WO2017065054A1 - Control device for machine tool - Google Patents

Control device for machine tool Download PDF

Info

Publication number
WO2017065054A1
WO2017065054A1 PCT/JP2016/079459 JP2016079459W WO2017065054A1 WO 2017065054 A1 WO2017065054 A1 WO 2017065054A1 JP 2016079459 W JP2016079459 W JP 2016079459W WO 2017065054 A1 WO2017065054 A1 WO 2017065054A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
load
detected
machine tool
control device
Prior art date
Application number
PCT/JP2016/079459
Other languages
French (fr)
Japanese (ja)
Inventor
秀行 藤原
檜原 誠
友揮 山▲崎▼
博幸 森本
忍 平山
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to MX2018003446A priority Critical patent/MX2018003446A/en
Priority to CN201680054206.XA priority patent/CN108136558B/en
Publication of WO2017065054A1 publication Critical patent/WO2017065054A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia

Definitions

  • the present invention relates to a control device for a machine tool.
  • the machine tool described in Patent Document 1 includes a torque detection device for detecting torque applied to a drill during machining instead of the stress detection device, and further detects a detected torque detected by the torque detection device.
  • a machining control device including a feed mechanism control device for controlling a feed mechanism for advancing the drill so that the feed speed is calculated by the feed speed calculation device.
  • the tool when machining with the machine tool, the tool receives a reaction force from a workpiece as a machining target, and thus a load (machining load) is applied to the tool.
  • a load machining load
  • the control amount is set to a margin that is too large from the fixed value, the processing efficiency is lowered, so that the processing load is not applied to the tool without reducing the processing efficiency and the fixed value or more. It is desired to control the control amount, that is, the control amount that increases the processing efficiency while maintaining the processing quality of the tool.
  • the machine tool described in Patent Document 1 has a magnetostrictive torque sensor arranged around a drill as a torque detection device for detecting a machining load.
  • the magnetostrictive torque sensor detects the torque applied to the tool from the change in the permeability of the rotating shaft of the tool. If a magnetostrictive torque sensor is placed around the drill, splashing of coolant from the tool will occur. Due to the influence of the above and the influence of the scattering of cutting waste, the change in the magnetic permeability of the rotating shaft cannot be detected accurately, and the torque applied to the tool during machining cannot be detected accurately. As a result, there is a possibility that the amount of machining control cannot be controlled appropriately only from the torque detected by the torque sensor. This can occur in the same manner even when the processing load is detected by the stress detection device.
  • the stress detection device is arranged not on the periphery of the tool but on the support member that rotatably supports the spindle of the machine tool, and by separating the stress detection device from the processing position, the influence of the splash of coolant liquid from the tool or It is conceivable to avoid the influence of scattered chips.
  • the stress detection device is arranged on the support member in this way, the frictional heat of the tool at the time of machining or the heat of the coolant liquid heated by the frictional heat or the like causes the stress detection device in the support member near the support member or the support member.
  • the pressure acting on the stress detection device changes, and the stress detection device adds the stress based on the processing load applied to the tool to the stress detection device from the support member.
  • the detected stress is also detected. That is, even if the stress detection device is arranged on the support member, the machining load applied to the tool during machining cannot be accurately detected. That is, only by changing the arrangement of the stress detection device, the control amount for processing the workpiece by the tool cannot be controlled to a control amount that increases the processing efficiency while maintaining the processing quality of the tool.
  • the present invention has been made in view of such a point, and an object of the present invention is to use a tool when a stress detection device is disposed in association with a support member that rotatably supports a spindle of a machine tool.
  • An object of the present invention is to improve the processing efficiency while maintaining the processing quality.
  • a control device of a machine tool for a control device of a machine tool, a spindle to which a tool for machining a workpiece is attached, a support member that rotatably supports the spindle, and a surrounding of the spindle
  • a plurality of stress detection devices that are arranged in association with the support member and detect a processing load applied to the tool when the workpiece is processed, and detection of the processing load calculated from the detection result of the stress detection device Based on the load, a temperature of at least one of a machining control device that controls a control amount of machining of the workpiece by the tool, and a portion of the support member that is attached to the vicinity of the stress detection device and the vicinity of the stress detection device.
  • a plurality of temperature detection devices to detect, the processing control device, the detection load calculated from the detection result of the stress detection device, and the temperature detection. Based on the detection temperature detected by the apparatus, it is configured to correct the control amount of the processing, and the things.
  • the processing control amount is corrected based on the detection load calculated from the detection result of the stress detection device and the temperature of at least one of the supporting member in the vicinity of the stress detection device and the components attached to the vicinity.
  • the control amount of the processing can be controlled to a control amount that increases the processing efficiency while maintaining the processing quality of the tool.
  • the processing control device corrects the detection load calculated from the detection result of the stress detection device based on the detected temperature detected by the temperature detection device, Based on the detected load after correction, the control amount of the machining is corrected.
  • the stress detection device detects the stress applied to the stress detection device due to thermal deformation of the support member or the like, the vicinity of the stress detection device in the support member detected by the temperature detection device
  • the detection load calculated from the detection result of the detected stress of the stress detection device is corrected based on the temperature of at least one of the part or the part attached to the vicinity.
  • the influence of the stress detected by the thermal deformation of the support member or the like can be minimized, and the load based on the machining load applied to the tool can be detected with high accuracy.
  • the control amount of a process can be correct
  • the support member has a cylindrical shape, and the support member includes a plurality of coolant oil passages extending in an axial direction of the support member at substantially equal intervals in a circumferential direction of the support member. Has been placed.
  • the support member has a cylindrical shape, and the plurality of coolant oil passages are arranged at substantially equal intervals in the circumferential direction of the support member, so that the support member is caused by the heat of the coolant liquid flowing in each coolant oil passage.
  • the temperature change in the circumferential direction becomes substantially uniform.
  • the influence of the thermal deformation of the support member on the stress detection device is also substantially uniform in the circumferential direction of the support member, and the stress detected by the thermal deformation of the support member etc. acting on each stress detection device is also reduced. Since it is made substantially uniform, the calculation of the correction value for the detected load is simplified. As a result, it is possible to further improve the accuracy of detecting the processing load of the tool by the stress detection device.
  • the tool is a drill
  • the processing control device is configured to control the feed rate of the drill so that the detected load is within a preset target load range. It is desirable that
  • the feed rate of the drill is controlled so that the detection load based on the machining load applied to the drill is within the preset target load range, so that an excessive load is not applied to the drill.
  • the drill feed rate can be set to a relatively fast condition. Thereby, shortening of processing time can be aimed at, preventing damage to a drill.
  • the stress detection device further includes a protective member that protects the processing tool from the machining waste generated by the processing of the workpiece.
  • the detection load increases or decreases only at the portion where the machining scraps adhere, and the machining load applied to the tool may not be accurately detected. There is. Therefore, by providing a protection member that protects the stress detection device from the processing waste, it is possible to prevent the processing waste from adhering to the stress detection device. Thereby, it can prevent that the detection accuracy of a stress detection apparatus falls by adhesion of processing waste etc.
  • the support member includes a plurality of temperature detection devices that detect the temperature of at least one of the vicinity of the stress detection device or a component attached to the vicinity.
  • the machining control device is configured to correct the machining control amount based on the detection load calculated from the detection result of the stress detection device and the detected temperature detected by the temperature detection device.
  • the control amount of machining can be corrected. Thereby, the control amount of processing can be controlled in consideration of the influence of thermal deformation of the support member and the like, and the processing efficiency can be increased while maintaining the processing quality of the tool.
  • FIG. 10 is a schematic diagram showing stress applied to the stress sensor in a time range of 0 to t1 in FIG. 9.
  • FIG. 10 is a schematic diagram showing stress applied to the stress sensor in a time range from t1 to t2 in FIG. It is a flowchart which shows the processing operation at the time of operation of a machine tool by a control unit.
  • FIG. 1 shows a machine tool 1 controlled by a control device according to an embodiment of the present invention disposed in a machine room.
  • the axial direction of the main shaft 2 is referred to as the front-rear direction
  • the drill 3 side is referred to as the front side
  • the counter-drill 3 side is referred to as the rear side.
  • the machine tool 1 is a horizontal machining center, and rotates a drill 3 as a tool attached to the front end portion of the spindle 2 together with the spindle 2 to process the workpiece W as a processing target.
  • a housing 11 is disposed on the front side of the machine tool 1, and a processing chamber 12 closed by the housing 11 is formed in the housing 11.
  • a part of the front side of the machine tool 1 is accommodated in the processing chamber 12 via a vertical wall 11 a on the rear side of the housing 11.
  • the housing 11 is provided with a door (not shown) through which a user can enter and exit.
  • an automatic tool changer (not shown) for automatically changing a tool attached to the spindle 2 is arranged in the processing chamber 12.
  • a horizontally movable pallet 13 is disposed in the processing chamber 12, a horizontally movable pallet 13 is disposed.
  • the pallet 13 is connected to a feed shaft motor (not shown), and when the workpiece W is processed, the feed shaft motor is driven so that the pallet 13 (more precisely, the workpiece W on the pallet 13) is moved with respect to the drill 3.
  • a jig 14 is installed on the pallet 13, and the workpiece W is chucked by the jig 14.
  • the machine tool 1 performs boring or the like on the workpiece W with a drill 3 attached to the front end of the spindle 2.
  • the vertical wall 11a plays a role of preventing cutting waste (processing waste) or the like from scattering from the processing chamber 12 to the stress sensor 70 described later.
  • the vertical wall 11a corresponds to a protective member. To do.
  • the machine tool 1 includes a main shaft 2, a drill 3 attached to a front end portion of the main shaft 2, and a casing 4 as a support member that rotatably supports the main shaft 2. And a main body 5 that supports the casing 4 including the main shaft 2.
  • the main shaft 2 is a substantially cylindrical member extending in the front-rear direction, and an axial rod 23 extending in the front-rear direction is inserted into the cylinder of the main shaft 2.
  • the front end portion of the main shaft 2 is configured to protrude forward from the front end surface of the casing 4 in a state where the front end portion is disposed in the cylinder of the cylindrical casing 4.
  • a chucking mechanism (not shown) including an axial rod 23 is formed at the front end portion of the main shaft 2, and the drill 3 is attached to the main shaft 2 by the chucking mechanism.
  • a spindle motor 21 (see FIG. 5) for rotating the spindle 2 is disposed at the rear end of the spindle 2.
  • the casing 4 is a cylindrical member having a cylindrical shaft extending in the front-rear direction, and supports the main shaft 2 rotatably in the cylinder.
  • a plurality of (four in FIG. 2) bearings 41 are arranged at positions closer to the front side on the inner wall side of the casing 4, and the main shaft 2 rotates within the cylinder of the casing 4 via the bearings 41.
  • a rear end portion of the casing 4 is a flange portion 6 having a diameter larger than that of other portions of the casing 4.
  • a coolant oil passage 42 through which a coolant liquid for cooling flows is disposed in the flange portion 6 of the casing 4 and the wall portion of the casing 4.
  • the coolant oil passage 42 extends toward the radially inner side of the casing 4 on the rear side of the flange portion 6, and at a position corresponding to the wall portion of the casing 4 in the radial direction. After bending forward, it extends toward the front.
  • the coolant passes through the coolant oil passage 42 and is sprayed from the injection port provided at the front end of the casing 4 toward the drill 3 to cool the periphery of the workpiece W.
  • the coolant oil passages 42 are arranged so as to be symmetrical with respect to the center of the casing 4 and at substantially equal intervals in the circumferential direction of the casing 4 so that the temperature distribution in the circumferential direction of the casing 4 is substantially uniform. It has become.
  • the casing 4 is attached and fixed to the main body 5 by the preload bolts 44 at a plurality of locations (6 in the present embodiment) of the flange portion 6. It is supported.
  • the main body 5 is formed with a main body side bolt hole 5a
  • the flange 6 is formed with a flange side bolt hole 6a at a position corresponding to the main body side bolt hole 5a. Then, the end portions of the shaft portion 44a of the preload bolt 44 are inserted into the bolt holes 5a and 6a, respectively.
  • a nut 44c is fastened from the front side of the flange portion 6 to the front end portion of the shaft portion 44a, whereby the casing 4 is fastened to the main body portion 5.
  • a plurality of fastening locations by the preload bolt 44 are provided at equal intervals in the circumferential direction (six locations in this embodiment), and the flange portion 6 is attached to the main body by the preload bolt 44 at each fastening location.
  • the casing 4 is supported by the main body 5 by being fastened to the part 5.
  • a part of the flange portion 6 near the rear side where the preload bolt 44 is attached is recessed in a substantially rectangular shape from the outer peripheral surface of the flange portion 6 toward the radially inner side. It is part 6b.
  • the recessed portions 6b are formed at a plurality of locations (six locations in the present embodiment) so as to be substantially equidistant in the circumferential direction of the flange portion 6.
  • the remaining portion on the front side at the position where the recessed portion 6b of the flange portion 6 is formed is a wall. As shown in FIGS.
  • the flange side bolt hole 6a is formed in the wall portion, and When the preload bolt 44 is inserted into the main body portion side and the flange side bolt holes 5a, 6a, the shaft portion 44a is positioned in the recessed portion 6b.
  • each stress sensor 70 as a stress detection device is fitted into each shaft 44a of each preload bolt 44 (that is, six in total).
  • Each stress sensor 70 is disposed in each recessed portion 6b of the flange portion 6 while being supported by the shaft portion 44a of each preload bolt 44, and is substantially in the circumferential direction of the casing 4 as shown in FIG. It arrange
  • the processing load applied to the drill 3 when the workpiece W is processed is calculated by the stress sensor 70 detecting the stress applied by the force transmitted to the casing 4 via the bearing 41. Is done.
  • each stress sensor 70 in the casing 4 that is, in each recessed portion 6 b in the flange portion 6 of the casing 4, temperature detection for detecting the temperature of each recessed portion 6 b.
  • a temperature sensor 71 as an apparatus is attached.
  • the temperature sensor 71 is attached to each of the recessed portions 6b and detects the temperature of each of the recessed portions 6b.
  • the temperature sensor 71 is connected to each recessed portion that is the vicinity.
  • the temperature of each preload bolt 44 may be detected by attaching to each preload bolt 44 arranged in the portion 6a. Further, the temperature sensors 71 may be attached to all the stress sensors 70, the recessed portions 6b, and the preload bolts 44.
  • the collar 51 in which the collar side bolt hole 51 a is formed between the flange 6 and the main body 5 is connected to the collar side.
  • the bolt holes 51a are aligned and positioned so as to correspond to the main body side bolt holes 5a.
  • the rear end portion of the shaft 44a of the preload bolt 44 in which the stress sensor 70 is fitted in advance is inserted into the main body side bolt hole 5a through the collar side bolt hole 51a.
  • the casing 4 is aligned so that the flange-side bolt hole 6a corresponds to the front end of the shaft portion 44a of the preload bolt 44 inserted into the main body-side bolt hole 5a.
  • the casing 4 is moved so that the front end portion of the shaft portion 44a is inserted into the flange side bolt hole 6a, and the front end portion of the shaft portion 44a is projected from the flange side bolt hole 6a toward the front side. And the nut 44c is fastened to the part which protruded from the flange side bolt hole 6a in the front side edge part of the axial part 44a via the washer 44b. Thereby, the casing 4 is attached to the main body 5.
  • the temperature sensor 71 is attached to the recessed portion 6 b in the middle of attaching the casing 4 to the main body portion 5.
  • the stress sensor 70 is obtained by processing a known quartz piezoelectric element into a ring shape, and detects a stress acting on the quartz piezoelectric element from a change in charge of the quartz piezoelectric element.
  • the force (the thrust force in the main shaft direction and the bending stress acting on the casing 4, etc.) transmitted from the drill 3 to the casing 4 through the main shaft 2 and the bearing 41.
  • the processing load refers to, for example, torque, bending stress, and the like.
  • the temperature sensor 71 is a thermocouple in this embodiment. Each temperature sensor 71 detects the temperature of each recess 6b, and outputs the detected temperature to the control unit 100 described later.
  • FIG. 5 is a block diagram showing the configuration of the drive system and the control system of the machine tool 1.
  • the control unit 100 calculates the machining load applied to the drill 3 when machining the workpiece W. Then, the control amount (for example, the feed speed of the drill 3) of the work W processed by the drill 3 is controlled to a condition corresponding to the processing load.
  • the control unit 100 corresponds to a machining control device.
  • the control unit 100 is a controller based on a well-known microcomputer, and includes a central processing unit (CPU) that executes a program, a memory that is configured by, for example, a RAM or ROM, and stores a program and data, and an electrical signal And an input / output (I / O) bus.
  • CPU central processing unit
  • memory that is configured by, for example, a RAM or ROM, and stores a program and data, and an electrical signal And an input / output (I / O) bus.
  • the stress sensor 70 inputs an electrical signal representing the detected stress to the control unit 100. Specifically, an electrical signal representing the detected stress is input from the stress sensor 70 to the amplifier 81, amplified by the amplifier 81, converted into a digital signal by the AD converter 82, and input to the control unit 100. Is done.
  • the electrical signal representing the detected temperature detected by the temperature sensor 71 is converted into a digital signal by the AD converter 83 and then input to the control unit 100.
  • the control unit 100 calculates a processing load applied to the drill 3 at the time of processing the workpiece W based on the electrical signal regarding the detected stress and the detected temperature, and based on the calculation result, the processing of the workpiece W by the drill 3 is calculated.
  • a control amount is determined, and a drive signal based on the control amount of the machining is transmitted to the spindle motor 21 via the amplifier 84 and is also transmitted to the feed shaft motor of the pallet 13 so that the workpiece W is transferred to the drill 3.
  • the feed speed is controlled as a control amount for machining the drill 3 by moving the drill 3.
  • the control executed by the control unit 100 will be described with reference to FIGS.
  • the machining load calculated from the stress detected by the stress sensor 70 is referred to as a detected load.
  • FIG. 6 shows the first control which is an example of the control executed by the control unit 100.
  • the first control is executed mainly when long-time machining is performed, such as when a relatively long hole is opened.
  • a detected load (more precisely, a corrected detected load described later) calculated from the detected stress detected by each stress sensor 70 at the time of machining by the drill 3 is a preset target load.
  • the feed rate of the drill 3 is changed at any time so as to be within the range.
  • the target load is set to have a certain range rather than a specific value, as shown by a broken line in FIG. 6, and is set to the most efficient range in which the machining quality by the drill 3 can be maintained.
  • the target load may be set within a certain range or may be set within a different range for each tool.
  • the target load is set to an arbitrary range. It may be.
  • the control unit 100 first drives the spindle motor 21 and also drives the feed shaft motor of the pallet 13 while increasing the feed speed of the drill 3 as shown by a thin line in FIG.
  • the workpiece W is controlled to be processed.
  • the feed speed of the drill 3 increases, and the machining load applied to the drill 3 from the workpiece W increases, so that the detection load calculated by the control unit 100 also increases as shown by the thick line in FIG.
  • the control unit 100 fixes the feed speed of the drill 3 to the feed speed when the detected load falls within the target load range, and continues processing.
  • the control unit 100 changes the feed speed of the drill 3 to gradually decrease (decrease by a preset speed) until the detected load falls within the target load range. .
  • the control unit 100 continues the machining by fixing the feed speed of the drill 3 to the feed speed when the detected load falls within the target load range.
  • the control unit 100 gradually increases the feed speed of the drill 3 (increases by a preset speed) until the detected load falls within the target load range. To change).
  • the control unit 100 continues the machining by fixing the feed rate of the drill 3 to the feed rate when the detected load falls within the range of the target load.
  • the processing load of the drill 3 is controlled within the range of the target load by this repetition. It should be noted that the user may be able to arbitrarily set the rate of decrease during gradual decrease and the rate of increase during gradual increase.
  • FIG. 7 shows the second control which is an example of the control executed by the control unit 100.
  • the second control is a control that is mainly executed when short-time machining is performed a plurality of times, such as when a plurality of relatively short holes are formed.
  • the average detected load is determined from the average value (hereinafter, referred to as average detected load) of the detected load calculated by the control unit 100 at the time of the previous machining (more precisely, the corrected detected load described later).
  • a drill feed rate correction value for making it within the load range is calculated, and at the next machining, control is performed so that machining is performed at the feed rate corrected with the feed rate correction value.
  • FIG. 7 shows a case where two holes are opened by the drill 3 as an example.
  • the control unit 100 first drives the spindle motor 21 to open the first hole and also drives the feed shaft motor of the pallet 13 to drill the drill as shown by a thin line in FIG. After the feed speed of 3 is increased to a predetermined speed, control is performed so that machining is performed at a constant feed speed until the end of machining. At this time, the control unit 100 calculates the processing load applied to the drill 3 from the detected stress detected by the stress sensor 70 as shown by a thick line in FIG. 7, and calculates the average as shown by a one-dot chain line in FIG. Calculate the detection load.
  • the control unit 100 sets a feed speed correction value for making the average detected load within the target load range.
  • the feed rate of the drill 3 is corrected with the feed rate correction value, and the feed rate is increased to perform machining. Control.
  • the average detected load when the second hole is opened is within the range of the target load.
  • the processing load of the drill 3 is controlled within the range of the target load by this repetition.
  • the machining load applied to the drill 3 during the machining of the workpiece W is controlled within the target load range, and the highest feed speed at which the machining load applied to the drill 3 is within the target load range. Since the workpiece W can be machined, the machining time of the workpiece W can be shortened while maintaining the machining quality of the drill 3.
  • the average detection load is calculated for each machining and the feed speed at the next machining is corrected.
  • the predetermined control is performed every two or more machining operations. The average detected load of machining for the number of times is calculated, the feed speed correction value corresponding to the average detected load is calculated, and the next predetermined number of times of machining is performed at the feed speed corrected with the feed speed correction value. It may be.
  • FIG. 8 shows the third control which is an example of the control executed by the control unit 100.
  • the third control is a control executed to prevent the tool from being damaged.
  • 3 is a control for stopping the processing by 3.
  • the upper limit load is a load that is higher than the target load and does not damage the tool such as the drill 3.
  • the upper limit load may be set to a constant value or a different value for each tool, and is set to an arbitrary value every time the user uses the machine tool 1. It may be.
  • control unit 100 first executes the first control and the second control to drive the spindle motor 21 and the feed shaft motor of the pallet 13. As shown, the feed speed of the drill 3 is increased until the detected load reaches the target load range, and after reaching the target load, the feed speed of the drill 3 is fixed to the feed speed at the time of arrival. Take control.
  • the control unit 100 determines that the drill 3 may be damaged, and stops driving the spindle motor 21 and the feed shaft motor of the pared 13. Then, the machining by the drill 3 is stopped.
  • the machining by the drill 3 is stopped when an excessive load is applied to the drill 3 while shortening the machining time of the workpiece W by the first control and the second control. Breakage of the drill 3 can be prevented.
  • the portion of the coolant oil passage 42 through which the coolant liquid flows is disposed so that the heat of the coolant liquid heated by the frictional heat of the drill 3 is easily transmitted. Deformable due to the heat of the liquid.
  • the stress sensor 70 disposed in the recessed portion 6b of the flange 6 is moved from the main body 5 or the flange 6 of the casing 4 and further from the preload bolt 44 that supports the stress sensor 70. Since the stress is received and the stress sensor 70 detects stress other than the stress based on the processing load of the drill 3, the detection accuracy by the stress sensor 70 is lowered.
  • the upper graph in FIG. 9 is a graph showing the temperature change of the recessed portion 6b in the flange portion 6 with respect to time
  • the lower graph in FIG. 9 is a graph showing the change in detection load with respect to time.
  • the horizontal axis is an axis indicating time, and is set to 0 immediately before the workpiece W is processed.
  • the graph of the temperature change is the temperature change of the recessed portion 6b calculated based on the temperature detected by the temperature sensor 71, and the temperature change when the temperature of the recessed portion 6b immediately before processing the workpiece W is set to 0. It is.
  • the detected load graph shows the detected load when no machining load is applied to the drill 3.
  • the solid line is a detected load calculated based on the detected stress actually detected by each stress sensor 70, and the broken line is a reproduction of a change in the actually detected load by simulation.
  • the chain line is obtained by correcting the actually measured load, which will be described later.
  • the temperature of the recess 6a rises in the time range from 0 to t1 and in the range from t1 to t2 (> t1), and becomes substantially constant in the time range of t2 or more.
  • the detected load calculated from the actual detected stress increases from 0 in the time range from 0 to t1, and decreases from 0 in the time range from t1 to t2 (> t1).
  • a constant value is maintained with a value smaller than 0.
  • the stress acting on the stress sensor 70 in the process of changing the detected load will be specifically described.
  • the main body part 5 and the flange part 6 are thermally deformed by the heat of the coolant, so that the stress sensor 70 sandwiched between them is It is pressed by the flange portion 6.
  • the stress sensor 70 receives compressive stress, the detection load calculated from the detection stress at this time rises from 0 as shown in the range from 0 to t1 in FIG.
  • the time range from t1 to t2 (> t1), the heat of the coolant is transmitted to the preload bolt 44, and the preload bolt 44 is deformed by the influence of heat.
  • the axial force (preload force) in the front-rear direction is reduced by the preload bolt 44 in the stress sensor 70 as shown in FIG.
  • the detected load calculated from the detected stress at this time decreases.
  • the time is in the range of t2 or more, since the temperature is substantially constant, the stress received by the stress sensor 70 from the preload bolt 44 is also constant. Therefore, the detected load calculated from the detected stress at this time is a value smaller than zero. It remains almost constant.
  • the stress sensor 70 detects stresses other than the stress based on the processing load of the drill 3 by thermal deformation of parts such as the preload bolt 44 attached to the casing 4 in the vicinity of the stress sensor 70 in the flange portion 6.
  • the actual machining load applied to the drill 3 when machining the workpiece W cannot be accurately calculated.
  • the control amount of processing cannot be accurately corrected, and the control amount of processing of the workpiece W by the drill 3 is It becomes impossible to control to an appropriate control amount that increases the processing efficiency while maintaining the processing quality of the drill 3.
  • the temperature of each recess 6 b in the flange portion 6 of the casing 4 is detected by each temperature sensor 71, and each detected load based on the detected stress detected by each stress sensor 70 and the temperature sensor 71 are used.
  • the processing control amount is corrected based on the detected temperature detected.
  • control unit 100 corrects each detected load based on the detected stress detected by each stress sensor 70 in accordance with the detected temperature detected by the temperature sensor 71, so that each stress sensor in the flange portion 6 is corrected.
  • the influence of thermal deformation of the vicinity of 70 and the preload bolt 44 is removed, and the control amount of machining is corrected based on the detected load after correction.
  • a graph representing the actual detection load shown by the broken line in the lower graph of FIG. 9 is calculated in advance by simulation or the like, and this is used as a change in the detection load with respect to a temperature change.
  • the corrected one is stored in advance in the control unit 100 as a detection load correction calculation formula or a detection load correction map.
  • the correction value of the detected load corresponding to each detected temperature is calculated or read from the detected load correction calculation formula or the detected load correction map, and each correction value is calculated. Use to correct each detected load.
  • the zero point of the detected load is corrected as indicated by the one-dot chain line in the graph of the detected load in FIG. Can be reduced.
  • the range from time 0 to t1 in the load line reproduced by simulation in the lower graph of FIG. 9 is not visible because it overlaps with the actually detected load line, but is reproduced by simulation.
  • the load line shows a change rising from 0 in the range from 0 to t1 as in the case of the actually detected load.
  • correction value for the temperature change not set in the detected load correction map may be calculated by interpolation or extrapolation from the correction value set in the detected load correction map.
  • the control unit 100 calculates a correction value for each detected load based on the detected stress detected by each stress sensor 70, and Each detected load is corrected by the correction value.
  • the flowchart of FIG. 12 is a flowchart when the detected load is corrected using the detected load correction map, and the following description is the control operation of the control unit 100 when the detected load correction map is used. Moreover, the control amount of a process is made into the feed rate of the drill 3 as an example.
  • step S1 the detection load before correction is calculated from the stress detected by each stress sensor 70 as data necessary for calculating the detection load based only on the machining load actually applied to the drill 3, and the flange The temperature of each recessed part 6b in the part 6 is detected.
  • step S2 the detected load correction map stored in advance in the controller 100 is read, and the correction value for each detected load before correction corresponding to each detected temperature is read.
  • each detected load before correction is corrected by each correction value read in step S2.
  • each corrected detected load represents a detected load based only on the machining load actually applied to the drill 3.
  • step S4 it is determined whether or not the detected load corrected in step S3 is equal to or higher than the upper limit load.
  • the process proceeds to step S5, the control unit 100 determines that the drill 3 may be damaged, executes the above-described third control, and stops the machining by the drill 3 And then return.
  • the determination in step S4 is NO, the process proceeds to step S6.
  • step S6 it is determined whether or not the corrected detected load is within the target load range.
  • the determination in step S6 is YES, the machining is continued at the current feed speed, and then the process returns. On the other hand, when the determination in step S6 is NO, the process proceeds to step S7.
  • the feed rate of the drill 3 is changed.
  • the control unit 100 when the corrected detected load exceeds the target load, the feed rate of the drill 3 is gradually decreased, while the corrected detected load is reduced to the target load. When it is lower, the feed rate of the drill 3 is gradually increased.
  • a feed speed correction value for making the average detected load within the target load range is calculated from the average detected load at the previous machining. Then, the feed rate of the drill 3 is corrected by the feed rate correction value. After step S7, the process returns thereafter.
  • the control unit 100 controls the feed rate of the drill 3 according to the above flow every predetermined time (for example, 8 milliseconds). Thereby, the processing time can be shortened while maintaining the processing quality of the drill 3.
  • the detected load correction calculation formula is read out, and a correction value for the detected load is calculated based on the calculated formula.
  • step S3 the detected load before correction is corrected based on the calculated correction value.
  • the control device of the machine tool 1 includes a plurality of temperature sensors 71 that detect the temperature of the recessed portion 6 b in the flange portion 6 of the casing 4, and the control unit 100 is detected by the stress sensor 70. Since the processing control amount is corrected based on the detected load calculated from the detected stress and the detected temperature detected by the temperature sensor 71, the detection is performed based on the detected temperature of the recessed portion 6b. Each detected load calculated from the detected stress detected by each stress sensor 70 is corrected so as to minimize the influence of stress due to thermal deformation of the flange 6 etc. of the load, and the heat of the flange 6 etc. is corrected.
  • the influence due to the deformation can be minimized, and the load based on the machining load of the drill 3 can be detected with high accuracy. And based on the detection load after correction
  • the stress sensor 70 is disposed in the casing 4, it is possible to increase the processing efficiency while maintaining the processing quality of the tool.
  • the zero point of the detected load calculated from the detected stress detected by the stress sensor 70 is corrected, and based on each detected load after correction.
  • the control amount of machining by the drill 3 is controlled, but not limited to this, the control amount of machining by the drill 3 is based on the detected temperature detected by the temperature sensor 71 and the detected load before correction. You may comprise so that it may correct
  • a calculation formula for calculating the correction amount for the processing control amount and a map for reading the correction amount are stored in the control unit 100, and A correction amount may be calculated or read out from a calculation formula or a map to correct the machining control amount.
  • the tool is the drill 3, but is not limited thereto, and may be a milling machine or a reamer.
  • the control amount of the processing controlled by the control unit 100 is the rotational speed and moving speed of the tool.
  • the feed shaft motor of the pallet 13 is drive-controlled and the feed speed of a tool is controlled, it is not restricted to this, The feed speed of the tool by moving the main-body part 5 provided with the main shaft 2 May be controlled.
  • the casing 4 is made into the cylindrical shape, not only this but a square tube shape may be sufficient.
  • the stress sensor 70 is arrange
  • the present invention is useful for a machine tool having a stress detection device for detecting a machining load applied to a tool during machining of a workpiece.

Abstract

A control device for a machine tool (1) is provided with: a main shaft on which a drill (3) is installed; a casing (4) for rotatably supporting the main shaft; multiple stress sensors (70) for detecting the machining load on the drill (3); a control unit (100) for controlling the control amount for workpiece machining by the drill (3) on the basis of the detected load, which is the machining load calculated from the stress sensor (70) detection results; and multiple temperature sensors (71) for detecting the temperature of areas near the stress sensors (70) in the casing (4). The control unit (100) corrects the machining control amount on the basis of said detected load and the detection results of the temperature sensors (71).

Description

工作機械の制御装置Machine tool controller
 本発明は、工作機械の制御装置に関する。 The present invention relates to a control device for a machine tool.
 従来より、工具に加えられる加工負荷を検出するための応力検出装置と、該応力検出装置による検出結果に基づいて、工具による加工の制御量を制御する加工制御装置とを備えた工作機械が知られている。 2. Description of the Related Art Conventionally, there has been known a machine tool including a stress detection device for detecting a machining load applied to a tool and a machining control device for controlling a control amount of machining by a tool based on a detection result by the stress detection device. It has been.
 例えば、特許文献1に記載の工作機械は、上記応力検出装置に代えて、加工時にドリルに加えられるトルクを検出するためのトルク検出装置を備え、さらに、該トルク検出装置によって検出される検出トルクに基づいてドリルの送り速度を算出する送り速度算出装置及び送り速度算出装置により算出された送り速度となるようにドリルを前進させる送り機構を制御する送り機構制御装置を含む加工制御装置を備えたものである。 For example, the machine tool described in Patent Document 1 includes a torque detection device for detecting torque applied to a drill during machining instead of the stress detection device, and further detects a detected torque detected by the torque detection device. And a machining control device including a feed mechanism control device for controlling a feed mechanism for advancing the drill so that the feed speed is calculated by the feed speed calculation device. Is.
特開平07-195256号公報Japanese Patent Laid-Open No. 07-195256
 ところで、上記工作機械による加工の際には、工具は加工対象としてのワークからの反力を受けるため、該工具には負荷(加工負荷)が加えられる。工具の破損を防止するには、工作機械によるワークの加工の制御量を、工具に一定値以上の加工負荷が加えられないような制御量に制御する必要がある。しかし、該制御量を、上記一定値からのマージンを大きく設定し過ぎると、加工効率が低下してしまうため、加工効率を低下させずにかつ上記一定値以上の加工負荷が工具に加えられない制御量、すなわち、工具の加工品質を維持しつつ加工効率を高める制御量に制御することが望まれている。 By the way, when machining with the machine tool, the tool receives a reaction force from a workpiece as a machining target, and thus a load (machining load) is applied to the tool. In order to prevent breakage of the tool, it is necessary to control the control amount of machining of the workpiece by the machine tool so as not to apply a machining load of a certain value or more to the tool. However, if the control amount is set to a margin that is too large from the fixed value, the processing efficiency is lowered, so that the processing load is not applied to the tool without reducing the processing efficiency and the fixed value or more. It is desired to control the control amount, that is, the control amount that increases the processing efficiency while maintaining the processing quality of the tool.
 特許文献1に記載の工作機械は、加工負荷を検出するためのトルク検出装置として、磁歪式のトルクセンサをドリルの周囲に配置している。磁歪式のトルクセンサは、工具の回転軸の透磁率の変化から工具に加えられるトルクを検出するところ、磁歪式のトルクセンサをドリルの周囲に配置してしまうと、工具からのクーラント液の飛沫の影響や切削屑の飛散の影響によって、回転軸の透磁率の変化を正確に検出することができなくなり、加工時に工具に加えられるトルクを精度良く検出することができなくなる。この結果、上記トルクセンサによって検出されたトルクのみからでは、加工の制御量を適切に制御できないおそれがある。これは、応力検出装置によって加工負荷を検出する場合でも同様に起こり得る。 The machine tool described in Patent Document 1 has a magnetostrictive torque sensor arranged around a drill as a torque detection device for detecting a machining load. The magnetostrictive torque sensor detects the torque applied to the tool from the change in the permeability of the rotating shaft of the tool. If a magnetostrictive torque sensor is placed around the drill, splashing of coolant from the tool will occur. Due to the influence of the above and the influence of the scattering of cutting waste, the change in the magnetic permeability of the rotating shaft cannot be detected accurately, and the torque applied to the tool during machining cannot be detected accurately. As a result, there is a possibility that the amount of machining control cannot be controlled appropriately only from the torque detected by the torque sensor. This can occur in the same manner even when the processing load is detected by the stress detection device.
 そこで、応力検出装置を工具の周囲ではなく、工作機械の主軸を回転可能に支持する支持部材に配置して、応力検出装置を加工位置から離すことで、工具からのクーラント液の飛沫の影響や切削屑の飛散の影響を回避することが考えられる。しかし、このように、応力検出装置を支持部材に配置すると、加工時の工具の摩擦熱や該摩擦熱等により熱せられたクーラント液の熱によって、支持部材における応力検出装置の近傍や支持部材に取り付けられた部品が熱変形することで、応力検出装置に作用する圧力が変化して、応力検出装置が、工具に加えられる加工負荷に基づく応力に加えて、支持部材等から応力検出装置に加えられる応力も検出してしまう。つまり、応力検出装置を支持部材に配置したとしても、加工時に工具に加えられる加工負荷を正確に検出できない。すなわち、応力検出装置の配置を換えただけでは、工具によるワークの加工の制御量を、工具の加工品質を維持しつつ加工効率を高める制御量に制御することができない。 Therefore, the stress detection device is arranged not on the periphery of the tool but on the support member that rotatably supports the spindle of the machine tool, and by separating the stress detection device from the processing position, the influence of the splash of coolant liquid from the tool or It is conceivable to avoid the influence of scattered chips. However, when the stress detection device is arranged on the support member in this way, the frictional heat of the tool at the time of machining or the heat of the coolant liquid heated by the frictional heat or the like causes the stress detection device in the support member near the support member or the support member. When the attached component is thermally deformed, the pressure acting on the stress detection device changes, and the stress detection device adds the stress based on the processing load applied to the tool to the stress detection device from the support member. The detected stress is also detected. That is, even if the stress detection device is arranged on the support member, the machining load applied to the tool during machining cannot be accurately detected. That is, only by changing the arrangement of the stress detection device, the control amount for processing the workpiece by the tool cannot be controlled to a control amount that increases the processing efficiency while maintaining the processing quality of the tool.
 本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、応力検出装置を、工作機械の主軸を回転可能に支持する支持部材に関連付けて配置したときに、工具による加工品質を維持しつつ加工効率を高めることができるようにすることにある。 The present invention has been made in view of such a point, and an object of the present invention is to use a tool when a stress detection device is disposed in association with a support member that rotatably supports a spindle of a machine tool. An object of the present invention is to improve the processing efficiency while maintaining the processing quality.
課題を解決するための装置Device for solving the problem
 上記課題を解決するために、本発明では、工作機械の制御装置を対象として、ワークを加工する工具が取り付けられる主軸と、上記主軸を回転可能に支持する支持部材と、上記主軸を取り囲むように上記支持部材に関連付けて配置され、上記ワークの加工時に上記工具に加えられる加工負荷を検出するための複数の応力検出装置と、上記応力検出装置の検出結果から算出される上記加工負荷である検出負荷に基づいて、上記工具による上記ワークの加工の制御量を制御する加工制御装置と、上記支持部材における上記応力検出装置の近傍部及び該近傍部に取り付けられる部品のうちの少なくとも一方の温度を検出する複数の温度検出装置とを備え、上記加工制御装置は、上記応力検出装置の検出結果から算出される検出負荷と、上記温度検出装置によって検出された検出温度とに基づいて、上記加工の制御量を補正するように構成されている、ものとした。 In order to solve the above-mentioned problems, in the present invention, for a control device of a machine tool, a spindle to which a tool for machining a workpiece is attached, a support member that rotatably supports the spindle, and a surrounding of the spindle A plurality of stress detection devices that are arranged in association with the support member and detect a processing load applied to the tool when the workpiece is processed, and detection of the processing load calculated from the detection result of the stress detection device Based on the load, a temperature of at least one of a machining control device that controls a control amount of machining of the workpiece by the tool, and a portion of the support member that is attached to the vicinity of the stress detection device and the vicinity of the stress detection device. A plurality of temperature detection devices to detect, the processing control device, the detection load calculated from the detection result of the stress detection device, and the temperature detection. Based on the detection temperature detected by the apparatus, it is configured to correct the control amount of the processing, and the things.
 この構成によると、応力検出装置の検出結果から算出される検出負荷と支持部材における応力検出装置の近傍部及び該近傍部に取り付けられる部品の少なくとも一方の温度に基づいて、加工の制御量が補正されることで、該加工の制御量を、工具による加工品質を維持しつつ加工効率を高める制御量に制御することができる。 According to this configuration, the processing control amount is corrected based on the detection load calculated from the detection result of the stress detection device and the temperature of at least one of the supporting member in the vicinity of the stress detection device and the components attached to the vicinity. As a result, the control amount of the processing can be controlled to a control amount that increases the processing efficiency while maintaining the processing quality of the tool.
 すなわち、加工対象としてのワークを工具によって加工した際に、加工時の摩擦熱や該摩擦熱により熱せられたクーラント液の熱によって、支持部材における応力検出装置の近傍部や該近傍部に取り付けられた部品が熱変形することで、応力検出装置が、工具に加えられる加工負荷に基づく応力に加えて、支持部材等から応力検出装置に加えられる応力を検出してしまったとしても、応力検出装置が検出した検出応力に加えて、温度検出装置によって検出された、支持部材における応力検出装置の近傍部又は該近傍部に取り付けられる部品の少なくとも一方の温度に基づいて、加工の制御量(例えば、加工時の送り速度、工具の回転数など)が補正される。これにより、支持部材等の熱変形による影響を考慮した上で、工具による加工の制御量を制御することができ、この結果、工具による加工品質を維持しつつ加工効率を高めることができる。 In other words, when a workpiece to be machined is machined with a tool, it is attached to the vicinity of the stress detection device in the support member or to the neighborhood by the frictional heat at the time of machining or the heat of the coolant liquid heated by the frictional heat. Even if the stress detection device detects the stress applied to the stress detection device from the support member, etc. in addition to the stress based on the processing load applied to the tool due to thermal deformation of the parts In addition to the detected stress detected by, based on the temperature of at least one of the vicinity of the stress detection device in the support member or the component attached to the vicinity detected by the temperature detection device, the control amount of processing (for example, The feed speed during machining, the number of rotations of the tool, etc.) are corrected. This makes it possible to control the amount of machining performed by the tool in consideration of the influence of thermal deformation of the support member and the like. As a result, it is possible to increase machining efficiency while maintaining the machining quality of the tool.
 上記工作機械の制御装置の一実施形態において、上記加工制御装置は、上記温度検出装置によって検出された検出温度に基づいて、上記応力検出装置の検出結果から算出される検出負荷を補正して、補正後の検出負荷に基づいて、上記加工の制御量を補正するように構成されている。 In one embodiment of the control device for the machine tool, the processing control device corrects the detection load calculated from the detection result of the stress detection device based on the detected temperature detected by the temperature detection device, Based on the detected load after correction, the control amount of the machining is corrected.
 この構成によると、応力検出装置が、支持部材等の熱変形等によって応力検出装置に加えられる応力を検出してしまったとしても、温度検出装置によって検出された、支持部材における応力検出装置の近傍部又は該近傍部に取り付けられる部品の少なくとも一方の温度に基づいて、上記応力検出装置の検出応力の検出結果から算出される検出負荷を補正する。これにより、支持部材等の熱変形によって検出される応力の影響を極小化することができ、工具に加えられる加工負荷に基づく負荷を精度良く検出することができる。そして、補正後の検出負荷に基づいて、加工の制御量を精度良く補正することができるため、工具による加工品質を維持しつつ加工効率をより高めることができる。 According to this configuration, even if the stress detection device detects the stress applied to the stress detection device due to thermal deformation of the support member or the like, the vicinity of the stress detection device in the support member detected by the temperature detection device The detection load calculated from the detection result of the detected stress of the stress detection device is corrected based on the temperature of at least one of the part or the part attached to the vicinity. Thereby, the influence of the stress detected by the thermal deformation of the support member or the like can be minimized, and the load based on the machining load applied to the tool can be detected with high accuracy. And since the control amount of a process can be correct | amended accurately based on the detection load after correction | amendment, process efficiency can be improved further, maintaining the process quality by a tool.
 上記工作機械の制御装置において、上記支持部材は円筒形状であり、上記支持部材には、上記支持部材の軸方向に延びる複数のクーラント油路が、上記支持部材の円周方向に略等間隔で配置されている。 In the machine tool control apparatus, the support member has a cylindrical shape, and the support member includes a plurality of coolant oil passages extending in an axial direction of the support member at substantially equal intervals in a circumferential direction of the support member. Has been placed.
 この構成によると、支持部材が円筒形状であり、複数のクーラント油路が上記支持部材の円周方向に略等間隔で配置されることで、各クーラント油路に流れるクーラント液の熱による支持部材の円周方向における温度変化が略均一になる。これにより、支持部材等の熱変形による応力検出装置への影響も支持部材の円周方向で略均一になって、各応力検出装置に作用する、支持部材等の熱変形によって検出される応力も略均一化されるため、検出負荷の補正値の算出が簡略化される。この結果、応力検出装置による工具の加工負荷の検出精度をより向上させることができる。 According to this configuration, the support member has a cylindrical shape, and the plurality of coolant oil passages are arranged at substantially equal intervals in the circumferential direction of the support member, so that the support member is caused by the heat of the coolant liquid flowing in each coolant oil passage. The temperature change in the circumferential direction becomes substantially uniform. As a result, the influence of the thermal deformation of the support member on the stress detection device is also substantially uniform in the circumferential direction of the support member, and the stress detected by the thermal deformation of the support member etc. acting on each stress detection device is also reduced. Since it is made substantially uniform, the calculation of the correction value for the detected load is simplified. As a result, it is possible to further improve the accuracy of detecting the processing load of the tool by the stress detection device.
 上記工作機械の制御装置において、上記工具はドリルであり、上記加工制御装置は、上記検出負荷が予め設定された目標負荷の範囲内となるように、上記ドリルの送り速度を制御するように構成されている、ことが望ましい。 In the control device for the machine tool, the tool is a drill, and the processing control device is configured to control the feed rate of the drill so that the detected load is within a preset target load range. It is desirable that
  この構成によると、ドリルに加えられる加工負荷に基づく検出負荷が、予め設定された目標負荷の範囲内となるようにドリルの送り速度が制御されるため、ドリルに過大な負荷が加えられない範囲でドリルの送り速度を比較的速い条件に設定することができる。これにより、ドリルの破損を防止しつつ、加工時間の短縮を図ることができる。 According to this configuration, the feed rate of the drill is controlled so that the detection load based on the machining load applied to the drill is within the preset target load range, so that an excessive load is not applied to the drill. The drill feed rate can be set to a relatively fast condition. Thereby, shortening of processing time can be aimed at, preventing damage to a drill.
 上記工作機械の制御装置において、上記応力検出装置を、上記工具による上記ワークの加工により生じる加工屑から保護する保護部材をさらに備えている、ことが望ましい。 In the machine tool control device, it is preferable that the stress detection device further includes a protective member that protects the processing tool from the machining waste generated by the processing of the workpiece.
 すなわち、ワークを加工した際に、加工屑が応力検出装置に付着してしまうと、加工屑が付着した部分だけ検出負荷が高く又は低くなり、工具に加えられる加工負荷を正確に検出できなくなるおそれがある。そこで、応力検出装置を加工屑から保護する保護部材を設けることにより、応力検出装置に加工屑が付着するのを防止することができる。これにより、加工屑等の付着によって、応力検出装置の検出精度が低下するのを防止することができる。 That is, when machining scraps adhere to the stress detection device when machining a workpiece, the detection load increases or decreases only at the portion where the machining scraps adhere, and the machining load applied to the tool may not be accurately detected. There is. Therefore, by providing a protection member that protects the stress detection device from the processing waste, it is possible to prevent the processing waste from adhering to the stress detection device. Thereby, it can prevent that the detection accuracy of a stress detection apparatus falls by adhesion of processing waste etc.
 以上説明したように、本発明の工作機械の制御装置によれば、支持部材における応力検出装置の近傍部又は該近傍部に取り付けられる部品の少なくとも一方の温度を検出する複数の温度検出装置を備え、加工制御装置は、上記応力検出装置の検出結果から算出される検出負荷と上記温度検出装置によって検出された検出温度とに基づいて、上記加工の制御量を補正するように構成されているため、応力検出装置で検出結果から算出される検出負荷に加えて、温度検出装置によって検出された支持部材における応力検出装置の近傍部又は該近傍部に取り付けられる部品の少なくとも一方の温度に基づいて、加工の制御量を補正することができる。これにより、支持部材等の熱変形による影響を考慮した上で加工の制御量を制御することができ、工具による加工品質を維持しつつ加工効率を高めることができる。 As described above, according to the machine tool control device of the present invention, the support member includes a plurality of temperature detection devices that detect the temperature of at least one of the vicinity of the stress detection device or a component attached to the vicinity. The machining control device is configured to correct the machining control amount based on the detection load calculated from the detection result of the stress detection device and the detected temperature detected by the temperature detection device. In addition to the detection load calculated from the detection result by the stress detection device, based on the temperature of at least one of the support member detected by the temperature detection device in the vicinity of the stress detection device or a component attached to the vicinity, The control amount of machining can be corrected. Thereby, the control amount of processing can be controlled in consideration of the influence of thermal deformation of the support member and the like, and the processing efficiency can be increased while maintaining the processing quality of the tool.
工作室に配置された本発明の実施形態に係る制御装置により制御される工作機械を示す概略図である。It is the schematic which shows the machine tool controlled by the control apparatus which concerns on embodiment of this invention arrange | positioned in the machine room. 工作機械の概略を示す断面図である。It is sectional drawing which shows the outline of a machine tool. 工作機械を正面から見た図である。It is the figure which looked at the machine tool from the front. ケーシングの、本体部への取付部分を拡大した分解斜視図である。It is the disassembled perspective view which expanded the attachment part to the main-body part of a casing. 工作機械の駆動系及び制御系の構成を示すブロック図である。It is a block diagram which shows the structure of the drive system and control system of a machine tool. 第1制御を実行したときの応力センサの検出結果から算出される検出負荷とドリルの送り速度との関係を示すグラフである。It is a graph which shows the relationship between the detection load computed from the detection result of the stress sensor when performing 1st control, and the feed rate of a drill. 第2制御を実行したときの応力センサの検出結果から算出される検出負荷とドリルの送り速度との関係を示すグラフである。It is a graph which shows the relationship between the detection load computed from the detection result of a stress sensor when performing 2nd control, and the feed rate of a drill. 第3制御を実行したときの応力センサの検出結果から算出される検出負荷とドリルの送り速度との関係を示すグラフである。It is a graph which shows the relationship between the detection load calculated from the detection result of the stress sensor when performing 3rd control, and the feed rate of a drill. 工作機械によりワークを加工したときの、フランジ部の凹陥部の温度変化と該温度変化の影響により応力センサで検出される検出応力から算出された検出負荷との関係を示すグラフである。It is a graph which shows the relationship between the temperature change of the recessed part of a flange part when a workpiece | work is processed with a machine tool, and the detection load calculated from the detected stress detected with a stress sensor by the influence of this temperature change. 図9における時間が0からt1の範囲において、応力センサに加えられる応力を示す概略図である。FIG. 10 is a schematic diagram showing stress applied to the stress sensor in a time range of 0 to t1 in FIG. 9. 図9における時間がt1からt2の範囲において、応力センサに加えられる応力を示す概略図である。FIG. 10 is a schematic diagram showing stress applied to the stress sensor in a time range from t1 to t2 in FIG. コントロールユニットによる工作機械の運転時の処理動作を示すフローチャートである。It is a flowchart which shows the processing operation at the time of operation of a machine tool by a control unit.
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、工作室に配置された本発明の実施形態に係る制御装置により制御される工作機械1を示す。尚、以下の説明では、説明の便宜上、主軸2の軸方向を前後方向といい、ドリル3側を前側、反ドリル3側を後側という。 FIG. 1 shows a machine tool 1 controlled by a control device according to an embodiment of the present invention disposed in a machine room. In the following description, for convenience of description, the axial direction of the main shaft 2 is referred to as the front-rear direction, the drill 3 side is referred to as the front side, and the counter-drill 3 side is referred to as the rear side.
 この工作機械1は、横型マシニングセンタであって、主軸2の前側端部に取り付けられた工具としてのドリル3を、主軸2とともに回転させて、加工対象としてのワークWの加工を行うものである。工作機械1の前側にはハウジング11が配設されており、ハウジング11内には、ハウジング11によって閉塞された加工室12が形成されている。工作機械1の前側の一部は、ハウジング11の後側の縦壁11aを介して加工室12内に収容されている。尚、ハウジング11にはユーザーが出入可能な扉(図示省略)が設けられている。また、加工室12内には主軸2に取り付ける工具を自動で交換するための自動工具交換装置(図示省略)が配置されている。 The machine tool 1 is a horizontal machining center, and rotates a drill 3 as a tool attached to the front end portion of the spindle 2 together with the spindle 2 to process the workpiece W as a processing target. A housing 11 is disposed on the front side of the machine tool 1, and a processing chamber 12 closed by the housing 11 is formed in the housing 11. A part of the front side of the machine tool 1 is accommodated in the processing chamber 12 via a vertical wall 11 a on the rear side of the housing 11. The housing 11 is provided with a door (not shown) through which a user can enter and exit. Further, an automatic tool changer (not shown) for automatically changing a tool attached to the spindle 2 is arranged in the processing chamber 12.
 加工室12内には、水平移動可能なパレット13が配設されている。パレット13は、送り軸モータ(図示省略)に接続されており、ワークWの加工時には、送り軸モータが駆動されてパレット13(正確には、パレット13上のワークW)がドリル3に対して送られる。パレット13上には、治具14が据え付けられており、ワークWは治具14によってチャックされている。工作機械1は、上記ワークWに対し、主軸2の前側端部に取り付けたドリル3によって中ぐり加工等を行う。このとき、縦壁11aは切削屑(加工屑)等が加工室12から後述する応力センサ70に飛散するのを防止する役割をしており、本実施形態では、縦壁11aが保護部材に相当する。 In the processing chamber 12, a horizontally movable pallet 13 is disposed. The pallet 13 is connected to a feed shaft motor (not shown), and when the workpiece W is processed, the feed shaft motor is driven so that the pallet 13 (more precisely, the workpiece W on the pallet 13) is moved with respect to the drill 3. Sent. A jig 14 is installed on the pallet 13, and the workpiece W is chucked by the jig 14. The machine tool 1 performs boring or the like on the workpiece W with a drill 3 attached to the front end of the spindle 2. At this time, the vertical wall 11a plays a role of preventing cutting waste (processing waste) or the like from scattering from the processing chamber 12 to the stress sensor 70 described later. In this embodiment, the vertical wall 11a corresponds to a protective member. To do.
 図1及び図2に示すように、工作機械1は、詳しくは、主軸2と、主軸2の前側端部に取り付けられるドリル3と、主軸2を回転可能に支持する支持部材としてのケーシング4と、主軸2を含めてケーシング4を支持する本体部5とを備えている。 As shown in FIGS. 1 and 2, the machine tool 1 includes a main shaft 2, a drill 3 attached to a front end portion of the main shaft 2, and a casing 4 as a support member that rotatably supports the main shaft 2. And a main body 5 that supports the casing 4 including the main shaft 2.
 主軸2は、前後方向に延びる略円筒状の部材であり、主軸2の円筒内には前後方向に延びる軸心ロッド23が挿入されている。主軸2の前側端部は、円筒形状のケーシング4の円筒内に配置された状態で、ケーシング4の前側端面よりも前側に突出するように構成されている。主軸2の前側端部には、軸心ロッド23を含むチャッキング機構(図示省略)が形成されていて、該チャッキング機構によってドリル3が主軸2に取り付けられる。また、主軸2の後側端部には主軸2を回転させるための主軸モータ21(図5参照)が配置されている。 The main shaft 2 is a substantially cylindrical member extending in the front-rear direction, and an axial rod 23 extending in the front-rear direction is inserted into the cylinder of the main shaft 2. The front end portion of the main shaft 2 is configured to protrude forward from the front end surface of the casing 4 in a state where the front end portion is disposed in the cylinder of the cylindrical casing 4. A chucking mechanism (not shown) including an axial rod 23 is formed at the front end portion of the main shaft 2, and the drill 3 is attached to the main shaft 2 by the chucking mechanism. A spindle motor 21 (see FIG. 5) for rotating the spindle 2 is disposed at the rear end of the spindle 2.
 ケーシング4は、筒軸が前後方向に延びる円筒形状の部材であって、円筒内に主軸2を回転可能に支持するものである。ケーシング4の内壁側における前側寄りの位置には、複数(図2では4個)のベアリング41が配置されており、主軸2は、ベアリング41を介して、ケーシング4の円筒内で回転する。ケーシング4の後側端部はケーシング4における他の部分よりも拡径したフランジ部6になっている。 The casing 4 is a cylindrical member having a cylindrical shaft extending in the front-rear direction, and supports the main shaft 2 rotatably in the cylinder. A plurality of (four in FIG. 2) bearings 41 are arranged at positions closer to the front side on the inner wall side of the casing 4, and the main shaft 2 rotates within the cylinder of the casing 4 via the bearings 41. A rear end portion of the casing 4 is a flange portion 6 having a diameter larger than that of other portions of the casing 4.
 また、ケーシング4のフランジ部6内及びケーシング4の壁部内には冷却用のクーラント液が流れるクーラント油路42が配設されている。詳しくは、クーラント油路42は、図2に示すように、フランジ部6よりも後側でケーシング4の径方向内側に向かって延びて、該径方向におけるケーシング4の壁部に対応する位置で前側に折れ曲がった後、前側に向かって延びている。クーラント液は、ワークWの加工時には、クーラント油路42を通って、ケーシング4の前端部に設けられた噴射口からドリル3に向かって噴射されて、ワークWの加工部周辺を冷却する。また、クーラント油路42は、ケーシング4の中心に対して対称かつケーシング4の周方向において略等間隔となるように配置されており、ケーシング4の周方向における温度分布が略均一になるようになっている。 Further, a coolant oil passage 42 through which a coolant liquid for cooling flows is disposed in the flange portion 6 of the casing 4 and the wall portion of the casing 4. Specifically, as shown in FIG. 2, the coolant oil passage 42 extends toward the radially inner side of the casing 4 on the rear side of the flange portion 6, and at a position corresponding to the wall portion of the casing 4 in the radial direction. After bending forward, it extends toward the front. When the workpiece W is machined, the coolant passes through the coolant oil passage 42 and is sprayed from the injection port provided at the front end of the casing 4 toward the drill 3 to cool the periphery of the workpiece W. The coolant oil passages 42 are arranged so as to be symmetrical with respect to the center of the casing 4 and at substantially equal intervals in the circumferential direction of the casing 4 so that the temperature distribution in the circumferential direction of the casing 4 is substantially uniform. It has become.
 ケーシング4は、図2及び図3に示すように、フランジ部6の部分が複数箇所(本実施形態では6箇所)でプリロードボルト44によって本体部5に取付固定されることで、本体部5に支持されている。具体的には、図4に示すように、本体部5には本体部側ボルト孔5aが形成され、フランジ部6には本体部側ボルト孔5aに対応する位置にフランジ側ボルト孔6aが形成され、これらのボルト孔5a,6aにプリロードボルト44の軸部44aの端部がそれぞれ挿入される。軸部44aの前側端部にはフランジ部6の前側からナット44cが締結され、これによりケーシング4が本体部5に締結されている。このとき、図3に示すように、プリロードボルト44による締結箇所は周方向に等間隔に複数(本実施形態では6箇所)設けられており、各締結箇所においてフランジ部6がプリロードボルト44によって本体部5に締結されることで、ケーシング4が本体部5に支持される。 As shown in FIGS. 2 and 3, the casing 4 is attached and fixed to the main body 5 by the preload bolts 44 at a plurality of locations (6 in the present embodiment) of the flange portion 6. It is supported. Specifically, as shown in FIG. 4, the main body 5 is formed with a main body side bolt hole 5a, and the flange 6 is formed with a flange side bolt hole 6a at a position corresponding to the main body side bolt hole 5a. Then, the end portions of the shaft portion 44a of the preload bolt 44 are inserted into the bolt holes 5a and 6a, respectively. A nut 44c is fastened from the front side of the flange portion 6 to the front end portion of the shaft portion 44a, whereby the casing 4 is fastened to the main body portion 5. At this time, as shown in FIG. 3, a plurality of fastening locations by the preload bolt 44 are provided at equal intervals in the circumferential direction (six locations in this embodiment), and the flange portion 6 is attached to the main body by the preload bolt 44 at each fastening location. The casing 4 is supported by the main body 5 by being fastened to the part 5.
 フランジ部6におけるプリロードボルト44が取り付けられる位置の後側寄りの一部は、図2及び図4に示すように、フランジ部6の外周面から径方向内側に向かって略矩形状に凹陥した凹陥部6bとなっている。凹陥部6bは、フランジ部6の周方向に略等間隔になるように複数箇所(本実施形態では6箇所)に形成されている。フランジ部6の凹陥部6bが形成された位置における前側の残部は壁になっており、図2及び図4に示すように、上記フランジ側ボルト孔6aは、上記壁の部分に形成され、上記プリロードボルト44が本体部側及びフランジ側ボルト孔5a,6aに挿入されたときには、軸部44aが凹陥部6bの中に位置するようになる。 As shown in FIGS. 2 and 4, a part of the flange portion 6 near the rear side where the preload bolt 44 is attached is recessed in a substantially rectangular shape from the outer peripheral surface of the flange portion 6 toward the radially inner side. It is part 6b. The recessed portions 6b are formed at a plurality of locations (six locations in the present embodiment) so as to be substantially equidistant in the circumferential direction of the flange portion 6. The remaining portion on the front side at the position where the recessed portion 6b of the flange portion 6 is formed is a wall. As shown in FIGS. 2 and 4, the flange side bolt hole 6a is formed in the wall portion, and When the preload bolt 44 is inserted into the main body portion side and the flange side bolt holes 5a, 6a, the shaft portion 44a is positioned in the recessed portion 6b.
 各プリロードボルト44の軸部44aには、図2及び図4に示すように、応力検出装置としての応力センサ70が1個ずつ(すなわち、全体で6個)嵌め込まれている。各応力センサ70は、各プリロードボルト44の軸部44aに支持された状態でフランジ部6の各凹陥部6bの中に配置されており、図3に示すように、ケーシング4の周方向において略等間隔となるように配置される。詳しくは後述するが、応力センサ70が、ベアリング41を介してケーシング4に伝えられる力によって作用される応力を検出することで、ワークWの加工時に、ドリル3に加えられている加工負荷が算出される。 As shown in FIG. 2 and FIG. 4, one stress sensor 70 as a stress detection device is fitted into each shaft 44a of each preload bolt 44 (that is, six in total). Each stress sensor 70 is disposed in each recessed portion 6b of the flange portion 6 while being supported by the shaft portion 44a of each preload bolt 44, and is substantially in the circumferential direction of the casing 4 as shown in FIG. It arrange | positions so that it may become equal intervals. As will be described in detail later, the processing load applied to the drill 3 when the workpiece W is processed is calculated by the stress sensor 70 detecting the stress applied by the force transmitted to the casing 4 via the bearing 41. Is done.
 さらに、図2及び図3に示すように、ケーシング4における各応力センサ70の近傍部、つまり、ケーシング4のフランジ部6における各凹陥部6bには、各凹陥部6bの温度を検出する温度検出装置としての温度センサ71がそれぞれ取り付けられている。尚、本実施形態では、温度センサ71は、各凹陥部6bにそれぞれ取り付けられて、各凹陥部6bの温度をそれぞれ検出するようにしているが、温度センサ71を、上記近傍部である各凹陥部6aに配置された、各プリロードボルト44にそれぞれ取り付けて、各プリロードボルト44の温度をそれぞれ検出するようにしてもよい。また、各応力センサ70、各凹陥部6b及び各プリロードボルト44の全てに温度センサ71を取り付けるようにしてもよい。 Further, as shown in FIGS. 2 and 3, in the vicinity of each stress sensor 70 in the casing 4, that is, in each recessed portion 6 b in the flange portion 6 of the casing 4, temperature detection for detecting the temperature of each recessed portion 6 b. A temperature sensor 71 as an apparatus is attached. In the present embodiment, the temperature sensor 71 is attached to each of the recessed portions 6b and detects the temperature of each of the recessed portions 6b. However, the temperature sensor 71 is connected to each recessed portion that is the vicinity. The temperature of each preload bolt 44 may be detected by attaching to each preload bolt 44 arranged in the portion 6a. Further, the temperature sensors 71 may be attached to all the stress sensors 70, the recessed portions 6b, and the preload bolts 44.
 具体的に、ケーシング4を本体部5に取り付ける際には、図4に示すように、フランジ部6と本体部5との間に、カラー側ボルト孔51aが形成されたカラー51を、カラー側ボルト孔51aが本体部側ボルト孔5aに対応する位置なるよう位置合わせをして配置する。次に、予め応力センサ70が嵌め込まれたプリロードボルト44の軸44aの後側端部をカラー側ボルト孔51aを介して本体部側ボルト孔5aに挿入させる。次に、フランジ側ボルト孔6aが、本体部側ボルト孔5aに挿入されたプリロードボルト44の軸部44aの前側端部と対応する位置になるようにケーシング4の位置合わせをし、軸部44aの前側端部をフランジ側ボルト孔6aに挿入させるようにケーシング4を移動させ、軸部44aの前側端部をフランジ側ボルト孔6aから前側に向かって突出させる。そして、軸部44aの前側端部におけるフランジ側ボルト孔6aから突出した部分にワッシャー44bを介して、ナット44cを締結させる。これにより、ケーシング4が本体部5に取り付けられる。尚、温度センサ71は、ケーシング4を本体部5に取り付ける途中で、凹陥部6bに取り付けられる。 Specifically, when the casing 4 is attached to the main body 5, as shown in FIG. 4, the collar 51 in which the collar side bolt hole 51 a is formed between the flange 6 and the main body 5 is connected to the collar side. The bolt holes 51a are aligned and positioned so as to correspond to the main body side bolt holes 5a. Next, the rear end portion of the shaft 44a of the preload bolt 44 in which the stress sensor 70 is fitted in advance is inserted into the main body side bolt hole 5a through the collar side bolt hole 51a. Next, the casing 4 is aligned so that the flange-side bolt hole 6a corresponds to the front end of the shaft portion 44a of the preload bolt 44 inserted into the main body-side bolt hole 5a. The casing 4 is moved so that the front end portion of the shaft portion 44a is inserted into the flange side bolt hole 6a, and the front end portion of the shaft portion 44a is projected from the flange side bolt hole 6a toward the front side. And the nut 44c is fastened to the part which protruded from the flange side bolt hole 6a in the front side edge part of the axial part 44a via the washer 44b. Thereby, the casing 4 is attached to the main body 5. The temperature sensor 71 is attached to the recessed portion 6 b in the middle of attaching the casing 4 to the main body portion 5.
 応力センサ70は、本実施形態では、既知の水晶圧電素子をリング状に加工したものであって、水晶圧電素子に作用する応力を、該水晶圧電素子の電荷の変化から検出する。ドリル3によってワークWを加工する際には、応力センサ70が、ドリル3から、主軸2及びベアリング41を介してケーシング4に伝えられる力(主軸方向のスラスト力及びケーシング4に作用する曲げ応力など)によって水晶圧電素子に作用する応力を検出して、該検出応力を後述するコントロールユニット100に入力することで、該コントロールユニット100によって、ドリル3に加えられている加工負荷が算出される。尚、加工負荷とは、例えば、トルクや曲げ応力等のことをいう。 In this embodiment, the stress sensor 70 is obtained by processing a known quartz piezoelectric element into a ring shape, and detects a stress acting on the quartz piezoelectric element from a change in charge of the quartz piezoelectric element. When machining the workpiece W by the drill 3, the force (the thrust force in the main shaft direction and the bending stress acting on the casing 4, etc.) transmitted from the drill 3 to the casing 4 through the main shaft 2 and the bearing 41. ) To detect the stress acting on the quartz piezoelectric element and input the detected stress to the control unit 100 described later, whereby the processing load applied to the drill 3 is calculated by the control unit 100. The processing load refers to, for example, torque, bending stress, and the like.
 温度センサ71は、本実施形態では熱電対である。各温度センサ71は、各凹陥部6bの温度をそれぞれ検出し、検出した検出温度を後述するコントロールユニット100に出力する。 The temperature sensor 71 is a thermocouple in this embodiment. Each temperature sensor 71 detects the temperature of each recess 6b, and outputs the detected temperature to the control unit 100 described later.
 図5に、工作機械1の駆動系及び制御系の構成を示すブロック図を示す。 FIG. 5 is a block diagram showing the configuration of the drive system and the control system of the machine tool 1.
 本実施形態では、応力センサ70で検出された検出応力及び温度センサ71によって検出された検出温度に基づいて、コントロールユニット100が、ワークWの加工時にドリル3に加えられている加工負荷を算出して、ドリル3によるワークWの加工の制御量(例えば、ドリル3の送り速度)を上記加工負荷に応じた条件に制御する。本実施形態では、コントロールユニット100が加工制御装置に相当する。 In the present embodiment, based on the detected stress detected by the stress sensor 70 and the detected temperature detected by the temperature sensor 71, the control unit 100 calculates the machining load applied to the drill 3 when machining the workpiece W. Then, the control amount (for example, the feed speed of the drill 3) of the work W processed by the drill 3 is controlled to a condition corresponding to the processing load. In the present embodiment, the control unit 100 corresponds to a machining control device.
 コントロールユニット100は、周知のマイクロコンピュータをベースとするコントローラであって、プログラムを実行する中央演算処理装置(CPU)と、例えばRAMやROMにより構成されてプログラム及びデータを格納するメモリと、電気信号を入出力する入出力(I/O)バスとを備えている。 The control unit 100 is a controller based on a well-known microcomputer, and includes a central processing unit (CPU) that executes a program, a memory that is configured by, for example, a RAM or ROM, and stores a program and data, and an electrical signal And an input / output (I / O) bus.
 応力センサ70は、検出応力を表す電気信号をコントロールユニット100に入力する。具体的には、検出応力を表す電気信号は、応力センサ70から増幅器81に入力されて、増幅機81で増幅された後、AD変換器82によってデジタル信号に変換されて、コントロールユニット100に入力される。 The stress sensor 70 inputs an electrical signal representing the detected stress to the control unit 100. Specifically, an electrical signal representing the detected stress is input from the stress sensor 70 to the amplifier 81, amplified by the amplifier 81, converted into a digital signal by the AD converter 82, and input to the control unit 100. Is done.
 温度センサ71で検出された検出温度を表す電気信号は、AD変換機83によってデジタル信号に変換された後、コントロールユニット100に入力される。 The electrical signal representing the detected temperature detected by the temperature sensor 71 is converted into a digital signal by the AD converter 83 and then input to the control unit 100.
 コントロールユニット100は、検出応力及び検出温度に関する電気信号に基づいて、ワークWの加工時にドリル3に加えられている加工負荷を算出して、該算出結果に基づいてドリル3によるワークWの加工の制御量を決定して、該加工の制御量に基づく駆動信号を、増幅器84を介して主軸モータ21に送信するとともに、パレット13の送り軸モータに送信して、ドリル3に対してワークWを移動させて、ドリル3の加工の制御量としての送り速度を制御する。 The control unit 100 calculates a processing load applied to the drill 3 at the time of processing the workpiece W based on the electrical signal regarding the detected stress and the detected temperature, and based on the calculation result, the processing of the workpiece W by the drill 3 is calculated. A control amount is determined, and a drive signal based on the control amount of the machining is transmitted to the spindle motor 21 via the amplifier 84 and is also transmitted to the feed shaft motor of the pallet 13 so that the workpiece W is transferred to the drill 3. The feed speed is controlled as a control amount for machining the drill 3 by moving the drill 3.
 次に、図6~8を参照しながら、コントロールユニット100によって実行される制御について説明する。尚、以下の説明において、応力センサ70の検出応力から算出された加工負荷のことを検出負荷という。 Next, the control executed by the control unit 100 will be described with reference to FIGS. In the following description, the machining load calculated from the stress detected by the stress sensor 70 is referred to as a detected load.
 図6は、コントロールユニット100で実行される制御の一例である第1制御を表すものである。第1制御は、比較的長い孔を開けるときなど、長時間の加工を行うときに主に実行される制御である。 FIG. 6 shows the first control which is an example of the control executed by the control unit 100. The first control is executed mainly when long-time machining is performed, such as when a relatively long hole is opened.
 第1制御は、ドリル3による加工の際に、各応力センサ70で検出された検出応力から算出される検出負荷(正確には、後述する補正後の検出負荷)が予め設定された目標負荷の範囲内になるように、ドリル3の送り速度を随時変更する制御である。目標負荷は、図6に破線で示すように、特定の値ではなく、ある程度の範囲を有するように設定されるものであって、ドリル3による加工品質を維持できる最も高効率な範囲に設定される。尚、目標負荷は、一定の範囲で設定されていたり工具毎に異なる範囲で設定されていたりしてもよく、また、ユーザーが工作機械1を用いる度に任意の範囲に設定されるようになっていてもよい。 In the first control, a detected load (more precisely, a corrected detected load described later) calculated from the detected stress detected by each stress sensor 70 at the time of machining by the drill 3 is a preset target load. In this control, the feed rate of the drill 3 is changed at any time so as to be within the range. The target load is set to have a certain range rather than a specific value, as shown by a broken line in FIG. 6, and is set to the most efficient range in which the machining quality by the drill 3 can be maintained. The The target load may be set within a certain range or may be set within a different range for each tool. In addition, every time the user uses the machine tool 1, the target load is set to an arbitrary range. It may be.
 図6を参照すると、コントロールユニット100は、まず、主軸モータ21を駆動するとともに、パレット13の送り軸モータを駆動して、図6に細線で示すように、ドリル3の送り速度を上昇させながら、ワークWを加工するように制御する。このとき、ドリル3の送り速度が上昇するとともに、ワークWからドリル3に加えられる加工負荷が増加するため、図6に太線で示すように、コントロールユニット100によって算出される検出負荷も増加する。検出負荷が目標負荷の範囲内になると、コントロールユニット100は、ドリル3の送り速度を検出負荷が目標負荷の範囲内になったときの送り速度に固定させて、加工を続ける。 Referring to FIG. 6, the control unit 100 first drives the spindle motor 21 and also drives the feed shaft motor of the pallet 13 while increasing the feed speed of the drill 3 as shown by a thin line in FIG. The workpiece W is controlled to be processed. At this time, the feed speed of the drill 3 increases, and the machining load applied to the drill 3 from the workpiece W increases, so that the detection load calculated by the control unit 100 also increases as shown by the thick line in FIG. When the detected load falls within the target load range, the control unit 100 fixes the feed speed of the drill 3 to the feed speed when the detected load falls within the target load range, and continues processing.
 その後、例えば、ドリル3で加工している孔に加工屑が溜まるなどすると、ドリル3に加えられる加工負荷が増加するため、検出負荷が増加する。そして、検出負荷が目標負荷を上回るときには、コントロールユニット100は、検出負荷が目標負荷の範囲内になるまで、ドリル3の送り速度を漸減(予め設定された速度ずつ減少させる)するように変化させる。検出負荷が目標負荷の範囲内になると、コントロールユニット100は、ドリル3の送り速度を、検出負荷が目標負荷の範囲内になったときの送り速度に固定させて加工を続ける。 After that, for example, if processing waste accumulates in the hole processed by the drill 3, the processing load applied to the drill 3 increases, and thus the detection load increases. When the detected load exceeds the target load, the control unit 100 changes the feed speed of the drill 3 to gradually decrease (decrease by a preset speed) until the detected load falls within the target load range. . When the detected load falls within the target load range, the control unit 100 continues the machining by fixing the feed speed of the drill 3 to the feed speed when the detected load falls within the target load range.
 その後、例えば、上述の漸減制御によって検出負荷が目標負荷を下回るときには、コントロールユニット100は、検出負荷が目標負荷の範囲内になるまで、ドリル3の送り速度を漸増(予め設定された速度ずつ増加させる)するように変化させる。検出負荷が目標負荷の範囲内になると、コントロールユニット100は、ドリル3の送り速度を検出負荷が目標負荷の範囲内になったときの送り速度に固定させて加工を続ける。以下、この繰り返しによりドリル3の加工負荷が目標負荷の範囲内に制御される。尚、漸減時の減少の割合や漸増時の増加の割合を、ユーザーが任意に設定することができるようにしてもよい。 Thereafter, for example, when the detected load falls below the target load by the above-described gradual reduction control, the control unit 100 gradually increases the feed speed of the drill 3 (increases by a preset speed) until the detected load falls within the target load range. To change). When the detected load falls within the range of the target load, the control unit 100 continues the machining by fixing the feed rate of the drill 3 to the feed rate when the detected load falls within the range of the target load. Hereinafter, the processing load of the drill 3 is controlled within the range of the target load by this repetition. It should be noted that the user may be able to arbitrarily set the rate of decrease during gradual decrease and the rate of increase during gradual increase.
 この第1制御によると、ワークWの加工時に、ドリル3に加えられる加工負荷を目標負荷の範囲内に制御しつつ、ドリル3に加えられる加工負荷が目標負荷の範囲内になる最速の送り速度でワークWを加工することができるため、ドリル3の加工品質を維持しつつ、ワークWの加工時間の短縮を図ることができる。 According to this first control, the maximum feed speed at which the machining load applied to the drill 3 is within the target load range while the machining load applied to the drill 3 is controlled within the target load range when the workpiece W is machined. Since the workpiece W can be machined, the machining time of the workpiece W can be shortened while maintaining the machining quality of the drill 3.
 図7は、コントロールユニット100で実行される制御の一例である第2制御を表すものである。第2制御は、比較的短い孔を複数個開けるときなど、短時間の加工を複数回行うときに主に実行される制御である。 FIG. 7 shows the second control which is an example of the control executed by the control unit 100. The second control is a control that is mainly executed when short-time machining is performed a plurality of times, such as when a plurality of relatively short holes are formed.
 第2制御は、前回の加工時にコントロールユニット100によって算出された検出負荷(正確には、後述する補正後の検出負荷)の平均値(以下、平均検出負荷という)から、該平均検出負荷が目標負荷の範囲内になるようにするためのドリルの送り速度補正値を算出し、次回の加工時には、上記送り速度補正値でもって補正した送り速度によって加工を行うように制御するものである。 In the second control, the average detected load is determined from the average value (hereinafter, referred to as average detected load) of the detected load calculated by the control unit 100 at the time of the previous machining (more precisely, the corrected detected load described later). A drill feed rate correction value for making it within the load range is calculated, and at the next machining, control is performed so that machining is performed at the feed rate corrected with the feed rate correction value.
 図7には、例として、ドリル3によって2個の孔を開ける場合を示している。図7を参照すると、コントロールユニット100は、まず、1つめの孔を開けるために主軸モータ21を駆動するとともに、パレット13の送り軸モータを駆動して、図7に細線で示すように、ドリル3の送り速度を所定速度まで上昇させた後、加工終了まで一定の送り速度で加工を行うよう制御する。このとき、コントロールユニット100は、図7に太線で示すように、ドリル3に加えられる加工負荷を応力センサ70によって検出された検出応力から算出して、図7に一点鎖線で示すように、平均検出負荷を算出する。 FIG. 7 shows a case where two holes are opened by the drill 3 as an example. Referring to FIG. 7, the control unit 100 first drives the spindle motor 21 to open the first hole and also drives the feed shaft motor of the pallet 13 to drill the drill as shown by a thin line in FIG. After the feed speed of 3 is increased to a predetermined speed, control is performed so that machining is performed at a constant feed speed until the end of machining. At this time, the control unit 100 calculates the processing load applied to the drill 3 from the detected stress detected by the stress sensor 70 as shown by a thick line in FIG. 7, and calculates the average as shown by a one-dot chain line in FIG. Calculate the detection load.
 そして、例えば、図7に示すように、算出された平均検出負荷が目標負荷を下回っているときには、コントロールユニット100は、上記平均検出負荷を目標負荷の範囲内にするための送り速度補正値を算出して、2つめの孔を開ける際には、図7に示すように、ドリル3の送り速度を上記送り速度補正値でもって補正して、該送り速度を上昇させて加工を行うように制御する。これにより、図7に示すように、2つめの孔を開けた時の平均検出負荷は、目標負荷の範囲内となる。 For example, as shown in FIG. 7, when the calculated average detected load is lower than the target load, the control unit 100 sets a feed speed correction value for making the average detected load within the target load range. When the second hole is calculated and calculated, as shown in FIG. 7, the feed rate of the drill 3 is corrected with the feed rate correction value, and the feed rate is increased to perform machining. Control. Thereby, as shown in FIG. 7, the average detected load when the second hole is opened is within the range of the target load.
 上記2つめの孔を開けた後も、上記補正された送り速度で加工を行ったとき(例えば、3つめの孔を開けたとき)に、平均検出負荷が目標負荷を上回ったり、逆に平均検出負荷が再び目標負荷を下回ったりしたときには、再度、平均検出負荷を目標負荷の範囲内にするための送り速度補正値を算出して、その次の加工時(例えば、4つめの孔を開けるとき)には、該送り速度補正値でもって補正した送り速度によって加工を行うように制御する。以下、この繰り返しにより、ドリル3の加工負荷が目標負荷の範囲内に制御される。 Even after the second hole is opened, when the machining is performed at the corrected feed rate (for example, when the third hole is opened), the average detected load exceeds the target load, or the average is reversed. When the detected load falls below the target load again, the feed speed correction value for making the average detected load within the target load range is calculated again, and the next machining is performed (for example, the fourth hole is opened). Control) to perform machining at the feed speed corrected with the feed speed correction value. Hereinafter, the processing load of the drill 3 is controlled within the range of the target load by this repetition.
 この第2制御でも、ワークWの加工時に、ドリル3に加えられる加工負荷を目標負荷の範囲内に制御しつつ、ドリル3に加えられる加工負荷が目標負荷の範囲内になる最速の送り速度でワークWを加工することができるため、ドリル3の加工品質を維持しつつ、ワークWの加工時間の短縮を図ることができる。尚、上述の第2制御の説明では、1回の加工毎に平均検出負荷を算出して、次回の加工時の送り速度を補正しているが、2回以上の所定回数の加工毎に所定回数分の加工の平均検出負荷を算出して、該平均検出負荷に応じた送り速度補正値を算出して、次回の所定回数分の加工を上記送り速度補正値で補正した送り速度で行うようにしてもよい。 Even in the second control, the machining load applied to the drill 3 during the machining of the workpiece W is controlled within the target load range, and the highest feed speed at which the machining load applied to the drill 3 is within the target load range. Since the workpiece W can be machined, the machining time of the workpiece W can be shortened while maintaining the machining quality of the drill 3. In the description of the second control described above, the average detection load is calculated for each machining and the feed speed at the next machining is corrected. However, the predetermined control is performed every two or more machining operations. The average detected load of machining for the number of times is calculated, the feed speed correction value corresponding to the average detected load is calculated, and the next predetermined number of times of machining is performed at the feed speed corrected with the feed speed correction value. It may be.
 図8は、コントロールユニット100で実行される制御の一例である第3制御を表すものである。第3制御は、工具の破損を防止するために実行される制御である。 FIG. 8 shows the third control which is an example of the control executed by the control unit 100. The third control is a control executed to prevent the tool from being damaged.
 第3制御は、ドリル3によってワークWを加工する際に、コントロールユニット100によって算出された検出負荷(正確には、後述する補正後の検出負荷)が所定の上限負荷に到達したときに、ドリル3による加工を停止させる制御である。上限負荷は、目標負荷よりも高くかつドリル3等の工具が破損しない程度の負荷である。尚、上限負荷は、一定の値で設定されていたり工具毎に異なる値で設定されていたりしてもよく、また、ユーザーが工作機械1を用いる度に任意の値に設定されるようになっていてもよい。 In the third control, when the workpiece W is machined by the drill 3, when the detected load calculated by the control unit 100 (more precisely, the corrected detected load described later) reaches a predetermined upper limit load, 3 is a control for stopping the processing by 3. The upper limit load is a load that is higher than the target load and does not damage the tool such as the drill 3. The upper limit load may be set to a constant value or a different value for each tool, and is set to an arbitrary value every time the user uses the machine tool 1. It may be.
 図8を参照すると、コントロールユニット100は、まず、上記第1制御や上記第2制御等を実行して、主軸モータ21を駆動するとともに、パレット13の送り軸モータを駆動して、図8に示すように、検出負荷が目標負荷の範囲内に到達するまで、ドリル3の送り速度を上昇させて、目標負荷に到達後は、ドリル3の送り速度を到達時の送り速度に固定するように制御を行う。 Referring to FIG. 8, the control unit 100 first executes the first control and the second control to drive the spindle motor 21 and the feed shaft motor of the pallet 13. As shown, the feed speed of the drill 3 is increased until the detected load reaches the target load range, and after reaching the target load, the feed speed of the drill 3 is fixed to the feed speed at the time of arrival. Take control.
 そして、上記送り速度でワークWを加工している際に、例えば、ドリル3で加工している孔に切削屑が溜まるなどして、ドリル3に過大な負荷が加えられてしまい、検出負荷が、図8に2点鎖線で示す上限負荷に到達したときには、コントロールユニット100は、ドリル3が破損するおそれがあると判断して、主軸モータ21及びパレッド13の送り軸モータの駆動を停止させて、ドリル3による加工を停止させる。 When the workpiece W is processed at the above feed speed, for example, cutting waste accumulates in the hole processed by the drill 3, and an excessive load is applied to the drill 3, and the detection load is increased. When the upper limit load indicated by the two-dot chain line in FIG. 8 is reached, the control unit 100 determines that the drill 3 may be damaged, and stops driving the spindle motor 21 and the feed shaft motor of the pared 13. Then, the machining by the drill 3 is stopped.
 この第3制御によると、上記第1制御や上記第2制御によって、ワークWの加工時間の短縮を図りつつ、ドリル3に過大な負荷が加えられたときには、ドリル3による加工を停止させることでドリル3の破損を防止することができる。 According to the third control, the machining by the drill 3 is stopped when an excessive load is applied to the drill 3 while shortening the machining time of the workpiece W by the first control and the second control. Breakage of the drill 3 can be prevented.
 ここで、特に、ケーシング4や本体部5において、クーラント液が流れるクーラント油路42が配設されている部分は、ドリル3の摩擦熱等によって熱せられたクーラント液の熱が伝わりやすく、該クーラント液の熱の影響によって変形しやすい。ケーシング4や本体部5が熱変形すると、フランジ部6の凹陥部6bに配置された応力センサ70が、本体部5やケーシング4のフランジ部6、さらには応力センサ70を支持するプリロードボルト44から応力を受けてしまい、応力センサ70がドリル3の加工負荷に基づく応力以外の応力まで検出するため、応力センサ70による検出精度が低下してしまう。 Here, in particular, in the casing 4 and the main body 5, the portion of the coolant oil passage 42 through which the coolant liquid flows is disposed so that the heat of the coolant liquid heated by the frictional heat of the drill 3 is easily transmitted. Deformable due to the heat of the liquid. When the casing 4 or the main body 5 is thermally deformed, the stress sensor 70 disposed in the recessed portion 6b of the flange 6 is moved from the main body 5 or the flange 6 of the casing 4 and further from the preload bolt 44 that supports the stress sensor 70. Since the stress is received and the stress sensor 70 detects stress other than the stress based on the processing load of the drill 3, the detection accuracy by the stress sensor 70 is lowered.
 この熱の影響について、図9~図11を参照して詳しく説明する。 The effect of this heat will be described in detail with reference to FIGS.
 図9に示すグラフのうち図9で上段のグラフは時間に対するフランジ部6における凹陥部6bの温度変化を示すグラフであり、図9で下段のグラフは時間に対する検出負荷の変化を示すグラフである。上段及び下段のグラフにおいて横軸は時間を示す軸であって、ワークWを加工する直前を0としている。温度変化のグラフは、温度センサ71によって検出された温度に基づいて算出された凹陥部6bの温度変化であって、ワークWを加工する直前の凹陥部6bの温度を0としたときの温度変化である。検出負荷のグラフは、ドリル3に加工負荷が加えられていない状態での検出負荷を示すものである。検出負荷のグラフのうち、実線は各応力センサ70によって実際に検出された検出応力に基づいて算出された検出負荷であり、破線はシミュレーションによって実測の検出負荷の変化を再現したものであり、一点鎖線は実測の検出負荷に対して後述する補正を行ったものである。 9, the upper graph in FIG. 9 is a graph showing the temperature change of the recessed portion 6b in the flange portion 6 with respect to time, and the lower graph in FIG. 9 is a graph showing the change in detection load with respect to time. . In the upper and lower graphs, the horizontal axis is an axis indicating time, and is set to 0 immediately before the workpiece W is processed. The graph of the temperature change is the temperature change of the recessed portion 6b calculated based on the temperature detected by the temperature sensor 71, and the temperature change when the temperature of the recessed portion 6b immediately before processing the workpiece W is set to 0. It is. The detected load graph shows the detected load when no machining load is applied to the drill 3. In the graph of the detected load, the solid line is a detected load calculated based on the detected stress actually detected by each stress sensor 70, and the broken line is a reproduction of a change in the actually detected load by simulation. The chain line is obtained by correcting the actually measured load, which will be described later.
 図9を参照すると、凹陥部6aの温度は、時間が0からt1までの範囲及びt1からt2(>t1)までの範囲では上昇し、時間がt2以上の範囲では略一定になる。このとき実際の検出応力から算出された検出負荷は、時間が0からt1までの範囲では0から上昇し、時間がt1からt2(>t1)までの範囲では上昇した値から下降して0よりも小さくなり、時間がt2以上の範囲では0よりも小さい値のまま一定の値を示す。 Referring to FIG. 9, the temperature of the recess 6a rises in the time range from 0 to t1 and in the range from t1 to t2 (> t1), and becomes substantially constant in the time range of t2 or more. At this time, the detected load calculated from the actual detected stress increases from 0 in the time range from 0 to t1, and decreases from 0 in the time range from t1 to t2 (> t1). In a range where the time is t2 or more, a constant value is maintained with a value smaller than 0.
 この検出負荷の変化の過程で、応力センサ70に作用している応力について具体的に説明する。時間が0からt1までの範囲では、図10に示すように、本体部5やフランジ部6がクーラント液の熱によって熱変形することで、それらに挟まれた応力センサ70が、本体部5やフランジ部6によって押圧される。これにより、応力センサ70は圧縮応力を受けるため、図9の0からt1までの範囲に示すように、このときの検出応力から算出される検出負荷は0から上昇する。そして、時間がt1からt2(>t1)までの範囲では、クーラント液の熱がプリロードボルト44にも伝わり、プリロードボルト44が熱の影響により変形する。このとき、応力センサ70は、図11に示すように、プリロードボルト44によって前後方向の軸力(プリロード力)が低下する。これにより、応力センサ70は、図9のt1からt2までの範囲に示すように、このときの検出応力から算出される検出負荷は減少する。時間がt2以上の範囲では、温度が略一定になることで、応力センサ70がプリロードボルト44から受ける応力も一定になるため、このときの検出応力から算出される検出負荷は0より小さい値のまま略一定になる。 The stress acting on the stress sensor 70 in the process of changing the detected load will be specifically described. In the time range from 0 to t1, as shown in FIG. 10, the main body part 5 and the flange part 6 are thermally deformed by the heat of the coolant, so that the stress sensor 70 sandwiched between them is It is pressed by the flange portion 6. Thereby, since the stress sensor 70 receives compressive stress, the detection load calculated from the detection stress at this time rises from 0 as shown in the range from 0 to t1 in FIG. In the time range from t1 to t2 (> t1), the heat of the coolant is transmitted to the preload bolt 44, and the preload bolt 44 is deformed by the influence of heat. At this time, the axial force (preload force) in the front-rear direction is reduced by the preload bolt 44 in the stress sensor 70 as shown in FIG. Thereby, as shown in the range from t1 to t2 in FIG. 9, the detected load calculated from the detected stress at this time decreases. When the time is in the range of t2 or more, since the temperature is substantially constant, the stress received by the stress sensor 70 from the preload bolt 44 is also constant. Therefore, the detected load calculated from the detected stress at this time is a value smaller than zero. It remains almost constant.
 このように、応力センサ70が、フランジ部6における応力センサ70の近傍やケーシング4に取り付けられるプリロードボルト44等の部品の熱変形によって、ドリル3の加工負荷に基づく応力以外の応力を検出してしまうと、ワークWの加工時にドリル3に加えられている実際の加工負荷を正確に算出することができなくなる。この結果、各応力センサ70で検出された検出応力に基づく各検出負荷のみに基づく補正では、加工の制御量を正確に補正することができず、ドリル3によるワークWの加工の制御量を、ドリル3の加工品質を維持しつつ加工効率を高めるような、適切な制御量に制御できなくなる。 As described above, the stress sensor 70 detects stresses other than the stress based on the processing load of the drill 3 by thermal deformation of parts such as the preload bolt 44 attached to the casing 4 in the vicinity of the stress sensor 70 in the flange portion 6. As a result, the actual machining load applied to the drill 3 when machining the workpiece W cannot be accurately calculated. As a result, in the correction based only on each detected load based on the detected stress detected by each stress sensor 70, the control amount of processing cannot be accurately corrected, and the control amount of processing of the workpiece W by the drill 3 is It becomes impossible to control to an appropriate control amount that increases the processing efficiency while maintaining the processing quality of the drill 3.
 そこで、本実施形態では、ケーシング4のフランジ部6における各凹陥部6bの温度を各温度センサ71で検出して、各応力センサ70で検出された検出応力に基づく各検出負荷と温度センサ71で検出された検出温度とに基づいて、加工の制御量を補正するようにしている。 Therefore, in the present embodiment, the temperature of each recess 6 b in the flange portion 6 of the casing 4 is detected by each temperature sensor 71, and each detected load based on the detected stress detected by each stress sensor 70 and the temperature sensor 71 are used. The processing control amount is corrected based on the detected temperature detected.
 詳しくは、コントロールユニット100は、各応力センサ70で検出された検出応力に基づく各検出負荷を、温度センサ71で検出された検出温度に応じてそれぞれ補正することで、フランジ部6における各応力センサ70の近傍やプリロードボルト44の熱変形の影響をそれぞれ取り除き、補正後の検出負荷に基づいて加工の制御量を補正する。 Specifically, the control unit 100 corrects each detected load based on the detected stress detected by each stress sensor 70 in accordance with the detected temperature detected by the temperature sensor 71, so that each stress sensor in the flange portion 6 is corrected. The influence of thermal deformation of the vicinity of 70 and the preload bolt 44 is removed, and the control amount of machining is corrected based on the detected load after correction.
 具体的な補正の内容について説明すると、図9の下段のグラフに破線で示すような実測の検出負荷を再現したものをシミュレーション等で予め計算しておき、これを温度変化に対する検出負荷の変化に直したものを予めコンロトールユニット100に検出負荷補正算出式又は検出負荷補正マップとして記憶させておく。そして、ドリル3によってワークWの加工を行う際には、上記検出負荷補正算出式又は検出負荷補正マップから、各検出温度に応じた検出負荷の補正値をそれぞれ算出または読み取って、各補正値を用いて各検出負荷をそれぞれ補正する。この補正を行うことで、図9の検出負荷のグラフに一点鎖線で示すように、検出負荷の零点が補正され、各検出負荷からフランジ部6における各応力センサ70の近傍等の熱変形の影響を減少させることができる。尚、図9の下段のグラフの、シミュレーションによって再現された負荷の線における、時間が0からt1までの範囲は、実測の検出負荷の線と重なっているため見えていないが、シミュレーションによって再現された負荷の線は、時間が0からt1までの範囲において、実測の検出負荷と同様に0から上昇する変化を示す。 The details of the correction will be described. A graph representing the actual detection load shown by the broken line in the lower graph of FIG. 9 is calculated in advance by simulation or the like, and this is used as a change in the detection load with respect to a temperature change. The corrected one is stored in advance in the control unit 100 as a detection load correction calculation formula or a detection load correction map. Then, when machining the workpiece W with the drill 3, the correction value of the detected load corresponding to each detected temperature is calculated or read from the detected load correction calculation formula or the detected load correction map, and each correction value is calculated. Use to correct each detected load. By performing this correction, the zero point of the detected load is corrected as indicated by the one-dot chain line in the graph of the detected load in FIG. Can be reduced. The range from time 0 to t1 in the load line reproduced by simulation in the lower graph of FIG. 9 is not visible because it overlaps with the actually detected load line, but is reproduced by simulation. The load line shows a change rising from 0 in the range from 0 to t1 as in the case of the actually detected load.
 尚、検出負荷補正マップに設定されていない温度変化における補正値は、検出負荷補正マップに設定された補正値から内挿又は外挿することによって算出されるようにしてもよい。 It should be noted that the correction value for the temperature change not set in the detected load correction map may be calculated by interpolation or extrapolation from the correction value set in the detected load correction map.
 このとき、各応力センサ70が配置されている位置毎に温度変化が異なるため、コントロールユニット100は、各応力センサ70で検出された検出応力に基づく検出負荷毎に補正値を算出して、各補正値によって各検出負荷をそれぞれ補正する。 At this time, since the temperature change differs for each position where each stress sensor 70 is arranged, the control unit 100 calculates a correction value for each detected load based on the detected stress detected by each stress sensor 70, and Each detected load is corrected by the correction value.
 次に、図12のフローチャートに従って、コントロールユニット100による工作機械1の加工の制御量の制御動作について説明する。尚、図12のフローチャートは、検出負荷補正マップを用いて、検出負荷を補正する場合のフローチャートであり、以下の説明は、検出負荷補正マップを用いた場合のコントロールユニット100の制御動作である。また、加工の制御量は、例として、ドリル3の送り速度としている。 Next, the control operation of the control amount of machining of the machine tool 1 by the control unit 100 will be described according to the flowchart of FIG. The flowchart of FIG. 12 is a flowchart when the detected load is corrected using the detected load correction map, and the following description is the control operation of the control unit 100 when the detected load correction map is used. Moreover, the control amount of a process is made into the feed rate of the drill 3 as an example.
 まず、ステップS1で、ドリル3に実際に加えられる加工負荷のみに基づく検出負荷を算出するために必要なデータとして、各応力センサ70による検出応力から補正前の検出負荷をそれぞれ算出するとともに、フランジ部6における各凹陥部6bの温度をそれぞれ検出する。 First, in step S1, the detection load before correction is calculated from the stress detected by each stress sensor 70 as data necessary for calculating the detection load based only on the machining load actually applied to the drill 3, and the flange The temperature of each recessed part 6b in the part 6 is detected.
 続いて、ステップS2で、コントローラ100に予め記憶されている検出負荷補正マップを読み出し、各検出温度に応じた補正前の各検出負荷に対する補正値をそれぞれ読み取る。 Subsequently, in step S2, the detected load correction map stored in advance in the controller 100 is read, and the correction value for each detected load before correction corresponding to each detected temperature is read.
 次のステップS3で、補正前の各検出負荷をステップS2で読み取った各補正値によってそれぞれ補正する。これにより、検出負荷の零点が補正され、補正後の各検出負荷は、実際にドリル3に加えられている加工負荷のみに基づく検出負荷を表すものとなる。 In the next step S3, each detected load before correction is corrected by each correction value read in step S2. As a result, the zero point of the detected load is corrected, and each corrected detected load represents a detected load based only on the machining load actually applied to the drill 3.
 次のステップS4では、ステップS3で補正された後の検出負荷が上限負荷以上であるか否かについて判定する。このステップS4の判定がYESであるときには、ステップS5に進み、コントロールユニット100は、ドリル3が破損するおそれがあると判断して、上述の第3制御を実行して、ドリル3による加工を停止させ、しかる後にリターンする。一方、ステップS4の判定がNOであるときには、ステップS6に進む。 In the next step S4, it is determined whether or not the detected load corrected in step S3 is equal to or higher than the upper limit load. When the determination in step S4 is YES, the process proceeds to step S5, the control unit 100 determines that the drill 3 may be damaged, executes the above-described third control, and stops the machining by the drill 3 And then return. On the other hand, when the determination in step S4 is NO, the process proceeds to step S6.
 ステップS6では、補正後の検出負荷が目標負荷の範囲内であるか否かについて判定する。このステップS6の判定がYESであるときには、現在の送り速度で加工を継続させ、しかる後にリターンする。一方、このステップS6の判定がNOであるときには、ステップS7に進む。 In step S6, it is determined whether or not the corrected detected load is within the target load range. When the determination in step S6 is YES, the machining is continued at the current feed speed, and then the process returns. On the other hand, when the determination in step S6 is NO, the process proceeds to step S7.
 次のステップS7ではドリル3の送り速度を変更させる。例えば、コントロールユニット100が上述の第1制御を実行中の場合は、補正後の検出負荷が目標負荷を上回っているときにはドリル3の送り速度を漸減させる一方、補正後の検出負荷が目標負荷を下回っているときにはドリル3の送り速度を漸増させる。また、例えば、コントロールユニット100が上述の第2制御を実行中の場合は、前回の加工時の平均検出負荷から、該平均検出負荷を目標負荷の範囲内にするための送り速度補正値を算出し、該送り速度補正値によってドリル3の送り速度を補正する。ステップS7の後は、しかる後にリターンする。 In the next step S7, the feed rate of the drill 3 is changed. For example, when the control unit 100 is executing the first control described above, when the corrected detected load exceeds the target load, the feed rate of the drill 3 is gradually decreased, while the corrected detected load is reduced to the target load. When it is lower, the feed rate of the drill 3 is gradually increased. Further, for example, when the control unit 100 is executing the second control, a feed speed correction value for making the average detected load within the target load range is calculated from the average detected load at the previous machining. Then, the feed rate of the drill 3 is corrected by the feed rate correction value. After step S7, the process returns thereafter.
 コントロールユニット100は、所定時間(例えば8ミリ秒)毎に上記フローに従ってドリル3の送り速度を制御する。これにより、ドリル3の加工品質を維持しつつ、加工時間の短縮を図ることができる。尚、検出負荷補正算出式を用いて検出負荷の補正を行う場合は、上記ステップS2において、検出負荷補正算出式を読み出して、該算出式に基づいて検出負荷に対する補正値を算出し、次のステップS3で、算出した補正値に基づいて補正前の検出負荷を補正する。 The control unit 100 controls the feed rate of the drill 3 according to the above flow every predetermined time (for example, 8 milliseconds). Thereby, the processing time can be shortened while maintaining the processing quality of the drill 3. When correcting the detected load using the detected load correction calculation formula, in step S2, the detected load correction calculation formula is read out, and a correction value for the detected load is calculated based on the calculated formula. In step S3, the detected load before correction is corrected based on the calculated correction value.
 したがって、本実施形態に係る工作機械1の制御装置は、ケーシング4のフランジ部6における凹陥部6bの温度を検出する複数の温度センサ71を備え、コントロールユニット100は、応力センサ70によって検出された検出応力から算出された検出負荷と温度センサ71よって検出された検出温度とに基づいて、加工の制御量を補正するように構成されているため、凹陥部6bの検出温度に基づいて、上記検出負荷のうちフランジ部6等の熱変形による応力の影響を極小化するように、各応力センサ70によって検出された検出応力から算出される各検出負荷をそれぞれ補正して、フランジ部6等の熱変形による影響を極小化して、ドリル3の加工負荷に基づく負荷を精度良く検出することができる。そして、補正後の検出負荷に基づいて、加工の制御量を精度良く補正することができる。この結果、応力センサ70をケーシング4に配置したとき、工具による加工品質を維持しつつ加工効率を高めることができる。 Therefore, the control device of the machine tool 1 according to the present embodiment includes a plurality of temperature sensors 71 that detect the temperature of the recessed portion 6 b in the flange portion 6 of the casing 4, and the control unit 100 is detected by the stress sensor 70. Since the processing control amount is corrected based on the detected load calculated from the detected stress and the detected temperature detected by the temperature sensor 71, the detection is performed based on the detected temperature of the recessed portion 6b. Each detected load calculated from the detected stress detected by each stress sensor 70 is corrected so as to minimize the influence of stress due to thermal deformation of the flange 6 etc. of the load, and the heat of the flange 6 etc. is corrected. The influence due to the deformation can be minimized, and the load based on the machining load of the drill 3 can be detected with high accuracy. And based on the detection load after correction | amendment, the control amount of a process can be correct | amended accurately. As a result, when the stress sensor 70 is disposed in the casing 4, it is possible to increase the processing efficiency while maintaining the processing quality of the tool.
 本発明は、上記実施形態に限られるものではなく、請求の範囲の主旨を逸脱しない範囲で代用が可能である。 The present invention is not limited to the above embodiment, and can be substituted without departing from the spirit of the claims.
 例えば、上記実施形態では、温度センサ71よって検出された検出温度に基づいて、応力センサ70によって検出された検出応力から算出された検出負荷の零点を補正して、補正後の各検出負荷に基づいて、ドリル3による加工の制御量を制御するようにしているが、これに限らず、温度センサ71よって検出された検出温度と補正前の検出負荷とに基づいて、ドリル3による加工の制御量を補正するように構成してもよい。この場合、例えば、検出温度と補正前の検出負荷から、加工の制御量に対する補正量を算出するための算出式や該補正量を読み取るためのマップを、コントロールユニット100に格納しておき、上記算出式やマップから補正量を算出又は読み出し、加工の制御量を補正するようにすればよい。 For example, in the above embodiment, based on the detected temperature detected by the temperature sensor 71, the zero point of the detected load calculated from the detected stress detected by the stress sensor 70 is corrected, and based on each detected load after correction. The control amount of machining by the drill 3 is controlled, but not limited to this, the control amount of machining by the drill 3 is based on the detected temperature detected by the temperature sensor 71 and the detected load before correction. You may comprise so that it may correct | amend. In this case, for example, from the detected temperature and the detected load before correction, a calculation formula for calculating the correction amount for the processing control amount and a map for reading the correction amount are stored in the control unit 100, and A correction amount may be calculated or read out from a calculation formula or a map to correct the machining control amount.
 また、上記実施形態では、工具はドリル3であるが、これに限らず、フライスやリーマなどであってもよい。この場合、コントロールユニット100で制御される加工の制御量は、工具の回転速度や移動速度等である。 In the above embodiment, the tool is the drill 3, but is not limited thereto, and may be a milling machine or a reamer. In this case, the control amount of the processing controlled by the control unit 100 is the rotational speed and moving speed of the tool.
 また、上記実施形態では、パレット13の送り軸モータを駆動制御して工具の送り速度を制御しているが、これに限らず、主軸2を備える本体部5を移動させての工具の送り速度を制御するようにしてもよい。 Moreover, in the said embodiment, although the feed shaft motor of the pallet 13 is drive-controlled and the feed speed of a tool is controlled, it is not restricted to this, The feed speed of the tool by moving the main-body part 5 provided with the main shaft 2 May be controlled.
 さらに、上記実施形態では、ケーシング4は円筒形状としているが、これに限らず、角筒形状であってもよい。 Furthermore, in the said embodiment, although the casing 4 is made into the cylindrical shape, not only this but a square tube shape may be sufficient.
 また、上記実施形態では、応力センサ70は、ケーシング4における本体部5への取り付け部分であるフランジ部6の凹陥部6bに配置されているが、これに限らず、ハウジング11の縦壁11aよりも後側の位置であれば、ケーシング4における本体部5への取り付け位置よりも前側の位置に配置されていてもよく、例えばケーシングを主軸2の軸方向に二分割し、この二分割ケーシングの取付フランジ部に応力センサを配置するようにしてもよい。 Moreover, in the said embodiment, although the stress sensor 70 is arrange | positioned in the recessed part 6b of the flange part 6 which is an attachment part to the main-body part 5 in the casing 4, it is not restricted to this, From the vertical wall 11a of the housing 11 As long as the position is on the rear side, the casing 4 may be disposed at a position on the front side of the attachment position to the main body 5. For example, the casing is divided into two in the axial direction of the main shaft 2. You may make it arrange | position a stress sensor to an attachment flange part.
 上述の実施形態は単なる例示に過ぎず、本発明の範囲を限定的に解釈してはならない。本発明の範囲は請求の範囲によって定義され、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The above-described embodiment is merely an example, and the scope of the present invention should not be interpreted in a limited manner. The scope of the present invention is defined by the scope of the claims, and all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 本発明は、ワークの加工時に工具に加えられる加工負荷を検出するための応力検出装置を有する工作機械に有用である。 The present invention is useful for a machine tool having a stress detection device for detecting a machining load applied to a tool during machining of a workpiece.
 1 工作機械
 2 主軸
 3 ドリル(工具)
 4 ケーシング(支持部材)
 6a 凹陥部(支持部材における応力検出装置の近傍部)
 11a 縦壁(保護部材)
 42 クーラント油路
 44 プリロードボルト(近傍部に取り付けられる部品)
 70 応力センサ(応力検出装置)
 71 温度センサ(温度検出装置)
 100 コントロールユニット(加工制御装置)
1 Machine tool 2 Spindle 3 Drill (tool)
4 Casing (support member)
6a Concave part (near part of stress detection device in support member)
11a Vertical wall (protective member)
42 Coolant oil passage 44 Preload bolt (parts installed in the vicinity)
70 Stress sensor (stress detector)
71 Temperature sensor (temperature detector)
100 Control unit (processing control device)

Claims (8)

  1.  工作機械の制御装置であって、
     ワークを加工する工具が取り付けられる主軸と、
     上記主軸を回転可能に支持する支持部材と、
     上記主軸を取り囲むように上記支持部材に関連付けて配置され、上記ワークの加工時に上記工具に加えられる加工負荷を検出するための複数の応力検出装置と、
     上記応力検出装置の検出結果から算出される上記加工負荷である検出負荷に基づいて、上記工具による上記ワークの加工の制御量を制御する加工制御装置と、
     上記支持部材における上記応力検出装置の近傍部及び該近傍部に取り付けられる部品のうちの少なくとも一方の温度を検出する複数の温度検出装置とを備え、
     上記加工制御装置は、上記応力検出装置の検出結果から算出される検出負荷と、上記温度検出装置によって検出された検出温度とに基づいて、上記加工の制御量を補正するように構成されていることを特徴とする工作機械の制御装置。
    A machine tool control device,
    A spindle to which a tool for machining a workpiece is attached;
    A support member that rotatably supports the main shaft;
    A plurality of stress detection devices arranged to be associated with the support member so as to surround the spindle, and for detecting a machining load applied to the tool during machining of the workpiece;
    A machining control device that controls a control amount of machining of the workpiece by the tool based on a detection load that is the machining load calculated from a detection result of the stress detection device;
    A plurality of temperature detection devices for detecting the temperature of at least one of the vicinity of the stress detection device in the support member and the components attached to the vicinity;
    The processing control device is configured to correct the control amount of the processing based on a detection load calculated from a detection result of the stress detection device and a detected temperature detected by the temperature detection device. A machine tool control device characterized by the above.
  2.  請求項1に記載の工作機械の制御装置において、
     上記加工制御装置は、上記温度検出装置によって検出された検出温度に基づいて、上記応力検出装置の検出結果から算出される検出負荷を補正して、補正後の検出負荷に基づいて、上記加工の制御量を補正するように構成されていることを特徴とする工作機械の制御装置。
    In the machine tool control device according to claim 1,
    The processing control device corrects the detection load calculated from the detection result of the stress detection device based on the detected temperature detected by the temperature detection device, and performs the processing based on the corrected detection load. A machine tool control device configured to correct a control amount.
  3.  請求項1又は2に記載の工作機械の制御装置において、
     上記支持部材は円筒形状であり、
     上記支持部材には、上記支持部材の軸方向に延びる複数のクーラント油路が、上記支持部材の円周方向に略等間隔で配置されていることを特徴とする工作機械の制御装置。
    In the machine tool control device according to claim 1 or 2,
    The support member has a cylindrical shape,
    A control device for a machine tool, wherein a plurality of coolant oil passages extending in an axial direction of the support member are arranged in the support member at substantially equal intervals in a circumferential direction of the support member.
  4.  請求項1又は2に記載の工作機械の制御装置において、
     上記工具はドリルであり、
     上記加工制御装置は、上記検出負荷が予め設定された目標負荷の範囲内となるように、上記加工の制御量である上記ドリルの送り速度を制御するように構成されていることを特徴とする工作機械の制御装置。
    In the machine tool control device according to claim 1 or 2,
    The above tool is a drill,
    The machining control device is configured to control a feed rate of the drill that is a control amount of the machining so that the detected load falls within a preset target load range. Machine tool controller.
  5.  請求項1又は2に記載の工作機械の制御装置において、
     上記応力検出装置を、上記工具による上記ワークの加工により生じる加工屑から保護する保護部材をさらに備えていることを特徴とする工作機械の制御装置。
    In the machine tool control device according to claim 1 or 2,
    A machine tool control device, further comprising: a protective member that protects the stress detection device from machining waste generated by machining the workpiece by the tool.
  6.  請求項3に記載の工作機械の制御装置において、
     上記工具はドリルであり、
     上記加工制御装置は、上記検出負荷が予め設定された目標負荷の範囲内となるように、上記加工の制御量である上記ドリルの送り速度を制御するように構成されていることを特徴とする工作機械の制御装置。
    The machine tool control device according to claim 3,
    The above tool is a drill,
    The machining control device is configured to control a feed rate of the drill that is a control amount of the machining so that the detected load falls within a preset target load range. Machine tool controller.
  7.  請求項6に記載の工作機械の制御装置において、
     上記応力検出装置を、上記工具による上記ワークの加工により生じる加工屑から保護する保護部材をさらに備えていることを特徴とする工作機械の制御装置。
    The machine tool control device according to claim 6,
    A machine tool control device, further comprising: a protective member that protects the stress detection device from machining waste generated by machining the workpiece by the tool.
  8.  請求項4に記載の工作機械の制御装置において、
     上記応力検出装置を、上記工具による上記ワークの加工により生じる加工屑から保護する保護部材をさらに備えていることを特徴とする工作機械の制御装置。
    The machine tool control device according to claim 4,
    A machine tool control device, further comprising: a protective member that protects the stress detection device from machining waste generated by machining the workpiece by the tool.
PCT/JP2016/079459 2015-10-16 2016-10-04 Control device for machine tool WO2017065054A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MX2018003446A MX2018003446A (en) 2015-10-16 2016-10-04 Control device for machine tool.
CN201680054206.XA CN108136558B (en) 2015-10-16 2016-10-04 Control device for machine tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-204879 2015-10-16
JP2015204879A JP6350481B2 (en) 2015-10-16 2015-10-16 Machine tool controller

Publications (1)

Publication Number Publication Date
WO2017065054A1 true WO2017065054A1 (en) 2017-04-20

Family

ID=58518276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079459 WO2017065054A1 (en) 2015-10-16 2016-10-04 Control device for machine tool

Country Status (4)

Country Link
JP (1) JP6350481B2 (en)
CN (1) CN108136558B (en)
MX (1) MX2018003446A (en)
WO (1) WO2017065054A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019093463A (en) * 2017-11-21 2019-06-20 マツダ株式会社 Machine tool and method for determining attachment state of tool of machine tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7067208B2 (en) * 2018-04-03 2022-05-16 株式会社デンソー Press-fitting device and press-fitting system
CN112044800A (en) * 2020-08-25 2020-12-08 宁波思密德机电科技有限公司 Full-automatic machinery for detecting radial clearance of bearing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129211A (en) * 1993-11-08 1995-05-19 Fanuc Ltd Automatic correction system for varying load
JPH08510549A (en) * 1993-05-05 1996-11-05 ローズマウント インコーポレイテッド Strain gauge sensor with integrated temperature signal output
JP2005202844A (en) * 2004-01-19 2005-07-28 Murata Mach Ltd Numerical controller
JP2008524006A (en) * 2004-12-20 2008-07-10 レニショウ パブリック リミテッド カンパニー Machine and control system
JP2012058063A (en) * 2010-09-08 2012-03-22 Seiko Epson Corp Pressure sensor
JP2013188831A (en) * 2012-03-14 2013-09-26 Mitsubishi Electric Corp Control device of machine tool and machine tool equipped with the same
JP2013255978A (en) * 2012-06-14 2013-12-26 Jtekt Corp Thermal displacement compensation device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014162B2 (en) * 2003-08-06 2007-11-28 ヤマザキマザック株式会社 Machine tool position control device and machine tool position control method
DE10348608B4 (en) * 2003-10-20 2016-05-19 Siemens Aktiengesellschaft Monitoring system and method for a spindle
GB0427796D0 (en) * 2004-12-20 2005-01-19 Renishaw Plc Machine control system
CN201012415Y (en) * 2007-01-24 2008-01-30 山东济宁博特精密丝杠有限公司 Digital intelligent feedback thread grinding and compensating gear
CN103384582B (en) * 2011-02-24 2016-08-31 株式会社牧野铣床制作所 Machining center
EP2711127B1 (en) * 2011-05-19 2016-07-27 Makino Milling Machine Co., Ltd. Machine tool having workpiece measuring function
KR20140059322A (en) * 2012-11-07 2014-05-16 두산인프라코어 주식회사 Spindle head with improved structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510549A (en) * 1993-05-05 1996-11-05 ローズマウント インコーポレイテッド Strain gauge sensor with integrated temperature signal output
JPH07129211A (en) * 1993-11-08 1995-05-19 Fanuc Ltd Automatic correction system for varying load
JP2005202844A (en) * 2004-01-19 2005-07-28 Murata Mach Ltd Numerical controller
JP2008524006A (en) * 2004-12-20 2008-07-10 レニショウ パブリック リミテッド カンパニー Machine and control system
JP2012058063A (en) * 2010-09-08 2012-03-22 Seiko Epson Corp Pressure sensor
JP2013188831A (en) * 2012-03-14 2013-09-26 Mitsubishi Electric Corp Control device of machine tool and machine tool equipped with the same
JP2013255978A (en) * 2012-06-14 2013-12-26 Jtekt Corp Thermal displacement compensation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019093463A (en) * 2017-11-21 2019-06-20 マツダ株式会社 Machine tool and method for determining attachment state of tool of machine tool

Also Published As

Publication number Publication date
CN108136558A (en) 2018-06-08
MX2018003446A (en) 2018-06-08
CN108136558B (en) 2019-12-24
JP6350481B2 (en) 2018-07-04
JP2017074659A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2017065054A1 (en) Control device for machine tool
US20150051846A1 (en) Bearing life determination device
JP5855706B2 (en) Machine tool with rotating table
EP2164663B1 (en) Method for controlling a drilling machine, and apparatus for carrying out said method
JP2011020240A (en) Spindle device
JP2009061571A (en) Spindle device for machine tool spindle
JP4996285B2 (en) Clamp sleeve
JP6000453B2 (en) Spindle device of machine tool and machine tool
JP5505067B2 (en) Machine tool spindle equipment
CN105798334A (en) High-efficiency machine tool spindle capable of quickly entering steady state
JP2020055052A (en) Machine tool and activating method for the same
JPH1089355A (en) Preload control device for main spindle bearing
JP2018027599A (en) Method for correcting machining error of machine tool
JP4609237B2 (en) Unbalance correction method and apparatus
JP2010120133A (en) Center pushing control device
JP2014061567A (en) Machine tool
JP2006316959A (en) Magnetic bearing device
JP3787481B2 (en) Method and apparatus for detecting load of cutting tool in machine tool
JP6509348B2 (en) Method and apparatus for processing tubular member
JP6583393B2 (en) Machine tool and method for determining tool mounting state of machine tool
JP2023035005A (en) Thermal displacement correction device and thermal displacement correction method for machine tool
JP2018025295A (en) Method of diagnosing feed screw of feed screw device
JP2005088126A (en) Displacement correction method of rotary main shaft
EP3842880A1 (en) A device for thermal control of machine tool
JP6910057B2 (en) How to correct thermal displacement of machine tools

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855308

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/003446

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855308

Country of ref document: EP

Kind code of ref document: A1