WO2017065424A1 - Three-dimensional laser scanning device and three-dimensional laser scanning system comprising same - Google Patents
Three-dimensional laser scanning device and three-dimensional laser scanning system comprising same Download PDFInfo
- Publication number
- WO2017065424A1 WO2017065424A1 PCT/KR2016/010739 KR2016010739W WO2017065424A1 WO 2017065424 A1 WO2017065424 A1 WO 2017065424A1 KR 2016010739 W KR2016010739 W KR 2016010739W WO 2017065424 A1 WO2017065424 A1 WO 2017065424A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light receiving
- light
- receiving element
- laser
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
Definitions
- the present invention relates to a three-dimensional scanning technology using a laser, and more particularly, to a three-dimensional laser scanning device capable of scanning a 360-degree omnidirectional direction with a laser light source and a three-dimensional laser scanning system including the same.
- LIDAR Light Detection And Ranging
- emits light e.g., a laser
- analyzes the light reflected from the object to determine distance, direction, velocity, temperature, material distribution and concentration characteristics for that object. It is one of the remote detection devices that can be measured.
- LIDAR takes advantage of lasers that can generate pulse signals with high energy density and short periods, allowing you to more precisely measure the physical properties of objects (such as temperature, mass distribution and concentration characteristics), distance, direction, and speed. have.
- LIDAR is used in various fields such as 3D image acquisition, weather observation, object velocity or distance measurement, autonomous driving, etc. using a laser light source having a specific wavelength or a laser light source having a variable wavelength as a light source.
- LIDAR is installed in aircraft, satellites, etc., and is used for precise atmospheric analysis and global environment observation, and is used as a means for supplementing camera functions such as distance measurement to objects by mounting on spacecraft and exploration robots.
- a simple type of LiDAR sensor technology is commercially available on the ground for long-range distance measurement and automobile speed violation enforcement. Recently, it is used as a laser scanner or a 3D video camera, and is used for 3D reverse engineering or driverless cars.
- LIDAR of the 3D Laser Scanner type which is widely used recently, includes a head having a plurality of laser output devices and a plurality of laser sensors, and mechanically rotates the head using a motor.
- this type of LIDAR is expensive because a plurality of laser outputs and a plurality of laser sensors are used, and there is a limit that a view update period is dependent on the rotational speed of the head.
- Korean Patent No. 10-1417431 relates to a three-dimensional spatial information generation system using a LIDAR sensor, and is mounted on an outer center of a vehicle wheel to be rotated together with a two-dimensional LIDAR sensor unit, and the rotation angle of the vehicle wheel. It provides a three-dimensional spatial information generation system using a LIDAR sensor comprising a processing unit for generating three-dimensional spatial information by reflecting the angle of measurement and the rotation angle measured by the angle sensor to the two-dimensional information measured by the LIDAR sensor unit. .
- An embodiment of the present invention is to provide a three-dimensional laser scanning device capable of scanning 360 degrees omnidirectional with a laser light source and a three-dimensional laser scanning system including the same.
- One embodiment of the present invention is to provide a three-dimensional laser scanning device capable of scanning 360 degrees omnidirectional without mechanical rotation and a three-dimensional laser scanning system including the same.
- One embodiment of the present invention is to provide a three-dimensional laser scanning device and a three-dimensional laser scanning system including the same that can reduce the production cost without deterioration of performance.
- the three-dimensional laser scanning device includes a laser output unit for outputting the laser light output from the laser light source in 360 ° direction; And a laser receiver which is formed above or below the laser output unit and receives the laser light reflected by an object located on a traveling path of the light emitted from the laser output unit.
- the laser receiver comprises: a light receiving lens for collecting laser light reflected by the object; And it may include a light receiving unit for receiving the laser light collected through the light receiving lens.
- the light receiving unit may include a light receiving element for converting the laser light into an electrical signal and a readout unit for reading and signal processing an electrical signal from the light receiving element.
- the light receiving element may be a focal plane array of a plurality of light receiving elements.
- the light receiving element may be formed in a cylindrical shape such that the horizontal viewing angle is 360 degrees.
- the light receiving lens may be arranged such that a plurality of light receiving lenses having different sizes may be focused on the light receiving unit.
- the light emitting device may further include a metal line connecting the lead-out part to the light receiving element and the metal line.
- the metal line may include a first metal line connected to the active region and the lead-out of the light receiving element, and a second metal line formed on the active region of the light receiving element.
- the second metal lines may be formed at intervals at which interference of incident light does not occur.
- the three-dimensional laser scanning system is formed on the laser output unit for outputting the laser light output from the laser light source in 360 ° direction and the upper or lower portion of the laser output, on the traveling path of the light emitted from the laser output It includes a three-dimensional laser scanning device including a laser receiver for receiving the laser light reflected by the object located in the and a computing device for measuring the distance to the object based on the signal received by the three-dimensional laser scanning device. .
- the computing device may measure a distance to the object based on a time of flight (ToF) of the received laser light.
- ToF time of flight
- the three-dimensional laser scanning apparatus and the three-dimensional laser scanning system including the same can scan 360 degrees omnidirectional with a laser light source.
- the three-dimensional laser scanning apparatus and the three-dimensional laser scanning system including the same can scan 360 degrees omnidirectionally without mechanical rotation, and fundamentally solve the problem of the view update period. I can solve it.
- the three-dimensional laser scanning apparatus and the three-dimensional laser scanning system including the same according to an embodiment of the present invention can reduce the manufacturing cost without deterioration of performance.
- FIG. 1 is a view illustrating a three-dimensional laser scanning system according to an embodiment of the present invention.
- FIG. 2 is a block diagram illustrating a configuration of a 3D laser scanning apparatus of FIG. 1.
- FIG 3 illustrates an example of a light receiving unit and a plurality of light receiving lenses.
- FIG. 5 is a diagram illustrating an embodiment of a light receiving unit.
- FIG. 6 is a view illustrating another embodiment of the light receiving unit.
- FIG. 7 is a view illustrating still another embodiment of the light receiving unit.
- FIG. 8 is a diagram illustrating a focal plane array sensor of a light receiver.
- FIG. 9 is a diagram illustrating a readout circuit of the focal plane array sensor.
- first and second are intended to distinguish one component from another component, and the scope of rights should not be limited by these terms.
- first component may be named a second component, and similarly, the second component may also be named a first component.
- an identification code (e.g., a, b, c, etc.) is used for convenience of description, and the identification code does not describe the order of the steps, and each step clearly indicates a specific order in context. Unless stated otherwise, they may occur out of the order noted. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
- the present invention can be embodied as computer readable code on a computer readable recording medium
- the computer readable recording medium includes all kinds of recording devices in which data can be read by a computer system.
- Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like, and are also implemented in the form of a carrier wave (for example, transmission over the Internet). It also includes.
- the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
- the 3D laser scanning system 100 includes a 3D laser scanning device 110 and a computing device 120.
- the three-dimensional laser scanning device 110 includes an output 112 and a light receiver 114.
- the 3D laser scanning device 110 outputs laser light in all directions around 360 degrees around the 3D laser scanning device 110, and receives the laser light reflected by the subject 130 located in the vicinity.
- the 3D laser scanning device 110 may correspond to LIDAR (Light Detection And Ranging).
- the 3D laser scanning device 110 generates and transmits an electrical signal corresponding to the received laser light to the computing device 120.
- the output unit 112 emits light emitted from the light source in various directions.
- the output unit 112 emits light emitted from the light source in all directions of 360 °.
- the output unit 112 diffuses the laser light output from the light source, and passes the diffused laser light from the inside of the cylindrical diffraction grating in the lateral outward direction to be uniformly distributed in the front side of the cylindrical (hollow) diffraction grating.
- Output a plurality of laser lights.
- the diffraction grating is arranged along the circumferential direction, and the light source can be located inside the diffraction grating.
- the output unit 112 outputs a plurality of laser lights uniformly distributed in all directions around 360 degrees with respect to the three-dimensional laser scanning device 110.
- the light receiver 114 is positioned at a predetermined position and receives the laser light reflected by the subject 130 located on the traveling path among the plurality of laser lights output from the output unit 112. That is, the light emitted from the output unit 112 and then reflected by the light receiver 114 is irradiated to the light receiver 114.
- the light receiver 114 generates an electrical signal corresponding to the received laser light and transmits it to the computing device 120.
- the computing device 120 measures the distance between the 3D laser scanning device 110 and the subject 130 based on the signal received from the 3D laser scanning device 110. In one embodiment, the computing device 120 may measure the distance to the subject based on the time of flight (ToF) of the received laser light. In one embodiment, the computing device 120 may measure the direction of the subject 130 based on the signal received by the 3D laser scanning device 110.
- ToF time of flight
- FIG. 2 is a block diagram illustrating a configuration of a 3D laser scanning apparatus of FIG. 1.
- the three-dimensional laser scanning device 110 includes an output unit 210 and a light receiver 230.
- the output unit 310 may include a light source for outputting laser light, a refractive lens and a conical mirror. Light output from the light source is uniformly diffused through the refractive lens and incident on the mirror. Light incident on the conical mirror is emitted in 360 ° forwards.
- a refractive lens and a conical mirror are used as the optical device emitting 360 ° of light emitted from the light source, but the present invention is not limited thereto.
- the laser light output from the output unit 210 is reflected by the subjects 220a and 220b, and the light receiver 230 receives the laser light reflected by the subjects 220a and 220b.
- the light receiver 230 includes light receiving lenses 240a and 240b and a light receiving unit 250.
- the light receiver 250 includes a light receiver and a lead-out unit.
- the light receiving element may be an optical sensor.
- the light receiving element may be a photodiode. Light passing through the light receiving lens 240 may be irradiated to the light receiving unit 250.
- the light receiving lens collects (collects) the laser light reflected by the subjects 220a and 220b, and the light receiving unit 250 receives the laser light collected through the light receiving lenses 240a and 240b. That is, the light passing through the light receiving lenses 240a and 240b is irradiated to the light receiving unit 250.
- the light receiving lenses 240a and 240b may be positioned around the light receiving unit 250 so as to receive the laser light from the surrounding 360 degrees of the light receiver 230.
- a plurality of light receiving lenses may be positioned around the light receiving unit 250.
- the plurality of light receiving lenses 240 may be arranged along the side of the cylinder or taper. In this case, the plurality of light receiving lenses 240 may be arranged along the circumferential direction. It may also be arranged along the axial direction.
- the plurality of light receiving lenses 240 may be aligned in a straight line along the circumferential direction and the axial direction.
- the plurality of light receiving lenses 240 may have different sizes, and may be divided into two or more groups according to the sizes. In this case, the sizes are the same between the light receiving lenses belonging to the same group.
- the light receiver is composed of a plurality of light receiving lenses 240 and the light receiving unit 250, and may be implemented in various shapes as described below.
- the light receiver is preferably installed in the vertical form on the top or bottom of the output.
- FIG 3 illustrates an example of a plurality of light receiving lenses 240 and a cylindrical light receiving unit 250.
- a plurality of light receiving lenses 240 are disposed around the light receiving unit 250.
- the light receiving lenses 240 may collect laser light received at a corresponding position and collect the laser light by a sensor of the light receiving unit 250 corresponding to the corresponding position.
- Lens characteristics (refractive angle, focal length, etc.) of the light receiving lens 240 may be designed so that the laser light may be collected by a sensor of the light receiving unit 250 corresponding to the corresponding position.
- the size of the light receiving lens 240 may vary depending on the embodiment.
- the light receiving lens may have a size corresponding to the plurality of light receiving elements. For example, when one light receiving lens has a size covering a plurality of sensor regions, the light receiving lens may focus the plurality of light receiving elements.
- the light receiving lens may have a size corresponding to one light receiving element.
- the light receiving lens may condense the light receiving element.
- a plurality of light receiving lenses 240 having different sizes may be disposed around the light receiving unit 250.
- first light receiving lenses 272 of a first size may be disposed
- second light receiving lenses 274 of a second size may be disposed between the first light receiving lenses 272.
- the second light receiving lens 274 may correspond to a light receiving element positioned between the first light receiving lenses 272.
- the first light receiving lens 272 may correspond to the plurality of light receiving elements, and may focus the light on the corresponding plurality of light receiving elements.
- the second light receiving lens 274 corresponds to one light receiving element, and may focus on the corresponding light receiving element. Lens characteristics (refractive angle, focal length, etc.) of the first light receiving lens 272 and the second light receiving lens 274 may be designed to be focused on the light receiving element of the light receiving unit 250 corresponding to the corresponding position. Can be.
- the cylindrical light-receiving unit has been described as a reference, but the shape of the light-receiving unit may vary according to embodiments.
- 5 and 6 illustrate examples in which the diameters of the upper and lower surfaces of the light receiver 250 are different.
- FIG 5 illustrates a case where the diameter of the upper surface of the light receiver 250 is large.
- the light receiver may be positioned at a position where laser light reflected from an object can be easily received, and the light receiver may have a form in which light can be easily received.
- the light receiver 250 when the light receiver is located above the output unit, the light receiver 250 may have a diamond shape in which the upper diameter is larger than the lower diameter as shown in FIG. 4A.
- the light receiving lens 240 is positioned on the side of the cylinder, and the light receiving unit 250 is easily inclined in the downward direction to receive the laser light received from the lower side direction.
- FIG. 6 is a diagram illustrating a case where the diameter of the lower surface of the light receiver 250 is large.
- the light receiver 250 When the light receiver is located below the output unit, the light receiver 250 may have a shape of a cylinder having a diamond shape having a lower diameter than a diameter of an upper portion as shown in FIG. 11B.
- the light receiving lens 240 is positioned at the side of the cylinder, and the light receiving unit 250 is easily inclined in the upper direction to receive the laser light received from the upper side direction.
- the shape of the light receiving unit 250 may have a cylindrical shape having the same diameter as the lower diameter and the upper diameter, and the light receiving lenses 240 may be oriented by control. For example, when the receiver is located at the top of the output, the light receiving lenses 240 are adjusted to face the lower side direction, and when the receiver is located at the bottom of the output, the light receiving lenses 240 face the upper side direction. Can be adjusted to be.
- FIG. 7 is a view illustrating a case where the light receiving unit 250 is polygonal in shape
- FIG. 7A is a perspective view of FIG. 7B
- FIG. 7B is a plan view
- FIG. 7C is a developed view.
- the light receiving unit 250 may be formed in a polygon, and in the present embodiment, the case of the octagon is illustrated.
- a polygonal structure can implement a ToF light-receiving element array having a horizontal viewing angle of 360 °.
- the plurality of light receiving elements may be arranged along the circumferential direction such that the viewing angle is 360 °. 7 is only one embodiment of such a light receiving element arrangement.
- the light receiving elements are arranged as if they are lined up tightly.
- One light receiving element has a circular viewing angle 290. When the light is securely attached in a line, the horizontal viewing angle may cover 360 degrees.
- Photodiodes are devices that sense laser light and convert it into electrical signals.
- the light receiving lens 240 is for securing a horizontal / vertical viewing angle of the ToF sensor, and may be formed on each surface of the light receiving unit 250, and the light receiving unit 250 receives the light collected by the light receiving lens 240.
- the light receiving element 260 for sensing is formed.
- a photo diode (PD) may be used as the light receiving element 260, and may be arranged in a focal plane array (FPA).
- FIG. 8 illustrates an example in which the light receiving element 260 is arranged in a focal plane.
- the light receiving unit 250 is in the form of a cylinder having the same diameter as the lower diameter and the upper portion.
- the light receiving unit 250 includes a light receiving element array 610 and a lead-out unit 630 arranged in a focal plane.
- the light receiving element array 610 includes a light receiving element for converting received light into an electrical signal, and m ⁇ n light receiving elements form the light receiving element array 610 in a matrix form.
- the light receiving element array 610 is electrically connected to the lead-out unit 620 through an interconnect bump 620.
- a sensor or a photodiode may be used as the light receiving element.
- the lead-out unit 630 reads out an electrical signal from each light receiving element of the light receiving element array 610, processes the signal, and outputs the signal.
- the lead-out unit 630 may read electrical signals from each sensor in an event-driven manner to the sensors.
- the signal output from the readout unit 630 may be transmitted to the computing device 120.
- FIG. 9 is a diagram illustrating a detailed circuit configuration of a light receiving unit.
- a plurality of light-receiving elements 610 are arranged in a matrix form, and each of the light-receiving elements 610 is electrically connected to the lead-out part 630 through the lead-out line 620. That is, the plurality of readout lines 620 may correspond one-to-one with the plurality of light receiving elements 610.
- the lead out line may be called a “metal line”.
- the readout unit 630 reads an electrical signal from each light receiving device in an event-driven manner.
- One lead-out line 620 may be connected to each light receiving element 610, and when an event occurs (for example, when a laser is received by the corresponding sensor), the readout line 620 may read an electrical signal generated by the corresponding sensor. 630).
- the focal plane array sensor may receive a plurality of lasers simultaneously received. Can't recognize light. Therefore, the readout circuit is configured such that one leadout line 620 is connected to each light receiving element 610 so that the focal plane array sensor can recognize a plurality of laser lights simultaneously received. That is, the light receiving element (sensor) and the lead-out line are matched 1: 1.
- the readout unit 630 controls reading of electrical signals from the plurality of 610.
- the readout unit 630 identifies a sensor on which the electrical signal is received, and transmits the electrical signal to a next signal processing device (for example, an amplifier or an AD converter).
- the signal processed by the signal processing device may be transmitted to the computing device 120.
- the lead-out line is laid out in this manner, there is a problem that the volume of the chip becomes large. Since the number of the lead-out lines 620 is to be arranged equal to the number of the light receiving elements 610, there is a problem that the number of metal lines is increased and consequently the volume is increased.
- a method of stacking metal lines (lead-out lines) in multiple layers may be considered.
- the metal lines are stacked in multiple layers, the photo diodes (light receiving elements) do not receive light properly because they are disposed above the photo diodes of the metal lines.
- FIG. 10 and 11 illustrate a method of arranging lead-out lines (metal lines) to solve such a problem.
- FIG. 10 is a plan view and
- FIG. 11 is a sectional view.
- the metal line 820 is formed on the photodiode 810 to reduce the space in which the metal line 820 is disposed.
- the metal line 820 may include a first line M1 and a second line M2.
- the first line M1 is disposed to be electrically connected to the active region 812 and the readout circuit 830 of the photodiode 810, and the second line M2 is disposed above the photodiode 810. Is placed.
- the first line M1 is electrically connected to the lead-out unit 830 through the first contact 822, and the second line M2 is connected to the first line M1 through the second contact 824. Electrically connected.
- the second lines M1 are arranged at regular intervals, and the intervals vary depending on the wavelength of the laser light. Since the laser light has an inherent wavelength, interference can be prevented by appropriately adjusting the second metal line spacing. That is, the plurality of second lines M2 may be disposed with a gap such that interference does not occur in the light irradiated to the photodiode 810. If the interference does not occur, even if the second metal line is formed on the active region of the photodiode, laser light may be received through the gap between the metal lines.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
The present invention relates to a three-dimensional scanning technology using a laser. The present invention comprises: a laser output device for outputting laser light, which is output from a laser light source, at 360° in all directions; and a laser receiver formed on the upper part or the lower part of the laser output device and for receiving laser light reflected by means of an object which is located on the traveling path of the light emitted from the laser output device.
Description
본 발명은 레이저를 이용한 3차원 스캐닝 기술에 관한 것으로, 보다 상세하게는 레이저 광원으로 360도 전방향을 스캐닝할 수 있는 3차원 레이저 스캐닝 장치 및 이를 포함하는 3차원 레이저 스캐닝 시스템에 관한 것이다.The present invention relates to a three-dimensional scanning technology using a laser, and more particularly, to a three-dimensional laser scanning device capable of scanning a 360-degree omnidirectional direction with a laser light source and a three-dimensional laser scanning system including the same.
LIDAR(Light Detection And Ranging)는 타겟 물체에 빛(예를 들어, 레이저)을 조사하고 해당 물체에서 반사된 빛을 분석하여 해당 물체에 대한 거리, 방향, 속도, 온도, 물질 분포 및 농도 특성 등을 측정할 수 있는 원격 탐지 장치의 하나이다. LIDAR는 높은 에너지 밀도와 짧은 주기를 가지는 펄스 신호를 생성할 수 있는 레이저의 장점을 활용하여 보다 정밀하게 물체의 물성(온도, 물질 분포 및 농도 특성 등) 및 거리, 방향, 속도 등을 측정할 수 있다. Light Detection And Ranging (LIDAR) emits light (e.g., a laser) onto a target object and analyzes the light reflected from the object to determine distance, direction, velocity, temperature, material distribution and concentration characteristics for that object. It is one of the remote detection devices that can be measured. LIDAR takes advantage of lasers that can generate pulse signals with high energy density and short periods, allowing you to more precisely measure the physical properties of objects (such as temperature, mass distribution and concentration characteristics), distance, direction, and speed. have.
LIDAR는 특정 파장의 레이저 광원 또는 파장 가변이 가능한 레이저 광원을 광원으로 사용하여 3차원 영상 획득, 기상 관측, 객체의 속도 또는 거리 측정, 자율 주행 등과 같은 다양한 분야에서 사용되고 있다. 예를 들어, LIDAR는 항공기, 위성 등에 탑재되어 정밀한 대기 분석 및 지구환경 관측에 활용되고 있으며, 우주선 및 탐사 로봇에 장착되어 물체까지의 거리 측정 등 카메라 기능을 보완하기 위한 수단으로 활용되고 있다. 또한, 지상에서는 원거리 거리 측정, 자동차 속도 위반 단속 등을 위한 간단한 형태의 라이다 센서 기술들이 상용화되고 있다. 최근에는 Laser Scanner 또는 3D 영상 카메라로 활용되어 3D 리버스 엔지니어링(reverse engineering)이나 무인자동차 등에 사용되고 있다.LIDAR is used in various fields such as 3D image acquisition, weather observation, object velocity or distance measurement, autonomous driving, etc. using a laser light source having a specific wavelength or a laser light source having a variable wavelength as a light source. For example, LIDAR is installed in aircraft, satellites, etc., and is used for precise atmospheric analysis and global environment observation, and is used as a means for supplementing camera functions such as distance measurement to objects by mounting on spacecraft and exploration robots. In addition, a simple type of LiDAR sensor technology is commercially available on the ground for long-range distance measurement and automobile speed violation enforcement. Recently, it is used as a laser scanner or a 3D video camera, and is used for 3D reverse engineering or driverless cars.
최근에 널리 사용되고 있는 3D Laser Scanner 타입의 LIDAR는 복수의 레이저 출력기와 복수의 레이저 센서를 구비하는 헤드를 포함하고, 모터를 이용하여 기계적으로 헤드를 회전시킨다. 그러나, 이러한 형태의 LIDAR는 복수의 레이저 출력기와 복수의 레이저 센서가 사용되어 고가이고, 헤드의 회전 속도에 따라 가시 영역 업데이트(view update) 주기가 의존되는 한계가 있다.LIDAR of the 3D Laser Scanner type, which is widely used recently, includes a head having a plurality of laser output devices and a plurality of laser sensors, and mechanically rotates the head using a motor. However, this type of LIDAR is expensive because a plurality of laser outputs and a plurality of laser sensors are used, and there is a limit that a view update period is dependent on the rotational speed of the head.
한국등록특허 제10-1417431호는 LIDAR센서를 이용한 3차원 공간정보 생성시스템에 관한 것으로써, 차량 휠의 외측 중심에 장착되어 휠과 함께 회전되는 2차원 LIDAR 센서부, 상기 차량 휠의 회전각을 측정하는 각도센서 및 상기 LIDAR 센서부에서 측정된 2차원 정보에 각도센서에서 측정된 회전각을 반영함으로써 3차원 공간정보를 생성하는 가공부를 포함하는 LIDAR센서를 이용한 3차원 공간정보 생성시스템을 제공한다.Korean Patent No. 10-1417431 relates to a three-dimensional spatial information generation system using a LIDAR sensor, and is mounted on an outer center of a vehicle wheel to be rotated together with a two-dimensional LIDAR sensor unit, and the rotation angle of the vehicle wheel. It provides a three-dimensional spatial information generation system using a LIDAR sensor comprising a processing unit for generating three-dimensional spatial information by reflecting the angle of measurement and the rotation angle measured by the angle sensor to the two-dimensional information measured by the LIDAR sensor unit. .
본 발명의 일 실시예는 레이저 광원으로 360도 전방향을 스캐닝할 수 있는 3차원 레이저 스캐닝 장치 및 이를 포함하는 3차원 레이저 스캐닝 시스템을 제공하고자 한다.An embodiment of the present invention is to provide a three-dimensional laser scanning device capable of scanning 360 degrees omnidirectional with a laser light source and a three-dimensional laser scanning system including the same.
본 발명의 일 실시예는 기계적인 회전없이 360도 전방향을 스캐닝할 수 있는 3차원 레이저 스캐닝 장치 및 이를 포함하는 3차원 레이저 스캐닝 시스템을 제공하고자 한다.One embodiment of the present invention is to provide a three-dimensional laser scanning device capable of scanning 360 degrees omnidirectional without mechanical rotation and a three-dimensional laser scanning system including the same.
본 발명의 일 실시예는 성능의 저하 없이 제작 비용을 줄일 수 있는 3차원 레이저 스캐닝 장치 및 이를 포함하는 3차원 레이저 스캐닝 시스템을 제공하고자 한다.One embodiment of the present invention is to provide a three-dimensional laser scanning device and a three-dimensional laser scanning system including the same that can reduce the production cost without deterioration of performance.
실시예들 중에서, 3차원 레이저 스캐닝 장치는 레이저 광원에서 출력된 레이저 광을 360°전방향으로 출력하는 레이저 출력기; 및 상기 레이저 출력기의 상부 또는 하부에 형성되고, 상기 레이저 출력기에서 출사된 광의 진행 경로 상에 위치하는 물체에 의해 반사된 레이저 광을 수신하는 레이저 수신기를 포함한다.Among the embodiments, the three-dimensional laser scanning device includes a laser output unit for outputting the laser light output from the laser light source in 360 ° direction; And a laser receiver which is formed above or below the laser output unit and receives the laser light reflected by an object located on a traveling path of the light emitted from the laser output unit.
일 실시예에서, 상기 레이저 수신기는 상기 물체에 의해 반사된 레이저 광을 수집하는 수광 렌즈; 및 상기 수광 렌즈를 통해 수집된 레이저 광을 수신하는 수광부를 포함할 수 있다. In one embodiment, the laser receiver comprises: a light receiving lens for collecting laser light reflected by the object; And it may include a light receiving unit for receiving the laser light collected through the light receiving lens.
일 실시예에서, 상기 수광부는 상기 레이저 광을 전기적 신호로 변환하는 수광소자 및 상기 수광소자로부터 전기적 신호를 읽고 신호처리하는 리드아웃부를 포함할 수 있다. In one embodiment, the light receiving unit may include a light receiving element for converting the laser light into an electrical signal and a readout unit for reading and signal processing an electrical signal from the light receiving element.
일 실시예에서, 상기 수광소자는 다수의 수광소자가 초점면 배열(Focal Plane Array) 될 수 있다. In one embodiment, the light receiving element may be a focal plane array of a plurality of light receiving elements.
일 실시예에서, 상기 수광소자는 수평 시야각이 360도가 되도록 실린더 형으로 형성될 수 있다. In one embodiment, the light receiving element may be formed in a cylindrical shape such that the horizontal viewing angle is 360 degrees.
일 실시예에서,상기 수광 렌즈는 다른 크기를 갖는 복수의 수광 렌즈들이 상기 수광부에 집광할 수 있도록 배치될 수 있다. In one embodiment, the light receiving lens may be arranged such that a plurality of light receiving lenses having different sizes may be focused on the light receiving unit.
*일 실시예에서, 상기 수광소자와 리드아웃부를 연결하는 메탈라인을 더 포함하며, 상기 수광소자와 메탈라인은 1:1로 대응될 수 있다. In one embodiment, the light emitting device may further include a metal line connecting the lead-out part to the light receiving element and the metal line.
일 실시예에서, 상기 메탈라인은 상기 수광소자의 활성영역 및 상기 리드아웃부에 연결되는 제 1 메탈라인과 수광소자의 활성영역 상부에 형성되는 제2 메탈라인을 포함할 수 있다. In an embodiment, the metal line may include a first metal line connected to the active region and the lead-out of the light receiving element, and a second metal line formed on the active region of the light receiving element.
일 실시예에서, 상기 제2 메탈라인은 입사되는 광의 간섭이 발생하지 않는 간격으로 형성될 수 있다. In an embodiment, the second metal lines may be formed at intervals at which interference of incident light does not occur.
실시예들 중에서, 3차원 레이저 스캐닝 시스템은 레이저 광원에서 출력된 레이저 광을 360°전방향으로 출력하는 레이저 출력기 및 상기 레이저 출력기의 상부 또는 하부에 형성되고, 상기 레이저 출력기에서 출사된 광의 진행 경로 상에 위치하는 물체에 의해 반사된 레이저 광을 수신하는 레이저 수신기를 포함하는 3차원 레이저 스캐닝 장치 및 상기 3차원 레이저 스캐닝 장치에서 수신된 신호를 기초로 상기 물체와의 거리를 측정하는 컴퓨팅 장치를 포함한다.Among the embodiments, the three-dimensional laser scanning system is formed on the laser output unit for outputting the laser light output from the laser light source in 360 ° direction and the upper or lower portion of the laser output, on the traveling path of the light emitted from the laser output It includes a three-dimensional laser scanning device including a laser receiver for receiving the laser light reflected by the object located in the and a computing device for measuring the distance to the object based on the signal received by the three-dimensional laser scanning device. .
일 실시예에서, 상기 컴퓨팅 장치는 상기 수신된 레이저 광의 ToF(Time of Flight)를 기초로 상기 물체와의 거리를 측정할 수 있다.In one embodiment, the computing device may measure a distance to the object based on a time of flight (ToF) of the received laser light.
본 발명의 일 실시예에 따른 3차원 레이저 스캐닝 장치 및 이를 포함하는 3차원 레이저 스캐닝 시스템은 레이저 광원으로 360도 전방향을 스캐닝할 수 있다.The three-dimensional laser scanning apparatus and the three-dimensional laser scanning system including the same according to an embodiment of the present invention can scan 360 degrees omnidirectional with a laser light source.
본 발명의 일 실시예에 따른 3차원 레이저 스캐닝 장치 및 이를 포함하는 3차원 레이저 스캐닝 시스템은 기계적인 회전없이 360도 전방향을 스캐닝할 수 있으며, 가시 영역 업데이트(view update) 주기의 문제를 근본적으로 해결할 수 있다.The three-dimensional laser scanning apparatus and the three-dimensional laser scanning system including the same according to an embodiment of the present invention can scan 360 degrees omnidirectionally without mechanical rotation, and fundamentally solve the problem of the view update period. I can solve it.
본 발명의 일 실시예에 따른 3차원 레이저 스캐닝 장치 및 이를 포함하는 3차원 레이저 스캐닝 시스템은 성능의 저하 없이 제작 비용을 줄일 수 있다.The three-dimensional laser scanning apparatus and the three-dimensional laser scanning system including the same according to an embodiment of the present invention can reduce the manufacturing cost without deterioration of performance.
도 1은 본 발명의 일 실시예에 따른 3차원 레이저 스캐닝 시스템을 설명하는 도면이다.1 is a view illustrating a three-dimensional laser scanning system according to an embodiment of the present invention.
도 2는 도 1에 있는 3차원 레이저 스캐닝 장치의 구성을 나타내는 블록도이다.FIG. 2 is a block diagram illustrating a configuration of a 3D laser scanning apparatus of FIG. 1.
도 3은 수광부와 복수의 수광 렌즈를 나타내는 예이다.3 illustrates an example of a light receiving unit and a plurality of light receiving lenses.
도 4는 수광부와 복수의 수광 렌즈를 나타내는 다른 예이다.4 is another example of the light receiving unit and the plurality of light receiving lenses.
도 5는 수광부의 일 실시 예를 나타내는 도면이다.5 is a diagram illustrating an embodiment of a light receiving unit.
도 6은 수광부의 다른 실시 예를 나타내는 도면이다.6 is a view illustrating another embodiment of the light receiving unit.
도 7은 수광부의 또 다른 실시 예를 나타내는 도면이다. 7 is a view illustrating still another embodiment of the light receiving unit.
도 8은 수광부의 초점면 배열(Focal Plane Array) 센서를 설명하는 도면이다.8 is a diagram illustrating a focal plane array sensor of a light receiver.
도 9는 초점면 배열 센서의 리드아웃 회로를 설명하는 도면이다.9 is a diagram illustrating a readout circuit of the focal plane array sensor.
도 10, 11은 본 발명의 일 실시예에 따른 리드아웃 라인의 배치 방법을 나타낸 도면이다. 10 and 11 illustrate a method of arranging lead-out lines according to an exemplary embodiment of the present invention.
본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다. 또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로, 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.Description of the present invention is only an embodiment for structural or functional description, the scope of the present invention should not be construed as limited by the embodiments described in the text. That is, since the embodiments may be variously modified and may have various forms, the scope of the present invention should be understood to include equivalents capable of realizing the technical idea. In addition, the objects or effects presented in the present invention does not mean that a specific embodiment should include all or only such effects, the scope of the present invention should not be understood as being limited thereby.
한편, 본 출원에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.On the other hand, the meaning of the terms described in the present application should be understood as follows.
"제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Terms such as "first" and "second" are intended to distinguish one component from another component, and the scope of rights should not be limited by these terms. For example, the first component may be named a second component, and similarly, the second component may also be named a first component.
어떤 구성요소가 다른 구성요소에 "연결되어"있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결될 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다고 언급된 때에는 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 한편, 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is referred to as being "connected" to another component, it should be understood that there may be other components in between, although it may be directly connected to the other component. On the other hand, when a component is referred to as being "directly connected" to another component, it should be understood that there is no other component in between. On the other hand, other expressions describing the relationship between the components, such as "between" and "immediately between" or "neighboring to" and "directly neighboring to", should be interpreted as well.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다"또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions should be understood to include plural expressions unless the context clearly indicates otherwise, and terms such as "comprise" or "have" refer to a feature, number, step, operation, component, part, or feature thereof. It is to be understood that the combination is intended to be present and does not exclude in advance the possibility of the presence or addition of one or more other features or numbers, steps, operations, components, parts or combinations thereof.
각 단계들에 있어 식별부호(예를 들어, a, b, c 등)는 설명의 편의를 위하여 사용되는 것으로 식별부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 단계들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.In each step, an identification code (e.g., a, b, c, etc.) is used for convenience of description, and the identification code does not describe the order of the steps, and each step clearly indicates a specific order in context. Unless stated otherwise, they may occur out of the order noted. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
본 발명은 컴퓨터가 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현될 수 있고, 컴퓨터가 읽을 수 있는 기록 매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록 장치를 포함한다. 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한, 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한, 컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산 방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.The present invention can be embodied as computer readable code on a computer readable recording medium, and the computer readable recording medium includes all kinds of recording devices in which data can be read by a computer system. . Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like, and are also implemented in the form of a carrier wave (for example, transmission over the Internet). It also includes. The computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.All terms used herein have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise defined. Generally, the terms defined in the dictionary used are to be interpreted to coincide with the meanings in the context of the related art, and should not be interpreted as having ideal or excessively formal meanings unless clearly defined in the present application.
도 1을 참조하면, 3차원 레이저 스캐닝 시스템(100)은 3차원 레이저 스캐닝 장치(110) 및 컴퓨팅 장치(120)를 포함한다.Referring to FIG. 1, the 3D laser scanning system 100 includes a 3D laser scanning device 110 and a computing device 120.
3차원 레이저 스캐닝 장치(110)는 출력기(112) 및 수광기(114)를 포함한다. 3차원 레이저 스캐닝 장치(110)는 해당 3차원 레이저 스캐닝 장치(110)를 중심으로 360도 주변 전 방향으로 레이저 광을 출력하고, 주변에 위치한 피사체(130)에 의해 반사된 레이저 광을 수신한다. 일 실시예에서, 3차원 레이저 스캐닝 장치(110)는 LIDAR(Light Detection And Ranging)에 해당할 수 있다. 3차원 레이저 스캐닝 장치(110)는 수신된 레이저 광에 대응되는 전기 신호를 생성하여 컴퓨팅 장치(120)에 전송한다.The three-dimensional laser scanning device 110 includes an output 112 and a light receiver 114. The 3D laser scanning device 110 outputs laser light in all directions around 360 degrees around the 3D laser scanning device 110, and receives the laser light reflected by the subject 130 located in the vicinity. In one embodiment, the 3D laser scanning device 110 may correspond to LIDAR (Light Detection And Ranging). The 3D laser scanning device 110 generates and transmits an electrical signal corresponding to the received laser light to the computing device 120.
출력기(112)는 광원에서 출사된 광을 여러 방향으로 출사한다. 출력기(112)는 광원에서 출사된 광을 360˚ 전방향으로 출사한다. 출력기(112)는 광원에서 출력된 레이저 광을 확산시키고, 확산된 레이저 광을 실린더형 회절 격자의 내부에서 측면 외부 방향으로 통과시켜서 실린더형(중공형태) 회절 격자의 측면 전 방향으로 균일하게 분산된 복수의 레이저 광을 출력한다. 이 경우, 회절 격자는 원주방향을 따라 배열되며, 광원은 회절 격자의 내부에 위치할 수 있다. 출력기(112)는 해당 3차원 레이저 스캐닝 장치(110)를 중심으로 360도 주변 전 방향으로 균일하게 분산된 복수의 레이저 광을 출력한다.The output unit 112 emits light emitted from the light source in various directions. The output unit 112 emits light emitted from the light source in all directions of 360 °. The output unit 112 diffuses the laser light output from the light source, and passes the diffused laser light from the inside of the cylindrical diffraction grating in the lateral outward direction to be uniformly distributed in the front side of the cylindrical (hollow) diffraction grating. Output a plurality of laser lights. In this case, the diffraction grating is arranged along the circumferential direction, and the light source can be located inside the diffraction grating. The output unit 112 outputs a plurality of laser lights uniformly distributed in all directions around 360 degrees with respect to the three-dimensional laser scanning device 110.
수광기(114)는 기설정된 위치에 위치하며, 출력기(112)에서 출력된 복수의 레이저 광 가운데 진행 경로 상에 위치하는 피사체(130)에 의해 반사된 레이저 광을 수신한다. 즉, 수광기(114)에는 출력기(112)에서 출사된 후 피사체(130)에 반사된 광이 조사된다. 수광기(114)는 수신된 레이저 광에 대응되는 전기 신호를 생성하여 컴퓨팅 장치(120)에 전송한다.The light receiver 114 is positioned at a predetermined position and receives the laser light reflected by the subject 130 located on the traveling path among the plurality of laser lights output from the output unit 112. That is, the light emitted from the output unit 112 and then reflected by the light receiver 114 is irradiated to the light receiver 114. The light receiver 114 generates an electrical signal corresponding to the received laser light and transmits it to the computing device 120.
컴퓨팅 장치(120)는 3차원 레이저 스캐닝 장치(110)에서 수신된 신호를 기초로 3차원 레이저 스캐닝 장치(110)와 피사체(130) 사이의 거리를 측정한다. 일 실시예에서, 컴퓨팅 장치(120)는 수신된 레이저 광의 ToF(Time of Flight)를 기초로 피사체와의 거리를 측정할 수 있다. 일 실시예에서, 컴퓨팅 장치(120)는 3차원 레이저 스캐닝 장치(110)에서 수신된 신호를 기초로 피사체(130)의 방향을 측정할 수도 있다.The computing device 120 measures the distance between the 3D laser scanning device 110 and the subject 130 based on the signal received from the 3D laser scanning device 110. In one embodiment, the computing device 120 may measure the distance to the subject based on the time of flight (ToF) of the received laser light. In one embodiment, the computing device 120 may measure the direction of the subject 130 based on the signal received by the 3D laser scanning device 110.
도 2는 도 1에 있는 3차원 레이저 스캐닝 장치의 구성을 나타내는 블록도이다.FIG. 2 is a block diagram illustrating a configuration of a 3D laser scanning apparatus of FIG. 1.
도 2를 참조하면, 3차원 레이저 스캐닝 장치(110)는 출력기(210)와 수광기(230)를 포함하여 구성된다. Referring to FIG. 2, the three-dimensional laser scanning device 110 includes an output unit 210 and a light receiver 230.
상기 출력기(310)는 레이저 광을 출력하는 광원, 굴절렌즈 및 원뿔형 미러를 포함하여 구성될 수 있다. 광원에서 출력된 광은 굴절렌즈를 통해 균등하게 확산되어 미러로 입사된다. 원뿔형 미러로 입사된 광은 360°전방향으로 방사된다. 본 실시예에서는 광원에서 출사된 광을 360°방사시키는 광학 장치로 굴절렌즈와 원뿔형 미러가 사용되었으나 이에 한정되지는 않는다. The output unit 310 may include a light source for outputting laser light, a refractive lens and a conical mirror. Light output from the light source is uniformly diffused through the refractive lens and incident on the mirror. Light incident on the conical mirror is emitted in 360 ° forwards. In the present exemplary embodiment, a refractive lens and a conical mirror are used as the optical device emitting 360 ° of light emitted from the light source, but the present invention is not limited thereto.
출력기(210)에서 출력된 레이저 광은 피사체(220a, 220b)에서 반사되고, 수광기(230)는 피사체(220a, 220b)에서 반사된 레이저 광을 수신한다. The laser light output from the output unit 210 is reflected by the subjects 220a and 220b, and the light receiver 230 receives the laser light reflected by the subjects 220a and 220b.
수광기(230)는 수광렌즈(240a, 240b)와 수광부(250)를 포함한다. 수광부(250)는 수광소자, 리드아웃부를 포함한다. 수광소자는 광센서일 수 있다. 수광소자는 포토다이오드일 수 있다. 수광부(250)에는 수광 렌즈(240)를 투과한 광이 조사될 수 있다.The light receiver 230 includes light receiving lenses 240a and 240b and a light receiving unit 250. The light receiver 250 includes a light receiver and a lead-out unit. The light receiving element may be an optical sensor. The light receiving element may be a photodiode. Light passing through the light receiving lens 240 may be irradiated to the light receiving unit 250.
상기 수광렌즈는 피사체(220a, 220b)에 의해 반사된 레이저 광을 수집(집광)하고, 상기 수광부(250)는 수광 렌즈(240a, 240b)를 통해 수집된 레이저 광을 수신한다. 즉, 수광부(250)에는 수광 렌즈(240a, 240b)를 투과한 광이 조사된다.The light receiving lens collects (collects) the laser light reflected by the subjects 220a and 220b, and the light receiving unit 250 receives the laser light collected through the light receiving lenses 240a and 240b. That is, the light passing through the light receiving lenses 240a and 240b is irradiated to the light receiving unit 250.
일 실시예에서, 수광 렌즈(240a, 240b)는 수광기(230)의 주변 360도 전 방향으로부터 레이저 광을 수신할 수 있도록 수광부(250)의 주변에 위치할 수 있다. 구현 예에 따라 수광부(250)의 주변에는 복수의 수광 렌즈가 위치할 수 있다. 나아가 복수개의 수광 렌즈(240)는 원기둥 또는 테이퍼의 측면을 따라 배열된 형태일 수 있다. 이 경우, 복수개의 수광 렌즈(240)는 원주방향을 따라 배열될 수 있다. 또, 축방향을 따라 배열될 수 있다. 또, 복수개의 수광 렌즈(240)는 원주방향과 축방향을 따라 직선상으로 정렬될 수 있다. 복수개의 수광 렌즈(240)는 다른 크기를 가지며, 크기에 따라 2 이상의 군으로 구분될 수 있다. 이 경우, 동일한 군에 속하는 수광 렌즈간에는 크기가 같다.In one embodiment, the light receiving lenses 240a and 240b may be positioned around the light receiving unit 250 so as to receive the laser light from the surrounding 360 degrees of the light receiver 230. According to an embodiment, a plurality of light receiving lenses may be positioned around the light receiving unit 250. Furthermore, the plurality of light receiving lenses 240 may be arranged along the side of the cylinder or taper. In this case, the plurality of light receiving lenses 240 may be arranged along the circumferential direction. It may also be arranged along the axial direction. In addition, the plurality of light receiving lenses 240 may be aligned in a straight line along the circumferential direction and the axial direction. The plurality of light receiving lenses 240 may have different sizes, and may be divided into two or more groups according to the sizes. In this case, the sizes are the same between the light receiving lenses belonging to the same group.
도 4 내지 도 7은 수광기의 다양한 실시예를 도시한 것이다. 4 to 7 show various embodiments of the light receiver.
수광기는 다수의 수광렌즈(240)와 수광부(250)로 구성되어 있으며, 아래 기재된 바와 다양한 형상으로 구현될 수 있다. 상기 수광기는 출력기의 상부 또는 하부에 수직 형태로 설치되는 것이 바람직하다. The light receiver is composed of a plurality of light receiving lenses 240 and the light receiving unit 250, and may be implemented in various shapes as described below. The light receiver is preferably installed in the vertical form on the top or bottom of the output.
도 3은 복수의 수광 렌즈(240)와 실린더형의 수광부(250)를 나타내는 예이다.3 illustrates an example of a plurality of light receiving lenses 240 and a cylindrical light receiving unit 250.
도 3을 참조하면, 수광부(250)의 주변에는 복수의 수광 렌즈(240)들이 배치되어 있다. 수광 렌즈(240)들은 해당 위치에 수신되는 레이저 광을 수집하여 해당 위치에 대응되는 수광부(250)의 센서로 집광할 수 있다. 수광 렌즈(240)의 렌즈 특성(굴절 각도, 초점 거리 등)은 레이저 광이 해당 위치에 대응되는 수광부(250)의 센서로 집광될 수 있도록 설계될 수 있다.Referring to FIG. 3, a plurality of light receiving lenses 240 are disposed around the light receiving unit 250. The light receiving lenses 240 may collect laser light received at a corresponding position and collect the laser light by a sensor of the light receiving unit 250 corresponding to the corresponding position. Lens characteristics (refractive angle, focal length, etc.) of the light receiving lens 240 may be designed so that the laser light may be collected by a sensor of the light receiving unit 250 corresponding to the corresponding position.
수광 렌즈(240)의 크기는 구현 예에 따라 달라질 수 있다. 일 실시예에서, 수광 렌즈는 복수의 수광소자에 대응되는 크기를 가질 수 있다. 예를 들어, 하나의 수광 렌즈가 복수의 센서 영역을 커버하는 크기를 갖는 경우, 해당 수광 렌즈는 복수의 수광소자에 대해 집광할 수 있다. The size of the light receiving lens 240 may vary depending on the embodiment. In one embodiment, the light receiving lens may have a size corresponding to the plurality of light receiving elements. For example, when one light receiving lens has a size covering a plurality of sensor regions, the light receiving lens may focus the plurality of light receiving elements.
다른 실시예에서, 수광 렌즈는 하나의 수광소자에 대응되는 크기를 가질 수 있다. 예를 들어, 하나의 수광 렌즈가 하나의 수광소자의 영역을 커버하는 크기를 갖는 경우, 해당 수광 렌즈는 해당 수광소자에 대해 집광할 수 있다.In another embodiment, the light receiving lens may have a size corresponding to one light receiving element. For example, when one light receiving lens has a size covering an area of one light receiving element, the light receiving lens may condense the light receiving element.
도 4는 수광부와 복수의 수광 렌즈를 나타내는 다른 예이다.4 is another example of the light receiving unit and the plurality of light receiving lenses.
도 4를 참조하면, 수광부(250)의 주변에 다른 크기를 갖는 복수의 수광 렌즈(240)들이 배치될 수 있다. 예를 들어, 제1크기의 제1수광 렌즈(272)들이 배치되고, 제2크기의 제2수광 렌즈(274)들이 제1수광 렌즈(272)들 사이에 배치될 수 있다. 제2수광 렌즈(274)는 제1수광 렌즈(272)들 사이에 위치하는 수광소자에 대응될 수 있다.Referring to FIG. 4, a plurality of light receiving lenses 240 having different sizes may be disposed around the light receiving unit 250. For example, first light receiving lenses 272 of a first size may be disposed, and second light receiving lenses 274 of a second size may be disposed between the first light receiving lenses 272. The second light receiving lens 274 may correspond to a light receiving element positioned between the first light receiving lenses 272.
일 실시예에서, 제1수광 렌즈(272)는 복수의 수광소자에 대응되어, 해당 대응되는 복수의 수광소자에 대해 집광할 수 있다. 제2수광 렌즈(274)는 하나의 수광소자에 대응되어, 해당 대응되는 수광소자에 대해 집광할 수 있다. 제1수광 렌즈(272)와 제2수광 렌즈(274)의 렌즈 특성(굴절 각도, 초점 거리 등)은 레이저 광이 해당 위치에 대응되는 수광부(250)의 수광소자로 집광될 수 있도록 각각 설계될 수 있다.In one embodiment, the first light receiving lens 272 may correspond to the plurality of light receiving elements, and may focus the light on the corresponding plurality of light receiving elements. The second light receiving lens 274 corresponds to one light receiving element, and may focus on the corresponding light receiving element. Lens characteristics (refractive angle, focal length, etc.) of the first light receiving lens 272 and the second light receiving lens 274 may be designed to be focused on the light receiving element of the light receiving unit 250 corresponding to the corresponding position. Can be.
도 3 내지 도 4의 경우, 실린더형(원기둥) 수광부를 기준으로 설명하였으나, 수광부의 형태는 구현 예에 따라 달라질 수 있다.In the case of FIGS. 3 to 4, the cylindrical light-receiving unit has been described as a reference, but the shape of the light-receiving unit may vary according to embodiments.
도 5, 6은 수광부(250)의 상부면과 하부면의 직경이 다른 예를 나타낸 것이다. 5 and 6 illustrate examples in which the diameters of the upper and lower surfaces of the light receiver 250 are different.
도 5는 수광부(250)의 상부면의 직경이 큰 경우를 도시한 것이다. 5 illustrates a case where the diameter of the upper surface of the light receiver 250 is large.
수광기는 물체에서 반사된 레이저 광이 용이하게 수신될 수 있는 위치에 위치할 수 있고, 수광부는 광이 용이하게 수신될 수 있는 형태를 가질 수 있다.The light receiver may be positioned at a position where laser light reflected from an object can be easily received, and the light receiver may have a form in which light can be easily received.
예를 들어, 수광기가 출력기의 상부에 위치하는 경우, 수광부(250)는 도 4A와 같이 상부의 직경이 하부의 직경보다 큰 마름모 형태의 실린더의 형태를 가질 수 있다. 실린더 측면에는 수광 렌즈(240)가 위치하며, 수광부(250)는 측면이 하부 방향으로 기울어져 있어 하부 측면 방향으로부터 수신되는 레이저 광을 용이하게 수신할 수 있다.For example, when the light receiver is located above the output unit, the light receiver 250 may have a diamond shape in which the upper diameter is larger than the lower diameter as shown in FIG. 4A. The light receiving lens 240 is positioned on the side of the cylinder, and the light receiving unit 250 is easily inclined in the downward direction to receive the laser light received from the lower side direction.
도 6은 수광부(250)의 하부면의 직경이 큰 경우를 나타내는 도면이다.FIG. 6 is a diagram illustrating a case where the diameter of the lower surface of the light receiver 250 is large.
수광기가 출력기의 하부에 위치하는 경우, 수광부(250)는 도 11b와 같이 하부의 직경이 상부의 직경보다 큰 마름모 형태의 실린더의 형태를 가질 수 있다. 실린더 측면에는 수광 렌즈(240)가 위치하며, 수광부(250)는 측면이 상부 방향으로 기울어져 있어 상부 측면 방향으로부터 수신되는 레이저 광을 용이하게 수신할 수 있다.When the light receiver is located below the output unit, the light receiver 250 may have a shape of a cylinder having a diamond shape having a lower diameter than a diameter of an upper portion as shown in FIG. 11B. The light receiving lens 240 is positioned at the side of the cylinder, and the light receiving unit 250 is easily inclined in the upper direction to receive the laser light received from the upper side direction.
다른 실시예에서, 수광부(250)의 형태는 하부의 직경과 상부의 직경이 동일한 실린더 형태를 가질 수 있고, 수광 렌즈(240)들이 제어에 의해 방향이 조정될 수도 있다. 예를 들어, 수광기가 출력기의 상부에 위치하는 경우 수광 렌즈(240)들은 하부 측면 방향에 대향되도록 조정되고, 수광기가 출력기의 하부에 위치하는 경우 수광 렌즈(240)들은 상부 측면 방향에 대향되도록 조정될 수 있다.In another embodiment, the shape of the light receiving unit 250 may have a cylindrical shape having the same diameter as the lower diameter and the upper diameter, and the light receiving lenses 240 may be oriented by control. For example, when the receiver is located at the top of the output, the light receiving lenses 240 are adjusted to face the lower side direction, and when the receiver is located at the bottom of the output, the light receiving lenses 240 face the upper side direction. Can be adjusted to be.
도 7은 수광부(250)가 다각형 형상인 경우를 나타내는 도면으로, 도 7(a)는 수광부의 사시도이고, 도 7(b)는 평면도이고, 도 7(c)는 전개도이다. FIG. 7 is a view illustrating a case where the light receiving unit 250 is polygonal in shape, FIG. 7A is a perspective view of FIG. 7B, and FIG. 7B is a plan view, and FIG. 7C is a developed view.
도 7에 도시된 바와 같이, 수광부(250)는 다각형으로 형성될 수 있으며, 본 실시예에서는 12각형인 경우를 나타내었다. 이러한 다각형 구조에 의해 수평 시야각 360°를 이루는 ToF 수광소자 어레이를 구현할 수 있다. 한편, 복수개의 수광소자는 시야각이 360˚가 되도록 원주방향을 따라 배열될 수 있다. 도 7은 이러한 수광소자 배열의 일 실시예일 뿐임을 유의하여야 한다.As shown in FIG. 7, the light receiving unit 250 may be formed in a polygon, and in the present embodiment, the case of the octagon is illustrated. Such a polygonal structure can implement a ToF light-receiving element array having a horizontal viewing angle of 360 °. Meanwhile, the plurality of light receiving elements may be arranged along the circumferential direction such that the viewing angle is 360 °. 7 is only one embodiment of such a light receiving element arrangement.
도 7(c)를 참조하면, 수광소자(포토다이오드, PD)가 빈틈없이 일렬로 붙어 있는 것처럼 배치되어 있다. 하나의 수광소자는 원형의 시야각(290)을 가지는데, 빈틈없이 일렬로 붙어 있으면 수평 시야각은 360° 전방위를 커버할 수 있다. 포토 다이오드는 레이저 광을 감지하고 이를 전기적 신호로 변환하는 소자이다.Referring to Fig. 7C, the light receiving elements (photodiodes, PDs) are arranged as if they are lined up tightly. One light receiving element has a circular viewing angle 290. When the light is securely attached in a line, the horizontal viewing angle may cover 360 degrees. Photodiodes are devices that sense laser light and convert it into electrical signals.
수광렌즈(240)는 ToF 센서의 수평/수직 시야각 확보를 위한 것으로, 수광부(250)의 각 면의 상부에 형성될 수 있으며, 수광부(250)에는 수광렌즈(240)에서 집광된 광을 수신하는 감지하는 수광소자(260)가 형성되어 있다. 상기 수광소자(260)로는 포토 다이오드(Photo Diode, PD)가 사용될 수 있으며, 초점면 배열((Focal Plane Array, FPA) 형태로 배열될 수 있다.The light receiving lens 240 is for securing a horizontal / vertical viewing angle of the ToF sensor, and may be formed on each surface of the light receiving unit 250, and the light receiving unit 250 receives the light collected by the light receiving lens 240. The light receiving element 260 for sensing is formed. A photo diode (PD) may be used as the light receiving element 260, and may be arranged in a focal plane array (FPA).
도 8은 수광소자(260)가 초점면 배열된 예를 도시한 것이다. 이하에서는 설명의 편의를 위해, 수광부(250)가 하부의 직경과 상부의 직경이 동일한 실린더 형태인 경우를 가정하여 설명하기로 한다. 8 illustrates an example in which the light receiving element 260 is arranged in a focal plane. Hereinafter, for convenience of description, it will be described on the assumption that the light receiving unit 250 is in the form of a cylinder having the same diameter as the lower diameter and the upper portion.
도 8을 참조하면, 수광부(250)는 초점면 배열된 수광소자 어레이 (610) 및 리드아웃부(630)를 포함한다.Referring to FIG. 8, the light receiving unit 250 includes a light receiving element array 610 and a lead-out unit 630 arranged in a focal plane.
수광소자 어레이(610)는 수신된 광을 전기적 신호로 변경하는 수광소자를 포함하며, m×n 개의 수광소자가 매트릭스 형태로 수광소자 어레이(610)를 구성한다. 수광소자 어레이(610)는 연결 범프(Interconnect bump)(620)를 통해 리드아웃부(620)와 전기적으로 연결된다. 수광소자로는 센서 또는 포토 다이오드가 사용될 수 있다. The light receiving element array 610 includes a light receiving element for converting received light into an electrical signal, and m × n light receiving elements form the light receiving element array 610 in a matrix form. The light receiving element array 610 is electrically connected to the lead-out unit 620 through an interconnect bump 620. As the light receiving element, a sensor or a photodiode may be used.
리드아웃부(630)은 수광소자 어레이(610)의 각 수광소자로부터 전기적 신호를 읽고(readout), 이를 신호 처리하여 출력한다. 리드아웃부(630)는 센서에 이벤트 주도(event-driven) 방식으로 각 센서로부터 전기적 신호를 읽을 수 있다. 리드아웃부(630)에서 출력된 신호는 컴퓨팅 장치(120)로 전송될 수 있다.The lead-out unit 630 reads out an electrical signal from each light receiving element of the light receiving element array 610, processes the signal, and outputs the signal. The lead-out unit 630 may read electrical signals from each sensor in an event-driven manner to the sensors. The signal output from the readout unit 630 may be transmitted to the computing device 120.
도 9는 수광부의 상세 회로 구성을 설명하는 도면이다.9 is a diagram illustrating a detailed circuit configuration of a light receiving unit.
수광소사 어레이는 다수의 수광소자(610)가 매트릭스 형태로 배치되어있으며, 각각의 수광소자(610)는 리드아웃 라인(620)을 통해 리드아웃부(630)와 전기적으로 연결되어 있다. 즉, 복수개의 리드아웃 라인(620)은 복수개의 수광소자(610)와 일대일 대응될 수 있다. 리드아웃 라인은 “메탈라인”으로 호칭될 수 있다.In the light-receiving yarn array, a plurality of light-receiving elements 610 are arranged in a matrix form, and each of the light-receiving elements 610 is electrically connected to the lead-out part 630 through the lead-out line 620. That is, the plurality of readout lines 620 may correspond one-to-one with the plurality of light receiving elements 610. The lead out line may be called a “metal line”.
리드아웃부(630)는 이벤트 주도(event-driven) 방식으로 각 수광소자로부터 전기적 신호를 읽는다. The readout unit 630 reads an electrical signal from each light receiving device in an event-driven manner.
리드아웃 라인(620)은 각 수광소자(610)마다 하나씩 연결될 수 있으며, 이벤트가 발생된 경우(예를 들어, 해당 센서에 레이저가 수신된 경우) 해당 센서에서 생성된 전기적 신호를 리드아웃부(630)로 전송한다.One lead-out line 620 may be connected to each light receiving element 610, and when an event occurs (for example, when a laser is received by the corresponding sensor), the readout line 620 may read an electrical signal generated by the corresponding sensor. 630).
하나의 리드아웃 라인(620)에 복수의 수광소자(610)가 연결되는 방식의 경우, 복수의 수광소자(610)로부터 동시에 전기적 신호를 읽을 수 없으므로, 초점면 배열 센서는 동시에 수신되는 복수의 레이저 광을 인식할 수 없다. 따라서, 리드아웃 회로를 각 수광소자(610)마다 리드아웃 라인(620)이 하나씩 연결되도록 구성하여, 초점면 배열 센서가 동시에 수신되는 복수의 레이저 광을 인식할 수 있도록 한다. 즉 수광소자(센서)와 리드아웃 라인은 1:1로 매칭된다.In the case in which the plurality of light receiving elements 610 are connected to one lead-out line 620, since the electrical signals cannot be read from the plurality of light receiving elements 610 at the same time, the focal plane array sensor may receive a plurality of lasers simultaneously received. Can't recognize light. Therefore, the readout circuit is configured such that one leadout line 620 is connected to each light receiving element 610 so that the focal plane array sensor can recognize a plurality of laser lights simultaneously received. That is, the light receiving element (sensor) and the lead-out line are matched 1: 1.
리드아웃부(630)는 복수의 (610)로부터 전기적 신호를 읽는 것을 제어한다. 전기적 신호가 수신되는 경우, 리드아웃부(630)는 해당 전기적 신호가 수신된 센서를 식별하고, 해당 전기적 신호를 다음 신호 처리 장치(예를 들어, 증폭기 또는 AD 컨버터 등)로 전송한다. 신호 처리 장치(예를 들어, 증폭기 또는 AD 컨버터 등) 등에서 처리된 신호는 컴퓨팅 장치(120)로 전송될 수 있다.The readout unit 630 controls reading of electrical signals from the plurality of 610. When an electrical signal is received, the readout unit 630 identifies a sensor on which the electrical signal is received, and transmits the electrical signal to a next signal processing device (for example, an amplifier or an AD converter). The signal processed by the signal processing device (eg, an amplifier or an AD converter, etc.) may be transmitted to the computing device 120.
하지만 이러한 방식으로 리드아웃 라인을 레이아웃 하는 경우에는 부피가 칩의 부피가 커지는 문제점이 있다. 리드아웃 라인(620)의 수가 수광소자(610)의 수와 동일하게 배치되어야 하기 때문에, 메탈 라인의 수가 증가하게 되고 결과적으로 부피가 커지는 문제점이 있다. However, when the lead-out line is laid out in this manner, there is a problem that the volume of the chip becomes large. Since the number of the lead-out lines 620 is to be arranged equal to the number of the light receiving elements 610, there is a problem that the number of metal lines is increased and consequently the volume is increased.
이러한 문제점을 해소하기 위해 메탈라인(리드아웃 라인)을 다층으로 적층하는 방법을 고려해 볼 수도 있다. 하지만, 메탈라인을 다층으로 적층할 경우 메탈라인의 포토 다이오드의 위 배치되기 때문에 포토 다이오드(수광소자)가 광을 제대로 수신하지 못하는 문제점이 있다.In order to solve this problem, a method of stacking metal lines (lead-out lines) in multiple layers may be considered. However, when the metal lines are stacked in multiple layers, the photo diodes (light receiving elements) do not receive light properly because they are disposed above the photo diodes of the metal lines.
도 10, 11은 이러한 문제점을 해소하기 위한 리드아웃 라인(메탈라인, metal line)의 배치 방법을 도시한 것으로, 도 10은 평면도를 도시한 것이고, 도 11은 단면도를 도시한 것이다. 10 and 11 illustrate a method of arranging lead-out lines (metal lines) to solve such a problem. FIG. 10 is a plan view and FIG. 11 is a sectional view.
도 10, 11에 도시된 것과 같이, 메탈라인(820)이 포토 다이오드(810)의 상부에 형성되어 메탈라인(820)이 배치되는 공간을 줄일 수 있다. 이를 위해, 메탈라인(820)은 제1라인(M1)과 제2라인(M2)를 포함할 수 있다.As shown in FIGS. 10 and 11, the metal line 820 is formed on the photodiode 810 to reduce the space in which the metal line 820 is disposed. To this end, the metal line 820 may include a first line M1 and a second line M2.
제1라인(M1)의 단부를 포토 다이오드(810)의 활성 영역(812) 및 리드아웃 회로(830)와 전기적으로 연결되도록 배치하고, 제2라인(M2)은 포토 다이오드(810)의 상부에 배치된다. 그리고 제1라인(M1)은 제1컨택(822)을 통해 리드아웃부(830)와 전기적으로 연결되고, 제2라인(M2)은 제2컨택(824)을 통해 제1라인(M1)과 전기적으로 연결된다. An end of the first line M1 is disposed to be electrically connected to the active region 812 and the readout circuit 830 of the photodiode 810, and the second line M2 is disposed above the photodiode 810. Is placed. The first line M1 is electrically connected to the lead-out unit 830 through the first contact 822, and the second line M2 is connected to the first line M1 through the second contact 824. Electrically connected.
이때 제2라인(M1)은 일정한 간격으로 배치되는데, 간격은 레이저 광의 파장에 따라 달라진다. 레이저 광은 고유의 파장이 있으므로, 제2메탈라인 간격을 적절히 조절하여 간섭이 발생하지 않도록 할 수 있다. 즉, 복수개의 제2라인(M2)은, 포토 아이오드(810)에 조사되는 광에 간섭이 발생되지 않게 간극을 두고 배치될 수 있다. 간섭이 발생하지 않으면 제2메탈라인이 포토 다이오드의 활성 영역 상부에 형성되더라도 메탈라인 사이의 간격을 통해 레이저 광을 수신할 수 있다.In this case, the second lines M1 are arranged at regular intervals, and the intervals vary depending on the wavelength of the laser light. Since the laser light has an inherent wavelength, interference can be prevented by appropriately adjusting the second metal line spacing. That is, the plurality of second lines M2 may be disposed with a gap such that interference does not occur in the light irradiated to the photodiode 810. If the interference does not occur, even if the second metal line is formed on the active region of the photodiode, laser light may be received through the gap between the metal lines.
상기에서는 본 출원의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 출원을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to the preferred embodiment of the present application, those skilled in the art various modifications and changes to the present application without departing from the spirit and scope of the invention described in the claims below I can understand that you can.
Claims (12)
- 광원에서 출사된 광을 360˚ 전방향으로 출사하는 출력기; 및An output unit for emitting the light emitted from the light source in all directions of 360 °; And상기 출력기에서 출사된 후 피사체에 반사된 광이 조사되는 수광기를 포함하는 3차원 스캐닝 장치.And a light receiver which emits light reflected from a subject after being emitted from the output device.
- 제1항에 있어서,The method of claim 1,상기 수광기는,The receiver,상기 피사체에서 반사된 광을 집광하는 수광 렌즈; 및A light receiving lens for collecting light reflected from the subject; And상기 수광 렌즈를 투과한 광이 조사되는 수광부를 포함하는 3차원 스캐닝 장치.And a light receiving unit to which light transmitted through the light receiving lens is irradiated.
- 제2항에 있어서,The method of claim 2,상기 수광 렌즈는 복수개이며,The light receiving lens is a plurality,복수개의 상기 수광 렌즈는 원기둥 또는 테이퍼의 측면을 따라 배열된 형태인 3차원 스캐닝 장치.A plurality of the light receiving lens is a three-dimensional scanning device is arranged along the side of the cylinder or taper.
- 제3항에 있어서,The method of claim 3,복수개의 상기 수광 렌즈는 다른 크기를 가지며, 크기에 따라 2 이상의 군으로 구분되는 3차원 스캐닝 장치The plurality of light-receiving lenses have a different size, three-dimensional scanning device divided into two or more groups according to the size
- 제2항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 4,상기 수광부는,The light receiving unit,조사된 광을 전기적 신호로 변환하는 수광소자;A light receiving element for converting irradiated light into an electrical signal;상기 수광소자와 전기적으로 연결되어 상기 수광소자에서 생성된 전기적 신호를 처리하는 리드아웃부를 포함하는 3차원 스캐닝 장치.And a readout part electrically connected to the light receiving element to process an electrical signal generated by the light receiving element.
- 제5항에 있어서,The method of claim 5,상기 수광소자는 복수 개이며,The light receiving element is a plurality,복수 개의 상기 수광소자는 초점면 배열된 3차원 스캐닝 장치.And a plurality of light receiving elements arranged in a focal plane.
- 제6항에 있어서,The method of claim 6,복수 개의 상기 수광소자는 시야각이 360˚가 되도록 원주방향을 따라 배열된 형태인 3차원 스캐닝 장치.And a plurality of the light receiving elements are arranged along the circumferential direction such that the viewing angle is 360 °.
- 제6항 또는 제7항에 있어서,The method according to claim 6 or 7,상기 수광소자와 상기 리드아웃부는 복수 개의 메탈라인에 의해 전기적으로 연결되며,The light receiving element and the lead-out unit are electrically connected by a plurality of metal lines.복수 개의 상기 메탈라인은 복수개의 상기 수광소자와 일대일 대응되는 3차원 스캐닝 장치.And a plurality of the metal lines correspond one-to-one with the plurality of light receiving elements.
- 제8항에 있어서,The method of claim 8,상기 메탈라인은,The metal line,상기 수광소자의 활성영역 및 상기 리드아웃부와 전기적으로 연결된 제1라인;A first line electrically connected to an active area of the light receiving element and the lead-out part;상기 수광소자의 활성영역의 상측에 배치되어 상기 제1라인과 전기적으로 연결된 제2라인을 포함하는 3차원 스캐닝 장치.And a second line disposed above the active region of the light receiving element and electrically connected to the first line.
- 제9항에 있어서,The method of claim 9,복수 개의 상기 제2라인은 상기 수광소자에 조사되는 광에 간섭이 발생되지 않게 간극을 두고 배치된 3차원 스캐닝 장치.The plurality of second lines are arranged with a gap so that interference does not occur to the light irradiated to the light receiving element.
- 3차원 스캐닝 장치; 및Three-dimensional scanning apparatus; And상기 3차원 스캐닝 장치와 전기적으로 연결되어 상기 3차원 스캐닝 장치에서 수신된 광을 기초로 피사체와의 거리를 측정하는 컴퓨팅장치를 포함하며,A computing device electrically connected to the 3D scanning device to measure a distance to a subject based on the light received from the 3D scanning device,상기 3차원 스캐닝 장치는,The three-dimensional scanning device,광원에서 출사된 광을 360˚ 전방향으로 출사하는 출력기; 및An output unit for emitting the light emitted from the light source in all directions of 360 °; And상기 출력기에서 출사된 후 상기 피사체에 반사된 광이 조사되는 수광기를 포함하는 3차원 스캐닝 시스템.And a light receiver which emits light reflected from the object after being emitted from the output device.
- 제11항에 있어서,The method of claim 11,상기 컴퓨팅장치는, ToF(Time of Flight)에 의해 상기 피사체와의 거리를 측정하는 3차원 스캐닝 시스템.The computing device is a three-dimensional scanning system for measuring the distance to the subject by the Time of Flight (ToF).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/308,059 US10353055B2 (en) | 2015-10-16 | 2016-09-26 | 3D laser scanning apparatus and 3D laser scanning system including the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0144838 | 2015-10-16 | ||
KR20150144838 | 2015-10-16 | ||
KR1020160023595A KR102163117B1 (en) | 2015-10-16 | 2016-02-26 | 3-dimmensional laser scanning apparatus and 3-dimmensional laser scanning system comprising the same |
KR10-2016-0023595 | 2016-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017065424A1 true WO2017065424A1 (en) | 2017-04-20 |
Family
ID=58517687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/010739 WO2017065424A1 (en) | 2015-10-16 | 2016-09-26 | Three-dimensional laser scanning device and three-dimensional laser scanning system comprising same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017065424A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0835799A (en) * | 1994-07-22 | 1996-02-06 | Nissan Motor Co Ltd | Laser diffusion light incidence detecting method and device in guiding control of airframe using laser diffusion light |
JPH08210821A (en) * | 1995-02-03 | 1996-08-20 | Toyota Motor Corp | Object measuring instrument |
KR20080005639A (en) * | 2006-07-10 | 2008-01-15 | 현대자동차주식회사 | Laser radar for vehicle using cylinder reflector and method for control the same |
JP2011257221A (en) * | 2010-06-08 | 2011-12-22 | Ihi Aerospace Co Ltd | Laser distance measurement apparatus |
KR20140025041A (en) * | 2012-08-21 | 2014-03-04 | 한국생산기술연구원 | Three dimensional laser scanning system |
-
2016
- 2016-09-26 WO PCT/KR2016/010739 patent/WO2017065424A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0835799A (en) * | 1994-07-22 | 1996-02-06 | Nissan Motor Co Ltd | Laser diffusion light incidence detecting method and device in guiding control of airframe using laser diffusion light |
JPH08210821A (en) * | 1995-02-03 | 1996-08-20 | Toyota Motor Corp | Object measuring instrument |
KR20080005639A (en) * | 2006-07-10 | 2008-01-15 | 현대자동차주식회사 | Laser radar for vehicle using cylinder reflector and method for control the same |
JP2011257221A (en) * | 2010-06-08 | 2011-12-22 | Ihi Aerospace Co Ltd | Laser distance measurement apparatus |
KR20140025041A (en) * | 2012-08-21 | 2014-03-04 | 한국생산기술연구원 | Three dimensional laser scanning system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11994618B2 (en) | Rotating compact light ranging system | |
WO2013176362A1 (en) | 3d scanning system, and method for obtaining 3d images using said system | |
US10670724B2 (en) | Light detection and ranging (LIDAR) time of flight (TOF) sensor capable of inputting and outputting simultaneously and 3-dimensional laser scanning system including the same | |
US7397019B1 (en) | Light sensor module, focused light sensor array, and an air vehicle so equipped | |
US9800332B2 (en) | Acquisition, tracking, and pointing apparatus for free space optical communications with moving focal plane array | |
WO2019112164A1 (en) | Three-dimensional lidar device and distance measuring method | |
WO2018124413A1 (en) | Integrated light transmission/reception optical system module and scanning lidar having same | |
WO2020040390A1 (en) | Apparatus and method for generating three-dimensional image | |
US4740681A (en) | Star sensor for attitude detection of a spinning satellite | |
US20110134040A1 (en) | Optical navigation device | |
WO2019022304A1 (en) | Hybrid lidar scanner | |
WO2017073982A1 (en) | Three-dimensional scanning system | |
US9448107B2 (en) | Panoramic laser warning receiver for determining angle of arrival of laser light based on intensity | |
WO2019027100A1 (en) | Multi-channel lidar sensor module | |
CN104025295A (en) | Interposer based imaging sensor for high-speed image acquisition and inspection systems | |
WO2017171140A1 (en) | Scanning lidar device having concave reflecting mirror | |
WO2018056516A1 (en) | Optical-system module and scanning lidar including same | |
WO2021096095A1 (en) | Lidar system | |
WO2019022549A1 (en) | Lidar device | |
WO2019022548A1 (en) | Non-rotary type omnidirectional lidar device | |
WO2019024728A1 (en) | Optical detection assembly, detector, and laser ranging system | |
US20160216104A1 (en) | Optical positioning sensor | |
WO2017065424A1 (en) | Three-dimensional laser scanning device and three-dimensional laser scanning system comprising same | |
US11587961B2 (en) | Image sensor for detecting a distance from a target object | |
WO2021060919A1 (en) | Lidar optical device and scanning method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15308059 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16855641 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16855641 Country of ref document: EP Kind code of ref document: A1 |