WO2017065090A1 - Base material surface treatment method and mold production method - Google Patents

Base material surface treatment method and mold production method Download PDF

Info

Publication number
WO2017065090A1
WO2017065090A1 PCT/JP2016/079828 JP2016079828W WO2017065090A1 WO 2017065090 A1 WO2017065090 A1 WO 2017065090A1 JP 2016079828 W JP2016079828 W JP 2016079828W WO 2017065090 A1 WO2017065090 A1 WO 2017065090A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching solution
substrate
aluminum
etching
base material
Prior art date
Application number
PCT/JP2016/079828
Other languages
French (fr)
Japanese (ja)
Inventor
林 秀和
信明 山田
洋 合田
寺下 慎一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201680060184.8A priority Critical patent/CN108138331B/en
Priority to JP2017545182A priority patent/JP6626898B2/en
Publication of WO2017065090A1 publication Critical patent/WO2017065090A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/36Alkaline compositions for etching aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting

Definitions

  • the present invention relates to a substrate surface treatment method and a mold manufacturing method.
  • the “mold” here includes molds used in various processing methods (stamping and casting), and is sometimes referred to as a stamper. It can also be used for printing (including nanoprinting).
  • An optical element such as a display device or a camera lens used for a television or a mobile phone is usually provided with an antireflection technique in order to reduce surface reflection and increase light transmission.
  • an antireflection technique in order to reduce surface reflection and increase light transmission. For example, when light passes through the interface of a medium with a different refractive index, such as when light enters the interface between air and glass, the amount of transmitted light is reduced due to Fresnel reflection, etc., and visibility is reduced. is there.
  • the two-dimensional size of the convex portions constituting the concavo-convex pattern exhibiting the antireflection function is 10 nm or more and less than 500 nm.
  • the “two-dimensional size” of the convex portion refers to the area equivalent circle diameter of the convex portion when viewed from the normal direction of the surface. For example, when the convex portion has a conical shape, The two-dimensional size corresponds to the diameter of the bottom surface of the cone. The same applies to the “two-dimensional size” of the recess.
  • This method utilizes the principle of a so-called moth-eye structure, and the refractive index for light incident on the substrate is determined from the refractive index of the incident medium along the depth direction of the irregularities. By continuously changing the refractive index, reflection in the wavelength region where reflection is desired to be prevented is suppressed.
  • the moth-eye structure has an advantage that it can exhibit an antireflection effect with a small incident angle dependency over a wide wavelength range, can be applied to many materials, and can form an uneven pattern directly on a substrate. As a result, a low-cost and high-performance antireflection film (or antireflection surface) can be provided.
  • the present applicant has developed a method using an anodized porous alumina layer obtained by anodizing aluminum as a method for producing an antireflection film (or antireflection surface) having a moth-eye structure (Patent Documents 2 and 3). ).
  • a mold for forming a moth-eye structure on the surface (hereinafter referred to as “moth-eye mold”) can be easily manufactured.
  • the surface of the anodized aluminum film is used as a mold as it is, the effect of reducing the manufacturing cost is great.
  • the surface structure of the moth-eye mold that can form the moth-eye structure is referred to as an “inverted moth-eye structure”.
  • Patent Documents 1 to 4 in addition to the moth-eye structure (microstructure), an uneven structure (macrostructure) larger than the moth-eye structure is provided, so that the antireflection film (antireflection surface) is provided.
  • An anti-glare (anti-glare) function can be imparted.
  • the two-dimensional size of the convex part or the concave part constituting the concavo-convex structure exhibiting the anti-glare function (sometimes referred to as “anti-glare structure”) is 200 nm or more and less than 100 ⁇ m.
  • the surface structure of the mold that can form an antiglare structure is referred to as an “inverted antiglare structure”.
  • the entire disclosure of Patent Documents 1 to 4 is incorporated herein by reference.
  • the unevenness constituting the moth-eye structure is referred to as micro unevenness
  • the unevenness constituting the antiglare structure is referred to as macro unevenness.
  • the range of the two-dimensional size of the macro unevenness partially overlaps the range of the two-dimensional size of the micro unevenness, but in the antireflection film (antireflection surface) having the antiglare function, the antiglare
  • the concavo-convex structure constituting the structure is larger than the concavo-convex structure constituting the moth-eye structure that exhibits the antireflection function.
  • the surface reflecting the continuous macro uneven structure without the flat portion of the resin layer formed by electrodeposition described in Patent Document 4 has a problem that the image is blurred.
  • an antireflection film having an appropriate antiglare function in which blurring of an image is suppressed there is a demand for an antireflection film having an appropriate antiglare function in which blurring of an image is suppressed.
  • the present inventor examined a method of manufacturing an antireflection film (or antireflection surface) having an appropriate antiglare function and an appropriate specular reflectivity by a roll-to-roll method.
  • the present inventors have found that it is difficult to uniformly form an inverted antiglare structure on the surface. This problem is a common problem in the technique of treating the surface of a columnar or cylindrical substrate.
  • An object of the present invention is to provide a method that can uniformly treat the surface of a columnar or cylindrical substrate.
  • a surface treatment method for a substrate according to an embodiment of the present invention is a method for treating the surface of a columnar or cylindrical substrate, and (a) the major axis direction of the substrate is substantially parallel to the horizontal direction.
  • the step of rotating the base material around the long axis of the base material, and (b) a part of the outer peripheral surface of the base material is accommodated in the first etching tank. And contacting with the first etching solution.
  • the method further includes a step (c) of spraying a second etching solution, which is the same as the first etching solution, on the outer peripheral surface of the substrate.
  • the step (c) is performed simultaneously with the step (b), and the second etching solution is a portion of the outer peripheral surface of the substrate that is in contact with the first etching solution. It is sprayed in the vicinity.
  • the step (c) is performed simultaneously with the step (a), and the second etching solution is a portion of the outer peripheral surface of the substrate that is in contact with the first etching solution. It is sprayed to a portion that is in the vicinity and is rotating away from the first etching solution in the step (a).
  • an angle at which the second etching solution is ejected is inclined by 45 ° or more and less than 90 ° from the vertical direction.
  • the base material is an aluminum base material formed of an Al—Mg—Si based aluminum alloy and subjected to mechanical mirror finishing.
  • the first etching solution is an aqueous solution containing a salt of hydrogen fluoride and ammonium.
  • the salt of hydrogen fluoride and ammonium is ammonium fluoride.
  • the method before the step (b), further includes a step (b1) of bringing a part of the outer peripheral surface of the base material into contact with a third etching solution different from the first etching solution.
  • the etching rate of the 3 etching solution with respect to the outer peripheral surface of the substrate is lower than the etching rate of the first etching solution with respect to the outer peripheral surface of the substrate.
  • the third etching solution is an etching solution obtained by diluting the first etching solution.
  • the third etching solution is at a lower temperature than the first etching solution.
  • the third etching solution is contained in a second etching tank different from the first etching tank.
  • the third etching solution is contained in the first etching tank.
  • the method further includes a step (b2) of bringing a part of the outer peripheral surface of the base material into contact with a fourth etching solution different from the first etching solution.
  • the etching rate of the etching solution with respect to the outer peripheral surface of the substrate is lower than the etching rate of the first etching solution with respect to the outer peripheral surface of the substrate.
  • the fourth etching solution is the same etching solution as the third etching solution.
  • the peripheral speed of the base material is more than 0 m / s and not more than 0.03 m / s.
  • the rotation speed of the substrate is more than 0 rpm and not more than 2 rpm.
  • a mold manufacturing method includes: (A) a cylindrical aluminum substrate formed of an Al—Mg—Si-based aluminum alloy, which has been subjected to mechanical mirror finishing (B) a step of treating the surface of the aluminum substrate by any one of the above surface treatment methods, and (C) after the step (B), the surface of the aluminum substrate. Forming a mold base by forming an inorganic material layer and forming an aluminum film on the inorganic material layer; and (D) after the step (C), the surface of the aluminum film is an anode.
  • the method before the step (B), the method further includes a step (G) of etching the surface of the aluminum base using an alkaline etching solution.
  • the alkaline etching solution has a pH of 8 or more and 10 or less.
  • the alkaline etching solution is prepared by adding an acidic additive to an aqueous solution containing an organic compound having an amino group.
  • the volume of the acidic additive is 5% or more with respect to the volume of the aqueous solution containing the organic compound having an amino group.
  • the mold according to the embodiment of the present invention is a mold manufactured by any one of the mold manufacturing methods described above.
  • the mold according to another embodiment of the present invention includes a plurality of convex portions having a two-dimensional size of 200 nm to 30 ⁇ m when viewed from the normal direction of the surface, and 2 when viewed from the normal direction of the surface.
  • An antireflection film manufacturing method includes a step of preparing any of the above molds, a step of preparing a workpiece, and photocuring between the mold and the surface of the workpiece.
  • the antireflection film according to the embodiment of the present invention is an antireflection film manufactured by the above-described method for manufacturing an antireflection film.
  • the surface of a columnar or cylindrical substrate can be treated evenly.
  • (A)-(d) is typical sectional drawing for demonstrating the manufacturing method of the mold 100 for moth eyes by embodiment of this invention
  • (a) is the aluminum base material 12 of the mold 100 for moth eyes. It is typical sectional drawing
  • (b) is sectional drawing which shows typically the surface structure of the aluminum base material 12 which has the inverted anti-glare structure
  • (c) is inorganic on the surface of the aluminum base material 12
  • (d) is the inverted anti-glare structure and the inverted moth-eye structure superimposed on the inverted anti-glare structure.
  • FIG. 1 is a schematic cross-sectional view of a moth-eye mold 100 having (A) is a schematic plan view of an inverted antiglare structure, and (b) is a schematic perspective view of the inverted antiglare structure. It is a figure for demonstrating the manufacturing method of the anti-reflective film using the type
  • (A) ⁇ (c) is a schematic diagram of an antireflection film having an antiglare function according to an embodiment of the present invention
  • (a) is a schematic diagram when the surface of the antireflection film is observed from the vertical direction
  • (B) is a schematic diagram when the surface of an antireflection film is observed from an oblique direction
  • (c) is a schematic diagram of a cross section of the antireflection film.
  • (A) And (b) is a schematic diagram for demonstrating the surface treatment method of the base material by embodiment of this invention.
  • FIG. (A) is a schematic diagram for demonstrating the surface treatment method of the base material by a comparative example
  • (b) is manufactured by the manufacturing method of the type
  • 4 is a schematic plan view when the antireflection film 32 manufactured using the moth-eye mold 100 is observed from the normal direction of the antireflection film 32.
  • FIG. (A) is typical when the antireflection film 32 manufactured using the moth-eye mold 100 manufactured by the mold manufacturing method according to the embodiment of the present invention is observed from the normal direction of the antireflection film 32.
  • FIG. 4B is a schematic diagram for explaining a process of performing a matte treatment on the surface of the aluminum substrate 12 in the process of manufacturing the moth-eye mold 100, and is a cylindrical aluminum substrate. It is the schematic diagram seen from 12 major axis directions.
  • (A) And (b) is a schematic diagram for demonstrating the surface treatment method of the base material by embodiment of this invention.
  • (A) And (b) is a schematic diagram for demonstrating the surface treatment method of the base material by embodiment of this invention.
  • (A) is a schematic diagram for demonstrating the surface treatment method of the base material by embodiment of this invention
  • (b) is the length of the aluminum base material 12 produced in the outer peripheral surface of the aluminum base material 12 It is a schematic diagram for demonstrating the some stripe-shaped nonuniformity extended in the direction substantially orthogonal to an axial direction
  • (c) And (d) is a model for demonstrating the angle from which the etching liquid for spraying is ejected. It is a typical figure.
  • (A) And (b) is a figure which shows the optical image of the aluminum base material 12
  • (a) is a satin finish by the surface treatment method which does not include the process of spraying the etching liquid for spraying on the outer peripheral surface of the aluminum base material 12.
  • (B) is an aluminum substrate 12 that has been subjected to a satin treatment by a surface treatment method that includes a step of spraying a spraying etchant onto the outer peripheral surface of the aluminum substrate 12.
  • (A) to (d) are the surfaces of an aluminum substrate having an inverted antiglare structure formed by the matte treatment process of Experimental Example 1-1, Experimental Example 2-1, Experimental Example 3-1 and 4-1.
  • (A) to (d) are optical microscopic images when the surface of an aluminum substrate having an inverted antiglare structure formed by the satin treatment process of Experimental Examples 5-1 to 5-4 is observed from the vertical direction
  • (E) and (f) are SEM images when the surface of the antiglare film formed from the aluminum base material of Experimental Examples 5-3 and 5-4 is observed from the vertical direction ( It is a figure which shows the full scale 20micrometer in a SEM image.
  • (A) and (b) are optical microscopic images when the surface of an aluminum substrate having an inverted antiglare structure formed by the satin treatment process of Experimental Examples 6-1 and 6-2 is observed from the vertical direction ( 50 times).
  • (A) is a view showing an optical microscope image (50 ⁇ ) when the surface of the aluminum base material subjected to the alkali cleaning step in Experimental Example 7-1 is observed from the vertical direction
  • (b) and (c) ) Is a diagram showing an SEM image (full scale 20 ⁇ m in the SEM image) when the surface of the polymer film formed from the aluminum base material of Experimental Examples 7-1 and 7-2 is observed from the vertical direction.
  • (A) to (d) are optical microscopic images when the surface of an aluminum substrate having an inverted antiglare structure formed by the satin treatment process of Experimental Examples 8-1 to 8-4 is observed from the vertical direction
  • (E) to (h) are SEM images when the surface of the polymer film formed from the aluminum base material in Experimental Examples 8-1 to 8-4 is observed from the vertical direction. It is a figure which shows (full scale 20micrometer in a SEM image).
  • (A) to (d) are optical microscopic images when the surface of an aluminum substrate having an inverted antiglare structure formed by the satin treatment process of Experimental Examples 9-1 to 9-4 is observed from the vertical direction ( 50 times).
  • (A) to (d) are optical microscope images when the surface of an aluminum substrate having an inverted antiglare structure formed by the matte treatment process of Experimental Examples 10-1 to 10-4 is observed from the vertical direction
  • (E) to (h) are SEM images when the surface of the polymer film formed from the aluminum base material of Experimental Examples 10-1 to 10-4 is observed from the vertical direction. It is a figure which shows (full scale 20micrometer in a SEM image).
  • (A) is a figure which shows the relationship between the time of an alkali cleaning process, and the mass change rate of an aluminum base material
  • (b) is the antiglare obtained by using the time of an alkali cleaning process and an aluminum base material as a type
  • (A) and (b) are optical microscopic images when the surface of an aluminum substrate having an inverted antiglare structure formed by the satin treatment process of Experimental Examples 11-1 and 11-2 is observed from the vertical direction
  • (C) and (d) are SEM images when the surface of the polymer film formed from the aluminum base material of Experimental Examples 11-1 and 11-2 is observed from the vertical direction. It is a figure which shows (full scale 20micrometer in a SEM image).
  • A) And (b) is a figure which shows typically the relationship of the magnitude
  • (A) It is sectional drawing which shows typically the structure of a macro unevenness
  • (b) is a typical cross section which shows the inverted moth eye structure superimposed on the macro unevenness
  • (C) is a schematic cross-sectional view enlarging an inverted moth-eye structure.
  • FIGS. 22A and 22B are diagrams schematically showing the relationship between the macro uneven structure constituting the conventional anti-glare structure and the dot pitch Px in the row direction. Shows a case where the macro uneven structure is larger than the dot pitch Px, and FIG. 22B shows a case where the macro uneven structure is smaller than the dot pitch Px.
  • the dots refer to R, G, and B dots that constitute pixels in a typical color liquid crystal display panel.
  • the pixel pitch in the row direction is the dot pitch Px in the row direction. Tripled. Note that the pixel pitch in the column direction is equal to the dot pitch Py in the column direction.
  • the surface 28s having a macro uneven structure constituting the conventional anti-glare structure has a continuous corrugated surface shape having no flat portion.
  • the macro uneven structure having such a continuous corrugated surface shape is characterized by the average value of the distance between adjacent macro concave portions (average inter-adjacent distance AD int ) or the two-dimensional size AD p of the concave portions.
  • AD int average inter-adjacent distance
  • AD p two-dimensional size
  • the average distance AD int between the recesses (considered to be equal to the two-dimensional size AD p of the recesses) is, for example, the dot pitch Px in the row direction (pixels having three dots ( In the case of R, G, B), if the pixel pitch in the row direction is larger than 3 times the dot pitch), a sufficient anti-glare function cannot be obtained.
  • the average adjacent distance AD int (two-dimensional size AD p of the recess) is substantially equal to each other and the dot pitch Is preferably smaller.
  • the two-dimensional size of the recess means a two-dimensional expansion when viewed from the normal direction of the surface, and the recess is typically conical and when viewed from the normal direction of the surface.
  • the shape of is substantially circular. At this time, the two-dimensional size corresponds to the diameter of the circle.
  • the average distance AD int between two adjacent concave portions is substantially equal to the two-dimensional size AD p of the concave portions.
  • the pixel pitch is 254 ⁇ m for a display with a relatively low resolution, for example, a 100 ppi display.
  • the average distance AD int between adjacent surfaces is preferably about 85 ⁇ m (254/3) or less.
  • Patent Document 4 discloses a method for manufacturing an antireflection film in which a moth-eye structure is superimposed on an antiglare structure having a continuous corrugated surface 28s without a flat portion.
  • mold for forming the anti-reflective film which has the anti-glare function described in patent document 4 is demonstrated.
  • FIG. 23A is a cross-sectional view schematically showing an inverted antiglare structure for forming the antiglare structure
  • FIG. 23B shows an inverted moth-eye structure superimposed on the inverted antiglare structure
  • FIG. 23C is a schematic cross-sectional view enlarging the inverted moth-eye structure.
  • the surface 18cs having an inverted antiglare structure for forming the antiglare structure having the continuous corrugated surface 28s having no flat portion shown in FIG. 23A is an outer peripheral surface of a cylindrical metal substrate. It is obtained by forming an insulating layer with an electrodeposition resin containing a matting agent and forming an aluminum film 18c on the insulating layer. That is, the surface of the insulating layer formed of an electrodeposition resin containing a matting agent has a continuous corrugated surface shape without a flat portion, and the surface 18cs of the aluminum film 18c formed on the insulating layer is: Reflecting the shape of the surface of the insulating layer, it has a continuous corrugated surface shape without a flat portion.
  • the macro unevenness of the surface 18cs of the aluminum film 18c is opposite to the macro unevenness of the surface 28s constituting the antiglare structure. is there.
  • anodization and etching are alternately repeated on the surface of the aluminum film 18c having an inverted antiglare structure, so that an anodized porous film having micro concave portions 14p is obtained.
  • An alumina layer 14c is formed.
  • the moth-eye mold 200 having a surface in which the inverted moth-eye structure is superimposed on the inverted anti-glare structure is obtained.
  • the porous alumina layer 14c is densely filled with micro concave portions 14p.
  • the micro concave portion 14p is generally conical and may have stepped side surfaces.
  • the two-dimensional size (opening diameter: D p ) of the micro concave portion 14p is preferably 10 nm or more and less than 500 nm, and the depth (D depth ) is preferably about 10 nm or more and less than 1000 nm (1 ⁇ m).
  • D p opening diameter
  • D depth depth
  • the bottom part of the micro recessed part 14p is pointed (the bottom part is a point).
  • the micro concave portions 14p are closely packed, and assuming that the shape of the micro concave portions 14p when viewed from the normal direction of the porous alumina layer 14c is a circle, adjacent circles overlap each other, It is preferable that a flange is formed between the adjacent micro concave portions 14p.
  • the substantially conical micro concave portions 14p are adjacent so as to form a collar portion, the two-dimensional size D p of the micro concave portions 14p is assumed to be equal to the average inter-adjacent distance D int .
  • the arrangement of the micro concave portions does not need to be completely random, and may be irregular so that light interference and diffraction do not substantially occur. Since the shape of the opening of the micro concave portion 14p is not strictly a circle, D p is preferably obtained from the SEM image of the surface.
  • the thickness t p of the porous alumina layer 14c is about 1 ⁇ m or less.
  • the antireflection film formed using the mold manufactured by the mold manufacturing method described in Patent Document 4 has a problem that the image is blurred. This is because the inverted antiglare structure of the mold manufactured by the method described in Patent Document 4 has relatively large AD int and AD p . Therefore, in the manufacturing method described in Patent Document 4, it is difficult to form an antiglare structure that is suitably used for a high-definition display exceeding 300 ppi, for example.
  • an antiglare structure having an appropriate antiglare function for example, a haze value of about 10 or more and about 50 or less
  • an appropriate specular reflectivity for example, a haze value of about 10 or more and about 50 or less
  • an appropriate specular reflectivity for example, a specular reflectivity
  • an excellent antireflection effect are exhibited.
  • An antireflective film (or antireflective surface) having a moth-eye structure is provided.
  • a mold for forming such an antireflection film is provided, and further, a method for efficiently manufacturing such a mold is provided.
  • the mold manufactured by the mold manufacturing method according to the embodiment of the present invention is not limited to the illustrated example, and an antireflection film having a diffuse reflection performance with a small haze value (for example, about 2 or more and about 10 or less) is formed. Can also be used.
  • FIGS. 1A to 1D are schematic cross-sectional views for explaining a method for manufacturing a moth-eye mold 100 according to an embodiment of the present invention.
  • the manufacturing method of the moth-eye mold 100 includes the following steps (i) to (vi).
  • Step (i) A step of preparing a cylindrical aluminum base material made of an Al—Mg—Si-based aluminum alloy and subjected to mechanical mirror finishing.
  • Step (ii) A step of treating the surface of the aluminum substrate with an aqueous solution containing a salt of hydrogen fluoride and ammonium (sometimes referred to as a satin treatment step).
  • the mold base means an object to be anodized and etched in the mold manufacturing process.
  • the aluminum substrate means bulk aluminum that can be self-supported.
  • FIG. 1A is a schematic cross-sectional view of the aluminum base 12 of the moth-eye mold 100
  • FIG. 1B schematically shows the surface structure of the aluminum base 12 having an inverted antiglare structure
  • FIG. 1C is a schematic cross-sectional view of the mold base 10 in which the inorganic material layer 16 and the aluminum film 18 are formed on the surface of the aluminum base 12
  • FIG. 3 is a schematic cross-sectional view of a moth-eye mold 100 having an inverted antiglare structure and an inverted motheye structure superimposed on the inverted antiglare structure.
  • FIG. 1 shows an enlarged part of the moth-eye mold 100, but the moth-eye mold 100 according to the embodiment of the present invention is cylindrical (roll-shaped).
  • the moth-eye mold 100 is cylindrical (roll-shaped).
  • an antireflection film can be efficiently produced by a roll-to-roll method.
  • the entire disclosure of WO 2011/105206 is incorporated herein by reference.
  • Byte cutting is preferred as the mechanical mirror finish. If, for example, abrasive grains remain on the surface of the aluminum base 12, electrical conduction between the aluminum film 18 and the aluminum base 12 is facilitated in a portion where the abrasive grains exist. In addition to the abrasive grains, where there are irregularities, local conduction between the aluminum film 18 and the aluminum substrate 12 is likely to occur. When local conduction is made between the aluminum film 18 and the aluminum base 12, there is a possibility that a battery reaction occurs locally between the impurities in the aluminum base 12 and the aluminum film 18.
  • an aluminum substrate 12 formed of an Al—Mg—Si based aluminum alloy (for example, JIS A6063) is used.
  • the cylindrical aluminum substrate 12 is typically formed by a hot extrusion method.
  • the hot extrusion method includes a mandrel method and a porthole method, and it is preferable to use an aluminum substrate 12 formed by the mandrel method.
  • a seam (weld line) is formed on the outer peripheral surface of the cylindrical aluminum substrate 12 formed by the porthole method, and the seam is reflected in the moth-eye mold 100. Therefore, depending on the accuracy required for the moth-eye mold 100, it is preferable to use the aluminum substrate 12 formed by the mandrel method.
  • the problem of a seam can be eliminated by performing cold drawing processing on the aluminum base material 12 formed by the porthole method.
  • cold drawing may be applied to the aluminum substrate 12 formed by the mandrel method.
  • the inverted anti-glare structure formed by the satin treatment has a plurality of macro convex portions 12p and a plurality of macro concave portions 12g.
  • the macro convex portion 12p is substantially surrounded by the macro concave portion 12g, and the macro concave portion 12g exists as a groove that defines the outer periphery of the macro convex portion 12p.
  • An aqueous solution containing a salt of hydrogen fluoride and ammonium causes pitting corrosion.
  • An aqueous solution containing a salt of hydrogen fluoride and ammonium has an advantage that it has less adverse effects on the human body and the environment than an aqueous solution of hydrogen fluoride.
  • the salt of hydrogen fluoride and ammonium include ammonium fluoride (normal salt or neutral salt) and ammonium hydrogen fluoride (hydrogen salt or acidic salt). Since the aqueous solution containing ammonium fluoride has a weaker etching ability of aluminum than the aqueous solution containing ammonium hydrogen fluoride, there is an advantage that the margin of the matte treatment time can be increased. Ammonium fluoride has an advantage that it is superior to ammonium hydrogen fluoride in safety.
  • ammonium fluoride When ammonium fluoride is used as the salt of hydrogen fluoride and ammonium, the concentration of ammonium fluoride is, for example, 4 mass% to 8 mass%.
  • ammonium sulfate and / or ammonium dihydrogen phosphate may be added.
  • an ammonium fluoride-added ammonium sulfate and ammonium dihydrogen phosphate were used as an etching solution for the finish treatment of aluminum.
  • ammonium fluoride concentration: 4 mass% to 8 mass% added with ammonium sulfate (concentration: 1 mass% to 3 mass%) and ammonium dihydrogen phosphate (concentration: 1 mass% to 3 mass%) can be used.
  • concentration of ammonium fluoride is preferably 5 mass%
  • concentration of ammonium sulfate is 2 mass%
  • concentration of ammonium dihydrogen phosphate is preferably 2 mass%.
  • an aqueous solution containing ammonium hydrogen fluoride is used by appropriately adjusting the concentration, treatment temperature, and time. It is considered that an equivalent effect can be obtained.
  • An aqueous solution containing ammonium hydrogen fluoride has a stronger etching ability for aluminum than an aqueous solution containing ammonium fluoride.
  • the aqueous solution containing ammonium hydrogen fluoride can be prepared using, for example, a chemi-cleaner manufactured by Nippon CB Chemical Co., Ltd. In the international publication No.
  • Alkali cleaning process A step of etching the surface of the aluminum substrate 12 using an alkaline etchant before the step (step (ii)) of treating the surface of the aluminum substrate with an aqueous solution containing a salt of hydrogen fluoride and ammonium. (Vii) (hereinafter, also referred to as “alkali cleaning step”) may be further performed. At least a part of the work-affected layer of the aluminum substrate 12 that may cause cutting marks can be removed by an alkali cleaning step using an alkaline etching solution.
  • cutting traces may be formed on the surface of the aluminum base material 12.
  • the cut marks formed on the surface of the aluminum substrate 12 were also reflected in the aluminum film 18 formed on the aluminum substrate 12.
  • cutting trace not only the surface of the aluminum base 12 but also the trace caused by the cutting formed on the aluminum film 18 formed on the aluminum base 12 is referred to as “cutting trace”.
  • the above-described cutting trace is considered to be etching unevenness caused by a work-affected layer formed on the surface of the aluminum base 12 by mirror finishing by cutting with a bite. Therefore, the problem that the cutting traces are formed by the satin treatment is not limited to cutting by a bite, but is a common problem when using the aluminum base material 12 that has been subjected to mirror finishing accompanied by the formation of a work-affected layer, and alkali cleaning. It can be solved by performing the process.
  • mechanical polishing such as cutting and grinding (Mechanical Polishing: MP), and chemical mechanical polishing (CMP) that uses both chemical polishing and mechanical polishing, form a work-affected layer.
  • MP cutting and grinding
  • CMP chemical mechanical polishing
  • the alkaline etching solution for the alkali cleaning step includes, for example, an inorganic base (inorganic alkali) or an organic base (organic alkali).
  • Inorganic bases include, for example, potassium hydroxide, sodium hydroxide, calcium hydroxide, magnesium hydroxide and the like.
  • the organic base includes, for example, a compound having an amino group.
  • Organic bases include, for example, 2-aminoethanol (ethanolamine), primary alkanolamine, dimethylbis (2-hydroxy) ethyl, and the like.
  • the pH of the alkaline etching solution is, for example, more than 7 and 12 or less, and preferably 8 or more and 10 or less.
  • the alkaline etching liquid is not limited to the above, and for example, a known alkaline cleaning liquid may be used.
  • the pH of the alkaline etching solution may be adjusted by adding a small amount of an acidic additive (for example, a chemical abrasive or a corrosion inhibitor) to the alkaline cleaning solution to prepare an alkaline etching solution.
  • an acidic additive for example, a chemical abrasive or a corrosion inhibitor
  • the composition and pH of the alkaline etching solution will be described later by showing experimental examples. Since an alkaline etching liquid is used for the alkali cleaning process, it can also serve as a degreasing process for the aluminum substrate.
  • a water washing step is performed as necessary. Moreover, it is not restricted to this, It is preferable to wash with water as needed during the process of using a different process liquid.
  • an anodizing step and an etching step for pretreatment may be performed before the matte treatment step.
  • cutting traces can be reduced. That is, cutting traces can be reduced by once anodizing the surface of the aluminum base 12 and removing the formed anodized film by etching.
  • an aqueous sulfuric acid solution is preferably used as the electrolytic solution
  • an aqueous phosphoric acid solution is preferably used as the etching solution.
  • Both the alkali cleaning step and the pre-treatment anodizing step and etching step may be performed before the satin treatment step.
  • the alkali cleaning step may be performed before the anodizing step and the etching step for pretreatment.
  • an inorganic material layer 16 is formed on the surface of the aluminum substrate 12, and an aluminum film 18 is formed on the inorganic material layer 16, thereby producing the mold substrate 10. To do.
  • the structure formed in the aluminum film 18 is also called an inverted antiglare structure.
  • the inverted antiglare structure formed on the surface of the aluminum film 18 has substantially the same structure as the inverted antiglare structure formed on the surface of the aluminum substrate 12. Therefore, the inverted anti-glare structure formed on the surface of the aluminum film 18 has a plurality of macro convex portions 18p and a plurality of macro concave portions 18g.
  • the macro convex portion 18p is substantially surrounded by the macro concave portion 18g, and the macro concave portion 18g exists like a groove that defines the outer periphery of the macro convex portion 18p.
  • the inorganic material layer 16 for example, tantalum oxide (Ta 2 O 5 ) or silicon dioxide (SiO 2 ) can be used.
  • the inorganic material layer 16 can be formed by sputtering, for example.
  • the thickness of the tantalum oxide layer is, for example, 200 nm.
  • the thickness of the inorganic material layer 16 is preferably 100 nm or more and less than 500 nm. If the thickness of the inorganic material layer 16 is less than 100 nm, defects (mainly voids, that is, gaps between crystal grains) may occur in the aluminum film 18 in some cases. Further, when the thickness of the inorganic material layer 16 is 500 nm or more, the aluminum base 12 and the aluminum film 18 are easily insulated from each other depending on the surface state of the aluminum base 12. In order to anodize the aluminum film 18 by supplying current to the aluminum film 18 from the aluminum substrate 12 side, it is necessary that a current flow between the aluminum substrate 12 and the aluminum film 18.
  • the aluminum film 18 can be uniformly anodized over the entire surface without causing a problem that it is difficult to be supplied.
  • the thick inorganic material layer 16 it is generally necessary to lengthen the film formation time.
  • the film formation time is lengthened, the surface temperature of the aluminum base 12 is unnecessarily increased. As a result, the film quality of the aluminum film 18 is deteriorated, and defects (mainly voids) may occur. If the thickness of the inorganic material layer 16 is less than 500 nm, the occurrence of such a problem can be suppressed.
  • the aluminum film 18 is, for example, a film formed of aluminum having a purity of 99.99 mass% or more (hereinafter, also referred to as “high-purity aluminum film”) as described in Patent Document 3.
  • the aluminum film 18 is formed using, for example, a vacuum deposition method or a sputtering method.
  • the thickness of the aluminum film 18 is preferably in the range of about 500 nm or more and about 1500 nm or less, for example, about 1 ⁇ m.
  • an aluminum alloy film described in International Publication No. 2013/0183576 may be used instead of the high-purity aluminum film.
  • the aluminum alloy film described in International Publication No. 2013/0183576 contains aluminum, a metal element other than aluminum, and nitrogen.
  • “aluminum film” includes not only a high-purity aluminum film but also an aluminum alloy film described in International Publication No. 2013/0183576. For reference purposes, the entire disclosure of WO2013 / 0183576 is incorporated herein by reference.
  • the average grain size of the crystal grains constituting the aluminum alloy film as viewed from the normal direction of the aluminum alloy film is, for example, 100 nm or less, and the maximum surface roughness Rmax of the aluminum alloy film is 60 nm or less.
  • the content rate of nitrogen contained in the aluminum alloy film is, for example, not less than 0.5 mass% and not more than 5.7 mass%.
  • the absolute value of the difference between the standard electrode potential of a metal element other than aluminum contained in the aluminum alloy film and the standard electrode potential of aluminum is 0.64 V or less, and the content of the metal element in the aluminum alloy film is 1.0 mass. % Or more and 1.9 mass% or less is preferable.
  • the metal element is, for example, Ti or Nd.
  • the metal element is not limited to this, and other metal elements whose absolute value of the difference between the standard electrode potential of the metal element and the standard electrode potential of aluminum is 0.64 V or less (for example, Mn, Mg, Zr, V, and Pb).
  • the metal element may be Mo, Nb, or Hf.
  • the aluminum alloy film may contain two or more of these metal elements.
  • the aluminum alloy film is formed by, for example, a DC magnetron sputtering method.
  • the thickness of the aluminum alloy film is also preferably in the range of about 500 nm to about 1500 nm, for example, about 1 ⁇ m.
  • FIG. 2A is a schematic plan view of the inverted antiglare structure
  • FIG. 2B is a schematic perspective view of the inverted antiglare structure.
  • the inverted anti-glare structure formed by the satin treatment has a plurality of macro convex portions 18p and a plurality of macro concave portions 18g.
  • the macro convex portion 18p is substantially surrounded by the macro concave portion 18g, and the macro concave portion 18g exists like a groove that defines the outer periphery of the macro convex portion 18p.
  • the plurality of macro convex portions 18p When viewed from the normal direction of the surface, the plurality of macro convex portions 18p have a substantially polygonal outer shape, but regularity is not seen in the arrangement.
  • the two-dimensional size (area circle equivalent diameter) when viewed from the normal direction of the surface of the macro convex portion 18p is about 200 nm or more and 30 ⁇ m or less.
  • the upper surface of the macro convex portion 18p is substantially flat.
  • the width of the macro concave portion (groove) 18g that substantially surrounds the macro convex portion 18p is about one-tenth to one-fifth of the two-dimensional size of the macro convex portion 18p. .
  • the average value of the distance between adjacent macro concave portions 18g is approximately equal to the average value of the two-dimensional size when viewed from the normal direction of the surface of the macro convex portion 18p. Can think.
  • the adjacent macro concave portion 18g defines the two-dimensional size of the macro convex portion 18p.
  • the macro concave portions 18g adjacent in the cross section in the direction are meant. Therefore, the average distance AD int between the adjacent portions is approximately equal to the sum of the average value of the two-dimensional size of the macro-shaped convex portion 18p and the average value of the width of the macro-shaped concave portion 18g.
  • the depth AD depth of the macro concave portion 18g is, for example, 20 nm or more and 500 nm or less, but may be 20 nm or more and less than 5 ⁇ m.
  • anodic oxidation and etching are alternately repeated to form the inverted moth-eye structure, whereby the moth-eye mold 100 shown in FIG. 1D is obtained. That is, in the process of forming the inverted moth-eye structure, the surface of the aluminum film 18 is anodized to form a porous alumina layer 14 having a plurality of micro recesses 14p, and then the porous alumina layer 14 Including a step of expanding a plurality of micro concave portions 14p of the porous alumina layer 14 by contacting with an etching solution, and a step of growing a plurality of micro concave portions 14p by further anodizing thereafter. To do.
  • the electrolytic solution used for anodization is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, sulfuric acid, chromic acid, citric acid, and malic acid.
  • an aqueous solution of an organic acid such as formic acid, acetic acid, or citric acid or an aqueous solution of sulfuric acid, a mixed aqueous solution of chromic phosphoric acid, or an aqueous solution of an alkali such as sodium hydroxide or potassium hydroxide can be used.
  • the series of steps of repeating anodization and etching end with the anodization step.
  • the subsequent etching step is not performed
  • the bottom of the micro concave portion 14p can be reduced.
  • a method for forming such an inverted moth-eye structure is disclosed, for example, in WO 2006/059686 by the applicant.
  • the entire disclosure of WO 2006/059686 is incorporated herein by reference.
  • an anodic oxidation step electrolytic solution: oxalic acid aqueous solution (concentration 0.3 mass%, liquid temperature 10 ° C.), applied voltage: 80 V, application time: 55 seconds
  • etching step etching solution: phosphoric acid aqueous solution (10 mass%, 30 ° C.)
  • etching time 20 minutes
  • a plurality of times for example, 5 times: anodization is 5 times and etching is 4 times
  • the micro concave portion 14p has a substantially conical shape and is adjacent to form a collar portion.
  • the inverted moth-eye structure composed of the micro recesses 14p is formed so as to be superimposed on the antiglare structure. Therefore, as schematically shown in FIG. 1 (d), the micro concave portion 14p formed in the macro convex portion 18p constituting the antiglare structure and the micro concave portion 14p formed in the macro concave portion 18g are provided. Exists.
  • the micro concave portion 14p formed in the macro concave portion 18g is deeper than the micro concave portion 14p formed in the macro convex portion 18p.
  • a barrier layer is formed under the micro concave portion 14p.
  • the porous alumina layer 14 includes a porous layer having the micro concave portion 14p and a barrier layer (under the aluminum film side) (on the aluminum film side). The bottom of the recess 14p). It is known that the interval between the adjacent micro concave portions 14p (center-to-center distance) corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage during anodization. Under the porous alumina layer 14, an aluminum remaining layer 18 r that has not been anodized in the aluminum film 18 is present.
  • the moth-eye mold 100 capable of forming the antireflection film having the antiglare function can be manufactured.
  • the antiglare function of the antireflection film formed using the moth-eye mold 100 will be described in detail later by showing experimental examples.
  • FIG. 3 is a schematic cross-sectional view for explaining a method for producing an antireflection film by a roll-to-roll method.
  • a cylindrical moth-eye mold 100 is prepared.
  • the cylindrical moth-eye mold 100 is manufactured by the above-described manufacturing method.
  • ultraviolet light is applied to the ultraviolet curable resin 32 ′ by irradiating the ultraviolet curable resin 32 ′ with the workpiece 42 having the ultraviolet curable resin 32 ′ pressed against the moth-eye mold 100.
  • the cured resin 32 ′ is cured.
  • an acrylic resin can be used.
  • the workpiece 42 is, for example, a TAC (triacetyl cellulose) film.
  • the workpiece 42 is unwound from an unillustrated unwinding roller, and thereafter, an ultraviolet curable resin 32 ′ is applied to the surface by, for example, a slit coater.
  • the workpiece 42 is supported by support rollers 46 and 48 as shown in FIG.
  • the support rollers 46 and 48 have a rotation mechanism and convey the workpiece 42.
  • the cylindrical moth-eye mold 100 is rotated in the direction indicated by the arrow in FIG. 3 at a rotational speed corresponding to the transport speed of the workpiece 42.
  • a cured product layer 32 to which the uneven structure (inverted moth-eye structure) of the moth-eye mold 100 is transferred is formed on the surface of the workpiece 42.
  • the workpiece 42 having the cured product layer 32 formed on the surface is wound up by a winding roller (not shown).
  • FIG. 4A is a view when the surface of the antireflection film 32 is observed from the vertical direction.
  • 4B is a schematic diagram when the surface of the antireflection film 32 is observed from an oblique direction, and
  • FIG. 4C is a schematic diagram of a cross section of the antireflection film 32.
  • the plurality of micro convex portions constituting the moth-eye structure includes micro convex portions 32p and 32g.
  • the micro convex portion 32p is formed in a macro concave portion constituting the anti-glare structure
  • the micro convex portion 32g is formed in a macro convex portion constituting the anti-glare structure. Therefore, the micro convex part 32g is higher than the micro convex part 32p, and is disposed so as to substantially surround the micro convex part 32p formed in the macro concave part. This corresponds to the fact that in the process of manufacturing the moth-eye mold 100, in the inverted anti-glare structure formed by the satin treatment, the macro convex portion 18p is substantially surrounded by the macro concave portion 18g. .
  • Substrate surface treatment method According to the study of the present inventor, in the process of manufacturing the cylindrical moth-eye mold 100, the inverted anti-glare structure formed by the satin treatment is not uniformly formed on the surface of the aluminum base 12, so that the aluminum base Macro unevenness sometimes occurred on the 12 surfaces. According to the study by the present inventor, there are cases where there are a plurality of causes of macro unevenness. This problem is a common problem in the technique of treating the surface of a columnar or cylindrical substrate. This inventor examined the surface treatment method of the base material which can suppress generation
  • FIGS. 5A and 5B are schematic views for explaining a surface treatment method for a substrate according to an embodiment of the present invention.
  • the surface treatment method for a substrate is a method for treating the surface of a columnar or cylindrical substrate, and includes the following steps (I) and (II).
  • the step of treating the surface of the aluminum base material with an aqueous solution containing a salt of hydrogen fluoride and ammonium included in the mold manufacturing method according to the embodiment of the present invention
  • an example using the surface treatment method will be described.
  • the substrate surface treatment method according to the embodiment of the present invention is not limited to this.
  • the surface of the aluminum film may be anodized to form a porous alumina layer having a plurality of micro-recesses, or the porous alumina layer may be contacted with an etching solution to contact the porous alumina layer. You may use for the process of expanding several micro recessed part of these.
  • the present invention is not limited to the mold manufacturing method according to the embodiment of the present invention, and can be widely used as a method for treating the surface of a columnar or cylindrical substrate.
  • the surface treatment of the substrate includes various chemical treatment steps such as an etching step, a cleaning step, a film forming step, and a plating step. It may be a method of treating the surface (side surface) of a cylindrical substrate or the surface (outer peripheral surface) of a cylindrical substrate, or the surface (side surface) of a cylindrical substrate or a cylindrical substrate. A method of treating a metal film or an oxide film provided on the surface (outer peripheral surface) may also be used.
  • the surface of the substrate may be a metal or an oxide.
  • a cylindrical aluminum base 12 and a first etching tank 51 are prepared.
  • a first etching solution E ⁇ b> 1 is accommodated in the first etching tank 51.
  • the first etching solution E1 is, for example, an etching solution for satin treatment, and is, for example, an aqueous solution containing a salt of hydrogen fluoride and ammonium.
  • the length of the aluminum base 12 in the major axis direction is H, and the diameter of the outer peripheral surface in the cross section orthogonal to the major axis direction is D. As shown in FIG.
  • step (I) and step (II) may be performed simultaneously.
  • the substrate surface treatment method according to the embodiment of the present invention can uniformly treat the surface of the substrate by rotating the aluminum substrate 12.
  • the aluminum substrate 12 is rotated so that the entire aluminum substrate 12 is not immersed in the first etching solution contained in the first etching tank 51.
  • the satin finish can be applied uniformly to the outer peripheral surface of the aluminum base 12. Therefore, it is possible to suppress the cost for the etching solution and the increase in the installation location of the etching tank.
  • the 1st etching liquid accommodated in the 1st etching tank 51 is made to contact the 1st etching liquid. It is easier to circulate the first etching solution E1 in the first etching tank 51 than in the case where the whole is immersed.
  • the peripheral speed of the aluminum base 12 is, for example, more than 0 m / s and 0.03 m / s or less.
  • the rotation speed of the aluminum substrate 12 is, for example, more than 0 rpm and 2 rpm or less. When the rotation speed of the aluminum substrate 12 exceeds 2 rpm, the surface treatment of the substrate may not be performed uniformly.
  • rpm is a unit representing the number of rotations per minute
  • a rotation speed of 1 rpm corresponds to a peripheral speed ( ⁇ ⁇ D) / 60 (m / s).
  • the surface treatment method of the base material by a comparative example is demonstrated.
  • the major axis direction of the aluminum substrate 12 is arranged so as to be substantially parallel to the vertical direction and accommodated in the etching tank 91.
  • the outer peripheral surface of the aluminum base 12 is brought into contact with the etched etchant.
  • the entire aluminum base 12 is immersed in the etching solution in the etching tank 91. Therefore, the cost for the etching solution and the installation location of the etching tank 91 increase.
  • the depth of the etching tank 91 is larger than the length H of the aluminum base 12 in the major axis direction.
  • the height of the ceiling where the etching tank 91 is installed is the length of the aluminum base 12 in the major axis direction.
  • H the height of the aluminum base 12 in the major axis direction.
  • FIG. 7 is a schematic diagram for explaining the cause of periodic unevenness.
  • FIG. 7A shows the antireflection film 32 manufactured using the moth-eye mold 100 manufactured by the mold manufacturing method according to the embodiment of the present invention when observed from the normal direction of the antireflection film 32. It is a typical top view.
  • FIG. 7 (b) is a schematic diagram for explaining a step of performing a matte treatment on the surface of the aluminum base 12 in the process of manufacturing the moth-eye mold 100, and the long axis of the cylindrical aluminum base 12. It is the schematic diagram seen from the direction.
  • the antiglare structure formed in the antireflection film 32 is periodically along the circumferential direction of the cylindrical aluminum substrate 12 (that is, the circumferential direction of the moth-eye mold 100). Has changed.
  • This periodic unevenness is caused by the unevenness of the inverted anti-glare structure formed on the surface of the moth-eye mold 100, and the moth-eye mold in the method described with reference to FIG. 3 (that is, in a roll-to-roll manner). This is because the antireflection film 32 is formed using 100.
  • the contact time and timing are not uniform depending on the position on the outer peripheral surface of the aluminum base 12, so that the satin treatment is performed uniformly.
  • the inverted antiglare structure has unevenness.
  • the antiglare structure formed in the antireflection film 32 has periodic unevenness having a period of the circumference ⁇ ⁇ D of the bottom surface of the aluminum base 12 and is visually recognized as a difference in the degree of scattering of visible light. In FIG. 7A, the antireflection film 32 is divided into periods ⁇ ⁇ D to make the period easy to see, but the antireflection film 32 is not divided into periods ⁇ ⁇ D. .
  • the position where the first etching liquid E1 is first contacted is the aluminum base. 12 is on a line L1 extending in the major axis direction of the aluminum base 12 within the outer peripheral surface of the aluminum.
  • the matte treatment with the first etching solution E1 proceeds most quickly. That is, since the time of contact with the first etching solution E1 is the longest, the progress of the satin treatment is the largest.
  • FIGS. 8 and 9 are schematic views for explaining a surface treatment method for a substrate according to an embodiment of the present invention.
  • the surface treatment method for a substrate includes the step (II) (a step of bringing a part of the outer peripheral surface of the substrate into contact with a first etching solution accommodated in a first etching tank. ), A step (II-1) of bringing a part of the outer peripheral surface of the base material into contact with a second etching solution different from the first etching solution (sometimes referred to as “pretreatment etching solution”) is further performed. Include. The etching rate of the second etching liquid with respect to the outer peripheral surface of the base material is lower than the etching rate of the first etching liquid with respect to the outer peripheral surface of the base material.
  • the surface treatment method for a substrate includes the step (II) (a step of bringing a part of the outer peripheral surface of the substrate into contact with a first etching solution accommodated in a first etching tank. ), A step (II-2) of bringing a part of the outer peripheral surface of the base material into contact with a third etching solution different from the first etching solution (sometimes referred to as “post-treatment etching solution”) is further included. To do.
  • the etching rate of the third etching liquid with respect to the outer peripheral surface of the base material is lower than the etching rate of the first etching liquid with respect to the outer peripheral surface of the base material.
  • the outer peripheral surface of the aluminum base 12 A step of bringing a part of the substrate into contact with the pretreatment etching solution E2 accommodated in the etching tank 52 is performed. After the step of bringing a part of the outer peripheral surface of the aluminum base 12 into contact with the first etching solution E1 accommodated in the first etching tank 51, a part of the outer peripheral surface of the aluminum base 12 was accommodated in the etching tank 52. You may perform the process made to contact the etching liquid E2 for post-processing.
  • the pretreatment etchant and / or the posttreatment etchant can be obtained, for example, by diluting the first etchant. That is, the concentration of the pretreatment etchant and / or the posttreatment etchant is lower than that of the first etchant, for example.
  • the pretreatment etchant and the posttreatment etchant are, for example, the same etchant, but may be different etchants.
  • the occurrence of periodic unevenness is suppressed by performing the surface treatment with the pretreatment etchant.
  • the first etchant E1 directly acts on the outer peripheral surface of the aluminum base 12 as shown in FIG.
  • the pretreatment etchant E2 is applied to the outer peripheral surface of the aluminum base 12 as shown in FIG. Act directly. It is preferable to adjust the concentration and temperature of the pretreatment etching solution E2 as appropriate so that the inverted antiglare structure is hardly formed by the pretreatment etching solution E2.
  • the pretreatment etchant and / or the posttreatment etchant can be obtained, for example, by diluting the first etchant five times.
  • An experimental example will be given later for an etchant suitable for the pretreatment etchant E2.
  • a cleaning step with, for example, pure water is performed after the matte treatment step with the first etching solution E1.
  • the first etching solution and the pure water have greatly different concentrations. That is, since the etching rates with respect to the outer peripheral surface of the aluminum base 12 are greatly different, they can be in direct contact with each other on the outer peripheral surface of the aluminum base 12 to cause unevenness of the inverted antiglare structure.
  • Step (II-1) step of bringing a part of the outer peripheral surface of the substrate into contact with the pretreatment etching solution before the satin treatment step
  • step (II-2) after the satin treatment step, the substrate Also in the step of bringing a part of the outer peripheral surface of the aluminum substrate 12 into contact with the post-treatment etching solution, it is preferable to rotate the aluminum substrate 12 around the major axis of the aluminum substrate 12 as in the step (I).
  • the rotation speed of the aluminum substrate 12 in the step (II-1) and the step (II-2) is substantially the same as the rotation speed in the step (I), for example.
  • the substrate surface treatment method according to the embodiment of the present invention is performed before the step of bringing a part of the outer peripheral surface of the aluminum substrate 12 into contact with the pretreatment etchant E2.
  • FIG. The etching rate of the pretreatment etching liquid E3 with respect to the outer peripheral surface of the aluminum base 12 is lower than the etching rate of the pretreatment etching liquid E2 with respect to the outer peripheral surface of the aluminum base 12.
  • etching rate of the post-processing etchant E3 with respect to the outer peripheral surface of the aluminum base 12 is lower than the etching rate of the post-processing etchant E2 with respect to the outer peripheral surface of the aluminum base 12.
  • the pretreatment etching solution and / or the posttreatment etching solution may be stored in the first etching tank 51 in which the first etching solution E1 is stored.
  • the pretreatment etchant and / or the posttreatment etchant is obtained by lowering the temperature of the first etchant E1.
  • the etching solution that contacts the outer peripheral surface of the aluminum base 12 has a gentle change in the etching rate with respect to the outer peripheral surface, so that the inverted antiglare structure formed in the aluminum base 12 in the circumferential direction. Unevenness can be suppressed. For example, unevenness in the circumferential direction of the inverted antiglare structure formed on the aluminum substrate 12 can be suppressed by gradual change in the concentration of the etching solution that contacts the outer peripheral surface of the aluminum substrate 12. .
  • unevenness in the circumferential direction of the inverted antiglare structure formed on the aluminum base 12 can be suppressed by moderately changing the temperature of the outer peripheral surface of the aluminum base 12.
  • the processing temperature of the first etching solution and / or the pretreatment etching solution may be set low in order to increase the time margin for the matte processing. At this time, if the temperature of the outer peripheral surface of the aluminum base 12 to be processed is higher than the temperature of the etching solution, macro unevenness may occur in the inverted antiglare structure formed on the aluminum base 12.
  • the temperature of the outer peripheral surface of the aluminum base 12 is low (for example, approximately 10 ° C.) before the step of bringing a part of the outer peripheral surface of the aluminum base 12 into contact with the first etching solution or the pretreatment etching solution. Since the temperature of the outer peripheral surface of the aluminum base 12 can be lowered by providing the step of spraying pure water, unevenness generation can be suppressed.
  • the step of spraying low-temperature pure water is performed by a shower method using a nozzle, for example.
  • the problem that unevenness in the circumferential direction of the base material described above hardly occurs.
  • FIG. 6A when a moth-eye mold is manufactured using the surface treatment method for a base material of a comparative example, when the outer peripheral surface of the aluminum base material 12 is brought into contact with the first etching solution E1, first, The position in contact with the first etching solution E1 is the bottom surface of the aluminum base 12.
  • the antireflection film 32 is manufactured using the moth-eye mold, linear unevenness appears at the end of the antireflection film 32 (broken line in FIG. 6B), so that the portion is excluded and used as the antireflection film.
  • the substrate surface treatment method of the comparative example is inferior to the substrate surface treatment method according to the embodiment of the present invention in that the cost for the etching solution and the installation location of the etching tank increase. .
  • the aluminum base material 12 that has been subjected to the satin treatment by the surface treatment method of the base material according to the embodiment of the present invention has the aluminum base material 12 on the outer peripheral surface.
  • a plurality of streaky irregularities extending in a direction substantially orthogonal to the major axis direction may occur. Streaky irregularities were also visually recognized in the antireflection film 32 produced using the moth-eye mold.
  • the inventor of the present invention has come up with a method of spraying an etching solution for the satin treatment on the outer peripheral surface of the aluminum base 12 in order to suppress the occurrence of streaky unevenness.
  • FIG. 10A is a schematic diagram for explaining a substrate surface treatment method according to an embodiment of the present invention.
  • FIG. 10 (b) is a schematic diagram for explaining a plurality of streaky irregularities that extend on the outer peripheral surface of the aluminum base 12 and extend in a direction substantially orthogonal to the major axis direction of the aluminum base 12.
  • FIGS. 10C and 10D are schematic diagrams for explaining the angle ⁇ at which the spray etching solution is ejected.
  • the surface treatment method of the base material by embodiment of this invention WHEREIN: In one embodiment, it is the 4th etching liquid (it is called the etching liquid for spraying) which is the same as the 1st etching liquid E1. There is further included the step (III) of spraying E4 on the outer peripheral surface of the aluminum base 12.
  • step (III) of spraying the spraying etchant E4 on the outer peripheral surface of the aluminum substrate 12 for example, a part of the outer peripheral surface of the aluminum substrate 12 is brought into contact with the first etchant E1 accommodated in the first etching tank 51.
  • the spraying etching solution E4 is sprayed in the vicinity of the portion in contact with the first etching solution E1 in the outer peripheral surface of the aluminum substrate 12.
  • “The vicinity of the portion in contact with the first etching solution E1 in the outer peripheral surface of the aluminum base 12” includes the portion in contact with the first etching solution E1 in the outer peripheral surface of the aluminum base 12. .
  • FIGS. 11 (a) and 11 (b) An optical image of the aluminum substrate 12 is shown in FIGS. 11 (a) and 11 (b).
  • Fig.11 (a) is the aluminum base material 12 by which the matte process was given by the surface treatment method which does not include the said process (III) (process which sprays the etching liquid for spraying on the outer peripheral surface of the aluminum base material 12)
  • 11 (b) is the aluminum substrate 12 that has been subjected to a satin treatment by the surface treatment method including the above-described step (III) (step of spraying the spraying etching solution onto the outer peripheral surface of the aluminum substrate 12). It can be seen that streaky irregularities appear on the surface of the aluminum substrate 12 in FIG. 11A, but not on the aluminum substrate 12 in FIG.
  • the striped unevenness is considered to be caused by the uneven thickness of the etchant liquid film on the outer peripheral surface of the aluminum base 12.
  • the portion of the outer peripheral surface of the aluminum substrate 12 where the thickness of the etching solution liquid film is thin has a high density of the macroscopic projections 12p, and the etching solution liquid film is thick. It was confirmed that the density tends to be low in the density of the macro convex portions 12p. That is, it is considered that the reaction rate of the satin treatment is high at a portion where the thickness of the etchant liquid film is thin, and the reaction rate of the satin treatment is slow at a portion where the thickness of the etchant liquid film is thick.
  • the spraying etching solution E4 When the spraying etching solution E4 is sprayed in the vicinity of the portion of the outer peripheral surface of the aluminum substrate 12 that is in contact with the first etching solution E1, the thickness of the liquid film on the outer peripheral surface of the aluminum substrate 12 becomes uniform. By doing so, it is considered that the occurrence of streaky irregularities can be suppressed.
  • the base material is arranged so that the major axis direction of the base material is substantially parallel to the horizontal direction. It is performed simultaneously with the step of rotating the substrate around the major axis (the step (I) above), and the spray etching solution E4 contacts the first etching solution E1 in the outer peripheral surface of the aluminum substrate 12. It is sprayed to the location which is rotating so that it may be away from the 1st etching liquid E1 accommodated in the 1st etching tank 51 in the said process (I) vicinity.
  • the step (III) of spraying the spray etching solution E4 on the outer peripheral surface of the aluminum base 12 is performed using, for example, a spray nozzle.
  • a spray nozzle for example, a fan-shaped one-fluid nozzle (for example, HB1 / 4VV-SS11004 manufactured by Spraying Systems) can be used.
  • a plurality of spray nozzles may be arranged side by side along the long axis direction of the aluminum base 12.
  • the spray etching solution E4 may be sprayed using 16 spray nozzles.
  • the flow rate of the spray etching solution E4 sprayed from each spray nozzle is, for example, 1.0 L / min, and preferably 0.6 L / min to 1.2 L / min.
  • the pump can be appropriately selected from known pumps according to the flow rate and pressure of the spray etching solution E4.
  • CHI2-30AWGBUBV manufactured by Grundfos can be used.
  • the angle ⁇ at which the spraying etchant E4 is sprayed is, for example, 45 ° or more and less than 90 ° from the vertical direction.
  • the inclination angle with respect to the horizontal direction that is, the inclination angle with respect to the surface of the first etching solution E1 accommodated in the first etching tank 51 is 90 ° ⁇ .
  • the angle ⁇ is less than 45 °, the inclination angle (90 ° ⁇ ) with respect to the surface of the first etching liquid E1 accommodated in the first etching tank 51 is large, so that the spraying etching liquid E4 is in the first etching tank.
  • the surface of the first etching solution E1 accommodated in the substrate 51 may jump on the surface (liquid surface) of the first etching solution E1 and adhere to the surface of the aluminum base 12.
  • the angle ⁇ is 90 ° or more, the spraying etching solution E 4 may splash and scatter on the surface of the aluminum base 12.
  • the angle ⁇ is 90 ° or more, the effect of making the thickness of the liquid film on the outer peripheral surface of the aluminum base 12 uniform may not be obtained.
  • composition of etching solution for satin treatment The satin treatment process was performed by changing the composition of the etching solution for the satin treatment.
  • Experimental Example 1-1, Experimental Example 2-1, Experimental Example 3-1 and 4-1 are ammonium fluoride, ammonium sulfate and dihydrogen phosphate in an etching solution for satin treatment. While the ratio of ammonium was fixed at 5: 2: 2, these concentrations were changed, and a satin treatment process was performed on small pieces (5 cm ⁇ 2 cm) of the aluminum base material.
  • the etching solution for the satin treatment used in Experimental Example 1-1 contains 5 mass%, 2 mass%, and 2 mass% of ammonium fluoride, ammonium sulfate, and ammonium dihydrogen phosphate, respectively.
  • the etching solution for the satin treatment used in Experimental Examples 2-1 to 4-1 is obtained by diluting the etching solution used in Experimental Example 1-1 by 2 times, 3 times, and 5 times, respectively. .
  • JIS A6063 As the aluminum base material, an Al—Mg—Si based aluminum alloy formed from JIS A6063 was used.
  • JIS A6063 has the following composition (mass%). Si: 0.20 to 0.60%, Fe: 0.35% or less, Cu: 0.10% or less, Mn: 0.10% or less, Mg: 0.45 to 0.9%, Cr: 0. 10% or less, Zn: 0.10% or less, Ti: 0.10% or less, Other: Individual is 0.05% or less, the whole is 0.15% or less, the balance: Al
  • the aluminum substrate (JIS A6063) was formed by a hot extrusion method using indirect extrusion (mandrel method), subjected to cold drawing, and then subjected to mirror surface processing by cutting. An alkali cleaning process was performed on the aluminum substrate before the satin treatment process.
  • an alkaline etching solution an aqueous solution containing an organic alkaline detergent (product name: Semi-clean LC-2, manufactured by Yokohama Oil & Fat Co., Ltd.) at a concentration of 8 mass% was used.
  • Semi-clean LC-2 manufactured by Yokohama Oil & Fat Co., Ltd. has the following composition: 2-aminoethanol (12 mass%), chelating agent (2 mass% to 6 mass%), and surfactant (2 mass% to 6 mass%).
  • the aluminum substrate was immersed in an alkaline etching solution at 40 ° C. for 30 minutes (alkali cleaning step). Then, the aluminum base material was immersed in pure water for washing with water, and after rinsing with water, the aluminum substrate was immersed in an etching solution (temperature: 10 ° C.) for a satin treatment process for a predetermined time (pear texture treatment process). Thereafter, the aluminum substrate was washed by immersing it in pure water and dried by air blow.
  • an antiglare film was formed using each aluminum substrate as a mold.
  • the anti-glare film is coated with a mold release agent (Optool DSX manufactured by Daikin Industries, Ltd.) on the surface of an aluminum substrate, then coated with a urethane acrylate UV curable resin, and irradiated with UV light in a state of being transferred onto a TAC film. And then cured.
  • a film that does not have a moth-eye structure and has only an antiglare structure is sometimes referred to as an antiglare film.
  • Table 1 shows the results of evaluating the antiglare function using the aluminum base material of Experimental Examples 1-1 to 4-1 and the antiglare film (sample film) obtained from the aluminum base material.
  • FIGS. 12A to 12D show optical microscopes when the surface of an aluminum substrate having an inverted antiglare structure formed by the matte treatment process of Experimental Examples 1-1 to 4-1 is observed from the vertical direction.
  • FIGS. 12E to 12H show SEM images when the surface of the antiglare film formed from the aluminum base material of Experimental Examples 1-1 to 4-1 is observed from the vertical direction. (Full scale 20 ⁇ m in SEM image).
  • the optical microscope image was acquired using an optical microscope (manufactured by Olympus Corporation, product name: BH2-UCB (BX-16)). The same applies to the following optical microscope images.
  • the SEM image was acquired using a field emission scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, product name: S-4700). The same applies to the following SEM images.
  • Micro-convex portion 12p in Table 1 indicates a two-dimensional size (area equivalent circle diameter) when viewed from the normal direction of the surface of the macro-protrusion portion 12p formed on the aluminum base 12. It is a value estimated from an optical microscope image.
  • “Haze value” in Table 1 indicates the result of measuring the haze value of the antiglare film.
  • the haze value was obtained from (diffuse transmittance / total light transmittance) ⁇ 100 using a haze meter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • Anti-glare property indicates that an anti-glare film is formed on a liquid crystal television (AQUAS LC-UD1, type 60, manufactured by Sharp Corporation, dot pitch in the row direction: about 115 ⁇ m, dot pitch in the column direction: about 345 ⁇ m). It is the result of judging the presence or absence of anti-glare property by affixing on the surface of a display panel and observing the reflection of a fluorescent lamp visually.
  • Anti-Glare in Table 1, “ ⁇ ” indicates that it is determined that there is anti-glare, and “X” indicates that it is determined that there is no anti-glare.
  • an antiglare film having a large haze value is excellent in antiglare function and antiglare property.
  • “Glitter” in Table 1 indicates that the anti-glare film is a display of a liquid crystal television (AQUAS LC-UD1, type 60, manufactured by Sharp Corporation, dot pitch in the row direction: about 115 ⁇ m, dot pitch in the column direction: about 345 ⁇ m) This is a result of pasting on the surface of the panel, displaying the entire surface in green, and hearing whether the image through the film is glaring. Interviews were conducted with 5 people. For “Glitter” in Table 1, “ ⁇ ” indicates that 0 out of 5 people answered “Glitter is visible”, and “ ⁇ ” was 1 The above indicates that the number is 3 or less, and “x” indicates that the number is 4 or more.
  • the glare is a phenomenon in which the display panel appears to be glaring as a whole, and it tends to be noticeable especially when the entire screen is displayed in green.
  • the glare is caused by the average distance between adjacent macro projections 12p (see AD int in FIG. 1C), the row direction dot pitch Px (see FIG. 22) and / or the column direction dot pitch Py of the display panel. From this relationship, it is considered that the antiglare structure formed in the antiglare film and the dots of the display panel interfere with each other.
  • the glare may also occur when the average distance between adjacent macro convex portions 12p is smaller than the dot pitch. The glare tends to be suppressed when the average distance between adjacent macro projections 12p and the two-dimensional size of the macro projection 12p are sufficiently smaller than the dot pitch.
  • the size of the macro convex portion 12p formed on the aluminum base 12 varies depending on the concentration of the etching solution for the satin treatment.
  • the antiglare film obtained in Experimental Example 1-1 has excellent antiglare properties and can suppress glare.
  • Experimental Example 2-1 which uses an etching solution obtained by diluting the etching solution of Experimental Example 1-1 twice, the two-dimensional size (about 15 ⁇ m) of the macro convex portion 12p is different from Experimental Example 1-1.
  • Experimental Example 3-1 which is larger than (about 10 ⁇ m) and uses an etching solution obtained by diluting the etching solution of Experimental Example 1-1 three times, the two-dimensional size of the macro-shaped protrusion 12p is even larger. (About 20 ⁇ m).
  • the antiglare film of Experimental Example 2-1 was inferior to the antiglare film of Experimental Example 1-1 from the viewpoint of suppressing glare, and the antiglare film of Experimental Example 3-1 could not suppress glare. .
  • the etching solution used in Experimental Example 4-1 does not form the macro-projections 12p on the surface of the aluminum substrate 12, and is therefore preferably used as a pretreatment etching solution and / or a posttreatment etching solution.
  • the experimental example 1-2, the experimental example 1-3, the experimental example 2-2, the experimental example 3-2, and the experimental example 4-2 shown in Table 2 are different from the experimental example in Table 1 in the matte treatment time.
  • Other experimental conditions and evaluation procedures are the same as those described for Table 1.
  • the concentration of the etching solution for the satin treatment greatly contributes to the glare and antiglare property of the antiglare film.
  • the etching solution used in Experimental Example 4-2 does not form the macro-convex portion 12p on the surface of the aluminum base 12 like the etching solution used in Experimental Example 4-1. It is suitably used as a solution and / or an etching solution for post-treatment.
  • Table 3 shows the results of evaluation of the antiglare function using the aluminum base materials of Experimental Examples 5-1 to 5-4 and Experimental Examples 6-1 to 6-2 and the antiglare films (sample films) obtained from the aluminum base materials.
  • FIGS. 14A to 14D show optical microscopes when the surface of an aluminum substrate having an inverted antiglare structure formed by the satin treatment process of Experimental Examples 5-1 to 5-4 is observed from the vertical direction.
  • FIGS. 14 (e) and 14 (f) show SEM images when the surface of the antiglare film formed from the aluminum base material in Experimental Examples 5-3 and 5-4 is observed from the vertical direction. (Full scale 20 ⁇ m in SEM image).
  • FIGS. 15 (a) and 15 (b) show optical microscopes when the surface of an aluminum substrate having an inverted antiglare structure formed by the satin treatment process of Experimental Examples 6-1 and 6-2 is observed from the vertical direction. An image (50 times) is shown.
  • Experimental Example 5-2 As in Experimental Example 5-2 and Experimental Example 6-1, it is possible to produce an antiglare film that has antiglare properties and can suppress glare even with an etching solution that does not contain ammonium dihydrogen phosphate. did it.
  • Experimental example 5-2 has a longer satin processing time than experimental example 1-1 (pear finishing time: 2 minutes), and experimental example 6-1 has experimental example 2-1 (pear finishing time: 2).
  • the matte treatment time is longer, and therefore an advantage that the margin of the matte treatment time can be increased by using an etching solution not containing ammonium dihydrogen phosphate.
  • the etching solution preferably contains ammonium dihydrogen phosphate.
  • the etching solution not containing ammonium dihydrogen phosphate bubbles may be generated in the satin treatment process.
  • an antifoaming agent as appropriate.
  • the two-dimensional size of the macro-shaped convex portion 12p is larger than when an etching solution containing ammonium sulfate is used. Tended to increase. That is, the two-dimensional size of the macro protrusion 12p formed on the aluminum base material of Experimental Example 5-1 is larger than that of Experimental Example 1-1, and is formed on the aluminum base material of Experimental Example 6-2. The two-dimensional size of the macro-convex portion 12p thus formed was larger than that of Experimental Example 2-1.
  • the antiglare film of Experimental Example 5-1 is inferior to the antiglare film of Experimental Example 1-1 in terms of suppressing glare.
  • the antiglare film of Experimental Example 6-2 could not suppress glare.
  • the conditions were changed as shown in Table 4 below, and the washing step was performed with an acidic washing solution, a neutral washing solution and an alkaline washing solution (sometimes called an alkaline etching solution) before the satin treatment step.
  • an acidic cleaning liquid an aqueous solution containing an acidic cleaning agent (manufactured by Yokohama Oil & Fat Co., Ltd., product name: scale cut P) at a concentration of 3 mass% was used.
  • Scale Cut P manufactured by Yokohama Oil & Fat Co., Ltd. contains 5 mass% to 15 mass% of citric acid as an acid.
  • a neutral cleaning solution an aqueous solution containing a neutral cleaning agent (manufactured by Sanwa Oil Chemical Co., Ltd., product name: Sun Clean HS) at a concentration of 3 mass% is used.
  • an alkaline etching solution an organic alkaline cleaning agent is used.
  • An aqueous solution containing 8 mass% (product name: Semi-clean LC-2, manufactured by Yokohama Oil & Fat Co., Ltd.) was used.
  • the same etchant as the satin finish used in Experimental Example 1-1 was used. That is, 5 mass%, 2 mass%, and 2 mass% of ammonium fluoride, ammonium sulfate, and ammonium dihydrogen phosphate are included, respectively.
  • the aluminum base pieces used are the same as described for Table 1.
  • an anti-glare film is affixed to the surface of the display panel, and when viewed from an angle inclined from the normal direction of the anti-glare film, the image through the film appears to be whitish There is.
  • the alkaline etching solution and the etching solution for the satin treatment were all prepared on the day of performing the alkali cleaning step or the satin treatment step. According to the study of the present inventor, a remarkable difference sometimes appears in the inverted antiglare structure obtained between the etching solution prepared on that day and the etching solution prepared one week ago.
  • the formation of cutting marks could be suppressed by performing an alkali cleaning step using an alkaline etching solution before the matte treatment step. It is considered that at least a part of the work-affected layer of the aluminum base material that could cause cutting marks could be removed by the alkaline etching solution.
  • the following problems may occur depending on the type of alkaline etching solution.
  • the work-affected layer removed from the surface of the aluminum base 12 can be thickened by immersing the aluminum base 12 in an alkaline etching solution for a long time.
  • the oxide film on the surface of the aluminum substrate 12 is removed by the alkaline etching solution, galvanic corrosion proceeds on the surface from which the oxide film has been removed, and as a result, a large number of recesses (pitting corrosion) are formed.
  • the Galvanic corrosion occurs between Ti and Al contained in the aluminum substrate 12.
  • FIG. 16 (a) shows an optical microscope image (50 ⁇ ) when the surface of the aluminum base material subjected to the alkali cleaning step of Experimental Example 7-1 is observed from the vertical direction
  • FIG. 16 (b) and ( c) shows an SEM image (full scale 20 ⁇ m in the SEM image) when the surface of the polymer film formed from the aluminum base material of Experimental Examples 7-1 and 7-2 is observed from the vertical direction.
  • FIGS. 17A to 17D show optical microscopes when the surface of an aluminum base material having an inverted antiglare structure formed by the matte treatment process of Experimental Examples 8-1 to 8-4 is observed from the vertical direction. Images (50 times) are shown, and FIGS. 17 (e) to 17 (h) show SEMs when the surfaces of the polymer films formed from the aluminum substrates of Experimental Examples 8-1 to 8-4 are observed from the vertical direction. An image (full scale 20 ⁇ m in an SEM image) is shown.
  • an alkaline etching solution an aqueous solution containing an organic alkaline cleaning agent (manufactured by Yokohama Oil & Fat Co., Ltd., product name: Semi-clean LC-2) at a concentration of 12 mass% was used.
  • an aqueous solution containing an organic alkaline cleaning agent manufactured by Yokohama Oil & Fat Co., Ltd., product name: Semi-clean LC-2
  • As the etching solution for the satin treatment a solution obtained by diluting the etching solution for the satin treatment used in Experimental Example 1-1 twice.
  • “same size” or “2 times dilution” for the etchant for the satin treatment is based on the etchant for the satin treatment used in Experimental Example 1-1.
  • Other experimental conditions and evaluation procedures are the same as those described for Table 1.
  • the present inventor has come up with a method for removing at least a part of the work-affected layer of the aluminum base material while suppressing the formation of recesses due to galvanic corrosion.
  • the aluminum substrate was subjected to an alkali washing step and a satin treatment step under the conditions shown in Table 7 below.
  • an aqueous solution containing an organic alkaline detergent manufactured by Yokohama Oil & Fats Co., Ltd., product name: Semiclean LC-2
  • the alkaline etching solution in Experimental Examples 9-2 to 9-4 was obtained by adding 5 vol% of a corrosion inhibitor (Kiresbit AL, manufactured by Kirest Corp.) as an acidic additive to the alkaline etching solution in Experimental Example 9-1. Is.
  • a corrosion inhibitor Kermansbit AL, manufactured by Kirest Corp.
  • the pH of the alkaline etching solution of Experimental Examples 9-2 to 9-4 is lower than the pH of the alkaline etching solution of Experimental Example 9-1.
  • Other experimental conditions are the same as in Table 6.
  • FIGS. 18A to 18D show optical microscopes when the surface of an aluminum substrate having an inverted antiglare structure formed by the matte treatment process of Experimental Examples 9-1 to 9-4 is observed from the vertical direction. An image (50 times) is shown.
  • the acidic additive is not limited to those exemplified, and it can be used as long as it dissolves in an alkaline etching solution and does not corrode aluminum.
  • the corrosion inhibitor (Kiresbit AL) used as an acidic additive in the experimental examples is usually used by adding several percent.
  • by adding 5 mass% to 10 mass% see Table 8
  • deposits can be confirmed on the surface of the aluminum substrate. This is considered to be a deposit called smut.
  • Smut may be formed when alkaline etching of aluminum is performed, and it is considered that impurities such as Si, Mg, Fe, and Cu contained in the aluminum and alloy components are deposited on the aluminum. It has been. Smut can be removed with an acidic aqueous solution.
  • FIGS. 19A to 19D show optical microscopes when the surface of an aluminum substrate having an inverted antiglare structure formed by the matte treatment process of Experimental Examples 10-1 to 10-4 is observed from the vertical direction. Images (50 times) are shown, and FIGS. 19 (e) to 19 (h) show SEMs when the surfaces of the polymer films formed from the aluminum base materials of Experimental Examples 10-1 to 10-4 are observed from the vertical direction. An image (full scale 20 ⁇ m in an SEM image) is shown.
  • the most effective in the experimental example 10-2 is to suppress the formation of the cutting traces and to prevent the recesses due to galvanic corrosion. The formation could be suppressed.
  • FIG. 20A shows the relationship between the time of the alkali cleaning step and the mass change rate of the aluminum substrate.
  • FIG. 20B shows the relationship between the time of the alkali cleaning step and the haze value of the antiglare film obtained using the aluminum substrate as a mold.
  • 20 (a) and 20 (b) indicate the time (minutes) of the alkali cleaning step.
  • the vertical axis in FIG. 20 (a) represents the rate of change in the mass of the aluminum substrate before and after the alkali cleaning step, that is, (mass before alkali cleaning step ⁇ mass after alkali cleaning step) / mass before alkali cleaning ⁇ 100. (%).
  • the vertical axis in FIG. 20B indicates the haze value of the antiglare film.
  • an aqueous solution containing an organic alkaline cleaning agent Yokohama Yushi Kogyo Co., Ltd., product name: Semi-clean LC-2
  • Example 8-1 to 8-4 and an aqueous solution containing an organic alkaline cleaner (Yokohama Yushi Kogyo Co., Ltd., product name: Semi-clean LC-2) as an alkaline etching solution at a concentration of 16 mass%.
  • Examples 10-1 to 10-4 using an aqueous solution containing 10 vol% of a corrosion inhibitor (Kiresbit AL, manufactured by Kirest Co., Ltd.) as an agent, and an organic alkaline cleaner (Yokohama Yushi Kogyo Co., Ltd.) as an alkaline etchant
  • the results of Experiment 11-1 (see Table 9) using an aqueous solution containing the product name: Semi-clean LC-2) at a concentration of 8 mass% It is door.
  • the time taken to reduce the mass of the aluminum base by 0.04% is the concentration of the organic alkaline detergent (Yokohama Yushi Kogyo Co., Ltd., product name: Semi-clean LC-2).
  • the organic alkaline detergent Yokohama Yushi Kogyo Co., Ltd., product name: Semi-clean LC-2.
  • an organic alkaline detergent product name: Semi-clean LC-2, manufactured by Yokohama Oil & Fats Co., Ltd.
  • An acidic additive may be added to the etching solution for the satin treatment. Experiments similar to those in Table 7 were performed using the conditions in Table 9 below.
  • Experimental Example 11-1 the same etchant as used in Experimental Example 1-1 was used as the etchant for the satin treatment.
  • Experimental Example 11-2 10% by volume of a corrosion inhibitor (Kiresbit AL, manufactured by Kirest Co., Ltd.) as an acidic additive was added to the etching solution for the satin processing in Experimental Example 11-1, Used as an etching solution.
  • FIGS. 21A and 21B show optical microscopes when the surface of an aluminum substrate having an inverted antiglare structure formed by the matte treatment process of Experimental Examples 11-1 and 11-2 is observed from the vertical direction. Images (50 times) are shown, and FIGS. 21C and 21D show SEMs when the surfaces of the polymer films formed from the aluminum substrates of Experimental Examples 11-1 and 11-2 are observed from the vertical direction. An image (full scale 20 ⁇ m in an SEM image) is shown.
  • the effects of the above-mentioned etching solution for the satin treatment and the alkaline etching solution are not obtained only in the method for manufacturing the cylindrical moth-eye mold according to the embodiment of the present invention. Since the effect of the etching solution for the satin treatment and the alkaline etching solution does not depend on the shape of the mold, for example, in the manufacturing method of the plate-shaped moth-eye mold, The same effect can be obtained by using an etching solution and an alkaline etching solution.
  • the moth-eye that can provide an antireflection function and an antiglare function can be obtained by forming the inverted moth-eye structure using the thus-obtained cylindrical aluminum substrate subjected to the satin treatment.
  • a mold is obtained.
  • the antireflection film can be formed by the roll-to-roll method as described above. At this time, in order to improve the adhesion between the film base material (TAC film or PET film) on which the antireflection film is formed and the antireflection film, it is preferable to undergo the following steps.
  • a UV curable resin containing a solvent for example, acrylic resin
  • a solvent for example, acrylic resin
  • a solvent that dissolves the surface of the TAC film for example, a ketone
  • the solvent dissolves the surface of the TAC film, a region where TAC and the ultraviolet curable resin are mixed is formed.
  • the solvent is removed, and the TAC film is wound so that the ultraviolet curable resin is in close contact with the outer peripheral surface of the moth-eye mold.
  • ultraviolet rays are irradiated to cure the ultraviolet curable resin.
  • the temperature of the ultraviolet curable resin is maintained at 30 ° C. to 70 ° C.
  • the TAC film is peeled off from the moth-eye mold, and again irradiated with ultraviolet rays as necessary.
  • the material for forming the hard coat layer may contain a solvent that dissolves the surface of the TAC film. In this case, it is not necessary to add a solvent to the ultraviolet curable resin for forming the antireflection film.
  • an aqueous primer for example, a polyester resin or an acrylic resin
  • the surface treatment method for a substrate according to the present invention is used for a method of manufacturing a mold used for forming an antireflection film (antireflection surface) or the like.
  • the mold manufacturing method according to the present invention is used for manufacturing a mold suitably used for forming an antireflection film (antireflection surface) or the like.
  • the antireflection film manufactured using the mold manufactured by the mold manufacturing method according to the present invention has a surface structure that exhibits an appropriate antiglare function and an excellent antireflection function, for example, a high-definition display. It is suitably used for panels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • ing And Chemical Polishing (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

This method for treating the surface of a columnar or tubular base material (12) comprises: (a) a step of allowing the base material to rotate around the long axis of the base material in a state in which the base material is disposed so that the major axis direction of the base material is substantially parallel to the horizontal direction; and (b) a step of allowing a part of the outer circumferential surface of the base material to contact with a first etching solution (E1) contained in a first etching tank (51).

Description

基材の表面処理方法および型の製造方法Substrate surface treatment method and mold production method
 本発明は、基材の表面処理方法および型の製造方法に関する。ここでいう「型」は、種々の加工方法(スタンピングやキャスティング)に用いられる型を包含し、スタンパということもある。また、印刷(ナノプリントを含む)にも用いられ得る。 The present invention relates to a substrate surface treatment method and a mold manufacturing method. The “mold” here includes molds used in various processing methods (stamping and casting), and is sometimes referred to as a stamper. It can also be used for printing (including nanoprinting).
 テレビや携帯電話などに用いられる表示装置やカメラレンズなどの光学素子には、通常、表面反射を低減して光の透過量を高めるために反射防止技術が施されている。例えば、空気とガラスとの界面に光が入射する場合のように屈折率が異なる媒体の界面を光が通過する場合、フレネル反射などによって光の透過量が低減し、視認性が低下するからである。 2. Description of the Related Art An optical element such as a display device or a camera lens used for a television or a mobile phone is usually provided with an antireflection technique in order to reduce surface reflection and increase light transmission. For example, when light passes through the interface of a medium with a different refractive index, such as when light enters the interface between air and glass, the amount of transmitted light is reduced due to Fresnel reflection, etc., and visibility is reduced. is there.
 近年、反射防止技術として、凹凸の周期が可視光(λ=380nm~780nm)の波長以下に制御されたミクロな凹凸パターンを基板表面に形成する方法が注目されている(特許文献1から3を参照)。反射防止機能を発現する凹凸パターンを構成する凸部の2次元的な大きさは10nm以上500nm未満である。ここで、凸部の「2次元的な大きさ」とは、表面の法線方向から見たときの凸部の面積円相当径を指し、例えば、凸部が円錐形の場合、凸部の2次元的な大きさは、円錐の底面の直径に相当する。凹部の「2次元的な大きさ」も同様である。 In recent years, attention has been focused on a method of forming a micro uneven pattern on the substrate surface, in which the period of the unevenness is controlled to be not more than the wavelength of visible light (λ = 380 nm to 780 nm) as an antireflection technique (see Patent Documents 1 to 3). reference). The two-dimensional size of the convex portions constituting the concavo-convex pattern exhibiting the antireflection function is 10 nm or more and less than 500 nm. Here, the “two-dimensional size” of the convex portion refers to the area equivalent circle diameter of the convex portion when viewed from the normal direction of the surface. For example, when the convex portion has a conical shape, The two-dimensional size corresponds to the diameter of the bottom surface of the cone. The same applies to the “two-dimensional size” of the recess.
 この方法は、いわゆるモスアイ(Moth-eye、蛾の目)構造の原理を利用したものであり、基板に入射した光に対する屈折率を凹凸の深さ方向に沿って入射媒体の屈折率から基板の屈折率まで連続的に変化させることによって反射を防止したい波長域の反射を抑えている。 This method utilizes the principle of a so-called moth-eye structure, and the refractive index for light incident on the substrate is determined from the refractive index of the incident medium along the depth direction of the irregularities. By continuously changing the refractive index, reflection in the wavelength region where reflection is desired to be prevented is suppressed.
 モスアイ構造は、広い波長域にわたって入射角依存性の小さい反射防止作用を発揮できるほか、多くの材料に適用でき、凹凸パターンを基板に直接形成できるなどの利点を有している。その結果、低コストで高性能の反射防止膜(または反射防止表面)を提供できる。 The moth-eye structure has an advantage that it can exhibit an antireflection effect with a small incident angle dependency over a wide wavelength range, can be applied to many materials, and can form an uneven pattern directly on a substrate. As a result, a low-cost and high-performance antireflection film (or antireflection surface) can be provided.
 本出願人は、モスアイ構造を有する反射防止膜(または反射防止表面)の製造方法として、アルミニウムを陽極酸化することによって得られる陽極酸化ポーラスアルミナ層を用いる方法を開発してきた(特許文献2および3)。 The present applicant has developed a method using an anodized porous alumina layer obtained by anodizing aluminum as a method for producing an antireflection film (or antireflection surface) having a moth-eye structure (Patent Documents 2 and 3). ).
 陽極酸化ポーラスアルミナ膜を利用することによって、モスアイ構造を表面に形成するための型(以下、「モスアイ用型」という。)を容易に製造することができる。特に、特許文献2および3に記載されているように、アルミニウムの陽極酸化膜の表面をそのまま型として利用すると、製造コストを低減する効果が大きい。モスアイ構造を形成することができるモスアイ用型の表面の構造を「反転されたモスアイ構造」ということにする。 By using the anodized porous alumina film, a mold for forming a moth-eye structure on the surface (hereinafter referred to as “moth-eye mold”) can be easily manufactured. In particular, as described in Patent Documents 2 and 3, if the surface of the anodized aluminum film is used as a mold as it is, the effect of reducing the manufacturing cost is great. The surface structure of the moth-eye mold that can form the moth-eye structure is referred to as an “inverted moth-eye structure”.
 また、特許文献1から4に記載されているように、モスアイ構造(ミクロ構造)に加えて、モスアイ構造よりも大きな凹凸構造(マクロ構造)を設けることによって、反射防止膜(反射防止表面)にアンチグレア(防眩)機能を付与することができる。アンチグレア機能を発揮する凹凸構造(「アンチグレア構造」ということがある。)を構成する凸部または凹部の2次元的な大きさは200nm以上100μm未満である。また、アンチグレア構造を形成することができる型の表面の構造を「反転されたアンチグレア構造」ということにする。特許文献1から4の開示内容の全てを参考のために本明細書に援用する。 Further, as described in Patent Documents 1 to 4, in addition to the moth-eye structure (microstructure), an uneven structure (macrostructure) larger than the moth-eye structure is provided, so that the antireflection film (antireflection surface) is provided. An anti-glare (anti-glare) function can be imparted. The two-dimensional size of the convex part or the concave part constituting the concavo-convex structure exhibiting the anti-glare function (sometimes referred to as “anti-glare structure”) is 200 nm or more and less than 100 μm. The surface structure of the mold that can form an antiglare structure is referred to as an “inverted antiglare structure”. The entire disclosure of Patent Documents 1 to 4 is incorporated herein by reference.
 なお、本明細書においては、モスアイ構造(または反転されたモスアイ構造)を構成する凹凸をミクロな凹凸と呼び、アンチグレア構造(または反転されたアンチグレア構造)を構成する凹凸をマクロな凹凸と呼ぶことにする。マクロな凹凸の2次元的な大きさの範囲は、ミクロな凹凸の2次元的な大きさの範囲と部分的に重なっているが、アンチグレア機能を有する反射防止膜(反射防止表面)において、アンチグレア構造を構成する凹凸構造は、反射防止機能を発現するモスアイ構造を構成する凹凸構造よりも大きい。 In this specification, the unevenness constituting the moth-eye structure (or inverted moth-eye structure) is referred to as micro unevenness, and the unevenness constituting the antiglare structure (or inverted antiglare structure) is referred to as macro unevenness. To. The range of the two-dimensional size of the macro unevenness partially overlaps the range of the two-dimensional size of the micro unevenness, but in the antireflection film (antireflection surface) having the antiglare function, the antiglare The concavo-convex structure constituting the structure is larger than the concavo-convex structure constituting the moth-eye structure that exhibits the antireflection function.
特表2001-517319号公報JP-T-2001-517319 特表2003-531962号公報Special Table 2003-531962 国際公開第2011/055757号International Publication No. 2011/055757 国際公開第2013/146656号International Publication No. 2013/146656
 適度なアンチグレア機能を有する反射防止膜(または反射防止表面)を形成するための型を効率よく製造する方法については、様々な工法が模索されている。 Various methods are being sought for a method for efficiently producing a mold for forming an antireflection film (or antireflection surface) having an appropriate antiglare function.
 例えば、特許文献1に記載のサンドブラスト法は、アンチグレア機能を付与する所望のマクロな凹凸構造を再現性良く形成することが難しい。また、特許文献3に記載の陰極電解法では、アンチグレア機能を十分に発揮できるマクロな凹凸構造を形成できないことがある。 For example, in the sandblasting method described in Patent Document 1, it is difficult to form a desired macro uneven structure imparting an antiglare function with good reproducibility. Further, in the cathode electrolysis method described in Patent Document 3, there may be a case where a macro uneven structure capable of sufficiently exhibiting the antiglare function cannot be formed.
 さらに、特許文献4に記載されている電着によって形成された樹脂層の平坦部のない連続的なマクロな凹凸構造を反映した表面は、画像がぼやけるという問題がある。近年、表示装置の高精細化が進むにつれて、画像のぼやけが抑制された適度なアンチグレア機能を有する反射防止膜が求められている。 Furthermore, the surface reflecting the continuous macro uneven structure without the flat portion of the resin layer formed by electrodeposition described in Patent Document 4 has a problem that the image is blurred. In recent years, with the progress of high definition display devices, there is a demand for an antireflection film having an appropriate antiglare function in which blurring of an image is suppressed.
 本発明者は、適度なアンチグレア機能と適度な鏡面反射性とを有する反射防止膜(または反射防止表面)をロール・ツー・ロール方式で製造する方法を検討したところ、円筒状の型基材の表面に反転されたアンチグレア構造を均一に形成することが困難であるという問題を見出した。この問題は、円柱状または円筒状の基材の表面を処理する技術において共通の問題である。 The present inventor examined a method of manufacturing an antireflection film (or antireflection surface) having an appropriate antiglare function and an appropriate specular reflectivity by a roll-to-roll method. The present inventors have found that it is difficult to uniformly form an inverted antiglare structure on the surface. This problem is a common problem in the technique of treating the surface of a columnar or cylindrical substrate.
 本発明は、円柱状または円筒状の基材の表面をむらなく処理することができる方法を提供することを目的とする。 An object of the present invention is to provide a method that can uniformly treat the surface of a columnar or cylindrical substrate.
 本発明の実施形態による基材の表面処理方法は、円柱状または円筒状の基材の表面を処理する方法であって、(a)前記基材の長軸方向が水平方向と略平行になるように前記基材を配置した状態で、前記基材の長軸を中心に、前記基材を回転させる工程と、(b)前記基材の外周面の一部を第1エッチング槽に収容された第1エッチング液に接触させる工程とを包含する。 A surface treatment method for a substrate according to an embodiment of the present invention is a method for treating the surface of a columnar or cylindrical substrate, and (a) the major axis direction of the substrate is substantially parallel to the horizontal direction. In the state where the base material is arranged as described above, the step of rotating the base material around the long axis of the base material, and (b) a part of the outer peripheral surface of the base material is accommodated in the first etching tank. And contacting with the first etching solution.
 ある実施形態において、前記第1エッチング液と同じである第2エッチング液を前記基材の外周面に吹き付ける工程(c)をさらに包含する。 In one embodiment, the method further includes a step (c) of spraying a second etching solution, which is the same as the first etching solution, on the outer peripheral surface of the substrate.
 ある実施形態において、前記工程(c)は、前記工程(b)と同時に行われ、前記第2エッチング液は、前記基材の外周面の内、前記第1エッチング液に接触している箇所の近傍に吹き付けられる。 In one embodiment, the step (c) is performed simultaneously with the step (b), and the second etching solution is a portion of the outer peripheral surface of the substrate that is in contact with the first etching solution. It is sprayed in the vicinity.
 ある実施形態において、前記工程(c)は、前記工程(a)と同時に行われ、前記第2エッチング液は、前記基材の外周面の内、前記第1エッチング液に接触している箇所の近傍であって、前記工程(a)において前記第1エッチング液から遠ざかるように回転している箇所に吹き付けられる。 In one embodiment, the step (c) is performed simultaneously with the step (a), and the second etching solution is a portion of the outer peripheral surface of the substrate that is in contact with the first etching solution. It is sprayed to a portion that is in the vicinity and is rotating away from the first etching solution in the step (a).
 ある実施形態において、前記工程(c)において、前記第2エッチング液が噴き出される角度は、鉛直方向から45°以上90°未満傾斜している。 In one embodiment, in the step (c), an angle at which the second etching solution is ejected is inclined by 45 ° or more and less than 90 ° from the vertical direction.
 ある実施形態において、前記基材は、Al-Mg-Si系のアルミニウム合金で形成され、機械的な鏡面加工が施されたアルミニウム基材である。 In one embodiment, the base material is an aluminum base material formed of an Al—Mg—Si based aluminum alloy and subjected to mechanical mirror finishing.
 ある実施形態において、前記第1エッチング液は、フッ化水素とアンモニウムとの塩を含む水溶液である。 In one embodiment, the first etching solution is an aqueous solution containing a salt of hydrogen fluoride and ammonium.
 ある実施形態において、前記フッ化水素とアンモニウムとの塩は、フッ化アンモニウムである。 In one embodiment, the salt of hydrogen fluoride and ammonium is ammonium fluoride.
 ある実施形態において、前記工程(b)の前に、前記基材の外周面の一部を前記第1エッチング液とは異なる第3エッチング液に接触させる工程(b1)をさらに包含し、前記第3エッチング液の前記基材の外周面に対するエッチングレートは、前記第1エッチング液の前記基材の外周面に対するエッチングレートよりも低い。 In one embodiment, before the step (b), the method further includes a step (b1) of bringing a part of the outer peripheral surface of the base material into contact with a third etching solution different from the first etching solution. The etching rate of the 3 etching solution with respect to the outer peripheral surface of the substrate is lower than the etching rate of the first etching solution with respect to the outer peripheral surface of the substrate.
 ある実施形態において、前記第3エッチング液は、前記第1エッチング液を希釈したエッチング液である。 In one embodiment, the third etching solution is an etching solution obtained by diluting the first etching solution.
 ある実施形態において、前記第3エッチング液は、前記第1エッチング液よりも低温である。 In one embodiment, the third etching solution is at a lower temperature than the first etching solution.
 ある実施形態において、前記第3エッチング液は、前記第1エッチング槽とは異なる第2エッチング槽に収容されている。 In one embodiment, the third etching solution is contained in a second etching tank different from the first etching tank.
 ある実施形態において、前記第3エッチング液は、前記第1エッチング槽に収容されている。 In one embodiment, the third etching solution is contained in the first etching tank.
 ある実施形態において、前記工程(b)の後に、前記基材の外周面の一部を前記第1エッチング液とは異なる第4エッチング液に接触させる工程(b2)をさらに包含し、前記第4エッチング液の前記基材の外周面に対するエッチングレートは、前記第1エッチング液の前記基材の外周面に対するエッチングレートよりも低い。 In one embodiment, after the step (b), the method further includes a step (b2) of bringing a part of the outer peripheral surface of the base material into contact with a fourth etching solution different from the first etching solution. The etching rate of the etching solution with respect to the outer peripheral surface of the substrate is lower than the etching rate of the first etching solution with respect to the outer peripheral surface of the substrate.
 ある実施形態において、前記第4エッチング液は、前記第3エッチング液と同一のエッチング液である。 In one embodiment, the fourth etching solution is the same etching solution as the third etching solution.
 ある実施形態において、前記工程(a)において、前記基材の周速度は、0m/s超0.03m/s以下である。 In one embodiment, in the step (a), the peripheral speed of the base material is more than 0 m / s and not more than 0.03 m / s.
 ある実施形態において、前記工程(a)において、前記基材の回転速度は、0rpm超2rpm以下である。 In one embodiment, in the step (a), the rotation speed of the substrate is more than 0 rpm and not more than 2 rpm.
 本発明の実施形態による型の製造方法は、(A)Al-Mg-Si系のアルミニウム合金で形成された円筒状のアルミニウム基材であって、機械的な鏡面加工が施されたアルミニウム基材を用意する工程と、(B)前記アルミニウム基材の表面を上記のいずれかの表面処理方法によって処理する工程と、(C)前記工程(B)の後で、前記アルミニウム基材の前記表面に無機材料層を形成し、前記無機材料層の上にアルミニウム膜を形成することによって、型基材を作製する工程と、(D)前記工程(C)の後で、前記アルミニウム膜の表面を陽極酸化することによって、複数のミクロな凹部を有するポーラスアルミナ層を形成する工程と、(E)前記工程(D)の後に、前記ポーラスアルミナ層を、エッチング液に接触させることによって、前記ポーラスアルミナ層の前記複数のミクロな凹部を拡大させる工程と、(F)前記工程(E)の後に、さらに陽極酸化することによって、前記複数のミクロな凹部を成長させる工程とを包含する。 A mold manufacturing method according to an embodiment of the present invention includes: (A) a cylindrical aluminum substrate formed of an Al—Mg—Si-based aluminum alloy, which has been subjected to mechanical mirror finishing (B) a step of treating the surface of the aluminum substrate by any one of the above surface treatment methods, and (C) after the step (B), the surface of the aluminum substrate. Forming a mold base by forming an inorganic material layer and forming an aluminum film on the inorganic material layer; and (D) after the step (C), the surface of the aluminum film is an anode. A step of forming a porous alumina layer having a plurality of micro-recesses by oxidation; and (E) after the step (D), the porous alumina layer is brought into contact with an etching solution. A step of enlarging the plurality of micro concave portions of the porous alumina layer, and (F) a step of growing the plurality of micro concave portions by further anodizing after the step (E). .
 ある実施形態において、前記工程(B)の前に、アルカリ性のエッチング液を用いて、前記アルミニウム基材の前記表面をエッチングする工程(G)をさらに包含する。 In one embodiment, before the step (B), the method further includes a step (G) of etching the surface of the aluminum base using an alkaline etching solution.
 ある実施形態において、前記アルカリ性のエッチング液のpHは、8以上10以下である。 In one embodiment, the alkaline etching solution has a pH of 8 or more and 10 or less.
 ある実施形態において、前記アルカリ性のエッチング液は、アミノ基を有する有機化合物を含む水溶液に、酸性の添加剤を加えることによって調製される。 In one embodiment, the alkaline etching solution is prepared by adding an acidic additive to an aqueous solution containing an organic compound having an amino group.
 ある実施形態において、前記酸性の添加剤の体積は、前記アミノ基を有する有機化合物を含む水溶液の体積に対して5%以上である。 In one embodiment, the volume of the acidic additive is 5% or more with respect to the volume of the aqueous solution containing the organic compound having an amino group.
 本発明の実施形態による型は、上記のいずれかに記載の型の製造方法によって製造された型である。 The mold according to the embodiment of the present invention is a mold manufactured by any one of the mold manufacturing methods described above.
 本発明の他の実施形態による型は、表面の法線方向から見たときの2次元的な大きさが200nm以上30μm以下の複数の凸部と、表面の法線方向から見たときの2次元的な大きさが10nm以上500nm未満の複数のミクロな凹部とを有する、表面構造を備えたポーラスアルミナ層を有する。 The mold according to another embodiment of the present invention includes a plurality of convex portions having a two-dimensional size of 200 nm to 30 μm when viewed from the normal direction of the surface, and 2 when viewed from the normal direction of the surface. A porous alumina layer having a surface structure having a plurality of micro concave portions having a dimensional size of 10 nm or more and less than 500 nm.
 本発明の実施形態による反射防止膜の製造方法は、上記のいずれかの型を用意する工程と、被加工物を用意する工程と、前記型と前記被加工物の表面との間に光硬化樹脂を付与した状態で、前記光硬化樹脂に光を照射することによって前記光硬化樹脂を硬化させる工程と、前記型を硬化させられた光硬化樹脂で形成された反射防止膜から剥離する工程とを包含する。 An antireflection film manufacturing method according to an embodiment of the present invention includes a step of preparing any of the above molds, a step of preparing a workpiece, and photocuring between the mold and the surface of the workpiece. A step of curing the photocured resin by irradiating the photocured resin with light in a state where a resin is applied; and a step of peeling the anti-reflective film formed of the photocured resin cured of the mold; Is included.
 本発明の実施形態による反射防止膜は、上記の反射防止膜の製造方法によって製造された反射防止膜である。 The antireflection film according to the embodiment of the present invention is an antireflection film manufactured by the above-described method for manufacturing an antireflection film.
 本発明の実施形態によると、円柱状または円筒状の基材の表面をむらなく処理することができる。 According to the embodiment of the present invention, the surface of a columnar or cylindrical substrate can be treated evenly.
(a)~(d)は、本発明の実施形態によるモスアイ用型100の製造方法を説明するための模式的な断面図であり、(a)は、モスアイ用型100のアルミニウム基材12の模式的な断面図であり、(b)は、反転されたアンチグレア構造を有するアルミニウム基材12の表面構造を模式的に示す断面図であり、(c)は、アルミニウム基材12の表面に無機材料層16およびアルミニウム膜18を形成した型基材10の模式的な断面図であり、(d)は、反転されたアンチグレア構造と、反転されたアンチグレア構造に重畳された反転されたモスアイ構造とを有するモスアイ用型100の模式的な断面図である。(A)-(d) is typical sectional drawing for demonstrating the manufacturing method of the mold 100 for moth eyes by embodiment of this invention, (a) is the aluminum base material 12 of the mold 100 for moth eyes. It is typical sectional drawing, (b) is sectional drawing which shows typically the surface structure of the aluminum base material 12 which has the inverted anti-glare structure, (c) is inorganic on the surface of the aluminum base material 12 It is typical sectional drawing of the mold base material 10 in which the material layer 16 and the aluminum film | membrane 18 were formed, (d) is the inverted anti-glare structure and the inverted moth-eye structure superimposed on the inverted anti-glare structure. 1 is a schematic cross-sectional view of a moth-eye mold 100 having (a)は、反転されたアンチグレア構造の模式的な平面図であり、(b)は、反転されたアンチグレア構造の模式的な斜視図である。(A) is a schematic plan view of an inverted antiglare structure, and (b) is a schematic perspective view of the inverted antiglare structure. モスアイ用型100を用いた反射防止膜の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the anti-reflective film using the type | mold 100 for moth eyes. (a)~(c)は、本発明の実施形態によるアンチグレア機能を有する反射防止膜の模式図であり、(a)は反射防止膜の表面を垂直方向から観察したときの模式図であり、(b)は反射防止膜の表面を斜め方向から観察したときの模式図であり、(c)は反射防止膜の断面の模式図である。(A) ~ (c) is a schematic diagram of an antireflection film having an antiglare function according to an embodiment of the present invention, (a) is a schematic diagram when the surface of the antireflection film is observed from the vertical direction, (B) is a schematic diagram when the surface of an antireflection film is observed from an oblique direction, and (c) is a schematic diagram of a cross section of the antireflection film. (a)および(b)は、本発明の実施形態による基材の表面処理方法を説明するための模式的な図である。(A) And (b) is a schematic diagram for demonstrating the surface treatment method of the base material by embodiment of this invention. (a)は、比較例による基材の表面処理方法を説明するための模式的な図であり、(b)は、比較例による基材の表面処理方法を用いた型の製造方法によって製造されたモスアイ用型100を用いて製造された反射防止膜32を、反射防止膜32の法線方向から観察したときの模式的な平面図である。(A) is a schematic diagram for demonstrating the surface treatment method of the base material by a comparative example, (b) is manufactured by the manufacturing method of the type | mold using the surface treatment method of the base material by a comparative example. 4 is a schematic plan view when the antireflection film 32 manufactured using the moth-eye mold 100 is observed from the normal direction of the antireflection film 32. FIG. (a)は、本発明の実施形態による型の製造方法によって製造されたモスアイ用型100を用いて製造された反射防止膜32を、反射防止膜32の法線方向から観察したときの模式的な平面図であり、(b)は、モスアイ用型100を製造する過程における、アルミニウム基材12の表面を梨地処理する工程を説明するための模式的な図であり、円筒状のアルミニウム基材12の長軸方向から見た模式図である。(A) is typical when the antireflection film 32 manufactured using the moth-eye mold 100 manufactured by the mold manufacturing method according to the embodiment of the present invention is observed from the normal direction of the antireflection film 32. FIG. 4B is a schematic diagram for explaining a process of performing a matte treatment on the surface of the aluminum substrate 12 in the process of manufacturing the moth-eye mold 100, and is a cylindrical aluminum substrate. It is the schematic diagram seen from 12 major axis directions. (a)および(b)は、本発明の実施形態による基材の表面処理方法を説明するための模式的な図である。(A) And (b) is a schematic diagram for demonstrating the surface treatment method of the base material by embodiment of this invention. (a)および(b)は、本発明の実施形態による基材の表面処理方法を説明するための模式的な図である。(A) And (b) is a schematic diagram for demonstrating the surface treatment method of the base material by embodiment of this invention. (a)は、本発明の実施形態による基材の表面処理方法を説明するための模式的な図であり、(b)は、アルミニウム基材12の外周面に生じる、アルミニウム基材12の長軸方向と略直交する方向に伸びる複数の筋状のむらを説明するための模式的な図であり、(c)および(d)は、吹付用エッチング液が噴き出される角度について説明するための模式的な図である。(A) is a schematic diagram for demonstrating the surface treatment method of the base material by embodiment of this invention, (b) is the length of the aluminum base material 12 produced in the outer peripheral surface of the aluminum base material 12 It is a schematic diagram for demonstrating the some stripe-shaped nonuniformity extended in the direction substantially orthogonal to an axial direction, (c) And (d) is a model for demonstrating the angle from which the etching liquid for spraying is ejected. It is a typical figure. (a)および(b)は、アルミニウム基材12の光学像を示す図であり、(a)は、吹付用エッチング液をアルミニウム基材12の外周面に吹き付ける工程を含まない表面処理方法によって梨地処理が施されたアルミニウム基材12であり、(b)は、吹付用エッチング液をアルミニウム基材12の外周面に吹き付ける工程を含む表面処理方法によって梨地処理が施されたアルミニウム基材12である。(A) And (b) is a figure which shows the optical image of the aluminum base material 12, (a) is a satin finish by the surface treatment method which does not include the process of spraying the etching liquid for spraying on the outer peripheral surface of the aluminum base material 12. (B) is an aluminum substrate 12 that has been subjected to a satin treatment by a surface treatment method that includes a step of spraying a spraying etchant onto the outer peripheral surface of the aluminum substrate 12. . (a)~(d)は、実験例1-1、実験例2-1、実験例3-1および4-1の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示す図であり、(e)~(h)は、実験例1-1、実験例2-1、実験例3-1および4-1のアルミニウム基材から形成されたアンチグレア膜の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール20μm)を示す図である。(A) to (d) are the surfaces of an aluminum substrate having an inverted antiglare structure formed by the matte treatment process of Experimental Example 1-1, Experimental Example 2-1, Experimental Example 3-1 and 4-1. Is a diagram showing optical microscope images (50 times) when observed from the vertical direction, (e) to (h) are Experimental Example 1-1, Experimental Example 2-1, Experimental Example 3-1 and 4- It is a figure which shows the SEM image (full scale 20 micrometers in a SEM image) when the surface of the anti-glare film | membrane formed from the aluminum base material of 1 is observed from a perpendicular direction. (a)~(e)は、実験例1-2、実験例1-3、実験例2-2、実験例3-2および実験例4-2の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示す図である。(A) to (e) are inverted antiglare formed by the satin treatment process of Experimental Example 1-2, Experimental Example 1-3, Experimental Example 2-2, Experimental Example 3-2 and Experimental Example 4-2. It is a figure which shows an optical microscope image (50 time) when the surface of the aluminum base material which has a structure is observed from a perpendicular direction. (a)~(d)は、実験例5-1~5-4の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示す図であり、(e)および(f)は、実験例5-3および5-4のアルミニウム基材から形成されたアンチグレア膜の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール20μm)を示す図である。(A) to (d) are optical microscopic images when the surface of an aluminum substrate having an inverted antiglare structure formed by the satin treatment process of Experimental Examples 5-1 to 5-4 is observed from the vertical direction ( (E) and (f) are SEM images when the surface of the antiglare film formed from the aluminum base material of Experimental Examples 5-3 and 5-4 is observed from the vertical direction ( It is a figure which shows the full scale 20micrometer in a SEM image. (a)および(b)は、実験例6-1および6-2の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示す図である。(A) and (b) are optical microscopic images when the surface of an aluminum substrate having an inverted antiglare structure formed by the satin treatment process of Experimental Examples 6-1 and 6-2 is observed from the vertical direction ( 50 times). (a)は、実験例7-1のアルカリ洗浄工程を施されたアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示す図であり、(b)および(c)は、実験例7-1および7-2のアルミニウム基材から形成された高分子膜の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール20μm)を示す図である。(A) is a view showing an optical microscope image (50 ×) when the surface of the aluminum base material subjected to the alkali cleaning step in Experimental Example 7-1 is observed from the vertical direction, and (b) and (c) ) Is a diagram showing an SEM image (full scale 20 μm in the SEM image) when the surface of the polymer film formed from the aluminum base material of Experimental Examples 7-1 and 7-2 is observed from the vertical direction. (a)~(d)は、実験例8-1~8-4の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示す図であり、(e)~(h)は、実験例8-1~8-4のアルミニウム基材から形成された高分子膜の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール20μm)を示す図である。(A) to (d) are optical microscopic images when the surface of an aluminum substrate having an inverted antiglare structure formed by the satin treatment process of Experimental Examples 8-1 to 8-4 is observed from the vertical direction ( (E) to (h) are SEM images when the surface of the polymer film formed from the aluminum base material in Experimental Examples 8-1 to 8-4 is observed from the vertical direction. It is a figure which shows (full scale 20micrometer in a SEM image). (a)~(d)は、実験例9-1~9-4の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示す図である。(A) to (d) are optical microscopic images when the surface of an aluminum substrate having an inverted antiglare structure formed by the satin treatment process of Experimental Examples 9-1 to 9-4 is observed from the vertical direction ( 50 times). (a)~(d)は、実験例10-1~10-4の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示す図であり、(e)~(h)は、実験例10-1~10-4のアルミニウム基材から形成された高分子膜の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール20μm)を示す図である。(A) to (d) are optical microscope images when the surface of an aluminum substrate having an inverted antiglare structure formed by the matte treatment process of Experimental Examples 10-1 to 10-4 is observed from the vertical direction ( (E) to (h) are SEM images when the surface of the polymer film formed from the aluminum base material of Experimental Examples 10-1 to 10-4 is observed from the vertical direction. It is a figure which shows (full scale 20micrometer in a SEM image). (a)は、アルカリ洗浄工程の時間と、アルミニウム基材の質量変化率との関係を示す図であり、(b)は、アルカリ洗浄工程の時間と、アルミニウム基材を型として得られたアンチグレア膜のヘイズ値との関係を示す図である。(A) is a figure which shows the relationship between the time of an alkali cleaning process, and the mass change rate of an aluminum base material, (b) is the antiglare obtained by using the time of an alkali cleaning process and an aluminum base material as a type | mold. It is a figure which shows the relationship with the haze value of a film | membrane. (a)および(b)は、実験例11-1および11-2の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示す図であり、(c)および(d)は、実験例11-1および11-2のアルミニウム基材から形成された高分子膜の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール20μm)を示す図である。(A) and (b) are optical microscopic images when the surface of an aluminum substrate having an inverted antiglare structure formed by the satin treatment process of Experimental Examples 11-1 and 11-2 is observed from the vertical direction ( (C) and (d) are SEM images when the surface of the polymer film formed from the aluminum base material of Experimental Examples 11-1 and 11-2 is observed from the vertical direction. It is a figure which shows (full scale 20micrometer in a SEM image). (a)および(b)は、従来のアンチグレア構造を形成するためのマクロな凹凸構造と、行方向のドットピッチPxとの大きさの関係を模式的に示す図である。(A) And (b) is a figure which shows typically the relationship of the magnitude | size of the macro uneven | corrugated structure for forming the conventional anti-glare structure, and the dot pitch Px of a row direction. (a)従来のアンチグレア構造を形成するためのマクロな凹凸の構造を模式的に示す断面図であり、(b)は、マクロな凹凸に重畳された反転されたモスアイ構造を示す模式的な断面図であり、(c)は、反転されたモスアイ構造を拡大した模式的な断面図である。(A) It is sectional drawing which shows typically the structure of a macro unevenness | corrugation for forming the conventional anti-glare structure, (b) is a typical cross section which shows the inverted moth eye structure superimposed on the macro unevenness | corrugation (C) is a schematic cross-sectional view enlarging an inverted moth-eye structure.
 以下、図面を参照して、本発明の実施形態による基材の表面処理方法、型の製造方法および型を説明する。 Hereinafter, a surface treatment method for a substrate, a method for manufacturing a mold, and a mold according to an embodiment of the present invention will be described with reference to the drawings.
 まず、図22を参照して、従来のアンチグレア構造を構成するマクロな凹凸構造と、行方向のドットピッチPxとの大きさの関係を説明する。図22(a)および(b)は、従来のアンチグレア構造を構成するマクロな凹凸構造と、行方向のドットピッチPxとの大きさの関係を模式的に示す図であり、図22(a)は、マクロな凹凸構造がドットピッチPxよりも大きい場合を示し、図22(b)は、マクロな凹凸構造がドットピッチPxよりも小さい場合を示している。ここで、ドットとは、典型的なカラー液晶表示パネルにおける画素を構成するR、G、Bの各ドットを指す。すなわち、カラー液晶表示パネルにおける画素は、行方向に配列された3つのドット(Rドット、GドットおよびBドット)で構成されている場合、行方向の画素ピッチは、行方向のドットピッチPxの3倍となる。なお、列方向の画素ピッチは、列方向のドットピッチPyと等しい。 First, referring to FIG. 22, the relationship between the macro uneven structure constituting the conventional anti-glare structure and the dot pitch Px in the row direction will be described. FIGS. 22A and 22B are diagrams schematically showing the relationship between the macro uneven structure constituting the conventional anti-glare structure and the dot pitch Px in the row direction. Shows a case where the macro uneven structure is larger than the dot pitch Px, and FIG. 22B shows a case where the macro uneven structure is smaller than the dot pitch Px. Here, the dots refer to R, G, and B dots that constitute pixels in a typical color liquid crystal display panel. That is, when the pixel in the color liquid crystal display panel is composed of three dots (R dot, G dot, and B dot) arranged in the row direction, the pixel pitch in the row direction is the dot pitch Px in the row direction. Tripled. Note that the pixel pitch in the column direction is equal to the dot pitch Py in the column direction.
 図22(a)および(b)に模式的に示すように、従来のアンチグレア構造を構成するマクロな凹凸構造を有する表面28sは、平坦部を有しない連続した波形の表面形状を有する。このような連続した波形の表面形状を有するマクロな凹凸構造は、隣接するマクロな凹部間距離の平均値(平均隣接間距離ADint)または凹部の2次元的な大きさADpで特徴付けられる。ここでは、マクロな凹部に着目するが、凸部に着目しても同様に特徴づけることができる。 As schematically shown in FIGS. 22A and 22B, the surface 28s having a macro uneven structure constituting the conventional anti-glare structure has a continuous corrugated surface shape having no flat portion. The macro uneven structure having such a continuous corrugated surface shape is characterized by the average value of the distance between adjacent macro concave portions (average inter-adjacent distance AD int ) or the two-dimensional size AD p of the concave portions. . Here, attention is focused on macro concave portions, but the same can be characterized by focusing on convex portions.
 図22(a)に示すように、凹部の平均隣接間距離ADint(凹部の2次元的な大きさADpと等しいと考える)が、例えば行方向のドットピッチPx(画素が3つのドット(R、G、B)で構成されている場合、行方向の画素ピッチはドットピッチの3倍)よりも大きいと、十分なアンチグレア機能を得ることができない。アンチグレア機能を十分に発揮させるためには、図22(b)に示すように、凹部の平均隣接間距離ADint(凹部の2次元的な大きさADp)が互いにほぼ等しく、かつ、ドットピッチよりも小さいことが好ましい。なお、凹部の2次元的な大きさとは、表面の法線方向から見たときの2次元的な広がりをいい、凹部は典型的には円錐形であり、表面の法線方向から見たときの形状は、ほぼ円形である。このとき、2次元的な大きさは、円の直径に相当する。また、凸部が十分に高い密度で形成されていれば、互いに隣接する2つの凹部の平均隣接間距離ADintは、凹部の2次元的な大きさADpとほぼ等しい。画素ピッチは、比較的解像度の低いディスプレイ、例えば、100ppiのディスプレイでは、254μmである。このディスプレイに用いられる反射防止膜の場合の平均隣接間距離ADintは、約85μm(254/3)以下であることが好ましい。 As shown in FIG. 22A, the average distance AD int between the recesses (considered to be equal to the two-dimensional size AD p of the recesses) is, for example, the dot pitch Px in the row direction (pixels having three dots ( In the case of R, G, B), if the pixel pitch in the row direction is larger than 3 times the dot pitch), a sufficient anti-glare function cannot be obtained. In order to fully exhibit the antiglare function, as shown in FIG. 22B, the average adjacent distance AD int (two-dimensional size AD p of the recess) is substantially equal to each other and the dot pitch Is preferably smaller. The two-dimensional size of the recess means a two-dimensional expansion when viewed from the normal direction of the surface, and the recess is typically conical and when viewed from the normal direction of the surface. The shape of is substantially circular. At this time, the two-dimensional size corresponds to the diameter of the circle. If the convex portions are formed with a sufficiently high density, the average distance AD int between two adjacent concave portions is substantially equal to the two-dimensional size AD p of the concave portions. The pixel pitch is 254 μm for a display with a relatively low resolution, for example, a 100 ppi display. In the case of the antireflection film used in this display, the average distance AD int between adjacent surfaces is preferably about 85 μm (254/3) or less.
 このような平坦部のない連続した波形の表面28sを有するアンチグレア構造に、モスアイ構造を重畳させた反射防止膜の製造方法は、例えば、特許文献4に記載されている。図23を参照して、特許文献4に記載されているアンチグレア機能を有する反射防止膜を形成するためのモスアイ用型の製造方法を説明する。 For example, Patent Document 4 discloses a method for manufacturing an antireflection film in which a moth-eye structure is superimposed on an antiglare structure having a continuous corrugated surface 28s without a flat portion. With reference to FIG. 23, the manufacturing method of the moth-eye type | mold for forming the anti-reflective film which has the anti-glare function described in patent document 4 is demonstrated.
 図23(a)は、アンチグレア構造を形成するための反転されたアンチグレア構造を模式的に示す断面図であり、図23(b)は、反転されたアンチグレア構造に重畳された反転されたモスアイ構造を示す模式的な断面図であり、図23(c)は、反転されたモスアイ構造を拡大した模式的な断面図である。 FIG. 23A is a cross-sectional view schematically showing an inverted antiglare structure for forming the antiglare structure, and FIG. 23B shows an inverted moth-eye structure superimposed on the inverted antiglare structure. FIG. 23C is a schematic cross-sectional view enlarging the inverted moth-eye structure.
 図23(a)に示す、上述の平坦部のない連続した波形の表面28sを有するアンチグレア構造を形成するための、反転されたアンチグレア構造を有する表面18csは、円筒状の金属基材の外周面上に、艶消し剤を含む電着樹脂で絶縁層を形成し、絶縁層上にアルミニウム膜18cを形成することによって得られる。すなわち、艶消し剤を含む電着樹脂で形成された絶縁層の表面は、平坦部のない連続した波形の表面形状を有し、絶縁層の上に形成されたアルミニウム膜18cの表面18csは、絶縁層の表面の形状を反映して、平坦部のない連続した波形の表面形状を有することになる。なお、アルミニウム膜18cの表面18csの形状は反転されたアンチグレア構造を構成するので、アルミニウム膜18cの表面18csのマクロな凹凸は、アンチグレア構造を構成する表面28sのマクロな凹凸とは逆の関係にある。 The surface 18cs having an inverted antiglare structure for forming the antiglare structure having the continuous corrugated surface 28s having no flat portion shown in FIG. 23A is an outer peripheral surface of a cylindrical metal substrate. It is obtained by forming an insulating layer with an electrodeposition resin containing a matting agent and forming an aluminum film 18c on the insulating layer. That is, the surface of the insulating layer formed of an electrodeposition resin containing a matting agent has a continuous corrugated surface shape without a flat portion, and the surface 18cs of the aluminum film 18c formed on the insulating layer is: Reflecting the shape of the surface of the insulating layer, it has a continuous corrugated surface shape without a flat portion. Since the shape of the surface 18cs of the aluminum film 18c constitutes an inverted antiglare structure, the macro unevenness of the surface 18cs of the aluminum film 18c is opposite to the macro unevenness of the surface 28s constituting the antiglare structure. is there.
 次に、図23(b)に示すように、反転されたアンチグレア構造を有するアルミニウム膜18cの表面に対して、陽極酸化とエッチングとを交互に繰り返すことによって、ミクロな凹部14pを有する陽極酸化ポーラスアルミナ層14cを形成する。このようにして、反転されたアンチグレア構造に反転されたモスアイ構造が重畳された表面を有するモスアイ用型200が得られる。 Next, as shown in FIG. 23 (b), anodization and etching are alternately repeated on the surface of the aluminum film 18c having an inverted antiglare structure, so that an anodized porous film having micro concave portions 14p is obtained. An alumina layer 14c is formed. In this way, the moth-eye mold 200 having a surface in which the inverted moth-eye structure is superimposed on the inverted anti-glare structure is obtained.
 ポーラスアルミナ層14cは、図23(c)に模式的に示すように、ミクロな凹部14pが密に充填されている。ミクロな凹部14pは概ね円錐状であり、階段状の側面を有してもよい。ミクロな凹部14pの2次元的な大きさ(開口部径:Dp)は10nm以上500nm未満で、深さ(Ddepth)は10nm以上1000nm(1μm)未満程度であることが好ましい。また、ミクロな凹部14pの底部は尖っている(最底部は点になっている)ことが好ましい。さらに、ミクロな凹部14pは密に充填されていることが好ましく、ポーラスアルミナ層14cの法線方向から見たときのミクロな凹部14pの形状を円と仮定とすると、隣接する円は互いに重なり合い、隣接するミクロな凹部14pの間に鞍部が形成されることが好ましい。なお、略円錐状のミクロな凹部14pが鞍部を形成するように隣接しているときは、ミクロな凹部14pの2次元的な大きさDpは平均隣接間距離Dintと等しいとする。したがって、反射防止膜を製造するためのモスアイ用型のポーラスアルミナ層14cは、Dp=Dintが10nm以上500nm未満で、Ddepthが10nm以上1000nm(1μm)未満程度のミクロな凹部14pが密に不規則に配列した構造を有していることが好ましい。ミクロな凹部の配列は、完全にランダムである必要はなく、光の干渉や回折が実質的に起こらない程度に不規則であればよい。なお、ミクロな凹部14pの開口部の形状は厳密には円ではないので、Dpは表面のSEM像から求めることが好ましい。ポーラスアルミナ層14cの厚さtpは約1μm以下である。ポーラスアルミナ層14cが有する反転されたモスアイ構造についての上記の説明は、本発明の実施形態によるモスアイ用型についても妥当する。 As schematically shown in FIG. 23C, the porous alumina layer 14c is densely filled with micro concave portions 14p. The micro concave portion 14p is generally conical and may have stepped side surfaces. The two-dimensional size (opening diameter: D p ) of the micro concave portion 14p is preferably 10 nm or more and less than 500 nm, and the depth (D depth ) is preferably about 10 nm or more and less than 1000 nm (1 μm). Moreover, it is preferable that the bottom part of the micro recessed part 14p is pointed (the bottom part is a point). Furthermore, it is preferable that the micro concave portions 14p are closely packed, and assuming that the shape of the micro concave portions 14p when viewed from the normal direction of the porous alumina layer 14c is a circle, adjacent circles overlap each other, It is preferable that a flange is formed between the adjacent micro concave portions 14p. When the substantially conical micro concave portions 14p are adjacent so as to form a collar portion, the two-dimensional size D p of the micro concave portions 14p is assumed to be equal to the average inter-adjacent distance D int . Therefore, the moth-eye type porous alumina layer 14c for producing the antireflection film has a dense micro concave portion 14p with D p = D int of 10 nm or more and less than 500 nm and D depth of 10 nm or more and less than 1000 nm (1 μm). It is preferable to have an irregularly arranged structure. The arrangement of the micro concave portions does not need to be completely random, and may be irregular so that light interference and diffraction do not substantially occur. Since the shape of the opening of the micro concave portion 14p is not strictly a circle, D p is preferably obtained from the SEM image of the surface. The thickness t p of the porous alumina layer 14c is about 1 μm or less. The above description of the inverted moth-eye structure of the porous alumina layer 14c is also valid for the moth-eye mold according to the embodiment of the present invention.
 特許文献4に記載された型の製造方法で製造された型を用いて形成された反射防止膜は、画像がぼやけるという問題がある。これは、特許文献4に記載の方法で製造された型が有する反転されたアンチグレア構造は、比較的大きなADintおよびADpを有するためである。したがって、特許文献4に記載の製造方法では、例えば、300ppiを超える高精細のディスプレイ用に好適に用いられるアンチグレア構造を形成することは難しかった。 The antireflection film formed using the mold manufactured by the mold manufacturing method described in Patent Document 4 has a problem that the image is blurred. This is because the inverted antiglare structure of the mold manufactured by the method described in Patent Document 4 has relatively large AD int and AD p . Therefore, in the manufacturing method described in Patent Document 4, it is difficult to form an antiglare structure that is suitably used for a high-definition display exceeding 300 ppi, for example.
 以下に説明する本発明の実施形態によると、適度なアンチグレア機能(例えばヘイズ値が約10以上約50以下)と、適度な鏡面反射性とを有するアンチグレア構造と、優れた反射防止効果を発揮するモスアイ構造とを有する反射防止膜(または反射防止表面)が提供される。また、本発明の実施形態によると、そのような反射防止膜を形成するための型が提供され、さらには、そのような型を効率よく製造する方法が提供される。なお、本発明の実施形態による型の製造方法によって製造される型は、例示するものに限られず、小さなヘイズ値(例えば約2以上約10以下)の拡散反射性能を有する反射防止膜を形成するためにも用いられ得る。 According to embodiments of the present invention described below, an antiglare structure having an appropriate antiglare function (for example, a haze value of about 10 or more and about 50 or less) and an appropriate specular reflectivity, and an excellent antireflection effect are exhibited. An antireflective film (or antireflective surface) having a moth-eye structure is provided. In addition, according to the embodiment of the present invention, a mold for forming such an antireflection film is provided, and further, a method for efficiently manufacturing such a mold is provided. The mold manufactured by the mold manufacturing method according to the embodiment of the present invention is not limited to the illustrated example, and an antireflection film having a diffuse reflection performance with a small haze value (for example, about 2 or more and about 10 or less) is formed. Can also be used.
 まず、図1~図4を参照して、本発明の実施形態による型の製造方法およびそのような製造方法によって製造される型の構造を説明する。 First, a mold manufacturing method according to an embodiment of the present invention and a mold structure manufactured by such a manufacturing method will be described with reference to FIGS.
 図1(a)~(d)は、本発明の実施形態によるモスアイ用型100の製造方法を説明するための模式的な断面図である。 FIGS. 1A to 1D are schematic cross-sectional views for explaining a method for manufacturing a moth-eye mold 100 according to an embodiment of the present invention.
 本発明の実施形態によるモスアイ用型100の製造方法は、下記の工程(i)~工程(vi)を包含する。
 工程(i):Al-Mg-Si系のアルミニウム合金で形成された円筒状のアルミニウム基材であって、機械的な鏡面加工が施されたアルミニウム基材を用意する工程。
 工程(ii):アルミニウム基材の表面をフッ化水素とアンモニウムとの塩を含む水溶液によって梨地処理する工程(梨地処理工程ということがある)。
 工程(iii):工程(ii)の後で、アルミニウム基材の表面に無機材料層を形成し、無機材料層の上にアルミニウム膜を形成することによって、型基材を作製する工程。
 工程(iv):工程(iii)の後で、アルミニウム膜の表面を陽極酸化することによって、複数のミクロな凹部を有するポーラスアルミナ層を形成する工程。
 工程(v):工程(iv)の後に、ポーラスアルミナ層を、エッチング液に接触させることによって、ポーラスアルミナ層の複数のミクロな凹部を拡大させる工程。
 工程(vi):工程(v)の後に、さらに陽極酸化することによって、複数のミクロな凹部を成長させる工程。
The manufacturing method of the moth-eye mold 100 according to the embodiment of the present invention includes the following steps (i) to (vi).
Step (i): A step of preparing a cylindrical aluminum base material made of an Al—Mg—Si-based aluminum alloy and subjected to mechanical mirror finishing.
Step (ii): A step of treating the surface of the aluminum substrate with an aqueous solution containing a salt of hydrogen fluoride and ammonium (sometimes referred to as a satin treatment step).
Step (iii): A step of forming a mold base material by forming an inorganic material layer on the surface of the aluminum base material and forming an aluminum film on the inorganic material layer after the step (ii).
Step (iv): A step of forming a porous alumina layer having a plurality of micro concave portions by anodizing the surface of the aluminum film after the step (iii).
Step (v): A step of enlarging a plurality of micro concave portions of the porous alumina layer by bringing the porous alumina layer into contact with an etching solution after the step (iv).
Step (vi): A step of growing a plurality of microscopic recesses by further anodizing after step (v).
 本明細書において、型基材とは、型の製造工程において、陽極酸化およびエッチングされる対象をいう。また、アルミニウム基材とは、自己支持が可能なバルク状のアルミニウムをいう。 In this specification, the mold base means an object to be anodized and etched in the mold manufacturing process. The aluminum substrate means bulk aluminum that can be self-supported.
 図1(a)~(d)を参照する。図1(a)は、モスアイ用型100のアルミニウム基材12の模式的な断面図であり、図1(b)は、反転されたアンチグレア構造を有するアルミニウム基材12の表面構造を模式的に示す断面図であり、図1(c)は、アルミニウム基材12の表面に無機材料層16およびアルミニウム膜18を形成した型基材10の模式的な断面図であり、図1(d)は、反転されたアンチグレア構造と、反転されたアンチグレア構造に重畳された反転されたモスアイ構造とを有するモスアイ用型100の模式的な断面図である。 Referring to FIGS. 1 (a) to (d). FIG. 1A is a schematic cross-sectional view of the aluminum base 12 of the moth-eye mold 100, and FIG. 1B schematically shows the surface structure of the aluminum base 12 having an inverted antiglare structure. FIG. 1C is a schematic cross-sectional view of the mold base 10 in which the inorganic material layer 16 and the aluminum film 18 are formed on the surface of the aluminum base 12, and FIG. FIG. 3 is a schematic cross-sectional view of a moth-eye mold 100 having an inverted antiglare structure and an inverted motheye structure superimposed on the inverted antiglare structure.
 図1には、モスアイ用型100の一部を拡大して示すが、本発明の実施形態によるモスアイ用型100は、円筒状(ロール状)である。本出願人による国際公開第2011/105206号に開示されているように、円筒状のモスアイ用型を用いると、ロール・ツー・ロール方式により反射防止膜を効率良く製造することができる。参考のために、国際公開第2011/105206号の開示内容の全てを本明細書に援用する。 FIG. 1 shows an enlarged part of the moth-eye mold 100, but the moth-eye mold 100 according to the embodiment of the present invention is cylindrical (roll-shaped). As disclosed in International Publication No. 2011/105206 by the present applicant, when a cylindrical moth-eye mold is used, an antireflection film can be efficiently produced by a roll-to-roll method. For reference purposes, the entire disclosure of WO 2011/105206 is incorporated herein by reference.
 [アルミニウム基材]
 まず、図1(a)に示すように、Al-Mg-Si系のアルミニウム合金で形成された円筒状のアルミニウム基材12であって、機械的な鏡面加工が施されたアルミニウム基材12を用意する。
[Aluminum substrate]
First, as shown in FIG. 1 (a), a cylindrical aluminum substrate 12 formed of an Al—Mg—Si based aluminum alloy, which has been subjected to mechanical mirror finishing, prepare.
 機械的な鏡面加工としては、バイト切削が好ましい。アルミニウム基材12の表面に、例えば砥粒が残っていると、砥粒が存在する部分において、アルミニウム膜18とアルミニウム基材12との間で導通しやすくなる。砥粒以外にも、凹凸が存在するところでは、アルミニウム膜18とアルミニウム基材12との間で局所的に導通しやすくなる。アルミニウム膜18とアルミニウム基材12との間で局所的に導通すると、アルミニウム基材12内の不純物とアルミニウム膜18との間で局所的に電池反応が起こる可能性がある。 Byte cutting is preferred as the mechanical mirror finish. If, for example, abrasive grains remain on the surface of the aluminum base 12, electrical conduction between the aluminum film 18 and the aluminum base 12 is facilitated in a portion where the abrasive grains exist. In addition to the abrasive grains, where there are irregularities, local conduction between the aluminum film 18 and the aluminum substrate 12 is likely to occur. When local conduction is made between the aluminum film 18 and the aluminum base 12, there is a possibility that a battery reaction occurs locally between the impurities in the aluminum base 12 and the aluminum film 18.
 アルミニウム基材12としては、Al-Mg-Si系のアルミニウム合金(例えば、JIS A6063)で形成されたアルミニウム基材12を用いる。 As the aluminum substrate 12, an aluminum substrate 12 formed of an Al—Mg—Si based aluminum alloy (for example, JIS A6063) is used.
 円筒状のアルミニウム基材12は、典型的には、熱間押出し法によって形成される。熱間押出し法には、マンドレル法とポートホール法があるが、マンドレル法で形成されたアルミニウム基材12を用いることが好ましい。ポートホール法で形成された円筒状のアルミニウム基材12には外周面に継ぎ目(ウェルドライン)が形成され、継ぎ目がモスアイ用型100に反映される。したがって、モスアイ用型100に求められる精度によっては、マンドレル法で形成されたアルミニウム基材12を用いることが好ましい。 The cylindrical aluminum substrate 12 is typically formed by a hot extrusion method. The hot extrusion method includes a mandrel method and a porthole method, and it is preferable to use an aluminum substrate 12 formed by the mandrel method. A seam (weld line) is formed on the outer peripheral surface of the cylindrical aluminum substrate 12 formed by the porthole method, and the seam is reflected in the moth-eye mold 100. Therefore, depending on the accuracy required for the moth-eye mold 100, it is preferable to use the aluminum substrate 12 formed by the mandrel method.
 なお、ポートホール法で形成されたアルミニウム基材12に対して、冷間引抜き加工を施すことにより、継ぎ目の問題を解消することができる。もちろん、マンドレル法で形成されたアルミニウム基材12に対しても、冷間引抜き加工を施してもよい。 In addition, the problem of a seam can be eliminated by performing cold drawing processing on the aluminum base material 12 formed by the porthole method. Of course, cold drawing may be applied to the aluminum substrate 12 formed by the mandrel method.
 [フッ化水素とアンモニウムとの塩を含む水溶液による梨地処理工程]
 次に、アルミニウム基材12の表面をフッ化水素とアンモニウムとの塩を含む水溶液を用いて梨地処理することによって、図1(b)に示すように、アルミニウム基材12の表面12sに反転されたアンチグレア構造が形成される。梨地処理によって形成される反転されたアンチグレア構造は、複数のマクロな凸部12pと複数のマクロな凹部12gとを有する。マクロな凸部12pは、マクロな凹部12gによって実質的に包囲されており、マクロな凹部12gは、マクロな凸部12pの外周を規定する溝のように存在している。
[Pear finish process with aqueous solution containing salt of hydrogen fluoride and ammonium]
Next, the surface of the aluminum base 12 is treated with an aqueous solution containing a salt of hydrogen fluoride and ammonium, so that the surface is inverted to the surface 12s of the aluminum base 12 as shown in FIG. An anti-glare structure is formed. The inverted anti-glare structure formed by the satin treatment has a plurality of macro convex portions 12p and a plurality of macro concave portions 12g. The macro convex portion 12p is substantially surrounded by the macro concave portion 12g, and the macro concave portion 12g exists as a groove that defines the outer periphery of the macro convex portion 12p.
 フッ化水素とアンモニウムとの塩を含む水溶液は、ピッティングコロージョン(点食)を引き起こす。フッ化水素とアンモニウムとの塩を含む水溶液は、フッ化水素の水溶液に比べて、人体や環境に与える悪影響が少ないという利点を有している。フッ化水素とアンモニウムとの塩としては、フッ化アンモニウム(正塩または中性塩)と、フッ化水素アンモニウム(水素塩または酸性塩)とがある。フッ化アンモニウムを含む水溶液は、フッ化水素アンモニウムを含む水溶液よりもアルミニウムのエッチング力が弱いので、梨地処理の時間のマージンを大きくすることができるという利点が得られる。また、フッ化アンモニウムは、フッ化水素アンモニウムに比べて安全性に優れているという利点がある。 An aqueous solution containing a salt of hydrogen fluoride and ammonium causes pitting corrosion. An aqueous solution containing a salt of hydrogen fluoride and ammonium has an advantage that it has less adverse effects on the human body and the environment than an aqueous solution of hydrogen fluoride. Examples of the salt of hydrogen fluoride and ammonium include ammonium fluoride (normal salt or neutral salt) and ammonium hydrogen fluoride (hydrogen salt or acidic salt). Since the aqueous solution containing ammonium fluoride has a weaker etching ability of aluminum than the aqueous solution containing ammonium hydrogen fluoride, there is an advantage that the margin of the matte treatment time can be increased. Ammonium fluoride has an advantage that it is superior to ammonium hydrogen fluoride in safety.
 フッ化水素とアンモニウムとの塩として、フッ化アンモニウムを用いる場合、フッ化アンモニウムの濃度は、例えば、4mass%~8mass%である。フッ化アンモニウムに加えて、硫酸アンモニウムおよび/またはりん酸二水素アンモニウムを加えてもよい。ここでは、以下の実験例を含め、アルミニウムを梨地処理するためのエッチング液として、フッ化アンモニウムに硫酸アンモニウムおよびりん酸二水素アンモニウムを添加したものを用いた。例えば、フッ化アンモニウム(濃度:4mass%~8mass%)に、硫酸アンモニウム(濃度:1mass%~3mass%)およびりん酸二水素アンモニウム(濃度:1mass%~3mass%)を添加したものを用いることができる。例えば、フッ化アンモニウムの濃度は5mass%、硫酸アンモニウムの濃度は2mass%、りん酸二水素アンモニウムの濃度は2mass%であることが好ましい。 When ammonium fluoride is used as the salt of hydrogen fluoride and ammonium, the concentration of ammonium fluoride is, for example, 4 mass% to 8 mass%. In addition to ammonium fluoride, ammonium sulfate and / or ammonium dihydrogen phosphate may be added. Here, including the following experimental examples, an ammonium fluoride-added ammonium sulfate and ammonium dihydrogen phosphate were used as an etching solution for the finish treatment of aluminum. For example, ammonium fluoride (concentration: 4 mass% to 8 mass%) added with ammonium sulfate (concentration: 1 mass% to 3 mass%) and ammonium dihydrogen phosphate (concentration: 1 mass% to 3 mass%) can be used. . For example, the concentration of ammonium fluoride is preferably 5 mass%, the concentration of ammonium sulfate is 2 mass%, and the concentration of ammonium dihydrogen phosphate is preferably 2 mass%.
 なお、フッ化水素とアンモニウムとの塩としてフッ化水素アンモニウムを含む水溶液を用いる場合であっても、濃度、処理温度、時間を適宜調整することによって、フッ化アンモニウムを含む水溶液を用いた場合と同等の効果を得ることができると考えられる。フッ化水素アンモニウムを含む水溶液は、フッ化アンモニウムを含む水溶液よりもアルミニウムのエッチング力が強い。フッ化水素アンモニウムを含む水溶液は、例えば、日本シー・ビー・ケミカル株式会社のケミクリーナーを用いて調製することができる。本出願人は、国際公開第2015/159797号において、フッ化水素とアンモニウムとの塩としてフッ化水素アンモニウムを用いて梨地処理を行う実験例を開示している。参考のために、国際公開第2015/159797号の開示内容の全てを本明細書に援用する。 Even when an aqueous solution containing ammonium hydrogen fluoride as a salt of hydrogen fluoride and ammonium is used, an aqueous solution containing ammonium fluoride is used by appropriately adjusting the concentration, treatment temperature, and time. It is considered that an equivalent effect can be obtained. An aqueous solution containing ammonium hydrogen fluoride has a stronger etching ability for aluminum than an aqueous solution containing ammonium fluoride. The aqueous solution containing ammonium hydrogen fluoride can be prepared using, for example, a chemi-cleaner manufactured by Nippon CB Chemical Co., Ltd. In the international publication No. 2015/159797, the present applicant discloses an experimental example in which a satin treatment is performed using ammonium hydrogen fluoride as a salt of hydrogen fluoride and ammonium. For reference, the entire disclosure of WO2015 / 1599797 is incorporated herein by reference.
 [アルカリ洗浄工程]
 アルミニウム基材の表面をフッ化水素とアンモニウムとの塩を含む水溶液によって梨地処理する工程(工程(ii))の前に、アルカリ性のエッチング液を用いて、アルミニウム基材12の表面をエッチングする工程(vii)(以下、「アルカリ洗浄工程」ということがある。)をさらに行ってもよい。アルカリ性のエッチング液を用いたアルカリ洗浄工程によって、切削痕の原因となり得る、アルミニウム基材12の加工変質層の少なくとも一部を除去することができる。
[Alkali cleaning process]
A step of etching the surface of the aluminum substrate 12 using an alkaline etchant before the step (step (ii)) of treating the surface of the aluminum substrate with an aqueous solution containing a salt of hydrogen fluoride and ammonium. (Vii) (hereinafter, also referred to as “alkali cleaning step”) may be further performed. At least a part of the work-affected layer of the aluminum substrate 12 that may cause cutting marks can be removed by an alkali cleaning step using an alkaline etching solution.
 本発明者の検討によると、バイト切削による鏡面加工を行ったアルミニウム基材12に梨地処理を施すと、アルミニウム基材12の表面に切削痕が形成されることがあった。アルミニウム基材12の表面に形成された切削痕は、アルミニウム基材12の上に形成されたアルミニウム膜18にも反映された。本明細書では、アルミニウム基材12の表面だけでなく、アルミニウム基材12の上に形成されたアルミニウム膜18に形成された、切削に起因した痕も、「切削痕」ということにする。 According to the study of the present inventor, when the matte finish is applied to the aluminum base material 12 that has been mirror-finished by cutting, cutting traces may be formed on the surface of the aluminum base material 12. The cut marks formed on the surface of the aluminum substrate 12 were also reflected in the aluminum film 18 formed on the aluminum substrate 12. In the present specification, not only the surface of the aluminum base 12 but also the trace caused by the cutting formed on the aluminum film 18 formed on the aluminum base 12 is referred to as “cutting trace”.
 なお、上記の切削痕は、バイト切削による鏡面加工によって、アルミニウム基材12の表面に形成された加工変質層に起因した、エッチングのむらであると考えられる。したがって、梨地処理によって切削痕が形成されるという問題は、バイト切削に限られず、加工変質層の形成を伴う鏡面加工が施されたアルミニウム基材12を用いる場合に共通の問題であり、アルカリ洗浄工程を行うことによって解決することができる。鏡面加工の内、切削加工と、研削加工などの機械研磨(Mechanical Polishing:MP)と、化学研磨と機械研磨とを併用する化学機械研磨(Chemical Mechanical Polishing:CMP)は、加工変質層の形成を伴う。本明細書において、「機械的な鏡面加工」は、MPおよびCMPを包含する。 Note that the above-described cutting trace is considered to be etching unevenness caused by a work-affected layer formed on the surface of the aluminum base 12 by mirror finishing by cutting with a bite. Therefore, the problem that the cutting traces are formed by the satin treatment is not limited to cutting by a bite, but is a common problem when using the aluminum base material 12 that has been subjected to mirror finishing accompanied by the formation of a work-affected layer, and alkali cleaning. It can be solved by performing the process. Among mirror finishes, mechanical polishing such as cutting and grinding (Mechanical Polishing: MP), and chemical mechanical polishing (CMP) that uses both chemical polishing and mechanical polishing, form a work-affected layer. Accompany. In this specification, “mechanical mirror finishing” includes MP and CMP.
 アルカリ洗浄工程のためのアルカリ性のエッチング液は、例えば、無機塩基(無機アルカリ)または有機塩基(有機アルカリ)を含む。無機塩基は、例えば、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム等を含む。有機塩基は、例えば、アミノ基を有する化合物を含む。有機塩基は、例えば、2-アミノエタノール(エタノールアミン)、1級アルカノールアミン、ジメチルビス(2-ヒドロキシ)エチル等を含む。アルカリ性のエッチング液のpHは、例えば7超12以下であり、8以上10以下であることが好ましい。アルカリ性のエッチング液は、上記に限られず、例えば公知のアルカリ性の洗浄液を用いてもよい。アルカリ性の洗浄液に、酸性の添加剤(例えば化学研磨剤や腐食抑制剤)を少量加えて、アルカリ性のエッチング液を調製することで、アルカリ性のエッチング液のpHを調整してもよい。アルカリ性のエッチング液の組成やpHについては、後に実験例を示して説明する。アルカリ洗浄工程は、アルカリ性のエッチング液を用いるので、アルミニウム基材の脱脂工程を兼ねることができる。 The alkaline etching solution for the alkali cleaning step includes, for example, an inorganic base (inorganic alkali) or an organic base (organic alkali). Inorganic bases include, for example, potassium hydroxide, sodium hydroxide, calcium hydroxide, magnesium hydroxide and the like. The organic base includes, for example, a compound having an amino group. Organic bases include, for example, 2-aminoethanol (ethanolamine), primary alkanolamine, dimethylbis (2-hydroxy) ethyl, and the like. The pH of the alkaline etching solution is, for example, more than 7 and 12 or less, and preferably 8 or more and 10 or less. The alkaline etching liquid is not limited to the above, and for example, a known alkaline cleaning liquid may be used. The pH of the alkaline etching solution may be adjusted by adding a small amount of an acidic additive (for example, a chemical abrasive or a corrosion inhibitor) to the alkaline cleaning solution to prepare an alkaline etching solution. The composition and pH of the alkaline etching solution will be described later by showing experimental examples. Since an alkaline etching liquid is used for the alkali cleaning process, it can also serve as a degreasing process for the aluminum substrate.
 アルカリ洗浄工程の後、フッ化水素とアンモニウムとの塩を含む水溶液による梨地処理工程の前に、必要に応じて、水洗工程を行う。また、これに限られず、異なる処理液を用いる工程の間に、必要に応じて、水洗を行うことが好ましい。 After the alkali washing step, before the matte treatment step with an aqueous solution containing a salt of hydrogen fluoride and ammonium, a water washing step is performed as necessary. Moreover, it is not restricted to this, It is preferable to wash with water as needed during the process of using a different process liquid.
 アルカリ洗浄工程に代えて、前処理のための陽極酸化工程およびエッチング工程を梨地処理工程の前に行ってもよい。前処理のための陽極酸化工程およびエッチング工程を行うことによって、切削痕を低減させることができる。すなわち、アルミニウム基材12の表面を一旦陽極酸化し、形成された陽極酸化膜をエッチングにより除去することによって、切削痕を低減させることができる。前処理のための陽極酸化工程では、電解液として硫酸水溶液を用いることが好ましく、前処理のためのエッチング工程では、エッチング液として燐酸水溶液を用いることが好ましい。 Instead of the alkali cleaning step, an anodizing step and an etching step for pretreatment may be performed before the matte treatment step. By performing the anodic oxidation process and the etching process for the pretreatment, cutting traces can be reduced. That is, cutting traces can be reduced by once anodizing the surface of the aluminum base 12 and removing the formed anodized film by etching. In the anodizing step for pretreatment, an aqueous sulfuric acid solution is preferably used as the electrolytic solution, and in the etching step for pretreatment, an aqueous phosphoric acid solution is preferably used as the etching solution.
 アルカリ洗浄工程と、前処理のための陽極酸化工程およびエッチング工程との両方を、梨地処理工程の前に行ってもよい。例えば、アルカリ洗浄工程を、前処理のための陽極酸化工程およびエッチング工程の前に行ってもよい。 Both the alkali cleaning step and the pre-treatment anodizing step and etching step may be performed before the satin treatment step. For example, the alkali cleaning step may be performed before the anodizing step and the etching step for pretreatment.
 [無機材料層]
 次に、図1(c)に示すように、アルミニウム基材12の表面に無機材料層16を形成し、無機材料層16の上にアルミニウム膜18を形成することによって、型基材10を作製する。
[Inorganic material layer]
Next, as shown in FIG. 1C, an inorganic material layer 16 is formed on the surface of the aluminum substrate 12, and an aluminum film 18 is formed on the inorganic material layer 16, thereby producing the mold substrate 10. To do.
 アルミニウム膜18の表面には、アルミニウム基材12の表面を梨地処理することによって形成された反転されたアンチグレア構造を反映した構造が形成されている。ここでは、アルミニウム膜18に形成された構造も反転されたアンチグレア構造という。アルミニウム膜18の表面に形成された反転されたアンチグレア構造は、アルミニウム基材12の表面に形成された反転されたアンチグレア構造と実質的に同じ構造を有している。したがって、アルミニウム膜18の表面に形成された反転されたアンチグレア構造は、複数のマクロな凸部18pと複数のマクロな凹部18gとを有する。マクロな凸部18pは、マクロな凹部18gによって実質的に包囲されており、マクロな凹部18gは、マクロな凸部18pの外周を規定する溝のように存在している。 On the surface of the aluminum film 18, a structure reflecting an inverted antiglare structure formed by subjecting the surface of the aluminum substrate 12 to a matte finish is formed. Here, the structure formed in the aluminum film 18 is also called an inverted antiglare structure. The inverted antiglare structure formed on the surface of the aluminum film 18 has substantially the same structure as the inverted antiglare structure formed on the surface of the aluminum substrate 12. Therefore, the inverted anti-glare structure formed on the surface of the aluminum film 18 has a plurality of macro convex portions 18p and a plurality of macro concave portions 18g. The macro convex portion 18p is substantially surrounded by the macro concave portion 18g, and the macro concave portion 18g exists like a groove that defines the outer periphery of the macro convex portion 18p.
 無機材料層16の材料としては、例えば酸化タンタル(Ta25)または二酸化シリコン(SiO2)を用いることができる。無機材料層16は、例えばスパッタ法により形成することができる。無機材料層16として、酸化タンタル層を用いる場合、酸化タンタル層の厚さは、例えば、200nmである。 As a material of the inorganic material layer 16, for example, tantalum oxide (Ta 2 O 5 ) or silicon dioxide (SiO 2 ) can be used. The inorganic material layer 16 can be formed by sputtering, for example. When a tantalum oxide layer is used as the inorganic material layer 16, the thickness of the tantalum oxide layer is, for example, 200 nm.
 無機材料層16の厚さは、100nm以上500nm未満であることが好ましい。無機材料層16の厚さが100nm未満であると、アルミニウム膜18に欠陥(主にボイド、すなわち結晶粒間の間隙)が生じることがある。また、無機材料層16の厚さが500nm以上であると、アルミニウム基材12の表面状態によって、アルミニウム基材12とアルミニウム膜18との間が絶縁されやすくなる。アルミニウム基材12側からアルミニウム膜18に電流を供給することによってアルミニウム膜18の陽極酸化を行うためには、アルミニウム基材12とアルミニウム膜18との間に電流が流れる必要がある。円筒状のアルミニウム基材12の内面から電流を供給する構成を採用すると、アルミニウム膜18に電極を設ける必要がないので、アルミニウム膜18を全面にわたって陽極酸化できるとともに、陽極酸化の進行に伴って電流が供給され難くなるという問題も起こらず、アルミニウム膜18を全面にわたって均一に陽極酸化することができる。 The thickness of the inorganic material layer 16 is preferably 100 nm or more and less than 500 nm. If the thickness of the inorganic material layer 16 is less than 100 nm, defects (mainly voids, that is, gaps between crystal grains) may occur in the aluminum film 18 in some cases. Further, when the thickness of the inorganic material layer 16 is 500 nm or more, the aluminum base 12 and the aluminum film 18 are easily insulated from each other depending on the surface state of the aluminum base 12. In order to anodize the aluminum film 18 by supplying current to the aluminum film 18 from the aluminum substrate 12 side, it is necessary that a current flow between the aluminum substrate 12 and the aluminum film 18. If a configuration is adopted in which current is supplied from the inner surface of the cylindrical aluminum substrate 12, it is not necessary to provide an electrode on the aluminum film 18, so that the aluminum film 18 can be anodized over the entire surface, and the current is increased as the anodization proceeds. Therefore, the aluminum film 18 can be uniformly anodized over the entire surface without causing a problem that it is difficult to be supplied.
 また、厚い無機材料層16を形成するためには、一般的には成膜時間を長くする必要がある。成膜時間が長くなると、アルミニウム基材12の表面温度が不必要に上昇し、その結果、アルミニウム膜18の膜質が悪化し、欠陥(主にボイド)が生じることがある。無機材料層16の厚さが500nm未満であれば、このような不具合の発生を抑制することもできる。 Further, in order to form the thick inorganic material layer 16, it is generally necessary to lengthen the film formation time. When the film formation time is lengthened, the surface temperature of the aluminum base 12 is unnecessarily increased. As a result, the film quality of the aluminum film 18 is deteriorated, and defects (mainly voids) may occur. If the thickness of the inorganic material layer 16 is less than 500 nm, the occurrence of such a problem can be suppressed.
 [アルミニウム膜]
 アルミニウム膜18は、例えば、特許文献3に記載されているように、純度が99.99mass%以上のアルミニウムで形成された膜(以下、「高純度アルミニウム膜」ということがある。)である。アルミニウム膜18は、例えば、真空蒸着法またはスパッタ法を用いて形成される。アルミニウム膜18の厚さは、約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。
[Aluminum film]
The aluminum film 18 is, for example, a film formed of aluminum having a purity of 99.99 mass% or more (hereinafter, also referred to as “high-purity aluminum film”) as described in Patent Document 3. The aluminum film 18 is formed using, for example, a vacuum deposition method or a sputtering method. The thickness of the aluminum film 18 is preferably in the range of about 500 nm or more and about 1500 nm or less, for example, about 1 μm.
 また、アルミニウム膜18として、高純度アルミニウム膜に代えて、国際公開第2013/0183576号に記載されている、アルミニウム合金膜を用いてもよい。国際公開第2013/0183576号に記載のアルミニウム合金膜は、アルミニウムと、アルミニウム以外の金属元素と、窒素とを含む。本明細書において、「アルミニウム膜」は、高純度アルミニウム膜だけでなく、国際公開第2013/0183576号に記載のアルミニウム合金膜を含むものとする。参考のために、国際公開第2013/0183576号の開示内容の全てを本明細書に援用する。 As the aluminum film 18, an aluminum alloy film described in International Publication No. 2013/0183576 may be used instead of the high-purity aluminum film. The aluminum alloy film described in International Publication No. 2013/0183576 contains aluminum, a metal element other than aluminum, and nitrogen. In this specification, “aluminum film” includes not only a high-purity aluminum film but also an aluminum alloy film described in International Publication No. 2013/0183576. For reference purposes, the entire disclosure of WO2013 / 0183576 is incorporated herein by reference.
 上記アルミニウム合金膜を用いると、反射率が80%以上の鏡面を得ることができる。アルミニウム合金膜を構成する結晶粒の、アルミニウム合金膜の法線方向から見たときの平均粒径は、例えば、100nm以下であり、アルミニウム合金膜の最大表面粗さRmaxは60nm以下である。アルミニウム合金膜に含まれる窒素の含有率は、例えば、0.5mass%以上5.7mass%以下である。アルミニウム合金膜に含まれるアルミニウム以外の金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値は0.64V以下であり、アルミニウム合金膜中の金属元素の含有率は、1.0mass%以上1.9mass%以下であることが好ましい。金属元素は、例えば、TiまたはNdである。但し、金属元素はこれに限られず、金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値が0.64V以下である他の金属元素(例えば、Mn、Mg、Zr、VおよびPb)であってもよい。さらに、金属元素は、Mo、NbまたはHfであってもよい。アルミニウム合金膜は、これらの金属元素を2種類以上含んでもよい。アルミニウム合金膜は、例えば、DCマグネトロンスパッタ法で形成される。アルミニウム合金膜の厚さも約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。 When using the aluminum alloy film, a mirror surface with a reflectance of 80% or more can be obtained. The average grain size of the crystal grains constituting the aluminum alloy film as viewed from the normal direction of the aluminum alloy film is, for example, 100 nm or less, and the maximum surface roughness Rmax of the aluminum alloy film is 60 nm or less. The content rate of nitrogen contained in the aluminum alloy film is, for example, not less than 0.5 mass% and not more than 5.7 mass%. The absolute value of the difference between the standard electrode potential of a metal element other than aluminum contained in the aluminum alloy film and the standard electrode potential of aluminum is 0.64 V or less, and the content of the metal element in the aluminum alloy film is 1.0 mass. % Or more and 1.9 mass% or less is preferable. The metal element is, for example, Ti or Nd. However, the metal element is not limited to this, and other metal elements whose absolute value of the difference between the standard electrode potential of the metal element and the standard electrode potential of aluminum is 0.64 V or less (for example, Mn, Mg, Zr, V, and Pb). Furthermore, the metal element may be Mo, Nb, or Hf. The aluminum alloy film may contain two or more of these metal elements. The aluminum alloy film is formed by, for example, a DC magnetron sputtering method. The thickness of the aluminum alloy film is also preferably in the range of about 500 nm to about 1500 nm, for example, about 1 μm.
 ここで、図2(a)および(b)を参照して、反転されたアンチグレア構造を詳細に説明する。図2(a)は、反転されたアンチグレア構造の模式的な平面図であり、図2(b)は、反転されたアンチグレア構造の模式的な斜視図である。 Here, the inverted anti-glare structure will be described in detail with reference to FIGS. FIG. 2A is a schematic plan view of the inverted antiglare structure, and FIG. 2B is a schematic perspective view of the inverted antiglare structure.
 図2(a)および(b)に示すように、梨地処理によって形成される反転されたアンチグレア構造は、複数のマクロな凸部18pと複数のマクロな凹部18gとを有する。マクロな凸部18pは、マクロな凹部18gによって実質的に包囲されており、マクロな凹部18gは、マクロな凸部18pの外周を規定する溝のように存在している。 As shown in FIGS. 2A and 2B, the inverted anti-glare structure formed by the satin treatment has a plurality of macro convex portions 18p and a plurality of macro concave portions 18g. The macro convex portion 18p is substantially surrounded by the macro concave portion 18g, and the macro concave portion 18g exists like a groove that defines the outer periphery of the macro convex portion 18p.
 複数のマクロな凸部18pは、表面の法線方向から見たとき、概ね多角形の外形を有しているが、配置に規則性は見られない。マクロな凸部18pの表面の法線方向から見たときの2次元的な大きさ(面積円相当径)は、約200nm以上30μm以下である。マクロな凸部18pの上面は、実質的に平坦である。 When viewed from the normal direction of the surface, the plurality of macro convex portions 18p have a substantially polygonal outer shape, but regularity is not seen in the arrangement. The two-dimensional size (area circle equivalent diameter) when viewed from the normal direction of the surface of the macro convex portion 18p is about 200 nm or more and 30 μm or less. The upper surface of the macro convex portion 18p is substantially flat.
 マクロな凸部18pを実質的に包囲するマクロな凹部(溝)18gの幅は、マクロな凸部18pの2次元的な大きさの10分の1~5分の1程度の大きさである。隣接するマクロな凹部18g間距離の平均値(平均隣接間距離ADint)は、マクロな凸部18pの表面の法線方向から見たときの2次元的な大きさの平均値とほぼ等しいと考えることができる。ここで、マクロな凹部18gはマクロな凸部18pを実質的に包囲するように形成されているので、隣接するマクロな凹部18gは、マクロな凸部18pの2次元的な大きさを規定する方向における断面において隣接するマクロな凹部18gを意味することにする。したがって、平均隣接間距離ADintは、マクロな凸部18pの2次元的な大きさの平均値とマクロな凹部18gの幅の平均値との和にほぼ等しい。なお、マクロな凹部18gの深さADdepthは、例えば20nm以上500nm以下であるが、20nm以上5μm未満であればよい。 The width of the macro concave portion (groove) 18g that substantially surrounds the macro convex portion 18p is about one-tenth to one-fifth of the two-dimensional size of the macro convex portion 18p. . The average value of the distance between adjacent macro concave portions 18g (average inter-adjacent distance AD int ) is approximately equal to the average value of the two-dimensional size when viewed from the normal direction of the surface of the macro convex portion 18p. Can think. Here, since the macro concave portion 18g is formed so as to substantially surround the macro convex portion 18p, the adjacent macro concave portion 18g defines the two-dimensional size of the macro convex portion 18p. The macro concave portions 18g adjacent in the cross section in the direction are meant. Therefore, the average distance AD int between the adjacent portions is approximately equal to the sum of the average value of the two-dimensional size of the macro-shaped convex portion 18p and the average value of the width of the macro-shaped concave portion 18g. The depth AD depth of the macro concave portion 18g is, for example, 20 nm or more and 500 nm or less, but may be 20 nm or more and less than 5 μm.
 反転されたアンチグレア構造を形成した後、陽極酸化とエッチングとを交互に繰り返し、反転されたモスアイ構造を形成することによって、図1(d)に示すモスアイ用型100が得られる。すなわち、反転されたモスアイ構造を形成するプロセスは、アルミニウム膜18の表面を陽極酸化することによって、複数のミクロな凹部14pを有するポーラスアルミナ層14を形成する工程と、その後に、ポーラスアルミナ層14を、エッチング液に接触させることによって、ポーラスアルミナ層14の複数のミクロな凹部14pを拡大させる工程と、その後に、さらに陽極酸化することによって、複数のミクロな凹部14pを成長させる工程とを包含する。陽極酸化に用いる電解液は、例えば、蓚酸、酒石酸、燐酸、硫酸、クロム酸、クエン酸、リンゴ酸からなる群から選択される酸を含む水溶液である。エッチング液として、蟻酸、酢酸、クエン酸などの有機酸や硫酸の水溶液、クロム酸燐酸混合水溶液、または水酸化ナトリウム、水酸化カリウムなどのアルカリの水溶液を用いることができる。 After forming the inverted anti-glare structure, anodic oxidation and etching are alternately repeated to form the inverted moth-eye structure, whereby the moth-eye mold 100 shown in FIG. 1D is obtained. That is, in the process of forming the inverted moth-eye structure, the surface of the aluminum film 18 is anodized to form a porous alumina layer 14 having a plurality of micro recesses 14p, and then the porous alumina layer 14 Including a step of expanding a plurality of micro concave portions 14p of the porous alumina layer 14 by contacting with an etching solution, and a step of growing a plurality of micro concave portions 14p by further anodizing thereafter. To do. The electrolytic solution used for anodization is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, sulfuric acid, chromic acid, citric acid, and malic acid. As an etchant, an aqueous solution of an organic acid such as formic acid, acetic acid, or citric acid or an aqueous solution of sulfuric acid, a mixed aqueous solution of chromic phosphoric acid, or an aqueous solution of an alkali such as sodium hydroxide or potassium hydroxide can be used.
 陽極酸化とエッチングとを繰り返す一連の工程は、陽極酸化工程で終わることが好ましい。陽極酸化工程で終わる(その後のエッチング工程を行わない)ことによって、ミクロな凹部14pの底部を小さくすることができる。このような反転されたモスアイ構造を形成する方法は、例えば、本出願人による国際公開第2006/059686号に開示されている。参考のために、国際公開第2006/059686号の開示内容の全てを本明細書に援用する。 It is preferable that the series of steps of repeating anodization and etching end with the anodization step. By ending with the anodizing step (the subsequent etching step is not performed), the bottom of the micro concave portion 14p can be reduced. A method for forming such an inverted moth-eye structure is disclosed, for example, in WO 2006/059686 by the applicant. For reference, the entire disclosure of WO 2006/059686 is incorporated herein by reference.
 例えば、陽極酸化工程(電解液:蓚酸水溶液(濃度0.3mass%、液温10℃)、印加電圧:80V、印加時間:55秒間)とエッチング工程(エッチング液:燐酸水溶液(10mass%、30℃)、エッチング時間:20分間)とを交互に複数回(例えば5回:陽極酸化を5回とエッチングを4回)繰り返すことによって、図1(d)に示すように、ミクロな凹部14pを有するポーラスアルミナ層14を有するモスアイ用型100が得られる。ここで例示した条件で形成されたポーラスアルミナ層14は、図23(c)を参照して説明したように、Dp=Dintが10nm以上500nm未満で、Ddepthが10nm以上1000nm(1μm)未満程度のミクロな凹部14pが密に不規則に配列した構造を有している。ミクロな凹部14pは略円錐状であり、鞍部を形成するように隣接している。 For example, an anodic oxidation step (electrolytic solution: oxalic acid aqueous solution (concentration 0.3 mass%, liquid temperature 10 ° C.), applied voltage: 80 V, application time: 55 seconds) and etching step (etching solution: phosphoric acid aqueous solution (10 mass%, 30 ° C.) ) And etching time: 20 minutes) alternately, a plurality of times (for example, 5 times: anodization is 5 times and etching is 4 times), thereby providing a micro concave portion 14p as shown in FIG. The moth-eye mold 100 having the porous alumina layer 14 is obtained. As described with reference to FIG. 23C, the porous alumina layer 14 formed under the conditions exemplified here has D p = D int of 10 nm or more and less than 500 nm, and D depth of 10 nm or more and 1000 nm (1 μm). It has a structure in which micro recesses 14p of less than about are densely and irregularly arranged. The micro concave portion 14p has a substantially conical shape and is adjacent to form a collar portion.
 ミクロな凹部14pで構成される反転されたモスアイ構造は、アンチグレア構造に重畳されて形成される。したがって、図1(d)に模式的に示したように、アンチグレア構造を構成するマクロな凸部18pに形成されたミクロな凹部14pと、マクロな凹部18gに形成されたミクロな凹部14pとが存在する。マクロな凹部18gに形成されたミクロな凹部14pの方が、マクロな凸部18pに形成されたミクロな凹部14pよりも深い。 The inverted moth-eye structure composed of the micro recesses 14p is formed so as to be superimposed on the antiglare structure. Therefore, as schematically shown in FIG. 1 (d), the micro concave portion 14p formed in the macro convex portion 18p constituting the antiglare structure and the micro concave portion 14p formed in the macro concave portion 18g are provided. Exists. The micro concave portion 14p formed in the macro concave portion 18g is deeper than the micro concave portion 14p formed in the macro convex portion 18p.
 なお、ミクロな凹部14pの下には、バリア層が形成されており、ポーラスアルミナ層14は、ミクロな凹部14pを有するポーラス層と、ポーラス層の下(アルミニウム膜側)に存在するバリア層(凹部14pの底部)とから構成されている。隣接するミクロな凹部14pの間隔(中心間距離)は、バリア層の厚さのほぼ2倍に相当し、陽極酸化時の電圧にほぼ比例することが知られている。また、ポーラスアルミナ層14の下には、アルミニウム膜18のうち、陽極酸化されなかったアルミニウム残存層18rが存在している。 A barrier layer is formed under the micro concave portion 14p. The porous alumina layer 14 includes a porous layer having the micro concave portion 14p and a barrier layer (under the aluminum film side) (on the aluminum film side). The bottom of the recess 14p). It is known that the interval between the adjacent micro concave portions 14p (center-to-center distance) corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage during anodization. Under the porous alumina layer 14, an aluminum remaining layer 18 r that has not been anodized in the aluminum film 18 is present.
 このように、本発明の実施形態によるモスアイ用型100の製造方法によると、アンチグレア機能を有する反射防止膜を形成することが可能なモスアイ用型100を製造することができる。モスアイ用型100を用いて形成される反射防止膜が有するアンチグレア機能については、実験例を示して後に詳述する。 As described above, according to the method for manufacturing the moth-eye mold 100 according to the embodiment of the present invention, the moth-eye mold 100 capable of forming the antireflection film having the antiglare function can be manufactured. The antiglare function of the antireflection film formed using the moth-eye mold 100 will be described in detail later by showing experimental examples.
 続いて、図3を参照して、モスアイ用型100を用いた反射防止膜の製造方法を説明する。図3は、ロール・ツー・ロール方式により反射防止膜を製造する方法を説明するための模式的な断面図である。 Subsequently, with reference to FIG. 3, a manufacturing method of the antireflection film using the moth-eye mold 100 will be described. FIG. 3 is a schematic cross-sectional view for explaining a method for producing an antireflection film by a roll-to-roll method.
 まず、円筒状のモスアイ用型100を用意する。なお、円筒状のモスアイ用型100は、上述の製造方法で製造される。 First, a cylindrical moth-eye mold 100 is prepared. The cylindrical moth-eye mold 100 is manufactured by the above-described manufacturing method.
 図3に示すように、紫外線硬化樹脂32'が表面に付与された被加工物42を、モスアイ用型100に押し付けた状態で、紫外線硬化樹脂32'に紫外線(UV)を照射することによって紫外線硬化樹脂32'を硬化する。紫外線硬化樹脂32'としては、例えばアクリル系樹脂を用いることができる。被加工物42は、例えば、TAC(トリアセチルセルロース)フィルムである。被加工物42は、図示しない巻き出しローラから巻き出され、その後、表面に、例えばスリットコータ等により紫外線硬化樹脂32'が付与される。被加工物42は、図3に示すように、支持ローラ46および48によって支持されている。支持ローラ46および48は、回転機構を有し、被加工物42を搬送する。また、円筒状のモスアイ用型100は、被加工物42の搬送速度に対応する回転速度で、図3に矢印で示す方向に回転される。 As shown in FIG. 3, ultraviolet light (UV) is applied to the ultraviolet curable resin 32 ′ by irradiating the ultraviolet curable resin 32 ′ with the workpiece 42 having the ultraviolet curable resin 32 ′ pressed against the moth-eye mold 100. The cured resin 32 ′ is cured. As the ultraviolet curable resin 32 ′, for example, an acrylic resin can be used. The workpiece 42 is, for example, a TAC (triacetyl cellulose) film. The workpiece 42 is unwound from an unillustrated unwinding roller, and thereafter, an ultraviolet curable resin 32 ′ is applied to the surface by, for example, a slit coater. The workpiece 42 is supported by support rollers 46 and 48 as shown in FIG. The support rollers 46 and 48 have a rotation mechanism and convey the workpiece 42. The cylindrical moth-eye mold 100 is rotated in the direction indicated by the arrow in FIG. 3 at a rotational speed corresponding to the transport speed of the workpiece 42.
 その後、被加工物42からモスアイ用型100を分離することによって、モスアイ用型100の凹凸構造(反転されたモスアイ構造)が転写された硬化物層32が被加工物42の表面に形成される。表面に硬化物層32が形成された被加工物42は、図示しない巻き取りローラにより巻き取られる。 Thereafter, by separating the moth-eye mold 100 from the workpiece 42, a cured product layer 32 to which the uneven structure (inverted moth-eye structure) of the moth-eye mold 100 is transferred is formed on the surface of the workpiece 42. . The workpiece 42 having the cured product layer 32 formed on the surface is wound up by a winding roller (not shown).
 図4(a)~(c)を参照して、本発明の実施形態によるアンチグレア機能を有する反射防止膜32の構造を説明する。図4(a)~(c)は、本発明の実施形態によるアンチグレア機能を有する反射防止膜32の模式図であり、図4(a)は反射防止膜32の表面を垂直方向から観察したときの模式図であり、図4(b)は反射防止膜32の表面を斜め方向から観察したときの模式図であり、図4(c)は反射防止膜32の断面の模式図である。 4A to 4C, the structure of the antireflection film 32 having an antiglare function according to the embodiment of the present invention will be described. 4A to 4C are schematic views of the antireflection film 32 having an antiglare function according to the embodiment of the present invention. FIG. 4A is a view when the surface of the antireflection film 32 is observed from the vertical direction. 4B is a schematic diagram when the surface of the antireflection film 32 is observed from an oblique direction, and FIG. 4C is a schematic diagram of a cross section of the antireflection film 32.
 図4(a)~(c)において、モスアイ構造を構成する複数のミクロな凸部は、ミクロな凸部32pおよび32gを含んでいる。ミクロな凸部32pは、アンチグレア構造を構成するマクロな凹部に形成されており、ミクロな凸部32gは、アンチグレア構造を構成するマクロな凸部に形成されている。したがって、ミクロな凸部32gは、ミクロな凸部32pよりも高く、マクロな凹部に形成されたミクロな凸部32pを実質的に包囲するように配置されている。これは、モスアイ用型100を製造する過程で、梨地処理によって形成された反転されたアンチグレア構造において、マクロな凸部18pがマクロな凹部18gによって実質的に包囲されていたことに対応している。 4A to 4C, the plurality of micro convex portions constituting the moth-eye structure includes micro convex portions 32p and 32g. The micro convex portion 32p is formed in a macro concave portion constituting the anti-glare structure, and the micro convex portion 32g is formed in a macro convex portion constituting the anti-glare structure. Therefore, the micro convex part 32g is higher than the micro convex part 32p, and is disposed so as to substantially surround the micro convex part 32p formed in the macro concave part. This corresponds to the fact that in the process of manufacturing the moth-eye mold 100, in the inverted anti-glare structure formed by the satin treatment, the macro convex portion 18p is substantially surrounded by the macro concave portion 18g. .
 [基材の表面処理方法]
 本発明者の検討によると、円筒状のモスアイ用型100を製造する過程で、梨地処理によって形成された反転されたアンチグレア構造がアルミニウム基材12の表面に均一に形成されないことにより、アルミニウム基材12の表面にマクロなむらが生じることがあった。本発明者の検討によると、マクロなむらが発生する原因は、複数ある場合もあった。この問題は、円柱状または円筒状の基材の表面を処理する技術において共通の問題である。本発明者は、マクロなむらの発生を抑制することができる基材の表面処理方法を検討した。
[Substrate surface treatment method]
According to the study of the present inventor, in the process of manufacturing the cylindrical moth-eye mold 100, the inverted anti-glare structure formed by the satin treatment is not uniformly formed on the surface of the aluminum base 12, so that the aluminum base Macro unevenness sometimes occurred on the 12 surfaces. According to the study by the present inventor, there are cases where there are a plurality of causes of macro unevenness. This problem is a common problem in the technique of treating the surface of a columnar or cylindrical substrate. This inventor examined the surface treatment method of the base material which can suppress generation | occurrence | production of macro unevenness.
 図5(a)および(b)を参照して、本発明の実施形態による基材の表面処理方法を説明する。図5(a)および(b)は、本発明の実施形態による基材の表面処理方法を説明するための模式的な図である。 Referring to FIGS. 5A and 5B, a surface treatment method for a substrate according to an embodiment of the present invention will be described. FIGS. 5A and 5B are schematic views for explaining a surface treatment method for a substrate according to an embodiment of the present invention.
 本発明の実施形態による基材の表面処理方法は、円柱状または円筒状の基材の表面を処理する方法であって、以下の工程(I)および工程(II)を含む。
 工程(I):基材の長軸方向が水平方向と略平行になるように基材を配置した状態で、基材の長軸を中心に、基材を回転させる工程。
 工程(II):基材の外周面の一部を第1エッチング槽に収容された第1エッチング液に接触させる工程。
The surface treatment method for a substrate according to an embodiment of the present invention is a method for treating the surface of a columnar or cylindrical substrate, and includes the following steps (I) and (II).
Step (I): A step of rotating the base material around the long axis of the base material in a state where the base material is arranged so that the long axis direction of the base material is substantially parallel to the horizontal direction.
Step (II): A step of bringing a part of the outer peripheral surface of the substrate into contact with the first etching solution accommodated in the first etching tank.
 ここでは、本発明の実施形態による型の製造方法に含まれる、アルミニウム基材の表面をフッ化水素とアンモニウムとの塩を含む水溶液によって梨地処理する工程(梨地処理工程)に、上記基材の表面処理方法を用いる例を説明する。ただし、本発明の実施形態による基材の表面処理方法は、これに限定されない。例えば、アルミニウム膜の表面を陽極酸化することによって、複数のミクロな凹部を有するポーラスアルミナ層を形成する工程に用いてもよいし、ポーラスアルミナ層を、エッチング液に接触させることによって、ポーラスアルミナ層の複数のミクロな凹部を拡大させる工程に用いてもよい。さらには、本発明の実施形態による型の製造方法に限られず、円柱状または円筒状の基材の表面を処理する方法として広く用いることができる。基材の表面処理とは、例えば、エッチング工程、洗浄工程、皮膜形成工程、めっき工程等の種々の化学処理工程を含む。円柱状の基材の表面(側面)または円筒状の基材の表面(外周面)を処理する方法であってもよいし、円柱状の基材の表面(側面)または円筒状の基材の表面(外周面)に設けられた金属膜または酸化物膜を処理する方法であってもよい。基材の表面は、金属であってもよいし、酸化物であってもよい。 Here, the step of treating the surface of the aluminum base material with an aqueous solution containing a salt of hydrogen fluoride and ammonium (pear surface treatment step), included in the mold manufacturing method according to the embodiment of the present invention, An example using the surface treatment method will be described. However, the substrate surface treatment method according to the embodiment of the present invention is not limited to this. For example, the surface of the aluminum film may be anodized to form a porous alumina layer having a plurality of micro-recesses, or the porous alumina layer may be contacted with an etching solution to contact the porous alumina layer. You may use for the process of expanding several micro recessed part of these. Furthermore, the present invention is not limited to the mold manufacturing method according to the embodiment of the present invention, and can be widely used as a method for treating the surface of a columnar or cylindrical substrate. The surface treatment of the substrate includes various chemical treatment steps such as an etching step, a cleaning step, a film forming step, and a plating step. It may be a method of treating the surface (side surface) of a cylindrical substrate or the surface (outer peripheral surface) of a cylindrical substrate, or the surface (side surface) of a cylindrical substrate or a cylindrical substrate. A method of treating a metal film or an oxide film provided on the surface (outer peripheral surface) may also be used. The surface of the substrate may be a metal or an oxide.
 図5(a)に示すように、円筒状のアルミニウム基材12と、第1エッチング槽51とを用意する。第1エッチング槽51内には、第1エッチング液E1が収容されている。第1エッチング液E1は、例えば梨地処理のためのエッチング液であり、例えばフッ化水素とアンモニウムとの塩を含む水溶液である。アルミニウム基材12の長軸方向の長さをH、長軸方向に直交する断面における外周面の直径をDとする。図5(b)に示すように、アルミニウム基材12の外周面の一部を第1エッチング槽51に収容された第1エッチング液E1に接触させることによって、アルミニウム基材12の外周面に梨地処理を施す。また、アルミニウム基材12を、アルミニウム基材12の長軸方向が水平方向と平行になるように配置した状態で、アルミニウム基材12の長軸を中心に回転させる。アルミニウム基材12を回転させながら、アルミニウム基材12の外周面の一部を第1エッチング槽51に収容された第1エッチング液E1に接触させてもよい。すなわち、上記工程(I)および工程(II)は、同時に行ってもよい。 As shown in FIG. 5A, a cylindrical aluminum base 12 and a first etching tank 51 are prepared. A first etching solution E <b> 1 is accommodated in the first etching tank 51. The first etching solution E1 is, for example, an etching solution for satin treatment, and is, for example, an aqueous solution containing a salt of hydrogen fluoride and ammonium. The length of the aluminum base 12 in the major axis direction is H, and the diameter of the outer peripheral surface in the cross section orthogonal to the major axis direction is D. As shown in FIG. 5B, a part of the outer peripheral surface of the aluminum base 12 is brought into contact with the first etching solution E1 accommodated in the first etching tank 51, so that the outer peripheral surface of the aluminum base 12 is satin-finished. Apply processing. Further, the aluminum base 12 is rotated around the long axis of the aluminum base 12 in a state where the long base of the aluminum base 12 is arranged in parallel with the horizontal direction. While rotating the aluminum substrate 12, a part of the outer peripheral surface of the aluminum substrate 12 may be brought into contact with the first etching solution E <b> 1 accommodated in the first etching tank 51. That is, the above step (I) and step (II) may be performed simultaneously.
 本発明の実施形態による基材の表面処理方法は、アルミニウム基材12を回転させることによって、基材の表面をむらなく処理することができる。本発明の実施形態による基材の表面処理方法においては、アルミニウム基材12を回転させることによって、第1エッチング槽51に収容された第1エッチング液にアルミニウム基材12の全部を浸漬させることなく、アルミニウム基材12の外周面にむらなく梨地処理を施すことができる。従って、エッチング液にかかるコストおよびエッチング槽の設置場所の増大を抑制することができる。また、アルミニウム基材の外周面の一部を第1エッチング槽51に収容された第1エッチング液E1に接触させるので、第1エッチング槽51に収容された第1エッチング液にアルミニウム基材12の全部を浸漬させる場合に比べて、第1エッチング槽51内の第1エッチング液E1を循環させることが容易である。 The substrate surface treatment method according to the embodiment of the present invention can uniformly treat the surface of the substrate by rotating the aluminum substrate 12. In the substrate surface treatment method according to the embodiment of the present invention, the aluminum substrate 12 is rotated so that the entire aluminum substrate 12 is not immersed in the first etching solution contained in the first etching tank 51. The satin finish can be applied uniformly to the outer peripheral surface of the aluminum base 12. Therefore, it is possible to suppress the cost for the etching solution and the increase in the installation location of the etching tank. Moreover, since a part of outer peripheral surface of an aluminum base material is made to contact the 1st etching liquid E1 accommodated in the 1st etching tank 51, the 1st etching liquid accommodated in the 1st etching tank 51 is made to contact the 1st etching liquid. It is easier to circulate the first etching solution E1 in the first etching tank 51 than in the case where the whole is immersed.
 上記工程(I)において、アルミニウム基材12の周速度は、例えば0m/s超0.03m/s以下である。アルミニウム基材12の回転速度は、例えば0rpm超2rpm以下である。アルミニウム基材12の回転速度が2rpmを超えると、基材の表面処理が均一に行われないことがあった。ここで、rpmは一分間あたりの回転数を表す単位なので、回転速度1rpmは周速度(π×D)/60(m/s)に相当する。(本明細書において「×」は乗算を表す。)例えば、長軸方向に直交する断面の直径Dが0.3mであるアルミニウム基材12が、回転速度2rpmで回転するとき、周速度は、2×π×D/60=0.03(m/s)である。上記工程(I)において、アルミニウム基材12の周速度は、一定であることが好ましい。 In the above step (I), the peripheral speed of the aluminum base 12 is, for example, more than 0 m / s and 0.03 m / s or less. The rotation speed of the aluminum substrate 12 is, for example, more than 0 rpm and 2 rpm or less. When the rotation speed of the aluminum substrate 12 exceeds 2 rpm, the surface treatment of the substrate may not be performed uniformly. Here, since rpm is a unit representing the number of rotations per minute, a rotation speed of 1 rpm corresponds to a peripheral speed (π × D) / 60 (m / s). (In the present specification, “x” represents multiplication.) For example, when the aluminum base material 12 having a cross-sectional diameter D perpendicular to the major axis direction of 0.3 m rotates at a rotational speed of 2 rpm, the peripheral speed is It is 2 * pi * D / 60 = 0.03 (m / s). In the said process (I), it is preferable that the peripheral speed of the aluminum base material 12 is constant.
 図6を参照して、比較例による基材の表面処理方法を説明する。比較例による基材の表面処理方法においては、図6(a)に示すように、アルミニウム基材12の長軸方向を鉛直方向に略平行になるように配置して、エッチング槽91内に収容されたエッチング液にアルミニウム基材12の外周面を接触させる。このときエッチング槽91内のエッチング液にアルミニウム基材12の全部を浸漬させる。従って、エッチング液にかかるコストおよびエッチング槽91の設置場所が増大する。例えば、エッチング槽91の深さは、アルミニウム基材12の長軸方向の長さHよりも大きい。さらに、例えばアルミニウム基材12を上から吊り下げて、エッチング槽91に出し入れすることを考えると、エッチング槽91を設置する場所の天井の高さは、アルミニウム基材12の長軸方向の長さHの2倍よりも大きい必要がある。 With reference to FIG. 6, the surface treatment method of the base material by a comparative example is demonstrated. In the substrate surface treatment method according to the comparative example, as shown in FIG. 6A, the major axis direction of the aluminum substrate 12 is arranged so as to be substantially parallel to the vertical direction and accommodated in the etching tank 91. The outer peripheral surface of the aluminum base 12 is brought into contact with the etched etchant. At this time, the entire aluminum base 12 is immersed in the etching solution in the etching tank 91. Therefore, the cost for the etching solution and the installation location of the etching tank 91 increase. For example, the depth of the etching tank 91 is larger than the length H of the aluminum base 12 in the major axis direction. Further, for example, considering that the aluminum base 12 is suspended from above and taken in and out of the etching tank 91, the height of the ceiling where the etching tank 91 is installed is the length of the aluminum base 12 in the major axis direction. Must be greater than twice H.
 [基材の円周方向のむら]
 本発明の実施形態による型の製造方法によって製造されたモスアイ用型100を用いて製造された反射防止膜32には、周期的なむらが生じることがあった。
[Unevenness in the circumferential direction of the base material]
In the antireflection film 32 manufactured using the moth-eye mold 100 manufactured by the mold manufacturing method according to the embodiment of the present invention, periodic unevenness may occur.
 図7を参照して説明する。図7は、周期的なむらの発生原因を説明するための模式的な図である。図7(a)は、本発明の実施形態による型の製造方法によって製造されたモスアイ用型100を用いて製造された反射防止膜32を、反射防止膜32の法線方向から観察したときの模式的な平面図である。図7(b)は、モスアイ用型100を製造する過程における、アルミニウム基材12の表面を梨地処理する工程を説明するための模式的な図であり、円筒状のアルミニウム基材12の長軸方向から見た模式図である。 This will be described with reference to FIG. FIG. 7 is a schematic diagram for explaining the cause of periodic unevenness. FIG. 7A shows the antireflection film 32 manufactured using the moth-eye mold 100 manufactured by the mold manufacturing method according to the embodiment of the present invention when observed from the normal direction of the antireflection film 32. It is a typical top view. FIG. 7 (b) is a schematic diagram for explaining a step of performing a matte treatment on the surface of the aluminum base 12 in the process of manufacturing the moth-eye mold 100, and the long axis of the cylindrical aluminum base 12. It is the schematic diagram seen from the direction.
 図7(a)に示すように、反射防止膜32に形成されたアンチグレア構造は、円筒状のアルミニウム基材12の円周方向(すなわちモスアイ用型100の円周方向)に沿って、周期的に変化している。この周期的なむらは、モスアイ用型100の表面に形成された反転されたアンチグレア構造のむらに起因し、図3を参照して説明した方法で(すなわちロール・ツー・ロール方式で)モスアイ用型100を用いて反射防止膜32を形成したことに起因している。アルミニウム基材12の外周面の一部を第1エッチング液E1に接触させる際に、アルミニウム基材12の外周面における位置によって、接触する時間やタイミングが一様でないので、梨地処理が均一に行われず、反転されたアンチグレア構造がむらを有する。反射防止膜32に形成されたアンチグレア構造は、アルミニウム基材12の底面の円周π×Dの周期を有する周期的なむらを有し、可視光の散乱の度合いの違いとして視認される。なお、図7(a)では、周期を見やすくするために、反射防止膜32を周期π×Dごとに区切って表示しているが、反射防止膜32は、周期π×Dごとに区切られない。 As shown in FIG. 7A, the antiglare structure formed in the antireflection film 32 is periodically along the circumferential direction of the cylindrical aluminum substrate 12 (that is, the circumferential direction of the moth-eye mold 100). Has changed. This periodic unevenness is caused by the unevenness of the inverted anti-glare structure formed on the surface of the moth-eye mold 100, and the moth-eye mold in the method described with reference to FIG. 3 (that is, in a roll-to-roll manner). This is because the antireflection film 32 is formed using 100. When a part of the outer peripheral surface of the aluminum base 12 is brought into contact with the first etching solution E1, the contact time and timing are not uniform depending on the position on the outer peripheral surface of the aluminum base 12, so that the satin treatment is performed uniformly. However, the inverted antiglare structure has unevenness. The antiglare structure formed in the antireflection film 32 has periodic unevenness having a period of the circumference π × D of the bottom surface of the aluminum base 12 and is visually recognized as a difference in the degree of scattering of visible light. In FIG. 7A, the antireflection film 32 is divided into periods π × D to make the period easy to see, but the antireflection film 32 is not divided into periods π × D. .
 特に、図5(b)に示すように、アルミニウム基材12の外周面の一部を第1エッチング液E1に接触させる際に、最初に第1エッチング液E1に接触する位置は、アルミニウム基材12の外周面内でアルミニウム基材12の長軸方向に伸びる線L1上である。線L1上は、アルミニウム基材12の外周面内で最初に第1エッチング液E1に接触するので、第1エッチング液E1による梨地処理が最も早く進行する。すなわち、第1エッチング液E1と接触する時間が最も長くなるので、梨地処理の進行度合いが最も大きい。また、線L1上が、アルミニウム基材12の外周面内で最初に第1エッチング液E1に接触するとき、第1エッチング液E1中およびアルミニウム基材12の表面に不純物が少ない状態であるので、線L1上において梨地処理の進行速度が最も大きい傾向がある。アルミニウム基材の線L1に対応して、図7(a)中の破線のように、周期的に反射防止膜32に線状のむらが現れることがあった。アルミニウム基材12の外周面において、アルミニウム基材12の長軸方向に伸びる線状のむらは、後述する図11(a)の光学像においても確認できる。 In particular, as shown in FIG. 5 (b), when a part of the outer peripheral surface of the aluminum base 12 is brought into contact with the first etching liquid E1, the position where the first etching liquid E1 is first contacted is the aluminum base. 12 is on a line L1 extending in the major axis direction of the aluminum base 12 within the outer peripheral surface of the aluminum. On the line L1, since the first etching solution E1 is first contacted within the outer peripheral surface of the aluminum base 12, the matte treatment with the first etching solution E1 proceeds most quickly. That is, since the time of contact with the first etching solution E1 is the longest, the progress of the satin treatment is the largest. In addition, when the line L1 is first in contact with the first etching solution E1 within the outer peripheral surface of the aluminum base 12, the first etching solution E1 and the surface of the aluminum base 12 have less impurities. There is a tendency that the progress speed of the satin processing is the highest on the line L1. Corresponding to the line L1 of the aluminum base material, as shown by the broken line in FIG. On the outer peripheral surface of the aluminum base material 12, linear unevenness extending in the major axis direction of the aluminum base material 12 can be confirmed also in the optical image of FIG.
 周期的なむらの発生を抑制するために、本発明者は、梨地処理工程の前後にエッチングレートの小さいエッチング液で表面処理を行う方法に想到した。図8および図9を参照して説明する。図8および図9は、本発明の実施形態による基材の表面処理方法を説明するための模式的な図である。 In order to suppress the occurrence of periodic unevenness, the present inventor has conceived a method of performing surface treatment with an etching solution having a low etching rate before and after the satin treatment step. This will be described with reference to FIGS. 8 and 9 are schematic views for explaining a surface treatment method for a substrate according to an embodiment of the present invention.
 本発明の実施形態による基材の表面処理方法は、ある実施形態において、上記工程(II)(基材の外周面の一部を第1エッチング槽に収容された第1エッチング液に接触させる工程)の前に、基材の外周面の一部を第1エッチング液とは異なる第2エッチング液(「前処理用エッチング液」ということがある。)に接触させる工程(II‐1)をさらに包含する。第2エッチング液の基材の外周面に対するエッチングレートは、第1エッチング液の基材の外周面に対するエッチングレートよりも低い。 In one embodiment, the surface treatment method for a substrate according to an embodiment of the present invention includes the step (II) (a step of bringing a part of the outer peripheral surface of the substrate into contact with a first etching solution accommodated in a first etching tank. ), A step (II-1) of bringing a part of the outer peripheral surface of the base material into contact with a second etching solution different from the first etching solution (sometimes referred to as “pretreatment etching solution”) is further performed. Include. The etching rate of the second etching liquid with respect to the outer peripheral surface of the base material is lower than the etching rate of the first etching liquid with respect to the outer peripheral surface of the base material.
 本発明の実施形態による基材の表面処理方法は、ある実施形態において、上記工程(II)(基材の外周面の一部を第1エッチング槽に収容された第1エッチング液に接触させる工程)の後に、基材の外周面の一部を第1エッチング液とは異なる第3エッチング液(「後処理用エッチング液」ということがある。)に接触させる工程(II‐2)をさらに包含する。第3エッチング液の基材の外周面に対するエッチングレートは、第1エッチング液の基材の外周面に対するエッチングレートよりも低い。 In one embodiment, the surface treatment method for a substrate according to an embodiment of the present invention includes the step (II) (a step of bringing a part of the outer peripheral surface of the substrate into contact with a first etching solution accommodated in a first etching tank. ), A step (II-2) of bringing a part of the outer peripheral surface of the base material into contact with a third etching solution different from the first etching solution (sometimes referred to as “post-treatment etching solution”) is further included. To do. The etching rate of the third etching liquid with respect to the outer peripheral surface of the base material is lower than the etching rate of the first etching liquid with respect to the outer peripheral surface of the base material.
 図8(a)に示すように、アルミニウム基材12の外周面の一部を第1エッチング槽51に収容された第1エッチング液E1に接触させる工程の前に、アルミニウム基材12の外周面の一部をエッチング槽52に収容された前処理用エッチング液E2に接触させる工程を行う。アルミニウム基材12の外周面の一部を第1エッチング槽51に収容された第1エッチング液E1に接触させる工程の後に、アルミニウム基材12の外周面の一部をエッチング槽52に収容された後処理用エッチング液E2に接触させる工程を行ってもよい。前処理用エッチング液および/または後処理エッチング液は、例えば第1エッチング液を希釈して得ることができる。すなわち、前処理用エッチング液および/または後処理エッチング液は、例えば第1エッチング液よりも濃度が低い。前処理用エッチング液と後処理用エッチング液とは、例えば同一のエッチング液であるが、異なるエッチング液であってもよい。 As shown in FIG. 8A, before the step of bringing a part of the outer peripheral surface of the aluminum base 12 into contact with the first etching solution E1 accommodated in the first etching tank 51, the outer peripheral surface of the aluminum base 12 A step of bringing a part of the substrate into contact with the pretreatment etching solution E2 accommodated in the etching tank 52 is performed. After the step of bringing a part of the outer peripheral surface of the aluminum base 12 into contact with the first etching solution E1 accommodated in the first etching tank 51, a part of the outer peripheral surface of the aluminum base 12 was accommodated in the etching tank 52. You may perform the process made to contact the etching liquid E2 for post-processing. The pretreatment etchant and / or the posttreatment etchant can be obtained, for example, by diluting the first etchant. That is, the concentration of the pretreatment etchant and / or the posttreatment etchant is lower than that of the first etchant, for example. The pretreatment etchant and the posttreatment etchant are, for example, the same etchant, but may be different etchants.
 図9を参照して、前処理エッチング液による表面処理を行うことによって、周期的なむらの発生が抑制されることを説明する。前処理用エッチング液E2によって表面処理を行わない場合は、図7(b)に示すように、アルミニウム基材12の外周面に直接第1エッチング液E1が作用する。これに対して、あらかじめエッチングレートが低い前処理用エッチング液E2によって表面処理を行うと、図9(a)に示すように、前処理用エッチング液E2が、アルミニウム基材12の外周面に対して直接作用する。前処理用エッチング液E2の濃度や温度を適宜調整して、前処理用エッチング液E2によっては反転されたアンチグレア構造がほとんど形成されないようにすることが好ましい。例えば、前処理用エッチング液および/また後処理用エッチング液は、例えば第1エッチング液を5倍に希釈して得ることができる。前処理用エッチング液E2に好適なエッチング液については後に実験例を示す。この後第1エッチング液E1による梨地処理工程を行うと、図9(b)に示すように、第1エッチング液E1は、アルミニウム基材12の外周面に付着した前処理用エッチング液E2を介してアルミニウム基材12の外周面に作用する。これにより、アルミニウム基材12の外周面の一部を第1エッチング液E1に接触させる際に、最初に第1エッチング液E1に接触する位置において、第1エッチング液E1による梨地処理の反応速度が特に大きくなる現象が緩和される。なお、図9(a)および(b)そして後述する図10(a)においては、分かりやすさのために、アルミニウム基材12の外周面に付着しているエッチング液を模式的に示しているが、他の図においては省略することがある。 Referring to FIG. 9, it will be described that the occurrence of periodic unevenness is suppressed by performing the surface treatment with the pretreatment etchant. When the surface treatment is not performed with the pretreatment etchant E2, the first etchant E1 directly acts on the outer peripheral surface of the aluminum base 12 as shown in FIG. On the other hand, when the surface treatment is performed in advance with the pretreatment etchant E2 having a low etching rate, the pretreatment etchant E2 is applied to the outer peripheral surface of the aluminum base 12 as shown in FIG. Act directly. It is preferable to adjust the concentration and temperature of the pretreatment etching solution E2 as appropriate so that the inverted antiglare structure is hardly formed by the pretreatment etching solution E2. For example, the pretreatment etchant and / or the posttreatment etchant can be obtained, for example, by diluting the first etchant five times. An experimental example will be given later for an etchant suitable for the pretreatment etchant E2. Thereafter, when the matte treatment process using the first etching solution E1 is performed, the first etching solution E1 passes through the pretreatment etching solution E2 attached to the outer peripheral surface of the aluminum base 12 as shown in FIG. 9B. Acting on the outer peripheral surface of the aluminum base 12. Thus, when a part of the outer peripheral surface of the aluminum base 12 is brought into contact with the first etching solution E1, the reaction rate of the satin treatment with the first etching solution E1 is first at the position where the first etching solution E1 comes into contact. In particular, the phenomenon of increasing is alleviated. In FIGS. 9A and 9B and FIG. 10A to be described later, the etching solution adhering to the outer peripheral surface of the aluminum base 12 is schematically shown for easy understanding. However, it may be omitted in other drawings.
 また、後処理用エッチング液E2による表面処理を行わない場合は、第1エッチング液E1による梨地処理工程の後に、例えば純水による洗浄工程を行うことになる。第1エッチング液と純水とは濃度が大きく異なる。すなわち、アルミニウム基材12の外周面に対するエッチングレートが大きく異なるので、これらがアルミニウム基材12の外周面において直接接触することで、反転されたアンチグレア構造のむらの原因となり得る。これに対して、第1エッチング液E1による梨地処理工程の後に、後処理用エッチング液による表面処理を行うと、第1エッチング液E1と後処理用エッチング液との濃度の差は小さいので、反転されたアンチグレア構造のむらの発生が抑制される。 Further, when the surface treatment with the post-treatment etching solution E2 is not performed, a cleaning step with, for example, pure water is performed after the matte treatment step with the first etching solution E1. The first etching solution and the pure water have greatly different concentrations. That is, since the etching rates with respect to the outer peripheral surface of the aluminum base 12 are greatly different, they can be in direct contact with each other on the outer peripheral surface of the aluminum base 12 to cause unevenness of the inverted antiglare structure. On the other hand, when the surface treatment with the post-treatment etchant is performed after the matte treatment step with the first etchant E1, the difference in concentration between the first etchant E1 and the post-treatment etchant is small, so The occurrence of uneven antiglare structure is suppressed.
 上記工程(II‐1)(梨地処理工程の前に、基材の外周面の一部を前処理用エッチング液に接触させる工程)および工程(II‐2)(梨地処理工程の後に、基材の外周面の一部を後処理用エッチング液に接触させる工程)においても、工程(I)と同様にアルミニウム基材12の長軸を中心に、アルミニウム基材12を回転させることが好ましい。上記工程(II‐1)および工程(II‐2)におけるアルミニウム基材12の回転速度は、例えば工程(I)における回転速度とほぼ同じである。 Step (II-1) (step of bringing a part of the outer peripheral surface of the substrate into contact with the pretreatment etching solution before the satin treatment step) and step (II-2) (after the satin treatment step, the substrate Also in the step of bringing a part of the outer peripheral surface of the aluminum substrate 12 into contact with the post-treatment etching solution, it is preferable to rotate the aluminum substrate 12 around the major axis of the aluminum substrate 12 as in the step (I). The rotation speed of the aluminum substrate 12 in the step (II-1) and the step (II-2) is substantially the same as the rotation speed in the step (I), for example.
 前処理用エッチング液によって表面処理する工程は、複数あってもよい。図8(a)に示すように、本発明の実施形態による基材の表面処理方法は、アルミニウム基材12の外周面の一部を前処理用エッチング液E2に接触させる工程の前に、アルミニウム基材12の外周面の一部をエッチング槽53に収容された前処理用エッチング液E3に接触させる工程をさらに包含してもよい。前処理用エッチング液E3のアルミニウム基材12の外周面に対するエッチングレートは、前処理用エッチング液E2のアルミニウム基材12の外周面に対するエッチングレートよりも低い。 There may be a plurality of surface treatment steps with the pretreatment etchant. As shown in FIG. 8 (a), the substrate surface treatment method according to the embodiment of the present invention is performed before the step of bringing a part of the outer peripheral surface of the aluminum substrate 12 into contact with the pretreatment etchant E2. You may further include the process of making a part of outer peripheral surface of the base material 12 contact the etching liquid E3 for pre-processing accommodated in the etching tank 53. FIG. The etching rate of the pretreatment etching liquid E3 with respect to the outer peripheral surface of the aluminum base 12 is lower than the etching rate of the pretreatment etching liquid E2 with respect to the outer peripheral surface of the aluminum base 12.
 後処理用エッチング液によって表面処理する工程についても同様に、複数あってもよい。アルミニウム基材12の外周面の一部を後処理用エッチング液E2に接触させる工程の後に、アルミニウム基材12の外周面の一部をエッチング槽53に収容された後処理用エッチング液E3に接触させる工程をさらに包含してもよい。後処理用エッチング液E3のアルミニウム基材12の外周面に対するエッチングレートは、後処理用エッチング液E2のアルミニウム基材12の外周面に対するエッチングレートよりも低い。 Similarly, there may be a plurality of processes for the surface treatment with the post-treatment etching solution. After the step of bringing a part of the outer peripheral surface of the aluminum base 12 into contact with the post-processing etchant E2, a part of the outer peripheral surface of the aluminum base 12 is brought into contact with the post-processing etchant E3 accommodated in the etching tank 53. You may further include the process to make. The etching rate of the post-processing etchant E3 with respect to the outer peripheral surface of the aluminum base 12 is lower than the etching rate of the post-processing etchant E2 with respect to the outer peripheral surface of the aluminum base 12.
 図8(b)に示すように、前処理用エッチング液および/または後処理用エッチング液は、第1エッチング液E1が収容されている第1エッチング槽51に収容されていてもよい。この場合、典型的には、前処理用エッチング液および/または後処理用エッチング液は、第1エッチング液E1の温度を下げることで得られる。 As shown in FIG. 8B, the pretreatment etching solution and / or the posttreatment etching solution may be stored in the first etching tank 51 in which the first etching solution E1 is stored. In this case, typically, the pretreatment etchant and / or the posttreatment etchant is obtained by lowering the temperature of the first etchant E1.
 このように、アルミニウム基材12の外周面に接触するエッチング液の、外周面に対するエッチングレートの変化を緩やかにすることで、アルミニウム基材12に形成される反転されたアンチグレア構造の円周方向におけるむらを抑制することができる。例えば、アルミニウム基材12の外周面に接触するエッチング液の濃度の変化を緩やかにすることで、アルミニウム基材12に形成される反転されたアンチグレア構造の円周方向におけるむらを抑制することができる。 As described above, the etching solution that contacts the outer peripheral surface of the aluminum base 12 has a gentle change in the etching rate with respect to the outer peripheral surface, so that the inverted antiglare structure formed in the aluminum base 12 in the circumferential direction. Unevenness can be suppressed. For example, unevenness in the circumferential direction of the inverted antiglare structure formed on the aluminum substrate 12 can be suppressed by gradual change in the concentration of the etching solution that contacts the outer peripheral surface of the aluminum substrate 12. .
 同様に、アルミニウム基材12の外周面の温度変化を緩やかにすることで、アルミニウム基材12に形成される反転されたアンチグレア構造の円周方向におけるむらを抑制することができる。例えば、第1エッチング液および/または前処理エッチング液は、梨地処理の時間のマージンを大きくするために処理温度が低く設定されることがある。このとき、処理されるアルミニウム基材12の外周面の温度が、エッチング液の温度よりも高いと、アルミニウム基材12に形成される反転されたアンチグレア構造にマクロなむらが生じることがあった。この問題に対しては、アルミニウム基材12の外周面の一部を第1エッチング液または前処理エッチング液に接触させる工程の前に、アルミニウム基材12の外周面に低温(例えばおよそ10℃)の純水を吹き付ける工程を設けることで、アルミニウム基材12の外周面の温度を下げることができるので、むらの発生を抑制することができる。低温の純水を吹き付ける工程は、例えばノズルを用いたシャワー方式で行う。 Similarly, unevenness in the circumferential direction of the inverted antiglare structure formed on the aluminum base 12 can be suppressed by moderately changing the temperature of the outer peripheral surface of the aluminum base 12. For example, the processing temperature of the first etching solution and / or the pretreatment etching solution may be set low in order to increase the time margin for the matte processing. At this time, if the temperature of the outer peripheral surface of the aluminum base 12 to be processed is higher than the temperature of the etching solution, macro unevenness may occur in the inverted antiglare structure formed on the aluminum base 12. For this problem, the temperature of the outer peripheral surface of the aluminum base 12 is low (for example, approximately 10 ° C.) before the step of bringing a part of the outer peripheral surface of the aluminum base 12 into contact with the first etching solution or the pretreatment etching solution. Since the temperature of the outer peripheral surface of the aluminum base 12 can be lowered by providing the step of spraying pure water, unevenness generation can be suppressed. The step of spraying low-temperature pure water is performed by a shower method using a nozzle, for example.
 なお、図6(a)を参照して説明した比較例の基材の表面処理方法においては、上述した基材の円周方向におけるむらが生じるという問題は生じ難い。図6(a)に示すように、比較例の基材の表面処理方法を用いてモスアイ用型を製造する場合、アルミニウム基材12の外周面を第1エッチング液E1に接触させる際に、最初に第1エッチング液E1に接触する位置は、アルミニウム基材12の底面である。モスアイ用型を用いて反射防止膜32を製造すると、線状のむらは反射防止膜32の端に現れる(図6(b)中の破線)ので、その部分を除外して反射防止膜として用いることが容易である。また、反射防止膜32に周期的なむらは現れない。モスアイ用型の長軸方向(アルミニウム基材12の長軸方向)に対応する方向にむらが生じる場合もあるが、このむらは、例えば、アルミニウム基材12をエッチング槽91に収容されたエッチング液に3秒以内に全て浸漬させることができれば、抑制することができる。しかしながら、上述したように、比較例の基材の表面処理方法は、エッチング液にかかるコストおよびエッチング槽の設置場所が増大するという点において、本発明の実施形態による基材の表面処理方法に劣る。特に、基材の長軸方向の長さHおよび/または直径Dが大きい場合には、比較例の基材の表面処理方法におけるエッチング液にかかるコストおよびエッチング槽の設置場所が増大するという問題が顕著になる。 In addition, in the surface treatment method of the base material of the comparative example described with reference to FIG. 6A, the problem that unevenness in the circumferential direction of the base material described above hardly occurs. As shown in FIG. 6A, when a moth-eye mold is manufactured using the surface treatment method for a base material of a comparative example, when the outer peripheral surface of the aluminum base material 12 is brought into contact with the first etching solution E1, first, The position in contact with the first etching solution E1 is the bottom surface of the aluminum base 12. When the antireflection film 32 is manufactured using the moth-eye mold, linear unevenness appears at the end of the antireflection film 32 (broken line in FIG. 6B), so that the portion is excluded and used as the antireflection film. Is easy. Further, no periodic unevenness appears in the antireflection film 32. In some cases, unevenness may occur in the direction corresponding to the major axis direction of the moth-eye mold (the major axis direction of the aluminum base material 12). If it can be immersed in all within 3 seconds, it can be suppressed. However, as described above, the substrate surface treatment method of the comparative example is inferior to the substrate surface treatment method according to the embodiment of the present invention in that the cost for the etching solution and the installation location of the etching tank increase. . In particular, when the length H and / or the diameter D in the major axis direction of the substrate is large, there is a problem in that the cost for the etching solution and the installation location of the etching tank increase in the surface treatment method of the substrate of the comparative example. Become prominent.
 [基材の長軸方向のむら]
 本発明の実施形態による基材の表面処理方法によって梨地処理が施されたアルミニウム基材12には、図10(b)に示すように、アルミニウム基材12の外周面に、アルミニウム基材12の長軸方向と略直交する方向に伸びる複数の筋状のむらが生じることがあった。筋状のむらは、モスアイ用型を用いて作製した反射防止膜32においても視認された。本発明者は、筋状のむらの発生を抑制するために、梨地処理のためのエッチング液をアルミニウム基材12の外周面に吹き付ける方法に想到した。
[Unevenness in the major axis direction of the substrate]
As shown in FIG. 10 (b), the aluminum base material 12 that has been subjected to the satin treatment by the surface treatment method of the base material according to the embodiment of the present invention has the aluminum base material 12 on the outer peripheral surface. A plurality of streaky irregularities extending in a direction substantially orthogonal to the major axis direction may occur. Streaky irregularities were also visually recognized in the antireflection film 32 produced using the moth-eye mold. The inventor of the present invention has come up with a method of spraying an etching solution for the satin treatment on the outer peripheral surface of the aluminum base 12 in order to suppress the occurrence of streaky unevenness.
 図10(a)~(d)を参照して説明する。図10(a)は、本発明の実施形態による基材の表面処理方法を説明するための模式的な図である。図10(b)は、アルミニウム基材12の外周面に生じる、アルミニウム基材12の長軸方向と略直交する方向に伸びる複数の筋状のむらを説明するための模式的な図である。図10(c)および(d)は、吹付用エッチング液が噴き出される角度θについて説明するための模式的な図である。 This will be described with reference to FIGS. 10 (a) to 10 (d). FIG. 10A is a schematic diagram for explaining a substrate surface treatment method according to an embodiment of the present invention. FIG. 10 (b) is a schematic diagram for explaining a plurality of streaky irregularities that extend on the outer peripheral surface of the aluminum base 12 and extend in a direction substantially orthogonal to the major axis direction of the aluminum base 12. FIGS. 10C and 10D are schematic diagrams for explaining the angle θ at which the spray etching solution is ejected.
 図10(a)に示すように、本発明の実施形態による基材の表面処理方法は、ある実施形態において、第1エッチング液E1と同じである第4エッチング液(吹付用エッチング液ということがある。)E4をアルミニウム基材12の外周面に吹き付ける工程(III)をさらに包含する。 As shown to Fig.10 (a), the surface treatment method of the base material by embodiment of this invention WHEREIN: In one embodiment, it is the 4th etching liquid (it is called the etching liquid for spraying) which is the same as the 1st etching liquid E1. There is further included the step (III) of spraying E4 on the outer peripheral surface of the aluminum base 12.
 吹付用エッチング液E4をアルミニウム基材12の外周面に吹き付ける工程(III)は、例えば、アルミニウム基材12の外周面の一部を第1エッチング槽51に収容された第1エッチング液E1に接触させる工程(上記工程(II))と同時に行われ、吹付用エッチング液E4は、アルミニウム基材12の外周面の内、第1エッチング液E1に接触している箇所の近傍に吹き付けられる。「アルミニウム基材12の外周面の内、第1エッチング液E1に接触している箇所の近傍」は、アルミニウム基材12の外周面の内、第1エッチング液E1に接触している箇所を含む。 In the step (III) of spraying the spraying etchant E4 on the outer peripheral surface of the aluminum substrate 12, for example, a part of the outer peripheral surface of the aluminum substrate 12 is brought into contact with the first etchant E1 accommodated in the first etching tank 51. The spraying etching solution E4 is sprayed in the vicinity of the portion in contact with the first etching solution E1 in the outer peripheral surface of the aluminum substrate 12. “The vicinity of the portion in contact with the first etching solution E1 in the outer peripheral surface of the aluminum base 12” includes the portion in contact with the first etching solution E1 in the outer peripheral surface of the aluminum base 12. .
 アルミニウム基材12の光学像を図11(a)および(b)に示す。図11(a)は、上記工程(III)(吹付用エッチング液をアルミニウム基材12の外周面に吹き付ける工程)を含まない表面処理方法によって梨地処理が施されたアルミニウム基材12であり、図11(b)は、上記工程(III)(吹付用エッチング液をアルミニウム基材12の外周面に吹き付ける工程)を含む表面処理方法によって梨地処理が施されたアルミニウム基材12である。図11(a)のアルミニウム基材12の表面には筋状のむらが現れているが、図11(b)のアルミニウム基材12においては現れていないことが分かる。 An optical image of the aluminum substrate 12 is shown in FIGS. 11 (a) and 11 (b). Fig.11 (a) is the aluminum base material 12 by which the matte process was given by the surface treatment method which does not include the said process (III) (process which sprays the etching liquid for spraying on the outer peripheral surface of the aluminum base material 12), 11 (b) is the aluminum substrate 12 that has been subjected to a satin treatment by the surface treatment method including the above-described step (III) (step of spraying the spraying etching solution onto the outer peripheral surface of the aluminum substrate 12). It can be seen that streaky irregularities appear on the surface of the aluminum substrate 12 in FIG. 11A, but not on the aluminum substrate 12 in FIG.
 筋状のむらは、アルミニウム基材12の外周面におけるエッチング液の液膜の厚さが一様でないことに起因すると考えられる。本発明者の検討によると、アルミニウム基材12の外周面の内、エッチング液の液膜の厚さが薄い箇所はマクロな凸部12pの密度が高く、エッチング液の液膜の厚さが厚い箇所はマクロな凸部12pの密度が低い傾向にあることが確認された。すなわち、エッチング液の液膜の厚さが薄い箇所は梨地処理の反応速度が速く、エッチング液の液膜の厚さが厚い箇所は梨地処理の反応速度が遅いと考えられる。吹付用エッチング液E4を、アルミニウム基材12の外周面の内、第1エッチング液E1に接触している箇所の近傍に吹き付けると、アルミニウム基材12の外周面における液膜の厚さが均一にされることによって、筋状のむらの発生を抑制することができると考えられる。 The striped unevenness is considered to be caused by the uneven thickness of the etchant liquid film on the outer peripheral surface of the aluminum base 12. According to the study of the present inventor, the portion of the outer peripheral surface of the aluminum substrate 12 where the thickness of the etching solution liquid film is thin has a high density of the macroscopic projections 12p, and the etching solution liquid film is thick. It was confirmed that the density tends to be low in the density of the macro convex portions 12p. That is, it is considered that the reaction rate of the satin treatment is high at a portion where the thickness of the etchant liquid film is thin, and the reaction rate of the satin treatment is slow at a portion where the thickness of the etchant liquid film is thick. When the spraying etching solution E4 is sprayed in the vicinity of the portion of the outer peripheral surface of the aluminum substrate 12 that is in contact with the first etching solution E1, the thickness of the liquid film on the outer peripheral surface of the aluminum substrate 12 becomes uniform. By doing so, it is considered that the occurrence of streaky irregularities can be suppressed.
 吹付用エッチング液E4をアルミニウム基材12の外周面に吹き付ける工程(III)は、例えば、基材の長軸方向が水平方向と略平行になるように基材を配置した状態で、基材の長軸を中心に、基材を回転させる工程(上記工程(I))と同時に行われ、吹付用エッチング液E4は、アルミニウム基材12の外周面の内、第1エッチング液E1に接触している箇所の近傍であって、上記工程(I)において第1エッチング槽51に収容された第1エッチング液E1から遠ざかるように回転している箇所に吹き付けられる。 In the step (III) of spraying the spray etching solution E4 on the outer peripheral surface of the aluminum base material 12, for example, the base material is arranged so that the major axis direction of the base material is substantially parallel to the horizontal direction. It is performed simultaneously with the step of rotating the substrate around the major axis (the step (I) above), and the spray etching solution E4 contacts the first etching solution E1 in the outer peripheral surface of the aluminum substrate 12. It is sprayed to the location which is rotating so that it may be away from the 1st etching liquid E1 accommodated in the 1st etching tank 51 in the said process (I) vicinity.
 吹付用エッチング液E4をアルミニウム基材12の外周面に吹き付ける工程(III)は、例えばスプレーノズルを用いて行う。スプレーノズルとしては、例えば扇形1流体ノズル(例えばスプレーイングシステムス製のHB1/4VV-SS11004)を用いることができる。複数のスプレーノズルをアルミニウム基材12の長軸方向に沿って並べて配置してもよい。複数のスプレーノズルを用いることで、アルミニウム基材12の外周面の内、第1エッチング液E1に接触している箇所に、均一に吹付用エッチング液E4を吹き付けることができる。例えば、長軸方向の長さHが1.6mであるアルミニウム基材12の表面処理において、16個のスプレーノズルを用いて吹付用エッチング液E4を吹き付けてもよい。 The step (III) of spraying the spray etching solution E4 on the outer peripheral surface of the aluminum base 12 is performed using, for example, a spray nozzle. As the spray nozzle, for example, a fan-shaped one-fluid nozzle (for example, HB1 / 4VV-SS11004 manufactured by Spraying Systems) can be used. A plurality of spray nozzles may be arranged side by side along the long axis direction of the aluminum base 12. By using a plurality of spray nozzles, it is possible to uniformly spray the spraying etching solution E4 on the portion of the outer peripheral surface of the aluminum base 12 that is in contact with the first etching solution E1. For example, in the surface treatment of the aluminum base 12 having a length H in the major axis direction of 1.6 m, the spray etching solution E4 may be sprayed using 16 spray nozzles.
 それぞれのスプレーノズルから吹き付けられる吹付用エッチング液E4の流量は、例えば1.0L/minであり、0.6L/min~1.2L/minであることが好ましい。ポンプは、吹付用エッチング液E4の流量および圧力等に応じて、公知のポンプから適宜選択して用いることができる。例えば、グルンドフォス製のCHI2-30AWGBUBVを用いることができる。 The flow rate of the spray etching solution E4 sprayed from each spray nozzle is, for example, 1.0 L / min, and preferably 0.6 L / min to 1.2 L / min. The pump can be appropriately selected from known pumps according to the flow rate and pressure of the spray etching solution E4. For example, CHI2-30AWGBUBV manufactured by Grundfos can be used.
 吹付用エッチング液E4をアルミニウム基材12の外周面に吹き付ける工程(III)において、吹付用エッチング液E4が噴き出される角度θは、例えば鉛直方向から45°以上90°未満傾斜している。図10(c)に示すように、水平方向に対する傾斜角度、すなわち、第1エッチング槽51に収容された第1エッチング液E1の表面に対する傾斜角度は、90°-θである。角度θが45°未満であると、第1エッチング槽51に収容された第1エッチング液E1の表面に対する傾斜角度(90°-θ)が大きいので、吹付用エッチング液E4が、第1エッチング槽51に収容された第1エッチング液E1の表面(液面)で跳ねてアルミニウム基材12の表面に付着することがあった。図10(d)に示すように、角度θが90°以上であると、吹付用エッチング液E4が、アルミニウム基材12の表面で跳ねて飛散することがあった。また、角度θが90°以上であると、アルミニウム基材12の外周面における液膜の厚さを均一にする効果が得られないことがあった。 In the step (III) of spraying the spraying etchant E4 onto the outer peripheral surface of the aluminum base 12, the angle θ at which the spraying etchant E4 is sprayed is, for example, 45 ° or more and less than 90 ° from the vertical direction. As shown in FIG. 10C, the inclination angle with respect to the horizontal direction, that is, the inclination angle with respect to the surface of the first etching solution E1 accommodated in the first etching tank 51 is 90 ° −θ. If the angle θ is less than 45 °, the inclination angle (90 ° −θ) with respect to the surface of the first etching liquid E1 accommodated in the first etching tank 51 is large, so that the spraying etching liquid E4 is in the first etching tank. In some cases, the surface of the first etching solution E1 accommodated in the substrate 51 may jump on the surface (liquid surface) of the first etching solution E1 and adhere to the surface of the aluminum base 12. As shown in FIG. 10 (d), when the angle θ is 90 ° or more, the spraying etching solution E 4 may splash and scatter on the surface of the aluminum base 12. When the angle θ is 90 ° or more, the effect of making the thickness of the liquid film on the outer peripheral surface of the aluminum base 12 uniform may not be obtained.
 以下に、実験例を示して、本発明の実施形態によるモスアイ用型およびモスアイ用型の製造方法をさらに詳細に説明する。 Hereinafter, with reference to experimental examples, the moth-eye mold and the moth-eye mold manufacturing method according to the embodiment of the present invention will be described in more detail.
 [梨地処理のためのエッチング液の組成]
 梨地処理のためのエッチング液の組成を変えて、梨地処理工程を行った。
[Composition of etching solution for satin treatment]
The satin treatment process was performed by changing the composition of the etching solution for the satin treatment.
 下記表1に示すように、実験例1-1、実験例2-1、実験例3-1および4-1は、梨地処理のためのエッチング液中のフッ化アンモニウム、硫酸アンモニウムおよびリン酸二水素アンモニウムの割合を5:2:2に固定したまま、これらの濃度を変えて、アルミニウム基材の小片(5cm×2cm)に対して梨地処理工程を行った。表1に示すように、実験例1-1で用いた梨地処理のためのエッチング液は、フッ化アンモニウム、硫酸アンモニウムおよびリン酸二水素アンモニウムを、それぞれ、5mass%、2mass%および2mass%含む。実験例2-1~実験例4-1で用いた梨地処理のためのエッチング液は、それぞれ、実験例1-1で用いたエッチング液を2倍、3倍、5倍に希釈したものである。 As shown in Table 1 below, Experimental Example 1-1, Experimental Example 2-1, Experimental Example 3-1 and 4-1 are ammonium fluoride, ammonium sulfate and dihydrogen phosphate in an etching solution for satin treatment. While the ratio of ammonium was fixed at 5: 2: 2, these concentrations were changed, and a satin treatment process was performed on small pieces (5 cm × 2 cm) of the aluminum base material. As shown in Table 1, the etching solution for the satin treatment used in Experimental Example 1-1 contains 5 mass%, 2 mass%, and 2 mass% of ammonium fluoride, ammonium sulfate, and ammonium dihydrogen phosphate, respectively. The etching solution for the satin treatment used in Experimental Examples 2-1 to 4-1 is obtained by diluting the etching solution used in Experimental Example 1-1 by 2 times, 3 times, and 5 times, respectively. .
 アルミニウム基材は、Al-Mg-Si系のアルミニウム合金として、JIS A6063から形成されたものを用いた。JIS A6063は、下記の組成(mass%)を有している。
 Si:0.20~0.60%、Fe:0.35%以下、Cu:0.10%以下、Mn:0.10%以下、Mg:0.45~0.9%、Cr:0.10%以下、Zn:0.10%以下、Ti:0.10%以下、その他:個々は0.05%以下で、全体は0.15%以下、残部:Al
As the aluminum base material, an Al—Mg—Si based aluminum alloy formed from JIS A6063 was used. JIS A6063 has the following composition (mass%).
Si: 0.20 to 0.60%, Fe: 0.35% or less, Cu: 0.10% or less, Mn: 0.10% or less, Mg: 0.45 to 0.9%, Cr: 0. 10% or less, Zn: 0.10% or less, Ti: 0.10% or less, Other: Individual is 0.05% or less, the whole is 0.15% or less, the balance: Al
 アルミニウム基材(JIS A6063)は、間接押出加工(マンドレル法)による熱間押出し法によって形成され、冷間引抜き加工が施された後、バイト切削による鏡面加工が行われたものを用いた。アルミニウム基材に対して、梨地処理工程の前に、アルカリ洗浄工程を行った。アルカリ性のエッチング液として、有機アルカリ性洗浄剤(横浜油脂工業株式会社製、製品名:セミクリーンLC-2)を濃度8mass%で含む水溶液を用いた。横浜油脂工業株式会社製のセミクリーンLC-2は、以下の組成を含む:2-アミノエタノール(12mass%)、キレート剤(2mass%~6mass%)、界面活性剤(2mass%~6mass%)。アルミニウム基材を、40℃のアルカリ性のエッチング液に30分間浸漬した(アルカリ洗浄工程)。その後、アルミニウム基材を純水に浸漬することで水洗し、水洗後乾燥させずに梨地処理工程のためのエッチング液(温度:10℃)に所定の時間浸漬した(梨地処理工程)。その後、アルミニウム基材を純水に浸漬することで水洗し、エアブローで乾燥させた。 The aluminum substrate (JIS A6063) was formed by a hot extrusion method using indirect extrusion (mandrel method), subjected to cold drawing, and then subjected to mirror surface processing by cutting. An alkali cleaning process was performed on the aluminum substrate before the satin treatment process. As an alkaline etching solution, an aqueous solution containing an organic alkaline detergent (product name: Semi-clean LC-2, manufactured by Yokohama Oil & Fat Co., Ltd.) at a concentration of 8 mass% was used. Semi-clean LC-2 manufactured by Yokohama Oil & Fat Co., Ltd. has the following composition: 2-aminoethanol (12 mass%), chelating agent (2 mass% to 6 mass%), and surfactant (2 mass% to 6 mass%). The aluminum substrate was immersed in an alkaline etching solution at 40 ° C. for 30 minutes (alkali cleaning step). Then, the aluminum base material was immersed in pure water for washing with water, and after rinsing with water, the aluminum substrate was immersed in an etching solution (temperature: 10 ° C.) for a satin treatment process for a predetermined time (pear texture treatment process). Thereafter, the aluminum substrate was washed by immersing it in pure water and dried by air blow.
 実験例1-1~実験例4-1について、それぞれのアルミニウム基材を型として用いて、アンチグレア膜を形成した。アンチグレア膜は、アルミニウム基材の表面に離型剤(ダイキン工業株式会社製のオプツールDSX)を塗布した後、ウレタンアクリレート系の紫外線硬化樹脂を塗布し、TACフィルム上に転写した状態で紫外線を照射して硬化させることで、形成した。ここで用いた試料フィルムのように、このように、モスアイ構造を有さず、アンチグレア構造だけを有する膜を、アンチグレア膜ということがある。 For Experimental Examples 1-1 to 4-1, an antiglare film was formed using each aluminum substrate as a mold. The anti-glare film is coated with a mold release agent (Optool DSX manufactured by Daikin Industries, Ltd.) on the surface of an aluminum substrate, then coated with a urethane acrylate UV curable resin, and irradiated with UV light in a state of being transferred onto a TAC film. And then cured. As in the sample film used here, a film that does not have a moth-eye structure and has only an antiglare structure is sometimes referred to as an antiglare film.
 実験例1-1~4-1のアルミニウム基材およびアルミニウム基材から得られたアンチグレア膜(試料フィルム)を用いて、アンチグレア機能を評価した結果を表1に示す。図12(a)~(d)に、実験例1-1~4-1の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示し、図12(e)~(h)に、実験例1-1~4-1のアルミニウム基材から形成されたアンチグレア膜の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール20μm)を示す。光学顕微鏡像は、光学顕微鏡(オリンパス株式会社製、製品名:BH2-UCB(BX-16))を用いて取得した。以下の光学顕微鏡像も同様である。SEM像は、電界放出型走査電子顕微鏡(株式会社日立ハイテクノロジーズ製、製品名:S-4700)を用いて取得した。以下のSEM像も同様である。 Table 1 shows the results of evaluating the antiglare function using the aluminum base material of Experimental Examples 1-1 to 4-1 and the antiglare film (sample film) obtained from the aluminum base material. FIGS. 12A to 12D show optical microscopes when the surface of an aluminum substrate having an inverted antiglare structure formed by the matte treatment process of Experimental Examples 1-1 to 4-1 is observed from the vertical direction. FIGS. 12E to 12H show SEM images when the surface of the antiglare film formed from the aluminum base material of Experimental Examples 1-1 to 4-1 is observed from the vertical direction. (Full scale 20 μm in SEM image). The optical microscope image was acquired using an optical microscope (manufactured by Olympus Corporation, product name: BH2-UCB (BX-16)). The same applies to the following optical microscope images. The SEM image was acquired using a field emission scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, product name: S-4700). The same applies to the following SEM images.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中の「マクロな凸部12p」は、アルミニウム基材12に形成されたマクロな凸部12pの表面の法線方向から見たときの2次元的な大きさ(面積円相当径)を、光学顕微鏡像から見積もった値である。 Macro-convex portion 12p” in Table 1 indicates a two-dimensional size (area equivalent circle diameter) when viewed from the normal direction of the surface of the macro-protrusion portion 12p formed on the aluminum base 12. It is a value estimated from an optical microscope image.
 表1中の「ヘイズ値」は、アンチグレア膜のヘイズ値を測定した結果を示す。ヘイズ値は、日本電色工業株式会社製のヘーズメーターNDH2000を用いて、(拡散透過率/全光線透過率)×100から求めた。 “Haze value” in Table 1 indicates the result of measuring the haze value of the antiglare film. The haze value was obtained from (diffuse transmittance / total light transmittance) × 100 using a haze meter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.
 表1中の「防眩性」は、アンチグレア膜を、液晶テレビ(AQUOS LC-UD1、60型、シャープ株式会社製、行方向のドットピッチ:約115μm、列方向のドットピッチ:約345μm)のディスプレイパネルの表面に貼りつけ、蛍光灯の映り込みを目視で観察することによって、防眩性の有無を判断した結果である。表1の「防眩性」について「○」は、防眩性があると判断されたことを示し、「×」は、防眩性がないと判断されたことを示す。一般に、ヘイズ値の大きいアンチグレア膜は、アンチグレア機能に優れ、防眩性に優れている。 “Anti-glare property” in Table 1 indicates that an anti-glare film is formed on a liquid crystal television (AQUAS LC-UD1, type 60, manufactured by Sharp Corporation, dot pitch in the row direction: about 115 μm, dot pitch in the column direction: about 345 μm). It is the result of judging the presence or absence of anti-glare property by affixing on the surface of a display panel and observing the reflection of a fluorescent lamp visually. Regarding “Anti-Glare” in Table 1, “◯” indicates that it is determined that there is anti-glare, and “X” indicates that it is determined that there is no anti-glare. In general, an antiglare film having a large haze value is excellent in antiglare function and antiglare property.
 表1中の「ぎらつき」は、アンチグレア膜を、液晶テレビ(AQUOS LC-UD1、60型、シャープ株式会社製、行方向のドットピッチ:約115μm、列方向のドットピッチ:約345μm)のディスプレイパネルの表面に貼りつけ、全面緑色表示を行い、膜を介した像について、ぎらつきが見えるかどうか聞き取りを行った結果である。聞き取りは5人に対して行い、表1の「ぎらつき」について「○」は、「ぎらつきが見える」と答えた人数が5人中0人であることを示し、「△」は1人以上3人以下であることを示し、「×」は4人以上であることを示す。 “Glitter” in Table 1 indicates that the anti-glare film is a display of a liquid crystal television (AQUAS LC-UD1, type 60, manufactured by Sharp Corporation, dot pitch in the row direction: about 115 μm, dot pitch in the column direction: about 345 μm) This is a result of pasting on the surface of the panel, displaying the entire surface in green, and hearing whether the image through the film is glaring. Interviews were conducted with 5 people. For “Glitter” in Table 1, “○” indicates that 0 out of 5 people answered “Glitter is visible”, and “△” was 1 The above indicates that the number is 3 or less, and “x” indicates that the number is 4 or more.
 ぎらつきは、ディスプレイパネルが全体的にぎらぎらして見える現象であり、特に全面緑色表示を行ったときに顕著に見える傾向にあった。ぎらつきは、マクロな凸部12pの平均隣接間距離(図1(c)中のADint参照)と、ディスプレイパネルの行方向ドットピッチPx(図22参照)および/または列方向ドットピッチPyとの関係によって、アンチグレア膜に形成されたアンチグレア構造とディスプレイパネルのドットとが互いに干渉することにより生じると考えられる。ぎらつきは、マクロな凸部12pの平均隣接間距離がドットピッチよりも小さい場合にも生じることがあった。ぎらつきは、マクロな凸部12pの平均隣接間距離およびマクロな凸部12pの2次元的な大きさが、ドットピッチよりも十分に小さいと抑制できる傾向にあった。 The glare is a phenomenon in which the display panel appears to be glaring as a whole, and it tends to be noticeable especially when the entire screen is displayed in green. The glare is caused by the average distance between adjacent macro projections 12p (see AD int in FIG. 1C), the row direction dot pitch Px (see FIG. 22) and / or the column direction dot pitch Py of the display panel. From this relationship, it is considered that the antiglare structure formed in the antiglare film and the dots of the display panel interfere with each other. The glare may also occur when the average distance between adjacent macro convex portions 12p is smaller than the dot pitch. The glare tends to be suppressed when the average distance between adjacent macro projections 12p and the two-dimensional size of the macro projection 12p are sufficiently smaller than the dot pitch.
 表1および図12から分かるように、梨地処理のためのエッチング液の濃度によって、アルミニウム基材12に形成されるマクロな凸部12pの大きさが変わる。実験例1-1において得られたアンチグレア膜は、防眩性に優れ、ぎらつきを抑制することができる。実験例1-1のエッチング液を2倍に希釈したエッチング液を用いた実験例2-1においては、マクロな凸部12pの2次元的な大きさ(約15μm)が、実験例1-1(約10μm)よりも大きく、実験例1-1のエッチング液を3倍に希釈したエッチング液を用いた実験例3-1においては、マクロな凸部12pの2次元的な大きさはさらに大きい(約20μm)。実験例2-1のアンチグレア膜は、ぎらつきを抑制する観点からは、実験例1-1のアンチグレア膜に劣り、実験例3-1のアンチグレア膜は、ぎらつきを抑制することができなかった。 As can be seen from Table 1 and FIG. 12, the size of the macro convex portion 12p formed on the aluminum base 12 varies depending on the concentration of the etching solution for the satin treatment. The antiglare film obtained in Experimental Example 1-1 has excellent antiglare properties and can suppress glare. In Experimental Example 2-1, which uses an etching solution obtained by diluting the etching solution of Experimental Example 1-1 twice, the two-dimensional size (about 15 μm) of the macro convex portion 12p is different from Experimental Example 1-1. In Experimental Example 3-1, which is larger than (about 10 μm) and uses an etching solution obtained by diluting the etching solution of Experimental Example 1-1 three times, the two-dimensional size of the macro-shaped protrusion 12p is even larger. (About 20 μm). The antiglare film of Experimental Example 2-1 was inferior to the antiglare film of Experimental Example 1-1 from the viewpoint of suppressing glare, and the antiglare film of Experimental Example 3-1 could not suppress glare. .
 一方で、実験例1-1のエッチング液を5倍に希釈したエッチング液を用いた実験例4-1においては、アルミニウム基材12の表面にマクロな凸部12pが形成されなかった(図12(d))。その結果、実験例4-1のアンチグレア膜は、防眩性を有しなかった。図12(d)の光学顕微鏡像中の黒点は、アルカリ洗浄工程によって発生したガルバニック腐食である。アルカリ洗浄工程において発生するガルバニック腐食については後述する。 On the other hand, in Experimental Example 4-1, using an etching solution obtained by diluting the etching solution of Experimental Example 1-1 five times, the macro-projections 12p were not formed on the surface of the aluminum base 12 (FIG. 12). (D)). As a result, the antiglare film of Experimental Example 4-1 did not have antiglare properties. The black spots in the optical microscope image of FIG. 12D are galvanic corrosion generated by the alkali cleaning process. Galvanic corrosion that occurs in the alkali cleaning step will be described later.
 実験例4-1で用いたエッチング液は、アルミニウム基材12の表面にマクロな凸部12pを形成しないので、前処理用エッチング液および/または後処理用エッチング液として好適に用いられる。 The etching solution used in Experimental Example 4-1 does not form the macro-projections 12p on the surface of the aluminum substrate 12, and is therefore preferably used as a pretreatment etching solution and / or a posttreatment etching solution.
 表2に示す実験例1-2、実験例1-3、実験例2-2、実験例3-2および実験例4-2は、表1の実験例と梨地処理の時間が異なる。その他の実験条件および評価手順は、表1について説明したものと同じである。 The experimental example 1-2, the experimental example 1-3, the experimental example 2-2, the experimental example 3-2, and the experimental example 4-2 shown in Table 2 are different from the experimental example in Table 1 in the matte treatment time. Other experimental conditions and evaluation procedures are the same as those described for Table 1.
 実験例1-2、実験例1-3、実験例2-2、実験例3-2および実験例4-2のアルミニウム基材およびアルミニウム基材から得られたアンチグレア膜(試料フィルム)を用いて、アンチグレア機能を評価した結果を表2に示す。図13(a)~(e)に実験例1-2、実験例1-3、実験例2-2、実験例3-2および実験例4-2の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示す。 Using the aluminum substrate of Experimental Example 1-2, Experimental Example 1-3, Experimental Example 2-2, Experimental Example 3-2, and Experimental Example 4-2 and the antiglare film (sample film) obtained from the aluminum substrate The results of evaluating the antiglare function are shown in Table 2. 13 (a) to (e) are inverted formed by the satin treatment process of Experimental Example 1-2, Experimental Example 1-3, Experimental Example 2-2, Experimental Example 3-2 and Experimental Example 4-2. The optical microscope image (50 times) when the surface of the aluminum base material which has an anti-glare structure is observed from the perpendicular direction is shown.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1と表2を見比べると、アンチグレア膜のぎらつきおよび防眩性の評価結果は、梨地処理の時間によっては変化しなかったことが分かる。アンチグレア膜のぎらつきおよび防眩性には、梨地処理のためのエッチング液の濃度が大きく寄与していることが分かる。また、実験例4-2で用いたエッチング液は、実験例4-1で用いたエッチング液と同じように、アルミニウム基材12の表面にマクロな凸部12pを形成しないので、前処理用エッチング液および/または後処理用エッチング液として好適に用いられる。 Comparing Table 1 and Table 2, it can be seen that the glare and antiglare evaluation results of the antiglare film did not change depending on the time of the satin treatment. It can be seen that the concentration of the etching solution for the satin treatment greatly contributes to the glare and antiglare property of the antiglare film. In addition, the etching solution used in Experimental Example 4-2 does not form the macro-convex portion 12p on the surface of the aluminum base 12 like the etching solution used in Experimental Example 4-1. It is suitably used as a solution and / or an etching solution for post-treatment.
 続いて、表3に示すように、梨地処理のためのエッチング液中のフッ化アンモニウム、硫酸アンモニウムおよびリン酸二水素アンモニウムの割合を5:2:2から変化させて、実験を行った。実験例5-1~5-4は、実験例1-1で用いた梨地処理のためのエッチング液の組成から、フッ化アンモニウム、硫酸アンモニウムおよびリン酸二水素アンモニウムのいずれかの割合を変化させたものである。実験例6-1および6-2は、実験例2-1で用いた梨地処理のためのエッチング液の組成から、フッ化アンモニウム、硫酸アンモニウムおよびリン酸二水素アンモニウムのいずれかの割合を変化させたものである。実験条件および評価手順は、表1について説明したものと基本的に同じである。ただし、梨地処理の時間は表1のものと異なる。 Subsequently, as shown in Table 3, the experiment was performed by changing the ratio of ammonium fluoride, ammonium sulfate, and ammonium dihydrogen phosphate in the etching solution for the satin treatment from 5: 2: 2. In Experimental Examples 5-1 to 5-4, the ratio of any of ammonium fluoride, ammonium sulfate, and ammonium dihydrogen phosphate was changed from the composition of the etching solution for the satin treatment used in Experimental Example 1-1. Is. In Experimental Examples 6-1 and 6-2, the ratio of any one of ammonium fluoride, ammonium sulfate, and ammonium dihydrogen phosphate was changed from the composition of the etching solution for the satin treatment used in Experimental Example 2-1. Is. Experimental conditions and evaluation procedures are basically the same as those described for Table 1. However, the satin treatment time is different from that in Table 1.
 実験例5-1~5-4および実験例6-1~6-2のアルミニウム基材およびアルミニウム基材から得られたアンチグレア膜(試料フィルム)を用いて、アンチグレア機能を評価した結果を表3に示す。図14(a)~(d)に、実験例5-1~5-4の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示し、図14(e)および(f)に、実験例5-3および5-4のアルミニウム基材から形成されたアンチグレア膜の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール20μm)を示す。図15(a)および(b)に、実験例6-1および6-2の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示す。 Table 3 shows the results of evaluation of the antiglare function using the aluminum base materials of Experimental Examples 5-1 to 5-4 and Experimental Examples 6-1 to 6-2 and the antiglare films (sample films) obtained from the aluminum base materials. Shown in FIGS. 14A to 14D show optical microscopes when the surface of an aluminum substrate having an inverted antiglare structure formed by the satin treatment process of Experimental Examples 5-1 to 5-4 is observed from the vertical direction. FIGS. 14 (e) and 14 (f) show SEM images when the surface of the antiglare film formed from the aluminum base material in Experimental Examples 5-3 and 5-4 is observed from the vertical direction. (Full scale 20 μm in SEM image). FIGS. 15 (a) and 15 (b) show optical microscopes when the surface of an aluminum substrate having an inverted antiglare structure formed by the satin treatment process of Experimental Examples 6-1 and 6-2 is observed from the vertical direction. An image (50 times) is shown.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実験例5-3の結果(表3および図14)を実験例1-1の結果と比較することにより、フッ化アンモニウムの含有量を減らすと、アンチグレア膜のヘイズ値の値が小さくなり、アルミニウム基材12に形成されたマクロな凸部12pの2次元的な大きさが大きくなる傾向にあることが分かる。この傾向は、実験例1-1のエッチング液を2倍に希釈したとき(実験例2-1)と同様である。実験例5-4において、フッ化アンモニウムの含有量をさらに減らすと、実験例1-1のエッチング液を5倍に希釈したとき(実験例4-1)と同様に、マクロな凸部12pが形成されなかった。 By comparing the results of Experimental Example 5-3 (Table 3 and FIG. 14) with the results of Experimental Example 1-1, when the ammonium fluoride content was reduced, the haze value of the antiglare film was reduced, and aluminum It can be seen that the two-dimensional size of the macro convex portion 12p formed on the substrate 12 tends to increase. This tendency is the same as that when the etching solution of Experimental Example 1-1 was diluted twice (Experimental Example 2-1). In Experimental Example 5-4, when the content of ammonium fluoride is further reduced, the macro-projection 12p is formed in the same manner as when the etching solution of Experimental Example 1-1 was diluted five times (Experimental Example 4-1). Not formed.
 実験例5-2および実験例6-1のように、リン酸二水素アンモニウムを含まないエッチング液によっても、防眩性を有し、ぎらつきを抑制することができるアンチグレア膜を作製することができた。実験例5-2は、実験例1-1(梨地処理時間:2分)と比較して梨地処理時間が長く、また、実験例6-1は、実験例2-1(梨地処理時間:2分)と比較して梨地処理時間が長いので、リン酸二水素アンモニウムを含まないエッチング液を用いると梨地処理の時間のマージンを大きくすることができるという利点が得られ得る。ただし、リン酸二水素アンモニウムは梨地処理のむらを抑制する効果があるので、エッチング液はリン酸二水素アンモニウムを含むことが好ましい。また、リン酸二水素アンモニウムを含まないエッチング液においては、梨地処理工程において泡が発生することがあった。泡が発生することによる梨地処理のむらを抑制するためには、消泡剤を適宜添加することが好ましい場合もある。 As in Experimental Example 5-2 and Experimental Example 6-1, it is possible to produce an antiglare film that has antiglare properties and can suppress glare even with an etching solution that does not contain ammonium dihydrogen phosphate. did it. Experimental example 5-2 has a longer satin processing time than experimental example 1-1 (pear finishing time: 2 minutes), and experimental example 6-1 has experimental example 2-1 (pear finishing time: 2). As compared with the case of (min), the matte treatment time is longer, and therefore an advantage that the margin of the matte treatment time can be increased by using an etching solution not containing ammonium dihydrogen phosphate. However, since ammonium dihydrogen phosphate has an effect of suppressing unevenness of the satin treatment, the etching solution preferably contains ammonium dihydrogen phosphate. In the etching solution not containing ammonium dihydrogen phosphate, bubbles may be generated in the satin treatment process. In order to suppress unevenness of the satin treatment due to the generation of bubbles, it may be preferable to add an antifoaming agent as appropriate.
 実験例5-1および実験例6-2のように、硫酸アンモニウムを含まないエッチング液を用いると、硫酸アンモニウムを含むエッチング液を用いた場合に比べて、マクロな凸部12pの2次元的な大きさが大きくなる傾向にあった。すなわち、実験例5-1のアルミニウム基材に形成されたマクロな凸部12pの2次元的な大きさは、実験例1-1に比べて大きく、実験例6-2のアルミニウム基材に形成されたマクロな凸部12pの2次元的な大きさは、実験例2-1に比べて大きかった。実験例5-1のアンチグレア膜は、実験例1-1のアンチグレア膜に比べてぎらつきを抑制する観点で劣る。実験例6-2のアンチグレア膜は、ぎらつきを抑制することができなかった。 As in Experimental Example 5-1 and Experimental Example 6-2, when an etching solution containing no ammonium sulfate is used, the two-dimensional size of the macro-shaped convex portion 12p is larger than when an etching solution containing ammonium sulfate is used. Tended to increase. That is, the two-dimensional size of the macro protrusion 12p formed on the aluminum base material of Experimental Example 5-1 is larger than that of Experimental Example 1-1, and is formed on the aluminum base material of Experimental Example 6-2. The two-dimensional size of the macro-convex portion 12p thus formed was larger than that of Experimental Example 2-1. The antiglare film of Experimental Example 5-1 is inferior to the antiglare film of Experimental Example 1-1 in terms of suppressing glare. The antiglare film of Experimental Example 6-2 could not suppress glare.
 [アルカリ洗浄工程のためのアルカリ性のエッチング液の組成]
 まず、アルカリ性のエッチング液によるアルカリ洗浄工程の効果を調べた。
[Composition of alkaline etching solution for alkali cleaning process]
First, the effect of the alkali cleaning step using an alkaline etching solution was examined.
 下記表4のように条件を変えて、梨地処理工程の前に、酸性の洗浄液、中性の洗浄液およびアルカリ性の洗浄液(アルカリ性のエッチング液ということもある。)によって洗浄工程を行った。酸性の洗浄液としては、酸性の洗浄剤(横浜油脂工業株式会社製、製品名:スケールカットP)を濃度3mass%で含む水溶液を用いた。横浜油脂工業株式会社製のスケールカットPは、酸としてクエン酸を5mass%~15mass%含む。中性の洗浄液としては、中性の洗浄剤(三和油化工業株式会社製、製品名:サンクリーンHS)を濃度3mass%で含む水溶液を用い、アルカリ性のエッチング液としては、有機アルカリ性洗浄剤(横浜油脂工業株式会社製、製品名:セミクリーンLC-2)を濃度8mass%で含む水溶液を用いた。 The conditions were changed as shown in Table 4 below, and the washing step was performed with an acidic washing solution, a neutral washing solution and an alkaline washing solution (sometimes called an alkaline etching solution) before the satin treatment step. As the acidic cleaning liquid, an aqueous solution containing an acidic cleaning agent (manufactured by Yokohama Oil & Fat Co., Ltd., product name: scale cut P) at a concentration of 3 mass% was used. Scale Cut P manufactured by Yokohama Oil & Fat Co., Ltd. contains 5 mass% to 15 mass% of citric acid as an acid. As a neutral cleaning solution, an aqueous solution containing a neutral cleaning agent (manufactured by Sanwa Oil Chemical Co., Ltd., product name: Sun Clean HS) at a concentration of 3 mass% is used. As an alkaline etching solution, an organic alkaline cleaning agent is used. An aqueous solution containing 8 mass% (product name: Semi-clean LC-2, manufactured by Yokohama Oil & Fat Co., Ltd.) was used.
 梨地処理のためのエッチング液としては、実験例1-1で用いた梨地処理のためのエッチング液と同じものを用いた。すなわち、フッ化アンモニウム、硫酸アンモニウムおよびリン酸二水素アンモニウムを、それぞれ、5mass%、2mass%および2mass%含む。使用したアルミニウム基材の小片は、表1について説明したものと同じである。 As the etchant for the satin finish, the same etchant as the satin finish used in Experimental Example 1-1 was used. That is, 5 mass%, 2 mass%, and 2 mass% of ammonium fluoride, ammonium sulfate, and ammonium dihydrogen phosphate are included, respectively. The aluminum base pieces used are the same as described for Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 酸性、中性およびアルカリ性の洗浄液で洗浄した後のアルミニウム基材の表面は、親水性を有していたことを確認した。酸性および中性の洗浄液で洗浄した後のアルミニウム基材の表面においては、鏡面反射性が確認された。アルカリ性の洗浄液で洗浄した後のアルミニウム基材の表面においては、鏡面反射性とあわせて拡散反射(散乱を含む)性が確認された。表4中「切削痕」について、「×」は切削痕が形成されていたことを示し、「○」は切削痕が形成されていなかったことを示す。表4中「結晶粒」について、「×」は結晶粒が目立っていたことを示し、「○」は結晶粒がほとんど確認されなかったことを示す。アルカリ性の洗浄液で洗浄工程を行った後梨地処理工程を行ったアルミニウム基材の表面には、切削痕が形成されておらず、結晶粒も確認されなかった。酸性および中性の洗浄液で洗浄工程を行った後梨地処理工程を行ったアルミニウム基材の表面には、切削痕が形成されていた。中性の洗浄液で洗浄工程を行った後梨地処理工程を行ったアルミニウム基材の表面には、結晶粒はほとんど確認されなかったが、酸性の洗浄液で洗浄工程を行った後梨地処理工程を行ったアルミニウム基材の表面には、結晶粒が目立っていた。アルミニウム基材の表面に結晶粒が目立つと、アンチグレア膜をディスプレイパネルの表面に貼り付け、アンチグレア膜の法線方向から傾斜した角度から観察したときに、膜を介した像が白茶けて見えることがある。 It was confirmed that the surface of the aluminum substrate after washing with acidic, neutral and alkaline washing solutions had hydrophilicity. Specular reflectivity was confirmed on the surface of the aluminum substrate after washing with acidic and neutral washing solutions. On the surface of the aluminum substrate after washing with an alkaline washing liquid, diffuse reflection (including scattering) properties were confirmed together with specular reflection. In Table 4, “X” indicates that a cutting trace was formed, and “◯” indicates that a cutting trace was not formed. In Table 4, regarding “crystal grains”, “x” indicates that the crystal grains are conspicuous, and “◯” indicates that almost no crystal grains are confirmed. No cutting marks were formed on the surface of the aluminum base material that had been subjected to the matting treatment step after the washing step with an alkaline washing solution, and no crystal grains were confirmed. Cutting traces were formed on the surface of the aluminum base material subjected to the matte treatment step after the washing step with the acidic and neutral washing liquid. The surface of the aluminum base material that had been subjected to the matting treatment process after performing the washing process with a neutral washing solution was almost free of crystal grains, but after the washing step was performed with an acidic washing solution, the matte treatment process was performed. On the surface of the aluminum substrate, crystal grains were conspicuous. When crystal grains are conspicuous on the surface of an aluminum substrate, an anti-glare film is affixed to the surface of the display panel, and when viewed from an angle inclined from the normal direction of the anti-glare film, the image through the film appears to be whitish There is.
 表4の結果から、梨地処理工程の前の洗浄工程には、アルカリ性のエッチング液を用いることが好ましい。アルカリ性のエッチング液によるアルカリ洗浄工程を梨地処理工程の前に行うことで、切削痕の形成を抑制することができた。中性の洗浄液を用いると、切削痕の形成を抑制することができなかった。酸性の洗浄液を用いると、切削痕の形成を抑制することができず、さらにアルミニウム基材の結晶粒(結晶粒界)を目立たせてしまうことが分かった。 From the results shown in Table 4, it is preferable to use an alkaline etching solution for the cleaning step before the satin treatment step. By performing the alkali cleaning step with an alkaline etching solution before the matte treatment step, formation of cutting marks could be suppressed. When a neutral cleaning liquid was used, the formation of cutting marks could not be suppressed. It has been found that when an acidic cleaning liquid is used, the formation of cutting traces cannot be suppressed, and crystal grains (crystal grain boundaries) of the aluminum base material are conspicuous.
 なお、本明細書中の実験例において、アルカリ性のエッチング液および梨地処理のためのエッチング液は、全て、アルカリ洗浄工程または梨地処理工程を行う当日に調製したものを用いた。本発明者の検討によると、当日に調製したエッチング液と一週間前に調製したエッチング液とでは、得られる反転されたアンチグレア構造に顕著な違いが現れることがあったためである。 In the experimental examples in this specification, the alkaline etching solution and the etching solution for the satin treatment were all prepared on the day of performing the alkali cleaning step or the satin treatment step. According to the study of the present inventor, a remarkable difference sometimes appears in the inverted antiglare structure obtained between the etching solution prepared on that day and the etching solution prepared one week ago.
 表4に示すように、アルカリ性のエッチング液を用いたアルカリ洗浄工程を梨地処理工程の前に行うことで、切削痕の形成を抑制することができた。アルカリ性のエッチング液によって、切削痕の原因となり得るアルミニウム基材の加工変質層の少なくとも一部を除去することができたと考えられる。しかしながら、本発明者の検討によると、アルカリ性のエッチング液の種類によっては、以下の問題が生じることがあった。 As shown in Table 4, the formation of cutting marks could be suppressed by performing an alkali cleaning step using an alkaline etching solution before the matte treatment step. It is considered that at least a part of the work-affected layer of the aluminum base material that could cause cutting marks could be removed by the alkaline etching solution. However, according to the study of the present inventor, the following problems may occur depending on the type of alkaline etching solution.
 一般的には、アルミニウム基材12の表面から除去される加工変質層が厚いほど、切削痕の形成が抑制されると考えられる。例えば、アルミニウム基材12をアルカリ性のエッチング液に長い時間浸漬させることによって、アルミニウム基材12の表面から除去される加工変質層を厚くすることができる。しかしながら、アルカリ性のエッチング液によって、アルミニウム基材12の表面の酸化皮膜が除去されるので、酸化皮膜が除去された表面にガルバニック腐食が進行し、その結果、多数の凹部(孔食)が形成される。なお、ガルバニック腐食は、アルミニウム基材12に含まれるTiとAlとの間で起こる。 In general, it is considered that the thicker the work-affected layer removed from the surface of the aluminum base 12 is, the more the formation of cutting marks is suppressed. For example, the work-affected layer removed from the surface of the aluminum base 12 can be thickened by immersing the aluminum base 12 in an alkaline etching solution for a long time. However, since the oxide film on the surface of the aluminum substrate 12 is removed by the alkaline etching solution, galvanic corrosion proceeds on the surface from which the oxide film has been removed, and as a result, a large number of recesses (pitting corrosion) are formed. The Galvanic corrosion occurs between Ti and Al contained in the aluminum substrate 12.
 まず、ガルバニック腐食による凹部が形成される様子を調べるために、表5に示す条件で、アルミニウム基材に対してアルカリ洗浄工程のみを行った。アルカリ性のエッチング液としては、有機アルカリ性洗浄剤(横浜油脂工業株式会社製、製品名:セミクリーンLC-2)を濃度8mass%で含む水溶液を用いた。使用したアルミニウム基材の小片は、表1について説明したものと同じである。それぞれのアルミニウム基材を型として用いて、表1について説明した方法と同様にして高分子膜を作製した。ヘイズ値の測定も、表1について説明した方法と同様に行った。図16(a)に、実験例7-1のアルカリ洗浄工程を施されたアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示し、図16(b)および(c)に、実験例7-1および7-2のアルミニウム基材から形成された高分子膜の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール20μm)を示す。 First, in order to investigate the formation of a recess due to galvanic corrosion, only an alkali cleaning process was performed on the aluminum base material under the conditions shown in Table 5. As the alkaline etching solution, an aqueous solution containing an organic alkaline cleaning agent (manufactured by Yokohama Oil & Fat Co., Ltd., product name: Semi-clean LC-2) at a concentration of 8 mass% was used. The aluminum base pieces used are the same as described for Table 1. Using each aluminum substrate as a mold, a polymer film was produced in the same manner as described in Table 1. The haze value was also measured in the same manner as described for Table 1. FIG. 16 (a) shows an optical microscope image (50 ×) when the surface of the aluminum base material subjected to the alkali cleaning step of Experimental Example 7-1 is observed from the vertical direction, and FIG. 16 (b) and ( c) shows an SEM image (full scale 20 μm in the SEM image) when the surface of the polymer film formed from the aluminum base material of Experimental Examples 7-1 and 7-2 is observed from the vertical direction.
 表5および図16に示すように、アルカリ洗浄工程の時間が長くなると、アルミニウム基材に形成されたガルバニック腐食による凹部に対応して、高分子膜の表面に凸部が形成されている様子が確認された(図16(c)参照)。 As shown in Table 5 and FIG. 16, when the time of the alkali cleaning step is increased, the convex portions are formed on the surface of the polymer film corresponding to the concave portions due to the galvanic corrosion formed on the aluminum base material. It was confirmed (see FIG. 16C).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 次に、表6に示す条件でアルミニウム基材にアルカリ洗浄工程および梨地処理工程を行った。使用したアルミニウム基材の小片は、表1について説明したものと同じである。図17(a)~(d)に、実験例8-1~8-4の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示し、図17(e)~(h)に、実験例8-1~8-4のアルミニウム基材から形成された高分子膜の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール20μm)を示す。 Next, an alkali cleaning process and a satin treatment process were performed on the aluminum base material under the conditions shown in Table 6. The aluminum base pieces used are the same as described for Table 1. FIGS. 17A to 17D show optical microscopes when the surface of an aluminum base material having an inverted antiglare structure formed by the matte treatment process of Experimental Examples 8-1 to 8-4 is observed from the vertical direction. Images (50 times) are shown, and FIGS. 17 (e) to 17 (h) show SEMs when the surfaces of the polymer films formed from the aluminum substrates of Experimental Examples 8-1 to 8-4 are observed from the vertical direction. An image (full scale 20 μm in an SEM image) is shown.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実験例8-1~8-4において、アルカリ性のエッチング液としては、有機アルカリ性洗浄剤(横浜油脂工業株式会社製、製品名:セミクリーンLC-2)を濃度12mass%で含む水溶液を用いた。梨地処理のためのエッチング液としては、実験例1-1で用いた梨地処理のためのエッチング液を2倍に希釈したものを用いた。以下の表において、梨地処理のためにエッチング液について「等倍」または「2倍希釈」は、実験例1-1で用いた梨地処理のためのエッチング液を基準とする。その他の実験条件および評価手順は、表1について説明したものと同じである。表6中「切削痕」について、「×」はアルミニウム基材の表面に切削痕が形成されていたことを示し、「○」は切削痕が形成されていなかったことを示す。表6中「ガルバニック腐食」は、ガルバニック腐食による凹部が形成されていなかったときは「○」、ガルバニック腐食による凹部が形成されていたが実用上問題ない程度であるときは「△」、ガルバニック腐食による凹部が形成され実用上問題になる程度であるときは「×」として、評価した結果を示す。表6中「質量変化」は、アルカリ洗浄工程の前後におけるアルミニウム基材の質量の変化を測定した結果である。 In Experimental Examples 8-1 to 8-4, as an alkaline etching solution, an aqueous solution containing an organic alkaline cleaning agent (manufactured by Yokohama Oil & Fat Co., Ltd., product name: Semi-clean LC-2) at a concentration of 12 mass% was used. As the etching solution for the satin treatment, a solution obtained by diluting the etching solution for the satin treatment used in Experimental Example 1-1 twice. In the following table, “same size” or “2 times dilution” for the etchant for the satin treatment is based on the etchant for the satin treatment used in Experimental Example 1-1. Other experimental conditions and evaluation procedures are the same as those described for Table 1. In Table 6, regarding “cutting marks”, “x” indicates that cutting marks were formed on the surface of the aluminum substrate, and “◯” indicates that no cutting marks were formed. “Galvanic corrosion” in Table 6 is “◯” when no galvanic corrosion recess is formed, and “△” when a galvanic corrosion recess is not problematic in practice, but galvanic corrosion. The result of the evaluation is shown as “x” when a concave portion due to is formed and becomes practically problematic. In Table 6, “mass change” is the result of measuring the change in the mass of the aluminum substrate before and after the alkali cleaning step.
 表6および図17に示すように、アルカリ洗浄工程を40分以上行うと(実験例8-2~8-4)、切削痕は形成されなかった。一方で、アルカリ洗浄工程の時間が長くなると、ガルバニック腐食による凹部がアルミニウム基材の表面に形成され(図17の光学顕微鏡像中黒い箇所)、アンチグレア膜においては凸部が形成されている様子が確認できる。特に、アルカリ洗浄工程を60分以上行うと(実験例8-3および8-4)、これらの密度が高くなっている様子が確認できる。 As shown in Table 6 and FIG. 17, when the alkali cleaning process was performed for 40 minutes or longer (Experimental Examples 8-2 to 8-4), no cutting trace was formed. On the other hand, when the time of the alkali cleaning step is increased, a concave portion due to galvanic corrosion is formed on the surface of the aluminum base (black portion in the optical microscope image of FIG. 17), and a convex portion is formed in the antiglare film. I can confirm. In particular, when the alkali cleaning step is performed for 60 minutes or longer (Experimental Examples 8-3 and 8-4), it can be confirmed that the density of these is increased.
 アルミニウム基材12の表面にガルバニック腐食による凹部が発生すると、アルミニウム基材12を用いたモスアイ用型の表面にも対応して凹部が生じる。ガルバニック腐食によってモスアイ用型の表面に凹部が形成されると、樹脂詰まりや転写性の劣化が懸念される。また、モスアイ用型を用いて製造した反射防止膜においては、ガルバニック腐食による凹部に対応した凸部が形成され得る。このような反射防止膜は、ぎらつきの抑制や耐擦傷性においても劣ることがある。また、アルミニウム基材12においてガルバニック腐食が生じる位置を制御することは難しいので、反射防止膜のヘイズ値を制御することが難しいという問題も生じ得る。 When a concave portion due to galvanic corrosion is generated on the surface of the aluminum base material 12, a concave portion is also generated corresponding to the surface of the moth-eye mold using the aluminum base material 12. If a recess is formed on the surface of the moth-eye mold due to galvanic corrosion, there is a concern about resin clogging and transferability deterioration. Further, in the antireflection film manufactured using the moth-eye mold, convex portions corresponding to the concave portions due to galvanic corrosion can be formed. Such an antireflection film may be inferior in suppression of glare and scratch resistance. Moreover, since it is difficult to control the position where galvanic corrosion occurs in the aluminum base material 12, it may be difficult to control the haze value of the antireflection film.
 本発明者は、上記問題を解決するために、ガルバニック腐食による凹部の発生を抑制しながら、アルミニウム基材の加工変質層の少なくとも一部を除去する方法に想到した。 In order to solve the above problems, the present inventor has come up with a method for removing at least a part of the work-affected layer of the aluminum base material while suppressing the formation of recesses due to galvanic corrosion.
 以下の表7に示す条件で、アルミニウム基材にアルカリ洗浄工程および梨地処理工程を行った。実験例9-1において、アルカリ性のエッチング液として、有機アルカリ性洗浄剤(横浜油脂工業株式会社製、製品名:セミクリーンLC-2)を濃度8mass%で含む水溶液を用いた。実験例9-2~9-4におけるアルカリ性のエッチング液は、実験例9-1におけるアルカリ性のエッチング液に、酸性の添加剤として腐食抑制剤(キレスビットAL、キレスト株式会社製)を5vol%加えたものである。これにより、実験例9-2~9-4のアルカリ性のエッチング液のpHは、実験例9-1のアルカリ性のエッチング液のpHよりも小さい。その他の実験条件は、表6と同じである。 The aluminum substrate was subjected to an alkali washing step and a satin treatment step under the conditions shown in Table 7 below. In Experimental Example 9-1, an aqueous solution containing an organic alkaline detergent (manufactured by Yokohama Oil & Fats Co., Ltd., product name: Semiclean LC-2) at a concentration of 8 mass% was used as an alkaline etching solution. The alkaline etching solution in Experimental Examples 9-2 to 9-4 was obtained by adding 5 vol% of a corrosion inhibitor (Kiresbit AL, manufactured by Kirest Corp.) as an acidic additive to the alkaline etching solution in Experimental Example 9-1. Is. As a result, the pH of the alkaline etching solution of Experimental Examples 9-2 to 9-4 is lower than the pH of the alkaline etching solution of Experimental Example 9-1. Other experimental conditions are the same as in Table 6.
 図18(a)~(d)に、実験例9-1~9-4の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示す。 FIGS. 18A to 18D show optical microscopes when the surface of an aluminum substrate having an inverted antiglare structure formed by the matte treatment process of Experimental Examples 9-1 to 9-4 is observed from the vertical direction. An image (50 times) is shown.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図18(b)~(d)を図18(a)と比較すると、ガルバニック腐食による凹部の形成が効果的に抑制されていることが分かる。また、表7から、実験例9-1と実験例9-2とでは、アルカリ洗浄工程におけるアルミニウム基材の質量変化に違いがないことから、加工変質層を除去する効果は同等であると考えることができる。すなわち、アルカリ性のエッチング液に酸性の添加剤を加えることによって、切削痕の形成を抑制しつつ、ガルバニック腐食による凹部の形成を抑制することができた。 18 (b) to (d) are compared with FIG. 18 (a), it can be seen that the formation of recesses due to galvanic corrosion is effectively suppressed. Further, from Table 7, it is considered that the effects of removing the work-affected layer are the same in Experimental Example 9-1 and Experimental Example 9-2 because there is no difference in the mass change of the aluminum base material in the alkali cleaning step. be able to. That is, by adding an acidic additive to the alkaline etching solution, it was possible to suppress the formation of recesses due to galvanic corrosion while suppressing the formation of cutting marks.
 アルカリ性のエッチング液に酸性の添加剤を加えたことによって、アルカリ性のエッチング液のpHが小さくなる。すなわち、実験例9-2~9-4においては、実験例9-1よりもアルミニウム基材の表面をエッチングする作用が弱いと考えられる。一方で、実験例9-2~9-4においては、実験例9-1よりもイオン化(Al(OH)4 -)されにくいため、水酸化アルミニウム(Al(OH)3)が形成され易い。水酸化アルミニウムがアルミニウム基材の表面に形成されることにより、ガルバニック腐食による凹部の形成が抑制されたと考えられる。 By adding an acidic additive to the alkaline etchant, the pH of the alkaline etchant is reduced. That is, in Experimental Examples 9-2 to 9-4, the action of etching the surface of the aluminum substrate is considered to be weaker than in Experimental Example 9-1. On the other hand, in Experimental Examples 9-2 to 9-4, since it is less likely to be ionized (Al (OH) 4 ) than in Experimental Example 9-1, aluminum hydroxide (Al (OH) 3 ) is easily formed. It is thought that formation of the recessed part by galvanic corrosion was suppressed by forming aluminum hydroxide on the surface of an aluminum base material.
 酸性の添加剤としては、例示したものに限られず、アルカリ性のエッチング液に溶解し、アルミニウムに対する腐食性がないものであれば用いることができると考えられる。実験例で酸性の添加剤として用いた腐食抑制剤(キレスビットAL)は、数%添加して使用するのが通常である。これに対して本願においては、5mass%~10mass%(表8参照)添加することで、切削痕の形成を抑制しつつ、ガルバニック腐食による凹部の形成を抑制するアルカリ性のエッチング液を得ることができた。 The acidic additive is not limited to those exemplified, and it can be used as long as it dissolves in an alkaline etching solution and does not corrode aluminum. The corrosion inhibitor (Kiresbit AL) used as an acidic additive in the experimental examples is usually used by adding several percent. In contrast, in the present application, by adding 5 mass% to 10 mass% (see Table 8), it is possible to obtain an alkaline etching solution that suppresses formation of recesses due to galvanic corrosion while suppressing formation of cutting marks. It was.
 なお、図18(b)~(d)において、アルミニウム基材の表面に付着物が確認できる。これは、スマットと呼ばれる付着物であると考えられる。スマットは、アルミニウムをアルカリエッチングする際に形成されることがあり、アルミニウム中に含まれているSi、Mg、Fe、Cuなどの不純物や合金成分がアルミニウム上に析出することによって形成されると考えられている。スマットは、酸性の水溶液によって除去することができる。 In FIGS. 18B to 18D, deposits can be confirmed on the surface of the aluminum substrate. This is considered to be a deposit called smut. Smut may be formed when alkaline etching of aluminum is performed, and it is considered that impurities such as Si, Mg, Fe, and Cu contained in the aluminum and alloy components are deposited on the aluminum. It has been. Smut can be removed with an acidic aqueous solution.
 さらに最適なアルカリ性のエッチング液の組成を調べるために、表8の条件を用いて、表7と同様の実験を行った。図19(a)~(d)に、実験例10-1~10-4の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示し、図19(e)~(h)に、実験例10-1~10-4のアルミニウム基材から形成された高分子膜の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール20μm)を示す。 Further, in order to investigate the optimum composition of the alkaline etching solution, the same experiment as in Table 7 was performed using the conditions in Table 8. FIGS. 19A to 19D show optical microscopes when the surface of an aluminum substrate having an inverted antiglare structure formed by the matte treatment process of Experimental Examples 10-1 to 10-4 is observed from the vertical direction. Images (50 times) are shown, and FIGS. 19 (e) to 19 (h) show SEMs when the surfaces of the polymer films formed from the aluminum base materials of Experimental Examples 10-1 to 10-4 are observed from the vertical direction. An image (full scale 20 μm in an SEM image) is shown.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8および図19から分かるように、実験例10-1~実験例10-4の内では、実験例10-2において最も効果的に、切削痕の形成を抑制しつつ、ガルバニック腐食による凹部の形成を抑制することができた。 As can be seen from Table 8 and FIG. 19, among the experimental examples 10-1 to 10-4, the most effective in the experimental example 10-2 is to suppress the formation of the cutting traces and to prevent the recesses due to galvanic corrosion. The formation could be suppressed.
 アルカリ性のエッチング液に酸性の添加剤を加えることによって、アルカリ洗浄工程の時間のマージンを大きくすることができるという利点も得られる。図20(a)に、アルカリ洗浄工程の時間と、アルミニウム基材の質量変化率との関係を示す。図20(b)に、アルカリ洗浄工程の時間と、アルミニウム基材を型として得られたアンチグレア膜のヘイズ値との関係を示す。 By adding an acidic additive to the alkaline etching solution, there is an advantage that the time margin for the alkaline cleaning process can be increased. FIG. 20A shows the relationship between the time of the alkali cleaning step and the mass change rate of the aluminum substrate. FIG. 20B shows the relationship between the time of the alkali cleaning step and the haze value of the antiglare film obtained using the aluminum substrate as a mold.
 図20(a)および(b)の横軸は、アルカリ洗浄工程の時間(分)を示す。図20(a)の縦軸は、アルカリ洗浄工程前後におけるアルミニウム基材の質量の変化の割合、すなわち、(アルカリ洗浄工程前の質量-アルカリ洗浄工程後の質量)/アルカリ洗浄前の質量×100(%)を示す。図20(b)の縦軸は、アンチグレア膜のヘイズ値を示す。図20(a)および図20(b)には、アルカリ性のエッチング液として、有機アルカリ性洗浄剤(横浜油脂工業株式会社製、製品名:セミクリーンLC-2)を濃度12mass%で含む水溶液を用いた実験例8-1~8-4と、アルカリ性のエッチング液として、有機アルカリ性洗浄剤(横浜油脂工業株式会社製、製品名:セミクリーンLC-2)を濃度16mass%で含む水溶液に酸性の添加剤として腐食抑制剤(キレスビットAL、キレスト株式会社製)を10vol%加えた水溶液を用いた実験例10-1~10-4と、アルカリ性のエッチング液として、有機アルカリ性洗浄剤(横浜油脂工業株式会社製、製品名:セミクリーンLC-2)を濃度8mass%で含む水溶液を用いた実験例11-1(表9参照)との結果をプロットしている。 20 (a) and 20 (b) indicate the time (minutes) of the alkali cleaning step. The vertical axis in FIG. 20 (a) represents the rate of change in the mass of the aluminum substrate before and after the alkali cleaning step, that is, (mass before alkali cleaning step−mass after alkali cleaning step) / mass before alkali cleaning × 100. (%). The vertical axis in FIG. 20B indicates the haze value of the antiglare film. 20 (a) and 20 (b), an aqueous solution containing an organic alkaline cleaning agent (Yokohama Yushi Kogyo Co., Ltd., product name: Semi-clean LC-2) at a concentration of 12 mass% is used as an alkaline etching solution. Example 8-1 to 8-4, and an aqueous solution containing an organic alkaline cleaner (Yokohama Yushi Kogyo Co., Ltd., product name: Semi-clean LC-2) as an alkaline etching solution at a concentration of 16 mass%. Examples 10-1 to 10-4 using an aqueous solution containing 10 vol% of a corrosion inhibitor (Kiresbit AL, manufactured by Kirest Co., Ltd.) as an agent, and an organic alkaline cleaner (Yokohama Yushi Kogyo Co., Ltd.) as an alkaline etchant The results of Experiment 11-1 (see Table 9) using an aqueous solution containing the product name: Semi-clean LC-2) at a concentration of 8 mass% It is door.
 図20(a)から、例えば、アルミニウム基材の質量を0.04%減少させるまでにかかる時間は、有機アルカリ性洗浄剤(横浜油脂工業株式会社製、製品名:セミクリーンLC-2)を濃度12mass%で含む水溶液を用いる(実験例8-1~8-4)とおよそ20分であるのに対し、有機アルカリ性洗浄剤(横浜油脂工業株式会社製、製品名:セミクリーンLC-2)を濃度16mass%で含む水溶液に酸性の添加剤として腐食抑制剤(キレスビットAL、キレスト株式会社製)を10vol%加えた水溶液を用いる(実験例10-1~10-4)と、その3倍以上であることが分かる。アルカリ性のエッチング液に酸性の添加剤を加えることによって、アルカリ洗浄工程の時間を長く取ることができることが分かる。 From FIG. 20 (a), for example, the time taken to reduce the mass of the aluminum base by 0.04% is the concentration of the organic alkaline detergent (Yokohama Yushi Kogyo Co., Ltd., product name: Semi-clean LC-2). Using an aqueous solution containing 12% by mass (Experimental Examples 8-1 to 8-4) takes about 20 minutes, whereas an organic alkaline detergent (product name: Semi-clean LC-2, manufactured by Yokohama Oil & Fats Co., Ltd.) is used. Using an aqueous solution containing 10 vol% of a corrosion inhibitor (Kiresbit AL, manufactured by Kirest Co., Ltd.) as an acidic additive in an aqueous solution containing a concentration of 16 mass% (Experimental Examples 10-1 to 10-4) I understand that there is. It can be seen that by adding an acidic additive to the alkaline etching solution, the time for the alkali cleaning step can be increased.
 酸性の添加剤は、梨地処理のためのエッチング液に添加してもよい。下記表9の条件を用いて、表7と同様の実験を行った。実験例11-1においては、梨地処理のためのエッチング液として、実験例1-1において用いたものと同じものを用いた。実験例11-2においては、実験例11-1の梨地処理のためのエッチング液に酸性の添加剤として腐食抑制剤(キレスビットAL、キレスト株式会社製)を10vol%加えたものを、梨地処理のためのエッチング液として用いた。 An acidic additive may be added to the etching solution for the satin treatment. Experiments similar to those in Table 7 were performed using the conditions in Table 9 below. In Experimental Example 11-1, the same etchant as used in Experimental Example 1-1 was used as the etchant for the satin treatment. In Experimental Example 11-2, 10% by volume of a corrosion inhibitor (Kiresbit AL, manufactured by Kirest Co., Ltd.) as an acidic additive was added to the etching solution for the satin processing in Experimental Example 11-1, Used as an etching solution.
 図21(a)および(b)に、実験例11-1および11-2の梨地処理工程によって形成された反転されたアンチグレア構造を有するアルミニウム基材の表面を垂直方向から観察したときの光学顕微鏡像(50倍)を示し、図21(c)および(d)に、実験例11-1および11-2のアルミニウム基材から形成された高分子膜の表面を垂直方向から観察したときのSEM像(SEM像中のフルスケール20μm)を示す。 FIGS. 21A and 21B show optical microscopes when the surface of an aluminum substrate having an inverted antiglare structure formed by the matte treatment process of Experimental Examples 11-1 and 11-2 is observed from the vertical direction. Images (50 times) are shown, and FIGS. 21C and 21D show SEMs when the surfaces of the polymer films formed from the aluminum substrates of Experimental Examples 11-1 and 11-2 are observed from the vertical direction. An image (full scale 20 μm in an SEM image) is shown.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9および図21から、酸性の添加剤を梨地処理のためのエッチング液に添加すると、ガルバニック腐食による凹部の形成が抑制されていることが分かる。酸性の添加剤を加えると、反転されたアンチグレア構造のきめがわずかに粗くなっているようにも見える。 From Table 9 and FIG. 21, it can be seen that the formation of recesses due to galvanic corrosion is suppressed when an acidic additive is added to the etching solution for the satin treatment. When an acidic additive is added, the texture of the inverted antiglare structure also appears to be slightly rough.
 なお、上述した梨地処理のためのエッチング液およびアルカリ性のエッチング液の効果は、本発明の実施形態による円筒状のモスアイ用型の製造方法においてのみ得られるものではない。上述した梨地処理のためのエッチング液およびアルカリ性のエッチング液の効果は、型の形状に左右されないので、例えば、平板状(プレート状)のモスアイ用型の製造方法において、上述した梨地処理のためのエッチング液およびアルカリ性のエッチング液を用いても、同様の効果が得られる。 Note that the effects of the above-mentioned etching solution for the satin treatment and the alkaline etching solution are not obtained only in the method for manufacturing the cylindrical moth-eye mold according to the embodiment of the present invention. Since the effect of the etching solution for the satin treatment and the alkaline etching solution does not depend on the shape of the mold, for example, in the manufacturing method of the plate-shaped moth-eye mold, The same effect can be obtained by using an etching solution and an alkaline etching solution.
 このようにして得られた梨地処理が施された円筒状のアルミニウム基材を用いて、上述したように、反転されたモスアイ構造を形成することによって、反射防止機能とアンチグレア機能とを付与できるモスアイ用型が得られる。円筒状のモスアイ用型を用いると、上述したようにロール・ツー・ロール方式で反射防止膜を形成することができる。このとき、反射防止膜を形成するフィルム基材(TACフィルムまたはPETフィルム)と、反射防止膜との密着性を向上させるために、以下のような工程を経ることが好ましい。 As described above, the moth-eye that can provide an antireflection function and an antiglare function can be obtained by forming the inverted moth-eye structure using the thus-obtained cylindrical aluminum substrate subjected to the satin treatment. A mold is obtained. When a cylindrical moth-eye mold is used, the antireflection film can be formed by the roll-to-roll method as described above. At this time, in order to improve the adhesion between the film base material (TAC film or PET film) on which the antireflection film is formed and the antireflection film, it is preferable to undergo the following steps.
 TACフィルム上に、溶剤を含む紫外線硬化性樹脂(例えばアクリル樹脂)を付与する(厚さは例えば2μm~20μm)。このとき、溶剤は、TACフィルムの表面を溶解するもの(例えばケトン系)を選択する。溶剤がTACフィルムの表面を溶解することによって、TACと紫外線硬化性樹脂とが混合した領域が形成される。 A UV curable resin containing a solvent (for example, acrylic resin) is applied on the TAC film (thickness is, for example, 2 μm to 20 μm). At this time, as the solvent, a solvent that dissolves the surface of the TAC film (for example, a ketone) is selected. When the solvent dissolves the surface of the TAC film, a region where TAC and the ultraviolet curable resin are mixed is formed.
 この後、溶剤を除去し、モスアイ用型の外周面に、紫外線硬化性樹脂が密着するように、TACフィルムを巻きつける。 Thereafter, the solvent is removed, and the TAC film is wound so that the ultraviolet curable resin is in close contact with the outer peripheral surface of the moth-eye mold.
 続いて、紫外線を照射し、紫外線硬化性樹脂を硬化させる。この時、紫外線硬化性樹脂の温度を30℃から70℃に保持する。 Subsequently, ultraviolet rays are irradiated to cure the ultraviolet curable resin. At this time, the temperature of the ultraviolet curable resin is maintained at 30 ° C. to 70 ° C.
 その後、TACフィルムをモスアイ用型から剥離し、必要に応じて、紫外線を再度照射する。 Thereafter, the TAC film is peeled off from the moth-eye mold, and again irradiated with ultraviolet rays as necessary.
 TACフィルム上にハードコート層を形成する場合には、ハードコート層を形成する材料に、TACフィルムの表面を溶解する溶剤を含有させておいてもよい。この場合、反射防止膜を形成するための紫外線硬化性樹脂に溶剤を含有させる必要はない。 When the hard coat layer is formed on the TAC film, the material for forming the hard coat layer may contain a solvent that dissolves the surface of the TAC film. In this case, it is not necessary to add a solvent to the ultraviolet curable resin for forming the antireflection film.
 また、PETフィルムを用いる場合には、紫外線硬化性樹脂を付与する前に、水系のプライマー(例えば、ポリエステル系樹脂やアクリル系樹脂)の層(厚さ2μm~20μm)を形成することが好ましい。この場合も、反射防止膜を形成するための紫外線硬化性樹脂に溶剤を含有させる必要はない。 In the case of using a PET film, it is preferable to form a layer (2 μm to 20 μm in thickness) of an aqueous primer (for example, a polyester resin or an acrylic resin) before applying the ultraviolet curable resin. Also in this case, it is not necessary to add a solvent to the ultraviolet curable resin for forming the antireflection film.
 本発明による基材の表面処理方法は、反射防止膜(反射防止表面)などの形成に用いられる型の製造方法に用いられる。本発明による型の製造方法は、反射防止膜(反射防止表面)などの形成に好適に用いられる型の製造に用いられる。本発明による型の製造方法によって製造された型を用いて製造された反射防止膜は、適度なアンチグレア機能と、優れた反射防止機能とを発現する表面構造を有し、例えば、高精細な表示パネルに好適に用いられる。 The surface treatment method for a substrate according to the present invention is used for a method of manufacturing a mold used for forming an antireflection film (antireflection surface) or the like. The mold manufacturing method according to the present invention is used for manufacturing a mold suitably used for forming an antireflection film (antireflection surface) or the like. The antireflection film manufactured using the mold manufactured by the mold manufacturing method according to the present invention has a surface structure that exhibits an appropriate antiglare function and an excellent antireflection function, for example, a high-definition display. It is suitably used for panels.
 10  型基材
 12  アルミニウム基材
 14  ポーラスアルミナ層
 14p ミクロな凹部
 16  無機材料層
 18  アルミニウム膜
 18r アルミニウム残存層
 100  モスアイ用型
DESCRIPTION OF SYMBOLS 10 Type | mold base material 12 Aluminum base material 14 Porous alumina layer 14p Micro recessed part 16 Inorganic material layer 18 Aluminum film | membrane 18r Aluminum residual layer 100 Moss eye type | mold

Claims (22)

  1.  円柱状または円筒状の基材の表面を処理する方法であって、
     (a)前記基材の長軸方向が水平方向と略平行になるように前記基材を配置した状態で、前記基材の長軸を中心に、前記基材を回転させる工程と、
     (b)前記基材の外周面の一部を第1エッチング槽に収容された第1エッチング液に接触させる工程と
    を包含する、基材の表面処理方法。
    A method for treating the surface of a cylindrical or cylindrical substrate,
    (A) rotating the base material around the long axis of the base material in a state where the base material is arranged so that the long axis direction of the base material is substantially parallel to the horizontal direction;
    (B) A method of treating the surface of a substrate, comprising a step of bringing a part of the outer peripheral surface of the substrate into contact with a first etching solution contained in a first etching tank.
  2.  前記第1エッチング液と同じである第2エッチング液を前記基材の外周面に吹き付ける工程(c)をさらに包含する、請求項1に記載の基材の表面処理方法。 The substrate surface treatment method according to claim 1, further comprising a step (c) of spraying a second etching solution, which is the same as the first etching solution, on the outer peripheral surface of the substrate.
  3.  前記工程(c)は、前記工程(b)と同時に行われ、前記第2エッチング液は、前記基材の外周面の内、前記第1エッチング液に接触している箇所の近傍に吹き付けられる、請求項2に記載の基材の表面処理方法。 The step (c) is performed simultaneously with the step (b), and the second etching solution is sprayed in the vicinity of the portion in contact with the first etching solution in the outer peripheral surface of the base material. The substrate surface treatment method according to claim 2.
  4.  前記工程(c)は、前記工程(a)と同時に行われ、前記第2エッチング液は、前記基材の外周面の内、前記第1エッチング液に接触している箇所の近傍であって、前記工程(a)において前記第1エッチング液から遠ざかるように回転している箇所に吹き付けられる、請求項2または3に記載の基材の表面処理方法。 The step (c) is performed simultaneously with the step (a), and the second etching solution is in the vicinity of a portion in contact with the first etching solution in the outer peripheral surface of the base material. The substrate surface treatment method according to claim 2, wherein the substrate is sprayed to a portion rotating in the step (a) so as to move away from the first etching solution.
  5.  前記工程(c)において、前記第2エッチング液が噴き出される角度は、鉛直方向から45°以上90°未満傾斜している、請求項2から4のいずれかに記載の基材の表面処理方法。 5. The substrate surface treatment method according to claim 2, wherein in the step (c), the angle at which the second etching solution is ejected is inclined at 45 ° or more and less than 90 ° from the vertical direction. .
  6.  前記基材は、Al-Mg-Si系のアルミニウム合金で形成され、機械的な鏡面加工が施されたアルミニウム基材である、請求項1から5のいずれかに記載の基材の表面処理方法。 6. The substrate surface treatment method according to claim 1, wherein the substrate is an aluminum substrate formed of an Al—Mg—Si based aluminum alloy and mechanically mirror-finished. .
  7.  前記第1エッチング液は、フッ化水素とアンモニウムとの塩を含む水溶液である、請求項1から6のいずれかに記載の基材の表面処理方法。 The substrate surface treatment method according to any one of claims 1 to 6, wherein the first etching solution is an aqueous solution containing a salt of hydrogen fluoride and ammonium.
  8.  前記フッ化水素とアンモニウムとの塩は、フッ化アンモニウムである、請求項7に記載の基材の表面処理方法。 The substrate surface treatment method according to claim 7, wherein the salt of hydrogen fluoride and ammonium is ammonium fluoride.
  9.  前記工程(b)の前に、前記基材の外周面の一部を前記第1エッチング液とは異なる第3エッチング液に接触させる工程(b1)をさらに包含し、
     前記第3エッチング液の前記基材の外周面に対するエッチングレートは、前記第1エッチング液の前記基材の外周面に対するエッチングレートよりも低い、請求項1から8のいずれかに記載の基材の表面処理方法。
    Before the step (b), the method further includes a step (b1) of bringing a part of the outer peripheral surface of the base material into contact with a third etching solution different from the first etching solution,
    The etching rate of the third etching liquid with respect to the outer peripheral surface of the base material is lower than the etching rate of the first etching liquid with respect to the outer peripheral surface of the base material. Surface treatment method.
  10.  前記第3エッチング液は、前記第1エッチング液を希釈したエッチング液である、請求項9に記載の基材の表面処理方法。 The substrate surface treatment method according to claim 9, wherein the third etching solution is an etching solution obtained by diluting the first etching solution.
  11.  前記第3エッチング液は、前記第1エッチング液よりも低温である、請求項9または10に記載の基材の表面処理方法。 The surface treatment method for a substrate according to claim 9 or 10, wherein the third etching solution is at a lower temperature than the first etching solution.
  12.  前記第3エッチング液は、前記第1エッチング槽とは異なる第2エッチング槽に収容されている、請求項9から11のいずれかに記載の基材の表面処理方法。 The surface treatment method for a substrate according to any one of claims 9 to 11, wherein the third etching solution is accommodated in a second etching tank different from the first etching tank.
  13.  前記第3エッチング液は、前記第1エッチング槽に収容されている、請求項9から11のいずれかに記載の基材の表面処理方法。 The surface treatment method for a substrate according to any one of claims 9 to 11, wherein the third etching solution is accommodated in the first etching tank.
  14.  前記工程(b)の後に、前記基材の外周面の一部を前記第1エッチング液とは異なる第4エッチング液に接触させる工程(b2)をさらに包含し、
     前記第4エッチング液の前記基材の外周面に対するエッチングレートは、前記第1エッチング液の前記基材の外周面に対するエッチングレートよりも低い、請求項1から13のいずれかに記載の基材の表面処理方法。
    After the step (b), the method further includes a step (b2) of bringing a part of the outer peripheral surface of the base material into contact with a fourth etching solution different from the first etching solution,
    The etching rate with respect to the outer peripheral surface of the said base material of the said 4th etching liquid is lower than the etching rate with respect to the outer peripheral surface of the said base material of the said 1st etching liquid of the base material in any one of Claim 1-13 Surface treatment method.
  15.  前記第4エッチング液は、前記第3エッチング液と同一のエッチング液である、請求項9から13のいずれかを引用する請求項14に記載の基材の表面処理方法。 15. The substrate surface treatment method according to claim 14, wherein the fourth etching solution is the same etching solution as the third etching solution.
  16.  前記工程(a)において、前記基材の周速度は、0m/s超0.03m/s以下である、請求項1から15のいずれかに記載の基材の表面処理方法。 The substrate surface treatment method according to any one of claims 1 to 15, wherein in the step (a), the peripheral speed of the substrate is greater than 0 m / s and not greater than 0.03 m / s.
  17.  前記工程(a)において、前記基材の回転速度は、0rpm超2rpm以下である、請求項1から16のいずれかに記載の基材の表面処理方法。 The substrate surface treatment method according to any one of claims 1 to 16, wherein in the step (a), the rotation speed of the substrate is more than 0 rpm and 2 rpm or less.
  18.  (A)Al-Mg-Si系のアルミニウム合金で形成された円筒状のアルミニウム基材であって、機械的な鏡面加工が施されたアルミニウム基材を用意する工程と、
     (B)前記アルミニウム基材の表面を請求項1から17のいずれかに記載の表面処理方法によって処理する工程と、
     (C)前記工程(B)の後で、前記アルミニウム基材の前記表面に無機材料層を形成し、前記無機材料層の上にアルミニウム膜を形成することによって、型基材を作製する工程と、
     (D)前記工程(C)の後で、前記アルミニウム膜の表面を陽極酸化することによって、複数のミクロな凹部を有するポーラスアルミナ層を形成する工程と、
     (E)前記工程(D)の後に、前記ポーラスアルミナ層を、エッチング液に接触させることによって、前記ポーラスアルミナ層の前記複数のミクロな凹部を拡大させる工程と、
     (F)前記工程(E)の後に、さらに陽極酸化することによって、前記複数のミクロな凹部を成長させる工程と
    を包含する、型の製造方法。
    (A) a step of preparing a cylindrical aluminum base material formed of an Al—Mg—Si-based aluminum alloy and mechanically mirror-finished;
    (B) The process of processing the surface of the said aluminum base material by the surface treatment method in any one of Claims 1-17,
    (C) after the step (B), forming an inorganic material layer on the surface of the aluminum substrate, and forming an aluminum film on the inorganic material layer, thereby producing a mold substrate; ,
    (D) after the step (C), anodizing the surface of the aluminum film to form a porous alumina layer having a plurality of micro-recesses;
    (E) After the step (D), the step of enlarging the plurality of micro concave portions of the porous alumina layer by bringing the porous alumina layer into contact with an etching solution;
    (F) After the said process (E), the process of growing the said several micro recessed part by further anodizing, The manufacturing method of a type | mold.
  19.  前記工程(B)の前に、アルカリ性のエッチング液を用いて、前記アルミニウム基材の前記表面をエッチングする工程(G)をさらに包含する、請求項18に記載の型の製造方法。 The method for producing a mold according to claim 18, further comprising a step (G) of etching the surface of the aluminum base using an alkaline etching solution before the step (B).
  20.  前記アルカリ性のエッチング液のpHは、8以上10以下である、請求項19に記載の型の製造方法。 20. The mold manufacturing method according to claim 19, wherein the pH of the alkaline etching solution is 8 or more and 10 or less.
  21.  前記アルカリ性のエッチング液は、アミノ基を有する有機化合物を含む水溶液に、酸性の添加剤を加えることによって調製される、請求項19または20に記載の型の製造方法。 The method for producing a mold according to claim 19 or 20, wherein the alkaline etching solution is prepared by adding an acidic additive to an aqueous solution containing an organic compound having an amino group.
  22.  前記酸性の添加剤の体積は、前記アミノ基を有する有機化合物を含む水溶液の体積に対して5%以上である、請求項21に記載の型の製造方法。 The method for producing a mold according to claim 21, wherein the volume of the acidic additive is 5% or more with respect to the volume of the aqueous solution containing the organic compound having an amino group.
PCT/JP2016/079828 2015-10-14 2016-10-06 Base material surface treatment method and mold production method WO2017065090A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680060184.8A CN108138331B (en) 2015-10-14 2016-10-06 Surface treatment method for base material and manufacturing method for mold
JP2017545182A JP6626898B2 (en) 2015-10-14 2016-10-06 Substrate surface treatment method and mold manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-202589 2015-10-14
JP2015202589 2015-10-14

Publications (1)

Publication Number Publication Date
WO2017065090A1 true WO2017065090A1 (en) 2017-04-20

Family

ID=58518140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079828 WO2017065090A1 (en) 2015-10-14 2016-10-06 Base material surface treatment method and mold production method

Country Status (3)

Country Link
JP (1) JP6626898B2 (en)
CN (1) CN108138331B (en)
WO (1) WO2017065090A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105206A1 (en) * 2010-02-24 2011-09-01 シャープ株式会社 Die, die production method, and production of antireflection film
WO2012137664A1 (en) * 2011-04-01 2012-10-11 シャープ株式会社 Mold production method
JP2013112892A (en) * 2011-12-01 2013-06-10 Dnp Fine Chemicals Co Ltd Method and apparatus of manufacturing mold for manufacturing nanostructure, mold for manufacturing nanostructure and nanostructure
JP2015193895A (en) * 2014-03-31 2015-11-05 株式会社Dnpファインケミカル Drum-shaped mold body for manufacturing nanostructure, nanostructure obtained using the same, and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339756A (en) * 1992-06-11 1993-12-21 Dainippon Printing Co Ltd Production of die cutter
EP2554717B1 (en) * 2010-03-31 2019-10-30 Sharp Kabushiki Kaisha Process for producing a die, and process for producing antireflection film
CN103668209B (en) * 2013-12-07 2016-01-20 江阴江化微电子材料股份有限公司 Titanium-aluminium-titanium metal stacked film etchant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105206A1 (en) * 2010-02-24 2011-09-01 シャープ株式会社 Die, die production method, and production of antireflection film
WO2012137664A1 (en) * 2011-04-01 2012-10-11 シャープ株式会社 Mold production method
JP2013112892A (en) * 2011-12-01 2013-06-10 Dnp Fine Chemicals Co Ltd Method and apparatus of manufacturing mold for manufacturing nanostructure, mold for manufacturing nanostructure and nanostructure
JP2015193895A (en) * 2014-03-31 2015-11-05 株式会社Dnpファインケミカル Drum-shaped mold body for manufacturing nanostructure, nanostructure obtained using the same, and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2017065090A1 (en) 2018-08-02
JP6626898B2 (en) 2019-12-25
CN108138331A (en) 2018-06-08
CN108138331B (en) 2020-07-14

Similar Documents

Publication Publication Date Title
JP6322294B2 (en) Mold manufacturing method and antireflection film manufacturing method
WO2018143370A1 (en) Antireflective film, method for manufacturing antireflective film, mold, and method for manufacturing mold
JP6309081B2 (en) Mold manufacturing method and antireflection film manufacturing method
JP5615971B2 (en) Mold manufacturing method
EP2495355B1 (en) Mold, method for manufacturing a mold, and antireflective film
US9416461B2 (en) Die and method for manufacturing die, and anti-reflection coating
WO2011055757A1 (en) Method for producing die, and die
JP4648995B2 (en) Mold and manufacturing method thereof
JP5027347B2 (en) Mold and mold manufacturing method
JPWO2013183576A1 (en) Mold substrate, mold substrate manufacturing method, mold manufacturing method and mold
JP6458051B2 (en) Mold, mold manufacturing method and antireflection film
WO2017065090A1 (en) Base material surface treatment method and mold production method
JP5833763B2 (en) Mold manufacturing method
JP2013039781A (en) Method of manufacturing die for forming antireflection film
US10675788B2 (en) Method for producing mold
JP2006088643A (en) Manufacturing process of embossed roll
CN114394760A (en) Preparation method of diffuse reflection colored glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855344

Country of ref document: EP

Kind code of ref document: A1