WO2017065195A1 - Electrode for brain wave measurement - Google Patents

Electrode for brain wave measurement Download PDF

Info

Publication number
WO2017065195A1
WO2017065195A1 PCT/JP2016/080311 JP2016080311W WO2017065195A1 WO 2017065195 A1 WO2017065195 A1 WO 2017065195A1 JP 2016080311 W JP2016080311 W JP 2016080311W WO 2017065195 A1 WO2017065195 A1 WO 2017065195A1
Authority
WO
WIPO (PCT)
Prior art keywords
comb
base material
shaped base
electrode
electroencephalogram measurement
Prior art date
Application number
PCT/JP2016/080311
Other languages
French (fr)
Japanese (ja)
Inventor
梓 森本
敬造 奥井
Original Assignee
ニッタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016201052A external-priority patent/JP2017074369A/en
Application filed by ニッタ株式会社 filed Critical ニッタ株式会社
Priority to CN201680058264.XA priority Critical patent/CN108135525A/en
Publication of WO2017065195A1 publication Critical patent/WO2017065195A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]

Definitions

  • the present invention relates to an electroencephalogram measurement electrode.
  • the conventional electroencephalogram measurement electrode a type in which a conductive paste is interposed between the subject's scalp and the electrode is often used.
  • the conductive paste has the effect of fixing the position of the measurement site, but it requires work removal because it requires removal after measurement. .
  • an electrode that can secure a low contact impedance without using a conductive paste.
  • a dry electrode for example, a multi-pin type dry electrode (for example, Non-Patent Document 1) used by attaching to a hair band or a multi-pin type dry electrode (for example, Non-Patent Document 2) used by attaching to a head cap has been proposed. ing.
  • the multi-pin is made of a hard metal.
  • an electroencephalogram measurement electrode for example, Patent Document 1
  • Patent Document 2 an electroencephalogram measurement electrode in which a spherical tip can be expanded, contracted and swiveled
  • Non-Patent Documents 1 and 2 have a problem that the test subject feels uncomfortable and the burden on the scalp is large because the multi-pin is made of a hard metal.
  • the resistance value rises due to the hair becoming an obstacle, so the accurate result cannot be obtained at the hair portion. If the influence of hair can be reduced as much as possible, the accuracy of electroencephalogram measurement can be improved even in the hair portion.
  • the present invention provides an electrode for measuring an electroencephalogram that can contact the scalp without using an electrically conductive paste to sufficiently ensure electrical conduction, reduce the burden on the subject, and measure the electroencephalogram with high accuracy even in the hair portion. For the purpose.
  • An electroencephalogram measurement electrode is an electroencephalogram measurement electrode comprising a comb-shaped base material made of an elastic body and a structure formed on the comb-shaped base material, wherein the comb-shaped base material includes a support portion, A plurality of comb teeth arranged in a row from the support portion, and the structure is formed on one side surface of the plurality of comb teeth along the comb teeth row, It includes a plurality of nanocarbon materials, wherein the plurality of nanocarbon materials form a network structure connected to each other and are fixed to the comb-shaped base material.
  • the electroencephalogram measurement electrode includes a comb-shaped base material made of an elastic body, and one side surface of the plurality of comb teeth along the comb tooth row in the comb-shaped base material contacts the scalp of the subject. By combing the hair with the plurality of comb teeth, the predetermined one side can contact the scalp while avoiding the hair.
  • a structure having a network structure in which a plurality of nanocarbon materials are connected is formed on one side surface.
  • the electroencephalogram measurement electrode makes contact with the scalp without using a conductive paste, and ensures sufficient conduction in the hair, thus producing an electroencephalogram with high accuracy. Can be measured. Since the elastic body has flexibility and cushioning properties, even when pressure is applied, it does not give the subject discomfort such as pain, and the burden can be reduced.
  • FIG. 4A is an SEM image of CNT-coated paper
  • FIG. 4A is an image at 50 ⁇
  • FIG. 4B is an image at 10000 ⁇ .
  • FIG. 4A is an SEM image of CNT-coated paper
  • FIG. 4A is an image at 50 ⁇
  • FIG. 4B is an image at 10000 ⁇ .
  • FIG. 4A is an SEM image of CNT-coated paper
  • FIG. 4A is an image at 50 ⁇
  • FIG. 4B is an image at 10000 ⁇ .
  • an electroencephalogram measurement electrode 10 includes a comb-shaped base material 12 having a support portion 14 and a comb tooth row 17 including a plurality of comb teeth 16 protruding in a row from the support portion 14.
  • a scalp contact surface 18 one side surface of the plurality of comb teeth 16 along the comb tooth row 17 in the comb-shaped base material 12 serves as a scalp contact surface 18 (see FIG. 2) that contacts the scalp.
  • the plurality of comb teeth 16 have a tip 16b thinner than a base end 16a in the thickness direction, and incline toward the opposite side of the scalp contact surface 18 from the middle in the length direction.
  • the scalp contact surface 18 is configured by providing a structure (not shown) on one side surface of the plurality of comb teeth 16 along the comb tooth row 17. The structure is exposed not on the inside of the comb-shaped base material 12 but on the surface. Since the structure has conductivity, the scalp contact surface 18 is conductive. A conductive path is formed in the comb-shaped base material 12 by the structure.
  • the structure is formed on at least one side surface of the plurality of comb teeth 16 along the comb teeth row 17 in the comb-shaped base material 12.
  • a structure is also formed on the surface of the support portion 14, it is possible to ensure conduction with one side surface of the plurality of comb teeth 16.
  • the structure may be provided on the remaining surface of the comb-shaped base material 12 such as the other side surface of the plurality of comb teeth 16 as long as the interval between the adjacent comb teeth 16 in the comb tooth row 17 can be maintained.
  • the structure not shown is made of a nanocarbon material.
  • a carbon nanotube hereinafter referred to as CNT.
  • the plurality of CNTs are connected to each other to form a structure having a network structure, and are fixed to the comb-shaped base material 12.
  • the connection here includes physical connection (simple contact). Since CNTs themselves have high conductivity, high conductivity can be maintained even after becoming a structure having a network structure of a plurality of CNTs.
  • Such a structure having high conductivity is suitable as a conductive path in the electroencephalogram measurement electrode 10.
  • the structure in the present embodiment is formed so as to be exposed on the surface of the comb-shaped base material 12, the conductive path is also formed on the surface instead of the inside of the comb-shaped base material 12.
  • a structure having a CNT network structure is formed by using van der Waals force of CNT without using an adhesive or the like, and one side surface of the plurality of comb teeth 16 along the comb teeth row 17 in the comb-shaped base material 12. Can be fixed to.
  • a structure having a network structure of CNTs is formed by mixing a general adhesive or the like with CNTs within a range that does not impair the conductivity of CNTs. It may be fixed to one side of the comb teeth 16. In any case, the CNTs are directly attached to one side surface of the plurality of comb teeth 16 along the comb tooth row 17 in the comb-shaped base material 12.
  • the adhesive when the adhesive is not used, the surface of the CNT fiber itself is not covered with the adhesive. Therefore, a structure having a network structure is formed by connecting CNTs with no inclusions. Since the high conductivity inherent in CNT is not impaired at all, the electroencephalogram measurement electrode 10 in which such a structure is formed on the comb-shaped base material 12 sufficiently exhibits the high conductivity inherent in CNT.
  • CNT is manufactured by a general arc discharge method, a vapor phase growth method, a laser evaporation method, or the like.
  • a CNT produced by a vapor phase growth method using a catalyst containing a metal such as Co and Mg and using a gas containing CO (carbon monoxide) and H 2 as a raw material can be used.
  • CNTs can be used not only in a tube shape but also those whose shape has been changed by heating or the like.
  • the comb-shaped base material 12 is formed of an elastic body having flexibility and cushioning properties.
  • the comb-shaped base material 12 is formed of, for example, a thermoplastic elastomer. More specifically, examples of the thermoplastic elastomer include urethane-based thermoplastic elastomer (TPU).
  • the comb-shaped base material 12 can have an arbitrary size suitable for the electroencephalogram measurement.
  • the support portion 14 can have a width d1 of about 10 to 15 mm, a length d2 of about 10 to 20 mm, and a thickness d3 shown in FIG. 2 of about 2.0 to 3.0 mm.
  • the comb teeth 16 can have a length d4 of about 15 to 30 mm and a width d5 of about 0.5 to 1.5 mm.
  • the distance d6 between the adjacent comb teeth 16 can be set to, for example, about 1.0 to 2.0 mm.
  • the tips 16b of the plurality of comb teeth 16 are preferably rounded and have no corners.
  • the number of the comb teeth 16 in the comb-shaped base material 12 is not limited, and may be set as appropriate according to the size of the support portion 14 and the comb teeth 16.
  • the electroencephalogram measurement electrode 10 includes the comb-shaped base material 12 having the comb teeth row 17 including the plurality of comb teeth 16, and at least one of the plurality of comb teeth 16 along the comb teeth row 17. And a structure formed on the side surface.
  • the comb-shaped base material 12 is made of an elastic body, and the structure is made of a plurality of nanocarbon materials. Since the comb-shaped base material 12 and the structure are both non-metallic, the electroencephalogram measurement electrode 10 of this embodiment does not include a metal member.
  • the electroencephalogram measurement electrode 10 produces a dispersion liquid containing CNTs, and uses the dispersion liquid to form one side surface of the plurality of comb teeth 16 along the comb teeth row 17 in the comb-shaped base material 12 (hereinafter referred to as a predetermined one). It can be manufactured by forming a structure on one side).
  • CNTs Prior to preparation of the dispersion, CNTs are pretreated with a mixed acid.
  • a mixed acid for example, a 1: 1 mixed solvent of nitric acid and sulfuric acid can be used.
  • the CNTs After adding CNTs to the mixed solvent, the CNTs are isolated and dispersed by stirring and then irradiating with ultrasonic waves. Thereafter, the CNT is taken out by filtration under reduced pressure, and the CNT surface is neutralized using ammonia water or the like. And after washing
  • the powdered CNTs that have been pretreated as described above are added to a solvent so as to have a concentration of, for example, 0.01 wt%, and ultrasonic waves are applied to disperse the CNTs to obtain a dispersion.
  • a solvent N, N-dimethylformamide (DMF), various alcohols, and the like can be used.
  • Appropriate additives such as a dispersant, a surfactant, and an adhesive may be added to this dispersion.
  • the additive coats the fiber surface of the CNT to obtain stronger adhesion, but may impair the original conductivity of the CNT.
  • the comb-shaped base material 12 made of an elastic body is immersed in the dispersion.
  • a commercially available resin comb cut into a predetermined size can be used as the comb-shaped base material 12 made of an elastic body.
  • the CNT When an additive such as an adhesive is not contained in the dispersion liquid in which the comb-shaped base material 12 is immersed, the CNT is at least applied to the comb teeth row 17 by van der Waals force acting between the comb-shaped base material 12.
  • a structure having a CNT network structure is formed on one side surface of the plurality of comb teeth 16 along the comb teeth 16, and further directly attached to a predetermined one side surface of the comb-shaped base material 12.
  • a force such as an adhesive is taken into consideration in addition to the above van der Waals force. In this case, the CNTs adhere more strongly to the predetermined one side surface of the comb-shaped base material 12.
  • CNTs Prior to the immersion in the dispersion, when a predetermined region of the surface of the comb-shaped base material 12 is pretreated, CNTs can be preferentially attached to a predetermined one side surface of the comb-shaped base material 12. .
  • surface treatment can be applied to one side surface of the plurality of comb teeth 16 along the comb tooth row 17 in the comb-shaped base material 12 to promote adhesion of CNTs to the one side surface.
  • the comb-shaped base material 12 is pulled up from the dispersion and dried to attach and fix the CNTs on the surface of the comb-shaped base material 12.
  • a structure having a network structure in which CNTs are connected to each other is formed on one side of the plurality of comb teeth 16 along at least the comb teeth row 17 in the comb-shaped base material 12.
  • the CNTs are directly attached to at least one side surface of the plurality of comb teeth 16 along the comb-tooth row 17 in the comb-shaped base material 12 to form a structure. To do. Therefore, the electroencephalogram measurement electrode 10 having a structure formed on one predetermined side surface of the comb-shaped base material 12 can be easily formed.
  • the electroencephalogram measurement electrode 10 of the present embodiment can be used as a headset, for example, by attaching a plurality of headbands or head caps so that the scalp contact surface 18 is in contact with the scalp.
  • the plurality of electroencephalogram measurement electrodes 10 included in the headset do not necessarily have a uniform shape and size, and the shape and size can be arbitrarily changed as necessary.
  • a plurality of comb teeth 16 protrude from the support portion 14 in a row, and a comb tooth row 17 is formed.
  • One side surface of the plurality of comb teeth 16 along the comb tooth row 17 is a scalp contact surface 18.
  • the comb teeth row 17 is inserted into the head hair from the tips 16b of the plurality of comb teeth 16 with the scalp contact surface 18 along the scalp.
  • the scalp contact surface 18 can contact the scalp while avoiding the hair.
  • the scalp contact surface 18 of the electroencephalogram measurement electrode 10 is one side surface on which a structure including a plurality of CNTs is formed, and a conductive path is formed on the surface.
  • the scalp is in contact with the conductive path.
  • the comb-shaped base material 12 including a plurality of comb teeth 16 is made of an elastic body and has flexibility and cushioning properties. Even if one side of the plurality of comb teeth 16 along the comb teeth row 17 contacts the subject's head and pressure is applied, the subject does not feel uncomfortable.
  • the electroencephalogram measurement electrode 10 of the present embodiment can reduce the burden on the subject.
  • the structure is exposed on the surface of the comb-shaped base material 12 to form a network structure in which a plurality of CNTs are connected to each other.
  • the structure in the electroencephalogram measurement electrode 10 can exhibit conductivity that is a function derived from CNT.
  • the electrode 10 for electroencephalogram measurement it becomes more preferable as the electrode 10 for electroencephalogram measurement.
  • the structure is formed on one side surface of the plurality of comb teeth 16 along at least the comb teeth row 17 in the comb-shaped base material 12.
  • the structure is fixed to the comb-shaped base material 12 by directly connecting the CNTs without using an adhesive or the like to form a network.
  • Adhesives are not used to form the structure with CNT and to fix the structure to the comb-shaped base material 12, so that the flexibility and cushioning properties of the comb-shaped base material 12 are maintained in addition to good conductivity. can do. Therefore, the electroencephalogram measurement electrode 10 can reduce the burden on the subject by having flexibility and cushioning properties as a whole. Since the structure exists on the surface of the comb-shaped base material 12, the amount of CNT used can be minimized, leading to a reduction in manufacturing cost.
  • the electroencephalogram measurement electrode 10 is composed of a comb-shaped base material 12 made of an elastic body and a structure made of a nanocarbon material on one predetermined side of the comb-shaped base material 12. Since no metal member is included, X-ray computed tomography (CT) or nuclear magnetic resonance imaging (MRI) with the electroencephalogram measurement electrode 10 according to this embodiment attached to the head Thus, even if image information is acquired, the occurrence of artifacts can be prevented. Therefore, the electroencephalogram measurement electrode 10 can simultaneously acquire image information obtained by X-ray CT, MRI, or the like and an electroencephalogram by the electroencephalogram electrode.
  • CT computed tomography
  • MRI nuclear magnetic resonance imaging
  • the electroencephalogram measurement electrode 10 can be used for a subject having metal allergy.
  • the electroencephalogram measurement electrode 10 according to the present embodiment can be disposable, and is excellent in terms of hygiene.
  • a commercially available resin comb is cut into an appropriate size and used as the comb-shaped base material 12 made of an elastic body, the electroencephalogram measurement electrode 10 is excellent in mass productivity, and the manufacturing cost can be reduced.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
  • a molded body formed by using an arbitrary elastic body having flexibility and cushioning properties may be used as the comb-shaped base material 12.
  • another thermoplastic elastomer, resin, rubber, or other elastic body can be used as a raw material.
  • the comb-shaped base material 12 having any size and any shape can be produced by, for example, injection molding.
  • thermoplastic elastomers include, for example, olefin-based thermoplastic elastomers (TPO), styrene-based thermoplastic elastomers, ester-based thermoplastic elastomers (TPC), polyamide-based thermoplastic elastomers (TPAE), and polyvinyl chloride-based thermoplastics.
  • TPO olefin-based thermoplastic elastomers
  • STYPE styrene-based thermoplastic elastomers
  • TPC ester-based thermoplastic elastomers
  • TPAE polyamide-based thermoplastic elastomers
  • TPVC polyvinyl chloride-based thermoplastics
  • the resin examples include acrylonitrile styrene (AS) resin, acrylonitrile butadiene (ABS) resin, epoxy resin, tetrafluoroethylene / ethylene copolymer (ETFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), hexafluoro Propylene / ethylene copolymer (EFEP), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), polycaproamide (nylon 6), polyhexa Methylene adipamide (nylon 66), polytetramethylene adipamide (nylon 46), polyhexamethylene sebacamide (nylon 610), polyhexamylene dodecamide (nylon 612), poly Decanamide (nylon 12), polyundecanamide (nylon 11), polyhexamethylene terephthalamide
  • Examples of rubber include natural rubber (NR), ethylene / propylene rubber (EPM, EPDM), chloroprene rubber (CR), butyl rubber (IIR), polyurethane rubber (U), silicone rubber (VMQ, FVMQ), and acrylic rubber (ACM). ), Epichlorohydrin rubber (ECO), fluorinated rubber (FKM, FEPM, FFKM), nitrile rubber (NBR), hydrogenated nitrile rubber (H-NBR), chlorinated polyethylene (CPE), chlorosulfonated polyethylene (CSM), Examples thereof include butadiene rubber (BR) and styrene-butadiene rubber (SBR).
  • the support portion 14 and the plurality of comb teeth 16 in the comb-shaped base material 12 may be made of different materials by multicolor molding, insert molding, or the like, as long as flexibility and cushioning properties are not impaired.
  • the comb-shaped base material 12 is formed by solidifying a foam material having a cushioning property such as urethane foam, a porous material such as wood or cork, a material made into a thread shape based on various fibers, or a material in which fibers are woven or knitted. You may form with the material and non-woven material which were made. In short, any material can be suitably used without being limited to the above materials as long as it can form a plurality of comb teeth 16 projecting in a row and exhibits elasticity and can form a structure on a predetermined side surface.
  • a foam material having a cushioning property such as urethane foam, a porous material such as wood or cork, a material made into a thread shape based on various fibers, or a material in which fibers are woven or knitted. You may form with the material and non-woven material which were made. In short, any material can be suitably used without being limited to the above materials as long as it can form a plurality of comb
  • the CNT fibers are easily entangled with the unevenness of the surface.
  • the body can be formed and can be directly fixed to the comb-shaped base material 12 at the same time. Thereby, the electroencephalogram measurement electrode 10 with improved conductivity as described above can be obtained.
  • the plurality of comb teeth 16 protruding in a row from the comb-shaped base material 12 do not necessarily have to be inclined to the side opposite to the scalp contact surface 18 from the middle in the length direction.
  • the base end 14 a of the support portion 14 to the tip end 16 b of the comb teeth 16 may be in a straight line.
  • the plurality of comb teeth 16 may have a uniform thickness from the proximal end 16a to the distal end 16b.
  • the length d4, the width d5, and the interval d6 of the comb teeth 16 may be appropriately set according to the type of elastic body to be used, the width d1 and the length d2 of the support portion 14, and the like.
  • the support portion 14 in the comb-shaped base material 12 does not necessarily have a rectangular shape defined by the width d1 and the length d2. As long as the original elasticity can be maintained and the scalp contact surface 18 is not prevented from contacting the scalp, the support portion 14 and the plurality of comb teeth 16 can have any shape.
  • a part of the electroencephalogram measurement electrode 10 may include a metal member such as a metal plate as long as the flexibility and cushioning property of the comb-shaped base material 12 are not impaired.
  • a metal plate may be disposed on the surface of the support portion 14 while ensuring conduction with the scalp contact surface 18 by a conductive wire.
  • the CNTs are fixed directly to at least one side surface of the plurality of comb teeth 16 along the comb tooth row 17 in the comb base material 12, thereby fixing the CNTs to the comb base material 12.
  • the CNTs may be fixed to the comb-shaped base material 12 through a fiber base material.
  • the fixing of the CNTs to the comb-shaped base material 12 through the fiber base material can be achieved, for example, by attaching a CNT-coated paper 20 as shown in FIG.
  • the CNT coated paper 20 includes a fiber base material 22 and a structure 24 formed by attaching CNTs to the surface of the fiber base material 22.
  • Examples of the fiber base material 22 include semi-paper, Japanese paper, Kara paper, knitted fabric, woven fabric, and non-woven fabric having a low fiber density.
  • the type and dimensions (diameter, length, density, etc.) of the fibers constituting the fiber base material 22 are appropriately selected according to the material and size of the comb-shaped base material 12 to which the CNT coated paper 20 is attached. be able to.
  • the CNT-coated paper 20 can be produced by immersing the fiber base material 22 in a dispersion containing CNT as described above and drying it.
  • the structure 24 having a predetermined thickness is formed on the surface of the fiber base 22 by repeating the dipping and drying steps, and the CNT-coated paper 20 is obtained.
  • the electroencephalogram measurement electrode 10 having the conductive scalp contact surface 18 is obtained by attaching one surface of the CNT-coated paper 20 to one side surface of the plurality of comb teeth 16 along the comb teeth row 17 in the comb-shaped base material 12. Thus, it can be more easily produced.
  • a conductive path is formed in the comb-shaped base material 12 by a structure including a plurality of CNTs.
  • the conductive path by such a structure is not limited to the surface of the comb-shaped base material 12 but may be formed inside the comb-shaped base material 12. Even in this case, the structure is formed on one side surface of the plurality of comb teeth 16 along the comb tooth row 17.
  • the electroencephalogram measurement electrode having a conductive path inside the comb-shaped base material 12 can be produced by molding a conductive elastic body into a predetermined shape.
  • the conductive elastic body can be prepared, for example, by blending CNT as a nanocarbon material with an elastic body serving as a base material.
  • the base material any elastic body as described above can be used. If the blending amount (concentration) of CNT is about 1 to 15 wt% of the elastic body, a conductive path required for the electroencephalogram measurement electrode can be formed without impairing the elasticity of the elastic body.
  • the concentration of CNT is preferably 3 wt% or more of the elastic body, more preferably 7 wt% or more, and most preferably 10 wt% or more.
  • a mixed raw material is prepared by melt-kneading an elastic body and CNT with a twin screw extruder or the like.
  • the conditions for melt kneading can be appropriately selected according to the type of elastic body.
  • the mixed raw material after melt-kneading is made to pass through a pelletizer to produce pellets.
  • the pellets can be made in a general size. For example, the diameter of the pellet is about 2 to 3 mm, and the length is about 2 to 3 mm.
  • the obtained pellets are molded into a predetermined comb shape by an injection molding machine to obtain an electroencephalogram measurement electrode.
  • the thus produced electroencephalogram measurement electrode can be said to be a comb-shaped base material made of a conductive elastic body.
  • the conditions for injection molding can be appropriately selected according to the type of the elastic body, the size of the target comb-shaped base material, and the like.
  • the electroencephalogram measurement electrode composed of a comb-shaped base material made of a conductive elastic body, a conductive path by the structure is also formed inside. Accordingly, at least one side surface of the plurality of comb teeth along the comb tooth row can be used as a conductive scalp contact surface. Since the electroencephalogram measurement electrode also has the elasticity inherent in the elastic body, the same effect as described above can be obtained.
  • CNT is used as the nanocarbon material forming the structure, but is not limited to CNT, and graphene can also be used.
  • Graphene is a nanocarbon material having high conductivity like CNT. Except for changing CNT to graphene, a structure is formed by fixing graphene on the surface or inside of the comb-shaped base material 12 in the same manner as described above, and the conductive scalp contact surface is formed along the comb teeth row 17.
  • the plurality of comb teeth 16 can be provided on one side surface.
  • an electroencephalogram measurement electrode is prepared by attaching CNT-coated paper to a comb-shaped base material, and its electrical characteristics are examined.
  • the CNT-coated paper is composed of a fiber base material and a structure formed by attaching CNTs to the surface of the fiber base material. Therefore, in the electroencephalogram measurement electrode of Example 1, a structure having a network structure in which a plurality of CNTs are connected to each other is exposed on the surface of the comb-shaped base material.
  • CNTs were produced by a general thermal CVD method using iron as a catalyst.
  • the CNTs isolated and dispersed using a mixed acid and ultrasonic waves were taken out, neutralized with ammonia water, and washed with pure water. Finally, it was dried in an oven to obtain powdered CNTs.
  • Powdered CNTs were dispersed in DMF to prepare a CNT dispersion.
  • the concentration of CNT in the dispersion is 0.01 wt%.
  • CNTs were dispersed by ultrasonic irradiation without using an adhesive.
  • FIG. 4 shows an SEM photograph of the surface of the obtained CNT-coated paper 20.
  • FIG. 4A magnification: 50 times
  • FIG. 4B magnification: 10000 times
  • the plurality of CNTs form a structure 24 having a network structure connected to each other.
  • the CNTs are in direct contact with each other by van der Waals force, and the original high conductivity of the CNTs can be maintained.
  • the original flexibility of the fiber base material 22 is not impaired by the additive. Since the CNT-coated paper 20 maintains the original softness of the half paper as the fiber base material 22, the CNT-coated paper 20 can be attached to a predetermined side surface of the comb teeth 16 in the comb-shaped base material 12.
  • the comb-shaped base material 12 was prepared by cutting a commercially available plastic comb so that the number of comb teeth was five.
  • the CNT coated paper 20 produced above is cut according to the surface along the comb tooth row 17 in the comb-shaped base material 12, and is pasted on one side surface of the plurality of comb teeth 16 along the comb tooth row 17 with a commercially available double-sided tape. I attached. Between adjacent comb teeth 16, the CNT-coated paper 20 was cut using scissors and separated to obtain the electroencephalogram measurement electrode 10 of Example 1.
  • FIG. 5 shows a side view of the electroencephalogram measurement electrode 10 of Example 1.
  • a plurality of comb teeth 16 project from the support portion 14 and are arranged in a row in a direction perpendicular to the paper surface to form a comb tooth row 17.
  • a CNT-coated paper 20 is attached to one side surface of the plurality of comb teeth 16 along the comb tooth row 17.
  • the surface of the CNT coated paper 20 attached to one side surface of the plurality of comb teeth 16 along the comb tooth row 17 becomes a scalp contact surface 18.
  • Electrode parts for measurement were prepared using the electroencephalogram measurement electrode 10 of Example 1, and electrode contact resistance was measured for the forehead and the hair.
  • a wireless bioelectric signal measuring device Polymate Mini
  • Miyuki Giken an active electrode (dish electrode) were used.
  • the active electrode 26 to which the conducting wire 32 is connected is attached to the scalp contact surface 18 side of the electroencephalogram measurement electrode 10 using the terminal retainer 28, and the measurement electrode component 30.
  • the electrode contact resistance was measured by bringing the scalp contact surface 18 into contact with the forehead or the hair portion.
  • the forehead was measured by applying a polishing gel before measurement to lower the contact resistance.
  • the electrode contact resistance at the forehead is 40-60 k ⁇ , while the electrode contact resistance at the hair is similarly 40 k ⁇ -60 k ⁇ , and the electrode contact resistance is low even in the hair with an obstacle.
  • the electrode contact resistance was measured for the forehead portion and the hair portion in the same manner using only the active electrode 26 (Comparative Example 1).
  • the forehead part 40-60 k ⁇
  • the same result as in Example 1 was obtained.
  • the hair portion was a large value of 300 k ⁇ or more. Since the comparative example 1 is only the active electrode 26, hair cannot be avoided. It has been found that the active electrode 26 has a problem that the hair becomes an obstacle and the electrode contact resistance becomes high, and the electroencephalogram cannot be accurately measured for the hair portion.
  • the plurality of comb teeth 16 reach the scalp while scraping the hair of the scalp, and the scalp contact surface 18 contacts the scalp avoiding the hair.
  • the scalp contact surface 18 has a structure having a network structure in which a plurality of CNTs are connected to each other, so that sufficient conductivity can be ensured without a conductive paste.
  • Example 2 an electroencephalogram measurement electrode made of a conductive comb-shaped base material is produced, and its electrical characteristics are examined.
  • the conductive comb-shaped base material is a CNT kneaded product, and is obtained by forming a mixed raw material obtained by kneading CNT into an elastic body serving as a base material into a comb shape. Therefore, the electroencephalogram measurement electrode of Example 2 has a structure having a network structure in which a plurality of CNTs are connected to each other in addition to the surface of the comb-shaped base material.
  • CNT kneaded products containing CNTs at different concentrations were prepared, and the relationship between CNT concentration and volume resistance was examined.
  • CNT and a base material were melt-kneaded with a twin-screw extruder to prepare a CNT kneaded strand having a diameter of 0.3 cm.
  • CNTs those obtained by a general thermal CVD method using iron as a catalyst were used as in Example 1 described above.
  • CNT may be subjected to pretreatment using a mixed acid, but pretreatment is not always necessary.
  • a polyamide-based thermoplastic elastomer (Pebax 2533, manufactured by Arkema Co., Ltd.) was used as the base material.
  • the CNT concentration was 1.9 wt%, 3.3 wt%, 3.9 wt%, and 11.6 wt%.
  • the obtained CNT kneaded strand was cut into a length of 10 cm to prepare a sample. Both ends of the sample were sandwiched between four terminal probes, and the electrical resistance Rs was measured using an LCR meter (IM3590, manufactured by Hioki Electric Co., Ltd.). For each sample, using the measured electrical resistance Rs ( ⁇ ), cross-sectional area A (0.15 2 ⁇ cm 2 ), and length L (10 cm), the volume resistance ⁇ ( ⁇ Cm) was calculated.
  • (Rs ⁇ A) / L Formula (1)
  • the average value of the volume resistance ⁇ of three samples was determined, and the result is shown in the graph of FIG.
  • the volume resistance ⁇ of the sample of the CNT kneaded product decreases as the CNT concentration increases. If the volume resistance ⁇ is about 100 ⁇ ⁇ cm or less, it can be suitably used as an electrode for electroencephalogram measurement.
  • the CNT concentration is preferably 7 wt% or more, more preferably 10 wt% or more. It was confirmed.
  • the appropriate CNT concentration range can vary depending on the type of CNT or base material.
  • a CNT kneaded strand was produced by the same method as described above.
  • the concentration of CNT was 12 wt%.
  • the diameter of the CNT kneaded strand was 0.3 cm.
  • the obtained CNT kneaded strand was made into a CNT kneaded resin pellet having a length of about 2 mm by passing through a pelletizer.
  • the CNT kneaded resin pellets were injection molded into a comb shape as shown in FIGS. In this way, three electroencephalogram measurement electrodes of Example 2 made of a conductive comb-shaped base material were produced.
  • the electroencephalogram measurement electrode of Example 2 has flexibility and cushioning properties by using a polyamide-based thermoplastic elastomer as a base material.
  • the width d1, the length d2, and the thickness d3 of the support portion 14 are 11 mm, 13.8 mm, and 2.5 mm, respectively, the length d4, the width d5 of the comb teeth 16, And the distance d6 were 17.3 mm, 0.7 mm, and 1.2 mm, respectively.
  • the impedance of the electroencephalogram measurement electrode of Example 2 was measured using an LCR meter. Specifically, both ends of the electroencephalogram measurement electrode were sandwiched between four terminal probes, and the impedance at 10 Hz was measured. The distance between the probes is 35 mm. The average value of the measured values for the three samples was 170 ⁇ .
  • the electroencephalogram measurement electrode preferably has an impedance of about 10 K ⁇ or less, more preferably about 1 K ⁇ or less.
  • the electroencephalogram measurement electrode of Example 2 has an impedance suitable as an electroencephalogram measurement electrode.
  • a molded body was produced using conductive nylon, and the impedance was measured by the same method (Comparative Example 2).
  • a polyamide thermoplastic elastomer Pebax 5533 SN 70 (manufactured by Arkema Co., Ltd.) was used, and a molded body having the same size and shape as the electroencephalogram measurement electrode of Example 2 was obtained by injection molding. Individually produced.
  • the conductive nylon molded body of Comparative Example 2 had an average impedance value of 100 k ⁇ .
  • the electroencephalogram measurement electrode of Example 2 is made of a conductive comb base material in which CNTs are kneaded with an elastic body as a base material, a structure having a network structure in which a plurality of CNTs are connected to each other is a comb base. In addition to the surface of the material, it is also formed inside.
  • a comb-shaped base material in which such a structure is formed not only on the surface but also on the inside has a conductive path throughout, and thus has excellent conductivity.
  • the scalp is in contact with the conductive path. Since the electroencephalogram measurement electrode of Example 2 ensures electrical continuity between the electroencephalogram measurement electrode and the subject without using a conductive paste, like the electroencephalogram measurement electrode of Example 1, the contact impedance is extremely low. It can be lowered to a lower level. As a result, the electroencephalogram measurement electrode of Example 2 can accurately detect a weak electrical signal from the head.
  • Measurement electrode parts were prepared using the electroencephalogram measurement electrodes of Example 2, and the electrode contact resistance was measured for the forehead and the hair by the same method as in Example 1.
  • the electrode contact resistance at the forehead was 20 k ⁇
  • the electrode contact resistance at the hair was 50 to 150 k ⁇ .
  • Comparative Example 3 the electrode contact resistance was measured for the forehead portion and the hair portion in the same manner using only the active electrode 26 (Comparative Example 3).
  • the forehead part 20 k ⁇
  • the same result as in Example 2 was obtained.
  • the hair portion was a large value of 300 k ⁇ or more. Since Comparative Example 3 includes only the active electrode 26, the hair becomes an obstacle and becomes high, and the electroencephalogram cannot be accurately measured for the hair portion.
  • an electrode part was produced by combining the same conductive nylon molded body as in the above-mentioned Comparative Example 2 with an active electrode (Comparative Example 4).
  • Comparative Example 4 an electrode contact resistance of Comparative Example 4 was measured for the forehead portion and the hair portion in the same manner as described above, the electrode contact resistances of the forehead portion and the hair portion were both the same as those of Comparative Example 3 with only the active electrode. .
  • the impedance of the conductive nylon molded body is about three orders of magnitude greater than the electroencephalogram measurement electrode of Example 2 made of a CNT kneaded product (Comparative Example 2).
  • the conductive nylon molded body cannot ensure sufficient conductivity. For this reason, even when the conductive nylon molded body and the active electrode are combined, it is extremely difficult to accurately measure the electroencephalogram as in the case of only the active electrode.
  • the electroencephalogram measurement electrode of Example 2 since CNTs are kneaded with an elastic body as a base material, sufficient conductivity can be ensured not only on the surface but also inside.
  • the electrode component using the electroencephalogram measurement electrode of Example 2 can obtain a lower resistance value than that in the past in the hair portion, and can measure the electroencephalogram with higher accuracy.
  • the electroencephalogram measurement electrode of Example 2 has flexibility and cushioning properties, an effect of reducing the burden on the subject can be obtained.
  • Electroencephalogram measurement electrode 12 Comb-shaped base material 14 Support part 14a Base end 16 Comb tooth 16a Base end 16b Tip 17 Comb row 18 Scalp contact surface

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

An electrode (10) for brain wave measurement is provided with a comb-shaped base member (12), which comprises an elastic body, and a structure formed on the comb-shaped base member (12). The electrode (10) for brain wave measurement is characterized in that the comb-shaped base member (12) comprises a support part (14) and a comb teeth row (17), which comprises multiple comb teeth (16) projecting from the support part (14) in a row. The electrode (10) for brain wave measurement is further characterized in that the structure is formed on one side surface of the comb teeth (16) along the comb teeth row (17) and contains multiple nanocarbon members that form an interconnected network structure and are fixed to the comb-shaped base member (12).

Description

脳波測定用電極Electroencephalogram measurement electrode
 本発明は、脳波測定用電極に関するものである。 The present invention relates to an electroencephalogram measurement electrode.
 従来の脳波測定用電極としては、被験者の頭皮と電極との間に導電性ペーストを介在させるタイプのものが多く用いられている。導電性ペーストは、頭皮と電極との間の接触インピーダンスを低減するのに加えて、測定部位の位置を固定するという作用を有するものの、測定後の除去が必要になるので作業の煩雑さが伴う。 As the conventional electroencephalogram measurement electrode, a type in which a conductive paste is interposed between the subject's scalp and the electrode is often used. In addition to reducing the contact impedance between the scalp and the electrode, the conductive paste has the effect of fixing the position of the measurement site, but it requires work removal because it requires removal after measurement. .
 そこで、近年、導電性ペーストを使用せずに低い接触インピーダンスを確保できる電極(ドライ電極)が開発されている。ドライ電極としては、例えば、ヘアバンドに取り付けて使用するマルチピン型ドライ電極(例えば、非特許文献1)や、ヘッドキャップに取り付けて使用するマルチピン型ドライ電極(例えば、非特許文献2)が提案されている。これらのドライ電極においては、マルチピンは硬質な金属により構成されている。 Therefore, in recent years, an electrode (dry electrode) that can secure a low contact impedance without using a conductive paste has been developed. As the dry electrode, for example, a multi-pin type dry electrode (for example, Non-Patent Document 1) used by attaching to a hair band or a multi-pin type dry electrode (for example, Non-Patent Document 2) used by attaching to a head cap has been proposed. ing. In these dry electrodes, the multi-pin is made of a hard metal.
 また、被験者の負担を軽減するために、ゴムからなる突出部の先端に金属からなる接触部を設けた脳波測定用電極(例えば、特許文献1)や、金属ばねを用いることによって、金属製の球状先端部を伸縮、揺動、旋回可能とした脳波測定用電極が提案されている(例えば、特許文献2)。 In addition, in order to reduce the burden on the subject, an electroencephalogram measurement electrode (for example, Patent Document 1) provided with a metal contact portion at the tip of a protruding portion made of rubber, or a metal spring is used. There has been proposed an electroencephalogram measurement electrode in which a spherical tip can be expanded, contracted and swiveled (for example, Patent Document 2).
特開2013-111361号公報JP 2013-111361 A 特開2013-240485号公報JP 2013-240485 A
 しかしながら、上記非特許文献1,2の電極は、マルチピンが硬質な金属で構成されていることから、被験者が不快に感じ頭皮への負担が大きいという問題がある。 However, the electrodes of Non-Patent Documents 1 and 2 have a problem that the test subject feels uncomfortable and the burden on the scalp is large because the multi-pin is made of a hard metal.
 特許文献1の電極では、ゴムからなる突出部に所望の導電性を付与するために、多量の導電性材料が配合されるので、ゴム本来の柔軟性やクッション性が低下して硬質となる。硬質な突出部は、頭皮に接触させた際に被験者の痛みに繋がり、しかも、頭皮との密着性が悪く、脳波を正確に測定することが困難になる。また、高価な導電性材料が用いられる場合には、製造コストを抑えることができない。 In the electrode of Patent Document 1, since a large amount of conductive material is blended in order to impart desired conductivity to the protruding portion made of rubber, the inherent flexibility and cushioning properties of the rubber are lowered and become hard. The hard protrusion leads to the pain of the subject when it is brought into contact with the scalp, and the adhesion with the scalp is poor, making it difficult to accurately measure the electroencephalogram. Further, when an expensive conductive material is used, the manufacturing cost cannot be suppressed.
 特許文献2の電極においては、構造の複雑さ故に接触点で導通不良が発生して、脳波測定が良好に行われないことも起こり得る。また、構造が複雑であることから製造コストが高く、量産には不向きである。 In the electrode of Patent Document 2, it is possible that the electroencephalogram measurement may not be performed satisfactorily due to the complexity of the structure due to poor conduction at the contact point. In addition, since the structure is complicated, the manufacturing cost is high and it is not suitable for mass production.
 脳波測定においては、頭髪が障害となって抵抗値が上昇することから、頭髪部では正確な結果を得ることができない。頭髪の影響を極力低減することができれば、頭髪部においても脳波測定の精度を高めることができる。 In the electroencephalogram measurement, the resistance value rises due to the hair becoming an obstacle, so the accurate result cannot be obtained at the hair portion. If the influence of hair can be reduced as much as possible, the accuracy of electroencephalogram measurement can be improved even in the hair portion.
 そこで本発明は、導電性ペーストを用いずに頭皮と接触して導通を十分に確保できるとともに、被験者の負担を軽減し、頭髪部においても高い精度で脳波を測定できる脳波測定用電極を提供することを目的とする。 Accordingly, the present invention provides an electrode for measuring an electroencephalogram that can contact the scalp without using an electrically conductive paste to sufficiently ensure electrical conduction, reduce the burden on the subject, and measure the electroencephalogram with high accuracy even in the hair portion. For the purpose.
 本発明に係る脳波測定用電極は、弾性体からなる櫛形母材と、前記櫛形母材に形成された構造体とを備える脳波測定用電極であって、前記櫛形母材は、支持部と、前記支持部から一列に突設した複数の櫛歯からなる櫛歯列とを含み、前記櫛歯列に沿った前記複数の櫛歯の一側面に前記構造体が形成され、前記構造体は、複数のナノ炭素材料を含み、前記複数のナノ炭素材料が、互いに接続されたネットワーク構造を形成しているとともに前記櫛形母材に固定されていることを特徴とする。 An electroencephalogram measurement electrode according to the present invention is an electroencephalogram measurement electrode comprising a comb-shaped base material made of an elastic body and a structure formed on the comb-shaped base material, wherein the comb-shaped base material includes a support portion, A plurality of comb teeth arranged in a row from the support portion, and the structure is formed on one side surface of the plurality of comb teeth along the comb teeth row, It includes a plurality of nanocarbon materials, wherein the plurality of nanocarbon materials form a network structure connected to each other and are fixed to the comb-shaped base material.
 本発明によれば、脳波測定用電極は、弾性体からなる櫛形母材を含み、この櫛形母材における櫛歯列に沿った複数の櫛歯の一側面が被験者の頭皮に接触する。複数の櫛歯が頭髪を掻き分けることによって、所定の一側面は頭髪を避けて頭皮に接触することが可能となる。 According to the present invention, the electroencephalogram measurement electrode includes a comb-shaped base material made of an elastic body, and one side surface of the plurality of comb teeth along the comb tooth row in the comb-shaped base material contacts the scalp of the subject. By combing the hair with the plurality of comb teeth, the predetermined one side can contact the scalp while avoiding the hair.
 櫛形母材においては、複数のナノ炭素材料が接続されたネットワーク構造を有する構造体が、一側面に形成されている。構造体が形成された一側面が頭皮に接触することによって、脳波測定用電極は、導電性ペーストを用いずに頭皮と接触して頭髪部においても導通を十分に確保し、高い精度で脳波を測定することができる。弾性体は、柔軟性、クッション性を有しているので、圧力が加えられた際にも被験者に痛みなどの不快感を与えることはなく、負担を軽減することができる。 In the comb-shaped base material, a structure having a network structure in which a plurality of nanocarbon materials are connected is formed on one side surface. When one side where the structure is formed contacts the scalp, the electroencephalogram measurement electrode makes contact with the scalp without using a conductive paste, and ensures sufficient conduction in the hair, thus producing an electroencephalogram with high accuracy. Can be measured. Since the elastic body has flexibility and cushioning properties, even when pressure is applied, it does not give the subject discomfort such as pain, and the burden can be reduced.
本実施形態に係る脳波測定用電極の構成を示す平面図である。It is a top view which shows the structure of the electrode for electroencephalogram measurement which concerns on this embodiment. 本実施形態に係る脳波測定用電極の構成を示す正面図である。It is a front view which shows the structure of the electrode for electroencephalogram measurement which concerns on this embodiment. CNTコーティング紙の構成を説明する模式図である。It is a schematic diagram explaining the structure of CNT coated paper. CNTコーティング紙のSEM画像であり、図4Aは50倍、図4Bは10000倍の画像である。FIG. 4A is an SEM image of CNT-coated paper, FIG. 4A is an image at 50 ×, and FIG. 4B is an image at 10000 ×. 実施例の脳波測定用電極の構成を示す概略図である。It is the schematic which shows the structure of the electrode for electroencephalogram measurement of an Example. 電極接触抵抗測定用の電極部品の構成を示す概略図である。It is the schematic which shows the structure of the electrode component for electrode contact resistance measurement. CNT濃度と体積抵抗との関係を示すグラフ図である。It is a graph which shows the relationship between CNT density | concentration and volume resistance.
 以下、図面を参照して本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1.全体構成
 図1に示すように、脳波測定用電極10は、支持部14と、この支持部14から一列に突設した複数の櫛歯16を含む櫛歯列17とを有する櫛形母材12を備える。脳波測定用電極10は、櫛形母材12における櫛歯列17に沿った複数の櫛歯16の一側面側が、頭皮に接触する頭皮接触面18(図2参照)となる。図2に示すように、複数の櫛歯16は、厚さ方向において基端16aより先端16bが薄く、長さ方向の途中から頭皮接触面18とは逆側に傾斜している。
1. Overall Configuration As shown in FIG. 1, an electroencephalogram measurement electrode 10 includes a comb-shaped base material 12 having a support portion 14 and a comb tooth row 17 including a plurality of comb teeth 16 protruding in a row from the support portion 14. Prepare. In the electroencephalogram measurement electrode 10, one side surface of the plurality of comb teeth 16 along the comb tooth row 17 in the comb-shaped base material 12 serves as a scalp contact surface 18 (see FIG. 2) that contacts the scalp. As shown in FIG. 2, the plurality of comb teeth 16 have a tip 16b thinner than a base end 16a in the thickness direction, and incline toward the opposite side of the scalp contact surface 18 from the middle in the length direction.
 本実施形態においては、櫛歯列17に沿った複数の櫛歯16の一側面に、図示しない構造体を設けることによって頭皮接触面18が構成されている。構造体は、櫛形母材12の内部ではなく、表面に露出して形成されている。構造体は導電性を有しているので、頭皮接触面18は導電性である。構造体によって、櫛形母材12に導電パスが形成される。 In this embodiment, the scalp contact surface 18 is configured by providing a structure (not shown) on one side surface of the plurality of comb teeth 16 along the comb tooth row 17. The structure is exposed not on the inside of the comb-shaped base material 12 but on the surface. Since the structure has conductivity, the scalp contact surface 18 is conductive. A conductive path is formed in the comb-shaped base material 12 by the structure.
 構造体は、少なくとも、櫛形母材12における櫛歯列17に沿った複数の櫛歯16の一側面に形成されている。支持部14の表面にも構造体が形成されている場合には、これによって複数の櫛歯16の一側面との導通を確保することができる。構造体は、櫛歯列17における隣接する櫛歯16同士の間隔を保つことができる限り、複数の櫛歯16の他側面といった櫛形母材12の残りの表面にも設けてもよい。 The structure is formed on at least one side surface of the plurality of comb teeth 16 along the comb teeth row 17 in the comb-shaped base material 12. In the case where a structure is also formed on the surface of the support portion 14, it is possible to ensure conduction with one side surface of the plurality of comb teeth 16. The structure may be provided on the remaining surface of the comb-shaped base material 12 such as the other side surface of the plurality of comb teeth 16 as long as the interval between the adjacent comb teeth 16 in the comb tooth row 17 can be maintained.
 本実施形態においては、図示しない構造体はナノ炭素材料からなる。ナノ炭素材料としては、カーボンナノチューブ(以下、CNTという)が用いられる。複数のCNTは、互いに接続されてネットワーク構造を有する構造体を形成して、櫛形母材12に固定されている。ここでいう接続とは、物理的な接続(単なる接触)を含む。CNTは、それ自体導電性が高いことから、複数のCNTによるネットワーク構造を有する構造体となった後も、高い導電性を維持することができる。このように高い導電性を有する構造体は、脳波測定用電極10における導電パスとして好適である。上述したとおり、本実施形態における構造体は、櫛形母材12の表面に露出して形成されているので、導電パスも、櫛形母材12の内部ではなく表面に形成されることになる。 In the present embodiment, the structure not shown is made of a nanocarbon material. As the nanocarbon material, a carbon nanotube (hereinafter referred to as CNT) is used. The plurality of CNTs are connected to each other to form a structure having a network structure, and are fixed to the comb-shaped base material 12. The connection here includes physical connection (simple contact). Since CNTs themselves have high conductivity, high conductivity can be maintained even after becoming a structure having a network structure of a plurality of CNTs. Such a structure having high conductivity is suitable as a conductive path in the electroencephalogram measurement electrode 10. As described above, since the structure in the present embodiment is formed so as to be exposed on the surface of the comb-shaped base material 12, the conductive path is also formed on the surface instead of the inside of the comb-shaped base material 12.
 CNTのネットワーク構造を有する構造体は、接着剤等を使わずにCNTの持つファンデルワールス力を使って形成し、櫛形母材12における櫛歯列17に沿った複数の櫛歯16の一側面へ固定することができる。あるいは、CNTのネットワーク構造を有する構造体は、一般的な接着剤等を、CNTの導電性を損なわない範囲でCNTに混合して形成し、櫛形母材12における櫛歯列17に沿った複数の櫛歯16の一側面へ固定してもよい。いずれの場合も、CNTは、櫛形母材12における櫛歯列17に沿った複数の櫛歯16の一側面へ直接付着することとなる。 A structure having a CNT network structure is formed by using van der Waals force of CNT without using an adhesive or the like, and one side surface of the plurality of comb teeth 16 along the comb teeth row 17 in the comb-shaped base material 12. Can be fixed to. Alternatively, a structure having a network structure of CNTs is formed by mixing a general adhesive or the like with CNTs within a range that does not impair the conductivity of CNTs. It may be fixed to one side of the comb teeth 16. In any case, the CNTs are directly attached to one side surface of the plurality of comb teeth 16 along the comb tooth row 17 in the comb-shaped base material 12.
 特に、接着剤等を使わない場合は、CNTの繊維自体の表面が接着剤等で覆われることがない。したがって、ネットワーク構造を有する構造体は、介在物がない状態でCNT同士が接続することによって形成される。CNT本来の高い導電性は何ら損なわれないので、こうした構造体が櫛形母材12に形成された脳波測定用電極10は、CNT本来の高い導電性が十分に発揮される。 Especially, when the adhesive is not used, the surface of the CNT fiber itself is not covered with the adhesive. Therefore, a structure having a network structure is formed by connecting CNTs with no inclusions. Since the high conductivity inherent in CNT is not impaired at all, the electroencephalogram measurement electrode 10 in which such a structure is formed on the comb-shaped base material 12 sufficiently exhibits the high conductivity inherent in CNT.
 CNTは、一般的なアーク放電法、気相成長法、レーザ蒸発法などによって製造される。例えば、Co、Mgなどの金属を含む触媒を用い、CO(一酸化炭素)、Hを含むガスを原料とする気相成長法により製造されたCNTを用いることができる。また、CNTは、チューブ状のものだけでなく、加熱等により、形状が変化したものも用いることができる。 CNT is manufactured by a general arc discharge method, a vapor phase growth method, a laser evaporation method, or the like. For example, a CNT produced by a vapor phase growth method using a catalyst containing a metal such as Co and Mg and using a gas containing CO (carbon monoxide) and H 2 as a raw material can be used. Further, CNTs can be used not only in a tube shape but also those whose shape has been changed by heating or the like.
 櫛形母材12は、柔軟性、クッション性を有する弾性体で形成されている。本実施形態の場合、櫛形母材12は、例えば熱可塑性エラストマーで形成される。より具体的には、熱可塑性エラストマーとしては、ウレタン系熱可塑性エラストマー(TPU)等が挙げられる。 The comb-shaped base material 12 is formed of an elastic body having flexibility and cushioning properties. In the present embodiment, the comb-shaped base material 12 is formed of, for example, a thermoplastic elastomer. More specifically, examples of the thermoplastic elastomer include urethane-based thermoplastic elastomer (TPU).
 櫛形母材12は、脳波測定のために適切な任意の大きさとすることができる。支持部14は、例えば、幅d1を10~15mm程度、長さd2を10~20mm程度、図2に示される厚さd3を2.0~3.0mm程度とすることができる。櫛歯16は、例えば長さd4を15~30mm程度、幅d5を0.5~1.5mm程度とすることができる。この場合、隣接する櫛歯16同士の間隔d6は、例えば1.0~2.0mm程度とすることができる。複数の櫛歯16の先端16bは、角部を有しない丸みを帯びた形状であることが好ましい。櫛形母材12における櫛歯16の数は限定されず、支持部14や櫛歯16の大きさ等に応じて適宜設定すればよい。 The comb-shaped base material 12 can have an arbitrary size suitable for the electroencephalogram measurement. For example, the support portion 14 can have a width d1 of about 10 to 15 mm, a length d2 of about 10 to 20 mm, and a thickness d3 shown in FIG. 2 of about 2.0 to 3.0 mm. For example, the comb teeth 16 can have a length d4 of about 15 to 30 mm and a width d5 of about 0.5 to 1.5 mm. In this case, the distance d6 between the adjacent comb teeth 16 can be set to, for example, about 1.0 to 2.0 mm. The tips 16b of the plurality of comb teeth 16 are preferably rounded and have no corners. The number of the comb teeth 16 in the comb-shaped base material 12 is not limited, and may be set as appropriate according to the size of the support portion 14 and the comb teeth 16.
 上述したとおり、本実施形態において、脳波測定用電極10は、複数の櫛歯16を含む櫛歯列17を有する櫛形母材12と、少なくとも櫛歯列17に沿った複数の櫛歯16の一側面に形成された構造体とから構成されている。櫛形母材12は弾性体からなり、構造体は複数のナノ炭素材料からなる。櫛形母材12および構造体は、いずれも非金属であるので、本実施形態の脳波測定用電極10に金属部材は含まれていない。 As described above, in the present embodiment, the electroencephalogram measurement electrode 10 includes the comb-shaped base material 12 having the comb teeth row 17 including the plurality of comb teeth 16, and at least one of the plurality of comb teeth 16 along the comb teeth row 17. And a structure formed on the side surface. The comb-shaped base material 12 is made of an elastic body, and the structure is made of a plurality of nanocarbon materials. Since the comb-shaped base material 12 and the structure are both non-metallic, the electroencephalogram measurement electrode 10 of this embodiment does not include a metal member.
2.製造方法
 次に、脳波測定用電極10の製造方法を説明する。脳波測定用電極10は、CNTを含む分散液を作製し、当該分散液を用いて、櫛形母材12における、少なくとも櫛歯列17に沿った複数の櫛歯16の一側面(以下、所定の一側面とも称する)に構造体を形成することにより製造することができる。
2. Manufacturing Method Next, a manufacturing method of the electroencephalogram measurement electrode 10 will be described. The electroencephalogram measurement electrode 10 produces a dispersion liquid containing CNTs, and uses the dispersion liquid to form one side surface of the plurality of comb teeth 16 along the comb teeth row 17 in the comb-shaped base material 12 (hereinafter referred to as a predetermined one). It can be manufactured by forming a structure on one side).
 分散液の作製に先立ち、混酸を用いてCNTに対し前処理を行う。混酸は、例えば、硝酸と硫酸との1:1混合溶媒を用いることができる。混合溶媒にCNTを加えた後、攪拌し、次いで、超音波を照射することにより、CNTを単離分散させる。その後、減圧濾過してCNTを取り出し、アンモニア水等を用いてCNT表面を中和する。そして純水で表面を洗浄した後、乾燥させて粉状のCNTを得る。 Prior to preparation of the dispersion, CNTs are pretreated with a mixed acid. As the mixed acid, for example, a 1: 1 mixed solvent of nitric acid and sulfuric acid can be used. After adding CNTs to the mixed solvent, the CNTs are isolated and dispersed by stirring and then irradiating with ultrasonic waves. Thereafter, the CNT is taken out by filtration under reduced pressure, and the CNT surface is neutralized using ammonia water or the like. And after washing | cleaning the surface with a pure water, it is made to dry and powdery CNT is obtained.
 上記のようにして前処理が終わった粉状のCNTを、例えば0.01wt%の濃度となるように溶媒に加え、超音波を照射してCNTを分散させ、分散液を得る。溶媒としては、N,N-ジメチルホルムアミド(DMF)や各種のアルコール等を用いることができる。この分散液に、分散剤、界面活性剤、接着剤などの適当な添加剤等を添加して使用してもよい。このような添加剤を分散液に加えると、これらの添加剤がCNTの繊維表面をコーティングして、より強固な接着が得られる一方で、CNT本来の導電性を阻害するおそれがある。より高い導電性を確保するためには、上記のような添加剤を加えない分散液でCNTのネットワーク構造を有する構造体を形成し、櫛形母材12へ固定させた方が好ましいといえる。 The powdered CNTs that have been pretreated as described above are added to a solvent so as to have a concentration of, for example, 0.01 wt%, and ultrasonic waves are applied to disperse the CNTs to obtain a dispersion. As the solvent, N, N-dimethylformamide (DMF), various alcohols, and the like can be used. Appropriate additives such as a dispersant, a surfactant, and an adhesive may be added to this dispersion. When such an additive is added to the dispersion, the additive coats the fiber surface of the CNT to obtain stronger adhesion, but may impair the original conductivity of the CNT. In order to ensure higher conductivity, it can be said that it is preferable to form a structure having a network structure of CNTs with a dispersion without adding an additive as described above and fix the structure to the comb-shaped base material 12.
 次いで、弾性体からなる櫛形母材12を上記分散液に浸漬する。弾性体からなる櫛形母材12としては、例えば、市販の樹脂製の櫛を所定の寸法に切断したものを用いることができる。 Next, the comb-shaped base material 12 made of an elastic body is immersed in the dispersion. As the comb-shaped base material 12 made of an elastic body, for example, a commercially available resin comb cut into a predetermined size can be used.
 櫛形母材12を浸漬する分散液に接着剤等の添加剤が含有されていない場合には、CNTは、櫛形母材12との間に作用するファンデルワールス力により、少なくとも櫛歯列17に沿った複数の櫛歯16の一側面にCNTのネットワーク構造を有する構造体を形成し、さらに櫛形母材12の所定の一側面に直接付着する。櫛形母材12が浸漬される分散液に接着剤等の添加剤が含有されている場合は、上記のファンデルワールス力に加えて、接着剤等の力も加味される。この場合、CNTは、より強力に櫛形母材12の所定の一側面へ付着することになる。 When an additive such as an adhesive is not contained in the dispersion liquid in which the comb-shaped base material 12 is immersed, the CNT is at least applied to the comb teeth row 17 by van der Waals force acting between the comb-shaped base material 12. A structure having a CNT network structure is formed on one side surface of the plurality of comb teeth 16 along the comb teeth 16, and further directly attached to a predetermined one side surface of the comb-shaped base material 12. In the case where an additive such as an adhesive is contained in the dispersion liquid in which the comb-shaped base material 12 is immersed, a force such as an adhesive is taken into consideration in addition to the above van der Waals force. In this case, the CNTs adhere more strongly to the predetermined one side surface of the comb-shaped base material 12.
 分散液への浸漬に先立って、櫛形母材12の表面の所定の領域に前処理を施した場合には、櫛形母材12の所定の一側面に優先的に、CNTを付着させることができる。例えば、櫛形母材12における櫛歯列17に沿った複数の櫛歯16の一側面に表面処理を施して、この一側面へのCNTの付着を促進することができる。 Prior to the immersion in the dispersion, when a predetermined region of the surface of the comb-shaped base material 12 is pretreated, CNTs can be preferentially attached to a predetermined one side surface of the comb-shaped base material 12. . For example, surface treatment can be applied to one side surface of the plurality of comb teeth 16 along the comb tooth row 17 in the comb-shaped base material 12 to promote adhesion of CNTs to the one side surface.
 CNTを表面に付着させた後、櫛形母材12を分散液から引き上げて、乾燥させることにより、櫛形母材12の表面にCNTが付着、固定される。このようにして、CNTが互いに接続されたネットワーク構造を有する構造体が、櫛形母材12における、少なくとも櫛歯列17に沿った複数の櫛歯16の一側面に形成される。浸漬および乾燥の工程を繰り返すことによって、所望の厚さの構造体を得ることができる。 After the CNTs are attached to the surface, the comb-shaped base material 12 is pulled up from the dispersion and dried to attach and fix the CNTs on the surface of the comb-shaped base material 12. In this way, a structure having a network structure in which CNTs are connected to each other is formed on one side of the plurality of comb teeth 16 along at least the comb teeth row 17 in the comb-shaped base material 12. By repeating the steps of dipping and drying, a structure having a desired thickness can be obtained.
 上記のように櫛形母材12を分散液に浸漬すると、CNTは、櫛形母材12における、少なくとも櫛歯列17に沿った複数の櫛歯16の一側面に直接付着して、構造体を形成する。したがって、櫛形母材12の所定の一側面に構造体が形成された脳波測定用電極10を、容易に形成することができる。 When the comb-shaped base material 12 is immersed in the dispersion liquid as described above, the CNTs are directly attached to at least one side surface of the plurality of comb teeth 16 along the comb-tooth row 17 in the comb-shaped base material 12 to form a structure. To do. Therefore, the electroencephalogram measurement electrode 10 having a structure formed on one predetermined side surface of the comb-shaped base material 12 can be easily formed.
 本実施形態の脳波測定用電極10は、頭皮接触面18が頭皮に接するように、例えばヘッドバンドまたはヘッドキャップに複数個を取り付けて、ヘッドセットとして用いることができる。ヘッドセットに含まれる複数の脳波測定用電極10は、必ずしも全てが均一な形状、大きさである必要はなく、必要に応じて形状や大きさを任意に変更することも可能である。 The electroencephalogram measurement electrode 10 of the present embodiment can be used as a headset, for example, by attaching a plurality of headbands or head caps so that the scalp contact surface 18 is in contact with the scalp. The plurality of electroencephalogram measurement electrodes 10 included in the headset do not necessarily have a uniform shape and size, and the shape and size can be arbitrarily changed as necessary.
3.作用および効果
 上記のように構成された脳波測定用電極10は、支持部14から複数の櫛歯16が一列に突設して、櫛歯列17が形成されている。櫛歯列17に沿った複数の櫛歯16の一側面が、頭皮接触面18となる。脳波測定用電極10を使用する際には、頭皮接触面18を頭皮に沿わせて、複数の櫛歯16の先端16bから櫛歯列17を頭髪に差し込む。複数の櫛歯16が頭髪を掻き分けることによって、頭皮接触面18は頭髪を避けて頭皮に接触することができる。
3. Action and Effect In the electroencephalogram measurement electrode 10 configured as described above, a plurality of comb teeth 16 protrude from the support portion 14 in a row, and a comb tooth row 17 is formed. One side surface of the plurality of comb teeth 16 along the comb tooth row 17 is a scalp contact surface 18. When the electroencephalogram measurement electrode 10 is used, the comb teeth row 17 is inserted into the head hair from the tips 16b of the plurality of comb teeth 16 with the scalp contact surface 18 along the scalp. As the plurality of comb teeth 16 scrape the hair, the scalp contact surface 18 can contact the scalp while avoiding the hair.
 脳波測定用電極10の頭皮接触面18は、複数のCNTを含む構造体が形成された一側面であり、表面に導電パスが形成されている。本実施形態の脳波測定用電極10を使用する際、頭皮は導電パスに接する。これによって、導電性ペーストを用いなくても、脳波測定用電極10と被験者の頭部との間の導通が確保されるので、接触インピーダンスを極めて低いレベルまで下げることが可能となる。その結果、脳波測定用電極10は頭部からの微弱な電気信号を正確に検出することができる。 The scalp contact surface 18 of the electroencephalogram measurement electrode 10 is one side surface on which a structure including a plurality of CNTs is formed, and a conductive path is formed on the surface. When the electroencephalogram measurement electrode 10 of this embodiment is used, the scalp is in contact with the conductive path. Thereby, even if it does not use an electrically conductive paste, since conduction | electrical_connection between the electrode 10 for electroencephalogram measurement and a test subject's head is ensured, it becomes possible to reduce a contact impedance to a very low level. As a result, the electroencephalogram measurement electrode 10 can accurately detect a weak electric signal from the head.
 しかも、複数の櫛歯16を含む櫛形母材12は弾性体からなり、柔軟性、クッション性を有している。櫛歯列17に沿った複数の櫛歯16の一側面が被験者の頭部に接触して圧力が加えられても、被験者が不快に感じることはない。本実施形態の脳波測定用電極10は、被験者の負担を軽減することができる。 Moreover, the comb-shaped base material 12 including a plurality of comb teeth 16 is made of an elastic body and has flexibility and cushioning properties. Even if one side of the plurality of comb teeth 16 along the comb teeth row 17 contacts the subject's head and pressure is applied, the subject does not feel uncomfortable. The electroencephalogram measurement electrode 10 of the present embodiment can reduce the burden on the subject.
 本実施形態の場合、構造体は、櫛形母材12の表面に露出して、複数のCNTが互いに接続されたネットワーク構造を形成している。これによって、脳波測定用電極10における構造体は、CNT由来の機能である導電性を発揮することができる。複数のCNTが、接着剤等が介在しない状態で、互いに直接接続されて、ネットワーク構造を有する構造体を形成している場合は、CNT本来の導電性が損なわれることがない。このため、脳波測定用電極10としては、より好ましいものとなる。 In the case of this embodiment, the structure is exposed on the surface of the comb-shaped base material 12 to form a network structure in which a plurality of CNTs are connected to each other. Thereby, the structure in the electroencephalogram measurement electrode 10 can exhibit conductivity that is a function derived from CNT. When a plurality of CNTs are directly connected to each other without an adhesive or the like to form a structure having a network structure, the original conductivity of the CNTs is not impaired. For this reason, it becomes more preferable as the electrode 10 for electroencephalogram measurement.
 構造体は、櫛形母材12における、少なくとも櫛歯列17に沿った複数の櫛歯16の一側面に形成される。このように構造体が形成されることによって、導電パスは櫛形母材12の表面に露出して形成されることとなる。櫛形母材12の内部に導電パスが存在する場合と比較して、測定された脳波を効率的に伝達することができる。 The structure is formed on one side surface of the plurality of comb teeth 16 along at least the comb teeth row 17 in the comb-shaped base material 12. By forming the structure in this way, the conductive path is exposed and formed on the surface of the comb-shaped base material 12. Compared with the case where a conductive path exists inside the comb-shaped base material 12, the measured electroencephalogram can be efficiently transmitted.
 構造体は、接着剤等を用いずに、CNT同士を直接接続してネットワークを形成し、櫛形母材12に固定されている。CNTによる構造体の形成、および櫛形母材12への構造体の固定には、接着剤等が用いられていないので、導電性の良さに加えて櫛形母材12の柔軟性、クッション性を保持することができる。したがって脳波測定用電極10は、全体として柔軟性、クッション性を有することにより、被験者の負担を軽減することができる。構造体が櫛形母材12の表面に存在しているので、CNTの使用量は最小限とすることができ、製造コストの削減にも繋がる。 The structure is fixed to the comb-shaped base material 12 by directly connecting the CNTs without using an adhesive or the like to form a network. Adhesives are not used to form the structure with CNT and to fix the structure to the comb-shaped base material 12, so that the flexibility and cushioning properties of the comb-shaped base material 12 are maintained in addition to good conductivity. can do. Therefore, the electroencephalogram measurement electrode 10 can reduce the burden on the subject by having flexibility and cushioning properties as a whole. Since the structure exists on the surface of the comb-shaped base material 12, the amount of CNT used can be minimized, leading to a reduction in manufacturing cost.
 なお、本実施形態に係る脳波測定用電極10は、弾性体からなる櫛形母材12と、櫛形母材12の所定の一側面のナノ炭素材料からなる構造体とから構成されている。金属部材が含まれていないため、本実施形態に係る脳波測定用電極10を頭部に装着したままX線コンピュータ断層撮影(CT:Computed Tomography)や核磁気共鳴画像法(MRI:Magnetic Resonance Imaging)により画像情報を取得しても、アーチファクトの発生を防止することができる。したがって、脳波測定用電極10は、X線CTやMRI等による画像情報と、脳波電極による脳波を同時に取得することが可能となる。 The electroencephalogram measurement electrode 10 according to the present embodiment is composed of a comb-shaped base material 12 made of an elastic body and a structure made of a nanocarbon material on one predetermined side of the comb-shaped base material 12. Since no metal member is included, X-ray computed tomography (CT) or nuclear magnetic resonance imaging (MRI) with the electroencephalogram measurement electrode 10 according to this embodiment attached to the head Thus, even if image information is acquired, the occurrence of artifacts can be prevented. Therefore, the electroencephalogram measurement electrode 10 can simultaneously acquire image information obtained by X-ray CT, MRI, or the like and an electroencephalogram by the electroencephalogram electrode.
 また、金属部材が含まれていないことから、脳波測定用電極10は、金属アレルギーをもつ被験者に使用することもできる。本実施形態に係る脳波測定用電極10は、使い捨ても可能であり、衛生面でも優れている。弾性体からなる櫛形母材12として市販の樹脂製の櫛を適切な寸法に切断して用いる場合には、脳波測定用電極10の量産性に優れ、製造コストを削減することも可能となる。 In addition, since the metal member is not included, the electroencephalogram measurement electrode 10 can be used for a subject having metal allergy. The electroencephalogram measurement electrode 10 according to the present embodiment can be disposable, and is excellent in terms of hygiene. When a commercially available resin comb is cut into an appropriate size and used as the comb-shaped base material 12 made of an elastic body, the electroencephalogram measurement electrode 10 is excellent in mass productivity, and the manufacturing cost can be reduced.
4.変形例
 本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
4). The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
 櫛形母材12としては、柔軟性、クッション性を有する任意の弾性体を用いて成形された成形体を用いてもよい。この場合には、例えば、他の熱可塑性エラストマー、樹脂、ゴム等の弾性体を原料として用いることができる。任意の弾性体を原料として用いて、例えば射出成形法により、任意の寸法、任意の形状の櫛形母材12を作製することができる。 As the comb-shaped base material 12, a molded body formed by using an arbitrary elastic body having flexibility and cushioning properties may be used. In this case, for example, another thermoplastic elastomer, resin, rubber, or other elastic body can be used as a raw material. Using any elastic body as a raw material, the comb-shaped base material 12 having any size and any shape can be produced by, for example, injection molding.
 他の熱可塑性エラストマーとしては、例えば、オレフィン系熱可塑性エラストマー(TPO)、スチレン系熱可塑性エラストマー、エステル系熱可塑性エラストマー(TPC)、ポリアミド系熱可塑性エラストマー(TPAE)、およびポリ塩化ビニル系熱可塑性エラストマー(TPVC)等が挙げられる。 Other thermoplastic elastomers include, for example, olefin-based thermoplastic elastomers (TPO), styrene-based thermoplastic elastomers, ester-based thermoplastic elastomers (TPC), polyamide-based thermoplastic elastomers (TPAE), and polyvinyl chloride-based thermoplastics. An elastomer (TPVC) etc. are mentioned.
 樹脂としては、例えばアクリロニトリルスチレン(AS)樹脂、アクリロニトリルブタジエン(ABS)樹脂、エポキシ樹脂、テトラフルオロエチレン・エチレン共重合体(ETFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、ヘキサフルオロプロピレン・エチレン共重合体(EFEP)、ポリビニリデンフルオロライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメリレンセバカミド(ナイロン610)、ポリヘキサメリレンドデカミド(ナイロン612)、ポリドデカンアミド(ナイロン12)、ポリウンデカンアミド(ナイロン11)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリキシリレンアジパミド(ナイロンXD6)、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリウンデカンメチレンテレフタルアミド(ナイロン11T)、ポリデカメチレンデカンアミド(ナイロン1010)、ポリデカメチレンドデカンアミド(ナイロン1012)アミド系エラストマー(TPA)、ポリブチレンテレフタレート(PBT)、ポリブチレンナフタレート(PBN)、ポリエチレンナフタレート(PEN)ポリカーボネート(PC)、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、架橋ポリエチレン、エチレン・酢酸ビニル共重合体(EVA)、エチレン・ビニルアルコール共重合体(EVOH)、ブテンジオール・ビニルアルコール共重合体(BVOH)、ポリビニルアルコール(PVA)、ポリブテン(PB)、ウレタン系エラストマー(TPU)、エステル系エラストマー(TPC)、オレフィン系エラストマー(TPO)、スチレン系エラストマー(TPS)、変性ポリフェニレンエーテル(変性PPE)、液晶ポリマー(LCP)、シクロオレフィンコポリマ(COC)、ポリエーテルケトン(PEK)、ポリグリコール酸(PGA)、ポリアリレート(PAR)、ポリメチルペンテン(PMP)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルサルホン(PES)、ポリエチレンテレフタレート(PET)、フェノール樹脂(PF)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリイミド(PI)、ポリエーテルイミド(PEI)、アクリル樹脂(PMMA)、ポリアセタール(POM)、ポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、ポリスチレン(PS)、ポリサルホン(PSU)、ポリテトラフルオロエチレン(PTFE)、およびポリ塩化ビニル(PVC)等が挙げられる。 Examples of the resin include acrylonitrile styrene (AS) resin, acrylonitrile butadiene (ABS) resin, epoxy resin, tetrafluoroethylene / ethylene copolymer (ETFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), hexafluoro Propylene / ethylene copolymer (EFEP), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), polycaproamide (nylon 6), polyhexa Methylene adipamide (nylon 66), polytetramethylene adipamide (nylon 46), polyhexamethylene sebacamide (nylon 610), polyhexamylene dodecamide (nylon 612), poly Decanamide (nylon 12), polyundecanamide (nylon 11), polyhexamethylene terephthalamide (nylon 6T), polyxylylene adipamide (nylon XD6), polynonamethylene terephthalamide (nylon 9T), polyundecane methylene terephthalamide (Nylon 11T), polydecane methylene decanamide (nylon 1010), polydecamethylene dodecanamide (nylon 1012) amide elastomer (TPA), polybutylene terephthalate (PBT), polybutylene naphthalate (PBN), polyethylene naphthalate ( PEN) polycarbonate (PC), linear low density polyethylene (LLDPE), very low density polyethylene, low density polyethylene (LDPE), medium density polyethylene (MDPE), Density polyethylene (HDPE), crosslinked polyethylene, ethylene / vinyl acetate copolymer (EVA), ethylene / vinyl alcohol copolymer (EVOH), butenediol / vinyl alcohol copolymer (BVOH), polyvinyl alcohol (PVA), polybutene (PB), urethane elastomer (TPU), ester elastomer (TPC), olefin elastomer (TPO), styrene elastomer (TPS), modified polyphenylene ether (modified PPE), liquid crystal polymer (LCP), cycloolefin copolymer ( COC), polyether ketone (PEK), polyglycolic acid (PGA), polyarylate (PAR), polymethylpentene (PMP), polyether ether ketone (PEEK), polyether sulfone (PES), Reethylene terephthalate (PET), phenol resin (PF), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polyimide (PI), polyetherimide (PEI), acrylic resin (PMMA), polyacetal (POM), Examples include polypropylene (PP), polyphenylene sulfide (PPS), polystyrene (PS), polysulfone (PSU), polytetrafluoroethylene (PTFE), and polyvinyl chloride (PVC).
 ゴムとしては、例えば天然ゴム(NR)、エチレン・プロピレンゴム(EPM、EPDM)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ポリウレタンゴム(U)、シリコーンゴム(VMQ、FVMQ)、アクリルゴム(ACM)、エピクロルヒドリンゴム(ECO)、フッ素系ゴム(FKM、FEPM,FFKM)、ニトリルゴム(NBR)、水素化ニトリルゴム(H-NBR)、塩素化ポリエチレン(CPE)、クロロスルホン化ポリエチレン(CSM)、ブタジエンゴム(BR)、およびスチレン・ブタジエンゴム(SBR)等が挙げられる。 Examples of rubber include natural rubber (NR), ethylene / propylene rubber (EPM, EPDM), chloroprene rubber (CR), butyl rubber (IIR), polyurethane rubber (U), silicone rubber (VMQ, FVMQ), and acrylic rubber (ACM). ), Epichlorohydrin rubber (ECO), fluorinated rubber (FKM, FEPM, FFKM), nitrile rubber (NBR), hydrogenated nitrile rubber (H-NBR), chlorinated polyethylene (CPE), chlorosulfonated polyethylene (CSM), Examples thereof include butadiene rubber (BR) and styrene-butadiene rubber (SBR).
 櫛形母材12における支持部14および複数の櫛歯16は、柔軟性、クッション性が損なわれない範囲で、必要に応じて、多色成形やインサート成形などにより、異なる材料を用いてもよい。 The support portion 14 and the plurality of comb teeth 16 in the comb-shaped base material 12 may be made of different materials by multicolor molding, insert molding, or the like, as long as flexibility and cushioning properties are not impaired.
 さらに櫛形母材12は、発泡ウレタンなどのクッション性のある発泡材料や木材、コルクなどの多孔質材料、各種繊維を拠って糸状にした材料や、繊維を織ったり編んだりしたものを固めて形成した材料、不織材料で形成してもよい。要は一列に突設した複数の櫛歯16を形成できるとともに弾性を示し、所定の一側面に構造体を形成できる材料であれば、上記材料に限定することなく好適に使用可能である。 Further, the comb-shaped base material 12 is formed by solidifying a foam material having a cushioning property such as urethane foam, a porous material such as wood or cork, a material made into a thread shape based on various fibers, or a material in which fibers are woven or knitted. You may form with the material and non-woven material which were made. In short, any material can be suitably used without being limited to the above materials as long as it can form a plurality of comb teeth 16 projecting in a row and exhibits elasticity and can form a structure on a predetermined side surface.
 特に櫛形母材12として繊維材料や多孔質材料、発泡材料などを使った場合は、その表面の凹凸にCNTの繊維が絡みつきやすくなる。この場合、接着剤を使わなくても櫛形母材12における、少なくとも櫛歯列17に沿った複数の櫛歯16の一側面に、各CNTの繊維が複数絡みあいながらCNTのネットワーク構造を有する構造体を形成でき、同時に櫛形母材12へも直接固定できる。これにより、上記したようにより導電性が向上した脳波測定用電極10を得ることができる。 In particular, when a fiber material, a porous material, a foam material, or the like is used as the comb-shaped base material 12, the CNT fibers are easily entangled with the unevenness of the surface. In this case, a structure having a CNT network structure in which a plurality of CNT fibers are intertwined on at least one side surface of the plurality of comb teeth 16 along the comb tooth row 17 in the comb-shaped base material 12 without using an adhesive. The body can be formed and can be directly fixed to the comb-shaped base material 12 at the same time. Thereby, the electroencephalogram measurement electrode 10 with improved conductivity as described above can be obtained.
 櫛形母材12から一列に突設する複数の櫛歯16は、必ずしも長さ方向の途中から頭皮接触面18とは逆側に傾斜している必要はない。図2に示した形状とは異なって、支持部14の基端14aから櫛歯16の先端16bまでが一直線上にあってもよい。複数の櫛歯16は、基端16aから先端16bまで均一の厚さとすることもできる。櫛歯16の長さd4、幅d5、間隔d6は、使用する弾性体の種類、支持部14の幅d1や長さd2等に応じて適宜設定すればよい。 The plurality of comb teeth 16 protruding in a row from the comb-shaped base material 12 do not necessarily have to be inclined to the side opposite to the scalp contact surface 18 from the middle in the length direction. Unlike the shape shown in FIG. 2, the base end 14 a of the support portion 14 to the tip end 16 b of the comb teeth 16 may be in a straight line. The plurality of comb teeth 16 may have a uniform thickness from the proximal end 16a to the distal end 16b. The length d4, the width d5, and the interval d6 of the comb teeth 16 may be appropriately set according to the type of elastic body to be used, the width d1 and the length d2 of the support portion 14, and the like.
 櫛形母材12における支持部14は、必ずしも幅d1と長さd2とで画定される矩形状である必要はない。本来の弾性を維持できるとともに頭皮接触面18が頭皮へ接触するのを妨げない限り、支持部14および複数の櫛歯16は、任意の形状とすることが可能である。 The support portion 14 in the comb-shaped base material 12 does not necessarily have a rectangular shape defined by the width d1 and the length d2. As long as the original elasticity can be maintained and the scalp contact surface 18 is not prevented from contacting the scalp, the support portion 14 and the plurality of comb teeth 16 can have any shape.
 アーチファクトについての配慮が要求されない場合には、櫛形母材12の柔軟性、クッション性が損なわれない範囲で、脳波測定用電極10の一部に金属板等の金属部材が含まれていてもよい。例えば、支持部14の表面に構造体が形成されていない場合には、導線によって頭皮接触面18との導通を確保しつつ、この支持部14の表面に金属板を配置してもよい。金属板を設けることによって電気信号が伝達し易くなり、測定の精度をより高めることができる。 When consideration about the artifact is not required, a part of the electroencephalogram measurement electrode 10 may include a metal member such as a metal plate as long as the flexibility and cushioning property of the comb-shaped base material 12 are not impaired. . For example, when a structure is not formed on the surface of the support portion 14, a metal plate may be disposed on the surface of the support portion 14 while ensuring conduction with the scalp contact surface 18 by a conductive wire. By providing a metal plate, it is easy to transmit an electric signal, and the accuracy of measurement can be further increased.
 上記実施形態においては、櫛形母材12における、少なくとも櫛歯列17に沿った複数の櫛歯16の一側面にCNTを直接固定することによって、櫛形母材12にCNTを固定して櫛形母材12の表面に露出して構造体を形成したが、CNTは、繊維基材を介して櫛形母材12に固定してもよい。繊維基材を介した櫛形母材12へのCNTの固定は、例えば図3に示すようなCNTコーティング紙20を、櫛形母材12の所定の一側面に貼り付けることによって達成することができる。CNTコーティング紙20は、繊維基材22と、この繊維基材22の表面にCNTを付着させることにより形成された構造体24とから構成される。 In the above embodiment, the CNTs are fixed directly to at least one side surface of the plurality of comb teeth 16 along the comb tooth row 17 in the comb base material 12, thereby fixing the CNTs to the comb base material 12. Although the structure was formed by being exposed on the surface of CNT, the CNTs may be fixed to the comb-shaped base material 12 through a fiber base material. The fixing of the CNTs to the comb-shaped base material 12 through the fiber base material can be achieved, for example, by attaching a CNT-coated paper 20 as shown in FIG. The CNT coated paper 20 includes a fiber base material 22 and a structure 24 formed by attaching CNTs to the surface of the fiber base material 22.
 繊維基材22としては、例えば、繊維密度の低い半紙や和紙、唐紙、編布、織布、および不織布などが挙げられる。繊維基材22を構成している繊維の種類、寸法(直径、長さ、密度等)は、CNTコーティング紙20が貼り付けられる櫛形母材12の材質や大きさ等に応じて、適宜選択することができる。 Examples of the fiber base material 22 include semi-paper, Japanese paper, Kara paper, knitted fabric, woven fabric, and non-woven fabric having a low fiber density. The type and dimensions (diameter, length, density, etc.) of the fibers constituting the fiber base material 22 are appropriately selected according to the material and size of the comb-shaped base material 12 to which the CNT coated paper 20 is attached. be able to.
 CNTコーティング紙20は、上述したようなCNTを含む分散液中に繊維基材22を浸漬し、乾燥させて作製することができる。浸漬および乾燥の工程を繰り返して、所定の厚さの構造体24を繊維基材22の表面に形成して、CNTコーティング紙20が得られる。CNTコーティング紙20の一表面を、櫛形母材12における櫛歯列17に沿った複数の櫛歯16の一側面に貼り付けることによって、導電性の頭皮接触面18を有する脳波測定用電極10を、より簡便に作製することが可能となる。 The CNT-coated paper 20 can be produced by immersing the fiber base material 22 in a dispersion containing CNT as described above and drying it. The structure 24 having a predetermined thickness is formed on the surface of the fiber base 22 by repeating the dipping and drying steps, and the CNT-coated paper 20 is obtained. The electroencephalogram measurement electrode 10 having the conductive scalp contact surface 18 is obtained by attaching one surface of the CNT-coated paper 20 to one side surface of the plurality of comb teeth 16 along the comb teeth row 17 in the comb-shaped base material 12. Thus, it can be more easily produced.
 上述したとおり、脳波測定用電極10においては、複数のCNTを含む構造体によって櫛形母材12に導電パスが形成される。こうした構造体による導電パスは、櫛形母材12の表面に限らず、櫛形母材12の内部に形成されていてもよい。この場合においても、構造体は、櫛歯列17に沿った複数の櫛歯16の一側面に形成されることになる。 As described above, in the electroencephalogram measurement electrode 10, a conductive path is formed in the comb-shaped base material 12 by a structure including a plurality of CNTs. The conductive path by such a structure is not limited to the surface of the comb-shaped base material 12 but may be formed inside the comb-shaped base material 12. Even in this case, the structure is formed on one side surface of the plurality of comb teeth 16 along the comb tooth row 17.
 櫛形母材12の内部に導電パスを有する脳波測定用電極は、導電性の弾性体を所定の形状に成形して作製することができる。導電性の弾性体は、例えば、ベース材となる弾性体に、ナノ炭素材料としてのCNTを配合して調製することができる。ベース材としては、すでに説明したような任意の弾性体を用いることができる。CNTの配合量(濃度)が弾性体の1~15wt%程度であれば、弾性体の弾性を損なうことなく脳波測定用電極に要求される導電パスを形成することができる。 The electroencephalogram measurement electrode having a conductive path inside the comb-shaped base material 12 can be produced by molding a conductive elastic body into a predetermined shape. The conductive elastic body can be prepared, for example, by blending CNT as a nanocarbon material with an elastic body serving as a base material. As the base material, any elastic body as described above can be used. If the blending amount (concentration) of CNT is about 1 to 15 wt% of the elastic body, a conductive path required for the electroencephalogram measurement electrode can be formed without impairing the elasticity of the elastic body.
 15wt%を超える濃度でCNTが配合された場合には、ベース材としての弾性体本来の特性が損なわれるおそれがある。CNTの濃度は、弾性体の3wt%以上が好ましく、7wt%以上がより好ましく、10wt%以上が最も好ましい。 When CNT is blended at a concentration exceeding 15 wt%, the original characteristics of the elastic body as the base material may be impaired. The concentration of CNT is preferably 3 wt% or more of the elastic body, more preferably 7 wt% or more, and most preferably 10 wt% or more.
 例えば、弾性体とCNTとを二軸押出機等で溶融混練して、混合原料が調製される。溶融混練の条件は、弾性体の種類等に応じて適宜選択することができる。溶融混練後の混合原料を、ペレタイザーを通過させることによってペレットを作製する。ペレットは、一般的な大きさで作製することができる。例えば、ペレットの直径は約2~3mm程度であり、長さは約2~3mm程度である。 For example, a mixed raw material is prepared by melt-kneading an elastic body and CNT with a twin screw extruder or the like. The conditions for melt kneading can be appropriately selected according to the type of elastic body. The mixed raw material after melt-kneading is made to pass through a pelletizer to produce pellets. The pellets can be made in a general size. For example, the diameter of the pellet is about 2 to 3 mm, and the length is about 2 to 3 mm.
 得られたペレットを、射出成形機により所定の櫛形形状に成形して、脳波測定用電極が得られる。こうして作製された脳波測定用電極は、導電性の弾性体からなる櫛形母材ということができる。射出成形の条件は、弾性体の種類、目的とする櫛形母材の大きさ等に応じて適宜選択することができる。 The obtained pellets are molded into a predetermined comb shape by an injection molding machine to obtain an electroencephalogram measurement electrode. The thus produced electroencephalogram measurement electrode can be said to be a comb-shaped base material made of a conductive elastic body. The conditions for injection molding can be appropriately selected according to the type of the elastic body, the size of the target comb-shaped base material, and the like.
 導電性の弾性体からなる櫛形母材により構成された脳波測定用電極においては、構造体による導電パスが内部にも形成される。これによって、少なくとも櫛歯列に沿った複数の櫛歯の一側面を、導電性の頭皮接触面とすることができる。こうした脳波測定用電極もまた弾性体本来の弾性も備えていることから、上述と同様の効果が得られる。 In the electroencephalogram measurement electrode composed of a comb-shaped base material made of a conductive elastic body, a conductive path by the structure is also formed inside. Accordingly, at least one side surface of the plurality of comb teeth along the comb tooth row can be used as a conductive scalp contact surface. Since the electroencephalogram measurement electrode also has the elasticity inherent in the elastic body, the same effect as described above can be obtained.
 上記実施形態においては、構造体を形成するナノ炭素材料としてCNTを用いたが、CNTに限定されずグラフェンを用いることもできる。グラフェンは、CNTと同様に高い導電性を有するナノ炭素材料である。CNTをグラフェンに変更する以外は上述と同様の手法により、櫛形母材12の表面または内部にグラフェンを固定して構造体を形成して、導電性の頭皮接触面を、櫛歯列17に沿った複数の櫛歯16の一側面側に設けることができる。 In the above embodiment, CNT is used as the nanocarbon material forming the structure, but is not limited to CNT, and graphene can also be used. Graphene is a nanocarbon material having high conductivity like CNT. Except for changing CNT to graphene, a structure is formed by fixing graphene on the surface or inside of the comb-shaped base material 12 in the same manner as described above, and the conductive scalp contact surface is formed along the comb teeth row 17. The plurality of comb teeth 16 can be provided on one side surface.
5.実施例
 以下、脳波測定用電極の実施例を説明するが、本発明は以下の実施例のみに限定されるものではない。
5). EXAMPLES Examples of the electroencephalogram measurement electrode will be described below, but the present invention is not limited to the following examples.
[実施例1]
 本実施例においては、CNTコーティング紙を櫛形母材に貼り付けて脳波測定用電極を作製し、その電気特性を調べる。CNTコーティング紙は、繊維基材と、この繊維基材の表面にCNTを付着させることによって形成された構造体とから構成される。したがって、実施例1の脳波測定用電極は、複数のCNTが互いに接続されたネットワーク構造からなる構造体が、櫛形母材の表面に露出している。
[Example 1]
In this embodiment, an electroencephalogram measurement electrode is prepared by attaching CNT-coated paper to a comb-shaped base material, and its electrical characteristics are examined. The CNT-coated paper is composed of a fiber base material and a structure formed by attaching CNTs to the surface of the fiber base material. Therefore, in the electroencephalogram measurement electrode of Example 1, a structure having a network structure in which a plurality of CNTs are connected to each other is exposed on the surface of the comb-shaped base material.
<CNT分散液の調製>
 触媒として鉄を用いた一般的な熱CVD法により、CNTを作製した。混酸および超音波を用いて単離分散させたCNTを取り出し、アンモニア水により中和し、純水で洗浄した。最後に、オーブンで乾燥させて粉状のCNTを得た。
<Preparation of CNT dispersion>
CNTs were produced by a general thermal CVD method using iron as a catalyst. The CNTs isolated and dispersed using a mixed acid and ultrasonic waves were taken out, neutralized with ammonia water, and washed with pure water. Finally, it was dried in an oven to obtain powdered CNTs.
 粉状のCNTをDMFに分散させて、CNT分散液を調製した。分散液中におけるCNTの濃度は0.01wt%である。ここでは、接着剤を使用せずに超音波照射によってCNTを分散させた。 Powdered CNTs were dispersed in DMF to prepare a CNT dispersion. The concentration of CNT in the dispersion is 0.01 wt%. Here, CNTs were dispersed by ultrasonic irradiation without using an adhesive.
<CNTコーティング紙の作製>
 繊維基材として市販の半紙を所定の大きさに切断し、上記で調製したCNT分散液に浸漬してから乾燥させた。検査用端子間の距離を約1cmとして乾燥後の半紙表面に押し当てて、抵抗値を測定した。測定された抵抗値が所定の値に達していない場合には、浸漬および乾燥を再度繰り返した後、同様に抵抗値を測定した。乾燥後の半紙表面の抵抗値が所定の値に達するまで、浸漬および乾燥を繰り返して、図3に示すようなCNTコーティング紙20を作製した。
<Production of CNT-coated paper>
A commercially available half paper as a fiber base was cut into a predetermined size, dipped in the CNT dispersion prepared above, and dried. The distance between the inspection terminals was set to about 1 cm and pressed against the surface of the dried half paper, and the resistance value was measured. When the measured resistance value did not reach the predetermined value, the resistance value was measured in the same manner after repeating dipping and drying again. The CNT-coated paper 20 as shown in FIG. 3 was produced by repeating immersion and drying until the resistance value on the surface of the half paper after drying reached a predetermined value.
 得られたCNTコーティング紙20の表面のSEM写真を、図4に示す。図4A(倍率:50倍)では、繊維基材22としての半紙を構成する繊維が互いに絡んでいるのが確認される。図4B(倍率:10000倍)では、繊維基材22の繊維表面に微細なCNTが、複数付着しているのが確認できる。複数のCNTは、互いに接続されたネットワーク構造からなる構造体24を形成している。 FIG. 4 shows an SEM photograph of the surface of the obtained CNT-coated paper 20. In FIG. 4A (magnification: 50 times), it is confirmed that the fibers constituting the half paper as the fiber base material 22 are entangled with each other. In FIG. 4B (magnification: 10000 times), it can be confirmed that a plurality of fine CNTs adhere to the fiber surface of the fiber substrate 22. The plurality of CNTs form a structure 24 having a network structure connected to each other.
 本実施例においては、接着剤等の添加剤を使用していないことから、CNT同士はファンデルワールス力により直接接しており、CNT本来の高い導電性を維持することができる。また、CNTコーティング紙20においては、添加剤によって繊維基材22本来の柔軟性が損なわれることもない。CNTコーティング紙20は、繊維基材22としての半紙本来の柔らかさを維持しているので、櫛形母材12における櫛歯16の所定の一側面に貼り付けることができる。 In this embodiment, since no additive such as an adhesive is used, the CNTs are in direct contact with each other by van der Waals force, and the original high conductivity of the CNTs can be maintained. In the CNT coated paper 20, the original flexibility of the fiber base material 22 is not impaired by the additive. Since the CNT-coated paper 20 maintains the original softness of the half paper as the fiber base material 22, the CNT-coated paper 20 can be attached to a predetermined side surface of the comb teeth 16 in the comb-shaped base material 12.
<脳波測定用電極の作製>
 櫛形母材12として、市販のプラスチック製の櫛を、櫛歯数が5本となるように切断したものを準備した。
<Preparation of electroencephalogram measurement electrode>
The comb-shaped base material 12 was prepared by cutting a commercially available plastic comb so that the number of comb teeth was five.
 上記で作製したCNTコーティング紙20を櫛形母材12における櫛歯列17に沿った面に合わせて切断し、市販の両面テープで櫛歯列17に沿った複数の櫛歯16の一側面に貼り付けた。隣接する櫛歯16間においては、はさみを用いてCNTコーティング紙20に切込みを入れて分離して、実施例1の脳波測定用電極10を得た。 The CNT coated paper 20 produced above is cut according to the surface along the comb tooth row 17 in the comb-shaped base material 12, and is pasted on one side surface of the plurality of comb teeth 16 along the comb tooth row 17 with a commercially available double-sided tape. I attached. Between adjacent comb teeth 16, the CNT-coated paper 20 was cut using scissors and separated to obtain the electroencephalogram measurement electrode 10 of Example 1.
 図5には、実施例1の脳波測定用電極10の側面図を示す。脳波測定用電極10においては、複数の櫛歯16が支持部14から突設して紙面に直交する方向に一列に並んで、櫛歯列17を形成している。この櫛歯列17に沿った複数の櫛歯16の一側面には、CNTコーティング紙20が貼り付けられている。櫛歯列17に沿った複数の櫛歯16の一側面に貼り付けられたCNTコーティング紙20の表面は、頭皮接触面18となる。 FIG. 5 shows a side view of the electroencephalogram measurement electrode 10 of Example 1. FIG. In the electroencephalogram measurement electrode 10, a plurality of comb teeth 16 project from the support portion 14 and are arranged in a row in a direction perpendicular to the paper surface to form a comb tooth row 17. A CNT-coated paper 20 is attached to one side surface of the plurality of comb teeth 16 along the comb tooth row 17. The surface of the CNT coated paper 20 attached to one side surface of the plurality of comb teeth 16 along the comb tooth row 17 becomes a scalp contact surface 18.
<電極接触抵抗の測定>
 実施例1の脳波測定用電極10を用いて測定用の電極部品を作製し、額部および頭髪部について電極接触抵抗を測定した。測定に当たっては、ミユキ技研製のワイヤレス生体電気信号測定装置(ポリメイトミニ)、およびアクティブ電極(皿電極)を用いた。
<Measurement of electrode contact resistance>
Electrode parts for measurement were prepared using the electroencephalogram measurement electrode 10 of Example 1, and electrode contact resistance was measured for the forehead and the hair. For measurement, a wireless bioelectric signal measuring device (Polymate Mini) manufactured by Miyuki Giken and an active electrode (dish electrode) were used.
 具体的には、図6に示すように、導線32が接続されたアクティブ電極26を、端子押さえ28を用いて脳波測定用電極10の頭皮接触面18側に取り付けて、測定用の電極部品30を作製した。頭皮接触面18を額部または頭髪部に接触させて、電極接触抵抗を測定した。額部については、測定前に研磨ジェルを塗布することで接触抵抗を下げて測定した。額部での電極接触抵抗は40~60kΩであるのに対し、頭髪部での電極接触抵抗も同様に40kΩ~60kΩであり、障害のある頭髪部においても低い電極接触抵抗となった。 Specifically, as shown in FIG. 6, the active electrode 26 to which the conducting wire 32 is connected is attached to the scalp contact surface 18 side of the electroencephalogram measurement electrode 10 using the terminal retainer 28, and the measurement electrode component 30. Was made. The electrode contact resistance was measured by bringing the scalp contact surface 18 into contact with the forehead or the hair portion. The forehead was measured by applying a polishing gel before measurement to lower the contact resistance. The electrode contact resistance at the forehead is 40-60 kΩ, while the electrode contact resistance at the hair is similarly 40 kΩ-60 kΩ, and the electrode contact resistance is low even in the hair with an obstacle.
 比較のために、アクティブ電極26のみを用いて同様にして、額部および頭髪部について電極接触抵抗を測定した(比較例1)。額部については、40~60kΩと実施例1の場合と同程度の結果が得られた。しかしながら、頭髪部については、300kΩ以上と大きな値であった。比較例1はアクティブ電極26のみであるので、頭髪を避けることができない。アクティブ電極26は、頭髪が障害となって電極接触抵抗が高くなってしまい、頭髪部については脳波を正確に測定することができないことがわかった。 For comparison, the electrode contact resistance was measured for the forehead portion and the hair portion in the same manner using only the active electrode 26 (Comparative Example 1). As for the forehead part, 40-60 kΩ, the same result as in Example 1 was obtained. However, the hair portion was a large value of 300 kΩ or more. Since the comparative example 1 is only the active electrode 26, hair cannot be avoided. It has been found that the active electrode 26 has a problem that the hair becomes an obstacle and the electrode contact resistance becomes high, and the electroencephalogram cannot be accurately measured for the hair portion.
 実施例1の脳波測定用電極10では、複数の櫛歯16が頭髪部の頭髪を掻き分けながら頭皮に達し、頭皮接触面18は頭髪を避けて頭皮に接触する。頭皮接触面18には、複数のCNTが互いに接続されたネットワーク構造からなる構造体が存在していることによって、導電性ペーストなしで十分な導電性を確保することができる。実施例1の脳波測定用電極10を用いた場合には、頭髪部においても低い抵抗値を得ることができ、高い精度で脳波を測定することが可能となった。 In the electroencephalogram measurement electrode 10 of Example 1, the plurality of comb teeth 16 reach the scalp while scraping the hair of the scalp, and the scalp contact surface 18 contacts the scalp avoiding the hair. The scalp contact surface 18 has a structure having a network structure in which a plurality of CNTs are connected to each other, so that sufficient conductivity can be ensured without a conductive paste. When the electroencephalogram measurement electrode 10 of Example 1 is used, a low resistance value can be obtained even in the hair portion, and it becomes possible to measure the electroencephalogram with high accuracy.
[実施例2]
 本実施例においては、導電性の櫛形母材からなる脳波測定用電極を作製して、その電気特性を調べる。導電性の櫛形母材は、CNT混練品であり、ベース材となる弾性体にCNTを混練した混合原料を櫛形形状に成形して得られる。したがって、実施例2の脳波測定用電極は、櫛形母材の表面に加えて内部にも、複数のCNTが互いに接続されたネットワーク構造からなる構造体を有する。
[Example 2]
In this embodiment, an electroencephalogram measurement electrode made of a conductive comb-shaped base material is produced, and its electrical characteristics are examined. The conductive comb-shaped base material is a CNT kneaded product, and is obtained by forming a mixed raw material obtained by kneading CNT into an elastic body serving as a base material into a comb shape. Therefore, the electroencephalogram measurement electrode of Example 2 has a structure having a network structure in which a plurality of CNTs are connected to each other in addition to the surface of the comb-shaped base material.
<CNT濃度と体積抵抗との関係>
 異なる濃度でCNTを含有するCNT混練品の試料を作製し、CNT濃度と体積抵抗との関係を調べた。試料の作製に当たっては、まず、CNTとベース材とを二軸押出機で溶融混練して、直径0.3cmのCNT混練ストランドを作製した。CNTとしては、上述の実施例1と同様に、触媒として鉄を用いた一般的な熱CVD法により得られたものを用いた。CNTは、混酸を用いた前処理を施してもよいが、前処理は必ずしも必要ではない。ベース材としては、ポリアミド系熱可塑性エラストマー(ペバックス2533、アルケマ(株)製)を用いた。CNTの濃度は、1.9wt%、3.3wt%、3.9wt%、および11.6wt%の4種類とした。
<Relationship between CNT concentration and volume resistance>
Samples of CNT kneaded products containing CNTs at different concentrations were prepared, and the relationship between CNT concentration and volume resistance was examined. In preparation of the sample, first, CNT and a base material were melt-kneaded with a twin-screw extruder to prepare a CNT kneaded strand having a diameter of 0.3 cm. As CNTs, those obtained by a general thermal CVD method using iron as a catalyst were used as in Example 1 described above. CNT may be subjected to pretreatment using a mixed acid, but pretreatment is not always necessary. As the base material, a polyamide-based thermoplastic elastomer (Pebax 2533, manufactured by Arkema Co., Ltd.) was used. The CNT concentration was 1.9 wt%, 3.3 wt%, 3.9 wt%, and 11.6 wt%.
 得られたCNT混練ストランドは、長さ10cmに切断して試料とした。試料の両端を4端子プローブで挟み、LCRメータ(IM3590、日置電機(株)製)を用いて電気抵抗Rsを測定した。各試料について、測定された電気抵抗Rs(Ω)、断面積A(0.152πcm2)、および長さL(10cm)を用いて、下記数式(1)に基づいて体積抵抗ρ(Ω・cm)を算出した。
     ρ=(Rs・A)/L     数式(1)
The obtained CNT kneaded strand was cut into a length of 10 cm to prepare a sample. Both ends of the sample were sandwiched between four terminal probes, and the electrical resistance Rs was measured using an LCR meter (IM3590, manufactured by Hioki Electric Co., Ltd.). For each sample, using the measured electrical resistance Rs (Ω), cross-sectional area A (0.15 2 πcm 2 ), and length L (10 cm), the volume resistance ρ (Ω Cm) was calculated.
ρ = (Rs · A) / L Formula (1)
 各CNT濃度について、3個の試料の体積抵抗ρの平均値を求め、その結果を図7のグラフに示す。CNT混練品の試料の体積抵抗ρは、CNT濃度が増加すると減少している。体積抵抗ρが100Ω・cm以下程度であれば、脳波測定用電極として好適に用いることができる。上述のCNTとベース材としてのポリアミド系熱可塑性エラストマーとを用いて脳波測定用電極を作製する場合には、CNT濃度は、7wt%以上であることが好ましく、10wt%以上であることがより好ましいことが確認された。なお、適切なCNT濃度の範囲は、CNTやベース材の種類に応じて変わり得る。 For each CNT concentration, the average value of the volume resistance ρ of three samples was determined, and the result is shown in the graph of FIG. The volume resistance ρ of the sample of the CNT kneaded product decreases as the CNT concentration increases. If the volume resistance ρ is about 100 Ω · cm or less, it can be suitably used as an electrode for electroencephalogram measurement. In the case of producing an electroencephalogram measurement electrode using the above-mentioned CNT and a polyamide-based thermoplastic elastomer as a base material, the CNT concentration is preferably 7 wt% or more, more preferably 10 wt% or more. It was confirmed. The appropriate CNT concentration range can vary depending on the type of CNT or base material.
<脳波測定用電極の作製>
 上述と同様のCNTとベース材とを用いて、上述と同様の手法によりCNT混練ストランドを作製した。CNTの濃度は、12wt%とした。CNT混練ストランドの直径は0.3cmであった。得られたCNT混練ストランドは、ペレタイザーを通過させることによって、長さ約2mmのCNT混練樹脂ペレットとした。CNT混練樹脂ペレットを射出成形して、図1,図2に示したような櫛形形状に成形した。こうして、導電性の櫛形母材からなる実施例2の脳波測定用電極を3個作製した。
<Preparation of electroencephalogram measurement electrode>
Using the same CNT and base material as described above, a CNT kneaded strand was produced by the same method as described above. The concentration of CNT was 12 wt%. The diameter of the CNT kneaded strand was 0.3 cm. The obtained CNT kneaded strand was made into a CNT kneaded resin pellet having a length of about 2 mm by passing through a pelletizer. The CNT kneaded resin pellets were injection molded into a comb shape as shown in FIGS. In this way, three electroencephalogram measurement electrodes of Example 2 made of a conductive comb-shaped base material were produced.
 実施例2の脳波測定用電極は、ポリアミド系熱可塑性エラストマーをベース材としていることにより、柔軟性およびクッション性を有している。実施例2の脳波測定用電極は、支持部14の幅d1、長さd2、および厚さd3が、それぞれ11mm、13.8mm、および2.5mm、櫛歯16の長さd4、幅d5、および間隔d6が、それぞれ17.3mm、0.7mm、および1.2mmであった。 The electroencephalogram measurement electrode of Example 2 has flexibility and cushioning properties by using a polyamide-based thermoplastic elastomer as a base material. In the electroencephalogram measurement electrode of Example 2, the width d1, the length d2, and the thickness d3 of the support portion 14 are 11 mm, 13.8 mm, and 2.5 mm, respectively, the length d4, the width d5 of the comb teeth 16, And the distance d6 were 17.3 mm, 0.7 mm, and 1.2 mm, respectively.
<インピーダンスの測定>
 LCRメータを用いて、実施例2の脳波測定用電極のインピーダンスを測定した。具体的には、脳波測定用電極の両端を4端子プローブで挟み、10Hzにおけるインピーダンスを測定した。プローブ間の距離は35mmである。3個の試料についての測定値の平均値は、170Ωであった。脳波測定用電極は、インピーダンスが10KΩ以下程度であることが好ましく、1KΩ以下程度であることがより好ましい。実施例2の脳波測定用電極は、脳波測定用電極として好適なインピーダンスを有している。
<Measurement of impedance>
The impedance of the electroencephalogram measurement electrode of Example 2 was measured using an LCR meter. Specifically, both ends of the electroencephalogram measurement electrode were sandwiched between four terminal probes, and the impedance at 10 Hz was measured. The distance between the probes is 35 mm. The average value of the measured values for the three samples was 170Ω. The electroencephalogram measurement electrode preferably has an impedance of about 10 KΩ or less, more preferably about 1 KΩ or less. The electroencephalogram measurement electrode of Example 2 has an impedance suitable as an electroencephalogram measurement electrode.
 比較のために、導電ナイロンを用いて成形体を作製し、同様の手法でインピーダンスを測定した(比較例2)。導電ナイロンとしては、ポリアミド系熱可塑性エラストマーであるペバックス5533 SN 70(アルケマ(株)製)を用い、射出成形により、実施例2の脳波測定用電極と同様の大きさおよび形状の成形体を3個作製した。比較例2の導電ナイロンの成形体は、インピーダンスの平均値が100kΩであった。 For comparison, a molded body was produced using conductive nylon, and the impedance was measured by the same method (Comparative Example 2). As the conductive nylon, a polyamide thermoplastic elastomer, Pebax 5533 SN 70 (manufactured by Arkema Co., Ltd.) was used, and a molded body having the same size and shape as the electroencephalogram measurement electrode of Example 2 was obtained by injection molding. Individually produced. The conductive nylon molded body of Comparative Example 2 had an average impedance value of 100 kΩ.
 実施例2の脳波測定用電極は、ベース材としての弾性体にCNTが混練された導電性の櫛形母材からなるので、複数のCNTが互いに接続されたネットワーク構造からなる構造体が、櫛形母材の表面に加えて内部にも形成されている。このような構造体が表面のみならず内部にも形成されている櫛形母材は、全体にわたって導電パスを有することから、導電性が優れている。 Since the electroencephalogram measurement electrode of Example 2 is made of a conductive comb base material in which CNTs are kneaded with an elastic body as a base material, a structure having a network structure in which a plurality of CNTs are connected to each other is a comb base. In addition to the surface of the material, it is also formed inside. A comb-shaped base material in which such a structure is formed not only on the surface but also on the inside has a conductive path throughout, and thus has excellent conductivity.
 こうした導電性の櫛形母材からなる実施例2の脳波測定用電極を使用する際には、頭皮は導電パスに接する。実施例2の脳波測定電極は、実施例1の脳波測定用電極と同様、導電性ペーストを用いなくても、脳波測定用電極と被験者との間の導通が確保されるので、接触インピーダンスを極めて低いレベルまで下げることが可能となる。その結果、実施例2の脳波測定用電極は、頭部からの微弱な電気信号を正確に検出することができる。 When using the electroencephalogram measurement electrode of Example 2 made of such a conductive comb-shaped base material, the scalp is in contact with the conductive path. Since the electroencephalogram measurement electrode of Example 2 ensures electrical continuity between the electroencephalogram measurement electrode and the subject without using a conductive paste, like the electroencephalogram measurement electrode of Example 1, the contact impedance is extremely low. It can be lowered to a lower level. As a result, the electroencephalogram measurement electrode of Example 2 can accurately detect a weak electrical signal from the head.
<電極接触抵抗の測定>
 実施例2の脳波測定用電極を用いて測定用の電極部品を作製し、額部および頭髪部について、実施例1と同様の手法により電極接触抵抗を測定した。実施例2の脳波測定用電極は、額部の電極接触抵抗が20kΩであり、頭髪部での電極接触抵抗が50~150kΩであった。
<Measurement of electrode contact resistance>
Measurement electrode parts were prepared using the electroencephalogram measurement electrodes of Example 2, and the electrode contact resistance was measured for the forehead and the hair by the same method as in Example 1. In the electroencephalogram measurement electrode of Example 2, the electrode contact resistance at the forehead was 20 kΩ, and the electrode contact resistance at the hair was 50 to 150 kΩ.
 比較のために、アクティブ電極26のみを用いて同様にして、額部および頭髪部について電極接触抵抗を測定した(比較例3)。額部については、20kΩと実施例2の場合と同等の結果が得られた。しかしながら、頭髪部については、300kΩ以上と大きな値であった。比較例3はアクティブ電極26のみであるので、頭髪が障害となって高くなってしまい、頭髪部については脳波を正確に測定することができない。 For comparison, the electrode contact resistance was measured for the forehead portion and the hair portion in the same manner using only the active electrode 26 (Comparative Example 3). As for the forehead part, 20 kΩ, the same result as in Example 2 was obtained. However, the hair portion was a large value of 300 kΩ or more. Since Comparative Example 3 includes only the active electrode 26, the hair becomes an obstacle and becomes high, and the electroencephalogram cannot be accurately measured for the hair portion.
 さらに、前述の比較例2と同様の導電ナイロン成形体をアクティブ電極と組み合わせて、電極部品を作製した(比較例4)。比較例4の電極接触抵抗を、前述と同様にして額部および頭髪部について測定したところ、額部および頭髪部の電極接触抵抗は、いずれもアクティブ電極のみの比較例3と同程度であった。 Furthermore, an electrode part was produced by combining the same conductive nylon molded body as in the above-mentioned Comparative Example 2 with an active electrode (Comparative Example 4). When the electrode contact resistance of Comparative Example 4 was measured for the forehead portion and the hair portion in the same manner as described above, the electrode contact resistances of the forehead portion and the hair portion were both the same as those of Comparative Example 3 with only the active electrode. .
 導電ナイロン成形体のインピーダンスは、CNT混練品からなる実施例2の脳波測定用電極より3桁程度大きいことが確認されている(比較例2)。導電ナイロン成形体は、十分な導電性を確保することができない。このため、導電ナイロン成形体とアクティブ電極とを組み合わせても、アクティブ電極のみの場合と同様、脳波を正確に測定することは極めて困難である。 It has been confirmed that the impedance of the conductive nylon molded body is about three orders of magnitude greater than the electroencephalogram measurement electrode of Example 2 made of a CNT kneaded product (Comparative Example 2). The conductive nylon molded body cannot ensure sufficient conductivity. For this reason, even when the conductive nylon molded body and the active electrode are combined, it is extremely difficult to accurately measure the electroencephalogram as in the case of only the active electrode.
 実施例2の脳波測定用電極は、ベース材としての弾性体にCNTが混練されているので、表面に加えて内部においても、十分な導電性を確保することができる。こうした実施例2の脳波測定用電極を用いた電極部品は、頭髪部においても従来より低い抵抗値を得ることができ、より高い精度で脳波を測定することが可能となった。しかも、実施例2の脳波測定用電極は、柔軟性およびクッション性を備えているので、被験者の負担を軽減するという効果も得られる。 In the electroencephalogram measurement electrode of Example 2, since CNTs are kneaded with an elastic body as a base material, sufficient conductivity can be ensured not only on the surface but also inside. The electrode component using the electroencephalogram measurement electrode of Example 2 can obtain a lower resistance value than that in the past in the hair portion, and can measure the electroencephalogram with higher accuracy. Moreover, since the electroencephalogram measurement electrode of Example 2 has flexibility and cushioning properties, an effect of reducing the burden on the subject can be obtained.
 10   脳波測定用電極
 12   櫛形母材
 14   支持部
 14a  基端
 16   櫛歯
 16a  基端
 16b  先端
 17   櫛歯列
 18   頭皮接触面
 
DESCRIPTION OF SYMBOLS 10 Electroencephalogram measurement electrode 12 Comb-shaped base material 14 Support part 14a Base end 16 Comb tooth 16a Base end 16b Tip 17 Comb row 18 Scalp contact surface

Claims (9)

  1.  弾性体からなる櫛形母材と、前記櫛形母材に形成された構造体とを備える脳波測定用電極であって、
     前記櫛形母材は、支持部と、前記支持部から一列に突設した複数の櫛歯からなる櫛歯列とを含み、前記櫛歯列に沿った前記複数の櫛歯の一側面に前記構造体が形成され、
     前記構造体は、複数のナノ炭素材料を含み、前記複数のナノ炭素材料が、互いに接続されたネットワーク構造を形成しているとともに前記櫛形母材に固定されている
    ことを特徴とする脳波測定用電極。
    An electroencephalogram measurement electrode comprising a comb-shaped base material made of an elastic body and a structure formed on the comb-shaped base material,
    The comb-shaped base material includes a support portion and a comb tooth row including a plurality of comb teeth protruding in a row from the support portion, and the structure is provided on one side surface of the plurality of comb teeth along the comb tooth row. The body is formed,
    The structure includes a plurality of nanocarbon materials, and the plurality of nanocarbon materials form a network structure connected to each other and are fixed to the comb-shaped base material. electrode.
  2.  前記複数の櫛歯は、長さ方向の途中から、前記一側面とは逆側に傾斜していることを特徴とする請求項1記載の脳波測定用電極。 2. The electroencephalogram measurement electrode according to claim 1, wherein the plurality of comb teeth are inclined in the length direction in the opposite direction to the one side surface.
  3.  前記複数のナノ炭素材料は、前記複数の櫛歯の前記一側面に直接固定されることによって、前記櫛形母材に固定されていることを特徴とする請求項1または2記載の脳波測定用電極。 3. The electroencephalogram measurement electrode according to claim 1, wherein the plurality of nanocarbon materials are fixed to the comb-shaped base material by being directly fixed to the one side surface of the plurality of comb teeth. .
  4.  前記複数のナノ炭素材料は、前記複数の櫛歯の前記一側面に貼付された繊維基材に固定されることによって、前記櫛形母材に固定されていることを特徴とする請求項1または2記載の脳波測定用電極。 The plurality of nanocarbon materials are fixed to the comb-shaped base material by being fixed to a fiber base material affixed to the one side surface of the plurality of comb teeth. The electrode for electroencephalogram measurement as described.
  5.  前記櫛形母材は、前記複数のナノ炭素材料を含む導電性の櫛形母材であり、前記構造体は、前記櫛形母材の内部に形成されていることを特徴とする請求項1または2記載の脳波測定用電極。 The comb-shaped base material is a conductive comb-shaped base material including the plurality of nanocarbon materials, and the structure is formed inside the comb-shaped base material. Electrode for measuring brain waves.
  6.  前記櫛形母材は、体積抵抗が100Ω・cm以下であることを特徴とする請求項5記載の脳波測定用電極。 6. The electroencephalogram measurement electrode according to claim 5, wherein the comb-shaped base material has a volume resistance of 100 Ω · cm or less.
  7.  前記複数のナノ炭素材料は、カーボンナノチューブおよびグラフェンから選択されることを特徴とする請求項1~6のいずれか1項記載の脳波測定用電極。 7. The electroencephalogram measurement electrode according to claim 1, wherein the plurality of nanocarbon materials are selected from carbon nanotubes and graphene.
  8.  前記弾性体は、樹脂、熱可塑性エラストマー、およびゴムから選択されることを特徴とする請求項1~7のいずれか1項記載の脳波測定用電極。 The electroencephalogram measurement electrode according to any one of claims 1 to 7, wherein the elastic body is selected from a resin, a thermoplastic elastomer, and rubber.
  9.  金属部材を含まないことを特徴とする請求項1~8のいずれか1項記載の脳波測定用電極。
     
    The electrode for electroencephalogram measurement according to any one of claims 1 to 8, wherein the electrode does not contain a metal member.
PCT/JP2016/080311 2015-10-13 2016-10-13 Electrode for brain wave measurement WO2017065195A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680058264.XA CN108135525A (en) 2015-10-13 2016-10-13 E.E.G measurement electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-202204 2015-10-13
JP2015202204 2015-10-13
JP2016-201052 2016-10-12
JP2016201052A JP2017074369A (en) 2015-10-13 2016-10-12 Electrode for brain wave measurement

Publications (1)

Publication Number Publication Date
WO2017065195A1 true WO2017065195A1 (en) 2017-04-20

Family

ID=58517297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080311 WO2017065195A1 (en) 2015-10-13 2016-10-13 Electrode for brain wave measurement

Country Status (1)

Country Link
WO (1) WO2017065195A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140288406A1 (en) * 2013-03-22 2014-09-25 National Chiao Tung University Line-contact dry electrode
JP2015510823A (en) * 2012-03-19 2015-04-13 コグニオニクス インコーポレイテッドCognionics,Inc. Transducer assembly for dry applications of transducers
WO2015058186A2 (en) * 2013-10-18 2015-04-23 Nodstop, Llc Systems and methods for providing a waking mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510823A (en) * 2012-03-19 2015-04-13 コグニオニクス インコーポレイテッドCognionics,Inc. Transducer assembly for dry applications of transducers
US20140288406A1 (en) * 2013-03-22 2014-09-25 National Chiao Tung University Line-contact dry electrode
WO2015058186A2 (en) * 2013-10-18 2015-04-23 Nodstop, Llc Systems and methods for providing a waking mechanism

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEIJI MAENO: "The structure and characteristics of conductive carbon black 'KETJENBLACK EC", TANSO, vol. 2006, no. 222, 2006, pages 140 - 146, XP055376170, [retrieved on 20060331] *

Similar Documents

Publication Publication Date Title
JP2017074370A (en) Electrode for brain wave measurement
JP2017074369A (en) Electrode for brain wave measurement
WO2016136629A1 (en) Brain wave measurement electrode
JP2016163688A (en) Brain wave measuring electrode
WO2017065196A1 (en) Electrode for brain wave measurement
US9980659B2 (en) Bio-potential sensing materials as dry electrodes and devices
CN109414211B (en) Bioelectrode and method for producing same
EP3033994B1 (en) Electrode for biopotential sensing
JP6927632B2 (en) Electrodes for EEG measurement
JP6927631B2 (en) Electrodes for EEG measurement and their manufacturing method
Jin et al. Biomimetic cilia‐patterned rubber electrode using ultra conductive polydimethylsiloxane
JP2013240485A (en) Brain wave measuring electrode and cap with brain wave measuring electrode
JP2017202288A (en) Brain activity measuring electrode, head-worn device using electrode, and brain activity measuring system
JP2020195775A (en) Brain activity measurement electrode, head-mounted device comprising the electrode, and brain activity measurement system
CN110916651A (en) Skin dry electrode
WO2017065195A1 (en) Electrode for brain wave measurement
JP2022012318A (en) Biomedical electrode
CN102894976B (en) Circular array electrode for brain electrical impedance tomography
WO2021029100A1 (en) Electrode for measuring biological information
EP3320035B1 (en) Polymeric composition and electrode for non-invasive measurement device for biological electrical signals
CN111430060A (en) Silk flexible electrode and manufacturing method thereof
EP2732724A1 (en) Brush fiber, brush using brush fiber, and method for manufacturing brush fiber
WO2019130832A1 (en) Biological information measurement electrode and method for manufacturing biological information measurement electrode
JP7350257B2 (en) Headgear for brain wave measurement
JP2021094157A (en) Electrode for biological information measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855448

Country of ref document: EP

Kind code of ref document: A1