WO2017065675A1 - A coiling system and a method for forming a hot rolled product into an annular coil - Google Patents

A coiling system and a method for forming a hot rolled product into an annular coil Download PDF

Info

Publication number
WO2017065675A1
WO2017065675A1 PCT/SE2016/050977 SE2016050977W WO2017065675A1 WO 2017065675 A1 WO2017065675 A1 WO 2017065675A1 SE 2016050977 W SE2016050977 W SE 2016050977W WO 2017065675 A1 WO2017065675 A1 WO 2017065675A1
Authority
WO
WIPO (PCT)
Prior art keywords
base assembly
coil
coiling
hot rolled
rolled product
Prior art date
Application number
PCT/SE2016/050977
Other languages
French (fr)
Inventor
Magnus Holmberg
Sebastian Sachse
Ove Englund
Original Assignee
Morgårdshammar Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morgårdshammar Ab filed Critical Morgårdshammar Ab
Priority to CN201680071983.5A priority Critical patent/CN108367327A/en
Priority to RU2018117353A priority patent/RU2717431C2/en
Priority to EP16855848.4A priority patent/EP3362200B1/en
Priority to KR1020187013252A priority patent/KR20180067615A/en
Priority to US15/768,324 priority patent/US20180297096A1/en
Priority to JP2018519462A priority patent/JP2018530435A/en
Publication of WO2017065675A1 publication Critical patent/WO2017065675A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • B21C47/04Winding-up or coiling on or in reels or drums, without using a moving guide
    • B21C47/045Winding-up or coiling on or in reels or drums, without using a moving guide in rotating drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • B21C47/04Winding-up or coiling on or in reels or drums, without using a moving guide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/24Transferring coils to or from winding apparatus or to or from operative position therein; Preventing uncoiling during transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/24Transferring coils to or from winding apparatus or to or from operative position therein; Preventing uncoiling during transfer
    • B21C47/242Devices for swinging the coil from horizontal to vertical, or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/24Transferring coils to or from winding apparatus or to or from operative position therein; Preventing uncoiling during transfer
    • B21C47/245Devices for the replacement of full reels by empty reels or vice versa, without considerable loss of time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/32Tongs or gripping means specially adapted for reeling operations

Abstract

A coiling system (1) and a method for coiling a hot rolled product, the system comprising: -a base assembly (3) comprising a base plate (6), a central drum (7) extending from the base plate along a vertical axis, and a receiving sleeve (8) arranged outside of said central drum, -a support structure (2) configured to support the base assembly and comprising a first drive mechanism configured to rotate the base assembly around the vertical axis, -a feeding device (4) configured to feed hot rolled product to the base assembly so as to form a coil (17), wherein the receiving sleeve is configured to receive a first end of the hot rolled product landing on said base plate so that a coil starts to form inside of said receiving sleeve and outside of said central drum, the base assembly being releasably connected to the first drive mechanism so that the base assembly, after coiling, may be removed from the support structure.

Description

A coiling system and a method for forming a hot rolled product into an annular coil
TECHN ICAL FI ELD OF THE I NVENTION
The present invention relates to a coiling system for coiling a hot rolled product according to the preamble of claim 1 , and to a method for forming a hot rolled product according to the preamble of the independent method claim. A hot rolled product here refers to a bar, wire, rod , strip or the like formed by hot rolling and made from a metal material, including but not limited to copper, brass, aluminium, and steel , such as spring steel, bearing steel, stainless steel , etc.
BACKGROU ND AND PRIOR ART
A common type of coiling system for forming a hot rolled product into a coil, comprises a base assembly supported by a support structure. The support structure comprises a drive mechanism configured to rotate the base assembly around a vertical axis of rotation . The base assembly comprises a base plate for supporting the coil, a central drum extend ing from the base plate along the vertical axis, and an outer housing , attached to the base plate outside of said central drum , such that an annular space is formed between the central drum and the outer housing . The coiling system further comprises a feeding device configured to feed hot rolled product to the base assembly so as to form a coil . When in use, hot rolled product is fed from the feeding device into the space provided between the central drum and the outer housing , so that a first end of the hot rolled product lands on the base plate. As the base assembly is rotated , hot rolled product forms a coil around the central drum . The outer housing ensures that each newly formed loop of the coil is formed on top of an already formed loop. However, a problem with this coiling system is that the gap between the feeding device and an already coiled portion of the hot rolled product, on top of which the hot rolled product fed from the feeding device lands, varies throughout the coil forming cycle. Th is results in a coil with low and non-un iform density and poor stability. Coiling systems have therefore been developed in which a spiral shaped feeding tube is used , through which the hot rolled product is fed into the annular space between the central drum and the outer housing . Such spiral shaped feeding tubes can be inserted into the annu lar space and can thereby reduce the distance that the hot rolled product drops onto the already coiled portion . The density of the formed coil can thereby be improved , but such feeding tubes are on the other hand expensive and difficult to maintain . They are also associated with safety problems during operation , and the density obtainable with such feed ing tubes is for many applications not sufficient. WO2009123685 discloses a coiling system in which an outer housing is movable in the vertical direction , together with the feed ing device. In this way, the distance that the hot rolled product drops can be significantly reduced . However, th is coiling system, as well as other known coiling systems, become very tall and space consuming . When the finished coil is to be removed from the coiling system , the coil is lifted from the base assembly, or the base assembly is lowered so that the coil may be removed . A basement or an additional floor is therefore typically required to be able to remove the coil. This is inconvenient, as the available space is often limited and may be needed for other purposes.
Another problem with known coiling systems is that the cycle time is relatively long , due to the amount of time needed to remove the coil from the coiling system after finishing one coil , and prepare it for formation of a second coil. Two separate coiling systems, which can alternately receive and coil hot rolled product from a rolling mill, are therefore often used . Yet another problem is the large energy consumption of the coiling systems, resulting from the large moment of inertia of the systems.
SUM MARY OF THE I NVENTI ON
It is an object of the present invention to overcome at least some of the above mentioned problems. In particu lar, it is an object to provide solutions by means of which less vertical space is needed in a coil forming process and by means of which cycle times and energy consumption can be reduced . Another object is to provide a coiling system which is versatile and easily adaptable to different coil sizes and product diameters. Yet another object is to provide a coiling system and a method for forming a hot rolled product by means of which a relatively high density and uniformity of the fin ished coil can be ach ieved . At least the primary object is achieved by means of a coiling system as initially defined , which is characterised in that the base assembly is releasably connected to the first drive mechanism so that the base assembly, after coiling , may be removed from the support structure. In this way, the coil does not need to be lifted off from the base plate when the base plate is mounted on the support structure. Instead , the entire base assembly, comprising the finished coil, can be disconnected from the support structure before removing the coil from the base structure and transferring it to e.g . a conveyor or a pallet. This reduces the vertical space needed to accommodate the coiling system. It also increases the versatility of the coil manufacturing process, since the removal of the coil from the base assembly can be carried out either in immediate connection to the coiling system, or at another location after transport using e.g . a conveyor. Removal of the coil can be ach ieved e.g . by tilting the base assembly and transferring the coil to a suitable coil holder, or by lifting off the coil. In either way, the vertical space needed to remove the coil from the coiling system is reduced . Since the base assembly is removable, the coiling system is also easy to adapt to e.g . different diameters of the hot rolled product, or different desired coil diameters. By simply switching base assemblies, the same support structure can be used for different applications. The removable base assembly also reduces the cycle time of the coiling system, since the base assembly after coiling can be quickly removed from the su pport structure, and replaced by another empty base assembly. In this way, it is not necessary to have two separate coiling systems to alternate between . Instead , it is sufficient to have one support structure and at least two base assemblies.
According to one embodiment of the invention , the coiling system further comprises an annular collecting member arranged around the central drum above the receiving sleeve and movable in the axial direction together with the feeding device so as to guide the hot rolled product onto a previously coiled portion of said product. In th is embodiment, the receiving sleeve has a height which is substantially smaller than a height of the central drum, since it only needs to cover a first few loops of the coil as it is being formed . The annu lar collecting member collects and guides the hot rolled product onto those loops as the coiling cycle proceeds. The annular collecting member is arranged above the receiving sleeve. The annular collecting member thus forms a movable outer drum, reducing the d istance between the feed ing device and the previously coiled portion on which the hot rolled product is to land . Thus, the density of the coil as well as the un iformity can be improved . The movable annular collecting member also enables formation of uniform coils of different height, since there is no fixed outer housing. Another advantage of this embod iment is that the moment of inertia of the base assembly can be reduced , since the annular collecting member removes the need for an outer housing , e.g . a receiving sleeve having a similar vertical extension as the central drum, connected to and rotating together with the base assembly. The total energy consumption of the coiling system can thereby be reduced .
According to one embodiment of the invention , the annular collecting member has a shorter extension along the vertical axis than the central drum, so that the annular collecting member surrounds only a minor portion of the central drum. The total height of the coiling system can thereby be reduced in comparison with coiling systems comprising a tall movable outer drum or the like, completely encapsulating the formed coil. Furthermore, the weight of the coiling system is reduced , further reducing the energy consumption .
According to one embodiment of the invention , the annular collecting member is connected to the feeding device. This is a convenient way of achieving simultaneous vertical movement of the feeding member and the annu lar collecting member.
According to one embodiment of the invention , the annular collecting member is in the form of a rotatable collecting ring . Such a collecting ring provides a stable support for the hot rolled product as it is being coiled . The rotatable collecting ring may e.g . be rotated by means of the first drive mechanism, used to rotate the base assembly, or by a separate drive mechanism . Rotating the collecting ring prevents scratches on the hot rolled product.
According to one embodiment of the invention , the coiling system further comprises a su pport on which the collecting ring is rotatably mounted . The support provides a conven ient means for supporting also a drive mechanism and for connecting the annular collecting member to the feed ing device. According to one embodiment of the invention , the coiling system further comprises a second drive mechanism configured to rotate the collecting ring around the vertical axis. Separate drive mechanisms simplifies the construction of the coiling system.
According to one embodiment of the invention , the first and the second drive mechan isms are configured to be operable independently of each other. In this way, the rotational speed of the collecting ring can be adjusted independently of the rotational speed of the base assembly and the coiling conditions can thereby be optimised .
According to one embodiment of the invention , the coiling system further comprises a pre-bend ing device configured to bend the hot rolled product as it is being fed from the feeding device. This makes the hot rolled product easier to form into a coil. According to one embodiment of the invention , the central drum comprises wall segments that are movable between an outer position and an inner position . When the coil is to be removed from the base assembly, the wall segments can be collapsed , which reduces the risk of damaging the coil during removal.
According to one embodiment of the invention , the coiling system further comprises a transfer arrangement configured to move the base assembly away from the support structure in a horizontal or essentially horizontal plane. Such a transfer arrangement enables fast removal of the base assembly from the support structure after coiling , enabling short cycle times. The vertical space needed for the coiling system can be min imised since the movement of the base assembly is essentially in the horizontal plane, although a small vertical movement may be necessary to release the base assembly from the support structure. Such a vertical movement can be in the order of a few decimetres, such as 3-4 dm. Furthermore, the coiling system is energy efficient since vertical lifting of the base assembly hold ing the finished coil , which is often heavy, is to a large extent avoided .
According to another aspect of the present invention , at least the primary object is achieved by a method for forming a hot rolled product into an annular coil as initially defined , characterised in that the step of removing the coil from the coiling system comprises removing the base assembly from the support structure prior to removing the coil from the base assembly. In this way, the coil can be removed from the coiling system without the need to lift the coil along the vertical axis. The method is thereby less space consuming and more energy efficient than known methods in which the coil is removed by lifting it off the coiling system as the base assembly is mounted on the su pport structure.
The proposed coiling system is advantageously used in the method according to the invention . Advantages and advantageous features of the method according to the invention correspond to those discussed in connection with the proposed coiling system. According to one embod iment of this aspect of the invention , the step of removing the coil from the coiling system comprises tilting the base assembly prior to removing the coil. Vertical space can thereby be saved , since the coil can be removed from the base assembly by movement in a horizontal plane.
Accord ing to another embod iment of th is aspect of the invention , the coiling system is located in a coiling station , and the base assembly hold ing the coil is transported away from the coiling station using a conveyor prior to removing the coil from the base assembly. This is suitable for smaller rolling mills, and enables a time efficient handling of coils since the coil does not need to be transferred to an intermediate coil pallet or the like used for transporting the coil to a coil compacting station . Instead , the base assembly is transported to the compacting station , where the coil is removed from the base assembly and thereafter compacted .
According to another embodiment of this aspect of the invention , an annular collecting member arranged around the central drum is provided , and the method comprises guiding the hot rolled product onto a previously coiled portion of said product by moving the feeding device together with the annular collecting member upwardly along the vertical axis.
Other advantageous features as well as advantages of the present invention will appear from the following description .
BRI EF DESCRI PTION OF THE DRAWI NGS
The invention will in the following be further described by means of example with reference to the appended drawings, wherein
Fig . 1 schematically shows a coiling system according to an embod iment of the invention in a first position ,
Fig . 2 shows the coiling system in fig . 1 in a second position ,
Fig . 3 shows a side view of parts of the coiling system in fig .
2, and
Fig . 4 is a flow chart illustrating a method according to an embod iment of the invention . DETAI LED DESCRI PTION OF EMBODI MENTS OF THE I NVENTION
A coiling station comprising a coiling system 1 according to an embodiment of the invention is shown in fig . 1 -3. The coiling system 1 comprises a support structure 2 , a base assembly 3, and a feeding device 4. The support structure 2 is located on a flat surface 5, such as on a floor or on the ground , and supports the base assembly 3, which is positioned on top of the su pport structure 2. The support structure 2 comprises a first drive mechanism (not shown) , which is configured to rotate the base assembly 3 around a vertical axis of rotation . A fastening mechanism (not shown) is used to releasably fasten the base assembly 3 to the support structure 2. The fastening mechanism can e.g . comprise male and female fastening members configured to engage with each other in a locking position and thereby securely fasten the base assembly 3 to the su pport structure 2. In an open position , the fastening members are disengaged and the base assembly 3 is released from the support structure 2.
The base assembly 3 comprises a base plate 6, a central drum 7 extending from the base plate 6 along the vertical axis, and a receiving sleeve 8 arranged outside of the central drum 7, such that an annular space is provided near the base plate 6, between the central drum 7 and the receiving sleeve 8. The central drum 7 has collapsible wall segments 7a, 7b, 7c that are movable between an outer position and an inner position . The receiving sleeve 8 has a height corresponding to a few loops of coiled hot rolled product, substantially smaller than a total height of the central drum 7.
The feeding device 4 is configured to feed hot rolled product from e.g . a rolling mill downwardly to a pre-bending device 9 provided at a front end of the feeding device 4. The pre-bending device 9 is configured to bend the hot rolled-product before it is being coiled . The feeding device 4, and in particular its front end , is movable up and down along the vertical axis, so that hot rolled product can be fed to the base assembly 3 at a suitable height.
On the front end of the feed ing device 4, a rotatable collecting ring 10 arranged around the central drum 7 is provided , rotatably mounted on a support 1 1 . The collecting ring 10 has an inner diameter equivalent to an inner diameter of the receiving sleeve 8. The collecting ring 10 is movable together with the feed ing device 4 up and down along the vertical axis. In the vertical direction , it surrounds only a minor portion of the central drum 7, since it has a small height in comparison with the central drum 7. A second drive mechanism 12 , configured to rotate the collecting ring 10 around the vertical axis, is also provided on the support 1 1 . The second drive mechanism 12 is here operable independently of the first drive mechan ism . It may thus rotate the collecting ring 10 at the same rotational speed as the base assembly 3 or at a different rotational speed .
The coiling system 1 further comprises a transfer arrangement 13 configured to move the base assembly 3 away from the support structure 2 in a horizontal plane when the base assembly 3 has been released from the support structure 2. The transfer arrangement 13 here comprises two rotatable arms 14 extending from a hub 15 positioned between the support structure 2 and a rest 16, to which the base assembly can be transferred from the support structure 2. The transfer arrangement 13 is also used to transfer an empty base assembly 3, not holding a coil 1 7, to the support structure 2 from the rest 16. The skilled person of course realises that there are many different ways to design a transfer arrangement which may be used to move the base assembly away from the support structure. When a coil is to be formed using the shown coiling system 1 , the base assembly 3 is mounted onto the support structure 2 with the wall segments 7a, 7b, 7c in the outer position . The base assembly 3 is rotated by means of the first drive mechan ism at a rotational speed ω_1 . Via the feeding device 4, the pre-bending device 9, and the collecting ring 10, a first end of a hot rolled product is fed to the rotating base assembly 3. As the coil forming process begins, the feeding device 4, the pre-bending device 9 and the collecting ring 10 are in a lowermost position close to the receiving sleeve 8, as shown in fig . 1 . As the hot rolled product exits the pre-bend ing device 9, it enters via the collecting ring 10 into the annular space formed between the receiving sleeve 8 and the central drum 7. Meanwhile, the collecting ring 10 is rotated by means of the second drive mechanism 12 at a second rotational speed ω_2, which may be equivalent or slightly different from the first rotational speed ω_1 . A first end of the hot rolled product lands on the base plate 6 and a coil 1 7 starts to form as hot rolled product is continuously fed onto the rotating base assembly 3. As the coil 1 7 grows taller, the feeding device 4 and the collecting ring 10 are moved upwardly so that the vertical distance between a landing position of the hot rolled product being coiled and the pre-bending device 9 is kept constant or essentially constant during the entire coil forming process. As a second end of the hot rolled product is transferred to the base assembly 3, the feed ing device 4, the pre-bend ing device 9 and the collecting ring 10 have reached an uppermost position and the coil 17 is finished , see fig . 2. The base assembly 3 holding the finished coil 1 7 is thereafter released from the support structure 2 and transferred to the rest 16 using one of the rotatable arms. At the same time, an empty base assembly 3 is transferred from the rest 16 to the su pport structure 2 for formation of another coil . The base assembly 3 holding the finished coil 1 7 is thereafter tilted , the wall segments 7a, 7b, 7c are moved to the inner position , and the coil 17 is removed from the base assembly 3 and transferred to a coil pallet 18 via an intermediate support 19. The coil pallet 18 holding the coil 1 7 can thereafter be transported away from the coiling station , e.g . using a conveyor. The coil is usually transferred from the coiling station to a compacting station , where it is compacted prior to further transportation . An alternative to using a coil pallet 18 is to transport the entire base assembly 3 hold ing the coil 1 7 away from the coiling station using a conveyor. The base assembly 3 in this case functions as a coil pallet.
A method for forming a hot rolled product into an annu lar coil 1 7 according to an embod iment of the invention is illustrated in fig . 4. In a first step S 1 , a coiling system 1 as described above is provided on a coiling station . In a second step S2, the base assembly 3 is set to rotate using the first drive mechanism. In a third step S3, a first end of the hot rolled product is guided from a rolling mill, via the feeding device 4 and into the annular space provided between the receiving sleeve 8 and the central drum 7. An annu lar coil 1 7 starts to form around the central drum 7 by rotating the base assembly 3 around the vertical axis of rotation while feeding the hot rolled product downwardly using the feeding device 4. In a fourth step S4, the feeding device 4 together with the collecting ring 10 are moved upward ly along the vertical axis, as the collecting ring 10 and the base assembly 3 are both rotated and as the hot rolled product is continuously fed to the base assembly 3. In a fifth step S5, the base assembly 3 is removed from the support structure 2 by releasing the fastening mechanism and , by means of one of the rotatable arms 14, transferring the base assembly 3 to the rest 16, or to a conveyor used to transport the base assembly 3 holding the coil 1 7 to e.g . a compacting station . In a sixth step S6, the coil 17 is removed from the base assembly 3, preferably after tilting of the base assembly 3. The invention is of course not in any way restricted to the embod iments described above, but many possibilities to modifications thereof would be apparent to a person with skill in the art without departing from the scope of the invention as defined in the appended claims. For example, the annular collecting member may comprise at least two vertically spaced apart rings, between which a number of rotatable rolls are provided . The rolls in this case serve to collect the hot rolled product without the use of a second drive mechan ism.

Claims

CLAI MS
1 . A coiling system (1 ) for coiling a hot rolled product, comprising :
- a base assembly (3) comprising a base plate (6) , a central drum (7) extending from the base plate (6) along a vertical axis, and a receiving sleeve (8) arranged outside of said central drum (7) ,
- a support structure (2) configured to support the base assembly (3) and comprising a first drive mechanism configured to rotate the base assembly (3) around the vertical axis,
- a feeding device (4) configured to feed hot rolled product to the base assembly (3) so as to form a coil (1 7) ,
wherein the receiving sleeve (8) is configured to receive a first end of the hot rolled product landing on said base plate (6) so that a coil (1 7) starts to form inside of said receiving sleeve (8) and outside of said central drum (7) ,
characterised in
that the base assembly (3) is releasably connected to the first drive mechanism so that the base assembly (3) , after coiling , may be removed from the support structure (2).
2. The coiling system according to claim 1 , further comprising an annular collecting member (10) arranged around the central drum (7) above the receiving sleeve (8) and movable in the axial direction together with the feeding device (4) so as to guide the hot rolled product onto a previously coiled portion of said product.
3. The coiling system according to claim 2, wherein the annular collecting member (10) has a shorter extension along the vertical axis than the central drum (7) , so that the annular collecting member (10) surrounds only a minor portion of the central drum (7).
4. The coiling system according to claim 2 or 3, wherein the annu lar collecting member (10) is connected to the feeding device (4) .
5. The coiling system according to any one of claims claim 2- 4, wherein the annular collecting member (10) is in the form of a rotatable collecting ring (1 0).
6. The coiling system according to claim 5, further comprising a support (1 1 ) on which the collecting ring (10) is rotatably mounted .
7. The coiling system according to claim 5 or 6, further comprising a second drive mechanism (12) configured to rotate the collecting ring (10) around the vertical axis.
8. The coiling system according to claim 7, wherein the first and the second drive mechanisms are configured to be operable independently of each other.
9. The coiling system according to any one of the preceding claims, further comprising a pre-bending device (9) configured to bend the hot rolled product as it is being fed from the feeding device (4) .
10. The coiling system according to any one of the preceding claims, wherein the central drum (7) comprises wall segments (7a, 7b, 7c) that are movable between an outer position and an inner position .
1 1 . The coiling system according to any one of the preceding claims, further comprising a transfer arrangement (13) configured to move the base assembly (3) away from the support structure (2) in a horizontal or essentially horizontal plane.
12. A method for forming a hot rolled product into an annular coil (1 7) , comprising the steps:
- providing a coiling system (1 ) comprising a base assembly (3) , a support structure (2) supporting the base assembly (3) , and a feed ing device (4) , wherein the base assembly
(3) is rotatable around a vertical axis and comprises a base plate (6), a central drum (7) extending from the base plate (6) along a vertical axis, and a receiving sleeve (8) arranged outside of the central drum (7) ,
- guiding a first end of the hot rolled product onto the base plate (6) inside of said receiving sleeve (8) and outside of said central drum (7),
- forming the hot rolled product to an annu lar coil (1 7) around said central drum (7) by rotating the base assembly (3) around the vertical axis while feeding the hot rolled product downwardly using the feeding device (4), and
- removing the coil (1 7) from the coiling system (1 ) ,
characterised in
that the step of removing the coil (1 7) from the coiling system (1 ) comprises removing the base assembly (3) from the su pport structure (2) prior to removing the coil (1 7) from the base assembly (3).
13. The method according to claim 12, wherein the step of removing the coil (1 7) from the coiling system (1 ) comprises tilting the base assembly (3) prior to removing the coil (1 7) .
14. The method according to claim 1 1 or 12 , wherein the coiling system (1 ) is located in a coiling station , and wherein the base assembly (3) holding the coil (1 7) is transported away from the coiling station using a conveyor prior to removing the coil (1 7) from the base assembly (3).
15. The method according to any one of claims 12-14, wherein an annular collecting member (10) arranged around the central drum (7) is provided , and wherein the method comprises gu iding the hot rolled product onto a previously coiled portion of said product by moving the feeding device (4) together with the annular collecting member (10) upwardly along the vertical axis.
PCT/SE2016/050977 2015-10-15 2016-10-11 A coiling system and a method for forming a hot rolled product into an annular coil WO2017065675A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680071983.5A CN108367327A (en) 2015-10-15 2016-10-11 Reel system and method for hot-rolled product to be configured to cyclic annular coiled material
RU2018117353A RU2717431C2 (en) 2015-10-15 2016-10-11 Winding system and method of forming annular coil of hot-rolled product
EP16855848.4A EP3362200B1 (en) 2015-10-15 2016-10-11 A coiling system and a method for forming a hot rolled product into an annular coil
KR1020187013252A KR20180067615A (en) 2015-10-15 2016-10-11 A coil winding system and method for forming a hot rolled product from an annular coil
US15/768,324 US20180297096A1 (en) 2015-10-15 2016-10-11 A coiling system and a method for forming a hot rolled product into an annular coil
JP2018519462A JP2018530435A (en) 2015-10-15 2016-10-11 Ticketing system and method for forming hot rolled products into annular coils

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE1551334A SE539421C2 (en) 2015-10-15 2015-10-15 A coiling system and a method for forming a hot rolled product into an annular coil
SE1551334-4 2015-10-15

Publications (1)

Publication Number Publication Date
WO2017065675A1 true WO2017065675A1 (en) 2017-04-20

Family

ID=58518506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2016/050977 WO2017065675A1 (en) 2015-10-15 2016-10-11 A coiling system and a method for forming a hot rolled product into an annular coil

Country Status (8)

Country Link
US (1) US20180297096A1 (en)
EP (1) EP3362200B1 (en)
JP (1) JP2018530435A (en)
KR (1) KR20180067615A (en)
CN (1) CN108367327A (en)
RU (1) RU2717431C2 (en)
SE (1) SE539421C2 (en)
WO (1) WO2017065675A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027651A3 (en) * 2021-08-26 2023-08-17 Domeks Maki̇ne Anoni̇m Şi̇rketi̇ Method providing the winding of the cable in automatic cable winding machines and a flap apparatus thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800004134A1 (en) * 2018-03-30 2019-09-30 Sms Group S P A WINDING SYSTEM AND METHOD OF A HOT ROLLED PRODUCT USING A ROTATING WINDING MACHINE
JP7054978B2 (en) * 2019-04-22 2022-04-15 株式会社五十鈴製作所 Control method of coiled wire transfer device and coiled wire transfer device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501410A (en) * 1995-01-27 1996-03-26 Morgan Construction Company Coil reforming chamber with auxiliary coil plate
US5904313A (en) * 1996-06-14 1999-05-18 Kvaerner Metals Clecim Turntable coiler for reeling metal strips
WO2009123685A2 (en) * 2008-04-02 2009-10-08 Morgan Construction Company Rolling mill pouring reel and its method of operation
WO2010012575A1 (en) * 2008-07-29 2010-02-04 Siemens Vai Metals Technologies S.R.L. Machine for winding a wire from a rolling mill into a coil
WO2013050326A1 (en) * 2011-10-05 2013-04-11 Dante Bruno Priuli Apparatus and method for overturning coils

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2418184A1 (en) * 1974-04-13 1975-11-06 Kocks Gmbh Friedrich REEL DEVICE
US3926382A (en) * 1974-11-08 1975-12-16 Morgan Construction Co Coil forming and transfer apparatus
JPS57170352A (en) * 1981-04-13 1982-10-20 Nippon Steel Corp Method and apparatus for bundling ring-shaped wire rod
US4411394A (en) * 1981-09-03 1983-10-25 Morgan Construction Company Pouring reel
DE3417323A1 (en) * 1984-05-10 1985-11-14 SMS Schloemann-Siemag AG, 4000 Düsseldorf Garrett reel with water cooling for the coiled material
DE3576468D1 (en) * 1985-08-27 1990-04-19 Daido Steel Co Ltd METHOD AND DEVICE FOR WINDING METAL WIRE.
DE19649017A1 (en) * 1996-11-27 1998-05-28 Schloemann Siemag Ag Method and device for winding steel bars
JP3263359B2 (en) * 1997-04-04 2002-03-04 川崎製鉄株式会社 Large single heavy rolling method for sheet bar
IT1293798B1 (en) * 1997-07-28 1999-03-10 Techint Spa VERTICAL WINDING MACHINE PERFECTED TO WIND HOT ROLLED PRODUCTS.
ITUD20030123A1 (en) * 2003-06-09 2004-12-10 Simac Spa LAMINATE WINDING SYSTEM.
NL2004379C2 (en) * 2009-03-16 2012-07-24 Kobe Seiko Sho Kobe Steel Kk Welding wire winder and welding wire feeder.
US8540070B2 (en) * 2011-07-19 2013-09-24 Siemens Industry, Inc. Coil shift transfer car

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501410A (en) * 1995-01-27 1996-03-26 Morgan Construction Company Coil reforming chamber with auxiliary coil plate
US5904313A (en) * 1996-06-14 1999-05-18 Kvaerner Metals Clecim Turntable coiler for reeling metal strips
WO2009123685A2 (en) * 2008-04-02 2009-10-08 Morgan Construction Company Rolling mill pouring reel and its method of operation
WO2010012575A1 (en) * 2008-07-29 2010-02-04 Siemens Vai Metals Technologies S.R.L. Machine for winding a wire from a rolling mill into a coil
WO2013050326A1 (en) * 2011-10-05 2013-04-11 Dante Bruno Priuli Apparatus and method for overturning coils

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027651A3 (en) * 2021-08-26 2023-08-17 Domeks Maki̇ne Anoni̇m Şi̇rketi̇ Method providing the winding of the cable in automatic cable winding machines and a flap apparatus thereof

Also Published As

Publication number Publication date
EP3362200A1 (en) 2018-08-22
RU2018117353A3 (en) 2020-01-28
SE1551334A1 (en) 2017-04-16
KR20180067615A (en) 2018-06-20
JP2018530435A (en) 2018-10-18
CN108367327A (en) 2018-08-03
EP3362200B1 (en) 2020-09-23
SE539421C2 (en) 2017-09-19
RU2717431C2 (en) 2020-03-23
RU2018117353A (en) 2019-11-21
EP3362200A4 (en) 2019-06-26
US20180297096A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
EP3362200B1 (en) A coiling system and a method for forming a hot rolled product into an annular coil
AU2017292903B2 (en) A method and an apparatus for coiling plastic pipe
CN106955905A (en) Equipment for manufacturing the cylindrical container with major diameter, particularly feed bin
RU2481909C2 (en) Strip hot rolling mill intermediate rewinder active drive
CN101704451B (en) Automatic collecting device of thin-wall U-shaped steel pipe and collecting method
JPH0245525B2 (en)
CN202594458U (en) Auxiliary device for unloading small coils and installing sleeve on coiling machine
CN210558494U (en) Movable multi-station pay-off device
JPH0648562A (en) Device for transportation of rolled material which is wound around ring in reeling area
CN215247617U (en) Aluminum coil excess material collecting device
WO2012055803A2 (en) Machine for manufacturing metal cages
US20180354010A1 (en) Coil transport pallet, coil transport vehicle, method for discharging a coil wound on a winding system
CN111530968B (en) Roller way type walking core winding frame
RU2635593C2 (en) Device and method for forming coil
EP2763802B1 (en) Apparatus and method for overturning coils
KR101888484B1 (en) Pipe drawing apparatus
CN217262441U (en) Winding pipe forming feeding frame
CN213079586U (en) Uncoiler of welded pipe equipment
CN213763490U (en) High-applicability wire drawing pay-off rack for wire drawing
CN210973217U (en) Divide strip quick-witted with material loading equipment that has adjustable limit structure
CN220663852U (en) Feeding machine conveying device convenient to move
CN112222850B (en) Automatic fixed-length cutting forming machine
KR100462901B1 (en) A Uncoiler
CN219429281U (en) Discharging device for material roll
CN217530719U (en) Rubber sleeve replacing device for mandrel of coiling machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15768324

Country of ref document: US

Ref document number: 2018519462

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187013252

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018117353

Country of ref document: RU

Ref document number: 2016855848

Country of ref document: EP