WO2017066993A1 - 热管散热系统及电力设备 - Google Patents

热管散热系统及电力设备 Download PDF

Info

Publication number
WO2017066993A1
WO2017066993A1 PCT/CN2015/092689 CN2015092689W WO2017066993A1 WO 2017066993 A1 WO2017066993 A1 WO 2017066993A1 CN 2015092689 W CN2015092689 W CN 2015092689W WO 2017066993 A1 WO2017066993 A1 WO 2017066993A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
liquid
heat
steam
cabinet
Prior art date
Application number
PCT/CN2015/092689
Other languages
English (en)
French (fr)
Inventor
彭耀锋
李志坚
刘洪辉
池善久
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15902470.2A priority Critical patent/EP3193571B1/en
Priority to PCT/CN2015/092689 priority patent/WO2017066993A1/zh
Priority to CN201580001226.6A priority patent/CN106465562B/zh
Priority to US15/468,859 priority patent/US10470339B2/en
Publication of WO2017066993A1 publication Critical patent/WO2017066993A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20663Liquid coolant with phase change, e.g. heat pipes
    • H05K7/20681Liquid coolant with phase change, e.g. heat pipes within cabinets for removing heat from sub-racks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20381Thermal management, e.g. evaporation control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20663Liquid coolant with phase change, e.g. heat pipes
    • H05K7/20672Liquid coolant with phase change, e.g. heat pipes within sub-racks for removing heat from electronic boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20809Liquid cooling with phase change within server blades for removing heat from heat source

Definitions

  • the present invention relates to the field of heat dissipation technologies, and in particular, to a heat pipe heat dissipation system and an electric device.
  • the liquid cooling system applied in the cabinet is mainly composed of a cabinet, a circulation system and an external cold source, and the circulation system brings the heat in the cabinet to an external cold source to achieve heat dissipation.
  • the boards are provided with heat-dissipating pipes that provide heat dissipation for the heating elements on the boards.
  • the heat-dissipating pipes are connected to the hoses, and the heat-dissipating pipes are connected through quick connectors provided on the hoses.
  • the main liquid line is powered by a pump to provide refrigeration for each veneer and absorb heat from the board. Since the working fluid is driven by the pump, the pressure is large.
  • the technical problem to be solved by the present invention is to provide a heat pipe heat dissipation system, which has the advantages of high heat transfer efficiency, good reliability, and no risk of leakage of working fluid.
  • the present invention provides a heat pipe heat dissipation system including a first pipe, a second pipe, and two pairs of quick connectors, the first pipe including a first steam pipe, a first liquid pipe, and a connection An evaporation section between the first steam pipe and the first liquid pipe, the second pipe includes a second steam pipe, a second liquid pipe, and a second steam pipe and the second liquid Heat exchanger between tubes, one pair of a quick joint is connected between the first steam pipe and the second steam pipe, and another pair of the quick joint is connected between the first liquid pipe and the second liquid pipe, so that the The first pipeline and the second pipeline are combined to form a loop heat pipe, the loop heat pipe includes a vacuuming structure, a refrigerant medium is disposed in the loop heat pipe, and a capillary structure is disposed in the evaporation section, and the capillary structure provides The capillary suction force causes the refrigerant to circulate in the loop heat pipe.
  • the second pipeline further includes a liquid storage tank connected to the second liquid pipe for adjusting the amount of refrigerant in the loop heat pipe.
  • the liquid storage tank includes an liquid inlet and a liquid outlet, and the liquid storage is performed through the liquid inlet and the liquid outlet
  • the tank is connected in series on the second liquid line, and the liquid outlet is disposed at a bottom of the liquid storage tank or at a position of a side wall of the liquid storage tank near a bottom of the liquid storage tank.
  • the evacuating structure includes a valve and an interface, the valve being coupled between the interface and the second steam tube.
  • the first steam pipe, the first liquid pipe, the second steam pipe, and the second liquid pipe are all rigid pipes.
  • the length of the first steam pipe is smaller than the length of the second steam pipe, and the length of the first liquid pipe is smaller than the second The length of the liquid tube.
  • the present invention provides a power device, including the heat pipe heat dissipation system, the cabinet, and the electronic module according to any one of the first aspect, wherein the electronic module is disposed inside the cabinet, and the heat pipe heat dissipation system is A first conduit is disposed in the electronic module, the evaporation section is in contact with a heat generating component in the electronic module, and the second conduit is disposed in the cabinet.
  • the cabinet includes a front end and a rear end, the electronic module is inserted into the cabinet from a front end of the cabinet, and the heat exchanger of the second pipeline is located in the cabinet The back end.
  • the invention further includes a cooling system disposed outside the cabinet, the heat exchanger being coupled to the cooling system.
  • the present invention further provides a power device including a cabinet, a plurality of electronic modules, and a heat pipe heat dissipation system, wherein the plurality of electronic modules are stacked in the cabinet, and the heat pipe heat dissipation system includes a plurality of first tubes a plurality of second steam pipes, a plurality of second liquid pipes, and a heat exchanger, wherein the plurality of first pipes are respectively disposed in the plurality of electronic modules, and each of the first pipes includes a first a steam tube, a first liquid tube, and an evaporation section connected between the first steam tube and the first liquid tube, the evaporation section being in contact with a heat generating component in the electronic module, the heat exchanger Provided in the cabinet and disposed opposite to the plurality of electronic modules, one end of each of the second steam pipes is respectively pluggably connected to the first steam pipe, and each of the second steam pipes The other end is connected to the heat exchanger, and one end of each of the second liquid tubes is respectively plugg
  • each of the second steam pipes and the first steam pipe are plugged together by a pair of quick joints, each of the second liquid pipes and the first liquid
  • the tubes are also plugged together by a pair of quick connectors.
  • a plurality of liquid storage tanks are further included, and the plurality of liquid storage tanks are respectively connected to the second liquid tube for adjusting the circuit The amount of refrigerant in the heat pipe.
  • the liquid storage tank includes an liquid inlet and a liquid outlet, and the liquid storage is performed through the liquid inlet and the liquid outlet
  • the tank is connected in series on the second liquid line, and the liquid outlet is disposed at a bottom of the liquid storage tank or at a position of a side wall of the liquid storage tank near a bottom of the liquid storage tank.
  • the evacuated structure includes a valve and an interface, the valve being coupled between the interface and the second steam tube.
  • the first steam pipe, the first liquid pipe, the second steam pipe, and the second liquid pipe are all rigid pipes.
  • the length of the first steam pipe is smaller than the length of the second steam pipe, and the length of the first liquid pipe is smaller than the second The length of the liquid tube.
  • the cabinet includes a front end and a rear end, the plurality of electronic modules are placed into the cabinet from a front end of the cabinet, and the heat exchanger is located at a rear end of the cabinet.
  • system further includes a cooling system disposed outside the cabinet, the heat exchanger being coupled to the cooling system.
  • a backplane is disposed in the cabinet, and the backplane is located between the plurality of electronic components and the heat exchanger, A plurality of electronic modules are electrically connected to the backplane.
  • the heat pipe heat dissipation system provided by the present invention is respectively connected between the first steam pipe and the second steam pipe and between the first liquid pipe and the second liquid pipe through the two pairs of quick joints,
  • the first pipeline and the second pipeline are combined to form a loop heat pipe, and the refrigerant medium is circulated in the loop heat pipe by using a capillary principle in the loop heat pipe.
  • driving components such as pumps
  • the refrigeration working fluid cycle is driven by the capillary force, and the driving force is small, and there is no risk of leakage of the working fluid at the joint of the quick joint.
  • the inside of the loop heat pipe is a negative pressure, and during the process of inserting and removing the quick joint, the refrigerant is not leaked under the state of negative pressure.
  • the refrigerant has a phase change heat in the loop heat pipe, and the heat transfer efficiency is high.
  • FIG. 1 is a schematic diagram of a heat pipe heat dissipation system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an electrical device provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an electrical device provided by another embodiment of the present invention.
  • the invention provides a heat pipe heat dissipation system and a power device including the heat pipe heat dissipation system
  • the power device may be a communication device
  • the power device includes an electronic module
  • the electronic module generates heat during operation
  • the heat pipe heat dissipation system can be electronic
  • the module provides heat dissipation.
  • the electronic module includes a circuit board inside, and a heating element such as a CPU is disposed on the circuit board.
  • the heat pipe cooling system includes a first pipe 10 , a second pipe 20 , and two pairs of quick connectors 30 .
  • the first pipe 10 and the second pipe 20 are both open and the two pairs of quick connectors 30 are connected.
  • the second line 20 and the second line 20 are brought into a closed loop.
  • the first line 10 includes a first steam tube 12, a first liquid tube 14 and an evaporation section 16 connected between the first steam tube 12 and the first liquid tube 14.
  • the second line 20 includes a second steam tube 22, a second liquid tube 24, and a heat exchanger 26 coupled between the second steam tube 22 and the second liquid tube 24.
  • the two pairs of quick joints 30 are respectively connected between the first steam pipe 12 and the second steam pipe 22 and between the first liquid pipe 14 and the second liquid pipe 24 to The first line 10 and the second line 20 combine to form a loop heat pipe.
  • each pair of quick connectors 30 includes a quick-connect male and a quick-connect female to the first steam pipe 12 and the second steam pipe
  • the combination between the two is as follows: the quick-connecting male connector is connected to the end of the first steam pipe 12, and the quick-connecting female connector is connected to the end of the second steam pipe 22, of course, the quick-connecting male connector and the quick-connecting
  • the position of the female head can also be interchanged.
  • the quick-connecting male and the quick-connecting female head When installing, the quick-connecting male and the quick-connecting female head are inserted, that is, the first steam pipe 12 and the second steam pipe 22 can be quickly combined, and the combination of the two can be
  • the sealing function is achieved, including the seal between the quick joint 30 and the first steam tube 12 and the second steam tube 22, and the seal between the quick-connect male and the quick-connect female.
  • the joint structure between the first liquid pipe 14 and the second liquid pipe 24 can refer to the combination between the first steam pipe 12 and the second steam pipe 22, and will not be described in detail.
  • the specific structure of the quick joint 30 used in the present invention is not limited, and a quick joint of any structure may be used as long as the first steam pipe 12 and the second steam pipe 22 are quickly connected, and the first liquid pipe 14 is provided.
  • the second liquid tube 24 is quickly connected.
  • the loop heat pipe includes an evacuated structure, specifically, the vacuuming structure includes a valve 40 and an interface 42 disposed between the interface 42 and the loop heat pipe, and the interface 42 is used for pumping
  • the vacuum that is to say, the branch of the loop heat pipe is provided with a branch for vacuuming.
  • the atmospheric pressure is the same as the atmospheric pressure.
  • the interface 42 is connected to the vacuum pump to realize vacuuming of the loop heat pipe. After vacuuming, a vacuum environment is formed in the loop heat pipe, which is a negative pressure state.
  • the loop heat pipe (ie, Loop Heat Pipe (LHP) loop heat pipe) of the present invention is an efficient phase change heat transfer device, which is connected into a loop through a gas-liquid transmission pipeline, and utilizes capillary pressure circulation provided by the capillary core.
  • the refrigerant is subjected to phase change heat transfer from a heat source to a heat sink.
  • the circuit heat pipe is provided with a refrigerant medium
  • the evaporation section 16 is provided with a capillary structure (also referred to as a capillary core), and the capillary structure provides a capillary suction force so that the refrigerant medium is in the Loop in the loop heat pipe.
  • the refrigerant is in a liquid state and may be water, oil or a mixed liquid. Since the capillary core is disposed in the evaporation section 16, the refrigerant can be stored in the capillary core in the evaporation section 16, and the capillary core is a porous material. In a specific application environment, the evaporation section 16 is in contact with the heating element, and the heat generated by the heating element is generated. Passed to the evaporation section 16, the refrigerant in the evaporation section 16 is vaporized by heat, flows along the porous material, flows by capillary suction into the first steam pipe 12, and then passes through the second steam pipe.
  • the direction indicated by the arrow in Fig. 1 is the direction in which the refrigerant fluid flows.
  • the heat pipe heat dissipation system provided by the present invention is respectively connected between the first steam pipe 12 and the second steam pipe 22 and the first liquid pipe 14 and the second liquid pipe through the two pairs of quick joints 30
  • the first pipeline 10 and the second pipeline 20 are combined to form a loop heat pipe, and the refrigerant medium is circulated in the loop heat pipe by the capillary principle in the loop heat pipe.
  • driving components such as pumps
  • the refrigerant is driven by the capillary force, and the driving force is small.
  • the inside of the loop heat pipe is a negative pressure, and during the process of inserting and removing the quick joint 30, the refrigerant is not leaked under the state of negative pressure.
  • the refrigerant has a phase change heat in the loop heat pipe, and the heat transfer efficiency is high.
  • the second line 20 further includes a liquid storage tank 50 connected to the second liquid tube 24 for adjusting the amount of refrigerant in the loop heat pipe. .
  • the liquid storage tank 50 is connected in series in the pipeline of the loop heat pipe, and the process of the refrigerant flow The medium is passed through the liquid storage tank 50, and the refrigerant medium is stored in the liquid storage tank 50, and the amount of the refrigerant in the pipeline can be automatically adjusted according to the change of the heat in the working state.
  • the specific working principle is: when the power consumption of the heating element contacted by the evaporation section 16 is increased, that is, the heat absorbed by the evaporation section 16 becomes large, so that the amount of the refrigerant in the evaporation section 16 is converted into steam, which is increased.
  • the capillary force in the evaporation section 16 becomes large, and the amount of the refrigerant in the refrigerant circuit is extracted from the liquid storage tank 50 by the capillary force, so that the amount of the refrigerant in the loop heat pipe is maintained in a balanced state. .
  • the liquid storage tank 50 includes a liquid inlet 52 and a liquid outlet 54, through which the liquid storage tank 50 is connected in series on the second liquid pipe 24,
  • the liquid outlet 54 is provided at a bottom of the liquid storage tank 50 or a position of a side wall of the liquid storage tank 50 close to the bottom of the liquid storage tank 50.
  • the half, the liquid refrigerant in the liquid state is in the lower half near the bottom, since the liquid outlet 54 is located at the bottom or the side wall of the liquid storage tank 50 is near the bottom of the liquid storage tank 50, The refrigerant in the outlet port 54 does not carry gas, so gas-liquid separation is achieved.
  • the valve 40 and the interface 42 are connected to the second steam tube 22.
  • the present invention provides a liquid storage tank 50 and a valve 40 and an interface 42 for vacuuming on the second conduit 20, which facilitates the design of the first conduit 10 to be more compact, and the first conduit 10 is to be heated.
  • the electronic module 200 is in contact, which also facilitates the mounting between the first conduit 10 and the electronic module 200.
  • the first steam pipe 12, the first liquid pipe 14, the second steam pipe 22, and the second liquid pipe 24 are all rigid pipes.
  • the length of the first steam pipe 12 is smaller than the length of the second steam pipe 22, and the length of the first liquid pipe 14 is smaller than the length of the second liquid pipe 24. That is, the distance between the position of the quick joint 30 and the evaporation section 16 is smaller than the distance between the position heat exchangers 26 of the quick joint 30, and the quick joint 30 is disposed close to the evaporation section 16 so that the first line 10 is
  • the first vapor tube and the first liquid tube 14 are designed to be as small as possible, which facilitates the reduction of the volume of the first line 10 and facilitates the mounting between the first line 10 and the electronic module 200.
  • an electric power device provided by the present invention includes the heat pipe heat dissipation system, the cabinet 100, and the electronic module 200.
  • the electronic module 200 is disposed inside the cabinet 100, and the heat pipe heat dissipation system is described.
  • a first conduit 10 is disposed in the electronic module 200, the evaporation section 16 is in contact with a heat generating component in the electronic module 200, and the second conduit 20 is fixed in the cabinet 100.
  • the cabinet 100 includes a front end and a rear end, the electronic module 200 is inserted into the cabinet 100 from a front end of the cabinet 100, and the heat exchanger 26 of the second pipeline 20 is located at the The rear end of the cabinet 100.
  • the power device provided by the present invention further includes a cooling system disposed outside the cabinet 100, the heat exchanger 26 being coupled to the cooling system.
  • a power device including a cabinet 100, a plurality of electronic modules 200, and a heat pipe heat dissipation system, wherein the plurality of electronic modules 200 are stacked on the In the cabinet 100, the heat pipe heat dissipation system includes a plurality of first pipelines 10, a plurality of second steam pipes 22, a plurality of second liquid pipes 24, and a heat exchanger 26, and the plurality of first pipes 10 are respectively disposed
  • each of the first conduits 10 includes a first steam pipe 12, a first liquid pipe 14, and a first steam pipe 12 and the first liquid pipe 14
  • each One end of the second steam pipe 22 is respectively pluggably connected to the first steam pipe 12, and the other end of each of the second
  • each of the circuit heat pipes includes a valve 40 and an interface 42 disposed between the interface 42 and the circuit heat pipe, the interface 42 for vacuuming, each
  • Each of the loop heat pipes is provided with a refrigerant medium
  • the evaporation section 16 is provided with a capillary structure, and the capillary structure provides a capillary suction force so that the refrigerant medium follows the loop heat pipe ring.
  • each of the second steam pipes 22 and the first steam pipe 12 are inserted together through a pair of quick joints 30, and between each of the second liquid pipes 24 and the first liquid pipe 14 Plugged together by a pair of quick connectors 30.
  • the plug structure of the specific quick connector 30 is combined with the quick connector 30 in the heat pipe heat dissipation system embodiment.
  • the power device also includes a plurality of liquid storage tanks 50 connected to the second liquid tubes 24 for adjusting the amount of refrigerant in the circuit heat pipes.
  • the liquid storage tank 50 includes a liquid inlet 52 and a liquid outlet 54, through which the liquid storage tank 50 is connected in series on the second liquid pipe 24,
  • the liquid outlet 54 is provided at a bottom of the liquid storage tank 50 or a position of a side wall of the liquid storage tank 50 close to the bottom of the liquid storage tank 50.
  • valve 40 and the interface 42 are coupled to the second steam tube 22.
  • the first steam pipe 12, the first liquid pipe 14, the second steam pipe 22, and the second liquid pipe 24 are all rigid pipes.
  • the length of the first steam pipe 12 is smaller than the length of the second steam pipe 22, and the length of the first liquid pipe 14 is smaller than the length of the second liquid pipe 24, and only the respective pipes are schematically represented in the figure. Does not represent its true size.
  • the cabinet 100 includes a front end and a rear end, and the plurality of electronic modules 200 are placed into the cabinet 100 from the front end of the cabinet 100, and the plurality of electronic modules 200 are laid out in a stacked structure.
  • the heat exchanger 26 is located at the rear end of the cabinet 100.
  • a cooling fan may be disposed in the cabinet 100. Generally, the cooling fan is disposed at the rear end of the cabinet 100. During the working process, the cooling fan realizes gas flow in the cabinet 100 to achieve air cooling.
  • a backplane 101 is disposed in the cabinet 100, and the backplane 101 is located between the plurality of electronic components and the heat exchanger 26, and the plurality of electronic modules 200 are electrically connected to the backplane 101.
  • a plurality of electronic modules 200 can be withdrawn from the cabinet 100 for replacement or repair, when the electronic module 200
  • the quick connector of the quick connector 30 is separated from the quick connector. Since the loop heat pipe is in a negative pressure state, even if the quick connector 30 is separated, the existence of the negative pressure will ensure the refrigerant in the pipeline is not Will leak out.

Abstract

本发明提供了一种热管散热系统,包括第一管路(10)和第二管路(20)。所述第一管路(10)包括第一蒸汽管(12)、第一液体管(14)和连接在所述第一蒸汽管(12)和所述第一液体管(14)之间的蒸发段(16),第二管路(20)包括第二蒸汽管(22)、第二液体管(24)和连接在所述第二蒸汽管(22)和所述第二液体管(24)之间的换能器(26),通过两对快速接头(30)分别连接于第一蒸汽管(12)和第二蒸汽管(22)之间及第一液体管(14)和第二液体管(24)之间,以使第一管路(10)和第二管路(20)结合形成回路热管,回路热管包括用于抽真空的阀门(40)和接口(42),回路热管内设有制冷工质,蒸发段(16)内设毛细结构,以提供毛细抽吸力使得所述制冷工质在所述回路热管中循环。本发明具有传热效率高、可靠性好、无工质泄漏风险的优点。本发明还提供了一种电力设备。

Description

热管散热系统及电力设备 技术领域
本发明涉及散热技术领域,尤其涉及一种热管散热系统及电力设备。
背景技术
随着IT器件的性能越来越强、密度越来越高,导致系统功耗越来越大,传统的风冷由于风扇性能和系统噪声的限制,逐渐接近其散热能力极限,而液冷散热能力高、噪声低,越来越受到人们的重视。
现有技术中,应用在机柜中的液冷散热系统主要由机柜、循环系统和外部冷源组成,循环系统将机柜内的热量带到外部冷源,以实现散热。机柜里有较多的单板,单板上设有为单板上的发热元件提供散热的散热管路,散热管路与软管相连,通过设于软管上的快速接头,将散热管路连入机柜内循环系统的主液体管道。主液体管道由泵提供动力,给每块单板提供制冷工质,吸收单板上的热量。由于工质是由泵驱动,压力较大,当单板与系统管路对接时,快速接头处存在泄露风险,液体滴到单板上后会造成系统短路。而且泵是运动部件,可靠性要求非常高,且需要备份,成本非常高。
发明内容
本发明所要解决的技术问题在于提供一种热管散热系统,具有传热效率高,可靠性好,无工质泄漏风险的优势。
为了实现上述目的,本发明实施方式提供如下技术方案:
第一方面,本发明供了一种热管散热系统,包括第一管路、第二管路,和两对快速接头,所述第一管路包括第一蒸汽管、第一液体管和连接在所述第一蒸汽管和所述第一液体管之间的蒸发段,所述第二管路包括第二蒸汽管、第二液体管和连接在所述第二蒸汽管和所述第二液体管之间的换热器,其中一对所 述快速接头连接于所述第一蒸汽管和所述第二蒸汽管之间,另一对所述快速接头连接于所述第一液体管和所述第二液体管之间,以使所述第一管路和所述第二管路结合形成回路热管,所述回路热管包括抽真空结构,所述回路热管内设有制冷工质,所述蒸发段内设毛细结构,所述毛细结构提供毛细抽吸力使得所述制冷工质在所述回路热管中循环。
第一种可能的实施方式中,所述第二管路还包括储液罐,所述储液罐连接至所述第二液体管,用于调节所述回路热管中的制冷工质的量。
结合第一种可能的实施方式,在第二种可能的实施方式中,所述储液罐包括入液口和出液口,通过所述入液口和所述出液口将所述储液罐串联在所述第二液体管路上,所述出液口设置在所述储液罐的底部或者所述储液罐的侧壁之靠近所述储液罐的底部的位置处。
在第三种可能的实施方式中,所述抽真空结构包括阀门和接口,所述阀门连接于所述接口和所述第二蒸汽管之间。
在第四种可能的实施方式中,所述第一蒸汽管、所述第一液体管、所述第二蒸汽管和所述第二液体管均为刚性管材。
结合第四种可能的实施方式,在第五种可能的实施方式中,所述第一蒸汽管的长度小于所述第二蒸汽管的长度,所述第一液体管的长度小于所述第二液体管的长度。
第二方面,本发明提供一种电力设备,包括第一方面任意一项所述的热管散热系统、机柜及电子模块,所述电子模块设于所述机柜内部,所述热管散热系统之所述第一管路设置在所述电子模块中,所述蒸发段与所述电子模块中的发热元件接触,所述第二管路设置在所述机柜中。
第一种可能的实施方式中,所述机柜包括前端和后端,所述电子模块从所述机柜的前端置入所述机柜,所述第二管路之所述换热器位于所述机柜的后端。
结合第一种可能的实施方式,在第二种可能的实施方式中,本发明还包括设于所述机柜外部的冷却系统,所述换热器与所述冷却系统相连。
第三方面,本发明还提供一种电力设备,包括机柜、多个电子模块和热管散热系统,所述多个电子模块层叠设置在所述机柜内,所述热管散热系统包括多个第一管路、多个第二蒸汽管、多个第二液体管和换热器,所述多个第一管路分别设置在所述多个电子模块中,每个所述第一管路均包括第一蒸汽管、第一液体管和连接在所述第一蒸汽管和所述第一液体管之间的蒸发段,所述蒸发段与所述电子模块中的发热元件接触,所述换热器设置在所述机柜中且与所述多个电子模块相对设置,每个所述第二蒸汽管的一端分别可插拔地连接至所述第一蒸汽管,每个所述第二蒸汽管的另一端接入所述换热器,每个所述第二液体管的一端分别可插拔地连接至所述第一液体管,每个所述第二液体管的另一端接入所述换热器,所述多个第一管路与所述多个第二蒸汽管、所述多个第二液体管和所述换热器共同形成多路并联的回路热管,每个所述回路热管均包括抽真空结构,每个所述回路热管内设有制冷工质,所述蒸发段内设毛细结构,所述毛细结构提供毛细抽吸力使得所述制冷工质在所述回路热管中循环。
第一种可能的实施方式中,每个所述第二蒸汽管的一端与所述第一蒸汽管之间通过一对快速接头插接在一起,每个第二液体管与所述第一液体管之间亦通过一对快速接头插接在一起。
结合第一种可能的实施方式,在第二种可能的实施方式中,还包括多个储液罐,所述多个储液罐分别连接至所述第二液体管,用于调节所述回路热管中的制冷工质的量。
结合第二种可能的实施方式,在第三种可能的实施方式中,所述储液罐包括入液口和出液口,通过所述入液口和所述出液口将所述储液罐串联在所述第二液体管路上,所述出液口设置在所述储液罐的底部或者所述储液罐的侧壁之靠近所述储液罐的底部的位置处。
在第四种可能的实施方式中,所述抽真空结构包括阀门和接口,所述阀门连接于所述接口和所述第二蒸汽管之间。
在第五种可能的实施方式中,所述第一蒸汽管、所述第一液体管、所述第二蒸汽管和所述第二液体管均为刚性管材。
结合第五种可能的实施方式,在第六种可能的实施方式中,所述第一蒸汽管的长度小于所述第二蒸汽管的长度,所述第一液体管的长度小于所述第二液体管的长度。
在第七种可能的实施方式中,所述机柜包括前端和后端,所述多个电子模块从所述机柜的前端置入所述机柜,所述换热器位于所述机柜的后端。
结合第七种可能的实施方式,在第八种可能的实施方式中,还包括设于所述机柜外部的冷却系统,所述换热器与所述冷却系统相连。
结合第七种可能的实施方式,在第九种可能的实施方式中,所述机柜内设有背板,所述背板位于所述多个电子元件和所述换热器之间,所述多个电子模块均与所述背板电连接。
本发明提供的热管散热系统通过所述两对快速接头分别连接于所述第一蒸汽管和所述第二蒸汽管之间及所述第一液体管和所述第二液体管之间,以使所述第一管路和所述第二管路结合形成回路热管,利用回路热管中的毛细原理实现制冷工质在所述回路热管中循环。无需要额外增加驱动元件,例如泵,来带动制冷工质的循环,使得热管散热系统具有稳定的可靠性。通过毛细力驱动制冷工质循环,驱动力小,在快速接头结合处,无工质泄漏风险。而且回路热管内部为负压,在快速接头插拔的过程中制冷工质在负压的状态下,不会泄露。制冷工质在回路热管中通过相变换热,传热效率高。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要 使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一种实施方式提供的热管散热系统的示意图。
图2是本发明一种实施方式提供的电力设备的示意图。
图3是本发明另一种实施方式提供的电力设备的示意图。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚地描述。
本发明供了一种热管散热系统及包括所述热管散热系统的电力设备,所述电力设备可以为通信设备,电力设备中包括电子模块,电子模块工作过程中会发热,热管散热系统能够为电子模块提供散热。电子模块内部包括电路板,电路板上设置发热元件,例如CPU。
请参阅图1,热管散热系统包括第一管路10、第二管路20,和两对快速接头30,第一管路10和第二管路20均呈开放状态,两对快速接头30连接在第一管路10和第二管路20之间,使得第二管路20和第二管路20组成一个闭合回路。
所述第一管路10包括第一蒸汽管12、第一液体管14和连接在所述第一蒸汽管12和所述第一液体管14之间的蒸发段16。所述第二管路20包括第二蒸汽管22、第二液体管24和连接在所述第二蒸汽管22和所述第二液体管24之间的换热器26。所述两对快速接头30分别连接于所述第一蒸汽管12和所述第二蒸汽管22之间及所述第一液体管14和所述第二液体管24之间,以使所述第一管路10和所述第二管路20结合形成回路热管。具体而言,每一对快速接头30都包括快接公头和快接母头,以第一蒸汽管12和所述第二蒸汽管 22之间的结合为例,具体结构如下:快接公头连接在第一蒸汽管12的端部,快接母头连接在第二蒸汽管22的端部,当然快接公头和快接母头的位置也可以互换,安装时,将快接公头和快接母头对插,即可以快速将第一蒸汽管12和第二蒸汽管22结合在一起,二者的结合后能实现密封功能,包括快速接头30与第一蒸汽管12和第二蒸汽管22之间的密封及快接公头和快接母头之间的密封。第一液体管14和所述第二液体管24之间的结合结构可以参照第一蒸汽管12和所述第二蒸汽管22之间的结合,不再详述。本发明所使用的快速接头30的具体结构不做限制,可以使用任意结构的快速接头,只要能满足将第一蒸汽管12和所述第二蒸汽管22快速连接,以及将第一液体管14和所述第二液体管24快速连接。
所述回路热管包括抽真空结构,具体而言,所述抽真空结构包括阀门40和接口42,所述阀门40设于所述接口42和所述回路热管之间,所述接口42用于抽真空,也就是说,回路热管的管路上设有用于抽真空的支路,当完成第一管路10和第二管路20的对接安装后,回路热管内存在空气,此时回路热管内的气压外大气压相同,将接口42与真空泵相连,即可实现对回路热管的抽真空,抽真空后,回路热管内形成真空环境,为负压状态。本发明所述的回路热管(即:Loop Heat Pipe(LHP)环路热管)是是一种高效的相变传热装置,通过气液传输管路连接成回路,利用毛细芯提供的毛细压力循环制冷工质进行从热源到热沉的相变传热。具体而言,所述回路热管内设有制冷工质,所述蒸发段16内设毛细结构(又称为毛细芯),所述毛细结构提供毛细抽吸力使得所述制冷工质在所述回路热管中循环。制冷工质为液体状态,可以为水、油或混合液体。由于蒸发段16内设毛细芯,制冷工质可以存储在蒸发段16内的毛细芯中,毛细芯为多孔材料,具体应用环境中,蒸发段16与发热元件接触,发热元件工作所产生的热量传递给蒸发段16,蒸发段16内的制冷工质遇热汽化,沿着多孔材料,靠毛细抽吸力流动至第一蒸汽管12中,然后经过第二蒸汽管 22后,流入换热器26,在换热器26中,由于温度的降低,汽体液化,并流入第二液体管24,再经由第一液体管14流入蒸发段16,以形成循环流动状态,图1中箭头所示的方向为制冷工质流动的方向。
本发明提供的热管散热系统通过所述两对快速接头30分别连接于所述第一蒸汽管12和所述第二蒸汽管22之间及所述第一液体管14和所述第二液体管24之间,以使所述第一管路10和所述第二管路20结合形成回路热管,利用回路热管中的毛细原理实现制冷工质在所述回路热管中循环。无需要额外增加驱动元件,例如泵,来带动制冷工质的循环,使得热管散热系统具有稳定的可靠性。通过毛细力驱动制冷工质循环,驱动力小,在快速接头30结合处,无工质泄漏风险。而且回路热管内部为负压,在快速接头30插拔的过程中制冷工质在负压的状态下,不会泄露。制冷工质在回路热管中通过相变换热,传热效率高。
一种实施方式中,所述第二管路20还包括储液罐50,所述储液罐50连接至所述第二液体管24,用于调节所述回路热管中的制冷工质的量。制冷工质在回路热管中循环流动过程中,蒸发段16所吸收的热量的变化,会导致制冷工质流速的变化,储液罐50串联在回路热管的管路中,制冷工质流动的过程中要经过储液罐50,储液罐50中存储有制冷工质,根据工作状态下的热量的变化,能够自动调节管路中的制冷工质的量。具体工作原理为:当蒸发段16所接触的发热元件的功耗增高,也就是蒸发段16所吸收的热量变大,使得蒸发段16内部的制冷工质转化成蒸汽的量随之增加,这种情况下,蒸发段16内毛细力变大,在毛细力作用下从储液罐50抽取制冷工质补回路热管中制冷工质的量,使得回路热管中制冷工质的量维持平衡的状态。相反,当蒸发段16所接触的发热元件的功耗降低,也就是蒸发段16所吸收的热量变小,使得蒸发段16内部的制冷工质转化成蒸汽的量随之减少,这种情况下,回路热管中制冷工质的量会增加,但同时,蒸发段16中的毛细结构的毛细力会变小, 由于毛细力的变小,直接影响在毛细力作用下从储液罐50抽取制冷工质的量,使得从储液罐50抽取制冷工质的量减少,也就是说,制冷工质在回路热管中循环运动的过程中,增加的部分制冷工质会存储在储液罐50中(因为流进储液罐50的制冷工质的量大于流出储液罐50的制冷工质的量),这样,就使得回路热管中制冷工质的量维持平衡的状态。
所述储液罐50包括入液口52和出液口54,通过所述入液口52和所述出液口54将所述储液罐50串联在所述第二液体管24路上,所述出液口54设置在所述储液罐50的底部或者所述储液罐50的侧壁之靠近所述储液罐50的底部的位置处。这样,制冷工质由入液口52进入储液罐50后,若制冷工质上存在部分气体,气体可以在储液罐50中被分离出去,气体上升至储液罐50的靠近顶部的上半部,呈液体状态的制冷工质在靠近底部的下半部分,由于出液口54位于底部或者所述储液罐50的侧壁之靠近所述储液罐50的底部的位置处,从出液口54流出的制冷工质中不会携带气体,因此实现了气液分离。
所述阀门40和所述接口42连接至所述第二蒸汽管22。本发明将储液罐50和用于抽真空的阀门40和接口42设置在第二管路20上,有利于将第一管路10设计的更为简洁,第一管路10要与发热的电子模块200接触,这样也便于第一管路10与电子模块200之间的安装。
一种实施方式中,所述第一蒸汽管12、所述第一液体管14、所述第二蒸汽管22和所述第二液体管24均为刚性管材。
所述第一蒸汽管12的长度小于所述第二蒸汽管22的长度,所述第一液体管14的长度小于所述第二液体管24的长度。也就是说,快速接头30的位置与蒸发段16之间的距离要小于快速接头30的位置换热器26之间的距离,将快速接头30靠近蒸发段16设置,使得第一管路10中的第一蒸气管和第一液体管14的尺寸设计的尽量小,这样有利于第一管路10的体积减小,也便于第一管路10与电子模块200之间的安装。
请参阅图2,本发明提供的一种电力设备,包括所述的热管散热系统、机柜100及电子模块200,所述电子模块200设于所述机柜100内部,所述热管散热系统之所述第一管路10设置在所述电子模块200中,所述蒸发段16与所述电子模块200中的发热元件接触,所述第二管路20固定在所述机柜100中。
具体而言,所述机柜100包括前端和后端,所述电子模块200从所述机柜100的前端置入所述机柜100,所述第二管路20之所述换热器26位于所述机柜100的后端。
本发明提供的电力设备还包括设于所述机柜100外部的冷却系统,所述换热器26与所述冷却系统相连。
请结合参阅图3和图1,本发明另一实施例中,还提供一种电力设备,包括机柜100、多个电子模块200和热管散热系统,所述多个电子模块200层叠设置在所述机柜100内,所述热管散热系统包括多个第一管路10、多个第二蒸汽管22、多个第二液体管24和换热器26,所述多个第一管路10分别设置在所述多个电子模块200中,每个所述第一管路10均包括第一蒸汽管12、第一液体管14和连接在所述第一蒸汽管12和所述第一液体管14之间的蒸发段16,所述蒸发段16与所述电子模块200中的发热元件接触,所述换热器26设置在所述机柜100中且与所述多个电子模块200相对设置,每个所述第二蒸汽管22的一端分别可插拔地连接至所述第一蒸汽管12,每个所述第二蒸汽管22的另一端接入所述换热器26,每个所述第二液体管24的一端分别可插拔地连接至所述第一液体管14,每个所述第二液体管24的另一端接入所述换热器26,所述多个第一管路10与所述多个第二蒸汽管22、所述多个第二液体管24和所述换热器26共同形成多路并联的回路热管,每个所述回路热管均包括阀门40和接口42,所述阀门40设于所述接口42和所述回路热管之间,所述接口42用于抽真空,每个所述回路热管内设有制冷工质,所述蒸发段16内设毛细结构,所述毛细结构提供毛细抽吸力使得所述制冷工质在所述回路热管中循 环。
每个所述第二蒸汽管22的一端与所述第一蒸汽管12之间通过一对快速接头30插接在一起,每个第二液体管24与所述第一液体管14之间亦通过一对快速接头30插接在一起。具体的快速接头30的插接结构同热管散热系统实施例中的快速接头30的结合结构。
本实施方式中,电力设备亦包括多个储液罐50,所述多个储液罐50分别连接至所述第二液体管24,用于调节所述回路热管中的制冷工质的量。所述储液罐50包括入液口52和出液口54,通过所述入液口52和所述出液口54将所述储液罐50串联在所述第二液体管24路上,所述出液口54设置在所述储液罐50的底部或者所述储液罐50的侧壁之靠近所述储液罐50的底部的位置处。
一种实施方式中,所述阀门40和所述接口42连接至所述第二蒸汽管22。
所述第一蒸汽管12、所述第一液体管14、所述第二蒸汽管22和所述第二液体管24均为刚性管材。
所述第一蒸汽管12的长度小于所述第二蒸汽管22的长度,所述第一液体管14的长度小于所述第二液体管24的长度,图中只是示意性的表达各个管路,并不代表其真实的尺寸。
一种实施方式中,所述机柜100包括前端和后端,所述多个电子模块200从所述机柜100的前端置入所述机柜100,且多个电子模块200呈层叠架构布放,所述换热器26位于所述机柜100的后端。机柜100内还可以设置散热风扇,通常散热风扇设置在机柜100的后端,散热风扇在工作的过程中,实现机柜100内的气体流动,实现风冷散热。
所述机柜100内设有背板101,所述背板101位于所述多个电子元件和所述换热器26之间,所述多个电子模块200均与所述背板101电连接。多个电子模块200可以从机柜100中抽出,以进行更换或者维修,当电子模块200 移出机柜100时,快速接头30之快接公头与快接母头同时分离,由于回路热管中是负压状态,即使快速接头30分离,负压的存在会保障管路中的制冷工质不会泄露出来。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (19)

  1. 一种热管散热系统,其特征在于,包括第一管路、第二管路,和两对快速接头,所述第一管路包括第一蒸汽管、第一液体管和连接在所述第一蒸汽管和所述第一液体管之间的蒸发段,所述第二管路包括第二蒸汽管、第二液体管和连接在所述第二蒸汽管和所述第二液体管之间的换热器,其中一对所述快速接头连接于所述第一蒸汽管和所述第二蒸汽管之间,另一对所述快速接头连接于所述第一液体管和所述第二液体管之间,以使所述第一管路和所述第二管路结合形成回路热管,所述回路热管包括抽真空结构,所述回路热管内设有制冷工质,所述蒸发段内设毛细结构,所述毛细结构提供毛细抽吸力使得所述制冷工质在所述回路热管中循环。
  2. 如权利要求1所述的热管散热系统,其特征在于,所述第二管路还包括储液罐,所述储液罐连接至所述第二液体管,用于调节所述回路热管中的制冷工质的量。
  3. 如权利要求2所述的热管散热系统,其特征在于,所述储液罐包括入液口和出液口,通过所述入液口和所述出液口将所述储液罐串联在所述第二液体管路上,所述出液口设置在所述储液罐的底部或者所述储液罐的侧壁之靠近所述储液罐的底部的位置处。
  4. 如权利要求1所述的热管散热系统,其特征在于,所述抽真空结构包括阀门和接口,所述阀门连接于所述接口和所述第二蒸汽管之间。
  5. 如权利要求1权利要求所述的热管散热系统,其特征在于,所述第一蒸汽管、所述第一液体管、所述第二蒸汽管和所述第二液体管均为刚性管材。
  6. 如权利要求5所述的热管散热系统,其特征在于,所述第一蒸汽管的长度小于所述第二蒸汽管的长度,所述第一液体管的长度小于所述第二液体管的长度。
  7. 一种电力设备,其特征在于,包括如权利要求1-5任意一项所述的热管 散热系统、机柜及电子模块,所述电子模块设于所述机柜内部,所述热管散热系统之所述第一管路设置在所述电子模块中,所述蒸发段与所述电子模块中的发热元件接触,所述第二管路固定在所述机柜中。
  8. 如权利要求7所述的电力设备,其特征在于,所述机柜包括前端和后端,所述电子模块从所述机柜的前端置入所述机柜,所述第二管路之所述换热器位于所述机柜的后端。
  9. 如权利要求8所述的电力设备,其特征在于,还包括设于所述机柜外部的冷却系统,所述换热器与所述冷却系统相连。
  10. 一种电力设备,包括机柜、多个电子模块和热管散热系统,所述多个电子模块层叠设置在所述机柜内,其特征在于,所述热管散热系统包括多个第一管路、多个第二蒸汽管、多个第二液体管和换热器,所述多个第一管路分别设置在所述多个电子模块中,每个所述第一管路均包括第一蒸汽管、第一液体管和连接在所述第一蒸汽管和所述第一液体管之间的蒸发段,所述蒸发段与所述电子模块中的发热元件接触,所述换热器设置在所述机柜中且与所述多个电子模块相对设置,每个所述第二蒸汽管的一端分别可插拔地连接至所述第一蒸汽管,每个所述第二蒸汽管的另一端接入所述换热器,每个所述第二液体管的一端分别可插拔地连接至所述第一液体管,每个所述第二液体管的另一端接入所述换热器,所述多个第一管路与所述多个第二蒸汽管、所述多个第二液体管和所述换热器共同形成多路并联的回路热管,每个所述回路热管均抽真空结构,每个所述回路热管内设有制冷工质,所述蒸发段内设毛细结构,所述毛细结构提供毛细抽吸力使得所述制冷工质在所述回路热管中循环。
  11. 如权利要求10所述的电力设备,其特征在于,每个所述第二蒸汽管的一端与所述第一蒸汽管之间通过一对快速接头插接在一起,每个第二液体管与所述第一液体管之间亦通过一对快速接头插接在一起。
  12. 如权利要求11所述的电力设备,其特征在于,还包括多个储液罐,所 述多个储液罐分别连接至所述第二液体管,用于调节所述回路热管中的制冷工质的量。
  13. 如权利要求12所述的电力设备,其特征在于,所述储液罐包括入液口和出液口,通过所述入液口和所述出液口将所述储液罐串联在所述第二液体管路上,所述出液口设置在所述储液罐的底部或者所述储液罐的侧壁之靠近所述储液罐的底部的位置处。
  14. 如权利要求11所述的热管散热系统,其特征在于,所述抽真空结构包括阀门和接口,所述阀门连接于所述接口和所述第二蒸汽管之间。
  15. 如权利要求10权利要求所述的热管散热系统,其特征在于,所述第一蒸汽管、所述第一液体管、所述第二蒸汽管和所述第二液体管均为刚性管材。
  16. 如权利要求15所述的热管散热系统,其特征在于,所述第一蒸汽管的长度小于所述第二蒸汽管的长度,所述第一液体管的长度小于所述第二液体管的长度。
  17. 如权利要求11所述的热管散热系统,其特征在于,所述机柜包括前端和后端,所述多个电子模块从所述机柜的前端置入所述机柜,所述换热器位于所述机柜的后端。
  18. 如权利要求17所述的热管散热系统,其特征在于,还包括设于所述机柜外部的冷却系统,所述换热器与所述冷却系统相连。
  19. 如权利要求17所述的热管散热系统,其特征在于,所述机柜内设有背板,所述背板位于所述多个电子元件和所述换热器之间,所述多个电子模块均与所述背板电连接。
PCT/CN2015/092689 2015-10-23 2015-10-23 热管散热系统及电力设备 WO2017066993A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15902470.2A EP3193571B1 (en) 2015-10-23 2015-10-23 Heat pipe based cooling system and power equipment
PCT/CN2015/092689 WO2017066993A1 (zh) 2015-10-23 2015-10-23 热管散热系统及电力设备
CN201580001226.6A CN106465562B (zh) 2015-10-23 2015-10-23 热管散热系统及电力设备
US15/468,859 US10470339B2 (en) 2015-10-23 2017-03-24 Heat-pipe heat dissipation system and power device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/092689 WO2017066993A1 (zh) 2015-10-23 2015-10-23 热管散热系统及电力设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/468,859 Continuation US10470339B2 (en) 2015-10-23 2017-03-24 Heat-pipe heat dissipation system and power device

Publications (1)

Publication Number Publication Date
WO2017066993A1 true WO2017066993A1 (zh) 2017-04-27

Family

ID=58093983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092689 WO2017066993A1 (zh) 2015-10-23 2015-10-23 热管散热系统及电力设备

Country Status (4)

Country Link
US (1) US10470339B2 (zh)
EP (1) EP3193571B1 (zh)
CN (1) CN106465562B (zh)
WO (1) WO2017066993A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421918A1 (en) * 2017-06-30 2019-01-02 General Electric Company A heat dissipation system and an associated method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6720752B2 (ja) * 2016-07-25 2020-07-08 富士通株式会社 液浸冷却装置、液浸冷却システム、及び液浸冷却装置の制御方法
CN107223009B (zh) * 2017-07-27 2024-04-09 西安特来电智能充电科技有限公司 一种电源模块及其散热系统
CN107577317B (zh) * 2017-10-20 2023-10-10 北京百度网讯科技有限公司 散热接头和液冷系统
CN108055810B (zh) * 2017-12-08 2023-09-29 广东申菱环境系统股份有限公司 数据中心用氟泵冷却流量兼容系统
CN110906569B (zh) * 2019-03-14 2021-08-17 山东大学 一种设置储液区的太阳能集热器
CN110017714B (zh) * 2019-04-17 2020-01-24 中国矿业大学 一种以二氧化碳为工质的低温重力热管及其充装方法
US11032949B2 (en) * 2019-09-30 2021-06-08 Baidu Usa Llc Method for deploying liquid cooling solution in an air-cooled data center room
CN110589919A (zh) * 2019-10-29 2019-12-20 南京聪诺信息科技有限公司 一种热毛细驱动废水浓缩系统
CN111613592B (zh) * 2020-06-05 2022-05-17 中国科学院工程热物理研究所 一种电子器件冷却装置
FR3113221B1 (fr) * 2020-07-30 2023-04-07 Calyos Sa Système pour refroidir des cartes serveurs dans un centre de données
CN111970906B (zh) * 2020-08-24 2022-03-15 浙江集迈科微电子有限公司 相控阵雷达散热装置
CN115551284A (zh) * 2021-06-30 2022-12-30 华为技术有限公司 一种单板、机柜及数据中心

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883581A (zh) * 2011-07-14 2013-01-16 中能深思(北京)节能技术有限公司 服务器机柜热管散热系统
CN203120357U (zh) * 2013-01-14 2013-08-07 中兴通讯股份有限公司 液冷散热机柜
CN104534600A (zh) * 2014-12-31 2015-04-22 广州市明昕通信技术有限公司 一种热管空调组合装置及制冷方法
CN104735959A (zh) * 2015-02-02 2015-06-24 深圳市英维克科技股份有限公司 机柜的散热系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2602035B1 (fr) * 1986-04-23 1990-05-25 Michel Bosteels Procede et installation de transfert de chaleur entre un fluide et un organe a refroidir ou rechauffer, par mise en depression du fluide par rapport a la pression atmospherique
JP3277786B2 (ja) * 1995-12-21 2002-04-22 株式会社日立製作所 冷却装置及び氷蓄熱装置
CN1224830A (zh) * 1998-01-26 1999-08-04 于兆范 分离式热管加热系统
JP2000241089A (ja) * 1999-02-19 2000-09-08 Mitsubishi Electric Corp 蒸発器、吸熱器、熱輸送システム及び熱輸送方法
US6981543B2 (en) * 2001-09-20 2006-01-03 Intel Corporation Modular capillary pumped loop cooling system
CN100342197C (zh) * 2003-07-24 2007-10-10 徐惠群 除去热管内部非凝结性气体的方法及设备
US8289710B2 (en) * 2006-02-16 2012-10-16 Liebert Corporation Liquid cooling systems for server applications
US20080121309A1 (en) * 2006-11-07 2008-05-29 Wayne Scott Boise System, method, and apparatus for balloon and toy filler, kit, and stand
US7957132B2 (en) * 2007-04-16 2011-06-07 Fried Stephen S Efficiently cool data centers and electronic enclosures using loop heat pipes
CN101075593A (zh) * 2007-05-25 2007-11-21 秦彪 环流热管式电子器件散热器
WO2008153071A1 (ja) * 2007-06-15 2008-12-18 Asahi Kasei Fibers Corporation ループヒートパイプ型伝熱装置
US7757506B2 (en) * 2007-11-19 2010-07-20 International Business Machines Corporation System and method for facilitating cooling of a liquid-cooled electronics rack
TW201024648A (en) * 2008-12-26 2010-07-01 Ji-De Jin Flat loop heat pipe
CN101634533A (zh) * 2009-07-21 2010-01-27 史杰 高导热均温箱回路热管散热装置
CN201521927U (zh) * 2009-07-21 2010-07-07 史杰 Led灯采用增强型蒸发段的回路热管散热装置
US8978992B2 (en) * 2009-09-14 2015-03-17 Jiffy-Tite Company, Inc. Cooler bypass apparatus and installation kit
US9010141B2 (en) * 2010-04-19 2015-04-21 Chilldyne, Inc. Computer cooling system and method of use
CN201819599U (zh) * 2010-09-19 2011-05-04 北京奇宏科技研发中心有限公司 一种并联式多蒸发器环路热管
US8783052B2 (en) * 2010-11-04 2014-07-22 International Business Machines Corporation Coolant-buffered, vapor-compression refrigeration with thermal storage and compressor cycling
JP2012132661A (ja) * 2010-12-01 2012-07-12 Fujitsu Ltd 冷却装置及び電子装置
CN102226658A (zh) * 2011-04-13 2011-10-26 郭琛 一种用于手机通讯基站散热的分体式热管散热器及管路连接方法
US9043035B2 (en) * 2011-11-29 2015-05-26 International Business Machines Corporation Dynamically limiting energy consumed by cooling apparatus
CN103327790B (zh) * 2013-05-17 2016-06-22 华为技术有限公司 散热装置及散热系统
FR3028914B1 (fr) * 2014-11-21 2017-01-06 Airbus Group Sas Tuyauterie d'air "flex-rigide"

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883581A (zh) * 2011-07-14 2013-01-16 中能深思(北京)节能技术有限公司 服务器机柜热管散热系统
CN203120357U (zh) * 2013-01-14 2013-08-07 中兴通讯股份有限公司 液冷散热机柜
CN104534600A (zh) * 2014-12-31 2015-04-22 广州市明昕通信技术有限公司 一种热管空调组合装置及制冷方法
CN104735959A (zh) * 2015-02-02 2015-06-24 深圳市英维克科技股份有限公司 机柜的散热系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421918A1 (en) * 2017-06-30 2019-01-02 General Electric Company A heat dissipation system and an associated method thereof
US11252847B2 (en) 2017-06-30 2022-02-15 General Electric Company Heat dissipation system and an associated method thereof

Also Published As

Publication number Publication date
US20170196124A1 (en) 2017-07-06
US10470339B2 (en) 2019-11-05
EP3193571B1 (en) 2020-08-26
EP3193571A1 (en) 2017-07-19
EP3193571A4 (en) 2018-01-10
CN106465562B (zh) 2019-08-16
CN106465562A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2017066993A1 (zh) 热管散热系统及电力设备
JP5756573B2 (ja) 別々に回転自在なマニホルド区域を有する冷却材マニホルド
US10104810B2 (en) Coupling assemblies for connecting fluid-carrying components
US20190343026A1 (en) Liquid cooling system for cabinet server
CN103687443A (zh) 冷却设备及其制造方法
EP3125657A1 (en) Liquid-cooling heat dissipation server
CN112394792B (zh) 高热流密度芯片浸没式相变冷却系统
CN203964739U (zh) 热虹吸回路散热装置
CN104064280A (zh) 一种超导电缆循环冷却系统
JP2009015869A (ja) 電子装置
TWM442535U (en) Heat-dissipating device and heat-dissipating module
CN110366360A (zh) 一种用于刀片服务器中央处理芯片的水冷散热装置
CN103925695A (zh) 热泵热水器
CN110740620B (zh) 用于服务器机柜内的液体冷却分配装置
CN105468118A (zh) 水平分液装置、冷却设备及刀片式服务器
JP2020063890A (ja) ソーラー発電給湯システム
CN109210811A (zh) 两种温度两种介质液冷装置
CN210519307U (zh) 一种用于刀片服务器中央处理芯片的水冷散热装置
TWI761710B (zh) 用於伺服器機櫃內之液體冷卻分配裝置
CN109405583B (zh) 冷却设备
CN112196836B (zh) 一种离心式鼓风机自动降温系统
TW201930713A (zh) 熱能回收系統
CN107249289A (zh) 一种服务器机柜的冷却系统
CN205895774U (zh) 液压油冷却装置
CN206077921U (zh) 带有气体稳压的循环冷却装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015902470

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE