WO2017065485A1 - 무인항공기를 위한 통신 장치 및 방법 - Google Patents

무인항공기를 위한 통신 장치 및 방법 Download PDF

Info

Publication number
WO2017065485A1
WO2017065485A1 PCT/KR2016/011403 KR2016011403W WO2017065485A1 WO 2017065485 A1 WO2017065485 A1 WO 2017065485A1 KR 2016011403 W KR2016011403 W KR 2016011403W WO 2017065485 A1 WO2017065485 A1 WO 2017065485A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
unmanned aerial
aerial vehicle
frequency band
preset frequency
Prior art date
Application number
PCT/KR2016/011403
Other languages
English (en)
French (fr)
Inventor
유창선
김중욱
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Priority to EP16855702.3A priority Critical patent/EP3364556B1/en
Priority to US15/767,147 priority patent/US10439790B2/en
Publication of WO2017065485A1 publication Critical patent/WO2017065485A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1423Two-way operation using the same type of signal, i.e. duplex for simultaneous baseband signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • H04B7/18508Communications with or from aircraft, i.e. aeronautical mobile service with satellite system used as relay, i.e. aeronautical mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/208Frequency-division multiple access [FDMA]

Definitions

  • the present invention relates to a communication apparatus and method, and more particularly to a communication apparatus and method for an unmanned aerial vehicle.
  • the unmanned aerial vehicle is a vehicle without a pilot, and can be remotely controlled from the ground, flying in accordance with a previously input program, or flying by autonomous by recognizing and judging the surrounding environment by itself.
  • Unmanned aerial vehicles are currently the most used in the military sector, but the use of unmanned aerial vehicles is also increasing in the private sector. Accordingly, safety issues of the unmanned aerial vehicle have emerged.
  • Unmanned aerial vehicles have a greater proportion of communication devices than manned aircraft. Since the unmanned aerial vehicle does not have a pilot, there is a lot more traffic than a manned manned aircraft, so a more independent and safe communication system is required.
  • a communication system for an unmanned aerial vehicle is mounted on an unmanned aerial vehicle and communicates using a preset frequency band, and communicates with the mounted communication device using the preset frequency band.
  • Ground communication device is mounted on an unmanned aerial vehicle and communicates using a preset frequency band, and communicates with the mounted communication device using the preset frequency band.
  • the preset frequency band may be a C band.
  • the preset frequency band may be a 5030 to 5091 MHz band.
  • At least one of telecommands (TC) and telemetry (TM) may be transmitted and received between the onboard communication device and the terrestrial communication device.
  • the terrestrial communication device may communicate with the terrestrial control device using Ethernet, and the onboard communication device may communicate with a flight control computer mounted in the unmanned aerial vehicle using RS-232.
  • the terrestrial communication device includes a baseband unit connected to the ground control device, a transmission unit connected to the baseband unit, a reception unit connected to the baseband unit, a duplexer connected to the transmission unit and the reception unit, and the An antenna unit connected to the duplexer
  • the on-board communication device includes a baseband unit connected to the flight control computer, a transmission unit connected to the baseband unit, a reception unit connected to the baseband unit, the transmission unit and It may include a duplexer connected to the receiving unit, and an antenna unit connected to the duplexer.
  • the on-board communication device may further include a divider unit connected between the duplexer and the antenna unit, and the antenna unit may include a first antenna unit and a second antenna unit mounted at different positions.
  • the onboard communication device and the terrestrial communication device may radiate at -75dBW / MHz except for the preset frequency band.
  • a communication method of a communication system for an unmanned aerial vehicle the method of generating a signal for controlling the unmanned aerial vehicle by a terrestrial communication device, and onboard communication mounted on the unmanned aerial vehicle using a preset frequency band Transmitting the signal to a device.
  • the communication link between the unmanned aerial vehicle and the ground control system can be stably maintained, safe operation of the unmanned aerial vehicle is possible.
  • FIG 1 shows an unmanned aerial vehicle system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of an unmanned aerial vehicle and a ground control system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of an on-board communication device mounted in an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of an on-board communication device mounted in an unmanned aerial vehicle according to another embodiment of the present invention.
  • FIG. 5 is a block diagram of a terrestrial communication device included in a ground control system according to an embodiment of the present invention.
  • ordinal numbers such as second and first
  • first and second components may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component.
  • FIG 1 shows an unmanned aerial vehicle system according to an embodiment of the present invention.
  • the unmanned aerial vehicle system 10 includes an unmanned aerial vehicle (UAV) 100 and a ground control system (GCS) 200.
  • UAV unmanned aerial vehicle
  • GCS ground control system
  • the unmanned aerial vehicle 100 and the ground control system 200 communicate wirelessly.
  • communication between the unmanned aerial vehicle 100 and the ground control system 200 may be classified into a line of sight (LOS) operation and a non-visible LOS operation.
  • the line of sight operation is a communication method when the unmanned aerial vehicle 100 and the ground control system 200 are directly connected, and the invisible line operation is a satellite 300 when there is an obstacle between the unmanned aerial vehicle 100 and the ground control system 200. It is a communication method connected by using).
  • At least one of a telecommand (TC) and a telemetry (TM) may be transmitted and received between the unmanned aerial vehicle 100 and the ground control system 200.
  • telecommand means a signal sent to control a remote system
  • telemetry refers to a technology for measuring remote information by using radio waves or an IP network.
  • communication between the unmanned aerial vehicle 100 and the ground control system 200 may be classified into an uplink and a downlink.
  • Command and control signals for taking off or raising the unmanned aerial vehicle 100 from the ground control system 200 to the unmanned aerial vehicle 100 through the uplink, or for moving to the flight area for a mission may be transmitted.
  • various sensor data such as the position and attitude of the unmanned aerial vehicle 100 may be transmitted from the unmanned aerial vehicle 100 to the ground control system 200 through the downlink.
  • the unmanned aerial vehicle 100 and the ground control system 200 communicate using a preset frequency band. Accordingly, it is possible to secure a frequency band for communication between a civilian unmanned aerial vehicle and a ground control system that is increasing in demand, reduce the frequency band collision, it is possible to secure communication.
  • FIG. 2 is a block diagram of an unmanned aerial vehicle and a ground control system according to an embodiment of the present invention.
  • the unmanned aerial vehicle 100 includes a flight control computer (FCC) 110 and an onboard communication device 120. Although not shown in FIG. 2, the unmanned aerial vehicle 100 may further include an electronic control unit (ECU) and a camera for operating mission equipment according to a command from the flight control computer 110.
  • FCC flight control computer
  • ECU electronice control unit
  • the flight control computer 110 receives the uplink signal provided from the ground control system 200 through the onboard communication device 120, thereby controlling the flight of the unmanned aerial vehicle 100 and performing a set task.
  • the uplink signal may be command information required for operating the unmanned aerial vehicle 100.
  • the command information may include, for example, command information related to flight control and navigation and command information related to mission equipment operation.
  • the flight adjustment and navigation command may include a command for controlling the attitude control mode, altitude / speed / defense maintenance mode, automatic navigation mode.
  • Automatic navigation modes may include point navigation, pre-planning mode, automatic takeoff and landing, return mode, collision avoidance mode, camera guidance mode and emergency mode.
  • Command information related to operation of the mission equipment may include operation commands such as rotation, reduction and enlargement of the camera mounted on the mission equipment, optical / thermal switching, and the like.
  • the flight control computer 110 may transmit the downlink signal to the ground control system 200 through the on-board communication device 120.
  • the downlink signal may include aircraft state information collected from a camera, mission equipment, and various sensors installed in the unmanned aerial vehicle 100.
  • the vehicle state information may include, for example, vehicle attitude and navigation information, analog sensor information, and various onboard equipment check results.
  • the navigation information may include information such as speed, altitude, azimuth, location, and the like
  • the analog sensor information may include information such as temperature, pressure, and vibration.
  • the onboard communication device 120 receives an uplink signal transmitted from the ground control system 200 and transmits it to the flight control computer 110.
  • the on-board communication device 120 collects and generates a downlink signal and transmits the downlink signal to the ground control system 200.
  • the on-board communication device 120 may communicate with the flight control computer 110 using three interfaces. For example, the on-board communication device 120 transmits and receives telecommand data and telemetry data through a data interface, receives an image captured by a camera through an image signal interface in an analog manner, and receives an audio signal interface. Can transmit and receive voice signals.
  • the ground control system 200 includes a ground control device 210 and a ground communication device 220.
  • the ground control device 210 receives a downlink signal through communication between the on-board communication device 120 and the ground communication device 220.
  • the downlink signal may include aircraft state information collected by the unmanned aerial vehicle 100, and the aircraft state information may include vehicle attitude and navigation information, analog sensor information, and various mounted equipment inspection results.
  • the ground control apparatus 210 transmits an uplink signal to the unmanned aerial vehicle 100 through the ground communication apparatus 220.
  • the uplink signal may include flight control and mission equipment control data.
  • the ground communication device 220 collects and generates an uplink signal transmitted to the unmanned aerial vehicle 100 and transmits the generated uplink signal to the unmanned aerial vehicle 100. In addition, the ground communication device 220 receives a downlink signal transmitted from the unmanned aerial vehicle 100 and transmits it to the ground control device 210.
  • the terrestrial communication device 220 may communicate with the terrestrial control device 210 using three interfaces.
  • the terrestrial communication device 220 transmits and receives telecommand data and telemetry data through a data interface, receives an image captured by a camera through an image signal interface in an analog manner, and receives an audio signal interface. Can transmit and receive voice signals.
  • the on-board communication device 120 and the ground communication device 220 may be referred to as a communication system for an unmanned aerial vehicle.
  • the on-board communication device 120 and the terrestrial communication device 220 may communicate through a preset frequency band. More specifically, the downlink signal from the onboard communication device 120 to the terrestrial communication device 220 is transmitted through the 5100 to 5150MHz band, the uplink signal from the terrestrial communication device 220 to the onboard communication device 120 is C. It can communicate over a band, that is, the band 5030-5091MHz. In this case, 5030 to 5091 MHz may be a non-payload frequency. As such, when the 5030 to 5091 MHz band is used for the control of the unmanned aerial vehicle, secure communication between the on-board communication device 120 and the terrestrial communication device 220 is possible. In this case, the terrestrial communication device 220 may radiate at -75 dBW / MHz except for the band 5030 to 5091 MHz. Accordingly, it may not cause a collision with the communication of radionavigation using adjacent bands.
  • FIG 3 is a block diagram of an onboard communication device mounted in an unmanned aerial vehicle according to an embodiment of the present invention
  • Figure 4 is a block diagram of an onboard communication device mounted in an unmanned aerial vehicle according to another embodiment of the present invention
  • Figure 5 Is a block diagram of a terrestrial communication device included in a ground control system according to an embodiment of the present invention.
  • the onboard communication device 120 communicates with the flight control computer 110 using an RS-232 serial communication interface, is connected to the flight control computer 110, and receives data from the HD CAM and the SD CAM.
  • the baseband unit 122 to receive, the transceiver unit 124 connected to the baseband unit 122, the duplexer 126 connected to the transceiver unit 124, and the antenna unit 128 connected to the duplexer 126 It may include.
  • the transceiver unit 124 may include a transmitting unit and a receiving unit.
  • a divider unit 129 may be further included between the duplexer 126 and the antenna unit 128, and the antenna unit 128 may include a first antenna unit 128-1 and a first antenna unit. It may include two antenna unit (128-2).
  • the first antenna unit 128-1 may be mounted on the bottom of the unmanned aerial vehicle
  • the second antenna unit 128-2 may be mounted on the top of the unmanned aerial vehicle.
  • the first antenna unit mounted under the unmanned aerial vehicle operates in a general state, there may occur a case where the line of sight (LOS) of the antenna is not secured according to the state of the unmanned aerial vehicle. In such a case, communication interruption can be prevented by operating the second antenna unit mounted on the unmanned aerial vehicle.
  • LOS line of sight
  • the separation unit 129 may divide the frequency or time and transmit the divided frequency to the first antenna unit 128-1 and the second antenna unit 128-2.
  • the C band has a high frequency band
  • alignment between antennas is important.
  • the first antenna unit and the second antenna unit mounted at different positions as in the embodiment of the present invention are included, alignment with the antenna unit 228 of the terrestrial communication device 220 is easy. Accordingly, the transmission speed can be increased and the transmission amount can be high.
  • the on-board communication device 120 includes two antenna units, that is, the first antenna unit 128-1 and the second antenna unit 128-2, but is not limited thereto.
  • a plurality of antenna units may be mounted below and above the unmanned aerial vehicle, respectively.
  • the ground communication device 220 communicates with the ground control device 210 using Ethernet, and the baseband unit 222 and the baseband unit 222 connected to the ground control device 210. It may include a transceiver unit 224 to be connected, a duplexer 226 to be connected to the transceiver unit 224, and an antenna unit 228 to be connected to the duplexer.
  • the transceiver unit 124 may include a transmitting unit and a receiving unit.
  • the antenna unit 228 may be a directional antenna that is directed to the unmanned aerial vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radio Relay Systems (AREA)
  • Traffic Control Systems (AREA)

Abstract

본 발명의 한 실시예에 따른 무인항공기를 위한 통신 시스템은 무인항공기에 탑재되며, 미리 설정된 주파수 대역을 이용하여 통신하는 탑재 통신 장치, 그리고 상기 탑재 통신 장치와 상기 미리 설정된 주파수 대역을 이용하여 통신하는 지상 통신 장치를 포함한다.

Description

무인항공기를 위한 통신 장치 및 방법
본 발명은 통신 장치 및 방법에 관한 것으로, 보다 상세하게는 무인항공기를 위한 통신 장치 및 방법에 관한 것이다.
무인항공기는 조종사가 탑승하지 않은 비행체로서, 지상에서 원격 조정하거나, 사전에 입력된 프로그램에 따라 비행하거나, 비행체 스스로 주위 환경을 인식하고 판단하여 자율적으로 비행하게 된다.
무인항공기는 현재 군사 분야에서 가장 많이 사용되고 있으나, 민간에서도 무인항공기의 사용이 늘고 있다. 이에 따라, 무인항공기의 안전성 문제가 대두되고 있다.
무인항공기의 안전성을 유지하기 위해서는 비행체(unmanned aerial vehicle, UAV)와 지상통제시스템(Ground Control System, GCS) 간 통신 링크가 안정적으로 유지되어야 한다. 무인항공기는 유인항공기에 비하여 통신 장치의 비중이 크다. 무인항공기에는 조종사가 탑승하지 않고 있으므로, 사람이 직접 조종하는 유인항공기에 비하여 통신량이 많을 수 밖에 없으므로, 더욱 독립적이고 안전한 통신체계가 요구된다.
본 발명이 이루고자 하는 기술적 과제는 무인항공기의 안전한 운용을 위한 통신 장치 및 방법을 제공하는데 있다.
본 발명의 한 실시예에 따른 무인항공기를 위한 통신 시스템은 무인항공기에 탑재되며, 미리 설정된 주파수 대역을 이용하여 통신하는 탑재 통신 장치, 그리고 상기 탑재 통신 장치와 상기 미리 설정된 주파수 대역을 이용하여 통신하는 지상 통신 장치를 포함한다.
상기 미리 설정된 주파수 대역은 C 밴드일 수 있다.
상기 미리 설정된 주파수 대역은 5030 내지 5091MHz 대역일 수 있다.
상기 탑재 통신 장치와 상기 지상 통신 장치 간에는 텔레커맨드(Telecommands, TC) 및 텔레메트리(Telemetry, TM) 중 적어도 하나가 송수신될 수 있다.
상기 지상 통신 장치는 지상 관제 장치와 이더넷을 이용하여 통신하고, 상기 탑재 통신 장치는 상기 무인항공기 내에 탑재된 비행 제어 컴퓨터와 RS-232를 이용하여 통신할 수 있다.
상기 지상 통신 장치는 상기 지상 관제 장치와 연결되는 베이스밴드 유닛, 상기 베이스밴드 유닛과 연결되는 송신 유닛, 상기 베이스밴드 유닛과 연결되는 수신 유닛, 상기 송신 유닛 및 상기 수신 유닛과 연결되는 듀플렉서, 그리고 상기 듀플렉서와 연결되는 안테나 유닛을 포함하며, 상기 탑재 통신 장치는 상기 비행 제어 컴퓨터와 연결되는 베이스밴드 유닛, 상기 베이스밴드 유닛과 연결되는 송신 유닛, 상기 베이스밴드 유닛과 연결되는 수신 유닛, 상기 송신 유닛 및 상기 수신 유닛과 연결되는 듀플렉서, 그리고 상기 듀플렉서와 연결되는 안테나 유닛을 포함할 수 있다.
상기 탑재 통신 장치는 상기 듀플렉서 및 상기 안테나 유닛 사이에 연결되는 분리 유닛(divider)을 더 포함하며, 상기 안테나 유닛은 서로 다른 위치에 탑재되는 제1 안테나 유닛 및 제2 안테나 유닛을 포함할 수 있다.
상기 탑재 통신 장치와 상기 지상 통신 장치는 상기 미리 설정된 주파수 대역 외에는 -75dBW/MHz로 방사할 수 있다.
본 발명의 한 실시예에 따른 무인항공기를 위한 통신 시스템의 통신 방법은 무인항공기에 탑재되는 탑재 통신 장치가 지상 통신 장치로부터 미리 설정된 주파수 대역을 이용하여 상기 무인항공기를 조종하기 위한 신호를 수신하는 단계, 그리고 상기 신호를 처리하는 단계를 포함한다.
본 발명의 한 실시예에 따른 무인항공기를 위한 통신 시스템의 통신 방법은 지상 통신 장치가 상기 무인항공기를 조종하는 신호를 생성하는 단계, 그리고 미리 설정된 주파수 대역을 이용하여 상기 무인항공기에 탑재된 탑재 통신 장치에게 상기 신호를 전송하는 단계를 포함한다.
본 발명의 실시예에 따르면, 무인항공기와 지상통제시스템 간의 통신 링크를 안정적으로 유지할 수 있으므로, 무인항공기의 안전한 운용이 가능하다.
도 1은 본 발명의 한 실시예에 따른 무인항공기 시스템을 나타낸다.
도 2는 본 발명의 한 실시예에 따른 무인항공기와 지상통제시스템의 블록도이다.
도 3은 본 발명의 한 실시예에 따른 무인항공기 내에 탑재된 탑재 통신 장치의 블록도이다.
도 4는 본 발명의 다른 실시예에 따른 무인항공기 내에 탑재된 탑재 통신 장치의 블록도이다.
도 5는 본 발명의 한 실시예에 따른 지상통제시스템에 포함된 지상 통신 장치의 블록도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 한 실시예에 따른 무인항공기 시스템을 나타낸다.
도 1을 참조하면, 무인항공기 시스템(10)은 무인항공기(Unmanned Aerial Vehicle, UAV, 100) 및 지상통제시스템(Ground Control System, GCS, 200)을 포함한다.
무인항공기(100)와 지상통제시스템(200)은 무선으로 통신한다. 이때, 무인항공기(100)와 지상통제시스템(200) 간의 통신은 가시선(Line of Sight, LOS) 운용 및 비가시선(Beyond LOS) 운용으로 구분될 수 있다. 가시선 운용은 무인항공기(100)와 지상통제시스템(200)이 직접 연결되는 경우의 통신 방식이고, 비가시선 운용은 무인항공기(100)와 지상통제시스템(200) 사이에 장애물이 있는 경우 위성(300) 등을 이용하여 연결되는 통신 방식이다.
무인항공기(100)와 지상통제시스템(200) 간에는 텔레커맨드(Telecommands, TC) 및 텔레메트리(Telemetry, TM) 중 적어도 하나가 송수신될 수 있다. 여기서, 텔레커맨드는 원격에 있는 시스템을 조종하기 위해 보내는 신호를 의미하고, 텔레메트리는 전파나 IP 네트워크를 이용하여 원격의 정보를 측정하는 기술을 의미한다.
한편, 무인항공기(100)와 지상통제시스템(200) 간의 통신은 상향링크(uplink)와 하향링크(downlink)로 구분될 수 있다. 상향링크를 통하여 지상통제시스템(200)로부터 무인항공기(100)로 무인항공기(100)를 이륙시키거나 상승시키거나, 임무를 위해 비행지역으로 이동시키기 위한 명령 및 제어 신호가 전송될 수 있다. 그리고, 하향링크를 통하여 무인항공기(100)로부터 지상통제시스템(200)으로 무인항공기(100)의 위치, 자세 등 각종 센서 데이터가 전송될 수 있다.
이와 같이, 무인항공기(100)와 지상통제시스템(200)이 통신하기 위하여, 소정의 주파수 대역을 사용할 필요가 있다. 본 발명의 실시예에 따르면, 무인항공기(100)와 지상통제시스템(200)은 미리 설정된 주파수 대역을 이용하여 통신한다. 이에 따라, 수요가 급증하고 있는 민간용 무인항공기와 지상통제시스템 간의 통신을 위한 주파수 대역을 확보할 수 있으며, 주파수 대역의 충돌을 줄일 수 있고, 안전한 통신이 가능하다.
도 2는 본 발명의 한 실시예에 따른 무인항공기와 지상통제시스템의 블록도이다.
도 2를 참조하면, 무인항공기(100)는 비행 제어 컴퓨터(Flight Control Computer, FCC, 110) 및 탑재 통신 장치(120)를 포함한다. 도 2에서 도시되지 않았으나, 무인항공기(100)는 비행 제어 컴퓨터(110)로부터의 명령에 따라 임무 장비를 운용하는 전자 제어 유닛(Electronic Control Unit, ECU) 및 카메라를 더 포함할 수 있다.
비행 제어 컴퓨터(110)는 지상통제시스템(200)으로부터 제공된 상향링크 신호를 탑재 통신 장치(120)를 통하여 제공 받으며, 이에 따라 무인항공기(100)의 비행을 제어하고, 설정된 임무를 수행한다.
여기서, 상향링크 신호는 무인항공기(100) 운용에 필요한 명령 정보일 수 있다. 명령 정보는, 예를 들어 비행조종 및 항법에 관련된 명령 정보와 임무장비 운용에 관련된 명령정보를 포함할 수 있다. 여기서, 비행조정 및 항법 명령은 자세 제어 모드, 고도/속도/방위유지모드, 자동항법모드를 제어하기 위한 명령을 포함할 수 있다. 자동항법모드는 점항법, 사전계획모드, 자동이착륙 및 정지비행, 귀환모드, 충돌회피모드, 카메라 유도모드 및 비상모드를 포함할 수 있다. 임무장비 운용에 관련된 명령정보는 임무 장비에 장착된 카메라의 회전, 축소 및 확대, 광학/열상 전환 등의 조작 명령을 포함할 수 있다.
또한, 비행 제어 컴퓨터(110)는 하향링크 신호를 탑재 통신 장치(120)를 통해 지상통제시스템(200)으로 전송할 수 있다. 여기서, 하향링크 신호는 무인항공기(100)에 설치된 카메라, 임무장비, 각종 센서 등으로부터 수집된 비행체 상태 정보를 포함할 수 있다. 그리고, 비행체 상태 정보는, 예를 들면 비행체 자세 및 항법 정보, 아날로그 센서 정보 및 각종 탑재장비 점검결과를 포함할 수 있다. 여기서, 항법정보는 속도, 고도, 방위, 위치 등의 정보를 포함하고, 아날로그 센서 정보는 온도, 압력, 진동 등의 정보를 포함할 수 있다.
탑재 통신 장치(120)는 지상통제시스템(200)으로부터 전송되는 상향링크 신호를 수신하며, 이를 비행 제어 컴퓨터(110)에 전달한다. 그리고, 탑재 통신 장치(120)는 하향링크 신호를 수집 및 생성하여 지상통제시스템(200)으로 전송한다.
이를 위하여, 탑재 통신 장치(120)는 비행 제어 컴퓨터(110)와 3가지 인터페이스를 이용하여 통신할 수 있다. 예를 들어, 탑재 통신 장치(120)는 데이터 인터페이스를 통하여 텔레커맨드 데이터 및 텔레메트리 데이터를 송수신하고, 영상신호 인터페이스를 통하여 카메라에 의하여 촬영된 영상을 아날로그 방식으로 수신하며, 음성신호 인터페이스를 통하여 음성신호를 송수신할 수 있다.
그리고, 지상통제시스템(200)은 지상 관제 장치(210) 및 지상 통신 장치(220)를 포함한다.
지상 관제 장치(210)는 하향링크 신호를 탑재 통신 장치(120)와 지상 통신 장치(220) 간의 통신을 통해 제공 받는다. 여기서, 하향링크 신호는 무인항공기(100)에서 수집된 비행체 상태 정보를 포함할 수 있으며, 비행체 상태 정보는 비행체 자세 및 항법 정보, 아날로그 센서 정보 및 각종 탑재 장비 정검 결과를 포함할 수 있다.
그리고, 지상 관제 장치(210)는 상향링크 신호를 지상 통신 장치(220)를 통하여 무인항공기(100)로 전송한다. 여기서, 상향링크 신호는 비행 조정 및 임무 장비 제어 데이터를 포함할 수 있다.
지상 통신 장치(220)는 무인항공기(100)로 전송되는 상향링크 신호를 수집 및 생성하여 무인항공기(100)로 전송한다. 그리고, 지상 통신 장치는(220)는 무인항공기(100)로부터 전송되는 하향링크 신호를 수신하며, 이를 지상 관제 장치(210)에 전달한다.
이를 위하여, 지상 통신 장치(220)는 지상 관제 장치(210)와 3가지 인터페이스를 이용하여 통신할 수 있다. 예를 들어, 지상 통신 장치(220)는 데이터 인터페이스를 통하여 텔레커맨드 데이터 및 텔레메트리 데이터를 송수신하고, 영상신호 인터페이스를 통하여 카메라에 의하여 촬영된 영상을 아날로그 방식으로 수신하며, 음성신호 인터페이스를 통하여 음성신호를 송수신할 수 있다.
본 명세서에서, 탑재 통신 장치(120) 및 지상 통신 장치(220)를 포함하여 무인항공기를 위한 통신 시스템이라고 지칭할 수 있다.
본 발명의 실시예에 따르면, 탑재 통신 장치(120)와 지상 통신 장치(220)는 미리 설정된 주파수 대역을 통하여 통신할 수 있다. 보다 구체적으로, 탑재 통신 장치(120)로부터 지상 통신 장치(220)로의 하향링크 신호는 5100 내지 5150MHz대역을 통하여 전송되고, 지상 통신 장치(220)로부터 탑재 통신 장치(120)로의 상향링크 신호는 C 밴드, 즉 5030 내지 5091MHz 대역을 통하여 통신할 수 있다. 이때, 5030 내지 5091MHz는 논페이로드(non-payload) 주파수일 수 있다. 이와 같이, 무인항공기의 조종을 위하여 5030 내지 5091MHz 대역을 사용하면, 탑재 통신 장치(120)와 지상 통신 장치(220) 간의 안전한 통신이 가능하다. 이때, 지상 통신 장치(220)는 5030 내지 5091MHz 대역 외에는 -75dBW/MHz로 방사할 수 있다. 이에 따라 인접 대역을 사용하고 있는 무선항행위성의 통신과 충돌을 일으키지 않을 수 있다.
도 3은 본 발명의 한 실시예에 따른 무인항공기 내에 탑재된 탑재 통신 장치의 블록도이며, 도 4는 본 발명의 다른 실시예에 따른 무인항공기 내에 탑재된 탑재 통신 장치의 블록도이고, 도 5는 본 발명의 한 실시예에 따른 지상통제시스템에 포함된 지상 통신 장치의 블록도이다.
도 3을 참조하면, 탑재 통신 장치(120)는 비행 제어 컴퓨터(110)와 RS-232 직렬통신 인터페이스를 이용하여 통신하며, 비행 제어 컴퓨터(110)와 연결되고, HD CAM 및 SD CAM으로부터 데이터를 수신하는 베이스밴드 유닛(122), 베이스밴드 유닛(122)과 연결되는 트랜시버 유닛(124), 트랜시버 유닛(124)과 연결되는 듀플렉서(126), 그리고 듀플렉서(126)와 연결되는 안테나 유닛(128)을 포함할 수 있다. 여기서, 트랜시버 유닛(124)은 송신 유닛과 수신 유닛을 포함할 수 있다.
한편, 도 4를 참조하면, 듀플렉서(126) 및 안테나 유닛(128) 사이에는 분리 유닛(divider, 129)이 더 포함될 수 있으며, 안테나 유닛(128)은 제1 안테나 유닛(128-1) 및 제2 안테나 유닛(128-2)을 포함할 수 있다. 이 중, 제1 안테나 유닛(128-1)은 무인 항공기의 아래(bottom)에 탑재되고, 제2 안테나 유닛(128-2)은 무인 항공기의 위(top)에 탑재될 수 있다. 일반적인 상태에서 무인 항공기의 아래에 탑재된 제1 안테나 유닛이 동작하나, 무인 항공기의 상태에 따라 안테나의 LOS(Line of Sight)가 확보되지 않는 경우가 발생할 수 있다. 이러한 경우, 무인 항공기의 위에 탑재된 제2 안테나 유닛이 동작함으로써 통신 두절을 방지할 수 있다. 이를 위하여, 분리 유닛(129)은 주파수 또는 시간을 분할하여 제1 안테나 유닛(128-1) 및 제2 안테나 유닛(128-2)으로 전송할 수 있다. 특히, C밴드의 경우 주파수 대역이 높으므로, 안테나 간 얼라인(align)이 중요하다. 본 발명의 실시예와 같이 서로 다른 위치에 탑재된 제1 안테나 유닛 및 제2 안테나 유닛을 포함하면, 지상 통신 장치(220)의 안테나 유닛(228)과 얼라인이 용이하다. 이에 따라, 전송 속도가 빨라지고, 전송량이 높아질 수 있다.
본 명세서에서는 탑재 통신 장치(120)가 두 개의 안테나 유닛, 즉 제1 안테나 유닛(128-1) 및 제2 안테나 유닛(128-2)을 포함하는 것을 예로 들어 설명하고 있으나, 이에 한정되는 것은 아니다. 무인 항공기의 아래 및 위에 각각 복수의 안테나 유닛이 탑재될 수도 있다.
도 5를 참조하면, 지상 통신 장치(220)는 지상 관제 장치(210)와 이더넷을 이용하여 통신하며, 지상 관제 장치(210)와 연결되는 베이스밴드 유닛(222), 베이스밴드 유닛(222)과 연결되는 트랜시버 유닛(224), 트랜시버 유닛(224)과 연결되는 듀플렉서(226), 그리고 듀플렉서와 연결되는 안테나 유닛(228)을 포함할 수 있다. 여기서, 트랜시버 유닛(124)은 송신 유닛과 수신 유닛을 포함할 수 있다. 이때, 안테나 유닛(228)은 무인 항공기를 지향하는 지향성 안테나일 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (14)

  1. 무인항공기를 위한 통신 시스템에 있어서,
    무인항공기에 탑재되며, 미리 설정된 주파수 대역을 이용하여 통신하는 탑재 통신 장치, 그리고
    상기 탑재 통신 장치와 상기 미리 설정된 주파수 대역을 이용하여 통신하는 지상 통신 장치
    를 포함하는 통신 시스템.
  2. 제1항에 있어서,
    상기 미리 설정된 주파수 대역은 C 밴드인 통신 시스템.
  3. 제2항에 있어서,
    상기 미리 설정된 주파수 대역은 5030 내지 5091MHz 대역인 통신 시스템.
  4. 제1항에 있어서,
    상기 탑재 통신 장치와 상기 지상 통신 장치 간에는 텔레커맨드(Telecommands, TC) 및 텔레메트리(Telemetry, TM) 중 적어도 하나가 송수신되는 통신 시스템.
  5. 제1항에 있어서,
    상기 지상 통신 장치는 지상 관제 장치와 이더넷을 이용하여 통신하고,
    상기 탑재 통신 장치는 상기 무인항공기 내에 탑재된 비행 제어 컴퓨터와 RS-232를 이용하여 통신하는 통신 시스템.
  6. 제5항에 있어서,
    상기 지상 통신 장치는 상기 지상 관제 장치와 연결되는 베이스밴드 유닛, 상기 베이스밴드 유닛과 연결되는 송신 유닛, 상기 베이스밴드 유닛과 연결되는 수신 유닛, 상기 송신 유닛 및 상기 수신 유닛과 연결되는 듀플렉서, 그리고 상기 듀플렉서와 연결되는 안테나 유닛을 포함하며,
    상기 탑재 통신 장치는 상기 비행 제어 컴퓨터와 연결되는 베이스밴드 유닛, 상기 베이스밴드 유닛과 연결되는 송신 유닛, 상기 베이스밴드 유닛과 연결되는 수신 유닛, 상기 송신 유닛 및 상기 수신 유닛과 연결되는 듀플렉서, 그리고 상기 듀플렉서와 연결되는 안테나 유닛을 포함하는 통신 시스템.
  7. 제6항에 있어서,
    상기 탑재 통신 장치는 상기 듀플렉서 및 상기 안테나 유닛 사이에 연결되는 분리 유닛(divider)을 더 포함하며, 상기 안테나 유닛은 서로 다른 위치에 탑재되는 제1 안테나 유닛 및 제2 안테나 유닛을 포함하는 통신 시스템.
  8. 제1항에 있어서,
    상기 탑재 통신 장치와 상기 지상 통신 장치는 상기 미리 설정된 주파수 대역 외에는 -75dBW/MHz로 방사하는 통신 시스템.
  9. 무인항공기를 위한 통신 시스템의 통신 방법에 있어서,
    무인항공기에 탑재되는 탑재 통신 장치가 지상 통신 장치로부터 미리 설정된 주파수 대역을 이용하여 상기 무인항공기를 조종하기 위한 신호를 수신하는 단계, 그리고
    상기 신호를 처리하는 단계
    를 포함하는 통신 방법.
  10. 제9항에 있어서,
    상기 미리 설정된 주파수 대역은 C 밴드인 통신 방법.
  11. 제10항에 있어서,
    상기 미리 설정된 주파수 대역은 5030 내지 5091MHz 대역인 통신 방법.
  12. 무인항공기를 위한 통신 시스템의 통신 방법에 있어서,
    지상 통신 장치가 상기 무인항공기를 조종하는 신호를 생성하는 단계, 그리고
    미리 설정된 주파수 대역을 이용하여 상기 무인항공기에 탑재된 탑재 통신 장치에게 상기 신호를 전송하는 단계
    를 포함하는 통신 방법.
  13. 제12항에 있어서,
    상기 미리 설정된 주파수 대역은 C 밴드인 통신 방법.
  14. 제13항에 있어서,
    상기 미리 설정된 주파수 대역은 5030 내지 5091MHz 대역인 통신 방법.
PCT/KR2016/011403 2015-10-13 2016-10-12 무인항공기를 위한 통신 장치 및 방법 WO2017065485A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16855702.3A EP3364556B1 (en) 2015-10-13 2016-10-12 Communication system for unmanned aerial vehicle
US15/767,147 US10439790B2 (en) 2015-10-13 2016-10-12 Communication apparatus and method for unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150142834A KR101694115B1 (ko) 2015-10-13 2015-10-13 무인항공기를 위한 통신 장치 및 방법
KR10-2015-0142834 2015-10-13

Publications (1)

Publication Number Publication Date
WO2017065485A1 true WO2017065485A1 (ko) 2017-04-20

Family

ID=57810664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011403 WO2017065485A1 (ko) 2015-10-13 2016-10-12 무인항공기를 위한 통신 장치 및 방법

Country Status (4)

Country Link
US (1) US10439790B2 (ko)
EP (1) EP3364556B1 (ko)
KR (1) KR101694115B1 (ko)
WO (1) WO2017065485A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108206715A (zh) * 2017-12-18 2018-06-26 无锡飞天侠科技有限公司 一种基于以太网的无人飞行器编队飞行控制数据链系统
US10439790B2 (en) 2015-10-13 2019-10-08 Korea Aerospace Research Institute Communication apparatus and method for unmanned aerial vehicle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180019802A1 (en) * 2016-07-15 2018-01-18 Qualcomm Incorporated Managing Network Communication of a Drone
DE102018104069A1 (de) * 2018-02-22 2019-08-22 Airbus Defence and Space GmbH Vorrichtung, System und Verfahren zum Freigeben von empfangenen Kommandodaten
KR102125542B1 (ko) * 2019-03-25 2020-06-22 엘아이지넥스원 주식회사 데이터 링크 주파수 대역 할당을 통한 무인 비행체 운용 시스템 및 방법
CN112119648A (zh) * 2019-08-29 2020-12-22 深圳市大疆创新科技有限公司 控制方法、远程服务器、控制站及存储介质
KR102414141B1 (ko) 2020-09-28 2022-06-29 국방과학연구소 비행체에서의 잡음원 도출 장치 및 방법
CN112532300B (zh) * 2020-11-25 2021-12-03 北京邮电大学 单无人机反向散射通信网络轨迹优化与资源分配方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070243505A1 (en) * 2006-04-13 2007-10-18 Honeywell International Inc. System and method for the testing of air vehicles
US7408898B1 (en) * 2004-12-20 2008-08-05 The United States Of America As Represented By The United States Department Of Energy Flexible network wireless transceiver and flexible network telemetry transceiver
KR20110088053A (ko) * 2010-01-28 2011-08-03 이병섭 이동형 이동통신 기지국과 위성추적 시스템의 융합을 통한 이동형 이동통신위성기지국, 무인비행체, 개인 휴대용 단말 간 이동형 통합 감시망 구성방법
KR20120006160A (ko) * 2010-07-12 2012-01-18 한국항공대학교산학협력단 스마트폰을 이용한 무인비행체 자동 및 수동 조종시스템
KR20150021293A (ko) * 2013-08-20 2015-03-02 한국항공우주연구원 무인항공기의 무선제어시스템

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100004802A1 (en) * 2005-01-25 2010-01-07 William Kress Bodin Navigating UAVS with an on-board digital camera
US7751823B2 (en) * 2006-04-13 2010-07-06 Atc Technologies, Llc Systems and methods for controlling a level of interference to a wireless receiver responsive to an activity factor associated with a wireless transmitter
US8996225B2 (en) * 2008-10-02 2015-03-31 Lockheed Martin Corporation System for and method of controlling an unmanned vehicle
IL231180A (en) * 2014-02-26 2017-11-30 Elbit Systems Land & C4I Ltd A method and system for treating line of sight in satellite communications networks
KR101694115B1 (ko) 2015-10-13 2017-01-09 한국항공우주연구원 무인항공기를 위한 통신 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408898B1 (en) * 2004-12-20 2008-08-05 The United States Of America As Represented By The United States Department Of Energy Flexible network wireless transceiver and flexible network telemetry transceiver
US20070243505A1 (en) * 2006-04-13 2007-10-18 Honeywell International Inc. System and method for the testing of air vehicles
KR20110088053A (ko) * 2010-01-28 2011-08-03 이병섭 이동형 이동통신 기지국과 위성추적 시스템의 융합을 통한 이동형 이동통신위성기지국, 무인비행체, 개인 휴대용 단말 간 이동형 통합 감시망 구성방법
KR20120006160A (ko) * 2010-07-12 2012-01-18 한국항공대학교산학협력단 스마트폰을 이용한 무인비행체 자동 및 수동 조종시스템
KR20150021293A (ko) * 2013-08-20 2015-03-02 한국항공우주연구원 무인항공기의 무선제어시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3364556A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439790B2 (en) 2015-10-13 2019-10-08 Korea Aerospace Research Institute Communication apparatus and method for unmanned aerial vehicle
CN108206715A (zh) * 2017-12-18 2018-06-26 无锡飞天侠科技有限公司 一种基于以太网的无人飞行器编队飞行控制数据链系统

Also Published As

Publication number Publication date
EP3364556A4 (en) 2019-06-05
US10439790B2 (en) 2019-10-08
US20190074956A1 (en) 2019-03-07
KR101694115B1 (ko) 2017-01-09
EP3364556B1 (en) 2022-09-28
EP3364556A1 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
WO2017065485A1 (ko) 무인항공기를 위한 통신 장치 및 방법
WO2017065486A1 (ko) 무인항공기를 위한 통신 장치 및 방법
EP3035558B1 (en) Cellular communication network through unmanned aerial vehicle cellular communication links
KR101500480B1 (ko) 무인항공기의 무선제어시스템
US5310134A (en) Tethered vehicle positioning system
US20080065275A1 (en) Method and system for controlling manned and unmanned aircraft using speech recognition tools
EP2363343A1 (en) System for control of unmanned aerial vehicles
KR20180038231A (ko) 멀티 드론 제어 시스템 및 방법
KR20170074453A (ko) 근거리 무선통신망 기반의 드론과 드로간 자동 충돌방지 및 회피 시스템
WO2017034252A1 (ko) 영상 정보를 이용한 무인비행체의 위치 유도 제어방법
KR20130009895A (ko) 공간정보기술을 이용한 무인항공기 통합네트워크시스템
KR102209503B1 (ko) 지능형 무인 비행체의 무선통신 시스템
WO2017185651A1 (zh) 一种无人机图像传输方式切换方法、装置及其无人机
KR101098387B1 (ko) 항공기 충돌방지 통신시스템
WO2015140795A1 (en) Core UxV Control System
US20170254622A1 (en) Aircraft force multiplication
KR20160128144A (ko) 상용 이동 통신망을 이용한 소형 uav 항공 교통 관제 시스템
KR102256892B1 (ko) 멀티 리모트 컨트롤러 오토 스위칭 모듈 및 이를 탑재한 무인항공기
KR20150137524A (ko) 무인기 이중화 통제시스템 및 이를 이용한 무인기 이중화 통제방법
KR102381070B1 (ko) 무인기 및 지상통제장비를 위한 다중 운용 시스템 및 방법
CN110162082B (zh) 基于高空系留物平台的遥测接收处理系统
KR20180017256A (ko) 유인기와 무인기 합동비행이 가능한 휴대용 무인항공기 통제장비
WO2022097762A1 (ko) 멀티 리모트 컨트롤러 오토 스위칭 모듈 및 이를 탑재한 무인항공기
CN110739992A (zh) 一种基于无线电-激光双模通信的无人机数据传输系统
EP4324748A1 (en) Communication system for air-to-air refueling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016855702

Country of ref document: EP