WO2017065395A1 - Real-time multiple-item heavy metal analysis apparatus, real-time multiple-item heavy metal analysis method, and method for producing sensor of heavy metal analysis apparatus - Google Patents

Real-time multiple-item heavy metal analysis apparatus, real-time multiple-item heavy metal analysis method, and method for producing sensor of heavy metal analysis apparatus Download PDF

Info

Publication number
WO2017065395A1
WO2017065395A1 PCT/KR2016/008179 KR2016008179W WO2017065395A1 WO 2017065395 A1 WO2017065395 A1 WO 2017065395A1 KR 2016008179 W KR2016008179 W KR 2016008179W WO 2017065395 A1 WO2017065395 A1 WO 2017065395A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
unit
redox
heavy metal
measurement
Prior art date
Application number
PCT/KR2016/008179
Other languages
French (fr)
Korean (ko)
Inventor
손창식
황경엽
김유정
Original Assignee
(주)썬텍엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150142824A external-priority patent/KR101652086B1/en
Priority claimed from KR1020150142823A external-priority patent/KR101631186B1/en
Application filed by (주)썬텍엔지니어링 filed Critical (주)썬텍엔지니어링
Publication of WO2017065395A1 publication Critical patent/WO2017065395A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present invention relates to a heavy metal analysis device, a method and a method for manufacturing a sensor of the heavy metal analysis device, and more particularly, after stabilization to an optimal state for measuring the sample to be measured, at least one heavy metal is detected simultaneously, but included in the sample After determining the type of heavy metal, the real-time multi-item heavy metal analysis device, real-time multi-item heavy metal analysis method and the heavy metal analysis to measure the content of the heavy metal by selectively driving the sensor capable of measuring the determined at least one heavy metal A method for manufacturing a sensor of a device.
  • water environmental standards or water
  • water facilities such as river water, lake water, water supply, reservoir, groundwater, water purification facilities, and swimming pools
  • water Use water and perform water quality control to meet the purpose of using the “sample” water.
  • trace amount of substances contained in water should be detected and the amount of detected substances should be measured.
  • the detection of heavy metals in water is performed by taking a sample rather than an on-site analysis, and performing a pre-treatment process in several steps according to the characteristics of the measured sample in a laboratory. It is measured using.
  • the spectroscopic methods include chromatography (Gel Permeation Chromatography (GPC), Gas Chromatography (GC), High Performance Liquid Chromatography (HPLC), etc.), Inductive Plasma Spectroscopy (ICP-MS), Atomic Emission Spectroscopy (AES), etc. .
  • GPC Gel Permeation Chromatography
  • GC Gas Chromatography
  • HPLC High Performance Liquid Chromatography
  • ICP-MS Inductive Plasma Spectroscopy
  • AES Atomic Emission Spectroscopy
  • these spectroscopic methods can analyze multiple heavy metals at once, but require expensive external analysis equipment.
  • the accuracy is reduced due to the interference error caused by the change of the measurement environment, it is impossible to quickly respond to heavy metal contamination because a long analysis time is required.
  • Electrochemical analytical methods are used in various fields due to economical efficiency, relatively short analysis time, and high accuracy.
  • blood glucose sensors, biomarkers, and the detection of a specific substance such as a specific substance is widely used, but most of the measuring sensors used for electrochemical analysis is used as a one-time equipment.
  • the electrochemical sensor may modify the electrode modifications on the surface of the measuring electrode according to the species to be detected to increase the sensitivity of the electrode and increase the selectivity of detection.
  • the life of the sensor is determined by the material electrodeposition on the sensor electrode, the modification method, and the electrochemical measurement method, there is a demand for a method of maximizing the life of the sensor.
  • an object of the present invention is to stabilize at the optimum state for measuring a sample to be measured, and then to simultaneously detect one or more heavy metals, and to first determine the type of heavy metals included in the sample, and then to measure at least one or more heavy metals determined.
  • the present invention provides a real-time multi-item heavy metal analysis device, a real-time multi-item heavy metal analysis method, and a sensor manufacturing method of the heavy metal analysis device to selectively drive the sensor to measure the content of the heavy metal.
  • a sample measuring unit including a water pollutant measuring module configured to output a pollution degree value for a pollutant; And the oxidation supplied to the reaction sensor when the redox current value having the change is measured when a change in the oxidation reduction current value measured by the reaction sensor occurs in the sample flowing into the water flow path.
  • It includes a control module including a heavy metal detection control unit for detecting and classifying pollutants by a reducing supply power value, and activating a selective measurement sensor corresponding to the classified pollutants and receiving and outputting a pollutant value for the pollutants. Characterized in that.
  • the measuring cell may include: a main body including a water inlet through which a sample to be measured is introduced, a sensor coupler, and a water outlet through which the sample is discharged; And the water flow path connected to the water inlet of the main body and connected to the water outlet via the sensor coupler to form the pattern.
  • the water pollutant measuring module includes a reaction sensor at an inlet of an incoming sample and applies a redox supply power to the sample through the reaction sensor immersed in the incoming sample to generate a redox, and by the redox phenomenon Measures the generated redox current value, calculates the redox current change due to the difference from the redox current value measured by the previous redox supply, and calculates the redox current change outside the preset normal range.
  • a reaction sensor unit for outputting a corresponding redox supply power value causing the change in the redox current;
  • a plurality of pollution measurement to measure and output the contamination level of the detected pollutants with a pollution measurement sensor for detecting different pollutants at the rear end of the reaction sensor for the inflow direction of the sample and the pollution degree of the detected pollutants
  • a pollution measurement unit including a control unit, selected by at least one pollution measurement unit of the pollution measurement unit under control, and driving the selected pollution measurement unit to measure and output the pollution level of the corresponding pollutant and the pollutant;
  • a storage unit storing a pollutant DB by a range of redox power supplies defining a pollutant by a range of redox supply power and a pollution measurement unit by a pollutant; And determining a pollutant corresponding to the redox supply power value input from the reaction sensor unit by referring to the pollutant DB for each range of the redox power source, and controlling the pollution measurement sensor unit corresponding to the pollutant to determine the pollution
  • the reaction sensor is installed at a vertex on the water flow path closest to the inlet, and the measuring sensor is installed at each of the other vertices on the water flow path.
  • the pattern of the water flow path is characterized in that it is configured in a sawtooth shape.
  • the reaction sensor unit measures a redox current value of a sample introduced with a reaction sensor, and measures at least two redox currents that output the redox supply power value when the amount of change in the redox current is outside the normal range. part; And receiving a redox supply power, which is connected to the redox current measuring units and is a measurement voltage to be supplied to the redox current measuring unit, and selectively supplies the redox supply power to the redox current measuring unit under the control of the controller. And a sensor selector.
  • the pollution measurement sensor unit a plurality of the pollution measurement unit; And a measurement sensor selection unit connected to the plurality of pollution measurement units and selectively supplying the measurement voltage supplied from the measurement voltage supply unit to the pollution measurement unit under the control of the controller.
  • the apparatus may further include: a sample stabilization unit receiving water from a field water supply pipe as a sample, measuring and outputting electrical conductivity and pH of the sample to be supplied, and stabilizing the sample and providing the sample to the sample supply unit. It is done.
  • the sample stabilization unit includes an electrical conductivity sensor and a pH sensor unit for measuring the electrical conductivity and pH of the water; a sample state measuring unit for measuring and outputting electrical conductivity and pH; and the control corresponding to the measured electrical conductivity and pH.
  • a first stabilization unit including a measurement auxiliary solution supply unit supplying a measurement auxiliary solution to the sample to be measured under the control of a module; And a second stabilization unit under the control of the control module to submerge the sample stabilized in the first stabilization unit by applying a rotational force to the sample to remove bubbles from the sample, wherein the control module is configured to remove from the sample stabilization unit.
  • the sample supply unit After stabilizing the sample by controlling the sample stabilization unit according to the electrical conductivity and pH input, the sample supply unit is controlled to supply the stabilized sample to the sample measuring unit, and in response to receiving heavy metal detection information from the sample measuring unit, It further comprises a sample stabilization control unit for obtaining and outputting the measurement information including the heavy metal detection amount.
  • the water supply pipe is characterized in that any one of the water supply pipe for supplying sea water, ground water supply pipe for supplying ground water, wastewater treatment discharge pipe, water supply pipe and residential area network.
  • the apparatus includes: an auxiliary solution input DB defining a measurement auxiliary solution supply amount according to electrical conductivity and pH value, and a storage unit storing a heavy metal classification DB defining heavy metal and heavy metal contamination measurement sensor unit information by redox power supply value range ; An interface unit connected to the sample state measurement unit, a measurement auxiliary solution supply unit, a reaction sensor unit, and a plurality of pollution measurement sensor units to transmit and receive data; And a display unit which displays information on the selected heavy metal and the amount of heavy metal included in the sample, wherein the sample stabilization control unit receives an electrical conductivity and a pH value from a sample state measurement unit through the interface unit, and the auxiliary The measurement auxiliary solution input amount corresponding to the input conductivity and pH value is determined by referring to the solution input DB, and the measurement auxiliary solution supply part is controlled by the determined measurement auxiliary solution input amount to stabilize the measurement auxiliary solution by adding it to the sample.
  • the second stabilizing unit is characterized in that the rotating impeller.
  • the terthiophene monomer is characterized in that 3- (2-aminopyrimidyl) -2,2: 5,2-terthiophene (APT).
  • Real-time multi-item heavy metal analysis method for achieving the above object: the redox current value by the redox generated by applying a redox supply power of the sample supplied through the reaction sensor unit when the sample to be measured is supplied Measure the redox supply power value by comparing the measured redox current value with the previous redox current value and measuring the redox supply power value when the change exceeds the preset normal range.
  • a pollutant classification process of identifying and classifying a pollutant corresponding to the measured redox supply power value by referring to a pollutant DB for each redox supply power source of a storage unit;
  • a pollution measuring unit selecting process of identifying a pollution measuring unit capable of measuring the identified and classified pollutants, and controlling a measuring sensor selecting unit to supply a measurement voltage to the identified pollution measuring unit;
  • a pollution measurement process of measuring a pollution degree of the identified and classified pollutants through a pollution measurement unit supplied with the measurement voltage.
  • the method may further include a sample stabilization process configured to stabilize and supply a sample to be supplied to the water flow path of the measurement cell, which is configured at the front of the measurement cell having the water flow path including the reaction sensor and the measurement sensors. It characterized in that the process after the redox power value measurement process is performed for the sample that is stabilized through the stabilization process.
  • the pollutant classification process may include: setting a normal idle state to set the pollution measuring unit to an idle state when the amount of change in the redox current is within a normal range; And when the amount of change in the redox current falls outside the normal range, identifying and classifying a contaminant corresponding to the redox supply power range to which the measured redox supply power value belongs by referring to the pollutant DB for each redox supply power in a storage unit. It characterized in that it comprises a pollutant classification step.
  • the sample stabilization process may include a first stabilization process in which a control module measures electrical conductivity and pH, determines an input amount of a measurement auxiliary solution corresponding to the measured electrical conductivity and pH, and inputs the sample to the sample; And a second stabilizing process of driving a second stabilizing unit configured to be immersed in the sample under control of a control module to apply bubbles to the sample to remove bubbles of the sample.
  • Method for manufacturing a measuring sensor of a real-time multi-item heavy metal analysis device for achieving the above object:
  • gold, nickel and APT on the electrode An electrodeposition process that is electrically electrodeposited on; And a nickel removal process for selectively removing nickel on the electrodeposited electrode.
  • the electrodeposition process is carried out on the electrode, 1 x 10 -2 M gold chloride trihydrate (HAuCl 4 ⁇ 3H 2 O), 1.5 x 10 -2 M nickel sulfide hexahydrate (NiSO 4 6 H 2 O), and dimetalsulfoxide (Dimethylsulfoxide: Sulfuric acid solution production step of producing 10 M L of 1 x 10 -2 M APT dissolved in DMSO) to 1.5 M sulfuric acid solution; And it is characterized in that it comprises a plating step of plating a gold, nickel and APT at a time by putting a constant current in the sulfuric acid solution.
  • the nickel removal process is characterized in that to form a porous gold-APT composite structure by selectively removing nickel electrochemically on the electrode plated with gold, nickel and APT.
  • the method further includes a pH control step of adjusting the pH of the sample solution to 1 to 2, wherein the electrodeposition step further comprises a current control step of adjusting the current to 1 to 5 ⁇ A, wherein the current is adjusted It characterized in that the sulfuric acid solution generation step and the plating step in the state.
  • the method further includes a pH adjustment step of adjusting the pH of the sample solution to 1.5, wherein the electrodeposition step further includes a current adjustment step of adjusting the current to 2 ⁇ A, wherein the current is adjusted. It characterized in that the sulfuric acid solution generation step and the plating step.
  • the present invention is provided with a reaction sensor in the water inlet portion of the water flow path of the measuring cell to determine whether the incoming water satisfies the conditions of the water quality of the water quality management area, and when the conditions are satisfied by keeping the pollution measuring sensors idle It has the effect of maximizing the reproducibility and life of the measuring sensors.
  • the present invention has the effect of preventing unnecessary power consumption because the measurement sensor is not driven when the water quality of the sample is good.
  • the present invention is equipped with a reaction sensor in the water inlet portion of the water flow path of the sample measuring unit, and after determining the type of contamination to be measured first through the reaction sensor, it is unnecessary to drive the pollution measuring sensors according to the analysis results By keeping the pollution measuring sensor idle, the reproducibility and life of the measuring sensors can be maximized, and the power consumption can be minimized.
  • the present invention measures the electrical conductivity and pH of the water supplied from the field in the sample stabilization unit, and stabilizes the water to be measured, that is, the sample to be supplied by supplying the measurement auxiliary solution corresponding to the measured electrical conductivity and pH to the water It has the effect of supplying a sample optimized for measurement, and has the effect of detecting heavy metals more accurately.
  • the present invention has the effect of reducing the measurement error by stabilizing the sample by removing the air bubbles generated in the sample having a rotary impeller introduced.
  • the present invention automatically stabilizes the sample as described above, there is no need for the administrator to perform the pretreatment process one by one. As it can be seen, there is no need to take extra time to test whether the sample is stabilized.
  • the senor for detecting Cr (VI) according to the present invention is capable of selective detection without the interference effect of other active species, and also does not require additional electrodeposition time, thereby quickly reducing the Cr (VI) present in industrial or ground water. As it can be detected, it has an effect that can be used for real-time field analysis.
  • an electrode modified with a polymer as the heavy metal detection sensor according to the present invention, it has the effect of stably detecting a plurality of heavy metals at the same time without deterioration of performance, that is, a decrease in sensitivity even when used for a long time.
  • FIG. 1 is a view showing the configuration of a real-time multi-item heavy metal analysis device according to the present invention.
  • FIG. 2 is a view showing the configuration of the sample measuring unit of the real-time multi-item heavy metal analysis device according to the present invention.
  • FIG. 3 is a view showing a detailed configuration of the water pollutant measurement module of the sample measuring unit according to the present invention.
  • FIG. 4 is a conceptual diagram of a measurement sensor for detecting heavy metals according to an embodiment of the present invention.
  • FIG. 5 is an SEM image of an electrode surface electrochemically electrodeposited with an aminopyrimidyl terthiophene monomer and graphene on a glassy carbon electrode.
  • HMI 6 is a SWV analysis result according to the synthesis conditions of the electrodeposited material of the solution containing 500 ppb of heavy metal ions (HMI).
  • Figure 7 is a result of confirming the optimum conditions
  • Figure 7 (A) is a result according to the type of the supporting electrolyte containing 500 ppb of heavy metal ions (HMI)
  • Figure 7 (B) is a result of the pH change of the solution 7 (C) shows the result of the deposition time change.
  • FIG. 8 is a graph (A) and a calibration curve (B) for detecting heavy metal ions (HMI) analyzed by square wave voltammetry (SWV) within each heavy metal concentration range at 1 ppb to 10 ppm under optimal conditions. Is the result.
  • HMI heavy metal ions
  • SWV square wave voltammetry
  • FIG. 9 is a graph showing a graph (A) and a calibration curve (B) for detecting heavy metal ions (HMI) analyzed by chronocoulmetry (CC) within each heavy metal concentration range at 1 ppb to 10 ppm under optimal conditions. .
  • Figure 10 shows a schematic diagram of a measuring sensor for detecting the Cr (VI) according to an embodiment of the present invention.
  • FIG. 11 compares the sensitivity after detecting 1 ppm of Cr (VI) with each modified electrode after reforming the measuring sensor step by step.
  • Figure 12 shows the surface image of the electrode completed in the present invention.
  • FIG. 13 shows the effects of (A) pH and (B) electrolyte on 1 ppm of Cr (VI) on the electrode.
  • FIG. 14 shows signal changes for each concentration (A) and corresponding calibration curves obtained by linear scanning voltammetry with electrodes modified with a composite plating layer of porous gold and APT in the range of 10 ppm to 5 ppm under optimal conditions. (B) is shown.
  • 15 is a view showing the detailed configuration of the sample stabilization unit of the real-time multi-item heavy metal analysis device according to the present invention.
  • 16 is a view showing an example of the actual configuration of the sample stabilization unit, the sample supply unit and the sample measuring unit of the real-time multi-item heavy metal analysis device according to the present invention.
  • 17 is a view showing the configuration of the sample stabilization control unit of the control module of the real-time multi-item heavy metal analysis apparatus according to the present invention.
  • FIG. 18 is a flowchart illustrating a real-time multi-item heavy metal detection method through selective electrode activation according to the present invention.
  • 19 is a flowchart illustrating an electrode activation method of a real-time multi-item heavy metal detection method according to an embodiment of the present invention.
  • 20 is a flowchart illustrating a sample stabilization method of the real-time multi-item heavy metal detection method according to the present invention.
  • FIG. 1 is a view showing the configuration of a real-time multi-item heavy metal analysis device according to the present invention.
  • the real-time multi-item heavy metal analyzing apparatus of the present invention includes a sample measuring unit 200, a sample supplying unit 300, a control module 400, and a storage unit 430 according to the first embodiment.
  • the sample stabilization unit 100, the input unit 440, the output unit 450, and the interface unit 460 may be further included.
  • the real-time multi-item heavy metal analysis device is connected to the water supply pipe of the site detects heavy water, which is a contaminant contained in the water of the site supplied through the water supply pipe, that is, the sample, and outputs the detected heavy metal information and detection amount.
  • the site may be a river, a lake, a water supply source, a reservoir, groundwater, seawater, deep water such as deep seawater, a water purification plant, a swimming pool, a pipe network for supplying water to a city premises.
  • the sample supply unit 300 is connected to the water supply pipe receiving the water from the site according to an embodiment receives the water in the field in real time as a sample to supply to the sample measuring unit 200.
  • the sample measuring unit 200 receives the sample supplied from the sample supply unit 300, detects the type of heavy metal and the amount of each heavy metal included in the sample, and outputs the sample to the control module 400.
  • the storage unit 430 may include a program area for storing a control program for controlling the operation of the water pollutant measuring module 100 according to the present invention, a temporary area for temporarily storing data generated during the execution of the control program, and It includes a data area for storing data.
  • the data area of the storage unit 430 defines pollutants by range of redox supply power (potential), and pollutant measurement capable of measuring the pollution degree of the corresponding pollutant by pollutant.
  • the redox supply power is a potential supplied to the reaction sensor 62 of the reaction sensor unit 60 to be described later with reference to FIGS. 2 and 3.
  • the contaminant definition according to the redox supply power range may be defined as -1.3V ⁇ -0.9V for the contaminant zinc, the cadmium (Cd) For the lead (Pb) and copper (Cu), the redox supply range is -0.3 to 0.2V, and the redox supply range is defined as -0.3V to 0.2V.
  • 0.2V to 0.5V may be defined for (Hg).
  • the measured product contains zinc. it means.
  • the storage unit 430 may be stored in the auxiliary solution input DB for defining the measurement auxiliary solution input amount to at least one of the conductivity value and the pH value according to the present invention.
  • the input unit 440 may be an input device 441 such as a keyboard or a mouse as a means for receiving a command and information from the outside and outputting the command and information to the control module 400, or from a remote manager to a communication network such as an internet network or a mobile communication network. It may be a receiver 442 of a remote communication unit that receives information and commands through communication (not shown) and outputs it to the control module 400.
  • the output unit 450 is a configuration for outputting the water pollution degree measurement result to the user and the administrator to output the information output from the control module 400, the display unit 451 for outputting the water pollution degree measurement results in text, graphics and the like and the measurement result It may be a transmitter 452, such as a remote communication unit for transmitting to a computer terminal or the like outside of a remote place through a communication network (not shown).
  • the communication unit means that both the receiver and the transmitter are included.
  • the telecommunication units 442 and 452 may be a wired / wireless local area network (LAN) communication means for connecting to a wired or wireless internet network or a code division multiple access (CDMA) communication means for connecting to a mobile communication network.
  • LAN local area network
  • CDMA code division multiple access
  • the interface unit 460 interfaces signals transmitted and received between the two components in order to facilitate signal transmission and reception between the control module 400 and other components such as impedance matching.
  • the interface unit 460 may interface signals transmitted and received between the sample stabilization unit 100 and the control module 400 performing mechanical control according to the present invention.
  • the interface unit 460 may be configured between the sample measuring unit 200 and the control module 400, or may be configured between the sample supply unit 300 and the control module 400.
  • the interface unit 460 may be configured between the sample measuring unit 200, the pump, the valve.
  • Sample stabilization unit 100 is configured according to the second embodiment of the present invention is connected to the water supply pipe receiving the water from the site receives the water of the site in real time as a sample, the electrical conductivity and pH of the sample supplied Detects at least one or more and outputs them to the control module 400, stabilizes the sample under the control of the control module 400 in response to the output electrical conductivity and pH, and provides the sample to the sample supply unit 300. do.
  • the sample measuring unit 200 is supplied with the stabilized sample, detects the type of heavy metal and the amount of each heavy metal contained in the sample and outputs to the control module 400.
  • sample supply unit 300 is configured between the sample stabilization unit 100 and the sample measurement unit 200, under the control of the control module 400 in the sample stabilization unit 100 The stabilized sample is supplied to the sample measuring unit 200.
  • the control module 400 includes a heavy metal detection control unit 420 according to the first embodiment, and further includes a sample stabilization control unit 410 according to the second embodiment. Control the operation.
  • the sample stabilization control unit 410 stabilizes the sample by controlling the sample stabilization unit 100 in response to the electrical conductivity and pH input from the sample stabilization unit 100 as described above.
  • the heavy metal detection control unit 420 controls the sample measuring unit 200 to analyze the heavy metal type included in the sample, and receives the heavy metal (detection) amount of the analyzed heavy metal from the sample measuring unit 200 and outputs the received heavy metal. Output through the unit 450.
  • FIG. 2 is a view showing the configuration of the sample measuring unit of the real-time multi-item heavy metal analysis device according to the present invention.
  • the sample measuring unit 200 of the present invention includes a water pollutant measuring module 500 including a measuring cell 210, a reaction sensor 62, and a measuring sensor 72.
  • the measuring cell 210 is configured such that the water to be measured is introduced and discharged after detecting the pollutants in the water and measuring the degree of contamination.
  • Measuring cell 210 of the present invention includes a body 220 and the water flow path (230).
  • the main body 220 includes a water inlet 221, a plurality of sensor couplers 222, and a water outlet 223, and a water flow path 220 is formed inward.
  • the sensor coupling hole 222 is coupled to the reaction sensor 62 and the measurement sensor 72 so as to contact the water flowing through the water flow path 230.
  • the water flow path 230 is a water supply pipe through which water to be measured is a pipe passing through the water inlet 221, the water outlet 223, and the plurality of sensor coupling holes 222.
  • the water flow path 230 is a sawtooth pattern so that the water flowing into the measuring cell 210 is in contact with the surface of the reaction sensor 62 and the measuring sensor 72 in an optimal path to increase the sensitivity of the electrochemical detection reaction It may be configured in the form of.
  • the reaction sensor 62 and the measurement sensor 72 may be disposed at the vertices of the top and bottom of the pattern of the water flow path 220.
  • the reaction sensor 62 and the measurement sensor 72 may be configured such that the vertices of the water flow path 230 is connected to the sensor coupler 222 of the body 220.
  • the sample measuring unit 200 includes at least one or more reaction sensors 62 and at least one or more measuring sensors 72 coupled to the sensor coupler 222 of the measuring cell 210 through the water flow path 230.
  • the type of pollutant contained in the flowing water is detected, and the contamination (concentration) caused by the detected pollutant is measured and output.
  • the reaction sensor 62 will be coupled to the sensor coupler 222-1 at the very front of the water flow path 230 as shown in FIG. Detailed configuration and operation of the water pollutant measurement module 500 will be described with reference to FIG. 3.
  • FIG. 3 is a view showing a detailed configuration of the water pollutant measurement module of the sample measuring unit according to the present invention.
  • the water pollutant measurement module 500 includes a measurement voltage supply unit 40 and a sensor module 50.
  • the measurement voltage supply unit 40 receives the source power and generates and outputs a measurement voltage to supply the source power to the reaction sensor unit 60 and the pollution measurement sensor unit 70 to measure the pollutants contained in the water.
  • the measurement voltage may be a redox supply power supplied to the reaction sensor 62, or may be a measurement supply power supplied to the measurement sensor 72.
  • the measured power supply may also vary depending on the type of pollution, that is, the type of heavy metal. Therefore, the range of the measurement voltage supplied to the reaction sensor 62 and the measurement sensor 72 may be different, and the range of the measurement voltage supplied to the measurement sensor 72 may also vary according to the type of pollutant.
  • the sensor module 50 includes a reaction sensor unit 60 and a pollution measurement sensor unit 70 to detect the type of pollutant contained in the water flowing in the water flow path 230 of the measurement cell 210.
  • the pollution degree of the detected pollutant is measured and output to the heavy metal detection control unit 420 of the control module 400.
  • the reaction sensor unit 60 includes a reaction sensor 62 at the inlet of the inflowing water to apply a redox supply power to the inflowing water to generate a redox, and measure a redox current according to the amount of redox generated. The amount of change in the redox current is measured in comparison with the previously measured redox current, and the redox supply power range value in which the change in the redox current is generated is output to the heavy metal detection controller 420.
  • the reaction sensor unit 60 may be configured to have a pollutant DB for each of the redox supply power range of the storage unit 430, in which case the pollutant information corresponding to the calculated redox supply power range value is obtained.
  • the reaction sensor unit 60 determines the presence or absence of water pollutants such as heavy metals, trace organic toxic substances, general inorganic substances (nitrogen, phosphorus, etc.), and receives information corresponding to the detected water pollutants. It may be configured to output to the detection control unit 420. In addition, the reaction sensor unit 60 receives the redox supply power of the redox supply power range directly from the measurement voltage supply unit 40 under the control of the heavy metal detection control unit 420, and supplies the reaction sensor 62 to the reaction sensor 62.
  • water pollutants such as heavy metals, trace organic toxic substances, general inorganic substances (nitrogen, phosphorus, etc.
  • the redox current value measured according to the heavy metal detection control unit 420 is output to determine whether the redox current changes and the redox supply power range generated by the heavy metal detection control unit 420, and redox supply Contaminants corresponding to the power range may be configured to be classified.
  • the reaction sensor unit 60 may be constituted by one redox current measuring unit 61, and the plurality of oxidation voltages supplied from the plurality of redox current measuring units 61 and the measured voltage supply unit 40 may be oxidized. It may be configured to include a reaction sensor selection unit 63 for outputting only to the redox current measurement unit 61 selected by the heavy metal detection control unit 420 of the reduction current measurement unit 61.
  • the redox current measuring unit 61 includes a reaction sensor 62, and supplies the measurement voltage, that is, a redox supply power, to a predetermined range to the reaction sensor 62, and the reaction sensor 62 measures the measurement. Due to the redox reaction corresponding to the voltage change, the amount of redox current change according to the type and presence of pollutants contained in the water can be measured, and the redox supply power range value (or contamination) that has changed the redox current. Material information) will be output to the heavy metal detection control unit 420.
  • the Coulomb method determines the presence of contaminants in a sample by measuring the amount of charge over time.
  • the reaction sensor 62 should monitor the measurement object flowing along the water flow path 220 in real time, the reaction sensor 62 should be made of platinum because it must be strong against external stimuli, excellent in durability, and high in electrical reflection.
  • the pollution measuring sensor unit 70 selects the measured voltages supplied from the plurality of pollution measuring units 71 and the measurement voltage supply unit 40 by the heavy metal detection control unit 420 of the plurality of pollution measuring units 71. It is configured to include a measurement sensor selection unit 73 for outputting only to the pollution measurement unit (71).
  • the pollution measuring unit 71 includes measurement sensors 72 disposed at the rear end of the reaction sensor 62 on the water flow path 230, and measures the pollution degree of each pollutant to detect the heavy metals. Will output
  • the electrochemical method applied to the pollution measuring unit 71 the above-described chronocoulomb method, square wave voltammetry (SWV), or the like may be applied. Since the chronocoulomb method and the square wave voltammetry method described above are well known to those skilled in the art, detailed description thereof will be omitted.
  • the measuring sensor 72 preferably uses a carbon electrode that is stable and economical to a variety of materials, and in order to increase sensitivity, graphene and graphene are exposed on a carbon electrode exposed surface according to a detection species. It is preferable to use the conductive polymer mixture electrodeposited, and it may be preferable to use one of the plurality of measurement sensors 72 as a nanoporous gold plated electrode capable of detecting chromium.
  • Electrodepositing the surface of carbon electrode with graphene and conductive polymer mixture increases the surface area of the electrode and enhances the electron transfer reaction with the sample, providing excellent selectivity, stability and detection sensitivity for heavy metal detection. do.
  • the surface electrodeposition material and its shape differ depending on the pollutant species.
  • the heavy metal adsorbed on the surface of the electrode is removed by applying an oxidation potential to the electrode of the measuring sensor 72 after the injection of the cleaning solution according to a user-set cycle, and the mixture of graphene and the conductive polymer By re-depositing, the life of the electrode can be extended and the sensitivity of the sensor can be improved.
  • FIG. 4 is a conceptual diagram of a measurement sensor for detecting heavy metals according to an embodiment of the present invention
  • FIG. 5 is a scanning electron microscope of an electrode surface electrochemically electrodeposited with an aminopyrimidyl terthiophene monomer and graphene on a glassy carbon electrode ( SEM)
  • FIG. 6 is a SWV analysis result according to sensor denaturation conditions of a solution containing 500 ppb of heavy metal ions (HMI)
  • FIG. 7 is a result of checking an optimum condition.
  • FIG. 7 Is the result according to the type of supporting electrolyte containing 500 ppb of heavy metal ions (HMI)
  • Figure 7 (B) is the result of the pH change of the solution
  • Figure 7 (C) is the result of the deposition time change
  • 8 is a graph (A) and a calibration curve (B) for detecting heavy metal ions (HMI) analyzed by square wave voltammetry (SWV) within each heavy metal concentration range at 1 ppb to 10 ppm under optimal conditions.
  • SWV square wave voltammetry
  • 9 shows 1 ppb under optimal conditions. It is a result which shows the graph (A) and the calibration curve (B) for detecting heavy metal ion (HMI) analyzed by chronocoulmetry (CC) within each heavy metal concentration range from -10 ppm.
  • a measuring sensor 72 is formed on an electrode and the electrode, and includes an aminopyrimidyl terthiophene monomer and graphene oxide. It includes a polymerized polymer coating layer.
  • aminopyrimidyl terthiophene monomer is 3,2-aminopyrimidyl-2: 2,5: 2-terthiophene [3 '-(2-aminopyrimidyl) -2,2': 5 ', 2' '- terthiophene].
  • the sensor can detect Zn (II), Cd (II), Pb (II), Cu (II) and Hg (II) simultaneously.
  • Method for producing a heavy metal detection sensor 72 comprises the steps of dissolving aminopyrimidyl terthiophene and graphene oxide in a solvent to prepare a mixed solution (first step); And electrolytically polymerizing the mixed solution of the first step on the electrode by an electrochemical method to form a polymer coating layer consisting of an aminopyrimidyl terthiophene monomer and graphene oxide (second step).
  • the mixed solution of the first step may dissolve 50 to 70% by weight of aminopyrimidyl terthiophene and 30 to 50% by weight of graphene oxide in a solvent, the solvent may be acetonitrile, dichloromethane, tetrahydrofuran, It may be selected from the group consisting of dimethylformamide and dimethyl sulfoxide, but is not limited thereto.
  • the detection sensitivity of heavy metals was 1.2 times for Zn (II), 2.4 times for Cd (II), 3 times for Pb (II), 4.6 times for Cu (II) and Hg ( II) increased 2.2 times.
  • the present invention is to stabilize the sample by adjusting the pH of the sample solution to 3 to 7 in the sample stabilization unit 100; And it may provide a method for detecting the heavy metal at the same time in real time comprising the step of depositing the sample solution in the measurement sensor 72 for heavy metal detection according to the present invention. More specifically, as an experimental parameter for detecting heavy metal ions, it is important to optimize the type of supporting electrolyte, sample solution pH, and sample deposition time of the heavy metal sample solution. As the supporting electrolyte of the sample solution, acetate buffer may be used. The optimal pH of the solution can be 4.7. In addition, the sample solution may be deposited on the heavy metal detection sensor 72 for 300 seconds, but is not limited thereto. A method of stabilizing the sample in an optimal state to detect heavy metals from the sample will be described in detail with reference to FIG. 20 to be described later.
  • the sample measuring unit 200 may simultaneously detect Zn (II), Cd (II), Pb (II), Cu (II), Hg (II), and the like.
  • the square wave voltammetry (SWV) and chronocoulmetry (CC) under the optimized conditions using the measurement sensor 72 for detecting heavy metals according to the present invention Quantitatively analyzed the concentration of heavy metal ions.
  • the dynamic range of the sensor is 10 ppb to 10 ppm, and the detection limit is 11.3 ppb for Zn (II), 4.4 ppb for Pb (II), respectively. It was found that Cd (II) was 5.3 ppb, Hg (II) was 13.1 ppb, and Cu (II) was 9.2 ppb.
  • the detection limit of each metal ion within the 10 ppb -10 ppm dynamic range is 3.8 ppb for Zn (II), 1.2 ppb for Pb (II), respectively. Cd (II) was found to be 1.2 ppb, Hg (II) was 3.0 ppb, and Cu (II) was 2.0 ppb.
  • the senor according to the present invention is coated with a polymer film formed by electropolymerization using aminopyrimidyl terthiophene and graphene oxide, stability can be maintained for a long time.
  • aminopyrimidyl terthiophene [3 '-(2-aminopyrimidyl) -2,2': 5 ', 2' '-terthiophene; APT] and graphene oxide (GO) were dissolved in an acetonitrile solvent containing 0.1 M TBAP [tetrabutylammonium perchlorate] as a supporting electrolyte in a 2: 1 weight ratio.
  • the APT used was synthesized according to previously known methods (D.M. Kim, K.-B. Shim, J. I. Son, S. S. Reddy, Y. B. Shim, Electochimica Acta 104, (2013), 332-329).
  • the solution was electropolymerized by cyclic voltammetry to form an APT / graphene oxide (GO) polymer film on the electrode surface.
  • the glassy carbon electrode was performed three times at a scanning speed of 100 mV / s in a range of 0.0 V to + 1.5 V potential.
  • APT / graphene oxide (GO) polymer film on the surface of the sensor fabricated in Example 1 was confirmed by a scanning electron microscope (SEM) image. SEM images were obtained using Tescan Model Vega3 SB.
  • APT / GO was electrochemically electrodeposited on the smooth surface of the glassy carbon electrode before modification of the polymer film as shown in FIG. 5 (A).
  • FIG. 5 (B) the polymer was formed around the graphene oxide on the electrode surface. It was confirmed that it was evenly distributed.
  • SWV analysis was performed by using square wave voltammetry (SWV).
  • the working electrode was a glassy carbon electrode with APT / graphene oxide polymer modified as a trielectrode method
  • silver / silver chloride was used as a reference electrode
  • a platinum wire was used as an auxiliary electrode.
  • SWV analysis was performed by scanning the potential from -1.5V to + 0.5V, pulse amplitude was 25.0 mV, potential step was 4.0 mV, frequency was 15.0 Hz.
  • Heavy metal samples were prepared by diluting a solution containing Zn (II), Cd (II), Pb (II), Cu (II) and Hg (II) ions to a concentration of 500 ppb with 0.05 M acetate buffer (pH 4.7). It was.
  • the heavy metal detection performance was excellent in the order of the glassy carbon electrodes ⁇ APT ⁇ rGO ⁇ GO ⁇ APT / GO before the modification.
  • the detection sensitivity of APT / GO is 1.2 times for Zn (II), 2.4 times for Cd (II), 3 times for Pb (II), 4.6 times for Cd (II) and Hg compared to pre-modified glassy carbon electrodes. (II) confirmed a 2.2-fold increase.
  • the type of electrolyte, pH and adsorption time of heavy metal ions were determined at a concentration of 500 ppb heavy metal ions.
  • the change of the current according to the kind of supporting electrolyte (sodium acetate, sodium chloride, sodium nitrate, sodium phosphate) treated in the sample was confirmed.
  • the electrolyte of the heavy metal sample was confirmed that the sodium acetate solution is suitable, and the pH is optimal condition when pH 4.7, the experiments were then carried out under the above conditions.
  • the optimum time for depositing heavy metal ions on the sensor was selected as 300 seconds.
  • the linear range of heavy metal ions (HMI) calibration curves is 10 ppb to 10 ppm, and the correlation coefficients are 0.994 for Zn (II), 0.940 for Pb (II), and Cd ( II) was 0.996, Hg (II) was 0.964, and Cu (II) was 0.887.
  • the detection limit of each metal ion is 11.3 ppb for Zn (II), 4.4 ppb for Pb (II), 5.3 ppb for Cd (II), 13.1 ppb for Hg (II) and Cu (II) ) was found to be 9.2 ppb.
  • the linear range of the HMI calibration curve is 10 ppb to 10 ppm, and the correlation coefficients are 0.986 for Zn (II), 0.998 for Pb (II), 0.947 for Cd (II), and Hg ( II) was 0.978 and Cu (II) was 0.981, and the detection limits of heavy metal ions were 3.8 ppb for Zn (II), 1.2 ppb for Pb (II), 1.2 ppb for Cd (II), and Hg (II) for 3.0 ppb and Cu (II) were 2.0 ppb.
  • the detection limit of heavy metal ions is lower than that of the SWV quantitative analysis, and according to the present invention, the chronoculon method using a sensor modified with APT / graphene oxide (GO) under optimization conditions according to the present invention (The chronocoulmetry (CC) method was able to effectively detect the low concentration of heavy metal ions.
  • the electrode modified with APT / graphene oxide (GO) simultaneously showed heavy metal ions (HMI) and was identified as a stable sensor that can be analyzed in a short time and can be used for a long time.
  • HMI heavy metal ions
  • FIG. 10 shows a schematic diagram of a measuring sensor for detecting the Cr (VI) according to an embodiment of the present invention
  • Figure 11 shows the modification of the measuring sensor step by step to 1 ppm of Cr (VI) with each modified electrode
  • FIG. 12 shows the surface image of the electrode completed in the present invention
  • FIG. 13 shows (A) pH, (B) for 1 ppm of Cr (VI) for the electrode.
  • FIG. 14 is a signal change of concentration (A) obtained by using a linear scanning voltammetry as an electrode for modifying a composite plating layer of porous gold and APT in the range of 10 ppm to 5 ppm under optimal conditions.
  • a calibration curve for detection (B) corresponding thereto.
  • a glassy carbon electrode may be used as the electrode, but is not limited thereto.
  • the terthiophene monomer is preferably a 3- (2-aminopyrimidyl) -2,2: 5,2-terthiophene (APT) monomer.
  • a terthiophene monomer solution in which Aminopyrimidine Terthiophene (APT) was dissolved in dimethyl sulfoxide (DMSO), a terthiophene monomer solution was mixed with a sulfuric acid solution containing gold and nickel. By applying a constant current, the plating layer can be formed electrochemically on the electrode surface.
  • APT Aminopyrimidine Terthiophene
  • DMSO dimethyl sulfoxide
  • the composite layer of porous gold and APT may be formed by selectively removing nickel on the glassy carbon electrode on which the plating layer of gold, nickel, and monomer is formed by using an electrochemical method.
  • porous gold-APT modified electrode thus obtained can be used to develop an electrochemical hexavalent chromium detection sensor capable of selectively analyzing trace amounts of Cr (VI) without disturbing other active species.
  • the dynamic range of the heavy metal detection measurement sensor 72 manufactured under the optimized conditions is 10 ppb to 100 ppb and 100 ppb to 1 ppm, and the detection limit is 1.6 ppb. It is possible to measure Cr (VI) even in a sample, namely tap water.
  • the present invention comprises the steps of adjusting the pH of the sample solution to 1 to 2; And it provides a Cr (VI) detection method comprising the step of adjusting the current applied in the manufacturing of the measurement sensor for detecting the Cr (VI) to 1 to 5 ⁇ A, more preferably, the pH of the sample solution Adjusting to 1.5; And it provides a Cr (VI) detection method comprising the step of adjusting the current applied when manufacturing the sensor to + 2 ⁇ A.
  • Adjusting the current is a condition for forming a nanoporous membrane for chromium detection in the sensor.
  • the detection method can selectively detect trace amounts of Cr (VI).
  • APT monomers were synthesized according to known methods (Electrochim. Acta. 2013, 104, 322). 1.0 x 10 -3 M gold chloride trihydrate (HAuCl 4 ⁇ 3H 2 O) and 1.5 x 10 -2 M nickel sulfide hexahydrate (NiSO 4 ⁇ 6 H 2 O) to modify the glassy carbon electrode (GCE) surface ) And 1.5 M sulfuric acid solution in which 10.0 ⁇ L of DMSO dissolved in 1.0 x 10 -2 M APT was dissolved. HAuCl 4 3H 2 O ( ⁇ 99.9% trace metals basis) and NiSO 4 ⁇ 6H 2 O ( ⁇ 99.99% trace metals basis) were purchased from Sigma-Aldrich (USA). A standard Cr (VI) solution for atomic absorption spectrometer was purchased from NIST (USA). Other chemicals were used purified to ACS reagent grade. Distilled water (18 M ⁇ / cm) was obtained using a Millipore system.
  • the glassy carbon electrode (GCE) is passed a constant current of +2 ⁇ A in the prepared solution for 60 seconds to form a composite plating layer of gold, nickel and APT.
  • the plated electrode was selectively removed from nickel by scanning at a rate of 200 mV / s from 0 V to +1.5 V using cyclic voltammetry in a 1.5 M sulfuric acid solution to form a porous gold-APT composite layer.
  • the conceptual diagram of the manufacturing of the sensor is shown in FIG.
  • Cyclic voltammetry (CV) and linear scanning voltammetry (LSV) analysis were performed using potentiostat / galvanostat (Kosentech Model KST-P2, South Korea). In this case, a three-electrode system was used in which the modified GCE (diameter: 3.0 mm), Ag / AgCl, and platinum wires prepared as the working electrode, the reference electrode, and the auxiliary electrode were used.
  • LSV analysis was performed by scanning the potential from +0.8 V to +0.3 V compared to Ag / AgCl, with a scanning speed of 50 mV / s.
  • a stock solution containing 1000 ppm of Cr (VI) ions was prepared.
  • the solution used for the experiment was prepared by diluting in a standard solution. Nitrogen gas was purged in the diluted solution for 20 minutes to remove dissolved oxygen. The voltammetric analysis was performed after the porous gold-APT modified electrode was transferred to a conduit containing only the supporting electrolyte solution.
  • the surface of the porous gold-APT modified electrode was observed in a field emission scanning electron microscope (SEM, Zeiss Supra40 VP, Germany) and is shown in FIG. 12. As can be seen in Figure 12 it can be confirmed that the porous structure, the size of the porous structure was about 200 nanometers. Therefore, it was confirmed that nanoporous gold-APT composite layer was successfully formed on the surface of GCE.
  • the pH of the sample solution was set to 1.5 in the following experiment.
  • the supporting electrolyte was changed to 0.1 M nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, and perchloric acid, and the optimum electrolyte was found by detecting Cr (VI).
  • the use of nitric acid as an electrolyte showed a larger peak current than when using another electrolyte. Therefore, the electrolyte to be used in subsequent experiments may be acetic acid, nitric acid solution, and the like.
  • the concentration of other metal ions to see the interference effect was 10 ppm.
  • the peak current of Cr (VI) also showed a difference of about 1.1%, which is within the error range.
  • no additional peaks were observed for Cd (II), Pb (II), Cu (II), Hg (II) and Zn (II), and the peak current of Cr (VI) was also within the margin of error. The difference was about%. Therefore, it was confirmed that the present electrode can selectively detect Cr (VI) without interfering with other active species.
  • a calibration curve for detecting Cr (VI) was obtained under the optimum experimental conditions selected above. Detection experiments were performed using LSV with increasing concentrations from 10 ppb to 5 ppm, and the peak currents indicated at this time were shown as calibration curves. The correlation coefficient of the calibration curve was 0.96, and the dynamic range of the calibration curve was 10 ppb to 100 ppb and 100 ppb to 1 ppm. The detection limit calculated using the slope of the calibration curve was 1.6 ppb.
  • Figure 15 is a view showing a detailed configuration of the sample stabilization unit of the real-time multi-item heavy metal analysis device according to the present invention
  • Figure 16 is a real configuration of a sample stabilization unit, a sample supply unit and a sample measuring unit of the real-time multi-item heavy metal analysis device according to the present invention An example is shown.
  • the sample stabilization unit 100 is controlled by the sample stabilization control unit 410 of the control module 400 so that the sample measuring unit 200 can more accurately detect heavy metals contained in the sample. Stabilize.
  • the sample stabilization unit 100 includes a first stabilization unit 110 and a second stabilization unit 140.
  • the first stabilization unit 110 may adjust the measurement auxiliary solution to store and input the sample state measurement unit 120 and the measurement auxiliary solution to measure and output the electrical conductivity and pH of the sample to be supplied, the control module ( Under the control of 400, the measurement auxiliary solution supply unit 130 for inputting the measurement auxiliary solution to the sample.
  • the measurement auxiliary solution is a solution for adjusting the electrical conductivity and pH, acetate buffer solution, etc. may be used.
  • the first stabilization unit 110 includes a sample state measurement unit 120 and a measurement auxiliary solution supply unit 130 as described above.
  • the sample state measuring unit 120 includes an electric conductivity sensor 121 for measuring and outputting an electric conductivity of a sample supplied with an electric conductivity sensor, and a pH sensor unit for measuring and outputting a pH of a sample, including a pH sensor. (122).
  • the conductivity sensor of the conductivity sensor unit 121 and the pH sensor of the pH sensor unit 122 may be installed in the water (sample) supply pipe, but the water tank 141 containing water stabilized by the measurement auxiliary solution. It would be desirable to be installed in.
  • the water tank 141 will be preferably configured to maintain a certain amount.
  • the auxiliary solution supply unit 130 includes a measurement auxiliary solution container 131 and a measurement auxiliary solution including a multi-path automatic valve 132 for introducing the measurement auxiliary solution contained in the measurement auxiliary solution container 131 into the supplied water.
  • Supply unit 130 is included.
  • the multi-path automatic valve 132 is connected to the auxiliary solution supply pipe connected to the water supply pipe receiving the sample and the measurement auxiliary solution container 131 as shown in Figure 3 and connected to the sample supply unit 300 by the auxiliary solution It is connected to the sample supply pipe for supplying the stabilized sample to the sample supply unit 300.
  • the second stabilization unit 140 is configured to flow into the lower end of the sample for the stabilization of the sample and to flow in the bottom surface of the water tank 141 and the water tank 141 configured to overflow when a predetermined amount or more of the sample flows in It may include a rotary impeller 142 to remove the bubbles contained in the sample.
  • the pH and electrical conductivity of the first stabilizer 140 is adjusted and the sample from which the bubbles are removed from the second stabilizer will be supplied to the sample measuring unit 200 through the sample supply unit 300.
  • 17 is a view showing the configuration of the sample stabilization control unit of the control module of the real-time multi-item heavy metal analysis apparatus according to the present invention.
  • the sample stabilization control unit 410 includes a pretreatment sample inspection unit 411, a sample supply control unit 412, a stabilization control unit 413, a real-time heavy metal monitoring unit 414, and a water state notification unit 415.
  • the pretreatment sample inspecting unit 411 measures the state of the sample before heavy metal detection through the sample state measuring unit 120 of the first stabilization unit 110. That is, the pretreatment sample inspecting unit 411 measures the electrical conductivity and pH of the sample supplied to the water tank 141 through the electrical conductivity sensor unit 121 and the pH sensor unit 122 of the sample state measuring unit 120, It is determined whether the electrical conductivity value and the pH value measured with reference to the auxiliary solution input amount DB of the storage unit 430 require the addition of the auxiliary solution, and when the auxiliary solution is required, the electrical conductivity value and the pH value are required. The auxiliary solution input amount corresponding to the output is determined and output to the stabilization controller 413.
  • the pretreatment sample inspecting unit 411 determines whether or not the sample is stabilized according to the auxiliary solution input amount, and displays it on the display unit 451, and notifies the sample supply control unit 412 that the sample is stabilized.
  • the sample supply control unit 412 controls the sample supply unit 300 when the sample supply event occurs to supply the sample contained in the water tank 141 to the sample measurement unit 200.
  • the sample supply event may be generated at a predetermined time period, may be generated when the sample supply command through the input unit 440, may be generated when the sample stabilization is completed from the pre-process sample inspection unit 411, complex depending on whether or not to stabilize the sample It may be generated as
  • the stabilization control unit 413 stabilizes the sample by removing the bubbles of the sample contained in the water tank 141 by driving the rotating impeller 142 during the operation of the heavy metal analysis device, and inputs the auxiliary solution input amount from the pretreatment sample inspection unit 411.
  • the multi-path automatic valve 132 of the measurement auxiliary solution supply unit 130 By controlling the multi-path automatic valve 132 of the measurement auxiliary solution supply unit 130 to supply the auxiliary solution to the sample contained in the water tank 141 to stabilize the sample.
  • the real-time heavy metal monitoring unit 414 drives the sample measuring unit 200 when the sample supply event occurs to be supplied through the sample supply unit 300 and included in the sample flowing through the water flow path 230 of the main body 220.
  • the sorted heavy metals are classified, and the content of the classified heavy metals is received and stored and displayed on the display unit 451.
  • the water state notification unit 415 is a telecommunication unit for receiving water state information including information measured and determined by the preprocessing sample inspecting unit 411, heavy metal type information detected by the real-time heavy metal monitoring unit 414, and a detection amount for each heavy metal. (442, 452) to remote water quality testing centers.
  • FIG. 18 is a flowchart illustrating a real-time multi-item heavy metal detection method through selective electrode activation according to the present invention.
  • the heavy metal detection control unit 420 of the control module 400 measures water (water), that is, a sample, through a water supply device (not shown) such as the sample supply unit 300. And supplying the redox current measuring unit 61 (S111), supplying the redox supply power to the reaction sensor 62, and checking whether the redox current value is input by the redox supply power supply. By measuring the redox current value (S113).
  • the heavy metal detection control unit 420 compares the input redox current value with the previously input redox current value and calculates a redox current change amount (S114). It is determined whether the amount of change exceeds the normal range (S115).
  • the heavy metal detection control unit 420 refers to the pollutant DB for each redox supply power range to the redox current. Analyze and classify pollutants corresponding to the redox supply power range to which the redox supply power value that caused the change belongs, and refer to the pollutant DB by redox power supply value range and at least one corresponding to the classified pollutants.
  • the contamination measurement unit 71 is searched and the measurement sensor selection unit 73 is controlled to select the retrieved contamination measurement unit 71 (S116).
  • the heavy metal detection control unit 420 controls the measurement voltage supply unit 40 to supply the measurement voltage to the selected pollution measurement unit 71 (S117). At this time, according to the pollution measuring unit 71 may supply a measurement voltage having each measurement specific voltage.
  • the heavy metal detection control unit 420 monitors whether the pollution measurement (current) value is input from the pollution measurement unit 71 (S119).
  • the contamination measurement value may be a current change amount value.
  • the pollution measurement unit 71 When the measurement voltage value is input, the pollution measurement unit 71 outputs a pollution measurement (current) value according to the pollution degree. At this time, the heavy metal detection control unit 420 determines whether the contamination measurement value is input from all the pollution measurement units 71 when the selected pollution measurement unit 71 is two or more (S121).
  • the heavy metal detection control unit 420 converts the measured pollution measurement values into pollution levels for the corresponding pollutants, and displays pollutant information and information indicating how much of the pollutants are included in the water. It will output (S123).
  • the output of the information may be made through the display unit 451 of the output unit 450, or is transmitted to a server (not shown) of a remote water quality control center (not shown) through the remote communication unit 452 to the manager terminal. It could be done through
  • the heavy metal detection control unit 420 checks whether a measurement cancellation event occurs (S125).
  • the measurement cancellation event may be generated when the pollution measurement value is not input from any one of the selected pollution measurement unit 71 for a predetermined time or may be generated through the input unit 30 by an administrator.
  • the heavy metal detection control unit 420 When the measurement cancellation event occurs, the heavy metal detection control unit 420 outputs the input pollutant contamination level, and outputs the related information related to the unmeasured pollutant (S127).
  • the related information may be, for example, pollutant information and information of the pollution measuring unit 71 measuring the pollution level of the pollutant.
  • the heavy metal detection control unit 420 may request the inspection of the pollution measurement unit 71, the reaction sensor 62 and the redox current measuring unit 61.
  • 19 is a flowchart illustrating an electrode activation method of a real-time multi-item heavy metal detection method according to an embodiment of the present invention.
  • the heavy metal detection control unit 420 refers to the pollutant DB for each of the redox power values to generate the redox current change. A value is obtained (S211).
  • the heavy metal detection control unit 420 determines whether the redox supply power supply (above) is in the range of -1.3V to -0.9V (S215) or in the range of -0.9V to -0.3V. It is determined whether the value is in the range (S217), -0.3V to 0.2V (S219), or in the range of 0.2V to 0.5V (S221).
  • the heavy metal detection control unit 420 detects and outputs a concentration of zinc (Zn) that is a pollutant when the redox supply power supply (above) is in the range of -1.3 V to -0.9 V. -1) and the second pollution measuring unit detects and outputs the concentration of cadmium (Cd), which is a pollutant, when the redox supply power supply (above) is in the range of -0.9V to -0.3V.
  • Select (71-2) (S225) and if the value of the redox power supply (above) is in the range of -0.3V to 0.2V, the concentration of lead (Pb) and copper (Cu), which are pollutants, is detected and output.
  • the concentration of mercury (Hg), which is a pollutant is detected and output.
  • the fourth pollution measurement unit 71-4 is selected (S229). If the measured redox power supply (top) value is 0.2V, the heavy metal detection control unit 420 may also include 0.2V in the range of -0.3V to 0.2V where redox potential ranges for lead and copper, and to oxidize mercury. Since it is also included in the reduction potential value range of 0.2V to 0.5V, the third pollution measuring unit 71-4 and the fourth pollution measuring unit 71-5 are selected.
  • a dedicated contamination measurement unit 71-m for detecting chromium may be assigned to continuously check whether the sample contains chromium, and is supplied through the reaction sensor 62. If the redox supply power supply (above) is in the range of +0.5 V to +0.6 V, the m-th pollution measurement unit 71-m that detects and outputs the allocated chromium (Cr) concentration may be driven.
  • 20 is a flowchart illustrating a sample stabilization method of the real-time multi-item heavy metal detection method according to the present invention.
  • the sample stabilization control unit 410 of the control module 400 controls the multipath automatic valve 132 when power is supplied to the heavy metal analyzing apparatus and starts supplying the sample to the water tank 141 (S311).
  • the rotary impeller 142 By driving the rotary impeller 142 through the stabilization control unit 413, stabilization is performed by removing bubbles of the sample supplied to the water tank 141 (S312).
  • the sample stabilization control unit 410 drives the sample state measurement unit 120 through the pretreatment sample inspection unit 411 to perform electrical conductivity and The measurement of the pH is started (S313).
  • the sample stabilization control unit 410 checks whether the conductivity value and the pH value, which are the sample state values, are input through the pretreatment sample inspection unit 411 (S315).
  • the sample stabilization control unit 410 determines whether the conductivity and pH value measured by referring to the auxiliary solution input amount DB through the pretreatment sample inspection unit 411 require the input of the auxiliary solution. It is determined whether or not (S317).
  • the sample stabilization control unit 410 determines whether the sample is currently being supplied through the sample supply control unit 412 (S319), and if the sample is being supplied, the sample supply control unit.
  • the sample supply unit 300 is controlled through the block 412 to block the sample supply to the sample measuring unit 200 (S321).
  • the sample stabilization control unit 410 is the auxiliary solution input amount of the storage unit 430 through the pretreatment sample inspection unit 411
  • the auxiliary solution input amount corresponding to the measured electric conductivity value and pH value is determined by referring to the DB (S323).
  • the auxiliary solution input amount may be calculated in real time by reflecting the electrical conductivity value and the pH value every time the auxiliary solution is added.
  • the sample stabilization control unit 410 controls the multi-path automatic valve 132 of the measurement auxiliary solution supply unit 130 through the stabilization control unit 413 to adjust the auxiliary solution by the amount of the auxiliary solution input tank 141.
  • the auxiliary solution input amount may be measured with an input amount measuring means for measuring the input amount from the measurement auxiliary solution container 131 to the pipe supplied to the multi-path automatic valve 132, and the electrical conductivity value measured in the water tank 141. And it may be measured indirectly by adding the auxiliary solution until the pH value satisfies the sample measurement stabilization conditions.
  • the sample stabilization control unit 410 controls the sample supply unit 300 to supply the sample of the water tank 141 to the sample measuring unit 200 (S127).
  • the present invention is not limited to the above-described typical preferred embodiment, but can be carried out in various ways without departing from the gist of the present invention, various modifications, alterations, substitutions or additions in the art réelle who has this can easily understand it. If the implementation by such improvement, change, replacement or addition falls within the scope of the appended claims, the technical idea should also be regarded as belonging to the present invention.
  • reaction sensor 61 redox current measuring unit
  • reaction sensor 63 reaction sensor selection unit
  • sample stabilization unit 110 first stabilization unit
  • sample state measurement unit 120 sample state measurement unit 121: electrical conductivity sensor unit
  • measuring auxiliary solution container 132 multi-path automatic valve
  • measuring cell 220 main body
  • sample supply unit 400 control module
  • sample stabilization control unit 411 pretreatment sample inspection unit

Abstract

The present invention relates to an apparatus and a method for heavy metal analysis, and a method for producing a sensor of an apparatus for heavy metal analysis and, more particularly, to a real-time multiple-item heavy metal analysis apparatus, a real-time multiple-item heavy metal analysis method, and a method for producing a sensor of the heavy metal analysis apparatus which simultaneously detect at least one heavy metal after stabilizing a sample to be measured in a state optimal for measurement, and which preferentially determine the type of the heavy metal included in the sample, and then measure the content of the heavy metal by selectively operating a sensor capable of measuring at least one determined heavy metal.

Description

실시간 다항목 중금속 분석 장치, 실시간 다항목 중금속 분석 방법 및 상기 중금속 분석 장치의 센서 제조방법Real-time multi-item heavy metal analysis device, real-time multi-item heavy metal analysis method and sensor manufacturing method of the heavy metal analysis device
본 발명은 중금속 분석 장치, 방법 및 중금속 분석 장치의 센서 제조 방법에 관한 것으로, 더욱 상세하게는 측정될 시료를 측정하기 위한 최적의 상태로 안정화시킨 후, 하나 이상의 중금속을 동시에 검출하되, 시료에 포함되어 있는 중금속 종류를 우선적으로 판단한 후 판단된 적어도 하나 이상의 중금속을 측정할 수 있는 센서를 선택적으로 구동하여 해당 중금속의 함유량을 측정하는 실시간 다항목 중금속 분석 장치, 실시간 다항목 중금속 분석 방법 및 상기 중금속 분석 장치의 센서 제조방법에 관한 것이다.The present invention relates to a heavy metal analysis device, a method and a method for manufacturing a sensor of the heavy metal analysis device, and more particularly, after stabilization to an optimal state for measuring the sample to be measured, at least one heavy metal is detected simultaneously, but included in the sample After determining the type of heavy metal, the real-time multi-item heavy metal analysis device, real-time multi-item heavy metal analysis method and the heavy metal analysis to measure the content of the heavy metal by selectively driving the sensor capable of measuring the determined at least one heavy metal A method for manufacturing a sensor of a device.
일반적으로 하천수, 호소수, 상수원수, 저수지, 지하수 등의 수역, 정수장, 수영장 등의 수 시설 등에 대해 설정되어진 환경기준이나 물(이하 "물"을 "수", "워터"등의 용어와 혼용하여 사용하고, 측정에 사용되는 물을 "시료"라 함)의 이용 목적을 만족시키기 위해 수질관리를 수행한다.Generally, environmental standards or water (hereinafter referred to as "water", "water", etc.) that are set for water facilities such as river water, lake water, water supply, reservoir, groundwater, water purification facilities, and swimming pools Use water and perform water quality control to meet the purpose of using the "sample" water.
수질관리를 수행하기 위해서는 물에 포함되어 있는 미량의 물질들을 검출하고, 검출된 물질들이 얼마나 포함되어 있는지를 측정하여야 한다.In order to perform water quality control, trace amount of substances contained in water should be detected and the amount of detected substances should be measured.
통상적으로, 물에 포함된 중금속의 검출은 현장분석이 아닌 시료를 채취하여 실험실 내에서 측정 시료의 특성에 따라 여러 단계의 전처리 과정을 거쳐, 다종의 미량 물질을 정량적으로 측정하기 위한 분광학적 방법을 이용하여 측정되고 있다.In general, the detection of heavy metals in water is performed by taking a sample rather than an on-site analysis, and performing a pre-treatment process in several steps according to the characteristics of the measured sample in a laboratory. It is measured using.
상기 분광학적 방법으로는 크로마토그래피(Gel Permeation Chromatography(GPC), Gas Chromatography(GC), High Performance Liquid Chromatography(HPLC) 등), 유도 플라즈마 분광법(ICP-MS), 원자방출분광법(AES) 등이 있다.The spectroscopic methods include chromatography (Gel Permeation Chromatography (GPC), Gas Chromatography (GC), High Performance Liquid Chromatography (HPLC), etc.), Inductive Plasma Spectroscopy (ICP-MS), Atomic Emission Spectroscopy (AES), etc. .
그러나 상술한 방법들은 긴 분석시간과 전문 분석 인력을 필요로 할 뿐만 아니라 고가의 분석장비를 필요로 하고, 이러한 분석장비를 유지하는 데 많은 비용이 소요되는 문제점이 있다.However, the above-described methods not only require a long analysis time and professional analysis personnel, but also require expensive analysis equipment, and have a high cost of maintaining such analytical equipment.
또한, 이러한 분광학적 분석법은 다종의 중금속을 한 번에 분석 가능하지만 고가의 외산 분석 장비를 필요로 한다. 또한, 현장분석이 아닌 시료채취 후 실험실 내에서 측정하는 방식이므로 측정환경 변화에 따른 방해 오차의 발생으로 정확도가 떨어지며, 오랜 분석 시간이 요구되므로 중금속 오염에 대한 신속한 대응이 불가능하다.In addition, these spectroscopic methods can analyze multiple heavy metals at once, but require expensive external analysis equipment. In addition, since the method is measured in the laboratory after sampling rather than on-site analysis, the accuracy is reduced due to the interference error caused by the change of the measurement environment, it is impossible to quickly respond to heavy metal contamination because a long analysis time is required.
또한, 이러한 어려움으로 인해 환경부에서는 하천, 호소수, 상수원수에 함유되어 있는 중금속 조사 횟수를 년 4회로 규정하고 있다. 그러나 년 4회의 횟수는 그 빈도가 매우 낮아 중금속 오염을 방지하기 어려우므로 보다 간단하고 정확하면서도 실시간으로 물의 오염도를 측정할 수 있는 방안이 요구되어지고 있다.In addition, due to these difficulties, the Ministry of Environment regulates the number of times of heavy metals contained in rivers, lakes and drinking water four times a year. However, since the frequency of the four times is so low that it is difficult to prevent heavy metal contamination, there is a demand for a method for measuring water pollution in a simpler, more accurate and real time.
이러한 이유로 최근에는 전기화학적 분석방법을 적용하는 추세이다. 전기화학적 분석방법은 경제성, 비교적 짧은 분석시간, 높은 정확도 등으로 다양한 분야에서 이용되고 있다. 특히, 혈당센서, 바이오마커, 특정유해물질 검출 등 단일 물질의 측정에 많이 상용되고 있으나, 전기화학적 분석에 사용되는 대부분의 측정센서는 일회성의 장비로 사용되고 있다.For this reason, an electrochemical analysis method has recently been applied. Electrochemical analytical methods are used in various fields due to economical efficiency, relatively short analysis time, and high accuracy. In particular, blood glucose sensors, biomarkers, and the detection of a specific substance such as a specific substance is widely used, but most of the measuring sensors used for electrochemical analysis is used as a one-time equipment.
또한, 전기화학 센서는 검출하려는 종에 따라 측정전극표면에 다양하게 전극 개질을 변성시켜 전극의 감도를 높이고 검출의 선택성을 높일 수 있다. 하지만 센서전극에 전착시키는 물질, 변성방법, 전기화학측정방법에 따라 센서의 수명이 결정되므로 그의 수명을 극대화 시킬 수 있는 방안이 요구되어지고 있다.In addition, the electrochemical sensor may modify the electrode modifications on the surface of the measuring electrode according to the species to be detected to increase the sensitivity of the electrode and increase the selectivity of detection. However, since the life of the sensor is determined by the material electrodeposition on the sensor electrode, the modification method, and the electrochemical measurement method, there is a demand for a method of maximizing the life of the sensor.
또한, 전기화학적 방법을 이용하여 다종의 물질의 정량적 분석이 가능한 장치가 개발되었으나, 이는 채수 후 하나의 센서로 다종의 물질을 측정함으로써 검출 피크(Peak)들 사이의 간섭으로 인하여 분석 감도, 정확도 및 재현성이 떨어지는 문제점이 있다.In addition, a device capable of quantitative analysis of a variety of materials has been developed using electrochemical methods, but it is possible to measure a variety of materials with a single sensor after taking water, thereby analyzing sensitivity, accuracy and accuracy due to interference between detection peaks. There is a problem of poor reproducibility.
또한, 전기화학적 방법을 이용하는 경우 수은 전극을 사용하여야 함으로써 수은 전극의 상시 사용에 따라 수은 전극에서 많은 독성이 발생할 수 있는 문제점이 있다.In addition, when using the electrochemical method has to use a mercury electrode there is a problem that a lot of toxicity can occur in the mercury electrode according to the regular use of the mercury electrode.
따라서 본 발명의 목적은 측정될 시료를 측정하기 위한 최적의 상태로 안정화시킨 후, 하나 이상의 중금속을 동시에 검출하되, 시료에 포함되어 있는 중금속 종류를 우선적으로 판단한 후 판단된 적어도 하나 이상의 중금속을 측정할 수 있는 센서를 선택적으로 구동하여 해당 중금속의 함유량을 측정하는 실시간 다항목 중금속 분석 장치, 실시간 다항목 중금속 분석 방법 및 상기 중금속 분석 장치의 센서 제조방법을 제공함에 있다.Accordingly, an object of the present invention is to stabilize at the optimum state for measuring a sample to be measured, and then to simultaneously detect one or more heavy metals, and to first determine the type of heavy metals included in the sample, and then to measure at least one or more heavy metals determined. The present invention provides a real-time multi-item heavy metal analysis device, a real-time multi-item heavy metal analysis method, and a sensor manufacturing method of the heavy metal analysis device to selectively drive the sensor to measure the content of the heavy metal.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 실시간 다항목 중금속 분석 장치는: 물 공급관으로부터 시료를 공급받아 시료의 공급을 제어하는 시료 공급부; 및 측정할 시료가 소정 패턴으로 흐르는 경로를 형성하는 수 흐름 경로를 포함하는 측정셀 및 상기 시료 공급부로부터 공급되는 시료가 상기 수 흐름 경로를 따라 흐르도록 하고, 상기 수 흐름 경로를 따라 흐르는 시료에 닿도록 상기 수 흐름 경로에 결합되는 반응센서 및 측정센서를 구비하되, 상기 반응센서 및 측정센서 순으로 결합되어 상기 반응센서를 통한 시료의 산화환원전류값을 측정하여 출력하고, 상기 측정센서에 따른 해당 오염물질에 대한 오염도값 출력하는 수질오염물질 측정모듈을 포함하는 시료 측정부; 및 상기 수 흐름 경로로 유입되는 시료에서 상기 반응센서를 통해 측정된 산화환원전류값에 미리 설정된 정상범위 이상의 변화가 발생되는 경우, 상기 변화를 가지는 산화환원전류값 측정 시 상기 반응센서로 공급된 산화환원공급전원값에 의해 오염물질을 검출 및 분류하고, 분류된 오염물질에 대응하는 측정센서를 선택으로 활성화한 후 오염물질에 대한 오염도값을 입력받아 출력하는 중금속 검출 제어부를 포함하는 제어모듈을 포함하는 것을 특징으로 한다.Real-time multi-item heavy metal analysis apparatus according to the present invention for achieving the above object comprises: a sample supply unit for receiving a sample from a water supply pipe to control the supply of the sample; And a measuring cell including a water flow path for forming a path in which a sample to be measured flows in a predetermined pattern, and allowing a sample supplied from the sample supply unit to flow along the water flow path, and touching a sample flowing along the water flow path. It is equipped with a reaction sensor and a measuring sensor coupled to the water flow path so as to combine the reaction sensor and the measuring sensor in order to measure and output the redox current value of the sample through the reaction sensor, according to the measurement sensor A sample measuring unit including a water pollutant measuring module configured to output a pollution degree value for a pollutant; And the oxidation supplied to the reaction sensor when the redox current value having the change is measured when a change in the oxidation reduction current value measured by the reaction sensor occurs in the sample flowing into the water flow path. It includes a control module including a heavy metal detection control unit for detecting and classifying pollutants by a reducing supply power value, and activating a selective measurement sensor corresponding to the classified pollutants and receiving and outputting a pollutant value for the pollutants. Characterized in that.
상기 측정셀은, 측정할 시료가 유입되는 수 유입구, 센서 결합구 및 상기 시료를 배출하는 수 배출구를 구비하는 본체; 및 상기 본체의 수 유입구와 연결되고 상기 센서 결합구를 경유하여 상기 수 배출구에 연결되어 상기 패턴을 형성하는 상기 수 흐름 경로를 포함하는 것을 특징으로 한다.The measuring cell may include: a main body including a water inlet through which a sample to be measured is introduced, a sensor coupler, and a water outlet through which the sample is discharged; And the water flow path connected to the water inlet of the main body and connected to the water outlet via the sensor coupler to form the pattern.
상기 수질오염물질 측정모듈은, 유입되는 시료의 유입부에 반응센서를 구비하고 유입되는 시료에 잠긴 상기 반응센서를 통해 상기 시료에 산화환원공급전원을 가하여 산화환원을 일으키고, 상기 산화환원현상에 의해 발생되는 산화환원전류값을 측정하고 이전 산화환원공급전원 공급에 의해 측정된 산화환원전류값과의 차에 의한 산화환원전류 변화량을 계산하고, 계산된 산화환원전류 변화량이 미리 설정된 정상범위를 벗어나는 경우 상기 산화환원전류 변화량을 일으킨 해당 산화환원공급전원값을 출력하는 반응센서부; 상기 시료의 유입 방향에 대해 반응센서의 후단에서 서로 다른 오염물질을 검출 및 검출된 오염물질의 오염도를 측정하는 오염 측정센서를 구비하여 검출된 오염물질에 대한 오염도를 측정하여 출력하는 복수의 오염 측정부를 포함하되, 제어를 받아 상기 오염측정부들 중 적어도 하나 이상의 오염측정부를 선택하고, 선택된 오염측정부를 구동하여 해당 오염물질 및 오염물질의 오염도를 측정하여 출력하는 오염 측정센서부; 산화환원공급전원 범위별 오염물질과 오염물질별 오염측정부를 정의하고 있는 산화환원전원 범위별 오염물질 DB를 저장하고 있는 저장부; 및 상기 있는 산화환원전원 범위별 오염물질 DB를 참조하여 상기 반응센서부로부터 입력되는 산화환원공급전원값에 대응하는 오염물질을 판별하고, 상기 오염물질에 대응하는 오염 측정센서부를 제어하여 판별된 오염물질을 검출 및 오염도를 측정할 수 있는 오염측정부를 선택적으로 구동시켜 해당 오염물질에 대응하는 오염물질을 검출 및 오염도를 측정하여 출력하는 제어부를 포함하는 것을 특징으로 한다.The water pollutant measuring module includes a reaction sensor at an inlet of an incoming sample and applies a redox supply power to the sample through the reaction sensor immersed in the incoming sample to generate a redox, and by the redox phenomenon Measures the generated redox current value, calculates the redox current change due to the difference from the redox current value measured by the previous redox supply, and calculates the redox current change outside the preset normal range. A reaction sensor unit for outputting a corresponding redox supply power value causing the change in the redox current; A plurality of pollution measurement to measure and output the contamination level of the detected pollutants with a pollution measurement sensor for detecting different pollutants at the rear end of the reaction sensor for the inflow direction of the sample and the pollution degree of the detected pollutants A pollution measurement unit including a control unit, selected by at least one pollution measurement unit of the pollution measurement unit under control, and driving the selected pollution measurement unit to measure and output the pollution level of the corresponding pollutant and the pollutant; A storage unit storing a pollutant DB by a range of redox power supplies defining a pollutant by a range of redox supply power and a pollution measurement unit by a pollutant; And determining a pollutant corresponding to the redox supply power value input from the reaction sensor unit by referring to the pollutant DB for each range of the redox power source, and controlling the pollution measurement sensor unit corresponding to the pollutant to determine the pollution. And a control unit for selectively driving a pollution measuring unit capable of detecting a substance and measuring a pollution level, and detecting and outputting a pollutant corresponding to the corresponding pollutant and measuring the pollution level.
상기 반응센서가 상기 유입구에서 가장 가까운 수 흐름 경로상의 꼭짓점에 설치되고, 상기 측정센서가 상기 수 흐름 경로 상의 다른 꼭짓점 각각에 하나씩 설치되는 것을 특징으로 한다.The reaction sensor is installed at a vertex on the water flow path closest to the inlet, and the measuring sensor is installed at each of the other vertices on the water flow path.
상기 수 흐름 경로의 패턴은 톱니 형상으로 구성되는 것을 특징으로 한다.The pattern of the water flow path is characterized in that it is configured in a sawtooth shape.
상기 반응센서부는, 반응센서를 구비하여 유입되는 시료의 산화환원전류값을 측정하고, 상기 산화환원전류 변화량이 상기 정상범위를 벗어나는 경우 상기 산화환원공급전원값을 출력하는 적어도 둘 이상의 산화환원전류 측정부; 및 상기 산화환원전류 측정부들과 연결되고 상기 산화환원전류 측정부로 공급할 측정전압인 산화환원공급전원을 입력받으며, 상기 제어부의 제어를 받아 상기 산화환원공급전원을 선택적으로 산화환원전류 측정부로 공급하는 반응센서 선택부를 포함하는 것을 특징으로 한다.The reaction sensor unit measures a redox current value of a sample introduced with a reaction sensor, and measures at least two redox currents that output the redox supply power value when the amount of change in the redox current is outside the normal range. part; And receiving a redox supply power, which is connected to the redox current measuring units and is a measurement voltage to be supplied to the redox current measuring unit, and selectively supplies the redox supply power to the redox current measuring unit under the control of the controller. And a sensor selector.
상기 오염 측정센서부는, 복수의 상기 오염측정부; 및 상기 복수의 오염 측정부들과 연결되고 상기 제어부의 제어를 받아 측정전압 공급부로부터 공급되는 측정전압을 선택적으로 오염측정부로 공급하는 측정센서 선택부를 포함하는 것을 특징으로 한다.The pollution measurement sensor unit, a plurality of the pollution measurement unit; And a measurement sensor selection unit connected to the plurality of pollution measurement units and selectively supplying the measurement voltage supplied from the measurement voltage supply unit to the pollution measurement unit under the control of the controller.
상기 장치는: 현장의 물 공급관으로부터 물을 시료로서 공급받고, 공급되는 시료의 전기전도도 및 pH를 측정하여 출력하고, 상기 시료를 안정화시킨 후 상기 시료 공급부로 제공하는 시료 안정화부를 더 포함하는 것을 특징으로 한다.The apparatus may further include: a sample stabilization unit receiving water from a field water supply pipe as a sample, measuring and outputting electrical conductivity and pH of the sample to be supplied, and stabilizing the sample and providing the sample to the sample supply unit. It is done.
상기 시료 안정화부는, 상기 물의 전기전도도 및 pH를 측정하는 전기전도도 센서부 및 pH 센서부를 포함하여 전기전도도 및 pH를 측정하여 출력하는 시료 상태 측정부 및 상기 측정된 전기전도도 및 pH에 대응하는 상기 제어모듈의 제어를 받아 측정할 상기 시료에 측정 보조용액을 공급하는 측정 보조용액 공급부를 포함하는 제1안정화부; 및 상기 제어모듈의 제어를 받아 상기 제1안정화부에서 1차 안정화된 시료에 잠겨 상기 시료에 회전력을 가하여 시료의 기포를 제거하는 제2안정화부를 포함하되, 상기 제어모듈은, 상기 시료 안정화부로부터 입력되는 전기전도도 및 pH에 따라 시료 안정화부를 제어하여 시료를 안정화시킨 후 시료 공급부를 제어하여 상기 안정화된 시료를 상기 시료 측정부로 공급시키고 이에 응답하여 시료 측정부로부터 중금속 검출 정보를 입력받아 중금속 종류 및 중금속 검출량을 포함하는 측정 정보를 획득하여 출력하는 시료 안정화 제어부를 더 포함하는 것을 특징으로 한다.The sample stabilization unit includes an electrical conductivity sensor and a pH sensor unit for measuring the electrical conductivity and pH of the water; a sample state measuring unit for measuring and outputting electrical conductivity and pH; and the control corresponding to the measured electrical conductivity and pH. A first stabilization unit including a measurement auxiliary solution supply unit supplying a measurement auxiliary solution to the sample to be measured under the control of a module; And a second stabilization unit under the control of the control module to submerge the sample stabilized in the first stabilization unit by applying a rotational force to the sample to remove bubbles from the sample, wherein the control module is configured to remove from the sample stabilization unit. After stabilizing the sample by controlling the sample stabilization unit according to the electrical conductivity and pH input, the sample supply unit is controlled to supply the stabilized sample to the sample measuring unit, and in response to receiving heavy metal detection information from the sample measuring unit, It further comprises a sample stabilization control unit for obtaining and outputting the measurement information including the heavy metal detection amount.
상기 물 공급관은 해수를 공급하는 해수 공급관, 지하수를 공급하는 지하수 공급관, 폐수 처리 방류관, 상수원수 공급관 및 주거지역 관망의 물 공급관 중 어느 하나인 것을 특징으로 한다.The water supply pipe is characterized in that any one of the water supply pipe for supplying sea water, ground water supply pipe for supplying ground water, wastewater treatment discharge pipe, water supply pipe and residential area network.
상기 장치는: 전기전도도 및 pH 값에 따른 측정 보조용액 공급량을 정의하는 보조용액 투입 DB와, 산화환원 전원값 범위별 중금속 및 중금속별 오염 측정센서부 정보를 정의하는 중금속 분류 DB를 저장하는 저장부; 상기 시료 상태 측정부, 측정 보조용액 공급부, 반응센서부 및 다수의 오염 측정센서부들과 연결되어 데이터를 송수신하는 인터페이스부; 및 상기 선택된 중금속에 대한 정보 및 상기 시료에 포함된 중금속량을 표시하는 디스플레이부를 더 포함하되, 상기 시료 안정화 제어부는, 상기 인터페이스부를 통해 시료 상태 측정부로부터 전기전도도 및 pH값을 입력받고, 상기 보조용액 투입 DB를 참조하여 입력된 전기전도도 및 pH 값에 대응하는 측정 보조용액 투입량을 결정하고, 결정된 측정 보조용액 투입량만큼 상기 측정 보조용액 공급부를 제어하여 측정 보조용액을 상기 시료에 투입하여 안정화시키고, 상기 인터페이스부를 통해 반응센서부로부터 입력된 산화환원 전원값을 입력받고, 상기 중금속 분류 DB를 참조하여 입력된 산화환원 전원값에 대응하는 중금속 종류를 분류하고, 분류된 중금속 종류에 대응하는 오염 측정센서부를 선택하여 시료에 포함된 해당 중금속량을 측정하여 상기 디스플레이부에 표시하는 것을 특징으로 한다.The apparatus includes: an auxiliary solution input DB defining a measurement auxiliary solution supply amount according to electrical conductivity and pH value, and a storage unit storing a heavy metal classification DB defining heavy metal and heavy metal contamination measurement sensor unit information by redox power supply value range ; An interface unit connected to the sample state measurement unit, a measurement auxiliary solution supply unit, a reaction sensor unit, and a plurality of pollution measurement sensor units to transmit and receive data; And a display unit which displays information on the selected heavy metal and the amount of heavy metal included in the sample, wherein the sample stabilization control unit receives an electrical conductivity and a pH value from a sample state measurement unit through the interface unit, and the auxiliary The measurement auxiliary solution input amount corresponding to the input conductivity and pH value is determined by referring to the solution input DB, and the measurement auxiliary solution supply part is controlled by the determined measurement auxiliary solution input amount to stabilize the measurement auxiliary solution by adding it to the sample. Receives the redox power value input from the reaction sensor unit through the interface unit, classifies the heavy metal type corresponding to the redox power value input with reference to the heavy metal classification DB, pollution measurement sensor corresponding to the classified heavy metal type Select the part to measure the amount of the corresponding heavy metal contained in the sample It characterized in that displayed on the display unit.
상기 제2안정화부는 회전 임펠라인 것을 특징으로 한다.The second stabilizing unit is characterized in that the rotating impeller.
상기 측정센서 중 적어도 하나는, 전극; 및, 금 및 터티오펜 모노머를 포함하여 상기 전극상에 도금되는 다공성 금-터티오펜 모노머 복합층을 포함하여 구성되어 6가 크롬 이온에 대한 오염도를 선택적으로 측정하여 출력하는 것을 특징으로 한다.At least one of the measuring sensors, the electrode; And a porous gold-terthiophene monomer composite layer plated on the electrode including gold and terthiophene monomers to selectively measure and output a degree of contamination to hexavalent chromium ions.
상기 터티오펜 모노머는 3-(2-아미노피리미딜)-2,2:5,2-터티오펜 (APT)인 것을 특징으로 한다.The terthiophene monomer is characterized in that 3- (2-aminopyrimidyl) -2,2: 5,2-terthiophene (APT).
상기 측정센서는, 전극; 및 상기 전극 상에 형성되며 아미노피리미딜 터싸이오펜 모노머 및 산화그래핀을 포함하여 전해중합시킨 고분자 코팅층으로 이루어지는 것을 특징으로 한다.The measuring sensor, the electrode; And a polymer coating layer formed on the electrode and electrolytically polymerized, including an aminopyrimidyl terthiophene monomer and graphene oxide.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 실시간 다항목 중금속 분석 방법은: 측정할 시료가 공급되면 반응센서부를 통해 공급되는 시료의 산화환원공급전원을 가하여 발생하는 산화환원에 의한 산화환원전류값을 측정하고, 측정된 산화환원전류값과 이전 산화환원전류값을 비교하여 변화량이 미리 설정된 정상범위를 초과하는 경우 정상범위를 초과할 때의 산화환원공급전원값을 측정하는 산화환원공급전원값 측정 과정; 저장부의 산화환원공급전원별 오염물질 DB를 참조하여 상기 측정된 산화환원공급전원값에 대응하는 오염물질을 판별 및 분류하는 오염물질 분류 과정; 상기 판별되어 분류된 오염물질을 측정할 수 있는 오염 측정부를 식별하고, 측정센서 선택부를 제어하여 상기 식별된 오염 측정부로 측정전압을 공급하는 오염 측정부 선택 과정; 및 상기 측정전압이 공급된 오염 측정부를 통해 상기 판별 및 분류된 오염물질의 오염도를 측정하는 오염 측정 과정을 포함하는 것을 특징으로 한다.Real-time multi-item heavy metal analysis method according to the present invention for achieving the above object: the redox current value by the redox generated by applying a redox supply power of the sample supplied through the reaction sensor unit when the sample to be measured is supplied Measure the redox supply power value by comparing the measured redox current value with the previous redox current value and measuring the redox supply power value when the change exceeds the preset normal range. process; A pollutant classification process of identifying and classifying a pollutant corresponding to the measured redox supply power value by referring to a pollutant DB for each redox supply power source of a storage unit; A pollution measuring unit selecting process of identifying a pollution measuring unit capable of measuring the identified and classified pollutants, and controlling a measuring sensor selecting unit to supply a measurement voltage to the identified pollution measuring unit; And a pollution measurement process of measuring a pollution degree of the identified and classified pollutants through a pollution measurement unit supplied with the measurement voltage.
상기 방법은: 상기 반응센서 및 측정센서들이 구성되는 수 흐름 경로를 가지는 측정셀의 앞단에 구성되어 상기 측정셀의 수 흐름 경로로 공급할 시료를 안정화시켜 공급하는 시료 안정화 과정을 더 포함하되, 상기 시료 안정화 과정을 통해 안정화되어 유입되는 시료에 대해 상기 산화환원전원값 측정 과정 이후의 과정을 수행하는 것을 특징으로 한다.The method may further include a sample stabilization process configured to stabilize and supply a sample to be supplied to the water flow path of the measurement cell, which is configured at the front of the measurement cell having the water flow path including the reaction sensor and the measurement sensors. It characterized in that the process after the redox power value measurement process is performed for the sample that is stabilized through the stabilization process.
상기 오염물질 분류 과정은, 상기 산화환원전류 변화량이 수 정상 범위의 값이면 상기 오염 측정부를 유휴상태로 설정하는 수 정상 유휴상태 설정 단계; 및 상기 산화환원전류 변화량이 수 정상 범위를 벗어나면 저장부의 산화환원공급전원별 오염물질 DB를 참조하여 상기 측정된 산화환원공급전원값이 속하는 산화환원공급전원 범위에 대응하는 오염물질을 판별 및 분류하는 오염물질 분류 단계를 포함하는 것을 특징으로 한다.The pollutant classification process may include: setting a normal idle state to set the pollution measuring unit to an idle state when the amount of change in the redox current is within a normal range; And when the amount of change in the redox current falls outside the normal range, identifying and classifying a contaminant corresponding to the redox supply power range to which the measured redox supply power value belongs by referring to the pollutant DB for each redox supply power in a storage unit. It characterized in that it comprises a pollutant classification step.
상기 오염물질 분류단계는, 상기 산화환원공급전원값이 -1.3V ~-0.9V 범위 내에 있으면 오염물질인 아연(Zn)에 의한 오염도를 측정하는 제1오염측정부를 선택하는 아연 오염측정부 선택 단계; 상기 산화환원공급전원값이 -0.9V ~-0.3V 범위 내에 있으면 오염물질인 카드뮴(Cd)에 의한 오염도를 측정하는 제2오염측정부를 선택하는 카드뮴 오염측정부 선택 단계; 상기 산화환원공급전원값이 -0.3 ~ 0.2V 범위 내에 있으면 오염물질인 납(Pb) 및 구리(Cu)에 의한 오염도를 측정하는 제3오염측정부를 선택하는 납 및 구리 오염측정부 선택 단계; 상기 산화환원공급전원값이 0.2V ~ 0.5V 범위 내에 있으면 오염물질인 수은(Hg)에 의한 오염도를 측정하는 제4오염측정부를 선택하는 수은 오염측정부 선택 단계; 및 상기 산화환원전원값을 포함하지 않는 오염측정부들에 대해 유휴상태를 설정하는 수 이상 유휴상태 설정 단계를 포함하는 것을 특징으로 한다.The pollutant classification step, zinc contamination measurement unit selection step of selecting a first pollution measurement unit for measuring the contamination level by the zinc (Zn) pollutant if the redox supply power value is within the range of -1.3V ~ -0.9V ; A cadmium contamination measuring unit selecting step of selecting a second pollution measuring unit measuring a pollution level by cadmium (Cd) as a pollutant when the redox supply power value is within a range of −0.9 V to −0.3 V; Selecting a lead and copper contamination measurement unit for selecting a third pollution measurement unit for measuring a contamination level by lead (Pb) and copper (Cu) as pollutants if the redox supply power value is within a range of −0.3 to 0.2V; A mercury contamination measurement unit selecting step of selecting a fourth pollution measurement unit that measures a pollution level by mercury (Hg) as a pollutant when the redox supply power value is within a range of 0.2V to 0.5V; And setting an idle state for at least a number of idle states for the pollution measurement units that do not include the redox power supply value.
상기 시료 안정화 과정은, 제어모듈이 전기전도도 및 pH를 측정하고, 측정된 전기전도도 및 pH에 대응하는 측정 보조용액의 투입량을 결정하여 상기 시료에 투입하는 제1안정화 과정; 및 제어모듈의 제어를 받아 상기 시료에 잠기도록 구성된 제2안정화부를 구동하여 상기 시료에 회전력을 가하여 상기 시료의 기포를 제거하는 제2안정화 과정을 포함하는 것을 특징으로 한다.The sample stabilization process may include a first stabilization process in which a control module measures electrical conductivity and pH, determines an input amount of a measurement auxiliary solution corresponding to the measured electrical conductivity and pH, and inputs the sample to the sample; And a second stabilizing process of driving a second stabilizing unit configured to be immersed in the sample under control of a control module to apply bubbles to the sample to remove bubbles of the sample.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 실시간 다항목 중금속 분석 장치의 측정센서 제조방법은: 실시간 다항목 중금석 분석 장치의 센서 제조 방법에 있어서, 전극 상에 금과 니켈 및 APT를 전극 상에 전기적으로 전착시키는 전착 과정; 및 상기 전착된 전극 상에서 니켈을 선택적으로 제거시키는 니켈 제거 과정을 포함하여 생성되는 것을 특징으로 한다.Method for manufacturing a measuring sensor of a real-time multi-item heavy metal analysis device according to the present invention for achieving the above object: In the sensor manufacturing method of a real-time multi-item heavy metal analysis device, gold, nickel and APT on the electrode An electrodeposition process that is electrically electrodeposited on; And a nickel removal process for selectively removing nickel on the electrodeposited electrode.
상기 전착과정은, 전극 상에 1 x 10-2M 염화 금·3수화물(HAuCl4·3H2O)과 1.5 x 10-2M 황화 니켈·6수화물 (NiSO4·6H2O), 그리고 디메탈술폭사이드(Dimethylsulfoxide: DMSO)에 용해된 1 x 10-2M의 APT 10 μL을 1.5M의 황산 용액을 생성하는 황산 용액 생성 단계; 및 상기 황산 용액에 넣고 일정한 전류를 걸어주어 금, 니켈 및 APT를 한꺼번에 도금하는 도금 단계를 포함하는 것을 특징으로 한다.The electrodeposition process is carried out on the electrode, 1 x 10 -2 M gold chloride trihydrate (HAuCl 4 · 3H 2 O), 1.5 x 10 -2 M nickel sulfide hexahydrate (NiSO 4 6 H 2 O), and dimetalsulfoxide (Dimethylsulfoxide: Sulfuric acid solution production step of producing 10 M L of 1 x 10 -2 M APT dissolved in DMSO) to 1.5 M sulfuric acid solution; And it is characterized in that it comprises a plating step of plating a gold, nickel and APT at a time by putting a constant current in the sulfuric acid solution.
상기 니켈 제거 과정은, 금, 니켈 및 APT가 도금된 전극 상에 전기화학적으로 니켈을 선택적으로 제거하여 다공성 금-APT 복합 구조를 만드는 것을 특징으로 한다.The nickel removal process is characterized in that to form a porous gold-APT composite structure by selectively removing nickel electrochemically on the electrode plated with gold, nickel and APT.
상기 방법은: 시료 용액의 pH를 1 내지 2로 조절하는 PH 조절 과정을 더 포함하고, 상기 전착과정은, 상기 전류를 1 내지 5μA로 조절하는 전류 조절 단계를 더 포함하고, 상기 전류가 조절된 상태에서 상기 황산 용액 생성 단계 및 도금 단계를 수행하는 것을 특징으로 한다.The method further includes a pH control step of adjusting the pH of the sample solution to 1 to 2, wherein the electrodeposition step further comprises a current control step of adjusting the current to 1 to 5μA, wherein the current is adjusted It characterized in that the sulfuric acid solution generation step and the plating step in the state.
상기 방법은: 시료 용액의 pH를 1.5로 조절하는 PH 조절 과정을 더 포함하고, 상기 전착과정은, 상기 전류를 2 μA로 조절하는 전류 조절 단계를 더 포함하고, 상기 전류가 조절된 상태에서 상기 황산 용액 생성 단계 및 도금 단계를 수행하는 것을 특징으로 한다.The method further includes a pH adjustment step of adjusting the pH of the sample solution to 1.5, wherein the electrodeposition step further includes a current adjustment step of adjusting the current to 2 μA, wherein the current is adjusted. It characterized in that the sulfuric acid solution generation step and the plating step.
본 발명은 측정셀의 수 흐름 경로의 물 유입 부분에 반응센서를 구비하여 유입되는 물이 해당 수질관리영역의 수질의 조건 만족 여부를 판단하고, 조건 만족 시에는 오염측정센서들을 유휴상태로 유지시켜 측정센서들의 재현성 및 수명을 극대화할 수 있는 효과를 갖는다.The present invention is provided with a reaction sensor in the water inlet portion of the water flow path of the measuring cell to determine whether the incoming water satisfies the conditions of the water quality of the water quality management area, and when the conditions are satisfied by keeping the pollution measuring sensors idle It has the effect of maximizing the reproducibility and life of the measuring sensors.
또한, 본 발명은 시료의 수질상태가 좋은 경우 측정센서를 구동하지 않으므로 불필요한 전력소모를 방지할 수 있는 효과를 갖는다.In addition, the present invention has the effect of preventing unnecessary power consumption because the measurement sensor is not driven when the water quality of the sample is good.
또한, 본 발명은 시료 측정부의 수 흐름 경로의 물 유입 부분에 반응센서를 구비하고, 반응센서를 통해 일차적으로 측정할 오염 종류를 분석 판단한 후, 분석결과에 따라 오염측정센서들을 선택적으로 구동하므로 불필요한 오염측정센서를 유휴상태로 유지시켜 측정센서들의 재현성 및 수명을 극대화할 수 있고, 전력소모를 최소화할 수 있는 효과를 갖는다.In addition, the present invention is equipped with a reaction sensor in the water inlet portion of the water flow path of the sample measuring unit, and after determining the type of contamination to be measured first through the reaction sensor, it is unnecessary to drive the pollution measuring sensors according to the analysis results By keeping the pollution measuring sensor idle, the reproducibility and life of the measuring sensors can be maximized, and the power consumption can be minimized.
또한, 본 발명은 시료 안정화부에서 현장에서 공급되는 물의 전기전도도 및 pH를 측정하고, 측정된 전기전도도 및 pH에 대응하는 양의 측정 보조용액을 물에 공급하여 측정할 물, 즉 시료를 안정화시키므로 측정에 최적화된 시료를 공급할 수 있는 효과를 가지며, 보다 정확하게 중금속을 검출할 수 있는 효과를 갖는다.In addition, the present invention measures the electrical conductivity and pH of the water supplied from the field in the sample stabilization unit, and stabilizes the water to be measured, that is, the sample to be supplied by supplying the measurement auxiliary solution corresponding to the measured electrical conductivity and pH to the water It has the effect of supplying a sample optimized for measurement, and has the effect of detecting heavy metals more accurately.
또한, 본 발명은 회전 임펠라를 구비하여 유입되는 시료에 발생되는 공기방울을 제거하여 시료를 안정화시킴으로써 측정 오차를 줄일 수 있는 효과를 갖는다.In addition, the present invention has the effect of reducing the measurement error by stabilizing the sample by removing the air bubbles generated in the sample having a rotary impeller introduced.
또한, 본 발명은 상술한 바와 같이 자동으로 시료를 안정화시키므로 관리자가 일일이 전처리 과정을 수행할 필요가 없어 관리자 측면에서 편리한 효과를 가지며, 안정화 여부를 즉시 판단할 수 있는 효과를 가지며 안정화 여부를 즉시에서 알 수 있으므로 시료의 안정화 여부를 테스트하는 데 별도의 시간을 소요할 필요가 없는 효과를 갖는다.In addition, since the present invention automatically stabilizes the sample as described above, there is no need for the administrator to perform the pretreatment process one by one. As it can be seen, there is no need to take extra time to test whether the sample is stabilized.
또한, 본 발명에 따른 Cr(VI) 검출용 센서는 다른 활성종의 방해효과 없이 선택적인 검출이 가능하고, 또한 추가 전착 시간이 필요하지 않기 때문에 공업용수 또는 지하수에서 존재하는 Cr(VI)을 빠르게 검출할 수 있으므로 실시간 현장 분석의 용도로 사용될 수 있는 효과를 갖는다.In addition, the sensor for detecting Cr (VI) according to the present invention is capable of selective detection without the interference effect of other active species, and also does not require additional electrodeposition time, thereby quickly reducing the Cr (VI) present in industrial or ground water. As it can be detected, it has an effect that can be used for real-time field analysis.
또한, 본 발명에 따른 중금속 검출 센서로 고분자로 개질된 전극을 사용함으로써, 장시간 사용하여도 성능 저하, 즉 감도 저하 없이 안정하게 복수의 중금속을 동시에 검출할 수 있는 효과를 갖는다.In addition, by using an electrode modified with a polymer as the heavy metal detection sensor according to the present invention, it has the effect of stably detecting a plurality of heavy metals at the same time without deterioration of performance, that is, a decrease in sensitivity even when used for a long time.
도 1은 본 발명에 따른 실시간 다항목 중금속 분석 장치의 구성을 나타낸 도면이다.1 is a view showing the configuration of a real-time multi-item heavy metal analysis device according to the present invention.
도 2는 본 발명에 따른 실시간 다항목 중금속 분석 장치의 시료 측정부의 구성을 나타낸 도면이다.2 is a view showing the configuration of the sample measuring unit of the real-time multi-item heavy metal analysis device according to the present invention.
도 3은 본 발명에 따른 시료 측정부의 수질오염물질 측정 모듈의 상세 구성을 나타낸 도면이다.3 is a view showing a detailed configuration of the water pollutant measurement module of the sample measuring unit according to the present invention.
도 4는 본 발명의 일실시예에 따른 중금속 검출용 측정센서의 개념도이다.4 is a conceptual diagram of a measurement sensor for detecting heavy metals according to an embodiment of the present invention.
도 5는 유리질 탄소 전극 위에 아미노피리미딜 터싸이오펜 모노머와 그래핀을 전기화학적으로 전착시킨 전극 표면의 SEM 사진이다.5 is an SEM image of an electrode surface electrochemically electrodeposited with an aminopyrimidyl terthiophene monomer and graphene on a glassy carbon electrode.
도 6은 500 ppb의 중금속 이온(heavy metal ions; HMI)을 함유한 용액의 센서 전착물질의 합성조건에 따른 SWV분석 결과이다.6 is a SWV analysis result according to the synthesis conditions of the electrodeposited material of the solution containing 500 ppb of heavy metal ions (HMI).
도 7은 최적 조건을 확인한 결과로, 도 7(A)는 500 ppb의 중금속 이온(HMI)을 함유한 지지전해질의 종류에 따른 결과이며, 도 7(B)는 용액의 pH 변화에 따른 결과이며, 도 7(C)는 증착 시간 변화에 따른 결과이다.7 is a result of confirming the optimum conditions, Figure 7 (A) is a result according to the type of the supporting electrolyte containing 500 ppb of heavy metal ions (HMI), Figure 7 (B) is a result of the pH change of the solution 7 (C) shows the result of the deposition time change.
도 8은 최적 조건하에서 1 ppb 내지 10 ppm에서 각 중금속 농도 범위 내에서 네모파 전압 전류법(Square wave voltammetry, SWV)으로 분석한 그래프(A) 및 중금속 이온(HMI)의 검출용 검량선(B)을 나타낸 결과이다.8 is a graph (A) and a calibration curve (B) for detecting heavy metal ions (HMI) analyzed by square wave voltammetry (SWV) within each heavy metal concentration range at 1 ppb to 10 ppm under optimal conditions. Is the result.
도 9는 최적 조건하에서 1 ppb 내지 10 ppm에서 각 중금속 농도 범위 내에서 크로노쿨론법(chronocoulmetry;CC)으로 분석한 그래프(A) 및 중금속 이온(HMI)의 검출용 검량선(B)을 나타낸 결과이다.9 is a graph showing a graph (A) and a calibration curve (B) for detecting heavy metal ions (HMI) analyzed by chronocoulmetry (CC) within each heavy metal concentration range at 1 ppb to 10 ppm under optimal conditions. .
도 10은 본 발명의 일실시예에 따른 Cr(VI) 검출용 측정센서의 모식도를 나타낸 것이다.Figure 10 shows a schematic diagram of a measuring sensor for detecting the Cr (VI) according to an embodiment of the present invention.
도 11은 측정센서를 단계별로 개질한 후 각각의 개질된 전극으로 1 ppm의 Cr(VI)을 검출한 후 그 감도를 비교한 것이다.FIG. 11 compares the sensitivity after detecting 1 ppm of Cr (VI) with each modified electrode after reforming the measuring sensor step by step.
도 12는 본 발명에서 완성된 전극의 표면 이미지를 나타낸 것이다.Figure 12 shows the surface image of the electrode completed in the present invention.
도 13은 본 전극에 대하여 1 ppm의 Cr(VI)에 대한 (A) pH, (B) 전해질의 영향을 조사한 것이다.FIG. 13 shows the effects of (A) pH and (B) electrolyte on 1 ppm of Cr (VI) on the electrode.
도 14는 최적 조건 하에서 10 ppb에서 5 ppm의 범주에서 다공성 금과 APT의 복합 도금 층을 개질한 전극으로 선형 주사 전압전류법을 이용하여 얻은 농도 별 신호 변화(A) 및 이에 상응되는 검출용 검량선(B)을 나타낸다.FIG. 14 shows signal changes for each concentration (A) and corresponding calibration curves obtained by linear scanning voltammetry with electrodes modified with a composite plating layer of porous gold and APT in the range of 10 ppm to 5 ppm under optimal conditions. (B) is shown.
도 15은 본 발명에 따른 실시간 다항목 중금속 분석 장치의 시료 안정화부의 상세 구성을 나타낸 도면이다.15 is a view showing the detailed configuration of the sample stabilization unit of the real-time multi-item heavy metal analysis device according to the present invention.
도 16은 본 발명에 따른 실시간 다항목 중금속 분석 장치의 시료 안정화부, 시료 공급부 및 시료 측정부의 실제 구성예를 나타낸 도면이다.16 is a view showing an example of the actual configuration of the sample stabilization unit, the sample supply unit and the sample measuring unit of the real-time multi-item heavy metal analysis device according to the present invention.
도 17은 본 발명에 따른 실시간 다항목 중금속 분석장치의 제어모듈의 시료 안정화 제어부의 구성을 나타낸 도면이다.17 is a view showing the configuration of the sample stabilization control unit of the control module of the real-time multi-item heavy metal analysis apparatus according to the present invention.
도 18은 본 발명에 따른 선택적 전극 활성화를 통한 실시간 다항목 중금속 검출 방법을 나타낸 흐름도이다.18 is a flowchart illustrating a real-time multi-item heavy metal detection method through selective electrode activation according to the present invention.
도 19는 본 발명의 일실시예에 따른 실시간 다항목 중금속 검출 방법의 전극 활성화 방법을 나타낸 흐름도이다.19 is a flowchart illustrating an electrode activation method of a real-time multi-item heavy metal detection method according to an embodiment of the present invention.
도 20은 본 발명에 따른 실시간 다항목 중금속 검출 방법의 시료 안정화 방법을 나타낸 흐름도이다.20 is a flowchart illustrating a sample stabilization method of the real-time multi-item heavy metal detection method according to the present invention.
이하 첨부된 도면을 참조하여 본 발명에 따른 실시간 다항목 중금속 분석 장치의 구성 및 동작을 설명하고, 상기 장치에서의 중금속 분석 방법을 설명한다.Hereinafter, a configuration and operation of a real-time multi-item heavy metal analysis device according to the present invention will be described with reference to the accompanying drawings, and a heavy metal analysis method in the device will be described.
도 1은 본 발명에 따른 실시간 다항목 중금속 분석 장치의 구성을 나타낸 도면이다.1 is a view showing the configuration of a real-time multi-item heavy metal analysis device according to the present invention.
도 1을 참조하면, 본 발명의 실시간 다항목 중금속 분석 장치는 제1실시예에 따라 시료측정부(200), 시료 공급부(300), 제어모듈(400) 및 저장부(430)를 포함하고, 제2실시예에 따라 시료 안정화부(100), 입력부(440), 출력부(450) 및 인터페이스부(460)를 더 포함할 수 있을 것이다. Referring to FIG. 1, the real-time multi-item heavy metal analyzing apparatus of the present invention includes a sample measuring unit 200, a sample supplying unit 300, a control module 400, and a storage unit 430 according to the first embodiment. According to the second embodiment, the sample stabilization unit 100, the input unit 440, the output unit 450, and the interface unit 460 may be further included.
실시간 다항목 중금석 분석장치는 현장의 물 공급관에 연결되어 상기 물 공급관을 통해 공급되는 현장의 물, 즉 시료에 포함된 오염물질인 중금속을 검출하고, 검출된 중금속 정보 및 검출량을 출력한다. 상기 현장이란 하천, 호수, 상수원, 저수지, 지하수, 해수, 해양심층수 등의 수역, 정수장, 수영장의 수 시설, 도시의 댁내로 물을 공급하기 위한 관망 등이 될 수 있을 것이다.The real-time multi-item heavy metal analysis device is connected to the water supply pipe of the site detects heavy water, which is a contaminant contained in the water of the site supplied through the water supply pipe, that is, the sample, and outputs the detected heavy metal information and detection amount. The site may be a river, a lake, a water supply source, a reservoir, groundwater, seawater, deep water such as deep seawater, a water purification plant, a swimming pool, a pipe network for supplying water to a city premises.
구체적으로 설명하면, 상기 시료 공급부(300)는 일실시예에 따라 현장으로부터 물을 공급받는 물 공급관과 연결되어 상기 현장의 물을 시료로서 실시간 공급받아 시료 측정부(200)로 공급한다.Specifically, the sample supply unit 300 is connected to the water supply pipe receiving the water from the site according to an embodiment receives the water in the field in real time as a sample to supply to the sample measuring unit 200.
시료 측정부(200)는 상기 시료 공급부(300)로부터 공급되는 시료를 공급받고, 상기 시료에 포함된 중금속 종류 및 각 중금속량을 검출하여 제어모듈(400)로 출력한다.The sample measuring unit 200 receives the sample supplied from the sample supply unit 300, detects the type of heavy metal and the amount of each heavy metal included in the sample, and outputs the sample to the control module 400.
저장부(430)는 본 발명에 따른 수질오염물질 측정모듈(100)의 동작을 제어하기 위한 제어프로그램을 저장하는 프로그램 영역과, 상기 제어프로그램 수행 중에 발생되는 데이터를 일시적으로 저장하는 임시 영역과, 데이터를 저장하는 데이터 영역을 포함한다.The storage unit 430 may include a program area for storing a control program for controlling the operation of the water pollutant measuring module 100 according to the present invention, a temporary area for temporarily storing data generated during the execution of the control program, and It includes a data area for storing data.
본 발명의 제1실시예에 따라 상기 저장부(430)의 데이터 영역에는 산화환원공급전원(전위) 범위별 오염물질을 정의하고 있으며, 오염물질별 해당 오염물질의 오염도를 측정할 수 있는 오염측정부를 정의하고 있는 산화환원공급전원값 범위별 오염물질 데이터베이스(Database: DB)를 저장한다. 상기 산화환원공급전원은 도 2 및 도 3에서 후술할 반응센서부(60)의 반응센서(62)로 공급되는 전위이다. 상기 산화환원공급전원 범위별 오염물질 정의의 예를 들면, 오염물질인 아연에 대해 산화환원공급전원 범위는 -1.3V ~-0.9V 범위가 정의되어 있을 수 있으며, 오염물질인 카드뮴(Cd)에 대해 산화환원공급전원 범위는 -0.9V ~-0.3V가 정의되어 있을 수 있으며, 납(Pb) 및 구리(Cu)에 대해 산화환원공급전원 범위 -0.3 ~ 0.2V가 정의되고, 오염물질인 수은(Hg)에 대해 0.2V ~ 0.5V가 정의되어 있을 수 있을 것이다.According to the first embodiment of the present invention, the data area of the storage unit 430 defines pollutants by range of redox supply power (potential), and pollutant measurement capable of measuring the pollution degree of the corresponding pollutant by pollutant. Stores a pollutant database (Database: DB) for each range of redox supply power values that defines the wealth. The redox supply power is a potential supplied to the reaction sensor 62 of the reaction sensor unit 60 to be described later with reference to FIGS. 2 and 3. For example, the contaminant definition according to the redox supply power range, the redox supply power range may be defined as -1.3V ~ -0.9V for the contaminant zinc, the cadmium (Cd) For the lead (Pb) and copper (Cu), the redox supply range is -0.3 to 0.2V, and the redox supply range is defined as -0.3V to 0.2V. 0.2V to 0.5V may be defined for (Hg).
다시 설명하면, 반응센서로 공급되는 산화환원공급전원이 -1.3V ~-0.9V의 범위에 있을 때 반응센서를 통해 측정되는 산화환원전류의 변화량이 검출되면 해당 측정 물에는 아연이 포함되어 있음을 의미한다.In other words, if the redox current measured by the reaction sensor is detected when the redox supply voltage supplied to the reaction sensor is in the range of -1.3 V to -0.9 V, the measured product contains zinc. it means.
또한, 저장부(430)는 본 발명에 따라 전기전도도 값 및 pH 값 중 적어도 하나 이상의 값에 대한 측정 보조용액 투입량을 정의하는 보조용액 투입량 DB가 저장될 수도 있을 것이다.In addition, the storage unit 430 may be stored in the auxiliary solution input DB for defining the measurement auxiliary solution input amount to at least one of the conductivity value and the pH value according to the present invention.
입력부(440)는 외부로부터 명령 및 정보를 입력받아 제어모듈(400)로 출력하는 수단으로써 키보드, 마우스 등의 입력장치(441)가 될 수도 있고, 원거리의 관리자로부터 인터넷망, 이동통신망 등의 통신망(미도시)을 통한 통신을 통해 정보 및 명령을 수신하여 제어모듈(400)로 출력하는 원거리 통신부의 수신부(442) 등이 될 수 있을 것이다.The input unit 440 may be an input device 441 such as a keyboard or a mouse as a means for receiving a command and information from the outside and outputting the command and information to the control module 400, or from a remote manager to a communication network such as an internet network or a mobile communication network. It may be a receiver 442 of a remote communication unit that receives information and commands through communication (not shown) and outputs it to the control module 400.
출력부(450)는 제어모듈(400)에서 출력되는 정보를 사용자 및 관리자에게 수질 오염도 측정결과를 출력하는 구성으로, 수질 오염도 측정 결과를 텍스트, 그래픽 등으로 출력하는 디스플레이부(451) 및 측정 결과를 통신망(미도시)을 통한 원격지의 외부의 컴퓨터 단말기 등으로 전송하는 원거리 통신부의 송신부(452) 등이 될 수 있을 것이다. 이하 설명에서 통신부라 하면 수신부와 송신부를 모두 포함하는 것을 의미한다.The output unit 450 is a configuration for outputting the water pollution degree measurement result to the user and the administrator to output the information output from the control module 400, the display unit 451 for outputting the water pollution degree measurement results in text, graphics and the like and the measurement result It may be a transmitter 452, such as a remote communication unit for transmitting to a computer terminal or the like outside of a remote place through a communication network (not shown). In the following description, the communication unit means that both the receiver and the transmitter are included.
상기 원거리 통신부(442, 452)는 유무선 인터넷망과 접속하는 유무선 근거리 통신망(Local Area Network: LAN) 통신 수단일 수도 있고 이동통신망에 접속하는 코드분할다중접속(CDMA) 통신 수단일 수도 있을 것이다.The telecommunication units 442 and 452 may be a wired / wireless local area network (LAN) communication means for connecting to a wired or wireless internet network or a code division multiple access (CDMA) communication means for connecting to a mobile communication network.
인터페이스부(460)는 임피던스 매칭 등과 같은 제어모듈(400)과 다른 구성과의 신호 송수신을 원할하게 하기 위해 두 구성 간에 송수신되는 신호를 인터페이스한다. 상기 인터페이스부(460)는 본 발명에 따라 기계적인 제어를 수행하는 시료 안정화부(100)와 제어모듈(400) 사이에서 송수신되는 신호를 인터페이스할 수 있을 것이다. 또한 인터페이스부(460)는 실시예에 따라 시료 측정부(200)와 제어모듈(400) 사이에 구성될 수도 있고, 시료 공급부(300)와 제어모듈(400) 사이에 구성될 수도 있을 것이다. 또한, 상기 인터페이스부(460)는 시료측정부(200), 펌프, 밸브 사이에 구성될 수도 있을 것이다.The interface unit 460 interfaces signals transmitted and received between the two components in order to facilitate signal transmission and reception between the control module 400 and other components such as impedance matching. The interface unit 460 may interface signals transmitted and received between the sample stabilization unit 100 and the control module 400 performing mechanical control according to the present invention. In addition, the interface unit 460 may be configured between the sample measuring unit 200 and the control module 400, or may be configured between the sample supply unit 300 and the control module 400. In addition, the interface unit 460 may be configured between the sample measuring unit 200, the pump, the valve.
시료 안정화부(100)는 본 발명의 제2실시예에 따라 구성되어 상기 현장으로부터 물을 공급받는 물 공급관과 연결되어 상기 현장의 물을 시료로서 실시간 공급받고, 공급되는 시료의 전기전도도 및 pH 중 적어도 하나 이상을 검출하여 상기 제어모듈(400)로 출력하고, 출력된 상기 전기전도도 및 pH에 대응하여 상기 제어모듈(400)의 제어를 받아 상기 시료를 안정화시킨 후 상기 시료 공급부(300)로 제공한다. Sample stabilization unit 100 is configured according to the second embodiment of the present invention is connected to the water supply pipe receiving the water from the site receives the water of the site in real time as a sample, the electrical conductivity and pH of the sample supplied Detects at least one or more and outputs them to the control module 400, stabilizes the sample under the control of the control module 400 in response to the output electrical conductivity and pH, and provides the sample to the sample supply unit 300. do.
이때, 시료 측정부(200)는 상기 안정화된 시료를 공급받고, 상기 시료에 포함된 중금속 종류 및 각 중금속량을 검출하여 제어모듈(400)로 출력한다.At this time, the sample measuring unit 200 is supplied with the stabilized sample, detects the type of heavy metal and the amount of each heavy metal contained in the sample and outputs to the control module 400.
또한, 제2실시예에 따른 시료 공급부(300)는 상기 시료 안정화부(100) 및 시료 측정부(200) 사이에 구성되고, 제어모듈(400)의 제어를 받아 상기 시료 안정화부(100)에서 안정화된 시료를 시료 측정부(200)로 공급한다.In addition, the sample supply unit 300 according to the second embodiment is configured between the sample stabilization unit 100 and the sample measurement unit 200, under the control of the control module 400 in the sample stabilization unit 100 The stabilized sample is supplied to the sample measuring unit 200.
제어모듈(400)은 제1실시예에 따라 중금속 검출 제어부(420)를 포함하고, 제2실시예에 따라 시료 안정화 제어부(410)를 더 포함하여 본 발명에 따른 실시간 다항목 중금속 분석 장치의 전반적인 동작을 제어한다.The control module 400 includes a heavy metal detection control unit 420 according to the first embodiment, and further includes a sample stabilization control unit 410 according to the second embodiment. Control the operation.
상기 시료 안정화 제어부(410)는 상술한 바와 같이 상기 시료 안정화부(100)로부터 입력되는 전기전도도 및 pH에 대응하여 시료 안정화부(100)를 제어하여 시료를 안정화시킨다.The sample stabilization control unit 410 stabilizes the sample by controlling the sample stabilization unit 100 in response to the electrical conductivity and pH input from the sample stabilization unit 100 as described above.
그리고 상기 중금속 검출 제어부(420)는 시료 측정부(200)를 제어하여 시료에 포함된 중금속 종류를 분석하고, 시료 측정부(200)로부터 상기 분석된 중금속에 대한 중금속(검출)량을 입력받아 출력부(450)를 통해 출력한다.The heavy metal detection control unit 420 controls the sample measuring unit 200 to analyze the heavy metal type included in the sample, and receives the heavy metal (detection) amount of the analyzed heavy metal from the sample measuring unit 200 and outputs the received heavy metal. Output through the unit 450.
도 2는 본 발명에 따른 실시간 다항목 중금속 분석 장치의 시료 측정부의 구성을 나타낸 도면이다.2 is a view showing the configuration of the sample measuring unit of the real-time multi-item heavy metal analysis device according to the present invention.
이하 도 2를 참조하면, 본 발명의 시료 측정부(200)는 측정셀(210)과, 반응센서(62) 및 측정센서(72)를 포함하는 수질오염물질 측정모듈(500)을 포함한다. Referring to FIG. 2, the sample measuring unit 200 of the present invention includes a water pollutant measuring module 500 including a measuring cell 210, a reaction sensor 62, and a measuring sensor 72.
측정셀(210)은 측정할 물이 유입되고 물의 오염물질 검출 및 오염도 측정 후 배출되도록 구성된다.The measuring cell 210 is configured such that the water to be measured is introduced and discharged after detecting the pollutants in the water and measuring the degree of contamination.
본 발명의 측정셀(210)은 본체(220) 및 수 흐름 경로(230)를 포함한다.Measuring cell 210 of the present invention includes a body 220 and the water flow path (230).
상기 본체(220)는 수 유입구(221), 복수의 센서 결합구(222) 및 수 배출구(223)를 포함하며, 내측으로 수 흐름 경로(220)가 형성된다.The main body 220 includes a water inlet 221, a plurality of sensor couplers 222, and a water outlet 223, and a water flow path 220 is formed inward.
상기 센서 결합구(222)에는 반응센서(62) 및 측정센서(72)들이 상기 수 흐름 경로(230)를 통해 흐르는 물에 닿을 수 있도록 결합된다.The sensor coupling hole 222 is coupled to the reaction sensor 62 and the measurement sensor 72 so as to contact the water flowing through the water flow path 230.
상기 수 흐름 경로(230)는 상기 수 유입구(221), 수 배출구(223), 복수의 센서 결합구(222)들을 경유하는 관으로 측정할 물이 흐르는 물 공급 관이다.The water flow path 230 is a water supply pipe through which water to be measured is a pipe passing through the water inlet 221, the water outlet 223, and the plurality of sensor coupling holes 222.
상기 수 흐름 경로(230)는 측정셀(210)로 유입되는 물이 반응센서(62) 및 측정센서(72)의 표면과 최적의 경로로 접촉되도록 하여 전기화학적 검출반응의 감도가 높아지도록 톱니 패턴 등의 형태로 구성될 수 있을 것이다.The water flow path 230 is a sawtooth pattern so that the water flowing into the measuring cell 210 is in contact with the surface of the reaction sensor 62 and the measuring sensor 72 in an optimal path to increase the sensitivity of the electrochemical detection reaction It may be configured in the form of.
상기 반응센서(62) 및 측정센서(72)는 수 흐름 경로(220)의 패턴의 상단 및 하단의 꼭짓점에 배치될 수 있을 것이다. 특히, 상기 반응센서(62) 및 측정센서(72)는 수 흐름 경로(230)의 꼭짓점이 본체(220)의 센서 결합구(222)에 연결되도록 구성되는 것이 바람직할 것이다.The reaction sensor 62 and the measurement sensor 72 may be disposed at the vertices of the top and bottom of the pattern of the water flow path 220. In particular, the reaction sensor 62 and the measurement sensor 72 may be configured such that the vertices of the water flow path 230 is connected to the sensor coupler 222 of the body 220.
시료 측정부(200)는 측정셀(210)의 센서 결합구(222)에 결합되는 적어도 하나 이상의 반응센서(62) 및 적어도 하나 이상의 측정센서(72)를 포함하여 수 흐름 경로(230)를 통해 흐르는 물에 포함된 오염물질의 종류를 검출하고, 검출된 오염물질에 의한 오염(농)도를 측정하여 출력한다. 상기 반응센서(62)는 도 1에서 나타낸 바와 같이 수 흐름 경로(230)의 맨 앞부분의 센서 결합구(222-1)에 결합될 것이다. 상기 수질오염물질 측정모듈(500)의 상세 구성 및 동작은 하기 도 3을 참조하여 설명한다. The sample measuring unit 200 includes at least one or more reaction sensors 62 and at least one or more measuring sensors 72 coupled to the sensor coupler 222 of the measuring cell 210 through the water flow path 230. The type of pollutant contained in the flowing water is detected, and the contamination (concentration) caused by the detected pollutant is measured and output. The reaction sensor 62 will be coupled to the sensor coupler 222-1 at the very front of the water flow path 230 as shown in FIG. Detailed configuration and operation of the water pollutant measurement module 500 will be described with reference to FIG. 3.
도 3은 본 발명에 따른 시료 측정부의 수질오염물질 측정모듈의 상세 구성을 나타낸 도면이다.3 is a view showing a detailed configuration of the water pollutant measurement module of the sample measuring unit according to the present invention.
수질오염물질 측정모듈(500)은 측정전압 공급부(40) 및 센서모듈(50)을 포함한다.The water pollutant measurement module 500 includes a measurement voltage supply unit 40 and a sensor module 50.
측정전압 공급부(40)는 소스전원을 공급받고, 소스전원을 물에 포함된 오염물질을 측정하기 위해 반응센서부(60) 및 오염 측정센서부(70)로 공급할 측정전압를 생성하여 출력한다. 상기 측정전압은 상기 반응센서(62)로 공급되는 산화환원공급전원이 될 수 있고, 측정센서(72)로 공급되는 측정공급전원이 될 수도 있을 것이다. 상기 측정공급전원도 오염종류, 즉 중금속 종류에 따라 달라질 수 있을 것이다. 따라서 상기 반응센서(62) 및 측정센서(72)로 공급되는 측정전압의 범위는 다를 수 있으며, 상기 측정센서(72)로 공급되는 측정전압의 범위도 오염물질의 종류에 따라 달라질 수 있을 것이다.The measurement voltage supply unit 40 receives the source power and generates and outputs a measurement voltage to supply the source power to the reaction sensor unit 60 and the pollution measurement sensor unit 70 to measure the pollutants contained in the water. The measurement voltage may be a redox supply power supplied to the reaction sensor 62, or may be a measurement supply power supplied to the measurement sensor 72. The measured power supply may also vary depending on the type of pollution, that is, the type of heavy metal. Therefore, the range of the measurement voltage supplied to the reaction sensor 62 and the measurement sensor 72 may be different, and the range of the measurement voltage supplied to the measurement sensor 72 may also vary according to the type of pollutant.
센서모듈(50)은 반응센서부(60) 및 오염 측정센서부(70)를 포함하여, 상기 측정셀(210)의 수 흐름 경로(230)로 흐르는 물에 포함된 오염물질의 종류를 검출하고, 검출된 오염물질에 대한 오염도를 측정하여 상기 제어모듈(400)의 중금속 검출 제어부(420)로 출력한다.The sensor module 50 includes a reaction sensor unit 60 and a pollution measurement sensor unit 70 to detect the type of pollutant contained in the water flowing in the water flow path 230 of the measurement cell 210. The pollution degree of the detected pollutant is measured and output to the heavy metal detection control unit 420 of the control module 400.
반응센서부(60)는 유입되는 물의 유입부에 반응센서(62)를 구비하여 유입되는 물에 산화환원공급전원을 가하여 산화환원을 일으키고, 발생되는 산화환원량에 따른 산화환원전류를 측정하고, 이전 측정 산화환원전류와 비교하여 산화환원전류 변화량을 측정하고, 상기 산화환원전류 변화량이 발생된 산화환원공급전원 범위값을 중금속 검출 제어부(420)로 출력한다. 이때 반응센서부(60)는 상기 저장부(430)의 산환환원공급전원 범위별 오염물질 DB를 가지고 있도록 구성될 수 있으며, 이 경우 상기 계산된 산화환원공급전원 범위값에 대응하는 오염물질 정보를 직접 중금속 검출 제어부(420)로 출력하도록 구성될 수도 있을 것이다. 즉, 상기 반응센서부(60)에서는 중금속류, 미량유기독성물질류, 일반 무기물류(질소, 인 등) 등의 수질오염물질의 존재유무를 판단하고, 검출된 수질오염물질에 대응하는 정보를 중금속 검출 제어부(420)로 출력하도록 구성될 수도 있을 것이다. 또한, 반응센서부(60)는 중금속 검출 제어부(420)의 제어를 받아 산화환원공급전원 범위의 산화환원공급전원을 측정전압 공급부(40)로부터 직접 입력받아 반응센서(62)로 공급하고, 이에 따라 측정되는 산화환원전류값을 중금속 검출 제어부(420)로 출력하여 중금속 검출 제어부(420)에 의해 산화환원전류 변화 여부 및 산화환원전류 변화를 발생시킨 산화환원공급전원 범위를 판단하고, 산화환원공급전원 범위에 대응하는 오염물질이 분류되도록 구성될 수도 있을 것이다.The reaction sensor unit 60 includes a reaction sensor 62 at the inlet of the inflowing water to apply a redox supply power to the inflowing water to generate a redox, and measure a redox current according to the amount of redox generated. The amount of change in the redox current is measured in comparison with the previously measured redox current, and the redox supply power range value in which the change in the redox current is generated is output to the heavy metal detection controller 420. In this case, the reaction sensor unit 60 may be configured to have a pollutant DB for each of the redox supply power range of the storage unit 430, in which case the pollutant information corresponding to the calculated redox supply power range value is obtained. It may be configured to output directly to the heavy metal detection control unit 420. That is, the reaction sensor unit 60 determines the presence or absence of water pollutants such as heavy metals, trace organic toxic substances, general inorganic substances (nitrogen, phosphorus, etc.), and receives information corresponding to the detected water pollutants. It may be configured to output to the detection control unit 420. In addition, the reaction sensor unit 60 receives the redox supply power of the redox supply power range directly from the measurement voltage supply unit 40 under the control of the heavy metal detection control unit 420, and supplies the reaction sensor 62 to the reaction sensor 62. The redox current value measured according to the heavy metal detection control unit 420 is output to determine whether the redox current changes and the redox supply power range generated by the heavy metal detection control unit 420, and redox supply Contaminants corresponding to the power range may be configured to be classified.
반응센서부(60)는 하나의 산화환원전류 측정부(61)로 구성될 수도 있고, 복수의 산화환원전류 측정부(61) 및 상기 측정전압 공급부(40)로부터 공급되는 측정전압를 상기 복수의 산화환원전류 측정부(61)들 중 중금속 검출 제어부(420)에 의해 선택된 산화환원전류 측정부(61)들로만 출력하기 위한 반응센서 선택부(63)를 포함하여 구성될 수도 있을 것이다.The reaction sensor unit 60 may be constituted by one redox current measuring unit 61, and the plurality of oxidation voltages supplied from the plurality of redox current measuring units 61 and the measured voltage supply unit 40 may be oxidized. It may be configured to include a reaction sensor selection unit 63 for outputting only to the redox current measurement unit 61 selected by the heavy metal detection control unit 420 of the reduction current measurement unit 61.
상기 산화환원전류 측정부(61)는 반응센서(62)를 포함하고, 상기 반응센서(62)로 일정한 범위의 상기 측정전압, 즉 산화환원공급전원을 공급하며, 반응센서(62)에서는 상기 측정전압의 변화에 대응하는 산화환원반응으로 인해 물에 포함된 오염물질의 종류 및 유무에 따른 산화환원전류변화량이 측정될 수 있으며, 상기 산화환원전류에 변화를 가져온 산화환원공급전원 범위값(또는 오염물질 정보)을 중금속 검출 제어부(420)로 출력할 것이다.The redox current measuring unit 61 includes a reaction sensor 62, and supplies the measurement voltage, that is, a redox supply power, to a predetermined range to the reaction sensor 62, and the reaction sensor 62 measures the measurement. Due to the redox reaction corresponding to the voltage change, the amount of redox current change according to the type and presence of pollutants contained in the water can be measured, and the redox supply power range value (or contamination) that has changed the redox current. Material information) will be output to the heavy metal detection control unit 420.
상기 산화환원전류 측정부(61)에 사용되는 전기화학적 방법으로는 크로노쿨롱법(Chronocoulmetry), 순환 전압전류법(Cyclic Voltammetry), 선형주사 전압전류법(Linear sweep voltammetry) 등이 적용될 수 있으며, 크로노쿨롱법은 시간흐름에 따른 전하량을 측정하여 샘플 내 오염물질의 존재 여부를 판단한다.As the electrochemical method used in the redox current measuring unit 61, chronocoulomb method, cyclic voltammetry, linear sweep voltammetry, etc. may be applied. The Coulomb method determines the presence of contaminants in a sample by measuring the amount of charge over time.
상기 반응센서(62)는 수 흐름 경로(220)를 따라 흐르는 측정 대상물을 실시간으로 감시하여야 하므로 외부자극에 강하고 내구성이 뛰어나며 전기적 반성이 높아야 하므로 백금으로 구성되는 것이 바람직할 것이다.Since the reaction sensor 62 should monitor the measurement object flowing along the water flow path 220 in real time, the reaction sensor 62 should be made of platinum because it must be strong against external stimuli, excellent in durability, and high in electrical reflection.
오염 측정센서부(70)는 복수의 오염 측정부(71) 및 상기 측정전압 공급부(40)로부터 공급되는 측정전압을 상기 복수의 오염측정부(71)들 중 중금속 검출 제어부(420)에 의해 선택된 오염측정부(71)들로만 출력하기 위한 측정센서 선택부(73)를 포함하여 구성된다.The pollution measuring sensor unit 70 selects the measured voltages supplied from the plurality of pollution measuring units 71 and the measurement voltage supply unit 40 by the heavy metal detection control unit 420 of the plurality of pollution measuring units 71. It is configured to include a measurement sensor selection unit 73 for outputting only to the pollution measurement unit (71).
상기 오염측정부(71)는 수 흐름 경로(230)상에서 반응센서(62)의 후단에 배치되는 측정센서(72)들을 구비하고, 각각의 오염물질에 대한 오염도를 측정하여 중금속 검출 제어부(420)로 출력한다.The pollution measuring unit 71 includes measurement sensors 72 disposed at the rear end of the reaction sensor 62 on the water flow path 230, and measures the pollution degree of each pollutant to detect the heavy metals. Will output
상기 오염측정부(71)에 적용되는 전기화학적 방법은 상술한 크로노쿨롱법, 네모파 전압전류법(Square Wave Voltammetry:SWV) 등이 적용될 수 있을 것이다. 상술한 크로노쿨롱법, 네모파 전압전류법 자체는 이 기술분야의 통상의 기술자에게 잘 알려져 있는 기술이므로 그 상세한 설명을 생략한다.As the electrochemical method applied to the pollution measuring unit 71, the above-described chronocoulomb method, square wave voltammetry (SWV), or the like may be applied. Since the chronocoulomb method and the square wave voltammetry method described above are well known to those skilled in the art, detailed description thereof will be omitted.
그리고 상기 측정센서(72)는 다종의 물질에 대해 안정하고, 경제성이 뛰어난 탄소(Carbon) 전극을 사용하는 것이 바람직하며, 감도를 높이기 위해 검출 종에 따라 탄소 전극 노출표면에 그래핀(Graphene)과 전도성고분자 혼합물질을 전착시켜 사용하는 것이 바람직하며, 다수의 측정센서(72)들 중 하나를 크롬을 검출할 수 있는 나노 다공성 금 도금 전극으로 사용하는 것이 바람직할 것이다.In addition, the measuring sensor 72 preferably uses a carbon electrode that is stable and economical to a variety of materials, and in order to increase sensitivity, graphene and graphene are exposed on a carbon electrode exposed surface according to a detection species. It is preferable to use the conductive polymer mixture electrodeposited, and it may be preferable to use one of the plurality of measurement sensors 72 as a nanoporous gold plated electrode capable of detecting chromium.
탄소 전극 노출표면을 그래핀(Graphene)과 전도성고분자 혼합물질을 전착시켜 사용하는 것은 전극의 표면적을 넓히고, 측정시료와의 전자전달반응을 높여 중금속 검출의 선택성, 안정성, 검출감도가 우수한 장점을 제공한다. 이때 오염물질 종에 따라 표면 전착 물질과 그의 형상은 상이하다. 예를 들면, 중금속 검출 센서의 경우 사용자가 설정한 주기에 따라 세정용액 주입 후 측정센서(72)의 전극에 산화전위를 걸어줌으로써 전극표면에 흡착된 중금속을 제거하고, 그래핀과 전도성 고분자 혼합물질을 재전착시켜줌으로써 전극의 수명을 연장시킴과 동시에 센서의 감도를 향상시킬 수 있다.Electrodepositing the surface of carbon electrode with graphene and conductive polymer mixture increases the surface area of the electrode and enhances the electron transfer reaction with the sample, providing excellent selectivity, stability and detection sensitivity for heavy metal detection. do. At this time, the surface electrodeposition material and its shape differ depending on the pollutant species. For example, in the case of the heavy metal detection sensor, the heavy metal adsorbed on the surface of the electrode is removed by applying an oxidation potential to the electrode of the measuring sensor 72 after the injection of the cleaning solution according to a user-set cycle, and the mixture of graphene and the conductive polymer By re-depositing, the life of the electrode can be extended and the sensitivity of the sensor can be improved.
상기 그래핀과 전도성 고분자 혼합물이 재전착된 센서의 생성방법 및 센서의 특징을 하기 도 4 내지 도 9를 참조하여 상세히 설명하고, 크롬을 검출하기 위한 금 도금된 전극의 생성 방법 및 특성은 하기 도 10 내지 도 14를 참조하여 상세히 설명한다.The method of producing a sensor in which the graphene and the conductive polymer mixture are re-deposited and the characteristics of the sensor will be described in detail with reference to FIGS. 4 to 9, and the method and characteristics of the gold-plated electrode for detecting chromium are described below. A detailed description will be given with reference to 10 to 14.
도 4는 본 발명의 일실시예에 따른 중금속 검출용 측정센서의 개념도이고, 도 5는 유리질 탄소 전극 위에 아미노피리미딜 터싸이오펜 모노머와 그래핀을 전기화학적으로 전착시킨 전극 표면의 주사전자현미경(SEM) 사진이며, 도 6은 500 ppb의 중금속 이온(heavy metal ions; HMI)을 함유한 용액의 센서 변성 조건에 따른 SWV분석 결과이고, 도 7은 최적 조건을 확인한 결과로, 도 7(A)는 500 ppb의 중금속 이온(HMI)을 함유한 지지전해질의 종류에 따른 결과이며, 도 7(B)는 용액의 pH 변화에 따른 결과이며, 도 7(C)는 증착 시간 변화에 따른 결과이며, 도 8은 최적 조건하에서 1 ppb 내지 10 ppm에서 각 중금속 농도 범위 내에서 네모파 전압 전류법(Square wave voltammetry, SWV)으로 분석한 그래프(A) 및 중금속 이온(HMI)의 검출용 검량선(B)을 나타낸 결과이고, 도 9는 최적 조건하에서 1 ppb 내지 10 ppm에서 각 중금속 농도 범위 내에서 크로노쿨론법(chronocoulmetry;CC)으로 분석한 그래프(A) 및 중금속 이온(HMI)의 검출용 검량선(B)을 나타낸 결과이다.4 is a conceptual diagram of a measurement sensor for detecting heavy metals according to an embodiment of the present invention, and FIG. 5 is a scanning electron microscope of an electrode surface electrochemically electrodeposited with an aminopyrimidyl terthiophene monomer and graphene on a glassy carbon electrode ( SEM), FIG. 6 is a SWV analysis result according to sensor denaturation conditions of a solution containing 500 ppb of heavy metal ions (HMI), and FIG. 7 is a result of checking an optimum condition. Is the result according to the type of supporting electrolyte containing 500 ppb of heavy metal ions (HMI), Figure 7 (B) is the result of the pH change of the solution, Figure 7 (C) is the result of the deposition time change, 8 is a graph (A) and a calibration curve (B) for detecting heavy metal ions (HMI) analyzed by square wave voltammetry (SWV) within each heavy metal concentration range at 1 ppb to 10 ppm under optimal conditions. 9 shows 1 ppb under optimal conditions. It is a result which shows the graph (A) and the calibration curve (B) for detecting heavy metal ion (HMI) analyzed by chronocoulmetry (CC) within each heavy metal concentration range from -10 ppm.
이하 도 4 내지 도 9를 참조하여 설명하면, 본 발명의 일실시예에 따른 측정센서(72)는 전극 및 상기 전극 상에 형성되며, 아미노피리미딜 터싸이오펜 모노머 및 산화그래핀을 포함하여 전해 중합시킨 고분자 코팅층을 포함한다.4 to 9, a measuring sensor 72 according to an embodiment of the present invention is formed on an electrode and the electrode, and includes an aminopyrimidyl terthiophene monomer and graphene oxide. It includes a polymerized polymer coating layer.
상기 아미노피리미딜 터싸이오펜 모노머는 3,2-아미노피리미딜-2:2,5:2-터싸이오펜[3'-(2-aminopyrimidyl)-2,2':5',2''-terthiophene]일 수 있다.The aminopyrimidyl terthiophene monomer is 3,2-aminopyrimidyl-2: 2,5: 2-terthiophene [3 '-(2-aminopyrimidyl) -2,2': 5 ', 2' '- terthiophene].
상기 센서는 Zn(II), Cd(II), Pb(II), Cu(II) 및 Hg(II)를 동시에 검출할 수 있다.The sensor can detect Zn (II), Cd (II), Pb (II), Cu (II) and Hg (II) simultaneously.
본 발명에 따른 중금속 검출용 측정센서(72)의 제조 방법은 용매에 아미노피리미딜 터싸이오펜 및 산화그래핀을 용해시켜 혼합용액을 준비하는 단계(제1단계); 및 상기 제1단계의 혼합용액을 전기화학적 방법으로 전극상에 전해중합하여 아미노피리미딜 터싸이오펜 모노머 및 산화그래핀으로 이루어진 고분자 코팅층을 형성하는 단계(제2단계)를 포함한다.Method for producing a heavy metal detection sensor 72 according to the present invention comprises the steps of dissolving aminopyrimidyl terthiophene and graphene oxide in a solvent to prepare a mixed solution (first step); And electrolytically polymerizing the mixed solution of the first step on the electrode by an electrochemical method to form a polymer coating layer consisting of an aminopyrimidyl terthiophene monomer and graphene oxide (second step).
상기 제1단계의 혼합용액은 아미노피리미딜 터싸이오펜 50 내지 70 중량% 및 산화그래핀 30 내지 50 중량%를 용매에 용해시킬 수 있으며, 상기 용매는 아세토나이트릴, 디클로로메탄, 테트라하이드로퓨란, 디메틸포름아마이드 및 디메틸설폭사이드로 이루어진 군에서 선택될 수 있으나, 이에 한정되는 것은 아니다.The mixed solution of the first step may dissolve 50 to 70% by weight of aminopyrimidyl terthiophene and 30 to 50% by weight of graphene oxide in a solvent, the solvent may be acetonitrile, dichloromethane, tetrahydrofuran, It may be selected from the group consisting of dimethylformamide and dimethyl sulfoxide, but is not limited thereto.
본 발명의 일실시예에 따르면, 상기 센서 제조방법으로 아미노피리미딜 터싸이오펜/산화그래핀 고분자로 개질된 센서를 이용하여 네모파 전압전류법(Square wave voltammetry, SWV)으로 중금속 검출 효과를 확인한 결과, 도 9와 같이 개질 전 유리질 탄소전극보다 중금속 검출 감도가 Zn(II)는 1.2배, Cd(II)은 2.4배, Pb(II)는 3배, Cu(II)는 4.6배, Hg(II)는 2.2 배 증가한 것을 확인할 수 있었다.According to an embodiment of the present invention, using a sensor modified with aminopyrimidyl terthiophene / graphene oxide polymer as the sensor manufacturing method to check the heavy metal detection effect by square wave voltammetry (SWV) As a result, the detection sensitivity of heavy metals was 1.2 times for Zn (II), 2.4 times for Cd (II), 3 times for Pb (II), 4.6 times for Cu (II) and Hg ( II) increased 2.2 times.
또한, 본 발명은 상기 시료 안정화부(100)에서 시료 용액의 pH를 3 내지 7로 조절하여 시료를 안정시키는 단계; 및 본 발명에 따른 중금속 검출용 측정센서(72)에 상기 시료 용액을 증착시키는 단계를 포함하는 실시간으로 동시에 중금속을 검출하는 방법을 제공할 수 있다. 보다 상세하게는 상기 중금속 이온 검출을 위한 실험 파라미터로서 중금속 시료 용액의 지지전해질의 종류, 시료 용액 pH 및 시료 증착 시간을 최적화하는 것이 중요한데, 상기 시료 용액의 지지전해질은 아세테이트 완충액을 사용할 수 있으며, 시료 용액의 최적 pH는 4.7일 수 있다. 또한, 중금속 검출용 측정센서(72)에 상기 시료 용액을 300초간 증착시킬 수 있으나, 이에 한정되는 것은 아니다. 상기 시료로부터 중금속을 검출하기 위해 시료를 최적의 상태로 안정화시키는 방법은 후술할 도 20을 참조하여 상세히 설명한다.In addition, the present invention is to stabilize the sample by adjusting the pH of the sample solution to 3 to 7 in the sample stabilization unit 100; And it may provide a method for detecting the heavy metal at the same time in real time comprising the step of depositing the sample solution in the measurement sensor 72 for heavy metal detection according to the present invention. More specifically, as an experimental parameter for detecting heavy metal ions, it is important to optimize the type of supporting electrolyte, sample solution pH, and sample deposition time of the heavy metal sample solution. As the supporting electrolyte of the sample solution, acetate buffer may be used. The optimal pH of the solution can be 4.7. In addition, the sample solution may be deposited on the heavy metal detection sensor 72 for 300 seconds, but is not limited thereto. A method of stabilizing the sample in an optimal state to detect heavy metals from the sample will be described in detail with reference to FIG. 20 to be described later.
상기 시료 측정부(200)는 Zn(II), Cd(II), Pb(II), Cu(II), Hg(II) 등을 동시에 검출할 수 있다.The sample measuring unit 200 may simultaneously detect Zn (II), Cd (II), Pb (II), Cu (II), Hg (II), and the like.
본 발명의 다른 일실시예에 따르면, 본 발명에 따른 중금속 검출용 측정센서(72)를 이용하여 상기 최적화된 조건하에서 네모파 전압전류법(Square wave voltammetry, SWV)및 크로노쿨론법(chronocoulmetry; CC)으로 중금속 이온의 농도를 정량 분석하였다.According to another embodiment of the present invention, the square wave voltammetry (SWV) and chronocoulmetry (CC) under the optimized conditions using the measurement sensor 72 for detecting heavy metals according to the present invention ) Quantitatively analyzed the concentration of heavy metal ions.
그 결과, 최적화 조건에서 SWV법으로 분석한 결과인 도 8를 참고하면, 센서의 동적 범위는 10 ppb ~ 10ppm이며, 검출 한계는 각각 Zn(II)은 11.3 ppb, Pb(II)는 4.4 ppb, Cd(II)는 5.3 ppb, Hg(II)는 13.1 ppb 및 Cu(II)는 9.2 ppb인 것으로 확인되었다. 반면, 최적화 조건에서 CC법으로 분석한 결과인 도 9를 참고하면, 10 ppb -10ppm 동적 범위 내에서 각 금속 이온의 검출 한계는 각각 Zn(II)는 3.8 ppb, Pb(II)는 1.2 ppb, Cd(II)는 1.2ppb, Hg(II)는 3.0 ppb 및 Cu(II)는 2.0 ppb로 확인되었다.As a result, referring to FIG. 8, which is a result of analysis by SWV method under optimization conditions, the dynamic range of the sensor is 10 ppb to 10 ppm, and the detection limit is 11.3 ppb for Zn (II), 4.4 ppb for Pb (II), respectively. It was found that Cd (II) was 5.3 ppb, Hg (II) was 13.1 ppb, and Cu (II) was 9.2 ppb. On the other hand, referring to FIG. 9, which is a result of analysis by CC method under optimized conditions, the detection limit of each metal ion within the 10 ppb -10 ppm dynamic range is 3.8 ppb for Zn (II), 1.2 ppb for Pb (II), respectively. Cd (II) was found to be 1.2 ppb, Hg (II) was 3.0 ppb, and Cu (II) was 2.0 ppb.
상기 결과로부터 본 발명에 따른 중금속 검출용 센서 및 최적화된 조건하에서 크로노쿨론법(chronocoulmetry;CC)을 이용할 경우, 도 8의 결과보다 매우 낮은 농도의 중금속 이온까지도 검출 가능한 것을 확인할 수 있었다.From the above results, when using the sensor for detecting heavy metals according to the present invention and chronocoulmetry (CC) under optimized conditions, it was confirmed that even heavy metal ions having a much lower concentration than those of FIG. 8 can be detected.
또한, SWV를 사용하여 결과를 얻기까지 약 90 초의 시간이 소모되는 반면, 크로노쿨론법의 경우 0.5 초만에 검출 결과를 얻을 수 있었다.In addition, while it takes about 90 seconds to obtain a result using the SWV, in the case of the chronoculon method, the detection result was obtained in 0.5 seconds.
또한, 본 발명의 또 다른 일실시예에 따르면, 중금속 이온이 포함되어 있는 용액에서 Cyclic voltammetry(CV)실험을 수행하여 아미노피리미딜 터싸이오펜/산화그래핀 고분자로 개질된 센서가 얼마나 오랫동안 사용 가능한지 확인한 결과, 약 200회 정도 반복 수행하여도 증금속 이온 검출이 가능한 것을 확인하였다.Further, according to another embodiment of the present invention, Cyclic voltammetry (CV) experiment in a solution containing heavy metal ions how long the sensor modified with aminopyrimidyl terthiophene / graphene oxide polymer can be used As a result, it was confirmed that the metal ions can be detected even after repeating about 200 times.
따라서, 본 발명에 따른 센서는 아미노피리미딜 터싸이오펜과 산화그래핀을 이용하여 전해중합하여 형성된 고분자 막으로 코팅되기 때문에 장기간 안정성이 유지될 수 있다.Therefore, since the sensor according to the present invention is coated with a polymer film formed by electropolymerization using aminopyrimidyl terthiophene and graphene oxide, stability can be maintained for a long time.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만, 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to help understand the present invention. However, the following examples are merely to illustrate the content of the present invention is not limited to the scope of the present invention. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
<중금속 검출용 측정센서 제작><Measurement sensor for heavy metal detection>
도 4와 같은 방법으로 중금속 검출용 측정센서(72)를 제작하였다.In the same manner as in FIG. 4, a heavy metal detection sensor 72 was manufactured.
유리질 탄소 전극 표면을 개질하기 위하여, 아미노피리미딜 터싸이오펜[3'-(2-aminopyrimidyl)-2,2':5',2''-terthiophene; APT]과 산화그래핀(GO)를 2:1 중량비로 0.1M TBAP[tetrabutylammonium perchlorate]가 지지전해질로 포함된 아세토나이트릴 용매에 용해시켰다. 이때, 사용된 APT는 이전에 알려진 방법(D.M. Kim, K.-B. Shim, J. I. Son, S. S. Reddy, Y.B. Shim, Electochimica Acta 104, (2013), 332-329)에 따라 합성하였다.To modify the glassy carbon electrode surface, aminopyrimidyl terthiophene [3 '-(2-aminopyrimidyl) -2,2': 5 ', 2' '-terthiophene; APT] and graphene oxide (GO) were dissolved in an acetonitrile solvent containing 0.1 M TBAP [tetrabutylammonium perchlorate] as a supporting electrolyte in a 2: 1 weight ratio. The APT used was synthesized according to previously known methods (D.M. Kim, K.-B. Shim, J. I. Son, S. S. Reddy, Y. B. Shim, Electochimica Acta 104, (2013), 332-329).
상기 용액을 순환 전압전류법으로 전해중합시켜 APT/산화그래핀(GO) 고분자막을 전극 표면에 형성하였다.The solution was electropolymerized by cyclic voltammetry to form an APT / graphene oxide (GO) polymer film on the electrode surface.
이때, 유리질 탄소 전극 위에 0.0 V 내지 + 1.5 V 전위 범위에서 100 mV/s 주사 속도로 3회 수행하였다.At this time, the glassy carbon electrode was performed three times at a scanning speed of 100 mV / s in a range of 0.0 V to + 1.5 V potential.
<전기화학 분석>Electrochemical Analysis
1. 센서 표면 특성 분석1. Sensor Surface Characterization
상기 실시예 1에서 제작된 센서 표면의 APT/산화그래핀(GO) 고분자막의 형성을 주사전자현미경(Scanning Electron Microscope: SEM) 이미지로 확인하였다. SEM이미지는 Tescan Model Vega3 SB를 사용하여 얻어졌다.The formation of the APT / graphene oxide (GO) polymer film on the surface of the sensor fabricated in Example 1 was confirmed by a scanning electron microscope (SEM) image. SEM images were obtained using Tescan Model Vega3 SB.
그 결과, 도 5(A)와 같이 고분자 막의 개질 전의 유리질 탄소 전극의 매끄러웠던 표면에 APT/GO를 전기화학적으로 전착시킨 결과, 도 5(B)와 같이 전극 표면의 산화그래핀 주위에 고분자가 고르게 분포되어 있는 것을 확인하였다.As a result, APT / GO was electrochemically electrodeposited on the smooth surface of the glassy carbon electrode before modification of the polymer film as shown in FIG. 5 (A). As shown in FIG. 5 (B), the polymer was formed around the graphene oxide on the electrode surface. It was confirmed that it was evenly distributed.
2. 센서의 변성 조건에 따른 중금속 검출 성능 확인2. Determination of heavy metal detection performance according to sensor denaturation conditions
센서의 변성 조건에 따른 중금속 검출 성능을 평가하기 위해, 네모파 전압 전류법(Square wave voltammetry: SWV)을 이용하여 분석하였다. 이때, 삼전극법으로 작업전극은 APT/산화그래핀 고분자가 개질된 유리질 탄소 전극을 사용하였으며, 기준전극으로는 은/염화은을 사용하였으며, 보조전극은 백금 와이어를 사용하였다. SWV 분석은 -1.5V에서 +0.5V까지 전위를 주사하여 측정하였으며, 펄스 진폭은 25.0 mV, 전위 계단은 4.0 mV, 주파수는 15.0 Hz였다.In order to evaluate the detection performance of heavy metal according to the denaturing condition of the sensor, the analysis was performed by using square wave voltammetry (SWV). In this case, the working electrode was a glassy carbon electrode with APT / graphene oxide polymer modified as a trielectrode method, silver / silver chloride was used as a reference electrode, and a platinum wire was used as an auxiliary electrode. SWV analysis was performed by scanning the potential from -1.5V to + 0.5V, pulse amplitude was 25.0 mV, potential step was 4.0 mV, frequency was 15.0 Hz.
중금속 시료는 Zn(II), Cd(II), Pb(II), Cu(II) 및 Hg(II) 이온을 포함하는 용액을 0.05 M 아세테이트 완충용액(pH 4.7)으로 500 ppb 농도로 희석하여 사용하였다.Heavy metal samples were prepared by diluting a solution containing Zn (II), Cd (II), Pb (II), Cu (II) and Hg (II) ions to a concentration of 500 ppb with 0.05 M acetate buffer (pH 4.7). It was.
상기 중금속 시료를 이용하여, 아미노피리미딜 터싸이오펜(APT), 산화그래핀(GO), 환원된 그래핀옥사이드(rGO) 및 APT/GO로 각각 개질한 유리질 탄소 전극의 중금속 검출 성능을 평가하였다.Using the heavy metal sample, the heavy metal detection performance of the glassy carbon electrode modified with aminopyrimidyl terthiophene (APT), graphene oxide (GO), reduced graphene oxide (rGO) and APT / GO, respectively, was evaluated. .
그 결과, 도 6과 같이 500 ppb 중금속 이온(heavy metal ions; HMI)을 함유한 0.05M 아세테이트 완충 용액에 대하여 -1.1V [Zn(II)], -0.75V [Cd(II)], -0.48V [Pb(II)], +0.01V [Cu(II)], 및 +0.28V [Hg(II)]에서 명확한 양극성 스트리핑 피크가 나타났으며, APT/GO의 경우 약 +70 mV의 전위 변화가 발생하였다.As a result, -1.1V [Zn (II)], -0.75V [Cd (II)], -0.48 for 0.05M acetate buffer solution containing 500 ppb heavy metal ions (HMI) as shown in FIG. Clear bipolar stripping peaks were seen at V [Pb (II)], +0.01 V [Cu (II)], and +0.28 V [Hg (II)], with a potential change of about +70 mV for APT / GO. Occurred.
각 변성 조건에서 중금속 검출 성능은 개질 전 유리질 탄소 전극 < APT < rGO < GO < APT/GO 순으로 우수한 것을 확인할 수 있었다. 특히, APT/GO의 검출 감도는 개질 전 유리질 탄소 전극과 비교하여 Zn(II)는 1.2배, Cd(II)는 2.4배, Pb(II)는 3배, Cd(II)는 4.6배, Hg(II)는 2.2배 증가한 것을 확인하였다.It was confirmed that the heavy metal detection performance was excellent in the order of the glassy carbon electrodes <APT <rGO <GO <APT / GO before the modification. In particular, the detection sensitivity of APT / GO is 1.2 times for Zn (II), 2.4 times for Cd (II), 3 times for Pb (II), 4.6 times for Cd (II) and Hg compared to pre-modified glassy carbon electrodes. (II) confirmed a 2.2-fold increase.
3. 검출 파라미터 최적화 조건 확인3. Check the detection parameter optimization conditions
중금속 센서의 센싱 환경을 최적화하기 위하여, 500 ppb 중금속 이온의 농도에서 전해질의 종류, pH 및 중금속 이온의 흡착 시간을 확인하였다. 먼저, 시료에 처리하는 지지전해질의 종류(소듐 아세테이트, 소듐 클로라이드, 소듐 나이트레이트, 소듐 포스페이트)에 따른 전류 변화를 확인하였다.In order to optimize the sensing environment of the heavy metal sensor, the type of electrolyte, pH and adsorption time of heavy metal ions were determined at a concentration of 500 ppb heavy metal ions. First, the change of the current according to the kind of supporting electrolyte (sodium acetate, sodium chloride, sodium nitrate, sodium phosphate) treated in the sample was confirmed.
그 결과, 도 7(A)와 같이 소듐 아세테이트 용액에서 전류가 최대치로 나타났다. 또한, pH 변화에 따른 전류변화를 확인한 결과, 도 7(B)와 같이 용액의 pH가 3.3에서 약 5.0으로 증가함에 따라 전류가 증가하였으며, pH가 5.0을 넘으면 피크 전류가 감소되었다.As a result, as shown in Fig. 7 (A), the maximum current in the sodium acetate solution. In addition, as a result of confirming the current change according to the pH change, as the pH of the solution increases from 3.3 to about 5.0 as shown in Figure 7 (B), the current increased, the peak current was reduced when the pH exceeds 5.0.
상기 결과에 따라, 중금속 시료의 전해질은 소듐 아세테이트 용액이 적합하고, pH는 pH 4.7 일 때, 최적조건임을 확인하였으며, 이후 실험들은 상기 조건으로 수행하였다.According to the above results, the electrolyte of the heavy metal sample was confirmed that the sodium acetate solution is suitable, and the pH is optimal condition when pH 4.7, the experiments were then carried out under the above conditions.
마지막으로 중금속 이온의 증착시간을 0 내지 400초로 변화시켜 최적의 조건을 확인하였다.Finally, the optimum conditions were confirmed by changing the deposition time of heavy metal ions from 0 to 400 seconds.
그 결과, 도 7(C)와 같이 Zn(II)을 제외한 다른 이온들은 300초까지 증가하다가 [0045] 300초가 경과하면 감소되는 것을 확인할 수 있었다.As a result, other ions except Zn (II) as shown in Figure 7 (C) was increased to 300 seconds, it was confirmed that the decrease after 300 seconds.
상기 결과로부터, 센서에 중금속 이온의 증착시키는 최적의 시간을 300초로 선정하였다.From the above results, the optimum time for depositing heavy metal ions on the sensor was selected as 300 seconds.
4. 중금속 이온 정량 분석4. Quantitative Analysis of Heavy Metal Ions
상기 전술한 최적의 실험조건 하에서 SWV를 이용하여 중금속 이온의 농도를 정량 분석하였다.Under the optimum experimental conditions described above, the concentration of heavy metal ions was quantitatively analyzed using SWV.
그 결과, 도 8과 같이 Cd(II), Pb(II) 이온의 반응성이 가장 좋았다.As a result, as shown in Fig. 8, Cd (II) and Pb (II) ions had the best reactivity.
상기 결과로부터 APT/GO 전극은 Cd(II), Pb(II) 분석용으로 매우 유용한 것을 확인할 수 있었다.From the above results, it was confirmed that the APT / GO electrode was very useful for Cd (II) and Pb (II) analysis.
또한, 도 8(A)와 같이 중금속 이온(heavy metal ions; HMI) 검량선의 선형 범위는 10 ppb에서 10 ppm이며, 상관계수는 각각 Zn(II)은 0.994, Pb(II)는 0.940, Cd(II)는 0.996, Hg(II)는 0.964, Cu(II)는 0.887로 나타났다. 각 금속 이온들의 검출 한계는 도 8(B)와 같이, Zn(II)은 11.3 ppb, Pb(II)는 4.4 ppb, Cd(II)는 5.3 ppb, Hg(II)는 13.1 ppb 및 Cu(II)는 9.2 ppb인 것으로 확인되었다.In addition, as shown in FIG. 8 (A), the linear range of heavy metal ions (HMI) calibration curves is 10 ppb to 10 ppm, and the correlation coefficients are 0.994 for Zn (II), 0.940 for Pb (II), and Cd ( II) was 0.996, Hg (II) was 0.964, and Cu (II) was 0.887. As shown in FIG. 8 (B), the detection limit of each metal ion is 11.3 ppb for Zn (II), 4.4 ppb for Pb (II), 5.3 ppb for Cd (II), 13.1 ppb for Hg (II) and Cu (II) ) Was found to be 9.2 ppb.
또한, 상기 전술한 최적의 실험조건 하에서 크로노쿨론법(chronocoulmetry; CC)으로 중금속 이온의 농도를 정량분석하였다.In addition, the concentration of heavy metal ions was quantitatively analyzed by chronocoulometer (CC) under the above-described optimum experimental conditions.
분석 조건은 상기 SWV 방법과 동일하게 진행하여, 도 9(A)와 같은 결과를 얻었으며, 이를 바탕으로 HMI 검출용 검량선을 산출하였다.The analysis conditions were performed in the same manner as the SWV method, and the results as shown in FIG. 9A were obtained. Based on this, the calibration curve for HMI detection was calculated.
그 결과, 도 9(B)와 같이 HMI 검량선의 선형 범위는 10 ppb에서 10 ppm이며, 상관계수는 각각 Zn(II)는 0.986, Pb(II)는 0.998, Cd(II)는 0.947, Hg(II)는 0.978, 그리고 Cu(II)는 0.981이었고, 각 중금속 이온들의 검출 한계는 Zn(II)는 3.8 ppb, Pb(II)는 1.2 ppb, Cd(II)는 1.2 ppb, Hg(II)는 3.0 ppb, 그리고 Cu(II)는 2.0 ppb로 나타났다.As a result, as shown in FIG. 9 (B), the linear range of the HMI calibration curve is 10 ppb to 10 ppm, and the correlation coefficients are 0.986 for Zn (II), 0.998 for Pb (II), 0.947 for Cd (II), and Hg ( II) was 0.978 and Cu (II) was 0.981, and the detection limits of heavy metal ions were 3.8 ppb for Zn (II), 1.2 ppb for Pb (II), 1.2 ppb for Cd (II), and Hg (II) for 3.0 ppb and Cu (II) were 2.0 ppb.
HMI 정량분석을 상기 두 가지 방법으로 비교한 결과, 선형범위 및 검출 감도는 비슷하게 나타났으나, SWV를 사용하여 결과를 얻기까지 약 90 초의 시간이 소모된 반면, CC의 경우 0.5초만에 검출 결과를 얻을 수 있었다.Comparing HMI quantitative analysis with the above two methods, the linear range and detection sensitivity were similar, but it took about 90 seconds to get the result using SWV, while CC showed the detection result in 0.5 seconds. Could get
또한, CC 방법을 사용할 경우, SWV 정량분석 결과보다 중금속 이온들의 검출 한계가 낮은 것으로 확인됨에 따라, 본 발명에 따른 최적화 조건하에서 APT/산화그래핀(GO)로 개질된 센서를 이용한 크로노쿨론법(chronocoulmetry; CC)법은 낮은 농도의 중금속 이온까지 효과적으로 검출하는 것을 확인할 수 있었다.In addition, when the CC method is used, the detection limit of heavy metal ions is lower than that of the SWV quantitative analysis, and according to the present invention, the chronoculon method using a sensor modified with APT / graphene oxide (GO) under optimization conditions according to the present invention ( The chronocoulmetry (CC) method was able to effectively detect the low concentration of heavy metal ions.
본 발명의 APT/산화그래핀(GO)로 개질된 센서의 안정성을 확인하기 위해, 중금속 이온이 포함되어 있는 용액에서 Cyclic voltammetry(CV)실험을 통하여, APT/GO로 개질된 전극을 얼마나 오랫동안 지속적으로 사용할 수 있는지를 확인하였다.In order to confirm the stability of the sensor modified with APT / graphene oxide (GO) of the present invention, through Cyclic voltammetry (CV) experiment in a solution containing heavy metal ions, how long the APT / GO modified electrode It was confirmed whether it can be used as.
그 결과, 약 200회 정도 반복 수행하여도 검출이 가능한 것을 확인하였다.As a result, it was confirmed that the detection was possible even after performing about 200 times.
상기 결과들로부터 APT/산화그래핀(GO)로 개질된 전극은 중금속 이온(heavy metal ions; HMI)를 동시에 나타내고, 단시간 내에 분석이 가능하며, 장기간 사용할 수 있는 안정한 센서로 확인되었다.From these results, the electrode modified with APT / graphene oxide (GO) simultaneously showed heavy metal ions (HMI) and was identified as a stable sensor that can be analyzed in a short time and can be used for a long time.
도 10은 본 발명의 일실시예에 따른 Cr(VI) 검출용 측정센서의 모식도를 나타낸 것이고, 도 11은 측정센서를 단계별로 개질한 후 각각의 개질된 전극으로 1 ppm의 Cr(VI)을 검출한 후 그 감도를 비교한 것이며, 도 12는 본 발명에서 완성된 전극의 표면 이미지를 나타낸 것이고, 도 13은 본 전극에 대하여 1 ppm의 Cr(VI)에 대한 (A) pH, (B) 전해질의 영향을 조사한 것이며, 도 14는 최적 조건 하에서 10 ppb에서 5 ppm의 범주에서 다공성 금과 APT의 복합 도금 층을 개질한 전극으로 선형 주사 전압전류법을 이용하여 얻은 농도 별 신호 변화(A) 및 이에 상응되는 검출용 검량선(B)을 나타낸다.Figure 10 shows a schematic diagram of a measuring sensor for detecting the Cr (VI) according to an embodiment of the present invention, Figure 11 shows the modification of the measuring sensor step by step to 1 ppm of Cr (VI) with each modified electrode After detection, the sensitivity is compared and FIG. 12 shows the surface image of the electrode completed in the present invention, and FIG. 13 shows (A) pH, (B) for 1 ppm of Cr (VI) for the electrode. The effect of the electrolyte was investigated, and FIG. 14 is a signal change of concentration (A) obtained by using a linear scanning voltammetry as an electrode for modifying a composite plating layer of porous gold and APT in the range of 10 ppm to 5 ppm under optimal conditions. And a calibration curve for detection (B) corresponding thereto.
도 10 내지 도 14를 참조하여 크롬 검출 용 금 도금 측정센서의 생성 방법 및 특성을 설명한다.A generation method and characteristics of the chromium detection gold plating measurement sensor will be described with reference to FIGS. 10 to 14.
상술한 바와 같이 본 발명에서는 전극으로 유리질 탄소 전극을 사용할 수 있지만, 이에 한정되는 것은 아니다.As described above, in the present invention, a glassy carbon electrode may be used as the electrode, but is not limited thereto.
상기 터티오펜 모노머는 3-(2-아미노피리미딜)-2,2:5,2-터티오펜(APT) 단량체인 것이 바람직하다. The terthiophene monomer is preferably a 3- (2-aminopyrimidyl) -2,2: 5,2-terthiophene (APT) monomer.
아미노피리미딜 터티오펜( Aminopyrimidine Terthiophene: APT)을 디메틸 술폭사이드 (dimethyl sulfoxide, DMSO)에 용해시킨 터티오펜 모노머 용액을 준비하고, 금과 니켈이 용해되어 있는 황산 용액에 터티오펜 모노머 용액을 혼합시킨 후, 일정한 전류를 걸어주어 전극 표면에 전기화학적으로 도금층을 형성할 수 있다.After preparing a terthiophene monomer solution in which Aminopyrimidine Terthiophene (APT) was dissolved in dimethyl sulfoxide (DMSO), a terthiophene monomer solution was mixed with a sulfuric acid solution containing gold and nickel. By applying a constant current, the plating layer can be formed electrochemically on the electrode surface.
상기 금, 니켈 및 모노머의 도금 층이 형성된 유리질 탄소전극 상에 전기화학적인 방법을 이용해 니켈을 선택적으로 제거하여 다공성 금 및 APT의 복합층을 형성할 수 있다.The composite layer of porous gold and APT may be formed by selectively removing nickel on the glassy carbon electrode on which the plating layer of gold, nickel, and monomer is formed by using an electrochemical method.
이렇게 얻어진 다공성 금-APT 개질 전극을 사용하여 미량의 Cr(VI)을 다른 활성종의 방해 없이 선택적으로 분석할 수 있는 전기화학적 6가 크롬 검출 측정센서를 개발할 수 있다.The porous gold-APT modified electrode thus obtained can be used to develop an electrochemical hexavalent chromium detection sensor capable of selectively analyzing trace amounts of Cr (VI) without disturbing other active species.
최적화된 조건하에서 제작된 본 발명의 중금속 검출용 측정센서(72)의 동적 범위는 10ppb ~ 100 ppb와 100 ppb ~ 1 ppm이며, 검출 한계는 1.6 ppb이므로, 상기 측정센서(72)를 이용하여 실제 시료 즉, 수돗물에서도 Cr(VI)의 측정이 가능하다.The dynamic range of the heavy metal detection measurement sensor 72 manufactured under the optimized conditions is 10 ppb to 100 ppb and 100 ppb to 1 ppm, and the detection limit is 1.6 ppb. It is possible to measure Cr (VI) even in a sample, namely tap water.
또한, 본 발명은 시료 용액의 pH를 1 내지 2로 조절하는 단계; 및 상기 Cr(VI) 검출용 측정센서를 제작하는 데 있어서 걸어주는 전류를 1 내지 5 μA로 조절하는 단계를 포함하는 Cr(VI) 검출방법을 제공하며, 보다 바람직하게는, 시료용액의 pH를 1.5로 조절하는 단계; 및 상기 센서를 제작할 때 걸어주는 전류를 +2μA으로 조절하는 단계를 포함하는 Cr(VI) 검출방법을 제공한다.In addition, the present invention comprises the steps of adjusting the pH of the sample solution to 1 to 2; And it provides a Cr (VI) detection method comprising the step of adjusting the current applied in the manufacturing of the measurement sensor for detecting the Cr (VI) to 1 to 5 μA, more preferably, the pH of the sample solution Adjusting to 1.5; And it provides a Cr (VI) detection method comprising the step of adjusting the current applied when manufacturing the sensor to + 2μA.
상기 전류를 조절하는 단계는 크롬 검출을 위한 나노 다공성 막을 센서에 형성시키기 위한 조건이다.Adjusting the current is a condition for forming a nanoporous membrane for chromium detection in the sensor.
크롬(6+) 검출을 위해서는 +0.8V ~ +0.2V의 산화환원공급전원을 걸어주며, 통상 시료에 크롬(VI)이 포함되어 있는 경우 +0.5V ~ +0.6V의 산화환원공급전원에서 산화환원전류값에 변화가 발생된다.To detect chromium (6+), redox supply of + 0.8V to + 0.2V is applied.If chromium (VI) is included in the sample, oxidation is performed at + 0.5V to + 0.6V. A change occurs in the reduction current value.
상기 검출방법은 미량의 Cr(VI)을 선택적으로 검출할 수 있다.The detection method can selectively detect trace amounts of Cr (VI).
이하, 하기 실시 예에 의해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시 예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.
<중금속 Cr 검출용 측정센서 제작><Measurement sensor for heavy metal Cr detection>
APT 단량체는 종래 알려진 방법 (Electrochim. Acta. 2013, 104, 322)에 따라 합성하였다. 유리질 탄소 전극(GCE) 표면을 개질하기 위하여 1.0 x 10-3M의 염화 금 3수화물(HAuCl4 · 3H2O)과 1.5 x 10-2M의 황화 니켈 6수화물 (NiSO4·6 H2O), 그리고 1.0 x 10-2M의 APT가 녹아있는 DMSO 10.0 μL을 용해시킨 1.5 M의 황산 용액을 준비한다. HAuCl4·3H2O (≥99.9% trace metals basis)과 NiSO4·6H2O (≥99.99% trace metals basis)은 Sigma-Aldrich(USA)로부터 구입하였다. 원자 흡광 분광분석기용 표준 Cr(VI) 용액은 NIST(USA)에서 구입하였다. 다른 화학물질들은 ACS 시약 등급으로 정제하여 사용하였다. 증류수(18 MΩ/cm)는 Millipore system을 이용하여 얻었다.APT monomers were synthesized according to known methods (Electrochim. Acta. 2013, 104, 322). 1.0 x 10 -3 M gold chloride trihydrate (HAuCl 4 · 3H 2 O) and 1.5 x 10 -2 M nickel sulfide hexahydrate (NiSO 4 · 6 H 2 O) to modify the glassy carbon electrode (GCE) surface ) And 1.5 M sulfuric acid solution in which 10.0 μL of DMSO dissolved in 1.0 x 10 -2 M APT was dissolved. HAuCl 4 3H 2 O (≧ 99.9% trace metals basis) and NiSO 4 · 6H 2 O (≧ 99.99% trace metals basis) were purchased from Sigma-Aldrich (USA). A standard Cr (VI) solution for atomic absorption spectrometer was purchased from NIST (USA). Other chemicals were used purified to ACS reagent grade. Distilled water (18 MΩ / cm) was obtained using a Millipore system.
먼저, 유리질 탄소 전극 (GCE)은 상기 제조된 용액 내에서 +2 μA의 일정한 전류를 60초 동안 흘려주어 금, 니켈 및 APT의 복합 도금 층을 만든다. 이렇게 도금된 전극은 1.5 M 황산 용액에서 순환 전압전류법을 이용하여 0 V에서 +1.5 V까지 200 mV/s의 속도로 주사함으로써 니켈을 선택적으로 제거하여 다공성금-APT 복합층을 만든다. 센서의 제작에 관한 개념도는 도 10과 같다.First, the glassy carbon electrode (GCE) is passed a constant current of +2 μA in the prepared solution for 60 seconds to form a composite plating layer of gold, nickel and APT. The plated electrode was selectively removed from nickel by scanning at a rate of 200 mV / s from 0 V to +1.5 V using cyclic voltammetry in a 1.5 M sulfuric acid solution to form a porous gold-APT composite layer. The conceptual diagram of the manufacturing of the sensor is shown in FIG.
<센서의 성능 평가><Sensor Performance Evaluation>
1. 순환전압전류법(CV) 및 선형 주사 전압전류법(LSV) 분석1. Cyclic Voltammetry (LS) and Linear Scanning Voltammetry (LSV) Analysis
순환 전압전류법(CV) 및 선형 주사 전압전류법(LSV) 분석은 potentiostat/galvanostat (Kosentech Model KST-P2, South Korea)를 이용하여 측정하였다. 이때, 앞서 제작된 개질 GCE(직경: 3.0 mm), Ag/AgCl 및 백금 선을 각각 작동전극, 참조전극 및 보조전극으로 사용한 3-전극계 시스템을 사용하였다.Cyclic voltammetry (CV) and linear scanning voltammetry (LSV) analysis were performed using potentiostat / galvanostat (Kosentech Model KST-P2, South Korea). In this case, a three-electrode system was used in which the modified GCE (diameter: 3.0 mm), Ag / AgCl, and platinum wires prepared as the working electrode, the reference electrode, and the auxiliary electrode were used.
LSV분석은 Ag/AgCl과 비교하여 +0.8 V에서 +0.3 V까지 전위를 스캔하면서 측정하였고, 이때 주사 속도는 50 mV/s이었다.LSV analysis was performed by scanning the potential from +0.8 V to +0.3 V compared to Ag / AgCl, with a scanning speed of 50 mV / s.
2. 시료 용액 준비2. Sample Solution Preparation
1000 ppm의 Cr(VI)이온을 포함하는 스탁 용액을 준비하였다. 실험에 사용된 용액을 표준 용액에서 희석하여 제조하였다. 질소 가스를 상기 희석된 용액에서 20분 동안 퍼즈시켜 용해된 산소를 제거하였다. 다공성 금-APT 개질 전극을 지지 전해질 용액만을 함유한 도관으로 옮긴 후 전압전류 분석을 수행하였다.A stock solution containing 1000 ppm of Cr (VI) ions was prepared. The solution used for the experiment was prepared by diluting in a standard solution. Nitrogen gas was purged in the diluted solution for 20 minutes to remove dissolved oxygen. The voltammetric analysis was performed after the porous gold-APT modified electrode was transferred to a conduit containing only the supporting electrolyte solution.
낮은 농도에서의 LSV분석은 전해질을 포함하는 동일 예비 농도 용액에서 수행하였다.LSV analysis at low concentrations was performed in the same preliminary concentration solution containing the electrolyte.
3. 전극의 특성 규명3. Characterization of electrode
본 실험에 앞서 전극을 단계별로 개질하여 각각 개질된 전극의 특성을 LSV를 이용하여 확인하였다. 도 11은 1 ppm의 Cr(VI)에 대하여 (a) 개질이 되지 않은 전극과 (b) 금 도금 전극, (c) 다공성 금, 그리고 (d) 다공성 금-APT 개질 전극의 피크 전류를 비교한 결과이다. 결과를 보면 다공성 금-APT 개질 전극의 피크전류가 다른 전극들보다 더 크게 나타났다. 따라서 이러한 다공성 금-APT 개질 전극은 높은 감도를 가지며 Cr(VI)의 검출에 적합하다는 것을 확인하였다.Prior to this experiment, the electrode was modified step by step to confirm the characteristics of each modified electrode using LSV. Figure 11 compares the peak currents of (a) unmodified electrode, (b) gold plated electrode, (c) porous gold, and (d) porous gold-APT modified electrode for 1 ppm Cr (VI). The result is. The results showed that the peak current of the porous gold-APT modified electrode was larger than that of the other electrodes. Therefore, it was confirmed that the porous gold-APT modified electrode has high sensitivity and is suitable for detecting Cr (VI).
또한 다공성 금-APT 개질 전극의 표면을 전계방사형 주사전자현미경(SEM, Zeiss Supra40 VP, Germany)으로 관찰하여 도 12에 나타내었다. 도 12에서 알 수 있듯이 다공성 구조를 확인할 수 있고, 그 다공성 구조의 크기는 약 200 나노미터로 나타났다. 따라서 성공적으로 GCE의 표면에 나노 크기의 다공성 금-APT 복합층을 형성하였음을 확인할 수 있었다.In addition, the surface of the porous gold-APT modified electrode was observed in a field emission scanning electron microscope (SEM, Zeiss Supra40 VP, Germany) and is shown in FIG. 12. As can be seen in Figure 12 it can be confirmed that the porous structure, the size of the porous structure was about 200 nanometers. Therefore, it was confirmed that nanoporous gold-APT composite layer was successfully formed on the surface of GCE.
4. 검출 파라미터의 최적화 조건 규명4. Identification of optimization conditions of detection parameters
센서의 검출 환경을 최적화하기 위하여, 시료 용액의 pH에 따른 전류 변화를 관찰한 결과, 도 13의 (A)와 같이 용액의 pH가 0.5에서 1.5로 증가함에 따라 전류가 증가하였고, pH가 1.5를 넘으면 피크 전류는 감소되었다. 따라서 검출 민감도와 검출 능력을 고려하여 이후 실험에서는 시료 용액의 pH를 1.5로 선정하였다.In order to optimize the detection environment of the sensor, as a result of observing the current change according to the pH of the sample solution, the current increased as the pH of the solution increased from 0.5 to 1.5, as shown in Figure 13 (A), the pH was 1.5 Beyond that, the peak current was reduced. Therefore, in consideration of the detection sensitivity and detection ability, the pH of the sample solution was set to 1.5 in the following experiment.
지지 전해질은 각각 0.1 M의 질산, 황산, 염산, 인산, 과염소산으로 변화시켜 가며 Cr(VI)의 검출을 수행하여 최적의 전해질을 찾아내었다. 도 13의 (B)와 같이 질산을 전해질로 사용하였을 때가 다른 전해질을 사용하였을 때보다 피크 전류가 더 크게 나타났다. 따라서 이후 실험에서 사용될 전해질은 아세트산, 질산 용액 등이 될 수 있을 것이다.The supporting electrolyte was changed to 0.1 M nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, and perchloric acid, and the optimum electrolyte was found by detecting Cr (VI). As shown in (B) of FIG. 13, the use of nitric acid as an electrolyte showed a larger peak current than when using another electrolyte. Therefore, the electrolyte to be used in subsequent experiments may be acetic acid, nitric acid solution, and the like.
5. 방해효과5. Interference effect
다공성 금-APT 개질 전극을 이용한 Cr(VI)의 검출 시 Fe(III), U(VI) 및 Cd(II), Pb(II), Cu(II), Hg(II), Zn(II)의 방해효과를 검토하였다.Fe (III), U (VI) and Cd (II), Pb (II), Cu (II), Hg (II), Zn (II) in the detection of Cr (VI) using porous gold-APT modified electrodes. Interference effects were reviewed.
이때 방해 효과를 보기 위한 다른 금속 이온들의 농도는 10 ppm으로 하였다. 먼저, Fe(III)과 U(VI)의 경우, 추가적인 피크는 나타나지 않았고, Cr(VI)의 피크 전류 역시 오차 범위 이내인 약 1.1%정도의 차이를 보였다. 다음으로 Cd(II), Pb(II), Cu(II), Hg(II), Zn(II)의 경우에도 역시 추가적인 피크는 나타나지 않았고, Cr(VI)의 피크 전류 역시 오차 범위 이내인 약 2%정도의 차이를 보였다. 따라서 본 전극은 다른 활성종의 방해 없이 Cr(VI)를 선택적으로 검출할 수 있음을 확인하였다.At this time, the concentration of other metal ions to see the interference effect was 10 ppm. First, in the case of Fe (III) and U (VI), no additional peak appeared, and the peak current of Cr (VI) also showed a difference of about 1.1%, which is within the error range. Next, no additional peaks were observed for Cd (II), Pb (II), Cu (II), Hg (II) and Zn (II), and the peak current of Cr (VI) was also within the margin of error. The difference was about%. Therefore, it was confirmed that the present electrode can selectively detect Cr (VI) without interfering with other active species.
6. 검량 곡선 및 검출 한계 규명6. Identify calibration curve and detection limits
도 14와 같이, 앞서 선정된 최적 실험조건 하에서 Cr(VI) 검출용 검량선을 구하였다. 10 ppb부터 5 ppm까지 농도를 증가시켜 가며 LSV를 이용해 검출 실험을 하였고, 이때 나타난 피크 전류를 검량선으로 나타내었다. 검량선의 상관계수는 0.96이었고, 검량선의 동적 범위는 10 ppb 부터 100 ppb, 그리고 100 ppb부터 1 ppm까지였다. 검량선의 기울기를 이용해 계산된 검출 한계는 1.6 ppb이었다.As shown in FIG. 14, a calibration curve for detecting Cr (VI) was obtained under the optimum experimental conditions selected above. Detection experiments were performed using LSV with increasing concentrations from 10 ppb to 5 ppm, and the peak currents indicated at this time were shown as calibration curves. The correlation coefficient of the calibration curve was 0.96, and the dynamic range of the calibration curve was 10 ppb to 100 ppb and 100 ppb to 1 ppm. The detection limit calculated using the slope of the calibration curve was 1.6 ppb.
도 15는 본 발명에 따른 실시간 다항목 중금속 분석 장치의 시료 안정화부의 상세 구성을 나타낸 도면이고, 도 16은 본 발명에 따른 실시간 다항목 중금속 분석 장치의 시료 안정화부, 시료 공급부 및 시료 측정부의 실제 구성예를 나타낸 도면이다.15 is a view showing a detailed configuration of the sample stabilization unit of the real-time multi-item heavy metal analysis device according to the present invention, Figure 16 is a real configuration of a sample stabilization unit, a sample supply unit and a sample measuring unit of the real-time multi-item heavy metal analysis device according to the present invention An example is shown.
상술한 바와 같이 시료 안정화부(100)는 제어모듈(400)의 시료 안정화 제어부(410)의 제어를 받아 상기 시료 측정부(200)에서 시료에 포함된 중금속을 보다 정확하게 검출할 수 있도록 시료의 상태를 안정화시킨다.As described above, the sample stabilization unit 100 is controlled by the sample stabilization control unit 410 of the control module 400 so that the sample measuring unit 200 can more accurately detect heavy metals contained in the sample. Stabilize.
도 15를 참조하면, 시료 안정화부(100)는 제1안정화부(110) 및 제2안정화부(140)를 포함한다.Referring to FIG. 15, the sample stabilization unit 100 includes a first stabilization unit 110 and a second stabilization unit 140.
제1안정화부(110)는 공급되는 시료의 전기전도도 및 pH를 측정하여 출력하는 시료 상태 측정부(120) 및 측정 보조용액을 저장하고 투입할 측정 보조용액량을 조절할 수 있으며, 상기 제어모듈(400)의 제어를 받아 측정 보조용액을 상기 시료에 투입하는 측정 보조용액 공급부(130)를 포함한다. 상기 측정 보조용액은 전기전도도 및 pH를 조절하기 위한 용액으로, 아세테이트 완충 용액 등이 사용될 수 있을 것이다.The first stabilization unit 110 may adjust the measurement auxiliary solution to store and input the sample state measurement unit 120 and the measurement auxiliary solution to measure and output the electrical conductivity and pH of the sample to be supplied, the control module ( Under the control of 400, the measurement auxiliary solution supply unit 130 for inputting the measurement auxiliary solution to the sample. The measurement auxiliary solution is a solution for adjusting the electrical conductivity and pH, acetate buffer solution, etc. may be used.
상기 제1안정화부(110)는 상술한 바와 같이 시료 상태 측정부(120) 및 측정 보조용액 공급부(130)를 포함한다.The first stabilization unit 110 includes a sample state measurement unit 120 and a measurement auxiliary solution supply unit 130 as described above.
상기 시료 상태 측정부(120)는 전기전도도 센서를 구비하여 공급되는 시료의 전기전도도를 측정하여 출력하는 전기전도도 센서부(121) 및 pH 센서를 구비하여 시료의 pH를 측정하여 출력하는 pH 센서부(122)를 포함한다.The sample state measuring unit 120 includes an electric conductivity sensor 121 for measuring and outputting an electric conductivity of a sample supplied with an electric conductivity sensor, and a pH sensor unit for measuring and outputting a pH of a sample, including a pH sensor. (122).
상기 전기전도도 센서부(121)의 전기전도도 센서 및 pH 센서부(122)의 pH 센서는 물(시료) 공급관에 설치될 수 있으나, 상기 측정 보조용액에 의해 안정화되는 물이 담기는 수조(141)에 설치되는 것이 바람직할 것이다.The conductivity sensor of the conductivity sensor unit 121 and the pH sensor of the pH sensor unit 122 may be installed in the water (sample) supply pipe, but the water tank 141 containing water stabilized by the measurement auxiliary solution. It would be desirable to be installed in.
상기 수조(141)는 일정 수량이 유지될 수 있도록 구성되는 것이 바람직할 것이다.The water tank 141 will be preferably configured to maintain a certain amount.
상기 보조용액 공급부(130)는 측정 보조용액 용기(131) 및 상기 측정 보조용액 용기(131)에 들어 있는 측정 보조용액을 공급되는 물에 투입하는 다중 경로자동 밸브(132)를 포함하는 측정 보조용액 공급부(130)를 포함한다. 상기 다중 경로 자동 밸브(132)는 도 3에서 보이는 바와 같이 시료를 공급받는 물 공급관과 측정 보조용액 용기(131)와 연결되는 보조용액 공급관과 연결되고 시료 공급부(300)와 연결되어 보조용액에 의해 안정화된 시료를 시료 공급부(300)로 공급하는 시료 공급관과 연결된다.The auxiliary solution supply unit 130 includes a measurement auxiliary solution container 131 and a measurement auxiliary solution including a multi-path automatic valve 132 for introducing the measurement auxiliary solution contained in the measurement auxiliary solution container 131 into the supplied water. Supply unit 130 is included. The multi-path automatic valve 132 is connected to the auxiliary solution supply pipe connected to the water supply pipe receiving the sample and the measurement auxiliary solution container 131 as shown in Figure 3 and connected to the sample supply unit 300 by the auxiliary solution It is connected to the sample supply pipe for supplying the stabilized sample to the sample supply unit 300.
제2안정화부(140)는 상기 시료의 안정화를 위해 시료를 하단부로 유입받고 일정 수량 이상 시료가 유입되는 경우 오버플로우 되도록 구성되는 상기 수조(141) 및 상기 수조(141)의 저면에 구성되어 유입되는 시료에 포함되어 있는 기포를 제거하는 회전 임펠라(142)를 포함할 수 있을 것이다.The second stabilization unit 140 is configured to flow into the lower end of the sample for the stabilization of the sample and to flow in the bottom surface of the water tank 141 and the water tank 141 configured to overflow when a predetermined amount or more of the sample flows in It may include a rotary impeller 142 to remove the bubbles contained in the sample.
즉, 제1안정화부(140)에서 PH 및 전기전도도가 조절되고 제2안정화부에서 기포가 제거된 시료가 시료 공급부(300)를 통해 시료 측정부(200)로 공급될 것이다.That is, the pH and electrical conductivity of the first stabilizer 140 is adjusted and the sample from which the bubbles are removed from the second stabilizer will be supplied to the sample measuring unit 200 through the sample supply unit 300.
도 17은 본 발명에 따른 실시간 다항목 중금속 분석장치의 제어모듈의 시료 안정화 제어부의 구성을 나타낸 도면이다.17 is a view showing the configuration of the sample stabilization control unit of the control module of the real-time multi-item heavy metal analysis apparatus according to the present invention.
시료 안정화 제어부(410)는 전처리 시료 검사부(411), 시료 공급 제어부(412), 안정화 제어부(413), 실시간 중금속 모니터링부(414) 및 수 상태 통지부(415)를 포함한다.The sample stabilization control unit 410 includes a pretreatment sample inspection unit 411, a sample supply control unit 412, a stabilization control unit 413, a real-time heavy metal monitoring unit 414, and a water state notification unit 415.
전처리 시료 검사부(411)는 제1안정화부(110)의 시료 상태 측정부(120)를 통해 중금속 검출 전의 시료 상태를 측정한다. 즉, 전처리 시료 검사부(411)는 시료 상태 측정부(120)의 전기전도도 센서부(121) 및 pH 센서부(122)를 통해 수조(141)에 공급된 시료의 전기전도도 및 pH를 측정하고, 저장부(430)의 보조용액 투입량 DB를 참조하여 측정된 상기 전기전도도 값 및 pH 값이 보조용액의 투입을 필요로 하는지의 여부를 판단하고, 보조용액의 투입 필요 시 상기 전기전도도 값 및 pH 값에 대응하는 보조용액 투입량을 결정하여 안정화 제어부(413)로 출력한다.The pretreatment sample inspecting unit 411 measures the state of the sample before heavy metal detection through the sample state measuring unit 120 of the first stabilization unit 110. That is, the pretreatment sample inspecting unit 411 measures the electrical conductivity and pH of the sample supplied to the water tank 141 through the electrical conductivity sensor unit 121 and the pH sensor unit 122 of the sample state measuring unit 120, It is determined whether the electrical conductivity value and the pH value measured with reference to the auxiliary solution input amount DB of the storage unit 430 require the addition of the auxiliary solution, and when the auxiliary solution is required, the electrical conductivity value and the pH value are required. The auxiliary solution input amount corresponding to the output is determined and output to the stabilization controller 413.
또한, 전처리 시료 검사부(411)는 보조용액 투입량에 따른 시료의 안정화 여부를 판단하여 디스플레이부(451)에 표시하고, 시료 공급 제어부(412)로 시료가 안정화되었음을 통지한다.In addition, the pretreatment sample inspecting unit 411 determines whether or not the sample is stabilized according to the auxiliary solution input amount, and displays it on the display unit 451, and notifies the sample supply control unit 412 that the sample is stabilized.
시료 공급 제어부(412)는 시료 공급 이벤트의 발생 시 시료 공급부(300)를 제어하여 수조(141)에 담긴 시료를 시료 측정부(200)로 공급한다. 상기 시료 공급 이벤트는 일정 시간 주기로 발생될 수도 있고, 입력부(440)를 통한 시료 공급 명령 시 발생될 수도 있으며, 전처리 시료 검사부(411)로부터 시료 안정화 완료 시 발생될 수도 있으며, 시료 안정화 여부에 따라 복합적으로 발생될 수도 있을 것이다.The sample supply control unit 412 controls the sample supply unit 300 when the sample supply event occurs to supply the sample contained in the water tank 141 to the sample measurement unit 200. The sample supply event may be generated at a predetermined time period, may be generated when the sample supply command through the input unit 440, may be generated when the sample stabilization is completed from the pre-process sample inspection unit 411, complex depending on whether or not to stabilize the sample It may be generated as
안정화 제어부(413)는 중금속 분석 장치의 동작 시 회전 임펠라(142)를 구동하여 수조(141)에 담긴 시료의 기포를 제거하여 시료를 안정화시키고, 상기 전처리 시료 검사부(411)로부터 보조용액 투입량 입력 시 측정 보조용액 공급부(130)의 다중경로자동밸브(132)를 제어하여 수조(141)에 담긴 시료에 보조용액을 공급하여 시료를 안정화시킨다.The stabilization control unit 413 stabilizes the sample by removing the bubbles of the sample contained in the water tank 141 by driving the rotating impeller 142 during the operation of the heavy metal analysis device, and inputs the auxiliary solution input amount from the pretreatment sample inspection unit 411. By controlling the multi-path automatic valve 132 of the measurement auxiliary solution supply unit 130 to supply the auxiliary solution to the sample contained in the water tank 141 to stabilize the sample.
실시간 중금속 모니터링부(414)는 상기 시료 공급 이벤트의 발생 시 시료 측정부(200)를 구동하여 시료 공급부(300)를 통해 공급되어 본체(220)의 수 흐름 경로(230)를 통해 흐르는 시료에 포함된 중금속 종류를 분류하고, 분류된 중금속의 시료 내 포함량을 입력받아 저장한 후 디스플레이부(451)에 표시한다.The real-time heavy metal monitoring unit 414 drives the sample measuring unit 200 when the sample supply event occurs to be supplied through the sample supply unit 300 and included in the sample flowing through the water flow path 230 of the main body 220. The sorted heavy metals are classified, and the content of the classified heavy metals is received and stored and displayed on the display unit 451.
수 상태 통지부(415)는 상기 전처리 시료 검사부(411)에서 측정 및 판단된 정보 및 상기 실시간 중금속 모니터링부(414)에서 검출된 중금속 종류 정보 및 각 중금속별 검출량을 포함하는 수 상태 정보를 원거리통신부(442, 452)를 통해 원격지의 수질검사센터로 제공한다.The water state notification unit 415 is a telecommunication unit for receiving water state information including information measured and determined by the preprocessing sample inspecting unit 411, heavy metal type information detected by the real-time heavy metal monitoring unit 414, and a detection amount for each heavy metal. (442, 452) to remote water quality testing centers.
도 18은 본 발명에 따른 선택적 전극 활성화를 통한 실시간 다항목 중금속 검출 방법을 나타낸 흐름도이다.18 is a flowchart illustrating a real-time multi-item heavy metal detection method through selective electrode activation according to the present invention.
도 18을 참조하면, 제어모듈(400)의 중금속 검출 제어부(420)는 시료 공급부(300) 등의 수 공급장치(미도시)를 통해 측정할 수(물), 즉 시료를 측정셀(210)로 공급하고, 산화환원전류 측정부(61)를 구동한(S111) 후, 반응센서(62)로 산화환원공급전원을 공급하고, 상기 산화환원공급전원에 의한 산화환원전류값의 입력 여부를 검사하여 산화환원전류값을 측정하기 시작한다(S113).Referring to FIG. 18, the heavy metal detection control unit 420 of the control module 400 measures water (water), that is, a sample, through a water supply device (not shown) such as the sample supply unit 300. And supplying the redox current measuring unit 61 (S111), supplying the redox supply power to the reaction sensor 62, and checking whether the redox current value is input by the redox supply power supply. By measuring the redox current value (S113).
산화환원 전류값이 측정되기 시작하면 중금속 검출 제어부(420)는 상기 입력된 산화환원전류값과 이전 입력된 산화환원전류값을 비교하여 산화환원전류 변화량을 계산하고(S114), 계산된 산화환원전류 변화량이 정상범위를 초과하는지의 여부를 판단한다(S115).When the redox current value starts to be measured, the heavy metal detection control unit 420 compares the input redox current value with the previously input redox current value and calculates a redox current change amount (S114). It is determined whether the amount of change exceeds the normal range (S115).
판단결과, 산화환원전류 변화량에 의해 측정된 산화환원전류 정상범위를 초과하는 변화가 발생한 것으로 판단되는 경우 중금속 검출 제어부(420)는 산화환원공급전원 범위별 오염물질 DB를 참조하여 상기 산화환원전류에 변화를 발생시킨 산화환원공급전원값이 속하는 산화환원공급전원 범위에 대응하는 오염물질을 분석 및 분류하고, 산화환원전원값 범위별 오염물질 DB를 참조하여 상기 분류된 오염물질에 대응하는 적어도 하나 이상의 오염측정부(71)를 검색하고 측정센서 선택부(73)를 제어하여 검색된 오염측정부(71)를 선택한다(S116).As a result, when it is determined that the change exceeding the normal range of the redox current measured by the redox current change amount, the heavy metal detection control unit 420 refers to the pollutant DB for each redox supply power range to the redox current. Analyze and classify pollutants corresponding to the redox supply power range to which the redox supply power value that caused the change belongs, and refer to the pollutant DB by redox power supply value range and at least one corresponding to the classified pollutants. The contamination measurement unit 71 is searched and the measurement sensor selection unit 73 is controlled to select the retrieved contamination measurement unit 71 (S116).
오염측정부(71)가 선택되면 중금속 검출 제어부(420)는 측정전압 공급부(40)를 제어하여 선택된 오염측정부(71)로 측정전압를 공급한다(S117). 이때 오염측정부(71)에 따라 각각의 측정 고유 전압을 가지는 측정전압를 공급할 수도 있을 것이다.When the pollution measurement unit 71 is selected, the heavy metal detection control unit 420 controls the measurement voltage supply unit 40 to supply the measurement voltage to the selected pollution measurement unit 71 (S117). At this time, according to the pollution measuring unit 71 may supply a measurement voltage having each measurement specific voltage.
선택된 오염측정부(71)로 측정전압를 공급한 후, 중금속 검출 제어부(420)는 상기 오염측정부(71)로부터 오염측정(전류)값이 입력되는지를 모니터링한다(S119). 상기 오염측정값은 전류변화량값이 될 수 있을 것이다.After supplying the measurement voltage to the selected pollution measurement unit 71, the heavy metal detection control unit 420 monitors whether the pollution measurement (current) value is input from the pollution measurement unit 71 (S119). The contamination measurement value may be a current change amount value.
상기 오염측정부(71)는 측정전압값이 입력되면 오염도에 따른 오염측정(전류)값을 출력할 것이다. 이때 중금속 검출 제어부(420)는 선택된 오염측정부(71)가 둘 이상이면 모든 오염측정부(71)로부터 오염측정값이 입력되었는지를 판단한다(S121).When the measurement voltage value is input, the pollution measurement unit 71 outputs a pollution measurement (current) value according to the pollution degree. At this time, the heavy metal detection control unit 420 determines whether the contamination measurement value is input from all the pollution measurement units 71 when the selected pollution measurement unit 71 is two or more (S121).
판단결과 모든 오염측정값이 입력되었으면 중금속 검출 제어부(420)는 측정된 오염측정값들을 해당 오염물질에 대한 오염도로 변환하고, 오염물질 정보 및 해당 오염물질이 물에 얼마나 포함되어있는지를 나타내는 정보를 출력할 것이다(S123). 상기 정보의 출력은 출력부(450)의 디스플레이부(451)를 통해 이루어지질 수도 있고, 원거리 통신부(452)를 통해 원격지의 수질관리센터(미도시)의 서버(미도시)로 전달되어 관리자 단말기를 통해 이루어질 수도 있을 것이다.As a result of determination, when all pollution measurement values are input, the heavy metal detection control unit 420 converts the measured pollution measurement values into pollution levels for the corresponding pollutants, and displays pollutant information and information indicating how much of the pollutants are included in the water. It will output (S123). The output of the information may be made through the display unit 451 of the output unit 450, or is transmitted to a server (not shown) of a remote water quality control center (not shown) through the remote communication unit 452 to the manager terminal. It could be done through
반면, 선택된 오염측정부(71)가 둘 이상이고 둘 모두로부터 오염측정값이 입력되지 않았으면 중금속 검출 제어부(420)는 측정 취소 이벤트가 발생하는지를 검사한다(S125). 상기 측정 취소 이벤트는 일정 시간 이상 상기 선택된 오염측정부(71) 중 어느 하나로부터 오염측정값이 입력되지 않는 경우 발생될 수도 있고, 관리자에 의해 입력부(30)를 통해 발생될 수도 있을 것이다.On the other hand, if there are two or more selected pollution measurement units 71 and no pollution measurement values are input from both, the heavy metal detection control unit 420 checks whether a measurement cancellation event occurs (S125). The measurement cancellation event may be generated when the pollution measurement value is not input from any one of the selected pollution measurement unit 71 for a predetermined time or may be generated through the input unit 30 by an administrator.
측정 취소 이벤트가 발생되면 중금속 검출 제어부(420)는 입력된 오염물질 오염도를 출력하고, 미 측정된 오염물질과 관련된 관련정보를 출력한다(S127). 상기 관련정보는, 오염물질정보, 상기 오염물질의 오염도를 측정하는 오염측정부(71)의 정보 등이 될 수 있을 것이다. 이때, 중금속 검출 제어부(420)는 해당 오염측정부(71), 반응센서(62) 및 산화환원전류 측정부(61)의 점검을 요청할 수도 있을 것이다.When the measurement cancellation event occurs, the heavy metal detection control unit 420 outputs the input pollutant contamination level, and outputs the related information related to the unmeasured pollutant (S127). The related information may be, for example, pollutant information and information of the pollution measuring unit 71 measuring the pollution level of the pollutant. At this time, the heavy metal detection control unit 420 may request the inspection of the pollution measurement unit 71, the reaction sensor 62 and the redox current measuring unit 61.
도 19는 본 발명의 일실시예에 따른 실시간 다항목 중금속 검출 방법의 전극 활성화 방법을 나타낸 흐름도이다.19 is a flowchart illustrating an electrode activation method of a real-time multi-item heavy metal detection method according to an embodiment of the present invention.
도 19를 참조하면 중금속 검출 제어부(420)는 산화환원전류 변화량이 정상범위를 초과한 것으로 판단되면(S115) 산화환원전원값별 오염물질 DB를 참조하여 상기 산화환원전류 변화량을 발생시킨 산화환원공급전원값을 획득한다(S211).Referring to FIG. 19, when it is determined that the amount of change in the redox current exceeds the normal range (S115), the heavy metal detection control unit 420 refers to the pollutant DB for each of the redox power values to generate the redox current change. A value is obtained (S211).
산화환원공급전원 범위가 계산되면 중금속 검출 제어부(420)는 산화환원공급전원(위)값이 -1.3V ~ -0.9V 범위의 값인지(S215), -0.9V ~ -0.3V 범위의 값인지(S217), -0.3V ~ 0.2V 범위의 값인지(S219), 0.2V ~ 0.5V 범위의 값인지(S221)를 판단한다.When the redox supply power range is calculated, the heavy metal detection control unit 420 determines whether the redox supply power supply (above) is in the range of -1.3V to -0.9V (S215) or in the range of -0.9V to -0.3V. It is determined whether the value is in the range (S217), -0.3V to 0.2V (S219), or in the range of 0.2V to 0.5V (S221).
중금속 검출 중금속 검출 제어부(420)는 산화환원공급전원(위)값이 -1.3V ~ -0.9V 범위의 값이면 오염물질인 아연(Zn)의 농도를 검출하여 출력하는 제1오염측정부(71-1)를 선택하고(S223), 상기 산화환원공급전원(위)값이 -0.9V ~ -0.3V 범위의 값이면 오염물질인 카드뮴(Cd)의 농도를 검출하여 출력하는 제2오염측정부(71-2)를 선택하고(S225), 상기 산화환원공급전원(위)값이 -0.3V ~ 0.2V 범위의 값이면 오염물질인 납(Pb) 및 구리(Cu)의 농도를 검출하여 출력하는 제3오염측정부(71-3)를 선택하고(S227), 상기 산화환원공급전원(위)값이 0.2V ~ 0.5V 범위의 값이면 오염물질인 수은(Hg)의 농도를 검출하여 출력하는 제4오염측정부(71-4)를 선택한다(S229). 만일, 측정된 산화환원공급전원(위)값이 0.2V라면 중금속 검출 제어부(420)는 0.2V가 납 및 구리에 대한 산화환원 전위값 범위인 -0.3V ~0.2V에도 포함되고 수은에 대한 산화환원 전위값 범위인 0.2V ~0.5V에도 포함되므로 제3오염측정부(71-4) 및 제4오염측정부(71-5)를 선택한다. Heavy metal detection The heavy metal detection control unit 420 detects and outputs a concentration of zinc (Zn) that is a pollutant when the redox supply power supply (above) is in the range of -1.3 V to -0.9 V. -1) and the second pollution measuring unit detects and outputs the concentration of cadmium (Cd), which is a pollutant, when the redox supply power supply (above) is in the range of -0.9V to -0.3V. Select (71-2) (S225), and if the value of the redox power supply (above) is in the range of -0.3V to 0.2V, the concentration of lead (Pb) and copper (Cu), which are pollutants, is detected and output. If the third pollution measuring unit 71-3 is selected (S227) and the redox supply power supply (above) is in the range of 0.2V to 0.5V, the concentration of mercury (Hg), which is a pollutant, is detected and output. The fourth pollution measurement unit 71-4 is selected (S229). If the measured redox power supply (top) value is 0.2V, the heavy metal detection control unit 420 may also include 0.2V in the range of -0.3V to 0.2V where redox potential ranges for lead and copper, and to oxidize mercury. Since it is also included in the reduction potential value range of 0.2V to 0.5V, the third pollution measuring unit 71-4 and the fourth pollution measuring unit 71-5 are selected.
또한, 도 19에서는 나타내지 않았으나, 크롬을 검출하기 위한 전용의 오염측정부(71-m)를 할당하여 지속적으로 시료에 크롬이 포함되어 있는지를 검사할 수도 있고, 반응센서(62)를 통해 공급되는 산화환원공급전원(위)값이 +0.5 V ~ +0.6V 범위의 값이면 할당된 크롬(Cr) 농도를 검출하여 출력하는 제m오염측정부(71-m)를 구동하도록 할 수도 있을 것이다.In addition, although not shown in FIG. 19, a dedicated contamination measurement unit 71-m for detecting chromium may be assigned to continuously check whether the sample contains chromium, and is supplied through the reaction sensor 62. If the redox supply power supply (above) is in the range of +0.5 V to +0.6 V, the m-th pollution measurement unit 71-m that detects and outputs the allocated chromium (Cr) concentration may be driven.
도 20은 본 발명에 따른 실시간 다항목 중금속 검출 방법의 시료 안정화 방법을 나타낸 흐름도이다.20 is a flowchart illustrating a sample stabilization method of the real-time multi-item heavy metal detection method according to the present invention.
도 20을 참조하면, 제어모듈(400)의 시료 안정화 제어부(410)는 중금속 분석 장치에 전원이 공급되면 다중경로자동밸브(132)를 제어하여 수조(141)로 시료를 공급하기 시작하고(S311), 안정화 제어부(413)를 통해 회전 임펠러(142)를 구동하여 수조(141)로 공급되는 시료의 기포를 제거하여 안정화를 수행한다(S312).Referring to FIG. 20, the sample stabilization control unit 410 of the control module 400 controls the multipath automatic valve 132 when power is supplied to the heavy metal analyzing apparatus and starts supplying the sample to the water tank 141 (S311). By driving the rotary impeller 142 through the stabilization control unit 413, stabilization is performed by removing bubbles of the sample supplied to the water tank 141 (S312).
수조(141)에 시료가 공급되고 기포제거에 의한 안정화가 수행되기 시작하면 시료 안정화 제어부(410)는 전처리 시료 검사부(411)를 통해 시료 상태 측정부(120)를 구동하여 상기 시료의 전기전도도 및 pH의 측정을 개시한다(S313).When the sample is supplied to the water tank 141 and stabilization by bubble removal starts, the sample stabilization control unit 410 drives the sample state measurement unit 120 through the pretreatment sample inspection unit 411 to perform electrical conductivity and The measurement of the pH is started (S313).
시료 상태 측정이 개시되면 시료 안정화 제어부(410)는 전처리 시료 검사부(411)를 통해 시료 상태값인 전기전도도 값 및 pH 값이 입력되는지를 검사한다(S315).When the sample state measurement is started, the sample stabilization control unit 410 checks whether the conductivity value and the pH value, which are the sample state values, are input through the pretreatment sample inspection unit 411 (S315).
시료의 전기전도도 값 및 pH 값이 입력되면 시료 안정화 제어부(410)는 전처리 시료 검사부(411)를 통해 보조용액 투입량 DB를 참조하여 측정된 전기전도도 및 pH 값이 보조용액의 투입을 필요로 하는지의 여부를 판단한다(S317).When the conductivity value and the pH value of the sample are input, the sample stabilization control unit 410 determines whether the conductivity and pH value measured by referring to the auxiliary solution input amount DB through the pretreatment sample inspection unit 411 require the input of the auxiliary solution. It is determined whether or not (S317).
판단결과, 보조용액의 투입을 필요로 하는 것으로 판단되면 시료 안정화 제어부(410)는 시료 공급 제어부(412)를 통해 현재 시료가 공급되고 있는지를 판단하고(S319), 시료가 공급되고 있으면 시료 공급 제어부(412)를 통해 시료 공급부(300)를 제어하여 시료 측정부(200)로의 시료 공급을 차단한다(S321).As a result of determination, if it is determined that the auxiliary solution needs to be added, the sample stabilization control unit 410 determines whether the sample is currently being supplied through the sample supply control unit 412 (S319), and if the sample is being supplied, the sample supply control unit. The sample supply unit 300 is controlled through the block 412 to block the sample supply to the sample measuring unit 200 (S321).
상기 시료 공급 여부의 판단(S319)에서 시료가 공급되고 있지 않거나, 시료 공급이 차단되면(S321), 시료 안정화 제어부(410)는 전처리 시료 검사부(411)를 통해 저장부(430)의 보조용액 투입량 DB를 참조하여 측정된 전기전도도 값 및 pH 값에 대응하는 보조용액 투입량을 결정한다(S323). 상기 보조용액 투입량은 보조용액 투입 시마다 전기전도도 값 및 pH 값을 반영하여 실시간 계산될 수도 있을 것이다.When the sample is not supplied or the sample supply is blocked in the determination of whether the sample is supplied (S319), the sample stabilization control unit 410 is the auxiliary solution input amount of the storage unit 430 through the pretreatment sample inspection unit 411 The auxiliary solution input amount corresponding to the measured electric conductivity value and pH value is determined by referring to the DB (S323). The auxiliary solution input amount may be calculated in real time by reflecting the electrical conductivity value and the pH value every time the auxiliary solution is added.
보조용액 투입량이 결정되면 시료 안정화 제어부(410)는 안정화 제어부(413)를 통해 측정 보조용액 공급부(130)의 다중경로자동밸브(132)를 제어하여 상기 결정된 보조용액 투입량만큼 보조용액을 수조(141)에 투입한다(S325). 상기 보조용액 투입량은 측정 보조용액 용기(131)에서 다중경로자동밸브(132)로 공급되는 관에 투입량을 측정하는 투입량 측정 수단을 구비하여 측정할 수도 있고, 수조(141)에서 측정되는 전기전도도 값 및 pH 값이 시료 측정 안정화 조건을 만족하는 값이 될 때까지 보조용액을 투입하도록 하여 간접적으로 측정할 수도 있을 것이다.When the auxiliary solution input amount is determined, the sample stabilization control unit 410 controls the multi-path automatic valve 132 of the measurement auxiliary solution supply unit 130 through the stabilization control unit 413 to adjust the auxiliary solution by the amount of the auxiliary solution input tank 141. ) Into (S325). The auxiliary solution input amount may be measured with an input amount measuring means for measuring the input amount from the measurement auxiliary solution container 131 to the pipe supplied to the multi-path automatic valve 132, and the electrical conductivity value measured in the water tank 141. And it may be measured indirectly by adding the auxiliary solution until the pH value satisfies the sample measurement stabilization conditions.
반면, 시료 상태 측정값이 보조용액 투입 조건을 만족하지 않으면 시료 안정화 제어부(410)는 시료 공급부(300)를 제어하여 수조(141)의 시료를 시료 측정부(200)로 공급한다(S127).On the other hand, if the sample state measurement value does not satisfy the auxiliary solution input condition, the sample stabilization control unit 410 controls the sample supply unit 300 to supply the sample of the water tank 141 to the sample measuring unit 200 (S127).
한편, 본 발명은 전술한 전형적인 바람직한 실시예에만 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위 내에서 여러 가지로 개량, 변경, 대체 또는 부가하여 실시할 수 있는 것임은 당해 기술분야에서 통상의 지식을 가진 자라면 용이하게 이해할 수 있을 것이다. 이러한 개량, 변경, 대체 또는 부가에 의한 실시가 이하의 첨부된 특허청구범위의 범주에 속하는 것이라면 그 기술사상 역시 본 발명에 속하는 것으로 보아야 한다.On the other hand, the present invention is not limited to the above-described typical preferred embodiment, but can be carried out in various ways without departing from the gist of the present invention, various modifications, alterations, substitutions or additions in the art Anyone who has this can easily understand it. If the implementation by such improvement, change, replacement or addition falls within the scope of the appended claims, the technical idea should also be regarded as belonging to the present invention.
[부호의 설명][Description of the code]
40: 측정전압 공급부 50: 오염 측정 센서부40: measurement voltage supply unit 50: contamination measurement sensor unit
60: 반응센서부 61: 산화환원 전류 측정부60: reaction sensor 61: redox current measuring unit
62: 반응센서 63: 반응센서 선택부62: reaction sensor 63: reaction sensor selection unit
70: 오염측정 센서부 71: 오염 측정부70: pollution measuring unit 71: contamination measuring unit
72: 오염측정 센서 73: 측정 센서 선택부72: contamination measurement sensor 73: measurement sensor selection
100: 시료 안정화부 110: 제1안정화부100: sample stabilization unit 110: first stabilization unit
120: 시료 상태 측정부 121: 전기전도도 센서부120: sample state measurement unit 121: electrical conductivity sensor unit
122: pH 센서부 130: 측정 보조용액 공급부122: pH sensor unit 130: measurement auxiliary solution supply unit
131: 측정 보조용액 용기 132: 다중경로자동밸브131: measuring auxiliary solution container 132: multi-path automatic valve
140: 제2안정화부 141: 수조140: second stabilization unit 141: tank
142: 회전 임펠라 200: 시료 측정부142: rotary impeller 200: sample measuring unit
210: 측정셀 220: 본체210: measuring cell 220: main body
230: 수 흐름 경로 230: water flow path
300: 시료 공급부 400: 제어모듈300: sample supply unit 400: control module
410: 시료 안정화 제어부 411: 전처리 시료 검사부410: sample stabilization control unit 411: pretreatment sample inspection unit
412: 시료 공급 제어부 413: 안정화 제어부412: sample supply control unit 413: stabilization control unit
414: 실시간 중금속 모니터링부 415: 수 상태 통지부414: real-time heavy metal monitoring unit 415: water status notification unit
420: 중금속 검출 제어부420: heavy metal detection control unit

Claims (25)

  1. 물 공급관으로부터 시료를 공급받아 시료의 공급을 제어하는 시료 공급부;A sample supply unit receiving a sample from the water supply pipe and controlling the supply of the sample;
    측정할 시료가 소정 패턴으로 흐르는 경로를 형성하는 수 흐름 경로를 포함하는 측정셀 및 상기 시료 공급부로부터 공급되는 시료가 상기 수 흐름 경로를 따라 흐르도록 하고, 상기 수 흐름 경로를 따라 흐르는 시료에 닿도록 상기 수 흐름 경로에 결합되는 반응센서 및 측정센서를 구비하되, 상기 반응센서 및 측정센서 순으로 결합되어 상기 반응센서를 통한 시료의 산화환원전류값을 측정하여 출력하고, 상기 측정센서에 따른 해당 오염물질에 대한 오염도값 출력하는 수질오염물질 측정모듈을 포함하는 시료 측정부; 및A measurement cell including a water flow path for forming a path in which a sample to be measured flows in a predetermined pattern and a sample supplied from the sample supply part to flow along the water flow path, and to contact a sample flowing along the water flow path; A reaction sensor and a measurement sensor are coupled to the water flow path, but are coupled in the order of the reaction sensor and the measurement sensor to measure and output a redox current value of the sample through the reaction sensor, and corresponding pollution according to the measurement sensor. A sample measuring unit including a water pollutant measuring module configured to output a pollution degree value for a substance; And
    상기 수 흐름 경로로 유입되는 시료에서 상기 반응센서를 통해 측정된 산화환원전류값에 미리 설정된 정상범위 이상의 변화가 발생되는 경우, 상기 변화를 가지는 산화환원전류값 측정 시 상기 반응센서로 공급된 산화환원공급전원값에 의해 오염물질을 검출 및 분류하고, 분류된 오염물질에 대응하는 측정센서를 선택으로 활성화한 후 오염물질에 대한 오염도값을 입력받아 출력하는 중금속 검출 제어부를 포함하는 제어모듈을 포함하는 것을 특징으로 하는 실시간 다항목 중금속 분석 장치.If a change in the redox current value measured by the reaction sensor occurs in the sample flowing into the water flow path, the redox current supplied to the reaction sensor is measured when the redox current value having the change is measured. And a control module including a heavy metal detection controller for detecting and classifying pollutants by a power supply value, selectively activating a measurement sensor corresponding to the classified pollutants, and receiving and outputting a pollutant value for the pollutants. Real-time multi-item heavy metal analysis device, characterized in that.
  2. 제1항에 있어서,The method of claim 1,
    상기 측정셀은,The measuring cell,
    측정할 시료가 유입되는 수 유입구, 센서 결합구 및 상기 시료를 배출하는 수 배출구를 구비하는 본체; 및A main body including a water inlet through which a sample to be measured is introduced, a sensor coupler, and a water outlet for discharging the sample; And
    상기 본체의 수 유입구와 연결되고 상기 센서 결합구를 경유하여 상기 수 배출구에 연결되어 상기 패턴을 형성하는 상기 수 흐름 경로를 포함하는 것을 특징으로 하는 실시간 다항목 중금속 분석 장치.And a water flow path connected to the water inlet of the main body and connected to the water outlet via the sensor coupler to form the pattern.
  3. 제2항에 있어서,The method of claim 2,
    상기 수질오염물질 측정모듈은,The water pollutant measurement module,
    유입되는 시료의 유입부에 반응센서를 구비하고 유입되는 시료에 잠긴 상기 반응센서를 통해 상기 시료에 산화환원공급전원을 가하여 산화환원을 일으키고, 상기 산화환원현상에 의해 발생되는 산화환원전류값을 측정하고 이전 산화환원공급전원 공급에 의해 측정된 산화환원전류값과의 차에 의한 산화환원전류 변화량을 계산하고, 계산된 산화환원전류 변화량이 미리 설정된 정상범위를 벗어나는 경우 상기 산화환원전류 변화량을 일으킨 해당 산화환원공급전원값을 출력하는 반응센서부;A reaction sensor is provided at the inlet of the incoming sample and the redox supply power is applied to the sample through the reaction sensor immersed in the incoming sample to cause redox, and to measure the redox current value generated by the redox phenomenon. And calculate the redox current change due to the difference from the redox current value measured by the previous redox supply power supply, and when the calculated redox current change is outside the preset normal range, the corresponding redox current change is caused. A reaction sensor unit for outputting a redox supply power value;
    상기 시료의 유입 방향에 대해 반응센서의 후단에서 서로 다른 오염물질을 검출 및 검출된 오염물질의 오염도를 측정하는 오염측정센서를 구비하여 검출된 오염물질에 대한 오염도를 측정하여 출력하는 복수의 오염측정부를 포함하되, 제어를 받아 상기 오염측정부들 중 적어도 하나 이상의 오염측정부를 선택하고, 선택된 오염측정부를 구동하여 해당 오염물질 및 오염물질의 오염도를 측정하여 출력하는 오염 측정센서부;A plurality of pollution measurement to measure and output the contamination level of the detected pollutants with a pollution measurement sensor for detecting different pollutants at the rear end of the reaction sensor and measuring the pollution level of the detected pollutants with respect to the inflow direction of the sample A pollution measurement unit including a control unit, selected by at least one pollution measurement unit of the pollution measurement unit under control, and driving the selected pollution measurement unit to measure and output the pollution level of the corresponding pollutant and the pollutant;
    산화환원공급전원 범위별 오염물질과 오염물질별 오염측정부를 정의하고 있는 산화환원전원 범위별 오염물질 DB를 저장하고 있는 저장부; 및A storage unit storing a pollutant DB by a range of redox power supplies defining a pollutant by a range of redox supply power and a pollution measurement unit by a pollutant; And
    상기 있는 산화환원전원 범위별 오염물질 DB를 참조하여 상기 반응센서부로부터 입력되는 산화환원공급전원값에 대응하는 오염물질을 판별하고, 상기 오염물질에 대응하는 오염 측정센서부를 제어하여 판별된 오염물질을 검출 및 오염도를 측정할 수 있는 오염측정부를 선택적으로 구동시켜 해당 오염물질에 대응하는 오염물질을 검출 및 오염도를 측정하여 출력하는 제어부를 포함하는 것을 특징으로 하는 실시간 다항목 중금속 분석 장치.The pollutant determined by referring to the pollutant DB for each range of the redox power source is determined by pollutants corresponding to the redox supply power value input from the reaction sensor unit, and by controlling the pollution measuring sensor unit corresponding to the pollutant. Real-time multi-item heavy metal analysis device comprising a control unit for selectively driving the pollution measuring unit for detecting and measuring the degree of contamination to detect the pollutant corresponding to the corresponding pollutant and to measure the degree of contamination.
  4. 제2항에 있어서,The method of claim 2,
    상기 반응센서가 상기 유입구에서 가장 가까운 수 흐름 경로상의 꼭짓점에 설치되고, 상기 측정센서가 상기 수 흐름 경로 상의 다른 꼭짓점 각각에 하나씩 설치되는 것을 특징으로 하는 실시간 다항목 중금속 분석 장치.And the reaction sensor is installed at a vertex on the water flow path closest to the inlet, and the measurement sensor is installed at each of the other vertices on the water flow path.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 수 흐름 경로의 패턴은 톱니 형상으로 구성되는 것을 특징으로 하는 실시간 다항목 중금속 분석 장치.The pattern of the water flow path is a real-time multi-item heavy metal analysis device, characterized in that formed in a sawtooth shape.
  6. 제3항에 있어서,The method of claim 3,
    상기 반응센서부는,The reaction sensor unit,
    반응센서를 구비하여 유입되는 시료의 산화환원전류값을 측정하고, 상기 산화환원전류 변화량이 상기 정상범위를 벗어나는 경우 상기 산화환원공급전원값을 출력하는 적어도 둘 이상의 산화환원전류 측정부; 및At least two redox current measuring units for measuring a redox current value of a sample introduced with a reaction sensor and outputting the redox supply power value when the amount of change in the redox current is outside the normal range; And
    상기 산화환원전류 측정부들과 연결되고 상기 산화환원전류 측정부로 공급할 측정전압인 산화환원공급전원을 입력받으며, 상기 제어부의 제어를 받아 상기 산화환원공급전원을 선택적으로 산화환원전류 측정부로 공급하는 반응센서 선택부를 포함하는 것을 특징으로 하는 실시간 다항목 중금속 분석 장치.A reaction sensor connected to the redox current measuring units and receiving a redox supply power that is a measurement voltage to be supplied to the redox current measuring unit, and selectively supplying the redox supply power to the redox current measuring unit under the control of the controller Real-time multi-item heavy metal analysis device comprising a selection unit.
  7. 제3항에 있어서,The method of claim 3,
    상기 오염 측정센서부는,The pollution measuring sensor unit,
    복수의 상기 오염측정부; 및A plurality of pollution measuring units; And
    상기 복수의 오염 측정부들과 연결되고 상기 제어부의 제어를 받아 측정전압 공급부로부터 공급되는 측정전압을 선택적으로 오염측정부로 공급하는 측정센서 선택부를 포함하는 것을 특징으로 하는 실시간 다항목 중금속 분석 장치.And a measurement sensor selection unit connected to the plurality of pollution measurement units and selectively supplying the measurement voltage supplied from the measurement voltage supply unit to the pollution measurement unit under the control of the control unit.
  8. 제1항에 있어서,The method of claim 1,
    현장의 물 공급관으로부터 물을 시료로서 공급받고, 공급되는 시료의 전기전도도 및 pH를 측정하여 출력하고, 상기 시료를 안정화시킨 후 상기 시료 공급부로 제공하는 시료 안정화부를 더 포함하는 것을 특징으로 하는 실시간 다항목 중금속 분석 장치.Receiving water as a sample from the field water supply pipe, measuring and outputting the electrical conductivity and pH of the supplied sample, and stabilizing the sample, further comprising a sample stabilization unit for providing the sample supply unit Item Heavy Metal Analysis Device.
  9. 제8항에 있어서,The method of claim 8,
    상기 시료 안정화부는,The sample stabilization unit,
    상기 물의 전기전도도 및 pH를 측정하는 전기전도도 센서부 및 pH 센서부를 포함하여 전기전도도 및 pH를 측정하여 출력하는 시료 상태 측정부 및 상기 측정된 전기전도도 및 pH에 대응하는 상기 제어모듈의 제어를 받아 측정할 상기 시료에 측정 보조용액을 공급하는 측정 보조용액 공급부를 포함하는 제1안정화부; 및Under the control of the control module corresponding to the measured electrical conductivity and pH and the sample state measuring unit for measuring and outputting the electrical conductivity and pH, including an electrical conductivity sensor and pH sensor for measuring the electrical conductivity and pH of the water A first stabilizing unit including a measurement auxiliary solution supply unit supplying a measurement auxiliary solution to the sample to be measured; And
    상기 제어모듈의 제어를 받아 상기 제1안정화부에서 1차 안정화된 시료에 잠겨 상기 시료에 회전력을 가하여 시료의 기포를 제거하는 제2안정화부를 포함하되,Under the control of the control module includes a second stabilization unit is locked to the first stabilized sample in the first stabilization unit to apply a rotational force to the sample to remove the bubbles of the sample,
    상기 제어모듈은,The control module,
    상기 시료 안정화부로부터 입력되는 전기전도도 및 pH에 따라 시료 안정화부를 제어하여 시료를 안정화시킨 후 시료 공급부를 제어하여 상기 안정화된 시료를 상기 시료 측정부로 공급시키고 이에 응답하여 시료 측정부로부터 중금속 검출 정보를 입력받아 중금속 종류 및 중금속 검출량을 포함하는 측정 정보를 획득하여 출력하는 시료 안정화 제어부를 더 포함하는 것을 특징으로 하는 시료 안정화 기능을 가지는 실시간 다항목 중금속 분석 장치.After stabilizing the sample by controlling the sample stabilization unit according to the electrical conductivity and pH input from the sample stabilization unit, and controlling the sample supply unit to supply the stabilized sample to the sample measuring unit in response to the heavy metal detection information from the sample measuring unit Real-time multi-item heavy metal analysis device having a sample stabilization function characterized in that it further comprises a sample stabilization control unit for receiving and outputting the measurement information including the heavy metal type and heavy metal detection amount received.
  10. 제1항에 있어서,The method of claim 1,
    상기 물 공급관은 해수를 공급하는 해수 공급관, 지하수를 공급하는 지하수 공급관, 폐수 처리 방류관, 상수원수 공급관 및 주거지역 관망의 물 공급관 중 어느 하나인 것을 특징으로 하는 실시간 다항목 중금속 분석 장치.The water supply pipe is a real-time multi-item heavy metal analysis device, characterized in that any one of the water supply pipe for supplying sea water, ground water supply pipe for supplying ground water, wastewater treatment discharge pipe, water supply pipe and residential area network.
  11. 제9항에 있어서,The method of claim 9,
    전기전도도 및 pH 값에 따른 측정 보조용액 공급량을 정의하는 보조용액 투입 DB와, 산화환원 전원값 범위별 중금속 및 중금속별 오염 측정센서부 정보를 정의하는 중금속 분류 DB를 저장하는 저장부;A storage unit storing a secondary metal input DB defining a measurement auxiliary solution supply amount according to electric conductivity and pH value, and a heavy metal classification DB defining heavy metal and pollution measurement sensor unit information for each heavy metal by redox power supply value range;
    상기 시료 상태 측정부, 측정 보조용액 공급부, 반응센서부 및 다수의 오염 측정센서부들과 연결되어 데이터를 송수신하는 인터페이스부; 및An interface unit connected to the sample state measurement unit, a measurement auxiliary solution supply unit, a reaction sensor unit, and a plurality of pollution measurement sensor units to transmit and receive data; And
    상기 선택된 중금속에 대한 정보 및 상기 시료에 포함된 중금속량을 표시하는 디스플레이부를 더 포함하되,Further comprising a display unit for displaying information on the selected heavy metal and the amount of heavy metal contained in the sample,
    상기 시료 안정화 제어부는,The sample stabilization control unit,
    상기 인터페이스부를 통해 시료 상태 측정부로부터 전기전도도 및 pH값을 입력받고, 상기 보조용액 투입 DB를 참조하여 입력된 전기전도도 및 pH 값에 대응하는 측정 보조용액 투입량을 결정하고, 결정된 측정 보조용액 투입량만큼 상기 측정 보조용액 공급부를 제어하여 측정 보조용액을 상기 시료에 투입하여 안정화시키고, 상기 인터페이스부를 통해 반응센서부로부터 입력된 산화환원 전원값을 입력받고, 상기 중금속 분류 DB를 참조하여 입력된 산화환원 전원값에 대응하는 중금속 종류를 분류하고, 분류된 중금속 종류에 대응하는 오염 측정센서부를 선택하여 시료에 포함된 해당 중금속량을 측정하여 상기 디스플레이부에 표시하는 것을 특징으로 하는 실시간 다항목 중금속 분석 장치.Receiving the electrical conductivity and pH value from the sample state measuring unit through the interface unit, and determines the measurement auxiliary solution input corresponding to the electrical conductivity and pH value input with reference to the auxiliary solution input DB, and as determined The measurement auxiliary solution supply part is controlled to stabilize the measurement auxiliary solution by adding it to the sample, receiving the redox power value input from the reaction sensor part through the interface part, and inputting the redox power source with reference to the heavy metal classification DB. And classifying the heavy metal type corresponding to the value, selecting the contamination measuring sensor part corresponding to the classified heavy metal type, and measuring the amount of the heavy metal included in the sample and displaying the amount on the display.
  12. 제9항에 있어서,The method of claim 9,
    상기 제2안정화부는 회전 임펠라인 것을 특징으로 하는 실시간 다항목 중금속 분석 장치.The second stabilizing unit is a real-time multi-item heavy metal analysis device, characterized in that the rotating impeller.
  13. 제1항에 있어서,The method of claim 1,
    상기 측정센서 중 적어도 하나는,At least one of the measuring sensors,
    전극;electrode;
    금 및 터티오펜 모노머를 포함하여 상기 전극상에 도금되는 다공성 금-터티오펜 모노머 복합층을 포함하여 구성되어 6가 크롬 이온에 대한 오염도를 선택적으로 측정하여 출력하는 것을 특징으로 하는 실시간 다항목 중금속 분석 장치.Real-time multi-item heavy metal analysis comprising a porous gold-terthiophene monomer composite layer plated on the electrode including gold and terthiophene monomers to selectively measure and output the contamination degree for hexavalent chromium ions Device.
  14. 제13항에 있어서,The method of claim 13,
    상기 터티오펜 모노머는 3-(2-아미노피리미딜)-2,2:5,2-터티오펜(APT)인 것을 특징으로 하는 실시간 다항목 중금속 분석 장치.The terthiophene monomer is 3- (2-aminopyrimidyl) -2,2: 5,2-terthiophene (APT), characterized in that the real-time multi-item heavy metal analysis device.
  15. 제1항에 있어서,The method of claim 1,
    상기 측정센서는,The measuring sensor,
    전극; 및electrode; And
    상기 전극 상에 형성되며 아미노피리미딜 터싸이오펜 모노머 및 산화그래핀을 포함하여 전해중합시킨 고분자 코팅층으로 이루어지는 것을 특징으로 실시간 다항목 중금속 분석 장치.A real-time multi-item heavy metal analysis device formed on the electrode, characterized in that consisting of a polymer coating layer electrolytically polymerized, including aminopyrimidyl terthiophene monomer and graphene oxide.
  16. 측정할 시료가 공급되면 반응센서부를 통해 공급되는 시료의 산화환원공급전원을 가하여 발생하는 산화환원에 의한 산화환원전류값을 측정하고, 측정된 산화환원전류값과 이전 산화환원전류값을 비교하여 변화량이 미리 설정된 정상범위를 초과하는 경우 정상범위를 초과할 때의 산화환원공급전원값을 측정하는 산화환원공급전원값 측정 과정;When the sample to be measured is supplied, the redox current value measured by the redox generated by applying the redox supply power of the sample supplied through the reaction sensor unit is measured, and the change amount is compared by comparing the measured redox current value with the previous redox current value. A redox supply power value measuring step of measuring a redox supply power value when the normal range is exceeded when the preset normal range is exceeded;
    저장부의 산화환원공급전원별 오염물질 DB를 참조하여 상기 측정된 산화환원공급전원값에 대응하는 오염물질을 판별 및 분류하는 오염물질 분류 과정;A pollutant classification process of identifying and classifying a pollutant corresponding to the measured redox supply power value by referring to a pollutant DB for each redox supply power source of a storage unit;
    상기 판별되어 분류된 오염물질을 측정할 수 있는 오염 측정부를 식별하고, 측정센서 선택부를 제어하여 상기 식별된 오염 측정부로 측정전압을 공급하는 오염 측정부 선택 과정; 및A pollution measuring unit selecting process of identifying a pollution measuring unit capable of measuring the identified and classified pollutants, and controlling a measuring sensor selecting unit to supply a measurement voltage to the identified pollution measuring unit; And
    상기 측정전압이 공급된 오염 측정부를 통해 상기 판별 및 분류된 오염물질의 오염도를 측정하는 오염 측정 과정을 포함하는 것을 특징으로 하는 실시간 다항목 중금속 분석 방법.Real-time multi-item heavy metal analysis method comprising a pollution measurement process for measuring the contamination level of the identified and classified pollutants through the pollution measurement unit supplied with the measurement voltage.
  17. 제16항에 있어서,The method of claim 16,
    상기 반응센서 및 측정센서들이 구성되는 수 흐름 경로를 가지는 측정셀의 앞단에 구성되어 상기 측정셀의 수 흐름 경로로 공급할 시료를 안정화시켜 공급하는 시료 안정화 과정을 더 포함하되,Further comprising a sample stabilization process for stabilizing the sample to be supplied to the water flow path of the measuring cell is configured in front of the measuring cell having the water flow path is composed of the reaction sensor and the measurement sensors,
    상기 시료 안정화 과정을 통해 안정화되어 유입되는 시료에 대해 상기 산화환원전원값 측정 과정 이후의 과정을 수행하는 것을 특징으로 하는 실시간 다항목 중금속 분석 방법.Real-time multi-item heavy metal analysis method characterized in that to perform a process after the process of measuring the redox power value for the sample that is stabilized through the sample stabilization process.
  18. 제16항에 있어서,The method of claim 16,
    상기 오염물질 분류 과정은,The pollutant classification process,
    상기 산화환원전류 변화량이 수 정상 범위의 값이면 상기 오염 측정부를 유휴상태로 설정하는 수 정상 유휴상태 설정 단계; 및Setting a normal idle state to set the pollution measuring unit to an idle state if the amount of change in the redox current is within a normal range; And
    상기 산화환원전류 변화량이 수 정상 범위를 벗어나면 저장부의 산화환원공급전원별 오염물질 DB를 참조하여 상기 측정된 산화환원공급전원값이 속하는 산화환원공급전원 범위에 대응하는 오염물질을 판별 및 분류하는 오염물질 분류 단계를 포함하는 것을 특징으로 하는 실시간 다항목 중금속 분석 방법When the amount of change in the redox current falls outside the normal range, the pollutant corresponding to the redox supply power value measured by the redox supply power value is determined and classified by referring to the pollutant DB for each redox supply power source in the storage unit. Real-time multi-item heavy metal analysis method comprising the step of classifying pollutants
  19. 제18항에 있어서,The method of claim 18,
    상기 오염물질 분류단계는,The pollutant classification step,
    상기 산화환원공급전원값이 -1.3V ~-0.9V 범위 내에 있으면 오염물질인 아연(Zn)에 의한 오염도를 측정하는 제1오염측정부를 선택하는 아연 오염측정부 선택 단계;A zinc pollution measurement unit selecting step of selecting a first pollution measurement unit to measure a pollution level by zinc (Zn) as a pollutant when the redox supply power value is within a range of -1.3V to -0.9V;
    상기 산화환원공급전원값이 -0.9V ~-0.3V 범위 내에 있으면 오염물질인 카드뮴(Cd)에 의한 오염도를 측정하는 제2오염측정부를 선택하는 카드뮴 오염측정부 선택 단계;A cadmium contamination measuring unit selecting step of selecting a second pollution measuring unit measuring a pollution level by cadmium (Cd) as a pollutant when the redox supply power value is within a range of −0.9 V to −0.3 V;
    상기 산화환원공급전원값이 -0.3 ~ 0.2V 범위 내에 있으면 오염물질인 납(Pb) 및 구리(Cu)에 의한 오염도를 측정하는 제3오염측정부를 선택하는 납 및 구리 오염측정부 선택 단계;Selecting a lead and copper contamination measurement unit for selecting a third pollution measurement unit for measuring a contamination level by lead (Pb) and copper (Cu) as pollutants if the redox supply power value is within a range of −0.3 to 0.2V;
    상기 산화환원공급전원값이 0.2V ~ 0.5V 범위 내에 있으면 오염물질인 수은(Hg)에 의한 오염도를 측정하는 제4오염측정부를 선택하는 수은 오염측정부 선택 단계; 및A mercury contamination measurement unit selecting step of selecting a fourth pollution measurement unit that measures a pollution level by mercury (Hg) as a pollutant when the redox supply power value is within a range of 0.2V to 0.5V; And
    상기 산화환원전원값을 포함하지 않는 오염측정부들에 대해 유휴상태를 설정하는 수 이상 유휴상태 설정 단계를 포함하는 것을 특징으로 하는 실시간 다항목 중금속 분석 방법.Real-time multi-item heavy metal analysis method comprising the step of setting the idle state more than a number of idle state for the pollution measurement unit that does not include the redox power value.
  20. 제17항에 있어서,The method of claim 17,
    상기 시료 안정화 과정은,The sample stabilization process,
    제어모듈이 전기전도도 및 pH를 측정하고, 측정된 전기전도도 및 pH에 대응하는 측정 보조용액의 투입량을 결정하여 상기 시료에 투입하는 제1안정화 과정; 및A first stabilizing process of the control module measuring electrical conductivity and pH, determining an input amount of a measurement auxiliary solution corresponding to the measured electrical conductivity and pH, and inputting the sample to the sample; And
    제어모듈의 제어를 받아 상기 시료에 잠기도록 구성된 제2안정화부를 구동하여 상기 시료에 회전력을 가하여 상기 시료의 기포를 제거하는 제2안정화 과정을 포함하는 것을 특징으로 하는 시료 안정화 기능을 가지는 실시간 중금속 분석 방법.Real-time heavy metal analysis having a sample stabilization function comprising a second stabilization process for driving the second stabilization unit configured to be immersed in the sample under the control of the control module to apply a rotational force to the sample to remove bubbles of the sample Way.
  21. 제13항에 있어서,The method of claim 13,
    실시간 다항목 중금석 분석 장치의 센서 제조 방법에 있어서,In the sensor manufacturing method of the real-time multi-item medulla analysis device,
    전극 상에 금과 니켈 및 APT를 전극 상에 전기적으로 전착시키는 전착 과정; 및An electrodeposition process for electrically electrodepositing gold, nickel and APT onto the electrode; And
    상기 전착된 전극 상에서 니켈을 선택적으로 제거시키는 니켈 제거 과정을 포함하여 생성되는 것을 특징으로 하는 실시간 다항목 중금석 분석 장치의 센서 제조 방법.And a nickel removal process for selectively removing nickel on the electrodeposited electrode.
  22. 제21항에 있어서,The method of claim 21,
    상기 전착과정은,The electrodeposition process is,
    전극 상에 1 x 10-2M 염화 금·3수화물(HAuCl4·3H2O)과 1.5 x 10-2M 황화 니켈·6수화물 (NiSO4·6H2O), 그리고 디메탈술폭사이드(Dimethylsulfoxide: DMSO)에 용해된 1 x 10-2M의 APT 10 μL을 1.5M의 황산 용액을 생성하는 황산 용액 생성 단계; 및1 x 10 -2 M gold chloride trihydrate (HAuCl 4 3 H 2 O), 1.5 x 10 -2 M nickel sulfide hexahydrate (NiSO 4 6 H 2 O), and dimetalsulfoxide (Dimethylsulfoxide) : Sulfuric acid solution production step of producing 10 M L of 1 x 10 -2 M APT dissolved in DMSO) to 1.5 M sulfuric acid solution; And
    상기 황산 용액에 넣고 일정한 전류를 걸어주어 금, 니켈 및 APT를 한꺼번에 도금하는 도금 단계를 포함하는 것을 특징으로 하는 실시간 다항목 중금석 분석 장치의 센서 제조 방법.And a plating step of plating gold, nickel, and APT at once by applying a constant current to the sulfuric acid solution.
  23. 제21항에 있어서,The method of claim 21,
    상기 니켈 제거 과정은,The nickel removal process,
    금, 니켈 및 APT가 도금된 전극 상에 전기화학적으로 니켈을 선택적으로 제거하여 다공성 금-APT 복합 구조를 만드는 것을 특징으로 하는 실시간 다항목 중금석 분석 장치의 센서 제조 방법.A method for manufacturing a sensor of a real-time multiitem lattice analysis device, characterized in that a porous gold-APT composite structure is formed by selectively removing nickel electrochemically on an electrode plated with gold, nickel and APT.
  24. 제22항에 있어서,The method of claim 22,
    시료 용액의 pH를 1 내지 2로 조절하는 PH 조절 과정을 더 포함하고,Further comprising a pH control process for adjusting the pH of the sample solution to 1 to 2,
    상기 전착과정은,The electrodeposition process is,
    상기 전류를 1 내지 5μA로 조절하는 전류 조절 단계를 더 포함하고,Further comprising a current adjusting step of adjusting the current to 1 to 5μA,
    상기 전류가 조절된 상태에서 상기 황산 용액 생성 단계 및 도금 단계를 수행하는 것을 특징으로 하는 실시간 다항목 중금석 분석 장치의 센서 제조 방법.The method of manufacturing a sensor of a real-time multi-item lapis lazuli analysis device, characterized in that for performing the sulfuric acid solution generation step and the plating step in the state that the current is controlled.
  25. 제22항에 있어서,The method of claim 22,
    시료 용액의 pH를 1.5로 조절하는 PH 조절 과정을 더 포함하고,Further comprising a pH control process for adjusting the pH of the sample solution to 1.5,
    상기 전착과정은,The electrodeposition process is,
    상기 전류를 2 μA로 조절하는 전류 조절 단계를 더 포함하고,Further comprising a current adjusting step of adjusting the current to 2 μA,
    상기 전류가 조절된 상태에서 상기 황산 용액 생성 단계 및 도금 단계를 수행하는 것을 특징으로 하는 실시간 다항목 중금석 분석 장치의 센서 제조 방법.The method of manufacturing a sensor of a real-time multi-item lapis lazuli analysis device, characterized in that for performing the sulfuric acid solution generation step and the plating step in the state that the current is controlled.
PCT/KR2016/008179 2015-10-13 2016-07-27 Real-time multiple-item heavy metal analysis apparatus, real-time multiple-item heavy metal analysis method, and method for producing sensor of heavy metal analysis apparatus WO2017065395A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2015-0142823 2015-10-13
KR1020150142824A KR101652086B1 (en) 2015-10-13 2015-10-13 Apparatus for real-time analysis of heavy metal with sample stabilizing function and heavy metal analyzing method using the apparatus
KR1020150142823A KR101631186B1 (en) 2015-10-13 2015-10-13 Apparatus and method for simultaneously detecting water pollutant through selective electrode-activation
KR10-2015-0142824 2015-10-13
KR10-2015-0143795 2015-10-15
KR20150143795 2015-10-15

Publications (1)

Publication Number Publication Date
WO2017065395A1 true WO2017065395A1 (en) 2017-04-20

Family

ID=58518379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008179 WO2017065395A1 (en) 2015-10-13 2016-07-27 Real-time multiple-item heavy metal analysis apparatus, real-time multiple-item heavy metal analysis method, and method for producing sensor of heavy metal analysis apparatus

Country Status (1)

Country Link
WO (1) WO2017065395A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107247083A (en) * 2017-06-08 2017-10-13 北京农业信息技术研究中心 A kind of heavy metals in farmland pollution on-line monitoring early warning and real time processing system and method
CN110967334A (en) * 2019-12-18 2020-04-07 成都理工大学 Underground water heavy metal monitoring method and device
CN111257316A (en) * 2020-02-11 2020-06-09 军事科学院系统工程研究院卫勤保障技术研究所 Portable nanometer detector
CN112557380A (en) * 2020-07-16 2021-03-26 虞乐 Environment-friendly automatic heavy metal residue detection method
CN115308284A (en) * 2022-08-10 2022-11-08 江苏省农业科学院 Cadmium ion detection electrode based on electrochemiluminescence, preparation method and application thereof
CN117401869A (en) * 2023-12-11 2024-01-16 广东车海洋环保科技有限公司 Wastewater recovery intelligent detection system of self-service car washer and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032084A2 (en) * 2001-10-05 2003-04-17 Superior Micropowders Llc Low viscosity precursor compositions and methods for the deposition of conductive electronic features
KR20120109864A (en) * 2011-03-28 2012-10-09 (주)한서엔지니어링 Monitering system of groundwater and soil and monitering method of the same
KR101437496B1 (en) * 2012-11-12 2014-09-04 대한민국 Portable heavy metal detector sensor
KR101525526B1 (en) * 2014-11-28 2015-06-03 국민대학교산학협력단 Method for manufacturing high sensitive hybrid sensor chip for sensing heavy metal in water and portable water quality monitoring apparatus using the same
KR101557458B1 (en) * 2015-01-30 2015-10-05 부산대학교 산학협력단 Sensor for detecting heavy metal ions and detecting method of heavy metal ions using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032084A2 (en) * 2001-10-05 2003-04-17 Superior Micropowders Llc Low viscosity precursor compositions and methods for the deposition of conductive electronic features
KR20120109864A (en) * 2011-03-28 2012-10-09 (주)한서엔지니어링 Monitering system of groundwater and soil and monitering method of the same
KR101437496B1 (en) * 2012-11-12 2014-09-04 대한민국 Portable heavy metal detector sensor
KR101525526B1 (en) * 2014-11-28 2015-06-03 국민대학교산학협력단 Method for manufacturing high sensitive hybrid sensor chip for sensing heavy metal in water and portable water quality monitoring apparatus using the same
KR101557458B1 (en) * 2015-01-30 2015-10-05 부산대학교 산학협력단 Sensor for detecting heavy metal ions and detecting method of heavy metal ions using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107247083A (en) * 2017-06-08 2017-10-13 北京农业信息技术研究中心 A kind of heavy metals in farmland pollution on-line monitoring early warning and real time processing system and method
CN107247083B (en) * 2017-06-08 2023-08-04 北京农业信息技术研究中心 Online monitoring, early warning and real-time processing system and method for farmland heavy metal pollution
CN110967334A (en) * 2019-12-18 2020-04-07 成都理工大学 Underground water heavy metal monitoring method and device
CN111257316A (en) * 2020-02-11 2020-06-09 军事科学院系统工程研究院卫勤保障技术研究所 Portable nanometer detector
CN112557380A (en) * 2020-07-16 2021-03-26 虞乐 Environment-friendly automatic heavy metal residue detection method
CN115308284A (en) * 2022-08-10 2022-11-08 江苏省农业科学院 Cadmium ion detection electrode based on electrochemiluminescence, preparation method and application thereof
CN117401869A (en) * 2023-12-11 2024-01-16 广东车海洋环保科技有限公司 Wastewater recovery intelligent detection system of self-service car washer and control method thereof

Similar Documents

Publication Publication Date Title
WO2017065395A1 (en) Real-time multiple-item heavy metal analysis apparatus, real-time multiple-item heavy metal analysis method, and method for producing sensor of heavy metal analysis apparatus
US6645364B2 (en) Electroplating bath control
US20060266653A1 (en) In-situ profile measurement in an electroplating process
US20030169058A1 (en) System to measure the state of corrosion of buried metallic structures continuously in time and in length
WO2018110806A1 (en) Hydrogen ion concentration measurement system having automatic calibration function
US20100306886A1 (en) Probe Microscope
US7427346B2 (en) Electrochemical drive circuitry and method
CN108029198A (en) The method that coating is formed on electronics or electrical equipment
Silva et al. Development of Hg-electroplated-iridium based microelectrode arrays for heavy metal traces analysis
CN1266487A (en) Measuring additive concentration in an electroplating bath
JP2922766B2 (en) Monitoring method of plating bath components
CA2033218A1 (en) Method and apparatus for determining interactions due to direct currents on adjacent buried metal structures
WO2021066413A1 (en) Apparatus for measuring concentration of additive degradation product contained in plating liquid
EP0597475B1 (en) Method of monitoring major constituents in plating baths containing codepositing constituents
WO2021066412A1 (en) Method for measuring concentration of additive breakdown products included in plating solution
Silva et al. Mercury-electroplated-iridium microelectrode array based sensors for the detection of heavy metal ultratraces: optimization of the mercury charge
Wang et al. Anodic stripping voltammetry in a flow-through cell with fixed mercury film glassy carbon disc electrodes part II. the differential mode (DASV)
WO2021066415A1 (en) Cell for measuring concentration of additive breakdown production in plating solution
Le Drogoff et al. Effect of the Microelectrode Geometry on the Diffusion Behavior and the Electroanalytical Performance of Hg‐Electroplated Iridium Microelectrode Arrays Intended for the Detection of Heavy Metal Traces
CN108333391A (en) A kind of surface impedance imaging test method and device based on atomic force microscope
JP2006138770A (en) Solution analyzing method and solution analyzer
CN114609028A (en) Portable device and method for in-situ detection of corrosion resistance of organic coating
WO2003033993A1 (en) A kelvin probe instrument
Spelzhausen et al. Parameter Optimization and Improvement of Space Charge Measurements with the Laser Induced Pressure Pulse Method
Hema et al. Development, analysis and evaluation of arsenic (III) sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855613

Country of ref document: EP

Kind code of ref document: A1