target subcarrier is used to carry the customer service data, and the at least one target subcarrier is located in an optical transmission network.
  • the electronic carrier in the domain, or the at least one target subcarrier is a photo subcarrier located in the optical domain of the optical transmission network.
  • the second mapping unit 602 is configured to map the at least one target subcarrier to at least one subband by frequency division multiplexing.
  • the transmitting unit 603 is configured to transmit the at least one sub-band into the fiber channel.
  • the optical transmission device shown in this embodiment specifically performs the data transmission method. Please refer to the embodiment shown in FIG. 2, which is not specifically described in this embodiment.
  • the target subcarriers are mapped to the subbands by means of frequency division multiplexing, so that each of the target subcarriers and the subbands can adopt a frequency in a multiplexing process.
  • Multiplexing in a multiplexing manner in the multiplexing process from the low-order target subcarrier to the high-order wavelet band, or from the higher-order wavelet to the lower-order
  • the target sub-carriers in the corresponding frequency band can be operated or changed directly, and the high-order sub-bands are not required to be demultiplexed.
  • each of the target subcarriers located in the wavelet band can be independently seen, and can independently operate the target subcarrier, but the prior art can only see the outer particle container, Low-order particle containers contained in high-order particle containers are not capable of independent operation and processing.
  • the optical transmission device includes:
  • a generating unit 701 configured to generate the at least one target subcarrier, where, if the wavelet band includes at least two target subcarriers, the target subcarrier included in the subband Orthogonal to each other.
  • the first mapping unit 702 maps customer service data to at least one target subcarrier, where the at least one target subcarrier is used to carry the customer service data, and the at least one target subcarrier is located in an electrical domain of the optical transmission network. Electronic carrier.
  • the first mapping unit 702 is further configured to map the customer service data to at least one of the electronic carriers in the electrical domain;
  • the second mapping unit 703 is configured to map the at least one target subcarrier to at least one subband by frequency division multiplexing, and the subband includes at least one target subcarrier.
  • the transmitting unit 704 is configured to transmit the at least one sub-band into the fiber channel.
  • the optical transmission device shown in this embodiment is specifically configured to perform the data transmission method shown in FIG. 3, which is shown in FIG. 3, and is not described in detail in this embodiment.
  • the first mapping unit 702 is configured to map customer service data to at least one target sub- On the carrier, the target subcarrier is used to carry the customer service data, and the target subcarrier is a photo subcarrier located in an optical domain of the optical transmission network;
  • the first mapping unit 702 is further configured to map the customer service data onto the photo subcarrier in the optical domain.
  • the optical transmission device shown in this embodiment is specifically configured to perform the data transmission method shown in FIG. 5, which is shown in FIG. 5, and is not described in detail in this embodiment.
  • the optical transmission device can map the target subcarriers to the subbands by frequency division multiplexing, so that each of the target subcarriers and the subbands are in a multiplexing process.
  • the multiplexing can be performed by means of frequency division multiplexing, in the multiplexing process from the low-order target subcarrier to the high-order sub-band, or from the higher-order wavelet to the low
  • the target subcarriers in the corresponding frequency band may be directly operated or changed, and the high order subbands need not be demultiplexed.
  • the optical transmission device provided by the present invention is described in the following with reference to the embodiment shown in FIG. 8.
  • the optical transmission device can reduce the photoelectric mapping demapping and multi-level electrical layer multiplexing of the intermediate node, simplifying the customer interface. Mapping and multiplexing to line interfaces reduces power consumption, latency and network costs.
  • the optical transmission device includes a processor 801 and a transmitter 802.
  • processor 801 and the transmitter 802 are connected by a bus, and of course Other connection methods are available, and the specific connection manner is not limited in this embodiment.
  • the optical transmission device may have more or less components than those shown in FIG. 8, may combine two or more components, or may have different component configurations or settings, each component It can be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the processor 801 is configured to map customer service data to at least one target subcarrier, where the at least one target subcarrier is used to carry the customer service data, and the at least one target subcarrier is located in an optical transmission network.
  • An electronic carrier in the domain, or the at least one target subcarrier is a photo subcarrier located in an optical domain of the optical transmission network;
  • the processor 801 is further configured to map the at least one target subcarrier to at least one subband by frequency division multiplexing
  • the transmitter 802 is configured to transmit the at least one sub-band into a Fibre Channel.
  • the processor 801 is further configured to: map, in the electrical domain, the customer service data to at least one of the electronic carriers;
  • the processor 801 is further configured to map the customer service data to the photo subcarrier in the optical domain.
  • the optical transmission device further includes a light source device 803;
  • the light source device 803 is configured to generate the at least one target subcarrier, and the light source device is a laser light source or a multi-wave light source.
  • the target subcarriers included in the subband are orthogonal to each other.
  • the specific structure of the processor is as follows when the target subcarrier is a photo subcarrier:
  • the processor is a passive optical filter 901.
  • At least one of the passive optical filters 901 is disposed;
  • the passive optical filter 901 is configured to demultiplex the wavelet band onto the photo subcarrier, and the passive optical filter 901 is further configured to map the photo subcarrier by frequency division multiplexing. To the wavelet band.
  • the light source device 903 shown in FIG. 9 is illustrated in FIG. 8 for the description of the light source device 803.
  • the transmitter 902 shown in FIG. 9 is illustrated in FIG. 8 for the description of the transmitter 802, specifically in this embodiment. Do not repeat them.
  • the specific structure of the processor is as follows:
  • the processor is a light modulator 1001 and a light detector 1004.
  • the photodetector 1004 is configured to demultiplex the wavelet band onto the electronic carrier.
  • the optical modulator 1001 maps the electronic carrier to the sub-band by frequency division multiplexing.
  • the light source device 1003 shown in FIG. 10 is illustrated in FIG. 8 for the description of the light source device 803.
  • the transmitter 1002 shown in FIG. 10 is illustrated in FIG. 8 for the description of the transmitter 802, specifically in this embodiment. Do not repeat them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供了一种数据传输方法以及光传输设备,所述数据传输方法能够将客户业务数据映射到目标子载波上,将目标子载波通过频分复用的方式映射到子波带上,使得每个所述目标子载波以及所述子波带在复用过程中能够采用频分复用的方式进行复接,在由低阶的所述目标子载波到高阶的所述子波带的复接过程中,或者,由高阶的所述子波带向低阶的所述目标子载波解复接的过程中,可以直接对对应频段内的目标子载波进行操作或更改,无需将高阶的子波带全部进行解复接,本发明实施例中位于子波带内的每个所述目标子载波都是可以独立看到的,并且能够独立的对所述目标子载波进行操作,对高阶颗粒容器所包含的低阶颗粒容器可以进行独立的操作和处理。

Description

一种数据传输方法以及光传输设备 技术领域
本发明涉及通信领域,尤其涉及的是一种数据传输方法以及光传输设备。
背景技术
客户业务走向宽带和超宽带接口,该接口泛指家庭宽带接入的接口或企业宽带接入的接口,目前家庭宽带100M以光纤接入为主要方式,企业宽带使用1G/10G的光接口,以及3G/4G/5G接口使用超过6G的光接口,光接口逐步成为客户接口最主要的接入方式。
OTN(英文全称,Optical Transmission Network:中文全称,光传输网络)中,将客户业务信号处理和传送分别在电域和光域内进行,在电域内,将客户业务信号转换到电域内,在电域内完成对客户业务信号的3R再生,映射/去映射到OTN定义的大颗粒业务单元(ODUK,K=1,2,3……)内,以及完成低阶ODUK到高阶ODCK之间的复用分解,之后送入光域进行传输,如图1所示,在面向宽带IP业务承载的OTN映射复接,定义了不同容量的颗粒容器进行映射,针对不同业务颗粒构建不同数据容器和多层次复接。如针对GE(英文全称,Gigabit Ethernet:中文全称,吉比特以太网)、业务的速率分别为10GE、40GE、100GE的业务定义不同的ODUK,不同的ODUK在电域通过时域复接方式映射到OTU光波长上。
可见,现有技术中定义了不同容量的颗粒容器ODUK,通过小颗粒容器逐步复接至大颗粒容器,因此对于大颗粒容器中的子颗粒容器进行数据处理和交换时,就需要多层次的复用与解复用,增加了电芯片的复杂程度。同时,大颗粒容器直接映射到大容量的光波长上面,需要对其中的子颗粒容器进行操作时,则需要对完成光波长承载的信息进行光电转换,引入了额外的光电/电光转换的成本。现有技术中采用的是时域复接方式,对子颗粒容器进行操作时,需要在电域对大颗粒容器进行时域解复用再进行操作,也增加了复接过程中的复杂程度,而复接完整的大颗粒容器无法对其中的小颗粒容器进行处理。
发明内容
本发明提供了一种能够简化客户接口道线路接口的映射和复用,减轻功耗,延时和网络成本的数据传输方法以及光传输设备。
本发明实施例第一方面提供了一种数据传输方法,包括:
将客户业务数据映射到至少一个目标子载波上,所述至少一个目标子载波用于承载所述客户业务数据,所述至少一个目标子载波为位于光传输网电域内的电子载波,或,所述至少一个目标子载波为位于光传输网光域内的光子载波;
将所述至少一个目标子载波通过频分复用的方式映射到至少一个子波带上;
将所述至少一个子波带发射至光纤通道中。
结合本发明实施例第一方面,发明实施例第一方面的第一种实现方式中,
所述将客户业务数据映射到至少一个目标子载波上包括:
在所述电域内,将所述客户业务数据映射到至少一个所述电子载波上;
或,
在所述光域内,将所述客户业务数据映射到所述光子载波上。
结合本发明实施例第一方面或发明实施例第一方面的第一种实现方式,本发明实施例第一方面的第二种实现方式中,
所述将客户业务数据映射到至少一个目标子载波上之前,所述方法还包括:
生成所述至少一个目标子载波,其中,若所述子波带包括有至少两个所述目标子载波,则所述至少两个目标子载波之间相互正交。
本发明实施例第二方面提供了一种光传输设备,包括:
第一映射单元,将客户业务数据映射到至少一个目标子载波上,所述至少一个目标子载波用于承载所述客户业务数据,所述至少一个目标子载波为位于光传输网电域内的电子载波,或,所述至少一个目标子载波为位于光传输网光域内的光子载波;
第二映射单元,用于将所述至少一个目标子载波通过频分复用的方式映射到至少一个子波带上;
发射单元,用于将所述至少一个子波带发射至光纤通道中。
结合本发明实施例第二方面,本发明实施例第二方面的第一种实现方式 中,
所述第一映射单元还用于,在所述电域内,将所述客户业务数据映射到至少一个所述电子载波上;
或,
所述第一映射单元还用于,在所述光域内,将所述客户业务数据映射到所述光子载波上。
结合本发明实施例第二方面或本发明实施例第二方面的第一种实现方式,本发明实施例第二方面的第二种实现方式中,
所述光传输设备还包括:
生成单元,用于生成所述至少一个目标子载波,其中,若所述子波带包括有至少两个所述目标子载波,则所述子波带所包括的所述目标子载波之间相互正交。
本发明实施例第三方面提供了一种光传输设备,
包括相互连接的处理器和发送器;
所述处理器用于,将客户业务数据映射到至少一个目标子载波上,所述至少一个目标子载波用于承载所述客户业务数据,所述至少一个目标子载波为位于光传输网电域内的电子载波,或,所述至少一个目标子载波为位于光传输网光域内的光子载波;
所述处理器还用于,将所述至少一个目标子载波通过频分复用的方式映射到至少一个子波带上;
所述发送器用于,将所述至少一个子波带发射至光纤通道中。
结合本发明实施例第三方面,本发明实施例第三方面的第一种实现方式中,
所述处理器还用于,在所述电域内,将所述客户业务数据映射到至少一个所述电子载波上;
或,
所述处理器还用于,在所述光域内,将所述客户业务数据映射到所述光子载波上。
结合本发明实施例第三方面或本发明实施例第三方面的第一种实现方式, 本发明实施例第三方面的第二种实现方式中,
所述光传输设备还包括光源装置,所述光源装置用于生成所述至少一个目标子载波,且所述光源装置为激光器光源或多波光源,其中,若所述子波带包括有至少两个所述目标子载波,则所述子波带所包括的所述目标子载波之间相互正交。
结合本发明实施例第三方面至本发明实施例第三方面的第二种实现方式任一项所述的光传输设备,本发明实施例第三方面的第三种实现方式中,
所述处理器为无源光滤波器,与所述子波带对应设置有至少一个所述无源光滤波器;
所述无源光滤波器用于将所述子波带解复用至所述光子载波上,所述无源光滤波器还用于将所述光子载波通过频分复用的方式映射到所述子波带上。
结合本发明实施例第三方面至本发明实施例第三方面的第二种实现方式任一项所述的光传输设备,本发明实施例第三方面的第四种实现方式中,
所述处理器为光调制器和光探测器,与所述子波带对应设置有至少一个所述光调制器和所述光探测器;
所述光探测器用于将所述子波带解复用至所述电子载波上,所述光调制器用于将所述电子载波通过频分复用的方式映射到所述子波带上。
本发明提供了一种数据传输方法以及光传输设备,所述数据传输方法能够将客户业务数据映射到目标子载波上,将目标子载波通过频分复用的方式映射到子波带上,使得每个所述目标子载波以及所述子波带在复用过程中能够采用频分复用的方式进行复接,在由低阶的所述目标子载波到高阶的所述子波带的复接过程中,或者,由高阶的所述子波带向低阶的所述目标子载波解复接的过程中,可以直接对对应频段内的目标子载波进行操作或更改,无需将高阶的子波带全部进行解复接,本发明实施例中位于子波带内的每个所述目标子载波都是可以独立看到的,并且能够独立的对所述目标子载波进行操作,对高阶颗粒容器所包含的低阶颗粒容器可以进行独立的操作和处理。
附图说明
图1为现有技术所示的OTN光传送网络机制示意图;
图2为本发明所提供的数据传输方法的一种实施例步骤流程图;
图3为本发明所提供的数据传输方法的另一种实施例步骤流程图;
图4为用于实现本发明实施例所提供的数据传输方法的OADM的一种结构示意图;
图5为本发明所提供的数据传输方法的另一种实施例步骤流程图;
图6为本发明所提供的光传输设备的一种实施例结构示意图;
图7为本发明所提供的光传输设备的另一种实施例结构示意图;
图8为本发明所提供的光传输设备的一种实施例结构示意图;
图9为本发明所提供的光传输设备的另一种实施例结构示意图;
图10为本发明所提供的光传输设备的另一种实施例结构示意图。
具体实施方式
为更好的理解本发明实施例,以下首先对OTN网络的分层结构进行说明:
OTN网络的层次结构分电域,光域两大部分,其中,电域内为OTN的通道层,光域内为OTN的光传输层。
具体的,当前OTN电域内可以采用LO ODUx(英文全称,Low Order Optical Channel DataUnit-x:中文全称,低阶光通道数据单元x)适配客户业务数据,实现对客户业务数据的映射封装,之后将LO ODUx映射到HO ODUk(英文全称,High Order Optical Channel Data Unit-k:中文全称,高阶光通道数据单元k),将HO ODUk封装到HO OTUk(高阶光通道传输单元k),通过HO OTUk适配光频谱资源分配,实现承载传送。
其中,LO ODUx可以包含ODU0、ODU1、ODU2、ODU3、ODUflex。
HO ODUk包含固定速率等级的ODU1、ODU2、ODU3、ODU4。
OTN通过采用OTU1(2.5G)、OTU2(10G)、OTU3(40G)、OTU4(100G)等固定速率等级的方式来适配光层频谱带宽资源实现传送,且OTU1(2.5G)、OTU2(10G)、OTU3(40G)、OTU4(100G)分别占用1个50GHz等间隔的光频谱带宽资源。
ODUK可以装载SDH(英文全称,Synchronous Digital Hierarchy:中文全称,同步数字体系)信号、以太网信号,以及其他规定速率的数字业务信号。
所述OTUK用于在OTN光传送网上建立一段数字链路,在该段数字链路上承载ODUK。
所述OTUK作为载体,完成ODUK在OTN光域内的传输。
在光域内,OTN的光传输网根据传输物理接口的连接功能分域间接口和域内接口。
为降低中间节点的光电映射解映射和多层次电层复用,本发明实施例提供了一种全光映射和复用的城域承载机制,简化客户接口到线路接口的映射和复用,减低功耗、延时和网络成本,以下结合图2所示对本发明实施例所提供的数据传输方法进行说明。
201、将客户业务数据映射到至少一个目标子载波上。
所述目标子载波用于承载所述客户业务数据。
本实施例中,将OTN网络中,电域内的低阶光通道数据单元做成电域内的电子载波,即所述目标子载波为位于光传输网电域内的电子载波;
或,将OTN网络中,光域内的用于承载信号的低阶颗粒做成光域内的光子载波,即所述目标子载波为位于光传输网光域内的光子载波。
202、将所述至少一个目标子载波通过频分复用的方式映射到至少一个子波带上。
其中,所述子波带包括至少一个所述目标子载波。
具体的,所述子波带可对应一个所述目标子载波,或者,所述子波带对应多个所述目标子载波。
因将所述目标子载波通过频分复用的方式映射到子波带上,则子波带所包含的各所述目标子载波是可以独立的看到,而且能够独立的进行操作。
203、将所述至少一个子波带发射至光纤通道中。
其中,所述光纤通道用于承载传送所述客户业务数据。
本实施例中,因将所述目标子载波通过频分复用的方式映射到所述至少一个子波带上,使得每个所述目标子载波以及所述子波带在复用过程中能够采用频分复用的方式进行复接,在由低阶的所述目标子载波到高阶的所述子波带的复接过程中,或者,由高阶的所述子波带向低阶的所述目标子载波解复接的过程中,可以直接对对应频段内的目标子载波进行操作或更改,无需将高阶的子 波带全部进行解复接,相对于现有技术,本发明实施例中位于子波带内的每个所述目标子载波都是可以独立的,并且能够独立的对所述目标子载波进行操作,而现有技术只能针对外层的颗粒容器进行操作,对高阶颗粒容器所包含的低阶颗粒容器是无法进行独立的操作和处理的。
以下结合图3所示说明若所述目标子载波为位于光传输网电域内的电子载波时,是如何实现数据传输。
301、生成至少一个目标子载波。
本实施例对具体如何生成所述目标子载波的不做限定,例如,通过光源装置生成所述目标子载波。
具体的,所述光源装置为激光器光源或多波光源。
本实施例中,所述光源装置所生成的所述目标子载波为位于电域内的电子载波。
302、将客户业务数据映射到至少一个目标子载波上。
本实施例中,客户业务数据可为GE、业务的速率可为为10GE、40GE、100GE的业务数据。
本实施例对所述客户业务数据不做限定。
本实施例中,在所述电域内,将所述客户业务数据通过电处理方式映射到至少一个所述电子载波上。
在本实施例中,一个所述客户业务数据可对应一个所述电子载波,或者,一个所述客户业务数据对应多个电子载波。
若一个所述客户业务数据对应多个电子载波,则多个电子载波相互捆绑或者电子载波级联。
其中,将客户业务数据映射到所述目标子载波的具体过程为:
将客户业务数据进行串并转换,并进行编码调制,所述光源装置通过外部参考时钟产生间隔为时钟频率间隔Δf的多个目标子载波。
将编码调制好的比特数据映射到指定的目标子载波上。
不同的客户业务数据可映射到连续多个目标子载波上,对所有的目标子载波进行反傅利叶变换,形成基带信号,通过高速数模转化器输出。
接收过程相反,具体在本实施例中不做赘述。
303、将所述至少一个目标子载波通过频分复用的方式映射到至少一个子波带上。
具体的,将所述至少一个目标子载波调制到至少一个子波带上。
具体的,调制的方式可为NRZ(英文全称,Non-Return to Zero:中文简称,不归零码)、PAM4(英文全称,Pulse Amplitude Modulation:中文简称,调制码型格式)、QAM(英文全称,Quadrature Amplitude Modulation:中文全称,正交振幅调制)等,具体在本实施例中不做限定。
本实施例中,将所述目标子载波超密复用到所述子波带上。
具体的,与所述子波带对应设置有至少一个光调制器,所述光调制器用于将所述电子载波通过频分复用的方式映射到所述子波带上。
其中,若所述子波带包括有至少两个所述目标子载波,则所述至少两个目标子载波之间相互正交。
因将所述目标子载波通过频分复用的方式映射所述子波带上,则在将低阶的所述目标子载波到高阶的所述子波带的复接过程,或者,由高阶的所述子波带到低阶的所述目标子载波的解复接的过程中,可以直接在对应的频段内的目标子载波进行操作或更改,无需将高阶的子波带全部进行解复接。
其中,本实施例可通过与所述子波带对应设置的至少一个光探测器对所述子波带进行解复接;
具体的,所述光探测器用于将所述子波带解复用至所述电子载波上。
304、将所述至少一个子波带发射至光纤通道中。
本实施例中的步骤304的具体实现过程请详见图2所示的步骤203,具体在本实施例中不做赘述。
本实施例中,与所述子波带对应设置的光调制器能够将所述目标子载波通过频分复用的方式映射到所述子波带上,使得每个所述目标子载波以及所述子波带在复用过程中能够采用频分复用的方式进行复接,在由低阶的所述目标子载波到高阶的所述子波带的复接过程中,或者,由高阶的所述子波带向低阶的所述目标子载波解复接的过程中,可以直接对对应频段内的目标子载波进行操作或更改,无需将高阶的子波带全部进行解复接。
以下结合具体应用场景对图3所示的实施例进行进一步的详细说明:
其中,本应用场景中,以应用于光分插复用器OADM中为例进行说明,需明确的是,本应用场景仅仅为示例性说明,不做限定。
以下以图4所示为例对本应用场景进行说明:
本应用场景中的OADM可包括一个子波带解复用模块401以及一个子波带复用模块402;
具体的,所述子波带解复用模块401以及所述子波带复用模块402位于所述OTN的光传输网的光域内。
其中,所述子波带解复用模块401可以下载一个子波带;
所述子波带复用模块402可以上载一个子波带。
具体的,所述子波带解复用模块401以及所述子波带复用模块402通过无源光滤波器403进行子波带的上下。
对于不下载的其他子波带,该无源光滤波器403可实现穿通。
具体的,在下载子波带的过程中,首先通过所述无源光滤波器403下载子波带,通过子波带接收模块404接收所述子波带;
其中,所述子波带接收模块404同时位于光域和电域内。
所述子波带接收模块404能够对接收到的所述子波带进行光电转换,输出密集电子载波的基带信号。
所述子波带解复用模块401将密集电子载波解复用。
其中,所述子波带解复用模块401可设置有带高速DAC(英文全称,Digital to analog converter:中文全称,数字模拟转换器)的DSP(英文全称,digital signal processing:中文全称,数字信号处理)芯片,且所述子波带解复用模块401位于光域内。
在上载子波带的过程中,首先通过子波带复用模块402将密集电子载波复用为密集载波的基带信号;
其中,所述子波带复用模块402设置有带高速DAC的DSP芯片。
所述子波带发射模块405接收所述密集载波的基带信号以进行光电调制,成为一个子波带信号;
所述无源光滤波器403将已形成的子波带上载至光纤通道里与其他的子波带复用传输。
以下结合图5所示说明若所述目标子载波为位于光传输网光域内的光子载波时,是如何实现数据传输。
501、生成至少一个目标子载波。
本实施例对具体如何生成所述目标子载波的不做限定,例如,通过光源装置生成所述目标子载波。
具体的,所述光源装置为激光器光源或多波光源。
本实施例中,所述光源装置所生成的所述目标子载波为位于光域内的光子载波。
502、将客户业务数据映射到至少一个目标子载波上。
本实施例中,将客户业务数据直接接映射到位于光域内的光子载波上。
具体的,在光域内,将客户业务数据映射到至少一个所述光子载波上。
即通过本实施例能够将宽带和超宽带的客户业务数据直接映射到光域中的光子载波上,直接实现客户接口到光子载波的映射,从而在光域进行调度,实现了客户接口端到端的光连接。
且本实施例将客户业务数据直接映射到光子载波上,避免多层电复用,降低端站和中间节点处理功耗和处理延时。
较佳的,本实施例中的光子载波大小弹性灵活,可以支持各种客户业务数据的映射,在解复用和解映射的处理过程中简单高效。
更具体的,与所述子波带对应设置有至少一个无源光滤波器,所述无源光滤波器用于将所述客户业务数据映射到所述光子载波上。
在本实施例中,一个所述客户业务数据可对应一个所述光子载波,或者,一个所述客户业务数据对应多个光子载波。
若一个所述客户业务数据对应多个光子载波,则多个光子载波相互捆绑或者电子载波级联。
503、将所述至少一个目标子载波通过频分复用的方式映射到至少一个子波带上。
具体的,将所述至少一个目标子载波调制到至少一个子波带上。
具体的,调制的方式可为NRZ(英文全称,Non-Return to Zero:中文简称,不归零码)、PAM4(英文全称,Pulse Amplitude Modulation:中文简称, 调制码型格式)、QAM(英文全称,Quadrature Amplitude Modulation:中文全称,正交振幅调制)等,具体在本实施例中不做限定。
本实施例中,将所述目标子载波超密复用到所述子波带上。
其中,若所述子波带包括有至少两个所述目标子载波,则所述至少两个目标子载波之间相互正交。
具体的,与所述子波带对应设置有至少一个无源光滤波器。
所述无源光滤波器用于将所述客户业务数据映射到所述光子载波上,所述无源光滤波器还用于将所述光子载波通过频分复用的方式映射到所述子波带上。
因将所述目标子载波通过频分复用的方式映射所述子波带上,则在将低阶的所述目标子载波到高阶的所述子波带的复接过程,或者,由高阶的所述子波带到低阶的所述目标子载波的解复接的过程中,可以直接在对应的频段内的目标子载波进行操作或更改,无需将高阶的子波带全部进行解复接。
504、将所述至少一个子波带发射至光纤通道中。
每个子波带所承载的客户业务数据通过光的子波带发射模块加载到光发射单元的通道上进行传输。
本实施例中,与所述子波带对应设置的无源光滤波器能够将所述目标子载波通过频分复用的方式映射到所述子波带上,使得每个所述目标子载波以及所述子波带在复用过程中能够采用频分复用的方式进行复接,在由低阶的所述目标子载波到高阶的所述子波带的复接过程中,或者,由高阶的所述子波带向低阶的所述目标子载波解复接的过程中,可以直接对对应频段内的目标子载波进行操作或更改,无需将高阶的子波带全部进行解复接。
图5所示的具体应用场景请详见图4所示,具体不再赘述,其中,本应用场景与图3的应用场景不同之处在于:
所述子波带接收模块404能够对接收到的所述子波带进行光电转换,输出密集光子载波的基带信号。
所述子波带解复用模块401能够将密集的光子载波解复用。
在上载子波带的过程中,首先通过子波带复用模块402将密集光子载波复用为密集载波的基带信号。
以下结合图6所示的实施例说明本发明所提供的一种光传输设备,所述光传输设备能够降低中间节点的光电映射解映射和多层次电层复用,简化客户接口到线路接口的映射和复用,减低功耗、延时和网络成本。
且图6所示的所述光传输设备用以实现图2所示的数据传输方法时,所述光传输设备包括:
第一映射单元601,用于将客户业务数据映射到至少一个目标子载波上,所述至少一个目标子载波用于承载所述客户业务数据,所述至少一个目标子载波为位于光传输网电域内的电子载波,或,所述至少一个目标子载波为位于光传输网光域内的光子载波。
第二映射单元602,用于将所述至少一个目标子载波通过频分复用的方式映射到至少一个子波带上。
发射单元603,用于将所述至少一个子波带发射至光纤通道中。
其中,本实施例所示的所述光传输设备具体是如何执行所述数据传输方法的,请详见图2所示的实施例,具体在本实施例中不做赘述。
本实施例中,因将所述目标子载波通过频分复用的方式映射到所述子波带上,使得每个所述目标子载波以及所述子波带在复用过程中能够采用频分复用的方式进行复接,在由低阶的所述目标子载波到高阶的所述子波带的复接过程中,或者,由高阶的所述子波带向低阶的所述目标子载波解复接的过程中,可以直接对对应频段内的目标子载波进行操作或更改,无需将高阶的子波带全部进行解复接,相对于现有技术,本发明实施例中位于子波带内的每个所述目标子载波都是可以独立看到的,并且能够独立的对所述目标子载波进行操作,而现有技术只能看到外层的颗粒容器,对高阶颗粒容器所包含的低阶颗粒容器是无法进行独立的操作和处理的。
以下结合图7所示的实施例说明用以实现图3所示的数据传输方法时,所述光传输设备的结构。
所述光传输设备包括:
生成单元701、用于生成所述至少一个目标子载波,其中,若所述子波带包括有至少两个所述目标子载波,则所述子波带所包括的所述目标子载波之间相互正交。
第一映射单元702,将客户业务数据映射到至少一个目标子载波上,所述至少一个目标子载波用于承载所述客户业务数据,所述至少一个目标子载波为位于光传输网电域内的电子载波。
所述第一映射单元702还用于,在所述电域内,将所述客户业务数据映射到至少一个所述电子载波上;
第二映射单元703,用于将所述至少一个目标子载波通过频分复用的方式映射到至少一个子波带上,且所述子波带包括至少一个所述目标子载波。
发射单元704,用于将所述至少一个子波带发射至光纤通道中。
本实施例所示的所述光传输设备具体是如何执行图3所示的所述数据传输方法的,请详见图3所示,具体在本实施例中不做赘述。
可选的,若图7所示的所述光传输设备用以执行图5所示的所述数据传输方法时,所述第一映射单元702,用于将客户业务数据映射到至少一个目标子载波上,所述目标子载波用于承载所述客户业务数据,所述目标子载波为位于光传输网光域内的光子载波;
所述第一映射单元702还用于,在所述光域内,将所述客户业务数据映射到所述光子载波上。
本实施例所示的所述光传输设备具体是如何执行图5所示的所述数据传输方法的,请详见图5所示,具体在本实施例中不做赘述。
本实施例中,光传输设备能够将所述目标子载波通过频分复用的方式映射到所述子波带上,使得每个所述目标子载波以及所述子波带在复用过程中能够采用频分复用的方式进行复接,在由低阶的所述目标子载波到高阶的所述子波带的复接过程中,或者,由高阶的所述子波带向低阶的所述目标子载波解复接的过程中,可以直接对对应频段内的目标子载波进行操作或更改,无需将高阶的子波带全部进行解复接。
以下结合图8所示的实施例从硬件的角度说明本发明所提供的一种光传输设备,所述光传输设备能够降低中间节点的光电映射解映射和多层次电层复用,简化客户接口到线路接口的映射和复用,减低功耗、延时和网络成本。
如图8所示,所述光传输设备包括处理器801和发送器802。
其中,所述处理器801和所述发送器802之间通过总线进行连接,当然也 可采用其他的连接方式,具体连接方式在本实施例中不作限定。
本发明实施例涉及的所述光传输设备可以具有比图8所示出的更多或更少的部件,可以组合两个或更多个部件,或者可以具有不同的部件配置或设置,各个部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件或硬件和软件的组合实现。
所述处理器801用于,将客户业务数据映射到至少一个目标子载波上,所述至少一个目标子载波用于承载所述客户业务数据,所述至少一个目标子载波为位于光传输网电域内的电子载波,或,所述至少一个目标子载波为位于光传输网光域内的光子载波;
所述处理器801还用于,将所述至少一个目标子载波通过频分复用的方式映射到至少一个子波带上;
所述发送器802用于,将所述至少一个子波带发射至光纤通道中。
可选的,所述处理器801还用于,在所述电域内,将所述客户业务数据映射到至少一个所述电子载波上;
或,
所述处理器801还用于,在所述光域内,将所述客户业务数据映射到所述光子载波上。
可选的,如图8所示,所述光传输设备还包括光源装置803;
所述光源装置803用于生成所述至少一个目标子载波,且所述光源装置为激光器光源或多波光源。
其中,若所述子波带包括有至少两个所述目标子载波,则所述子波带所包括的所述目标子载波之间相互正交。
以下结合图9所示说明,若所述目标子载波为光子载波时,所述处理器的具体结构:
本实施例中,所述处理器为无源光滤波器901。
与所述子波带对应设置有至少一个所述无源光滤波器901;
所述无源光滤波器901用于将所述子波带解复用至所述光子载波上,所述无源光滤波器901还用于将所述光子载波通过频分复用的方式映射到所述子波带上。
图9所示的所述光源装置903请详见图8对光源装置803的说明,图9所示的所述发送器902请详见图8对发送器802的说明,具体在本实施例中不做赘述。
以下结合图10所示说明,若所述目标子载波为电子载波时,所述处理器的具体结构:
所述处理器为光调制器1001和光探测器1004。
与所述子波带对应设置有至少一个所述光调制器1001和所述光探测器1004;
所述光探测器1004用于将所述子波带解复用至所述电子载波上。
所述光调制器1001将所述电子载波通过频分复用的方式映射到所述子波带上。
图10所示的所述光源装置1003请详见图8对光源装置803的说明,图10所示的所述发送器1002请详见图8对发送器802的说明,具体在本实施例中不做赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (11)

  1. 一种数据传输方法,其特征在于,包括:
    将客户业务数据映射到至少一个目标子载波上,所述至少一个目标子载波用于承载所述客户业务数据,所述至少一个目标子载波为位于光传输网电域内的电子载波,或,所述至少一个目标子载波为位于光传输网光域内的光子载波;
    将所述至少一个目标子载波通过频分复用的方式映射到至少一个子波带上;
    将所述至少一个子波带发射至光纤通道中。
  2. 根据权利要求1所述的方法,其特征在于,所述将客户业务数据映射到至少一个目标子载波上包括:
    在所述电域内,将所述客户业务数据映射到至少一个所述电子载波上;
    或,
    在所述光域内,将所述客户业务数据映射到所述光子载波上。
  3. 根据权利要求1或2所述的方法,其特征在于,所述将客户业务数据映射到至少一个目标子载波上之前,所述方法还包括:
    生成所述至少一个目标子载波,其中,若所述子波带包括有至少两个所述目标子载波,则所述至少两个目标子载波之间相互正交。
  4. 一种光传输设备,其特征在于,包括:
    第一映射单元,将客户业务数据映射到至少一个目标子载波上,所述至少一个目标子载波用于承载所述客户业务数据,所述至少一个目标子载波为位于光传输网电域内的电子载波,或,所述至少一个目标子载波为位于光传输网光域内的光子载波;
    第二映射单元,用于将所述至少一个目标子载波通过频分复用的方式映射到至少一个子波带上;
    发射单元,用于将所述至少一个子波带发射至光纤通道中。
  5. 根据权利要求4所述的光传输设备,其特征在于,
    所述第一映射单元还用于,在所述电域内,将所述客户业务数据映射到至少一个所述电子载波上;
    或,
    所述第一映射单元还用于,在所述光域内,将所述客户业务数据映射到所述光子载波上。
  6. 根据权利要求4或5所述的光传输设备,其特征在于,所述光传输设备还包括:
    生成单元,用于生成所述至少一个目标子载波,其中,若所述子波带包括有至少两个所述目标子载波,则所述子波带所包括的所述目标子载波之间相互正交。
  7. 一种光传输设备,其特征在于,包括相互连接的处理器和发送器;
    所述处理器用于,将客户业务数据映射到至少一个目标子载波上,所述至少一个目标子载波用于承载所述客户业务数据,所述至少一个目标子载波为位于光传输网电域内的电子载波,或,所述至少一个目标子载波为位于光传输网光域内的光子载波;
    所述处理器还用于,将所述至少一个目标子载波通过频分复用的方式映射到至少一个子波带上;
    所述发送器用于,将所述至少一个子波带发射至光纤通道中。
  8. 根据权利要求7所述的光传输设备,其特征在于,所述处理器还用于,在所述电域内,将所述客户业务数据映射到至少一个所述电子载波上;
    或,
    所述处理器还用于,在所述光域内,将所述客户业务数据映射到所述光子载波上。
  9. 根据权利要求7或8所述的光传输设备,其特征在于,所述光传输设备还包括光源装置,所述光源装置用于生成所述至少一个目标子载波,且所述光源装置为激光器光源或多波光源,其中,若所述子波带包括有至少两个所述目标子载波,则所述子波带所包括的所述目标子载波之间相互正交。
  10. 根据权利要求7至9任一项所述的光传输设备,其特征在于,所述处理器为无源光滤波器,与所述子波带对应设置有至少一个所述无源光滤波器;
    所述无源光滤波器用于将所述子波带解复用至所述光子载波上,所述无源光滤波器还用于将所述光子载波通过频分复用的方式映射到所述子波带上。
  11. 根据权利要求7至9任一项所述的光传输设备,其特征在于,所述处 理器为光调制器和光探测器,与所述子波带对应设置有至少一个所述光调制器和所述光探测器;
    所述光探测器用于将所述子波带解复用至所述电子载波上,所述光调制器用于将所述电子载波通过频分复用的方式映射到所述子波带上。
PCT/CN2015/092734 2015-10-23 2015-10-23 一种数据传输方法以及光传输设备 WO2017067001A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580082869.8A CN107925503B (zh) 2015-10-23 2015-10-23 一种数据传输方法以及光传输设备
PCT/CN2015/092734 WO2017067001A1 (zh) 2015-10-23 2015-10-23 一种数据传输方法以及光传输设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/092734 WO2017067001A1 (zh) 2015-10-23 2015-10-23 一种数据传输方法以及光传输设备

Publications (1)

Publication Number Publication Date
WO2017067001A1 true WO2017067001A1 (zh) 2017-04-27

Family

ID=58556612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092734 WO2017067001A1 (zh) 2015-10-23 2015-10-23 一种数据传输方法以及光传输设备

Country Status (2)

Country Link
CN (1) CN107925503B (zh)
WO (1) WO2017067001A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060378A (zh) * 2006-04-20 2007-10-24 中兴通讯股份有限公司 一种波分复用传输系统及方法
US20120148236A1 (en) * 2010-12-13 2012-06-14 Kumar Santosh S In-band control mechanism
US20140161443A1 (en) * 2012-12-07 2014-06-12 At&T Intellectual Property I, L.P. End-to-End Carrier Frequency Control to Improve Bandwidth Utilization in an Optical Network

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532422B1 (ko) * 2003-02-28 2005-11-30 삼성전자주식회사 동일 심볼을 다수의 채널에 중복적으로 전송하여 통신거리를 확장시킨 무선 랜 시스템의 직교 주파수 분할다중화 송수신 장치 및 그 송수신 방법
DE602009001185D1 (de) * 2009-02-26 2011-06-09 Alcatel Lucent Optischer OFDM-Transponder mit Leistungsverwaltung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060378A (zh) * 2006-04-20 2007-10-24 中兴通讯股份有限公司 一种波分复用传输系统及方法
US20120148236A1 (en) * 2010-12-13 2012-06-14 Kumar Santosh S In-band control mechanism
US20140161443A1 (en) * 2012-12-07 2014-06-12 At&T Intellectual Property I, L.P. End-to-End Carrier Frequency Control to Improve Bandwidth Utilization in an Optical Network

Also Published As

Publication number Publication date
CN107925503B (zh) 2019-07-23
CN107925503A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
CN102820951B (zh) 光传送网中传送、接收客户信号的方法和装置
RU2465732C2 (ru) Способ, устройство и система передачи и приема клиентских сигналов
US9497064B2 (en) Method and apparatus for transporting ultra-high-speed Ethernet service
JP4878629B2 (ja) 多重伝送システムおよび多重伝送方法
US9118585B2 (en) Resizing existing traffic flow in optical transport network
EP2733880B1 (en) Method, device and system for processing variable rate signals
WO2012167551A1 (zh) 在光传送网上传送业务数据的方法、装置和系统
WO2013189034A1 (zh) 一种分配光频谱带宽资源的方法及装置
CN103716108B (zh) 光传送网的数据映射方法及装置
CN106303766B (zh) 带宽调整的方法及装置
JP5313351B2 (ja) 10ギガビット光ファイバーチャネルサービスを光伝送ネットワークに伝送する方法及び装置
WO2014124595A1 (zh) 数据的映射、解映射方法及装置
CN101060378A (zh) 一种波分复用传输系统及方法
CN103780327B (zh) 数据传送方法及装置
US9729245B2 (en) Using artificial justifications to apply noise shaping to actual justifications associated with mapping client data
WO2017067001A1 (zh) 一种数据传输方法以及光传输设备
CN103595515B (zh) 光传送网的数据映射方法及装置
WO2016074484A1 (zh) 分组业务信号发送方法、装置及接收方法、装置
CN111989933B (zh) 光传送网中的数据传输方法及装置
CN107210974B (zh) 一种操作管理维护开销配置的方法、装置和系统
KR20090039403A (ko) 종속신호를 통합하는 방법 및 통합 접속보드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906518

Country of ref document: EP

Kind code of ref document: A1