WO2017064967A1 - Hydrogen water generating device - Google Patents

Hydrogen water generating device Download PDF

Info

Publication number
WO2017064967A1
WO2017064967A1 PCT/JP2016/077078 JP2016077078W WO2017064967A1 WO 2017064967 A1 WO2017064967 A1 WO 2017064967A1 JP 2016077078 W JP2016077078 W JP 2016077078W WO 2017064967 A1 WO2017064967 A1 WO 2017064967A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hydrogen
porous electrode
water flow
electrolysis
Prior art date
Application number
PCT/JP2016/077078
Other languages
French (fr)
Japanese (ja)
Inventor
西本秀明
時任正博
島本裕喜
永冨修志
森元学
安部田章
鈴木文夫
島崎勝輔
柴貴子
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016169967A external-priority patent/JP6789730B2/en
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to CN201680053536.7A priority Critical patent/CN108025933B/en
Publication of WO2017064967A1 publication Critical patent/WO2017064967A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods

Definitions

  • one of the selective aspects of the present invention is a hydrogen water generator characterized by comprising a control unit that reverses the polarity of the porous electrode plate every predetermined time during electrolysis.
  • the partition portion has an inclined surface for receiving the water flow generated by the pump portion toward the bubble flow holes on both sides between the bubble flow holes of the porous electrode plate.
  • the defoaming property on the surface of the plate is improved.
  • the surface between the bubble circulation holes of the porous electrode plate is configured as another discontinuous surface across the corner, the bubbles generated on one surface merge with the bubbles generated on the other surface. It is difficult to expect the bubbles released from the porous electrode plate to become finer, and to be dissolved in hydrogen at molecular level hydrogen, nanobubbles or microbubbles.
  • a voltage is applied to each of the porous electrode plates 31 to 33 so that a potential difference is generated between adjacent plates.
  • a high voltage is applied to the porous electrode plates 31 and 33
  • a low voltage is applied to the porous electrode plate 32.
  • a high voltage is applied to the porous electrode plate 32.
  • electrolysis is performed between the surfaces of the porous electrode plates 31 to 33 facing the adjacent plates, and hydrogen (and oxygen) is generated near the plate surfaces of the porous electrode plates 31 to 33.
  • the porous electrode plates 31 to 33 block the wide opening of the pressure chamber 13b, and the pump unit 20 applies pump pressure to the water passage 13. Due to this pump pressure, the water that has flowed through the water passage 13 and reached the pressure chamber 13b spreads over the entire cross section of the flow path along the widened shape, and a water flow toward the plate surfaces of the porous electrode plates 31 to 33 is generated. By applying the pressure of the water flow to the plate surfaces of the porous electrode plates 31 to 33 that block the outlet 12 of the water channel 13, the bubbles of hydrogen and oxygen generated by electrolysis on the surface of the porous electrode plate are pushed away at the moment of electrolysis.
  • the calcium carbonate scale adhering to the surface of the porous electrode plate serving as the cathode dissolves and is discharged by the water flow generated by the pump unit 20. .
  • the electrolytic performance of the porous electrode plates 31 to 33 can be maintained and the life can be extended.
  • the pump unit 20 has been described as operating with a constant water supply amount.
  • the water supply amount of the pump unit 20 can be changed, and the flow rate in the water passage 13 (pressure chamber 13b) can be adjusted. It is also good.
  • the hydrogen water generating apparatus described in the present specification including the hydrogen water generating apparatus according to the first embodiment includes a pump unit 20 and a control unit (for example, a control / charging board) that controls the water supply amount of the pump unit 20. 18) may be provided with a bubble diameter adjusting means (bubble diameter adjusting unit), whereby the effect of the hot bath with high-concentration hydrogen water and the effect of hydrogen diffused in the bathroom It becomes possible to selectively enjoy the health promotion effect of both.
  • a control unit for example, a control / charging board
  • the electrolysis unit 30 includes a laminated electrode body 426 constituted by five upper and lower laminated porous electrode plates 31, 32, 33, 33-1, and 33-2, which are maintained at a predetermined interval. A voltage is applied to the plates alternately so as to be a high potential and a low potential, and electrolysis of bath water occurs between the opposing plate surfaces to generate hydrogen and oxygen near the plate surfaces.
  • the hydrogen water generating apparatus 400 when switching the polarity, first, the supply of power to each porous electrode plate is stopped, and further, fresh water that has not been electrolyzed by the pump unit 20 is supplied.
  • the polarity is switched after a lapse of a predetermined time of about 0.3 seconds to 2 seconds (hereinafter also referred to as a water flow replacement time) in which the water between the porous electrode plates is replaced with fresh water.
  • step S18 the CPU 441 turns off the value of the polarity inversion flag stored at a predetermined address in the RAM 443 (step S18), and moves the process to step S19.
  • step S56 If is the first conductor rod anode signal, transmission of the second conductor rod anode signal is started, and if the previously sent anode signal is the second conductor rod anode signal, transmission of the first conductor rod anode signal is started (step S56). The process proceeds to step S57.
  • step S63 the CPU 441 determines whether it is 0.1 seconds before the stop time, that is, 59.9 seconds from the start of timing in this embodiment. If it is determined that it is not 0.1 second before the stop time (step S63: No), the CPU 441 returns the process to step S63 again. On the other hand, when determining that it is 0.1 second before the stop time (step S63: Yes), the CPU 441 moves the process to step S64.
  • control unit 440 executes the pump driving process (step S15), thereby bringing the pump unit 20 into an operating state again.
  • First to fourth water flow restricting plates extending in the longitudinal direction at a length of about 1/3 to 1 / 4.5 of the longitudinal direction are provided, and the first water flow restricting plate 515 is a short direction crossing the opening 425
  • the second water flow restricting plate 512 and the third water flow restricting plate 513 are disposed at approximately 1/4 and approximately 3/4 of the quarter direction, and the fourth water flow restricting plate 514 It is located at the approximate center in the short direction and the first water flow guide From end or end portion of the plate 515, that the fifth flow regulation plate 516 up to the distal longitudinal wall 530f or near a distant longitudinal wall from the opening portion 425 is erected into a substantially L-shaped
  • the water flow F1 is divided by the second water flow restriction plate 512 and the third water flow restriction plate 513, and the water flow F1a flowing between the proximal longitudinal wall 530n and the second water flow restriction plate 512, or the second water flow restriction plate 512 and the first water flow restriction plate 512.
  • the flow is divided into a water flow F1b flowing between the three water flow restriction plates 513 and a water flow F1c flowing between the third water flow restriction plate 513 and the distal longitudinal wall 530f.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

The present invention makes it possible to improve the hydrogen concentration in water over the conventional achieved by a hydrogen water generating device used by being immersed in water. The hydrogen water generating device is characterized in that: the device is provided with a water immersible water passage linking an inflow opening and outflow opening for water, a pump unit for generating water flow in the water passage, an electrolysis unit disposed in the water passage, and a power supply unit for supplying power to the pump unit and the electrolysis unit; the electrolysis unit has a plurality of porous electrodes disposed at fixed intervals; and the pump unit generates a water flow toward plate surfaces of the porous electrodes.

Description

水素水生成装置Hydrogen water generator
 本発明は、水中に浸漬して用いる水素水生成装置に関する。 The present invention relates to a hydrogen water generator used by being immersed in water.
 従来、電気分解した水を利用する装置として、特許文献1,2に記載のものが知られている。 Conventionally, devices described in Patent Documents 1 and 2 are known as devices using electrolyzed water.
 特許文献1には、皿状の容器の内底面に一対の板状電極を貼着し、これら板状電極に給電する直流電源を容器下方に設けた空間内に配設した還元水生成装置が開示されている。容器の蓋には、各板状電極の直上に相当する位置にそれぞれ流通孔が設けられており、一方の板状電極で発生した水素は一方の流通孔から流出し、他方の板状電極で発生した酸素は他方の流通孔から流出するよう構成されている。これにより、各板状電極で発生した水素と酸素の再結合を防止しつつ水や空気の還元を行うことができる。 Patent Document 1 discloses a reduced water generator in which a pair of plate electrodes are attached to the inner bottom surface of a dish-shaped container, and a DC power source for supplying power to these plate electrodes is disposed in a space provided below the container. It is disclosed. The container lid is provided with a flow hole at a position corresponding to the position directly above each plate electrode, and the hydrogen generated in one plate electrode flows out from one flow hole and the other plate electrode. The generated oxygen is configured to flow out from the other circulation hole. Thereby, water and air can be reduced while preventing recombination of hydrogen and oxygen generated in each plate electrode.
 特許文献2には、水中浸漬用容器内に電解室を設けた浴水電解消毒器が開示されている。この浴水電解消毒器は、電解室へ水が流入する流入口が水中浸漬用容器の下面に形成され、電解室から水が流出する流出口が水中浸漬用容器の上面に形成され、電解室内に陰極板と陽極板の組を複数備える複数の電解用電極板が横方向へ並列配置されており、電解電極板の間に浴水の上向通路が形成されている。これにより、流入口から水中浸漬用容器に流入した水が電解用電極板の間の上向通路を通って流出口から流出することになる。 Patent Document 2 discloses a bath water electrolytic disinfection device in which an electrolytic chamber is provided in a submerged container. This bath water electrolytic disinfector has an inlet for water flowing into the electrolysis chamber formed on the lower surface of the submerged vessel and an outlet for water flowing out of the electrolysis chamber formed on the upper surface of the submerged vessel. A plurality of electrode plates for electrolysis having a plurality of pairs of cathode plates and anode plates are arranged in parallel in the horizontal direction, and an upward passage of bath water is formed between the electrolysis electrode plates. Thereby, the water that has flowed into the underwater immersion container from the inflow port flows out from the outflow port through the upward passage between the electrode plates for electrolysis.
実用新案登録第3155538号公報Utility Model Registration No. 3155538 特開平11-342390号公報JP 11-342390 A
 近年、水素を多く含んだ「水素水」に注目が集まっており、水を電気分解して水素水を生成するための装置が発売されている。このような水素水を生成する装置は、上述した特許文献2と類似の構成により実現されるものと考えられるが、水素溶存量の面で改善の余地があった。すなわち、装置直上の水の水素濃度は飽和状態であっても、装置から離れた領域の水において十分な水素濃度が維持されるようにすることが困難であった。 In recent years, attention has been focused on “hydrogen water” containing a lot of hydrogen, and an apparatus for electrolyzing water to generate hydrogen water has been released. Such an apparatus for generating hydrogen water is considered to be realized by a configuration similar to that of Patent Document 2 described above, but there is room for improvement in terms of the amount of dissolved hydrogen. That is, even if the hydrogen concentration in the water immediately above the apparatus is saturated, it is difficult to maintain a sufficient hydrogen concentration in the water in the region away from the apparatus.
 本発明は、前記課題に鑑みてなされたもので、水中に浸漬して用いる水素水生成装置により実現される水の水素濃度を従来に比べて向上することを目的とする。 This invention was made in view of the said subject, and aims at improving the hydrogen concentration of the water implement | achieved by the hydrogen water production | generation apparatus used by being immersed in water compared with the past.
 本発明の態様の1つは、水中に浸漬可能であって水の流入口と流出口とを連通する通水路を有するケースと、前記通水路に水流を発生させるポンプ部と前記通水路に配設される電解部と、前記ポンプ部及び前記電解部に給電する電源部と、を備え、前記電解部は、一定間隔を保持して配設された複数の多孔電極板を有し、前記ポンプ部は、前記多孔電極板の板面に向かう水流を発生することを特徴とする水素水生成装置である。 One aspect of the present invention includes a case that has a water passage that can be immersed in water and that communicates a water inlet and an outlet, a pump that generates a water flow in the water passage, and a water passage that is disposed in the water passage. An electrolysis unit provided; and a power supply unit that feeds power to the pump unit and the electrolysis unit, wherein the electrolysis unit includes a plurality of porous electrode plates arranged at regular intervals, and the pump The unit is a hydrogen water generating device that generates a water flow toward the plate surface of the porous electrode plate.
 このように構成された水素水生成装置は、水中に浸漬し、ポンプ部によって流入口と流出口の間の通水路に水流を発生させ、通水路に配設された電解部によって通水路を流通する水を電気分解する。このとき、ポンプ部は、電解部を構成する一定間隔を保持して配設された多孔電極板の板面に向かう水流を発生する。すなわち、水流の圧力を多孔電極板の板面に加えることで、多孔電極板の表面に電解で発生する水素や酸素の気泡を電解の瞬間に押しのけるように水流内に取り込む効果があり、水素水生成装置の流出口から流出する水が含む水素の気泡を微泡化したり、分子レベル水素、ナノバブルやマイクロバブル状態での水素溶存も期待できる。 The hydrogen water generating apparatus configured in this manner is immersed in water, a water flow is generated in the water passage between the inlet and the outlet by the pump unit, and the water passage is circulated by the electrolytic unit disposed in the water passage. Electrolyze water to be used. At this time, the pump unit generates a water flow toward the plate surface of the porous electrode plate disposed at a constant interval that constitutes the electrolysis unit. That is, by applying the pressure of the water flow to the plate surface of the porous electrode plate, there is an effect of incorporating hydrogen and oxygen bubbles generated by electrolysis on the surface of the porous electrode plate into the water flow so as to push away at the moment of electrolysis. It can be expected that hydrogen bubbles contained in the water flowing out from the outlet of the generating device will be microbubbled or dissolved in molecular level hydrogen, nanobubbles or microbubbles.
 また、本発明の選択的な態様の一つは、電解中に前記多孔電極板の極性を所定時間毎に反転させる制御部を備えることを特徴とする水素水生成装置である。 Also, one of the selective aspects of the present invention is a hydrogen water generator characterized by comprising a control unit that reverses the polarity of the porous electrode plate every predetermined time during electrolysis.
 被電解水中に溶存するカルシウム等のミネラル成分、特に水中で陽イオンの状態で存在する金属イオン類は陰極表面にスケールとして沈着することとなるが、このように構成した水素水生成装置では、陰極として機能していた多孔電極板は陽極に、陽極として機能していた多孔電極板は陰極に、所定時間毎に切り替わるため、スケールの沈着が各多孔電極板毎に略均等となり、しかも、陽極に切り替えられた多孔電極板上では沈着したスケールが水中に再溶解してスケールの除去が行われるため、スケール付着による電解効率の低下を抑制することができる。 Mineral components such as calcium dissolved in the water to be electrolyzed, particularly metal ions present in the form of a cation in water, will be deposited on the cathode surface as a scale. The porous electrode plate that functioned as an anode and the porous electrode plate that functioned as an anode switched to a cathode every predetermined time, so that the deposition of the scale was approximately equal for each porous electrode plate, and Since the deposited scale is redissolved in water on the switched porous electrode plate and the scale is removed, it is possible to suppress a reduction in electrolytic efficiency due to scale adhesion.
 また、本発明の選択的な態様の一つは、前記制御部は、前記極性の反転を前記ポンプ部の稼働中に行うことを特徴とする水素水生成装置である。 Also, one of the selective aspects of the present invention is the hydrogen water generating apparatus, wherein the control unit performs the polarity reversal while the pump unit is in operation.
 このような構成とすることで、多孔電極板間に存在する被電解水が容量を持つことに由来する極性切替時の多孔電極板間の一時的な短絡状態を回避することができ、多孔電極板への給電や切替等を行う電気回路の保全を行うことができる。 By adopting such a configuration, it is possible to avoid a temporary short circuit state between the porous electrode plates at the time of polarity switching due to the electrolyzed water existing between the porous electrode plates having capacity. It is possible to maintain an electric circuit that performs power supply or switching to the plate.
 また、本発明の選択的な態様の一つは、電解中に前記ポンプ部を制御して前記水流の流量を変動させる制御部を備えることを特徴とする水素水生成装置である。 Also, one of the selective aspects of the present invention is a hydrogen water generating apparatus comprising a control unit that controls the pump unit during electrolysis to vary the flow rate of the water flow.
 このような構成とすることで、多孔電極板の表面から剥離する水素気泡の気泡径を変化させることができる。 With such a configuration, the bubble diameter of the hydrogen bubbles peeled off from the surface of the porous electrode plate can be changed.
 また、本発明の選択的な態様の一つは、水流を発生させる相対的に長時間の稼動状態と、水流を発生させない相対的に短時間の停止状態とに前記ポンプ部を電解中に繰り返し切替制御する制御部により前記ポンプ部の稼動状態において多孔電極板に付着生成した剥離困難気泡を遊離させる手段を備えたことを特徴とする水素水生成装置である。 Also, one of the selective aspects of the present invention is that the pump unit is repeatedly operated during electrolysis in a relatively long operation state that generates a water flow and a relatively short stop state that does not generate a water flow. The hydrogen water generating apparatus is characterized by comprising means for releasing difficult-to-separate bubbles adhering to the porous electrode plate in the operating state of the pump unit by a control unit that performs switching control.
 このような構成とすることで、本来であれば水流により剥離されるべき気泡径に達しているものの、そのまま多孔電極板に付着し続ける剥離困難な気泡を剥離させて、多孔電極板の表面が泡で覆われてしまうことに由来する電解効率の低下を抑制することができる。 By adopting such a configuration, although the bubble diameter that should have been peeled off by a water flow is originally reached, the difficult-to-peel bubbles that continue to adhere to the porous electrode plate are peeled off, and the surface of the porous electrode plate is It is possible to suppress a decrease in electrolytic efficiency derived from being covered with bubbles.
 また、本発明の選択的な態様の一つは、前記多孔電極板に形成された気泡流通孔の周縁に尖鋭状の電荷集中部を形成した水素水生成装置である。 Also, one of the selective aspects of the present invention is a hydrogen water generating apparatus in which a sharp charge concentration portion is formed at the periphery of the bubble circulation hole formed in the porous electrode plate.
 このような構成とすることで、水中への溶解性が比較的高いながらも、使用者により視認可能な水素気泡を多く生成することができる。 By adopting such a configuration, it is possible to generate many hydrogen bubbles that can be visually recognized by the user while having relatively high solubility in water.
 本発明の選択的な態様の1つは、前記多孔電極板は、当該多孔電極板の気泡流通孔の間を区画する区画部が、前記水流に向かう尖端となる角部を有する断面多角形状である、ことを特徴とする水素水生成装置である。 One of the selective aspects of the present invention is that the porous electrode plate has a polygonal cross-section in which a partition portion partitioning between the bubble circulation holes of the porous electrode plate has a corner portion that becomes a tip toward the water flow. There is a hydrogen water generating apparatus characterized by that.
 このように構成された水素水生成装置では、多孔電極板の気泡流通孔の間において、区画部がポンプ部の発生する水流を両側の気泡流通孔に向かって受け流す傾斜面を有するため、多孔電極板の表面における離泡性が向上する。また、多孔電極板の気泡流通孔の間の面が、角部を挟んで不連続な別の面として構成されるため、一方の面で発生した泡が他方の面で発生した泡と合体しにくく、多孔電極板から離脱する気泡がより微泡化したり、分子レベル水素、ナノバブルやマイクロバブル状態での水素溶存も期待できる。また、多孔電極板が気泡流通孔の間に水流に向かう角部を有することにより、複数の多孔電極板の気泡流通孔を順に流通する水流がスムーズになり、ポンプ部から最も遠い多孔電極板の気泡流通孔を流通するまで水勢を維持できる。また、角部は表面張力が小さいため、水流が直接当たる多孔電極板の気泡流通孔の間の角部で発生する気泡の離泡性が向上する。 In the hydrogen water generating apparatus configured as described above, the partition portion has an inclined surface for receiving the water flow generated by the pump portion toward the bubble flow holes on both sides between the bubble flow holes of the porous electrode plate. The defoaming property on the surface of the plate is improved. In addition, since the surface between the bubble circulation holes of the porous electrode plate is configured as another discontinuous surface across the corner, the bubbles generated on one surface merge with the bubbles generated on the other surface. It is difficult to expect the bubbles released from the porous electrode plate to become finer, and to be dissolved in hydrogen at molecular level hydrogen, nanobubbles or microbubbles. In addition, since the porous electrode plate has corners directed to the water flow between the bubble circulation holes, the water flow that sequentially flows through the bubble circulation holes of the plurality of porous electrode plates becomes smooth, and the porous electrode plate farthest from the pump portion The water force can be maintained until the bubble circulation hole is circulated. In addition, since the corner portion has a small surface tension, the bubble releasing property of bubbles generated at the corner portion between the bubble circulation holes of the porous electrode plate directly hit by the water flow is improved.
 本発明の選択的な態様の1つは、複数の前記多孔電極板の気泡流通孔は、隣接する多孔電極板の間で略互い違いの位置関係で設けられている、水素水生成装置である。 One of the selective aspects of the present invention is a hydrogen water generating device in which the bubble circulation holes of the plurality of porous electrode plates are provided in a substantially staggered positional relationship between adjacent porous electrode plates.
 このように構成された水素水生成装置は、複数の多孔電極板にそれぞれ形成される気泡流通孔の位置が互い違いに形成されているため、気泡流通孔を通る水流が多孔電極板の間の隅々まで多孔電極板に沿って流通することとなり、多孔電極板の表面全体における離泡性を向上させるとともに、複数の多孔電極板の間で水の置換効率を向上することができる。 In the hydrogen water generating apparatus configured as described above, since the positions of the bubble circulation holes formed in the plurality of porous electrode plates are alternately formed, the water flow through the bubble circulation holes reaches every corner between the porous electrode plates. It distribute | circulates along a porous electrode plate, While improving the foam separation property in the whole surface of a porous electrode plate, the substitution efficiency of water can be improved between several porous electrode plates.
 また、本発明の選択的な態様として、下記の点が挙げられる。
(1)前記複数の多孔電極板の間隙で前記ポンプより吐出された水流を加圧することにより、多孔電極板にて生成された水素を加圧下で水流中に溶解すべく構成すること。
(2)前記電解部には多孔電極板の上部に絶縁性を有する電極カバーを配置し、同電極カバーには対向する多孔電極板に形成された気泡流通孔と略互い違いの位置に気泡流通孔を設けること。
(3)前記流出口から流出する水流と交差する方向へ光を出射する発光手段を備えること。
Moreover, the following point is mentioned as a selective aspect of this invention.
(1) It is configured to pressurize the water flow discharged from the pump through the gaps between the plurality of porous electrode plates to dissolve hydrogen generated in the porous electrode plate in the water flow under pressure.
(2) An insulating electrode cover is arranged on the upper part of the porous electrode plate in the electrolysis part, and the cell cover has a bubble flow hole at a position substantially alternate with the bubble flow hole formed in the opposed porous electrode plate. To provide.
(3) A light emitting means for emitting light in a direction intersecting with the water flow flowing out from the outlet is provided.
 以上説明した水素水生成装置は、他の機器に組み込まれた状態で実施されたり他の方法とともに実施されたりする等の各種の態様を含む。また、本技術は前記水素水生成装置を備える水素水発生システムとしても実現可能である。 The hydrogen water generation apparatus described above includes various modes such as being implemented in a state of being incorporated in another device or implemented together with another method. Moreover, this technique is realizable also as a hydrogen water generation system provided with the said hydrogen water production | generation apparatus.
 本発明によれば、水中に浸漬して用いる水素水生成装置により実現される水の水素濃度を従来に比べて向上させることができる。 According to the present invention, it is possible to improve the hydrogen concentration of water realized by a hydrogen water generator used by being immersed in water as compared with the conventional case.
 請求項2に係る水素水生成装置によれば、多孔電極板の気泡流通孔の間においてポンプ部の発生する水流に対して傾斜した形状を有するため、多孔電極板の表面における離泡性が向上する。また、多孔電極板の気泡流通孔の間の面が、角部を挟んで不連続な別の面として構成されるため、一方の面で発生した泡が他方の面で発生した泡と合体しにくく、多孔電極板から離脱する気泡がより微泡化したり、分子レベル水素、ナノバブルやマイクロバブル状態での水素溶存も期待できる。また、多孔電極板が気泡流通孔の間に水流に向かう角部を有することにより、複数の多孔電極板の気泡流通孔を順に流通する水流がスムーズになり、ポンプ部から最も遠い多孔電極板の気泡流通孔を流通するまで水勢を維持できる。また、角部は表面張力が小さいため、水流が直接当たる多孔電極板の気泡流通孔の間の角部で発生する気泡の離泡性が向上する。 According to the hydrogen water generating apparatus according to claim 2, since it has a shape that is inclined with respect to the water flow generated by the pump portion between the bubble circulation holes of the porous electrode plate, the defoaming property on the surface of the porous electrode plate is improved. To do. In addition, since the surface between the bubble circulation holes of the porous electrode plate is configured as another discontinuous surface across the corner, the bubbles generated on one surface merge with the bubbles generated on the other surface. It is difficult to expect the bubbles released from the porous electrode plate to become finer, and to be dissolved in hydrogen at molecular level hydrogen, nanobubbles or microbubbles. In addition, since the porous electrode plate has corners directed to the water flow between the bubble circulation holes, the water flow that sequentially flows through the bubble circulation holes of the plurality of porous electrode plates becomes smooth, and the porous electrode plate farthest from the pump portion The water force can be maintained until the bubble circulation hole is circulated. In addition, since the corner portion has a small surface tension, the bubble releasing property of bubbles generated at the corner portion between the bubble circulation holes of the porous electrode plate directly hit by the water flow is improved.
 請求項3に係る水素水生成装置によれば、複数の多孔電極板にそれぞれ形成される気泡流通孔の位置が互い違いに形成されているため、気泡流通孔を通る水流が多孔電極板の間の隅々まで多孔電極板に沿って流通することとなり、多孔電極板の表面全体における離泡性を向上させるとともに、複数の多孔電極板の間で水の置換効率を向上することができる。 According to the hydrogen water generating apparatus according to claim 3, since the positions of the bubble circulation holes formed in the plurality of porous electrode plates are alternately formed, the water flow passing through the bubble circulation holes is every corner between the porous electrode plates. It is possible to circulate along the perforated electrode plate to improve the bubble separation property on the entire surface of the perforated electrode plate and improve the water replacement efficiency among the plurality of perforated electrode plates.
 また、請求項4に係る水素水生成装置によれば、前記複数の多孔電極板の間隙で前記ポンプより吐出された水流を加圧することにより、多孔電極板にて生成された水素を加圧下で水流中に溶解すべく構成したため、水中により多くの水素を溶解させることができる。 Moreover, according to the hydrogen water generating apparatus according to claim 4, by pressurizing the water flow discharged from the pump in the gap between the plurality of porous electrode plates, the hydrogen generated in the porous electrode plates is under pressure. Since it was configured to dissolve in the water stream, more hydrogen can be dissolved in water.
 また、請求項5に係る水素水生成装置によれば、前記電解部には多孔電極板の上部に絶縁性を有する電極カバーが配置されており、同電極カバーには対向する多孔電極板に形成された気泡流通孔と略互い違いの位置に気泡流通孔が設けられていることとすれば、使用者が電極板に触れてしまうことを防止できると共に、ヘアピン等の導体片が万一電解部上に落下した場合でも、極性の異なる多孔電極板間での短絡を防止することができる。 Further, according to the hydrogen water generating apparatus according to claim 5, an electrode cover having an insulating property is arranged on the upper part of the porous electrode plate in the electrolysis part, and the electrode cover is formed on the opposed porous electrode plate. If the bubble circulation holes are provided at positions substantially alternate with the formed bubble circulation holes, the user can be prevented from touching the electrode plate, and the conductor pieces such as hairpins should Even if it falls to the surface, it is possible to prevent a short circuit between the porous electrode plates having different polarities.
 また、請求項6に係る水素水生成装置によれば、前記流出口から流出する水流と交差する方向へ光を出射する発光手段を備えることとしたため、流出口から流出する水素の微細気泡を含んだ水流を光の散乱によって目視することができ、使用者は水素水の拡散状況を知ることができる。 Further, according to the hydrogen water generating apparatus according to claim 6, since the light emitting means for emitting light in a direction intersecting with the water flow flowing out from the outflow port is provided, the hydrogen water generating device includes fine bubbles of hydrogen flowing out from the outflow port. The water stream can be visually observed by light scattering, and the user can know the diffusion state of hydrogen water.
第1の実施形態に係る水素水生成装置の外観構成を示す斜視図である。It is a perspective view showing the appearance composition of the hydrogen water generating device concerning a 1st embodiment. 第1の実施形態に係る水素水生成装置の外観構成を示す斜視図である。It is a perspective view showing the appearance composition of the hydrogen water generating device concerning a 1st embodiment. 上ケースを取り外して下ケース内を露見させた状態を示す図である。It is a figure which shows the state which removed the upper case and exposed the inside of the lower case. 上ケースから保護ケースを取り外した上ケースを示す斜視図である。It is a perspective view which shows the upper case which removed the protective case from the upper case. 上ケース内面を下方から見た斜視図である。It is the perspective view which looked at the upper case inner surface from the lower part. 図1に示すA-A断面を示す断面図である。It is sectional drawing which shows the AA cross section shown in FIG. 電解部の斜視図であるIt is a perspective view of an electrolysis part 電解部の底面図、B-B断面図、及びB-B断面の拡大図である。It is a bottom view of an electrolysis part, a BB sectional view, and an enlarged view of a BB section. 電解部の多孔電極板間における圧力の状態を示す説明図である。It is explanatory drawing which shows the state of the pressure between the porous electrode plates of an electrolysis part. 水素水生成装置の制御部が実行する処理の流れを示す図である。It is a figure which shows the flow of the process which the control part of a hydrogenous water production | generation apparatus performs. 多孔電極板の上方にて流路規制を行う例を示した説明図である。It is explanatory drawing which showed the example which performs flow-path regulation above a porous electrode board. 第2の実施形態に係る水素水生成装置を説明する図である。It is a figure explaining the hydrogenous water generating apparatus which concerns on 2nd Embodiment. メタルラス板で構成した多孔電極板の細部形状を説明する図である。It is a figure explaining the detailed shape of the porous electrode board comprised with the metal lath board. メタルラス板で構成した多孔電極板の表面に発生する気泡の流れを説明する図である。It is a figure explaining the flow of the bubble which generate | occur | produces on the surface of the porous electrode plate comprised with the metal lath plate. 第3の実施形態に係る水素水生成装置を説明する図である。It is a figure explaining the hydrogenous water production | generation apparatus which concerns on 3rd Embodiment. 第4の実施形態に係る水素水生成装置を説明する図である。It is a figure explaining the hydrogenous water production | generation apparatus which concerns on 4th Embodiment. 水素水生成装置の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of a hydrogenous water production | generation apparatus. 水素水生成装置の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of a hydrogenous water production | generation apparatus. 水素水生成装置の上半部の構造を示した断面図である。It is sectional drawing which showed the structure of the upper half part of the hydrogenous water production | generation apparatus. 積層電極体に導体小片が落下した状態を示す説明図である。It is explanatory drawing which shows the state which the conductor piece fell on the laminated electrode body. 水素水生成装置の電気的構成を示したブロック図である。It is the block diagram which showed the electrical structure of the hydrogenous water production | generation apparatus. 制御部において実行されるメイン処理のフローである。It is the flow of the main process performed in a control part. 制御部において実行される割込処理のフローである。It is the flow of the interruption process performed in a control part. 制御部において実行されるポンプ停止処理のフローである。It is a flow of the pump stop process performed in a control part. 制御部において実行される極性反転処理のフローである。It is the flow of the polarity inversion process performed in a control part. 制御部において実行される終了処理のフローである。It is the flow of the termination process performed in a control part. 制御部より発出される各種信号のタイミングチャートである。It is a timing chart of the various signals emitted from a control part. 制御部より発出される各種信号のタイミングチャートである。It is a timing chart of the various signals emitted from a control part. 変形例に係る水素水生成装置の構成を示した斜視図である。It is the perspective view which showed the structure of the hydrogenous water production | generation apparatus which concerns on a modification. 電解部収容凹部の構成を示した説明図である。It is explanatory drawing which showed the structure of the electrolysis part accommodation recessed part.
 以下、下記の順序に従って本発明を説明する。
(1)第1の実施形態:
(2)第2の実施形態:
(3)第3の実施形態:
(4)第4の実施形態:
(5)第4の実施形態の変形例:
(6)まとめ:
Hereinafter, the present invention will be described in the following order.
(1) First embodiment:
(2) Second embodiment:
(3) Third embodiment:
(4) Fourth embodiment:
(5) Modification of the fourth embodiment:
(6) Summary:
(1)第1の実施形態: 
 図1及び図2は、水素水生成装置の外観構成を示す斜視図、図3は、上ケースを取り外して下ケース内を露見させた状態を示す図、図4は、上ケースから保護ケースを取り外した上ケースを示す斜視図、図5は、上ケース内面を下方から見た斜視図、図6は、図1に示すA-A断面を示す断面図、図7は、電解部の斜視図、図8は、電解部の底面図、B-B断面図、及びB-B断面の拡大図である。
(1) First embodiment:
1 and 2 are perspective views showing an external configuration of the hydrogen water generator, FIG. 3 is a diagram showing a state in which the upper case is removed and the inside of the lower case is exposed, and FIG. 4 is a diagram showing a protective case from the upper case. FIG. 5 is a perspective view of the inner surface of the upper case as viewed from below, FIG. 6 is a cross-sectional view of the AA cross section shown in FIG. 1, and FIG. 7 is a perspective view of the electrolysis unit. 8 is a bottom view of the electrolysis part, a BB cross-sectional view, and an enlarged view of the BB cross-section.
 本実施形態に係る水素水生成装置100は、浴槽等の溜水した容器内に浸漬可能なケース10内に、ポンプ部20と、電解部30と、電源部40と、を収容配設してあり、しかも、電解部30は、複数の多孔電極板を一定間隔を保持して配設されており、ポンプ部20からの水流が多孔電極板の板面に向かうよう構成されている。これにより、従来に比べて水が含有する水素の微泡性が向上し、水における水素の気泡成長を緩和した水素水を生成できる。 The hydrogen water generating apparatus 100 according to the present embodiment accommodates and arranges a pump unit 20, an electrolysis unit 30, and a power supply unit 40 in a case 10 that can be immersed in a reservoir such as a bathtub. In addition, the electrolysis unit 30 is configured such that a plurality of porous electrode plates are arranged at regular intervals, and the water flow from the pump unit 20 is directed toward the plate surface of the porous electrode plate. Thereby, compared with the past, the fine bubble property of the hydrogen which water contains improves, and the hydrogen water which eased the bubble growth of hydrogen in water can be produced | generated.
 以下、図面に示す水素水生成装置100の具体的な一態様について説明する。 Hereinafter, a specific aspect of the hydrogen water generator 100 shown in the drawings will be described.
 ケース10は、合成樹脂等の不透水性材料を用いて水密構造に形成されており、流入口11から流出口12までの水が流通する通水路13を除くケース10内に水が侵入しないように部材継ぎ目がシーリング材等で封止されている。図1、図2等に示す例では、上ケース10aと下ケース10bを上下合体させて内部を水密に構成し、上ケース10aの上面にリブ構造を有する保護部材10cを装着してある。 The case 10 is formed in a watertight structure using a water-impermeable material such as a synthetic resin, so that water does not enter the case 10 except for the water passage 13 through which water flows from the inlet 11 to the outlet 12. The member seam is sealed with a sealing material or the like. In the example shown in FIG. 1, FIG. 2, etc., the upper case 10a and the lower case 10b are vertically combined to form a watertight interior, and a protective member 10c having a rib structure is mounted on the upper surface of the upper case 10a.
 保護部材10cは、上ケース10aの上面を覆うように伸びる基部10c1と、当該基部上面に立設されたリブ10c2とを有し、上ケース10a上面に露見する電解部30と対面する部位に開口10c3を有し、上ケース10a上面に設けた操作スイッチ15と対面する部位に開口10c4を有する。開口10c3の上にはリブ10c2が架設されており、電解部30の長手方向に沿って人の指が通らない程度の一定間隔でリブを並設して利用者の手指と電解部30との接触を防止しつつ電解部30から流出する水が水素水生成装置100の上面から上方へ噴出可能にしている。 The protective member 10c has a base portion 10c1 extending so as to cover the upper surface of the upper case 10a, and a rib 10c2 erected on the upper surface of the base portion, and is opened at a portion facing the electrolytic portion 30 exposed on the upper surface of the upper case 10a. 10c3, and has an opening 10c4 at a portion facing the operation switch 15 provided on the upper surface of the upper case 10a. A rib 10c2 is installed on the opening 10c3, and ribs are arranged in parallel at regular intervals so that a human finger does not pass along the longitudinal direction of the electrolysis unit 30. The water flowing out from the electrolysis unit 30 can be ejected upward from the upper surface of the hydrogen water generator 100 while preventing contact.
 ケース10の水密部分には、水素水生成装置100の電気的構成要素のほぼ全てが配設されるが、電解部30を構成する多孔電極板31~33については水密部分の外部に配設されており、具体的には通水路13内に配設されている。 Almost all of the electrical components of the hydrogen water generator 100 are disposed in the watertight portion of the case 10, but the porous electrode plates 31 to 33 constituting the electrolysis unit 30 are disposed outside the watertight portion. Specifically, it is disposed in the water passage 13.
 ポンプ部20は通水路13の途中に介装されており、ポンプ部20の内部通水路21が通水路13の一部を構成している。ポンプ部20が稼働すると、内部通水路21内の水にポンプ圧力を加えて、このポンプ圧力によって通水路13全体の水が通水路13内を流動し、流入口11からは水が吸引されるとともに、流出口12からは水が排出される。なお、本実施形態では内蔵式のポンプ部を例に取り説明を行っているが、ケース10外にポンプ部を設けてもよく、チューブ等で外部のポンプ部と接続して通水路13の水にポンプ圧力を加える構成としてもよい。 The pump unit 20 is interposed in the middle of the water passage 13, and the internal water passage 21 of the pump unit 20 constitutes a part of the water passage 13. When the pump unit 20 is operated, a pump pressure is applied to the water in the internal water passage 21, and the water in the whole water passage 13 flows through the water passage 13 by this pump pressure, and water is sucked from the inlet 11. At the same time, water is discharged from the outlet 12. In the present embodiment, the built-in pump unit is described as an example. However, a pump unit may be provided outside the case 10 and connected to an external pump unit with a tube or the like to connect the water in the water passage 13. It is good also as a structure which applies a pump pressure to.
 流入口11は、ケース10の側面と下面の角に設けられた凹部内に開口が設けられており、流出口12はケース10の上面に設けられている。流入口11や流出口12をケース10の下面に沿う位置に設けないことで、ケース10の下面を容器の内底面から一定距離だけ離間させる脚部材を設ける必要が無くなる。流出口12をケース10の上面に設けることにより、電解部30で発生・成長して電解部30から離脱上昇中の気泡を、水素水生成装置100が吐出する水流に巻き込むことができる。なお、流入口11には、塵や湯垢、髪の毛等の侵入を防止するフィルター14を設けて、通水路13の詰まりや汚れを防止している。 The inflow port 11 is provided with openings in recesses provided at the corners of the side surface and the lower surface of the case 10, and the outflow port 12 is provided on the upper surface of the case 10. By not providing the inflow port 11 and the outflow port 12 at positions along the lower surface of the case 10, it is not necessary to provide leg members that separate the lower surface of the case 10 from the inner bottom surface of the container by a certain distance. By providing the outlet 12 on the upper surface of the case 10, bubbles that are generated and grown in the electrolysis unit 30 and are rising away from the electrolysis unit 30 can be entrained in the water flow discharged from the hydrogen water generator 100. In addition, the inflow port 11 is provided with a filter 14 that prevents intrusion of dust, scale, hair, and the like, thereby preventing clogging and contamination of the water passage 13.
 その他、ケース10の上面には操作スイッチ15と照明・動作確認LED16(Light Emitting Diode)が設けられている。操作スイッチ15を操作すると、水素水生成装置100の電源オン/オフや、後述する照明・動作確認LED16の表示のオン/オフや表示色の切り替え等の各種操作入力を行える。ケース10の側面には、蓄電可能に構成された電源部40の充電端子17が設けられており、ACアダプタ等を介して充電端子17を商用交流電源に接続して電源部40を充電することができる。 In addition, an operation switch 15 and an illumination / operation check LED 16 (Light Emitting Diode) are provided on the upper surface of the case 10. When the operation switch 15 is operated, various operation inputs such as power on / off of the hydrogen water generating apparatus 100, display ON / OFF of the illumination / operation check LED 16 described later, and switching of display colors can be performed. A charging terminal 17 of the power supply unit 40 configured to be able to store electricity is provided on the side surface of the case 10, and the charging terminal 17 is connected to a commercial AC power supply via an AC adapter or the like to charge the power supply unit 40. Can do.
 なお、水素水生成装置100には充電端子17を覆うための不図示のカバー部材が付属しており、カバー部材を装着して充電端子17を覆うことで、水素水生成装置100を水中に浸漬した際に、充電端子17の短絡や漏電を防止する構成となっている。 Note that a cover member (not shown) for covering the charging terminal 17 is attached to the hydrogen water generating apparatus 100, and the hydrogen water generating apparatus 100 is immersed in water by attaching the cover member and covering the charging terminal 17. In this case, the charging terminal 17 is prevented from being short-circuited or leaked.
 ケース10の水密部分には、水素水生成装置100を電気的に制御する制御主体としての制御・充電基板18が固設されている。制御・充電基板18からは多数の配線が延出されており、ポンプ部20、電解部30、電源部40、操作スイッチ15、照明・動作確認LED16にそれぞれ接続されている。なお、図面中には、電解部30と制御・充電基板18との間の配線のみを示してある。 A control / charging board 18 as a control main body for electrically controlling the hydrogen water generating device 100 is fixedly installed in the watertight portion of the case 10. A number of wires extend from the control / charge board 18 and are connected to the pump unit 20, electrolysis unit 30, power supply unit 40, operation switch 15, and illumination / operation check LED 16, respectively. In the drawing, only the wiring between the electrolysis unit 30 and the control / charge board 18 is shown.
 電解部30に接続される配線は、通水路13内の電解部30に直接接続されるのではなく、多孔電極板31~33に連結された導体棒34,35の先端に対して接続される。導体棒34,35は、通水路13壁面の貫通孔13aを通して水密部分に突出している。多孔電極板31,33は一方の導体棒(例えば、導体棒34)に接続され、多孔電極板32には当該一方の導体棒の挿通孔が形成される。一方、多孔電極板32は他方の導体棒(例えば、導体棒35)に接続され、多孔電極板31,33には当該他方の導体棒の挿通孔が形成される。通水路13壁面の貫通孔13aと導体棒34,35の間はシール材等で封止される。図5に示す例では、貫通孔13aを通して水密部分に露見した導体棒34,35の先端にボルトを螺合し、ボルトと通水路13壁面との間にOリング等のシール材を介挿挟持することにより貫通孔13aを封止してある。 The wiring connected to the electrolysis unit 30 is not directly connected to the electrolysis unit 30 in the water passage 13, but is connected to the tips of the conductor rods 34 and 35 connected to the porous electrode plates 31 to 33. . The conductor rods 34 and 35 protrude into the watertight portion through the through hole 13a on the wall surface of the water passage 13. The porous electrode plates 31 and 33 are connected to one conductor rod (for example, the conductor rod 34), and the porous electrode plate 32 is formed with an insertion hole for the one conductor rod. On the other hand, the porous electrode plate 32 is connected to the other conductor rod (for example, the conductor rod 35), and the porous electrode plates 31 and 33 are formed with insertion holes for the other conductor rod. A space between the through hole 13a on the wall surface of the water passage 13 and the conductor rods 34 and 35 is sealed with a sealing material or the like. In the example shown in FIG. 5, a bolt is screwed onto the tip of the conductor rods 34 and 35 exposed to the watertight portion through the through hole 13 a, and a sealing material such as an O-ring is interposed between the bolt and the wall surface of the water passage 13. By doing so, the through hole 13a is sealed.
 通水路13には、流出口12付近に、流出口12に近づくほど徐々に拡幅する圧力室13bを有しており、電解部30を構成する複数の多孔電極板31~33は、圧力室13bの幅広開口に近い通水路13において、通水路13の流路断面の略全体をそれぞれが閉塞するように配設されている。これにより、通水路13を流通する水は、必ず各多孔電極板31~33の気泡流通孔31a~33aを通って流出口12に到達することになる。また、圧力室13bの出口開口をポンプ部20付近の通水路13より大断面積に形成することにより、水素水を浴槽等の溜水した容器内に供給する供給口が大きくなり、水素水生成装置100から供給される水素水の容器内への拡散が促進される。なお、圧力室13bの形状は、漏斗状拡幅形状に限るものではなく、電解部30に均等な水圧を加え、流出口12からの水素水の拡散促進が可能であれば、様々な形状を採用可能である。 The water passage 13 has a pressure chamber 13b that gradually increases in width near the outflow port 12 in the vicinity of the outflow port 12, and the plurality of porous electrode plates 31 to 33 constituting the electrolysis unit 30 include the pressure chamber 13b. In the water passage 13 close to the wide opening of the water passage 13, each of the flow passage sections of the water passage 13 is disposed so as to close the whole. Thus, the water flowing through the water passage 13 always reaches the outlet 12 through the bubble passage holes 31a to 33a of the respective porous electrode plates 31 to 33. Further, by forming the outlet opening of the pressure chamber 13b to have a larger cross-sectional area than the water passage 13 near the pump unit 20, the supply port for supplying hydrogen water into a reservoir such as a bathtub is increased, and hydrogen water is generated. Diffusion of hydrogen water supplied from the apparatus 100 into the container is promoted. The shape of the pressure chamber 13b is not limited to the funnel-shaped widened shape, and various shapes are adopted as long as uniform water pressure is applied to the electrolysis unit 30 and hydrogen water diffusion from the outlet 12 can be promoted. Is possible.
 多孔電極板31~33は、金や白金でメッキされたチタン等の導電性金属材料で板状に形成されており、板面を表裏に貫通する気泡流通孔31a~33aが複数設けられている。多孔電極板31~33は、互いに接触しないよう一定間隔を保持した状態で通水路13内に固定されており、上述した配線及び導体棒34,35を介して多孔電極板31~33に電源部40から給電される。なお、気泡流通孔31a~33aは多孔電極板31~33の板面全体に亘って万遍なく形成されている。 The porous electrode plates 31 to 33 are formed in a plate shape from a conductive metal material such as titanium plated with gold or platinum, and a plurality of bubble circulation holes 31a to 33a penetrating the plate surface from the front to the back are provided. . The porous electrode plates 31 to 33 are fixed in the water passage 13 in a state where they are kept at a constant interval so as not to contact each other, and the power supply unit is connected to the porous electrode plates 31 to 33 via the wiring and the conductive rods 34 and 35 described above. Power is supplied from 40. The bubble circulation holes 31a to 33a are uniformly formed over the entire plate surfaces of the porous electrode plates 31 to 33.
 多孔電極板31~33は、隣り合う板の間に電位差が生じるようにそれぞれ電圧が印加されており、例えば、多孔電極板31,33に高電圧を印加する場合は多孔電極板32に低電圧を印加し、多孔電極板31,33に低電圧を印加する場合は多孔電極板32に高電圧を印加する。これにより、多孔電極板31~33の隣り合う板に対向する面の間で電気分解が行われ、多孔電極板31~33の板面付近に水素(及び酸素)が発生する。 A voltage is applied to each of the porous electrode plates 31 to 33 so that a potential difference is generated between adjacent plates. For example, when a high voltage is applied to the porous electrode plates 31 and 33, a low voltage is applied to the porous electrode plate 32. When a low voltage is applied to the porous electrode plates 31 and 33, a high voltage is applied to the porous electrode plate 32. As a result, electrolysis is performed between the surfaces of the porous electrode plates 31 to 33 facing the adjacent plates, and hydrogen (and oxygen) is generated near the plate surfaces of the porous electrode plates 31 to 33.
 多孔電極板31~33は、圧力室13bの幅広開口を閉塞しており、通水路13にはポンプ部20がポンプ圧力を加えている。このポンプ圧力により、通水路13を流通して圧力室13bに至った水は、拡幅形状に沿って流路断面全体に広がって多孔電極板31~33の板面に向かう水流が発生し、通水路13の流出口12を閉塞する多孔電極板31~33の板面に水流の圧力を加えることで、多孔電極板の表面に電解で発生する水素や酸素の気泡を電解の瞬間に押しのけるように水流内に取り込む効果があり、水素水生成装置100の流出口から流出する水が含む水素の気泡が微泡化される。また、目に見える水素気泡が微泡化するだけでなく、目に見えないサイズの水素気泡や気泡成長前の水素が水流に溶存する効果も期待され、例えば、水素が電解直後の分子レベルで水流内に取り込まれる効果、水素がナノバブルやマイクロバブルで水流内に取り込まれる効果も期待できる。また、図9において濃淡で示すように、圧力室13bの中でも特に上流側の多孔電極板間隙において下流側に配置された多孔電極板の気泡流通孔による抵抗で水が加圧されるため、水中に水素がより強制的に溶解されることとなり、溶存水素濃度が向上する。なお、図9では、より多くの多孔電極板を設けた例として、多孔電極板31,32,33,33-1,33-2の5枚を備えた電解部30を示しているが、3枚や4枚であっても、5枚以上であっても良いのは言うまでもない。また、圧力室13bを設けるとともにその出口である流出口12を閉塞するように多孔電極板31~33を設けているため、多孔電極板31全面に略均等な水圧が加わり、多孔電極版31全面の複数の気泡流通孔31aに万遍なく水が流入し、多孔電極板33全面の複数の気泡流通孔33aから万遍なく水が流出する。これにより、多孔電極板31~33の板面全体に形成された各気泡流通孔31a~33aに万遍なく水が行き渡る水流が形成され、多孔電極板31~33の板面方向の全域において板面付近に水が滞留しにくくなる。すなわち、通水路13内の水の置換効率が多孔電極板31~33の板面付近において向上する。 The porous electrode plates 31 to 33 block the wide opening of the pressure chamber 13b, and the pump unit 20 applies pump pressure to the water passage 13. Due to this pump pressure, the water that has flowed through the water passage 13 and reached the pressure chamber 13b spreads over the entire cross section of the flow path along the widened shape, and a water flow toward the plate surfaces of the porous electrode plates 31 to 33 is generated. By applying the pressure of the water flow to the plate surfaces of the porous electrode plates 31 to 33 that block the outlet 12 of the water channel 13, the bubbles of hydrogen and oxygen generated by electrolysis on the surface of the porous electrode plate are pushed away at the moment of electrolysis. There is an effect of taking it into the water flow, and bubbles of hydrogen contained in the water flowing out from the outlet of the hydrogen water generating device 100 are made fine. In addition, not only the visible hydrogen bubbles become microbubbles, but also the effect that hydrogen bubbles of invisible size and hydrogen before bubble growth are dissolved in the water flow is expected, for example, at the molecular level immediately after electrolysis The effect of being taken into the water stream and the effect of hydrogen being taken into the water stream with nanobubbles and microbubbles can also be expected. In addition, as shown by shading in FIG. 9, the water is pressurized by the resistance due to the bubble passage holes of the porous electrode plate disposed on the downstream side in the gap between the porous electrode plates on the upstream side in the pressure chamber 13b. Thus, hydrogen is forcibly dissolved, and the dissolved hydrogen concentration is improved. In FIG. 9, an electrolysis unit 30 including five porous electrode plates 31, 32, 33, 33-1, 33-2 is shown as an example in which more porous electrode plates are provided. Needless to say, it may be four, four, or five or more. Further, since the pressure chamber 13b is provided and the porous electrode plates 31 to 33 are provided so as to close the outlet 12 which is the outlet thereof, a substantially uniform water pressure is applied to the entire surface of the porous electrode plate 31, and the entire surface of the porous electrode plate 31 is provided. Water uniformly flows into the plurality of bubble circulation holes 31a, and water uniformly flows out from the plurality of bubble circulation holes 33a on the entire surface of the porous electrode plate 33. As a result, a water flow is formed in which the water flows evenly through each of the bubble circulation holes 31a to 33a formed on the entire plate surface of the porous electrode plates 31 to 33, and the plate is spread over the entire area of the porous electrode plates 31 to 33 in the plate surface direction. Water hardly stays near the surface. That is, the water replacement efficiency in the water passage 13 is improved in the vicinity of the plate surfaces of the porous electrode plates 31 to 33.
 多孔電極板31~33の気泡流通孔31a~33aは、図8に示すように、隣り合う多孔電極板の間で互い違いの位置関係で形成されるようにしてもよい。すなわち、平面視において、多孔電極板31の気泡流通孔31aと多孔電極板32の気泡流通孔32aとが一部重複した位置関係又は非重複位置にそれぞれ形成され、多孔電極板32の気泡流通孔32aと多孔電極板33の気泡流通孔33aも一部重複した位置関係又は非重複位置にそれぞれ形成される。 The bubble circulation holes 31a to 33a of the porous electrode plates 31 to 33 may be formed in an alternate positional relationship between adjacent porous electrode plates as shown in FIG. That is, in plan view, the bubble circulation holes 31a of the porous electrode plate 31 and the bubble circulation holes 32a of the porous electrode plate 32 are respectively formed in a partially overlapping positional relationship or a non-overlapping position. 32a and the bubble flow holes 33a of the porous electrode plate 33 are also formed in a partially overlapping positional relationship or a non-overlapping position, respectively.
 このように隣り合う多孔電極板31~33の間で気泡流通孔31a~33aが互い違いの位置関係で形成された場合、多孔電極板31~33を通過する水がジグザグに流れるため、多孔電極板31~33の間の隅々まで多孔電極板に沿って水が流通することとなり、多孔電極板の表面全体で離泡性を向上することができる。すなわち、電解板表面における水素(及び酸素)気泡の滞在時間が短縮し、電解板表面が気泡で覆われにくくなる。これにより、電解効率が向上し、電解板表面で気泡が成長しにくく、電解板表面から離脱する水素(及び酸素)を微泡化したり、分子レベル水素、ナノバブルやマイクロバブル状態での水素溶存も期待できる。この結果、水素水生成装置100から排出された水の水素溶存量が向上し、しかも、容器内の広範囲の水の水素溶存量を向上できる。 In this way, when the bubble circulation holes 31a to 33a are formed in an alternate positional relationship between the adjacent porous electrode plates 31 to 33, the water passing through the porous electrode plates 31 to 33 flows in a zigzag manner. Water flows along the perforated electrode plate to every corner between 31 and 33, and the defoaming property can be improved over the entire surface of the perforated electrode plate. That is, the residence time of hydrogen (and oxygen) bubbles on the electrolytic plate surface is shortened, and the electrolytic plate surface is not easily covered with bubbles. This improves the electrolysis efficiency, makes it difficult for bubbles to grow on the surface of the electrolytic plate, makes hydrogen (and oxygen) released from the surface of the electrolytic plate fine, and dissolves hydrogen in the molecular level of hydrogen, nanobubbles and microbubbles. I can expect. As a result, the hydrogen dissolved amount of the water discharged from the hydrogen water generating apparatus 100 can be improved, and the hydrogen dissolved amount of water in a wide range in the container can be improved.
 図10は、水素水生成装置100の制御部50が実行する処理の流れを示す図である。同図に示す処理は、電源部40から制御部50への給電の開始により開始される。なお、制御部50は、上述した制御主体としての制御・充電基板18に搭載されるマイコン等の制御回路により構成される。 FIG. 10 is a diagram showing a flow of processing executed by the control unit 50 of the hydrogen water generating apparatus 100. The process shown in the figure is started by starting power supply from the power supply unit 40 to the control unit 50. The control unit 50 is configured by a control circuit such as a microcomputer mounted on the control / charge board 18 as the above-described control subject.
 図10に示す処理において、制御部50は、まず操作スイッチ15を介して運転開始を指示する運転開始操作入力(例えば、2秒以上の長押し等)を受け付けたか否かを判断し(S1)、運転開始操作入力を受け付けた場合は(S1:Yes)、水素水生成装置100の運転開始処理を実行し(S2)、運転開始操作入力を受け付けていない場合は(S1:No)、運転開始操作入力を受け付けるまでステップS1の判断を周期的に繰り返し実行する。 In the process shown in FIG. 10, the control unit 50 first determines whether or not an operation start operation input (for example, long press for 2 seconds or more) is received via the operation switch 15 (S1). When the operation start operation input is accepted (S1: Yes), the operation start process of the hydrogen water generator 100 is executed (S2), and when the operation start operation input is not accepted (S1: No), the operation start is started. Until the operation input is accepted, the determination in step S1 is periodically repeated.
 運転開始処理(S2)は、主に、多孔電極板31~33に対する給電開始と、ポンプ部20に対する給電開始である。多孔電極板31~33への給電は、例えば、多孔電極板31,33が高電圧を給電される正極板の場合、多孔電極板32が低電圧を給電される負極板となり、多孔電極板31,33が低電圧を給電される負極板の場合、多孔電極板32が高電圧を給電される正極板となる。本実施形態では、前者を正電解モード、後者を逆電解モードと呼ぶことにする。本実施形態では、一定時間(モード持続時間)置きに正電解モードと逆電解モードとを切り替える構成となっている。ポンプ部20は、給電が開始されると、通水路13にポンプ圧力を加えて通水路13に水の流れを発生させる。 The operation start process (S2) is mainly a power supply start to the porous electrode plates 31 to 33 and a power supply start to the pump unit 20. For example, when the porous electrode plates 31 and 33 are positive plates to which a high voltage is supplied, the porous electrode plates 32 are negative electrodes to which a low voltage is supplied. , 33 are negative plates fed with a low voltage, the porous electrode plate 32 is a positive plate fed with a high voltage. In the present embodiment, the former is called a normal electrolysis mode and the latter is called a reverse electrolysis mode. In this embodiment, it is the structure which switches a normal electrolysis mode and a reverse electrolysis mode every fixed time (mode duration). When power supply is started, the pump unit 20 applies a pump pressure to the water passage 13 to generate a water flow in the water passage 13.
 次に、制御部50は、モード持続時間(例えば、29秒等)の経過を判断する(S3)。制御部50は、何れかのモードでの多孔電極板31~33への連続給電時間を計時しており、この連続給電時間がモード持続時間を超えている場合は(S3:Yes)、電解モードを正負反転させ(S4)、連続給電時間がモード持続時間を超えていない場合は(S3:No)、ステップS4をスキップしてステップS5に進む。なお、モード切替の間には、短時間、多孔電極板31~33への通電を停止する通電停止時間(例えば、1秒等)を設ける。 Next, the control unit 50 determines the elapse of the mode duration (for example, 29 seconds) (S3). The controller 50 measures the continuous power supply time to the porous electrode plates 31 to 33 in any mode, and when this continuous power supply time exceeds the mode duration (S3: Yes), the electrolysis mode Is reversed (S4), and if the continuous power feeding time does not exceed the mode duration (S3: No), step S4 is skipped and the process proceeds to step S5. In addition, during mode switching, an energization stop time (for example, 1 second) for stopping energization of the porous electrode plates 31 to 33 is provided for a short time.
 このように、一定時間おきに電解モードの切り替えにより電解極性を反転することで、陰極となる多孔電極板の表面に付着する炭酸カルシウムスケールが溶解し、ポンプ部20が発生する水流によって排出される。これにより、多孔電極板31~33の電解性能の維持と長寿命化を実現することができる。 Thus, by reversing the electrolysis polarity by switching the electrolysis mode at regular intervals, the calcium carbonate scale adhering to the surface of the porous electrode plate serving as the cathode dissolves and is discharged by the water flow generated by the pump unit 20. . As a result, the electrolytic performance of the porous electrode plates 31 to 33 can be maintained and the life can be extended.
 次に、制御部50は、自動運転時間の経過を判断する(S5)。制御部50は、ステップS2で運転を開始してから経過した運転継続時間を計時しており、この運転継続時間が自動運転時間を超えている場合は(S5:Yes)、運転を停止し(S6)、運転継続時間が自動運転時間を超えていない場合は(S5:No)、ステップS7の判断に進む。このように、水素水生成装置100は、運転開始後、一定時間(例えば、15分等)が経過すると運転を自動的に停止する構成となっている。 Next, the control unit 50 determines whether the automatic operation time has elapsed (S5). The control unit 50 measures the operation continuation time that has elapsed since the operation was started in step S2, and when the operation continuation time exceeds the automatic operation time (S5: Yes), the operation is stopped ( S6) If the operation continuation time does not exceed the automatic operation time (S5: No), the process proceeds to step S7. As described above, the hydrogen water generating apparatus 100 is configured to automatically stop the operation when a certain time (for example, 15 minutes) elapses after the operation starts.
 ステップS7では、運転を停止させる運転停止操作(例えば、2秒以上の長押し等)が操作スイッチ15に対して行われたか否かを判断し、運転停止操作が行われた場合は(S7:Yes)、運転を停止し(S6)、運転停止操作が行われていない場合は(S7:No)、ステップS3~の処理を繰り返し実行する。 In step S7, it is determined whether or not an operation stop operation (for example, long press for 2 seconds or more) has been performed on the operation switch 15, and when the operation stop operation is performed (S7: Yes), the operation is stopped (S6), and if the operation stop operation has not been performed (S7: No), the processes of steps S3 to S3 are repeatedly executed.
 なお、運転中には、照明・動作確認LED16を点灯させる運転表示を行ってもよく、照明・動作確認LED16として複数色のLEDを設ける場合は、発光色を一定周期で切り替えて発光させてもよい。発光色の切り替えタイミングとしては、例えば、上述したモード切替のタイミングとすることができる。具体的には、正電解モードで照明・動作確認LED16を例えば赤色に点灯させた場合、通電停止期間の間は照明・動作確認LED16を消灯し、次に負電解モードに切り替わると同時に照明・動作確認LED16を青色に点灯させる、等が考えられる。また、操作スイッチ15に対して所定の操作入力(例えば、2秒未満の押圧操作等)を行った際に、点灯色を切り替える構成としてもよい。 During operation, an operation display for turning on the illumination / operation check LED 16 may be performed. When a plurality of colors of LEDs are provided as the illumination / operation confirmation LED 16, the emission color may be switched at a constant period to emit light. Good. As the emission color switching timing, for example, the above-described mode switching timing can be used. Specifically, when the illumination / operation check LED 16 is lit in red in the positive electrolysis mode, for example, the illumination / operation confirmation LED 16 is turned off during the energization stop period, and then the illumination / operation is switched to the negative electrolysis mode at the same time. For example, the confirmation LED 16 may be lit in blue. Moreover, it is good also as a structure which switches a lighting color, when predetermined | prescribed operation input (for example, pressing operation for less than 2 second etc.) is performed with respect to the operation switch 15. FIG.
 以上説明したように電解部30やポンプ部20、照明・動作確認LED16を制御することにより、多孔電極板31~33への炭酸カルシウムスケールの付着を防止して高い電解性能を維持しつつ装置寿命を長寿命化することができる。しかも、照明・動作確認LED16の点灯により、運転状況を使用者に知らしめるとともに、容器内の装飾照明としての視覚的な興趣ある雰囲気を醸し出すこともできる。 As described above, by controlling the electrolysis unit 30, the pump unit 20, and the illumination / operation check LED 16, the lifetime of the apparatus is maintained while preventing the calcium carbonate scale from adhering to the porous electrode plates 31 to 33 and maintaining high electrolysis performance. Can extend the service life. In addition, the lighting / operation check LED 16 can be turned on to let the user know the driving situation and create a visually interesting atmosphere as decorative lighting in the container.
 なお、本第1の実施形態において圧力室13bでは、多孔電極板31~33の3枚の電極板や、多孔電極板31~33-2の5枚の多孔電極板によりその幅広開口を閉塞することで各多孔電極板の間隙や圧力室13bの内部を加圧雰囲気下として水中への水素の溶存を高めることとしたが、例えば各多孔電極板よりも下流側、すなわち各多孔電極板の上方にて流路規制を行うことにより圧力室13bの内圧を高めるようにしても良い。 In the first embodiment, in the pressure chamber 13b, the wide opening is closed by the three electrode plates of the porous electrode plates 31 to 33 and the five porous electrode plates of the porous electrode plates 31 to 33-2. In this way, it was decided to increase the dissolution of hydrogen in water by setting the gap between the porous electrode plates and the inside of the pressure chamber 13b to a pressurized atmosphere, but for example, downstream of each porous electrode plate, that is, above each porous electrode plate The internal pressure of the pressure chamber 13b may be increased by restricting the flow path.
 具体的には、図11の(a)に示すように電解部30の上部を覆う電解部カバー体30aを設けると共に、同電解部カバー体30aの天面部に複数の放出孔30bを形成し、その放出孔30bの幾つかについて開放・閉塞をコントロールする制御・充電基板18に電気的に接続された電磁弁30cを配設するようにしても良い。 Specifically, as shown in FIG. 11 (a), an electrolysis part cover body 30a covering the upper part of the electrolysis part 30 is provided, and a plurality of discharge holes 30b are formed in the top surface part of the electrolysis part cover body 30a. An electromagnetic valve 30c electrically connected to the control / charging board 18 for controlling opening / closing of some of the discharge holes 30b may be provided.
 この場合、電磁弁30cを開放状態とした際には通水路13の流路規制は、図9で示した場合と同様に多孔電極板の間隙にて行われ、所定の効率で水中に水素が溶解することとなるが、制御・充電基板18により電磁弁30cを閉塞制御した時には圧力室13bの内部、特に電解部30の下流側にあたる電解部カバー体30aの内方空間部分を濃淡にて示すように加圧雰囲気下とすることができ、水中への水素の溶解効率を更に向上させることができる。 In this case, when the electromagnetic valve 30c is opened, the flow passage restriction of the water passage 13 is performed in the gap between the porous electrode plates as in the case shown in FIG. When the electromagnetic valve 30c is controlled to be closed by the control / charge board 18, the inner space portion of the electrolysis part cover body 30a corresponding to the downstream side of the electrolysis part 30 is shown by shading when the electromagnetic valve 30c is controlled to be closed. Thus, it can be under a pressurized atmosphere, and the dissolution efficiency of hydrogen in water can be further improved.
 また、必ずしも電磁弁30c等の電気的手段による必要はなく、図11(b)に示すように、電解部カバー体30aに穿設した放出孔30bと対向する位置にニードル30dを配設したニードルプレート30eを配置し、使用者が操作可能な位置に設けたニードル昇降ネジ30fを回動することにより、手動により放出孔30bに対してニードル30dを出入させて、流路規制を行うようにしても良い。 Further, it is not always necessary to use electrical means such as the electromagnetic valve 30c. As shown in FIG. 11B, a needle having a needle 30d disposed at a position facing the discharge hole 30b formed in the electrolysis part cover body 30a. The plate 30e is arranged, and the needle lifting screw 30f provided at a position where the user can operate is rotated, so that the needle 30d is manually moved in and out of the discharge hole 30b, thereby restricting the flow path. Also good.
 このような構成によっても、ニードル30dを放出孔30bに進入させることで、圧力室13b内、特に電解部30の下流側にあたる電解部カバー体30aの内方空間部分を加圧雰囲気下とすることができ、水中への水素の溶解効率を更に向上させることができる。 Even in such a configuration, the needle 30d is allowed to enter the discharge hole 30b, whereby the inner space portion of the electrolysis part cover body 30a, which is the downstream side of the electrolysis part 30, particularly in the pressure chamber 13b, is placed in a pressurized atmosphere. And the efficiency of dissolving hydrogen in water can be further improved.
 また、本第1実施形態において、ポンプ部20は一定の送水量で稼動するものとして説明したが、ポンプ部20の送水量を変更可能とし、通水路13(圧力室13b)における流速を調整可能としても良い。 In the first embodiment, the pump unit 20 has been described as operating with a constant water supply amount. However, the water supply amount of the pump unit 20 can be changed, and the flow rate in the water passage 13 (pressure chamber 13b) can be adjusted. It is also good.
 上述の例では、電解部30において狭隘な電極板間隙を流動する水は流速は大きく、例えば陰極板表面で生じた水素の気泡は、発生直後の未だ小さい状態で速やかに剥離し、水中へ効率的に溶解することとなる。 In the above-described example, the water flowing through the narrow electrode plate gap in the electrolysis unit 30 has a high flow rate. For example, hydrogen bubbles generated on the surface of the cathode plate are quickly separated in a small state immediately after the generation, and the water efficiently Will be dissolved.
 ここでポンプ部20の送水量を低下させると、電極板間隙における水の流速は小さくなり、陰極板表面にて生じた水素の気泡は即座には剥離せず、時間経過と共に徐々に水素が蓄積され肥大化して水流から受ける抵抗力が陰極板表面に対する気泡の付着力より大きくなった時点で陰極板表面から剥離する。 Here, when the water supply amount of the pump unit 20 is reduced, the flow rate of water in the gap between the electrode plates becomes small, and hydrogen bubbles generated on the surface of the cathode plate are not immediately separated, but gradually accumulates with time. When the resistance force from the water flow becomes larger than the adhesion force of the bubbles to the cathode plate surface, it peels off from the cathode plate surface.
 そして、浴槽中に放たれた大きめの水素気泡は、速やかに湯水表面に至り、浴室中に拡散する。 And the large hydrogen bubbles released in the bathtub quickly reach the hot water surface and diffuse into the bathroom.
 この場合、微細な水素気泡ほど浴槽内の湯に水素を溶解する効率は期待できないものの、浴室に拡散した水素は入浴中の使用者の呼吸によって体内へ取り込まれ、より直接的な健康増進作用が期待できることとなる。 In this case, although the efficiency of dissolving hydrogen in hot water in the bathtub cannot be expected as fine hydrogen bubbles, the hydrogen diffused in the bathroom is taken into the body by the breathing of the user while taking a bath, and has a more direct health promotion effect. It can be expected.
 すなわち、本第1実施形態に係る水素水生成装置をはじめ、本明細書に記載の水素水生成装置には、ポンプ部20とポンプ部20の送水量を制御する制御部(例えば制御・充電基板18)とによって構成される気泡径調節手段(気泡径調節部)を備えるようにしても良く、これにより高濃度の水素水による温浴での効果と、浴室中に拡散させた水素による効果との両者の健康増進効果を選択的に享受することが可能となる。 That is, the hydrogen water generating apparatus described in the present specification including the hydrogen water generating apparatus according to the first embodiment includes a pump unit 20 and a control unit (for example, a control / charging board) that controls the water supply amount of the pump unit 20. 18) may be provided with a bubble diameter adjusting means (bubble diameter adjusting unit), whereby the effect of the hot bath with high-concentration hydrogen water and the effect of hydrogen diffused in the bathroom It becomes possible to selectively enjoy the health promotion effect of both.
(2)第2の実施形態: 
 本実施形態に係る水素水生成装置は、電解部の構成を除くと上述した第1の実施形態に係る水素水生成装置100と同様の構成であるため、電解部以外の構成については第1の実施形態と同じ符号を用いて説明する。
(2) Second embodiment:
Since the hydrogen water generating apparatus according to the present embodiment has the same configuration as the hydrogen water generating apparatus 100 according to the first embodiment described above except for the configuration of the electrolysis unit, the configuration other than the electrolysis unit is the first. Description will be made using the same reference numerals as in the embodiment.
 図12は、本実施形態に係る水素水生成装置を説明する図である。 FIG. 12 is a diagram for explaining the hydrogen water generating apparatus according to the present embodiment.
 電解部30は、複数の多孔電極板231~233(多孔電極板232,233は図中に露見せず)を一定間隔を保持して配設されている。多孔電極板231~233は、互いに接触しないよう一定間隔を保持した状態で通水路13内に固定されており、上述した配線及び導体棒34,35を介して多孔電極板231~233に電源部40から給電される点は、上述した第1の実施形態と同様である。 The electrolysis unit 30 is provided with a plurality of porous electrode plates 231 to 233 (the porous electrode plates 232 and 233 are not exposed in the drawing) at regular intervals. The porous electrode plates 231 to 233 are fixed in the water passage 13 in a state where they are kept at a fixed interval so as not to come into contact with each other. The point supplied with power from 40 is the same as in the first embodiment described above.
 一方、本実施形態に係る多孔電極板231~233は、多孔電極板231~233の気泡流通孔の間を区画する区画部が、ポンプ部20の発生する水流に向かう尖端となる角部を有する断面多角形状となっている。すなわち、多孔電極板231~233は、区画部の両側の気泡流通孔に向かって角部を挟んでそれぞれ形成される各面が、ポンプ部20の発生する水流を各気泡流通孔に向かって受け流す方向に傾斜する傾斜面となる。この傾斜面に沿って流れる水流により、多孔電極板231~233の表面で発生する気泡の離泡性が向上する。また、多孔電極板231~233の気泡流通孔の間の面が、角部を挟んで不連続な別の面として構成されるため、一方の面で発生した泡が他方の面で発生した泡と合体しにくく、多孔電極板231~233から離脱する気泡を、より微泡化したり、分子レベル水素、ナノバブルやマイクロバブル状態での水素溶存も期待できる。また、気泡流通孔の間の多孔電極板231~233が水流に向かう角部を有することにより、多孔電極板231~233の気泡流通孔を流通する水流がスムーズになり、ポンプ部20から最も遠い多孔電極板233の気泡流通孔を流通するまで水勢を維持できる。また、角部は表面張力が小さいため、水流が直接当たる多孔電極板231~233の気泡流通孔の間の角部で発生する気泡の離泡性が向上する。このような、ポンプ部20の発生する水流に向かう角部を有する断面多角形状が、気泡流通孔の間の板面に形成された多孔電極板231~233の一例として以下で説明するメタルラス板がある。 On the other hand, in the porous electrode plates 231 to 233 according to the present embodiment, the partition part that divides between the bubble circulation holes of the porous electrode plates 231 to 233 has a corner part that becomes a tip toward the water flow generated by the pump part 20. It has a polygonal cross section. That is, in each of the perforated electrode plates 231 to 233, each surface formed with the corners facing the bubble circulation holes on both sides of the partition part receives the water flow generated by the pump unit 20 toward each bubble circulation hole. It becomes an inclined surface inclined in the direction. Due to the water flow flowing along the inclined surface, the bubble releasing property of the bubbles generated on the surfaces of the porous electrode plates 231 to 233 is improved. In addition, since the surface between the bubble circulation holes of the porous electrode plates 231 to 233 is configured as another discontinuous surface across the corner, bubbles generated on one surface are generated on the other surface. The bubbles released from the porous electrode plates 231 to 233 are less likely to be coalesced with each other, and the bubbles can be expected to be made finer or dissolved in molecular level hydrogen, nanobubbles or microbubbles. Further, since the porous electrode plates 231 to 233 between the bubble circulation holes have corners directed toward the water flow, the water flow flowing through the bubble circulation holes of the porous electrode plates 231 to 233 becomes smooth and is farthest from the pump unit 20. The water force can be maintained until the gas circulation holes of the porous electrode plate 233 are circulated. In addition, since the corner portion has a small surface tension, the bubble releasing property of the bubbles generated at the corner portion between the bubble circulation holes of the porous electrode plates 231 to 233 that the water flow directly hits is improved. The metal lath plate described below as an example of the porous electrode plates 231 to 233 having such a polygonal cross section having a corner toward the water flow generated by the pump unit 20 is formed on the plate surface between the bubble circulation holes. is there.
 図13は、メタルラス板で構成した多孔電極板231~233の細部形状を説明する図である。本実施形態に係る多孔電極板231~233は、金属薄板に切れ目を入れ、切れ目方向と略垂直方向に金属薄板を伸長して菱形網目状に形成したメタルラス板により構成されている。メタルラス板により構成された多孔電極板231~233は、区画ワイヤWを交差状に配置した網状の部材であり、区画ワイヤWで囲まれた開口が水の流通する気泡流通孔231a~233aとなる。気泡流通孔231a~233aは菱形であり、第1対角線L1が第2対角線L2よりも長く、第1対角線L1上の頂部H1,H2の角度が、第2対角線L2上の頂部H3,H4の角度よりも小さくなっている。 FIG. 13 is a diagram for explaining the detailed shape of the porous electrode plates 231 to 233 made of metal lath plates. The perforated electrode plates 231 to 233 according to the present embodiment are formed of a metal lath plate formed in a rhombic mesh shape by making a cut in a thin metal plate and extending the thin metal plate in a direction substantially perpendicular to the cut direction. The perforated electrode plates 231 to 233 formed of metal lath plates are mesh members in which partition wires W are arranged in an intersecting manner, and openings surrounded by the partition wires W become bubble circulation holes 231a to 233a through which water flows. . The bubble circulation holes 231a to 233a are diamond-shaped, the first diagonal L1 is longer than the second diagonal L2, and the angles of the apexes H1 and H2 on the first diagonal L1 are the angles of the apexes H3 and H4 on the second diagonal L2. Is smaller than
 上述したように、メタルラス板は金属薄板に断続的に切れ目を入れて形成した破線状亀裂を複数本並設し、切れ目方向と略垂直方向に金属薄板を伸長して切れ目部分を菱形網目状に形成することで作成されるものであり、破線状亀裂の切れ目と切れ目の間の連結部Xは、隣接する破線状亀裂の切れ目の中ほどに位置している。 As described above, the metal lath plate is provided with a plurality of broken-line cracks formed by intermittently cutting the thin metal plate, and the thin metal plate is extended in a direction substantially perpendicular to the cut direction so that the cut portion has a rhombic mesh shape. It is created by forming, and the connecting portion X between the breaks of the broken-line crack is located in the middle of the adjacent broken-line crack.
 切れ目を形成された金属薄板を破線状亀裂の並設方向に伸長すると、破断状亀裂の間の線状部分が線状部分の長さ方向を軸として回転するように捩れる。このため、メタルラス板の網目を構成する断面略方形状の区画ワイヤWは、その方形の面が、多孔電極板231~233の面方向に対して傾斜した方形傾斜面を有する。本実施形態では、多孔電極板231~233の面方向に対する傾斜角θを略45°としてあり、多孔電極板231~233の板面に対して方形傾斜面が略同一傾斜となっている。 When the thin metal plates with cuts are elongated in the direction in which the broken-line cracks are juxtaposed, the linear portions between the fractured cracks are twisted so as to rotate about the length direction of the linear portions. For this reason, the section wire W having a substantially square cross section constituting the mesh of the metal lath plate has a rectangular inclined surface whose rectangular surface is inclined with respect to the surface direction of the porous electrode plates 231 to 233. In the present embodiment, the inclination angle θ with respect to the surface direction of the porous electrode plates 231 to 233 is set to approximately 45 °, and the rectangular inclined surfaces are substantially the same inclination with respect to the plate surfaces of the porous electrode plates 231 to 233.
 このように形成された多孔電極板231~233においては、図14に示すように、気泡流通孔の間の区画ワイヤWが、ポンプ部20の発生する水流に向かう角部を有する断面多角形状であり、区画ワイヤWが水流に対して傾斜した方形傾斜面を有する。このため、多孔電極板231~233の表面で発生する気泡の離泡性が向上する。また、区画ワイヤWのポンプ部20の発生する水流に向かう側は、角部を挟んで不連続な別の面として構成されるため、一方の面で発生した泡が他方の面で発生した泡と合体しにくく、多孔電極板231~233から離脱する気泡をより微泡化したり、分子レベル水素、ナノバブルやマイクロバブル状態での水素溶存も期待できる。また、区画ワイヤWの角部先端が水流に向かって配向するため、多孔電極板231~233の気泡流通孔を流通する水流の勢いが区画ワイヤWで阻害されにくく、ポンプ部20から最も遠い多孔電極板233の気泡流通孔を流通するまである程度の水勢を維持できる。また、区画ワイヤWの角部は表面張力が小さいため、その角部で発生する気泡の離泡性が向上する。なお、区画ワイヤWの角部先端は、電荷集中部としての機能も有している。この電荷集中部については、追って第4の実施形態の中で説明する。すなわち、多孔電極板としてメタルラス板を採用した場合においても、同多孔電極板における気泡流通孔の周縁には電荷集中部が形成されているものと解釈することもできる。 In the perforated electrode plates 231 to 233 formed in this way, as shown in FIG. 14, the partition wires W between the bubble circulation holes have a polygonal cross section having corners directed to the water flow generated by the pump unit 20. Yes, the partition wire W has a rectangular inclined surface inclined with respect to the water flow. For this reason, the bubble releasing property of bubbles generated on the surfaces of the porous electrode plates 231 to 233 is improved. Moreover, since the side which goes to the water flow which the pump part 20 of the division wire W generate | occur | produces is comprised as another surface which is discontinuous on both sides of a corner | angular part, the bubble which generate | occur | produced on one surface is the bubble which generate | occur | produced on the other surface It is difficult to coalesce with each other, and bubbles released from the porous electrode plates 231 to 233 can be made finer, and hydrogen can be expected to be dissolved in molecular level hydrogen, nanobubbles and microbubbles. In addition, since the end of the corner of the partition wire W is oriented toward the water flow, the momentum of the water flow flowing through the bubble circulation holes of the porous electrode plates 231 to 233 is not easily inhibited by the partition wire W, and is the porous farthest from the pump unit 20. A certain amount of water can be maintained until the bubble circulation holes of the electrode plate 233 are circulated. Moreover, since the corner | angular part of the division wire W has small surface tension, the foaming property of the bubble which generate | occur | produces in the corner | angular part improves. In addition, the corner | angular part front-end | tip of the division wire W also has a function as a charge concentration part. The charge concentration portion will be described later in the fourth embodiment. That is, even when a metal lath plate is adopted as the porous electrode plate, it can be interpreted that a charge concentration portion is formed at the periphery of the bubble circulation hole in the porous electrode plate.
(3)第3の実施形態:
 本実施形態に係る水素水生成装置は、通水路の形状を除くと上述した第1の実施形態に係る水素水生成装置100と同様の構成であり、通水路以外の構成については第1の実施形態と同じ符号を用いて説明する。図15は、本実施形態に係る水素水生成装置を説明する図である。
(3) Third embodiment:
The hydrogen water generating apparatus according to the present embodiment has the same configuration as the hydrogen water generating apparatus 100 according to the first embodiment described above except for the shape of the water channel, and the configuration other than the water channel is the first implementation. The description will be made using the same reference numerals as the form. FIG. 15 is a diagram for explaining the hydrogen water generation apparatus according to the present embodiment.
 本実施形態に係る通水路313は、流出口12付近に、流出口12に近づくほど徐々に拡幅する圧力室313bを有しており、電解部30を構成する複数の多孔電極板31~33は、圧力室313bの幅広開口に近い通水路313において、通水路313の流路断面の略全体をそれぞれが閉塞するように配設されている点は上述した第1の実施形態と同様である。なお、第1の実施形態と同様に、圧力室313bの形状は、漏斗状拡幅形状に限るものではなく、電解部30に均等な水圧を加え、流出口12から容器内への水素水の拡散促進が可能であれば、様々な形状を採用可能である。 The water passage 313 according to the present embodiment has a pressure chamber 313b that gradually widens toward the outlet 12 near the outlet 12, and the plurality of porous electrode plates 31 to 33 constituting the electrolysis unit 30 are The water passage 313 close to the wide opening of the pressure chamber 313b is the same as the first embodiment described above in that it is disposed so that substantially the entire cross section of the water passage 313 is closed. As in the first embodiment, the shape of the pressure chamber 313b is not limited to the funnel-shaped widened shape, and an equal water pressure is applied to the electrolysis unit 30 to diffuse hydrogen water from the outlet 12 into the container. If promotion is possible, various shapes can be adopted.
 この圧力室313bの側面を貫通して、ポンプ部20に連通する通水路の一部を構成する筒状水路313cが圧力室313bの中央付近まで延設されており、筒状水路313cの先端は、圧力室313bの縮径部313dに向けて開口している。すなわち、筒状水路313cを通って流入する水は、圧力室の縮径部313dに向けて吐水する。圧力室313bにおいて、縮径部313d側は閉塞されており、拡径部313e側は流出口12に向けて開口しているが、拡径部313eは電解部30が流路を閉塞するように配設されている。従って、筒状水路313cから吐出された水は、圧力室313bの縮径部313dに衝突して、圧力室313bの壁面に沿って拡径部313eに向けて流れる水流となり、筒状水路313cの開口の背面側で合流して拡径部313e付近では圧力室313bの水路断面全体で略均一な水流が形成される。これにより、拡径部313e付近に配設される電解部30の多孔電極板31~33の全面に略同等の水圧を加える構成を実現することできる。 A cylindrical water passage 313c that penetrates the side surface of the pressure chamber 313b and forms a part of the water passage communicating with the pump unit 20 extends to the vicinity of the center of the pressure chamber 313b, and the tip of the cylindrical water passage 313c is The pressure chamber 313b opens toward the reduced diameter portion 313d. That is, the water flowing in through the cylindrical water channel 313c is discharged toward the reduced diameter portion 313d of the pressure chamber. In the pressure chamber 313b, the diameter-reduced portion 313d side is closed and the diameter-expanded portion 313e side is opened toward the outflow port 12, but the diameter-expanded portion 313e is arranged so that the electrolysis unit 30 blocks the flow path. It is arranged. Accordingly, the water discharged from the cylindrical water passage 313c collides with the reduced diameter portion 313d of the pressure chamber 313b, and becomes a water flow that flows toward the enlarged diameter portion 313e along the wall surface of the pressure chamber 313b. A substantially uniform water flow is formed in the entire cross section of the water channel of the pressure chamber 313b in the vicinity of the enlarged diameter portion 313e by joining at the back side of the opening. Thereby, it is possible to realize a configuration in which substantially the same water pressure is applied to the entire surface of the porous electrode plates 31 to 33 of the electrolysis unit 30 disposed in the vicinity of the enlarged diameter portion 313e.
 更に、図15に示す例では、拡径部313e付近における圧力室313bの水路断面全体の水流の均一性を向上するべく、整流フィン313f1~313f4を設けてある。すなわち、圧力室313bの底面を区画するように整流フィン313f1~313f4を立設してある。筒状水路313cから吐出された水流は、整流フィン313f1~313f4によって区画割合に応じた配分の水流が各区画に流入するように分流され、分流された水流は区画毎に縮径部313dに衝突して圧力室313bの壁面に沿って多孔電解板31~33に向けて立ち昇る水流となる、これにより、圧力室313bの水路断面全体で拡径部313e付近の水流の均一性が向上し、電解部30の多孔電極板31~33に加わる水圧の均一性が向上する。 Further, in the example shown in FIG. 15, rectifying fins 313f1 to 313f4 are provided in order to improve the uniformity of the water flow in the entire cross section of the water channel of the pressure chamber 313b in the vicinity of the enlarged diameter portion 313e. That is, the rectifying fins 313f1 to 313f4 are erected so as to partition the bottom surface of the pressure chamber 313b. The water flow discharged from the tubular water channel 313c is divided by the rectifying fins 313f1 to 313f4 so that the water flow distributed according to the division ratio flows into each division, and the divided water flow collides with the reduced diameter portion 313d for each division. Thus, the water flow rises toward the perforated electrolytic plates 31 to 33 along the wall surface of the pressure chamber 313b, thereby improving the uniformity of the water flow in the vicinity of the enlarged diameter portion 313e in the entire cross section of the water channel of the pressure chamber 313b. The uniformity of the water pressure applied to the porous electrode plates 31 to 33 of the electrolysis unit 30 is improved.
 なお、筒状水路313c先端は、縮径部313d以外の圧力室313bの他の側壁に開口を向ける構成としてもよく、例えば漏斗状を構成する傾斜面に向けて吐出させたり、新たな衝突用の壁面を立設してその壁面に向けて吐出させたりすることなども考えられる。すなわち、電解部30に直接向かわない方向であれば様々な方向に開口を向ける構成であっても、多孔電極板31~33の全面に略同等の水圧を加える構成を実現することできる。 The tip of the cylindrical water channel 313c may have a configuration in which an opening is directed to the other side wall of the pressure chamber 313b other than the reduced diameter portion 313d. For example, the cylindrical water channel 313c may be discharged toward an inclined surface forming a funnel shape or be used for a new collision. It is also conceivable that a wall surface is set up and discharged toward the wall surface. That is, it is possible to realize a configuration in which substantially the same water pressure is applied to the entire surface of the porous electrode plates 31 to 33 even if the opening is directed in various directions as long as the direction does not directly face the electrolysis unit 30.
 このように、多孔電極板31~33とは別方向に水を噴出する構成でも、通水路13の流出口12を閉塞する多孔電極板31~33の板面に水流の圧力を加えて、多孔電極板31~33の表面に電解で発生する水素や酸素の気泡を電解の瞬間に押しのけるように水流内に取り込むことが可能であり、水素水生成装置300の流出口12から流出する水が含む水素の気泡を微泡化したり、分子レベル水素、ナノバブルやマイクロバブル状態での水素溶存も期待できる。 As described above, even in a configuration in which water is ejected in a direction different from that of the porous electrode plates 31 to 33, the pressure of the water flow is applied to the plate surfaces of the porous electrode plates 31 to 33 that close the outlet 12 of the water passage 13, Hydrogen and oxygen bubbles generated by electrolysis on the surfaces of the electrode plates 31 to 33 can be taken into the water stream so as to push away at the moment of electrolysis, and include water flowing out from the outlet 12 of the hydrogen water generator 300. Hydrogen bubbles can be atomized and dissolved in molecular level hydrogen, nanobubbles and microbubbles.
(4)第4の実施形態:
 次に、第4の実施形態に係る水素水生成装置について、図16~図28を参照しながら説明する。
(4) Fourth embodiment:
Next, a hydrogen water generator according to a fourth embodiment will be described with reference to FIGS.
 図16(a)に示すように、本第4の実施形態に係る水素水生成装置400は、水素水生成装置100等と同様、浴槽内の底部に配置し、浴槽内に電解水素水を供給するための装置である。 As shown in FIG. 16 (a), the hydrogen water generator 400 according to the fourth embodiment is arranged at the bottom of the bathtub and supplies electrolytic hydrogen water into the bathtub, like the hydrogen water generator 100 and the like. It is a device for doing.
 図16(b)に示すように、水素水生成装置400は、全体的に角部のない外観視オーバル形状の化粧筐体405の内部に、前述の通水路13や制御・充電基板18、ポンプ部20、電解部30、電源部40等を内蔵した水密状の水素水生成本体部410を収容して構成している。 As shown in FIG. 16 (b), the hydrogen water generator 400 has the above-described water passage 13, control / charge board 18, pump, and the like inside an oval-shaped decorative casing 405 having no corners as a whole. A watertight hydrogen water generating main body 410 incorporating the unit 20, the electrolysis unit 30, the power supply unit 40 and the like is accommodated.
 図17は、水素水生成装置400の構造を示した分解斜視図である。図17からも分かるように、水素水生成装置400は、把持板401と、上化粧カバー402と、下化粧カバー403とよりなる化粧筐体405と、水素水生成の主体となる水素水生成本体部410とで構成している。 FIG. 17 is an exploded perspective view showing the structure of the hydrogen water generator 400. As can be seen from FIG. 17, the hydrogen water generating apparatus 400 includes a decorative housing 405 including a gripping plate 401, an upper decorative cover 402, and a lower decorative cover 403, and a hydrogen water generating main body that is a main body for generating hydrogen water. Part 410.
 把持板401と上化粧カバー402と下化粧カバー403との上下合体により構成される化粧筐体405は、浴槽での水素水生成に使用している以外では、水素水生成本体部410内の電源部40に充電する受け皿形状の充電台406上に載置されるように構成されている。 A makeup case 405 constituted by upper and lower uniting of the gripping plate 401, the upper decorative cover 402, and the lower decorative cover 403 is a power source in the hydrogen water generation main body 410 except that it is used for hydrogen water generation in a bathtub. It is configured to be placed on a tray-shaped charging base 406 that charges the unit 40.
 充電台406は、上方開口箱型、すなわち、略方形状の充電台底板406aの周縁に周壁406bを立設して内部を受け皿状に構成しており、また、その一隅部には上部に載置する水素水生成本体部410内の電源部40に給電するための通電接続部406cが凸状に形成されている。 The charging stand 406 is an upper opening box type, that is, a peripheral wall 406b is provided upright on the periphery of the charging base bottom plate 406a having a substantially square shape, and the inside thereof is configured in a tray shape. An energization connection portion 406c for supplying power to the power supply unit 40 in the hydrogen water generation main body 410 to be placed is formed in a convex shape.
 符号406dは通電接続部406cに突設した通電端子を示し、通電端子406dは充電台406の内部に配設された変圧回路基板を介して通電ワイヤ410e(破線で示す)に接続されており、通電ワイヤ410eの終端にはコンセントに接続可能なプラグ(図示せず)が連接されている。 Reference numeral 406d indicates an energization terminal projecting from the energization connection portion 406c, and the energization terminal 406d is connected to an energization wire 410e (shown by a broken line) via a transformer circuit board disposed inside the charging base 406. A plug (not shown) that can be connected to an outlet is connected to the end of the conducting wire 410e.
 また後に詳述するが、水素水生成装置400は浴槽内に浸漬した際に、化粧筐体405の内部であって水素水生成本体部410の外側となる隙間空間(以下、浸水空間という。)に湯水が浸入するよう形成されている。したがって、浴槽内から取出した直後の水素水生成装置400内には、一時的に若干の水が残存することとなるが、充電台406は、周壁406bを立ち上げた受け皿状に形成しているため、浴槽内からの取出し直後に充電台406に載置した場合であっても、水素水生成装置400内の残留水が周壁406b内に溜まることとなり、周囲を濡らしてしまうことがない。 As will be described in detail later, when the hydrogen water generating apparatus 400 is immersed in the bathtub, a gap space (hereinafter referred to as a submerged space) inside the decorative housing 405 and outside the hydrogen water generating main body 410. It is formed so that hot and cold water penetrates. Therefore, although some water will remain temporarily in the hydrogen water generating apparatus 400 immediately after taking out from the bathtub, the charging stand 406 is formed in a tray shape with the peripheral wall 406b raised. Therefore, even when the battery is placed on the charging stand 406 immediately after being taken out from the bathtub, the residual water in the hydrogen water generator 400 is accumulated in the peripheral wall 406b and the surroundings are not wetted.
 また、通電接続部406cや通電端子406dは、周壁406bよりも高い位置に形成している。したがって、充電台406内に水が多量に貯留された場合でも、水嵩が通電端子406dに到達する前に溢水することとなるため、通電端子406dが水没することを防止できる。 Further, the energization connecting portion 406c and the energization terminal 406d are formed at a position higher than the peripheral wall 406b. Therefore, even when a large amount of water is stored in the charging stand 406, the water volume overflows before reaching the energizing terminal 406d, so that the energizing terminal 406d can be prevented from being submerged.
 このように構成された充電台406上に水素水生成装置400を載置することにより、水素水生成本体部410内の電源部40に給電され、この電力を使用して水素水生成装置400内で電気分解により水素を生成し、水素水生成装置400外の風呂浴槽内の浴水に水素を放出して浴水に水素を溶存させる。 By placing the hydrogen water generating device 400 on the charging stand 406 configured in this manner, the power is supplied to the power supply unit 40 in the hydrogen water generating main body 410, and the electric power is used in the hydrogen water generating device 400. Then, hydrogen is generated by electrolysis, and hydrogen is released into the bath water in the bath tub outside the hydrogen water generator 400 to dissolve the hydrogen in the bath water.
 把持板401は、図16及び図17に示すように、平面視において楕円の長軸方向中央部を短軸方向へ狭窄させた形状を有する上方へ凸状にやや湾曲した中空板状の部材であり、水素水生成装置400の運搬時などにおいて、この狭窄状とした部分が把持部として機能するようにしている。 As shown in FIGS. 16 and 17, the gripping plate 401 is a hollow plate-like member that is slightly curved upward and has a shape in which the central part in the major axis direction of the ellipse is narrowed in the minor axis direction in plan view. In addition, when the hydrogen water generator 400 is transported, the narrowed portion functions as a gripping portion.
 また、この把持板401は、図16(b)に示すように、上化粧カバー402上に配置された状態において、同上化粧カバー402との間に略半円弧状の切欠放出口401aが形成される。この切欠放出口401aは流出口12として機能する部位であり、水素水生成本体部410から吐出された電解水素水や気泡が放出される。 Further, as shown in FIG. 16 (b), the grip plate 401 has a substantially semicircular arc-shaped notch outlet 401 a formed between the grip plate 401 and the top decorative cover 402. The The notch discharge port 401 a is a part that functions as the outlet 12, and the electrolytic hydrogen water and bubbles discharged from the hydrogen water generation main body 410 are discharged.
 また、把持板401の表面側頂部には複数条の空気穴401bが形成されており、浴槽への水素水生成装置400の沈下時に、中空状に形成された把持板401の内部に水をゆっくりと浸入させて、徐々に浮力を減じながら水素水生成装置400が水面下に沈降するよう構成している。 In addition, a plurality of air holes 401b are formed on the top of the surface side of the gripping plate 401, and when the hydrogen water generator 400 sinks into the bathtub, water is slowly introduced into the hollow gripping plate 401. The hydrogen water generator 400 is configured to sink below the water surface while gradually reducing buoyancy.
 また、把持板401の裏面側、すなわち、後述する水素水生成本体部410の電解部30と対向する部分には、同電解部30より放出された水流や気泡を前述した2つの切欠放出口401aへ分流するための分流部401cが形成されている。 In addition, on the back surface side of the gripping plate 401, that is, the portion facing the electrolysis unit 30 of the hydrogen water generation main body 410, which will be described later, the water flow and bubbles discharged from the electrolysis unit 30 are the two notch discharge ports 401a described above. A diverting portion 401c for diverting to is formed.
 図19は、図16(b)のB-Bの位置にて切断した水素水生成装置400の上半部を示す断面図である。図19からも分かるように、把持板401の裏面は、下方へ突出した中央部から短軸方向両端へ向けて上方へ傾斜するスロープ状に形成しており、電解部30より吐出された電解水素水は気泡と共に中央部にて短軸方向両側へ分岐し、分流部401cを起点とするスロープに沿って把持板401の裏面を流れ、切欠放出口401aより水流による若干の指向性をもって放出される。 FIG. 19 is a cross-sectional view showing the upper half of the hydrogen water generator 400 cut at the position BB in FIG. 16 (b). As can be seen from FIG. 19, the back surface of the gripping plate 401 is formed in a slope shape that slopes upward from the central portion protruding downward toward both ends in the short axis direction, and the electrolytic hydrogen discharged from the electrolysis portion 30. The water branches along with the bubbles to both sides in the short axis direction at the central portion, flows along the back surface of the gripping plate 401 along the slope starting from the flow dividing portion 401c, and is discharged from the notch discharge port 401a with a slight directivity due to the water flow. .
 上化粧カバー402は図17に示すように、水素水生成本体部410の略上半部を収容する外観視略截頭楕円半球状で中空状の化粧カバーであり、その天面には水素水生成本体部410の電解部30を臨ませて露出させる矩形状の露出開口部402aと、同じく水素水生成本体部410に配設された照明・動作確認LED16や操作スイッチ15を露出させる複数の円孔402bが形成されている。 As shown in FIG. 17, the upper decorative cover 402 is a hollow cosmetic cover with a substantially elliptical hemispherical shape in outer appearance that accommodates the substantially upper half of the hydrogen water generating main body 410, and has a hydrogen water on its top surface. A rectangular exposed opening 402a that exposes the electrolyzing unit 30 of the generation main body 410 and a plurality of circles that expose the illumination / operation check LED 16 and the operation switch 15 that are also disposed in the hydrogen water generation main body 410. A hole 402b is formed.
 下化粧カバー403は、水素水生成本体部410の下半部を収容する化粧カバーであり、上方解放の箱型に構成し、全体形状を略長方形とし、四隅部を湾曲して全体的に略長楕円形状に構成している。 The lower decorative cover 403 is a decorative cover that accommodates the lower half of the hydrogen water generating main body 410, and is configured as an upward-opening box shape. It has a long elliptical shape.
 下化粧カバー403の底部には水素水生成本体部410の底部を露出させる矩形状の底部開口403aが設けられており、また、その周辺には水素水生成本体部410の底部に配設された流入口11を臨ませる取水開口403bや、同じく水素水生成本体部410の底部に配設された充電端子17を臨ませる受電開口403cが形成されている。 A rectangular bottom opening 403a that exposes the bottom of the hydrogen water generating main body 410 is provided at the bottom of the lower decorative cover 403, and the periphery thereof is disposed at the bottom of the hydrogen water generating main body 410. A water intake opening 403 b that faces the inflow port 11 and a power receiving opening 403 c that faces the charging terminal 17 disposed at the bottom of the hydrogen water generation main body 410 are also formed.
 また、下化粧カバー403の側壁下部や上化粧カバー402の天面周縁には、水素水生成装置400を浴槽内に沈降させたり、浴槽から引き上げたりした際に、化粧筐体405内の空気の流出入や湯水の流出入を行わせるためのスリット421が形成されている。 Further, when the hydrogen water generator 400 is settled in the bathtub or pulled up from the bathtub at the lower portion of the side wall of the lower decorative cover 403 or the top surface periphery of the upper decorative cover 402, the air in the decorative casing 405 is removed. A slit 421 for allowing inflow and outflow and inflow and outflow of hot water is formed.
 前述のように本実施形態に係る水素水生成装置400は、浴槽内に浸漬した際に浸水空間(例えば、図19において符号430で示す浸水空間。)に湯水が浸入するよう形成しており、把持板401の表面側頂部に形成した複数条の空気穴401bと同様、これらスリット421から浸水空間に湯水を浸入させ、浮力を減じて水素水生成装置400が水面下に沈降するよう構成している。 As described above, the hydrogen water generating apparatus 400 according to the present embodiment is formed so that hot water enters the water immersion space (for example, the water immersion space indicated by reference numeral 430 in FIG. 19) when immersed in the bathtub. Like the plurality of air holes 401b formed on the top of the surface side of the gripping plate 401, hot water is infiltrated into the submerged space from these slits 421, and the hydrogen water generator 400 is configured to sink below the water surface by reducing buoyancy. Yes.
 またスリット421は、使用者が浴槽内で水素水生成装置400が底部に配置される前に水中で手を離した場合であっても、水素水生成装置400が急激に沈降して浴槽底部に衝突することがないよう、浸水空間に湯水が徐々に流入し、浸水空間からは徐々に空気が抜ける開口形状や面積で形成している。 Moreover, even if the user releases his / her hand in the water before the hydrogen water generating device 400 is placed at the bottom in the bathtub, the hydrogen water generating device 400 rapidly sinks to the bottom of the bathtub. In order not to collide, hot water gradually flows into the inundation space, and the air is gradually removed from the inundation space.
 水素水生成本体部410は、前述の水素水生成装置100と略同様の構成を備えた水素水の生成主体として機能する略直方体形状の部材であり、図17において外観的特徴について述べるならば、その上面略中央部には平面視略矩形状の電解部30が配設されると共に、同電解部30の長辺外側方には4つの照明・動作確認LED16及び操作スイッチ15が設けられている。 The hydrogen water generation main body 410 is a substantially rectangular parallelepiped member that functions as a hydrogen water generation main body having a configuration substantially similar to that of the above-described hydrogen water generation apparatus 100. An electrolysis part 30 having a substantially rectangular shape in plan view is disposed at a substantially central part of the upper surface, and four illumination / operation check LEDs 16 and an operation switch 15 are provided on the outer side of the long side of the electrolysis part 30. .
 照明・動作確認LED16は、前述した上化粧カバー402の円孔402bから露出して上方へ向けて所定の照射角で光を出射するのであるが、図19に示すように、この照明・動作確認LED16は、同照明・動作確認LED16より出射される光が、切欠放出口401aより分流部401cのスロープに沿った方向へ指向させつつ放出される気泡や水流と交差する位置に配置している。 The illumination / operation confirmation LED 16 is exposed from the circular hole 402b of the upper decorative cover 402 and emits light upward at a predetermined irradiation angle. As shown in FIG. 19, this illumination / operation confirmation LED 16 emits light. LED16 is arrange | positioned in the position which cross | intersects the bubble and water flow discharge | released, directing the light radiate | emitted from the illumination / operation check LED16 from the notch discharge port 401a to the direction along the slope of the flow dividing part 401c.
 したがって、照明・動作確認LED16から出射された光は、水素の気泡を含む水流により散乱された状態で使用者に視認されることとなり、使用者はその光の散乱状態を目視することで、水素の微細な気泡を含んだ水流の生成状態や広がりを確認することができる。 Therefore, the light emitted from the illumination / operation check LED 16 is visually recognized by the user in a state of being scattered by the water stream containing hydrogen bubbles, and the user visually observes the scattering state of the light. It is possible to confirm the generation state and spread of a water stream containing fine bubbles.
 また、気泡を含んだ水流によって散乱する光は浴槽中でゆらゆらと変化するため、浴室内において幻想的な雰囲気を演出することができ、使用者をリラックスさせ快適なバスタイムを提供することができる。すなわち、照明・動作確認LED16は、流出口から流出する水流と交差する方向へ光を出射する発光手段(発光部)として機能する。 In addition, since the light scattered by the water flow containing bubbles changes in the bathtub, a fantastic atmosphere can be created in the bathroom, and the user can relax and provide a comfortable bath time. . That is, the illumination / operation check LED 16 functions as a light emitting unit (light emitting unit) that emits light in a direction intersecting with the water flow flowing out from the outlet.
 図17の説明に戻り、水素水生成本体部410の底部には、水素水生成本体部410内に供給される水をフィルター14により濾過して取水する流入口11と、水素水生成装置400を充電台406に載置した際に下化粧カバー403の受電開口403cを介して通電接続部406cと接触し受電するための充電端子17とが配置されている。 Returning to the description of FIG. 17, at the bottom of the hydrogen water generation main body 410, an inlet 11 for collecting water taken by filtering the water supplied into the hydrogen water generation main body 410 through the filter 14 and a hydrogen water generation device 400 are provided. A charging terminal 17 is provided for contacting and receiving power through the power receiving opening 403c of the lower decorative cover 403 when it is placed on the charging base 406.
 また水素水生成本体部410の内部構成については、図18に示すように、制御・充電基板18やポンプ部20、電源部40を備えた機能部422と、同機能部422を収容する上ケース410a及び下ケース410bと、電解部30とで構成されている。 As for the internal configuration of the hydrogen water generation main body 410, as shown in FIG. 18, a functional unit 422 including the control / charging board 18, the pump unit 20, and the power supply unit 40, and an upper case that houses the functional unit 422. 410a and lower case 410b, and the electrolysis part 30 are comprised.
 機能部422は、前述の水素水生成装置100と略同様であるため説明を簡略化するが、制御・充電基板18の制御に基づき、電源部40から電力を得てポンプ部20を駆動すると共に、電解部30へ所定の極性で電力を供給する。また、ポンプ部20を介して水を流通させる通水路13も備えている。 Since the functional unit 422 is substantially the same as the hydrogen water generating device 100 described above, the description thereof is simplified. However, based on the control of the control / charge board 18, the power unit 40 obtains electric power to drive the pump unit 20 and Then, electric power is supplied to the electrolysis unit 30 with a predetermined polarity. Moreover, the water flow path 13 which distribute | circulates water through the pump part 20 is also provided.
 下ケース410bは機能部の略下半部を収容するためのケースであり、平面視略矩形状で上部開口を有する箱状に形成されている。 The lower case 410b is a case for accommodating the substantially lower half of the functional part, and is formed in a box shape having a substantially rectangular shape in plan view and having an upper opening.
 下ケース410bの上部には下方開放逆箱型の上ケース410aが機能部422を収容した状態で密封状に載置固定される。すなわち、下ケース410bと上ケース410aとは、周縁部に配置されるパッキン423を介して互いに密封合体される。 A lower open inverted box type upper case 410a is placed and fixed in a sealed state on the upper part of the lower case 410b in a state where the functional part 422 is accommodated. That is, the lower case 410b and the upper case 410a are sealed and united with each other via the packing 423 arranged at the peripheral edge.
 従って、水素水生成装置400を風呂浴槽内に沈下させても浴水が下ケース410bと上ケース410aの内部に侵入しない。 Therefore, the bath water does not enter the lower case 410b and the upper case 410a even if the hydrogen water generator 400 is submerged in the bath tub.
 上ケース410aの天面略中央部には、電解部収容凹部424が形成されている。電解部収容凹部424内には、ポンプ部20から連通延出された通水路13の開口部425が上方に向けて開口しており、更には通水路13の開口部425上方には電解部30が収納される。このとき、電解部30の下方には通水路終端を形成する圧力室13bが形成される。 In the upper center of the upper case 410a, an electrolysis part accommodating concave part 424 is formed. An opening 425 of the water passage 13 extending from the pump portion 20 is opened upward in the electrolysis portion housing recess 424, and further, the electrolysis portion 30 is disposed above the opening 425 of the water passage 13. Is stored. At this time, a pressure chamber 13 b that forms a water passage end is formed below the electrolysis unit 30.
 また、上ケース410aの電解部収容凹部424の左右部には、機能部422上に上ケース410aを配置した際に、電解部30に通電するための充電基板18に立設した導体棒34,35が水密状に垂設されるよう構成している。この導体棒34,35はその周面部において電解部30に導通すると共に、下端部は機能部422に配設された制御・充電基板18に連設されて、導体棒34,35を介して電源部40から電解部30に給電可能に構成している。すなわち、電源部40に導通して、電源部40から電解部30に通電して電気分解可能に構成している。なお図中、符号34a及び符号35aは、後述する複数の多孔電極板を各導体棒34,35に対して接触又は非接触状態として交互に異なる極性とするための保持部材である。 In addition, on the left and right sides of the electrolytic part receiving recess 424 of the upper case 410a, when the upper case 410a is disposed on the functional part 422, the conductor rods 34 erected on the charging board 18 for energizing the electrolytic part 30; 35 is configured to be suspended in a watertight manner. The conductor rods 34 and 35 are electrically connected to the electrolysis unit 30 in the peripheral surface portion, and the lower end portion is connected to the control / charge board 18 disposed in the function unit 422 to supply power via the conductor rods 34 and 35. The unit 40 is configured to be able to supply power to the electrolytic unit 30. In other words, the power supply unit 40 is electrically connected to the electrolysis unit 30 from the power supply unit 40 so as to be electrolyzed. In the figure, reference numerals 34a and 35a denote holding members for alternately setting different porous electrodes, which will be described later, to contact or non-contact with each conductor rod 34, 35.
 電解部30は一定の間隔を保持した多孔電極板31,32,33,33-1,33-2の5枚の上下積層により構成された積層電極体426を備えており、対向隣接する多孔電極板にはそれぞれ互い違いに高電位と低電位になるよう電圧を印加して対向する板面の間で浴水の電気分解を生起して板面近傍で水素と酸素とを生成する。 The electrolysis unit 30 includes a laminated electrode body 426 constituted by five upper and lower laminated porous electrode plates 31, 32, 33, 33-1, and 33-2, which are maintained at a predetermined interval. A voltage is applied to the plates alternately so as to be a high potential and a low potential, and electrolysis of bath water occurs between the opposing plate surfaces to generate hydrogen and oxygen near the plate surfaces.
 具体的には、多孔電極板31,32,33,33-1,33-2の表面に電解により生成された水素や酸素の気泡はポンプ部20からの圧力水の水流により微細状態で水流に押し流され、微細状態の水素が溶解された溶存水素となる。 Specifically, hydrogen and oxygen bubbles generated by electrolysis on the surfaces of the porous electrode plates 31, 32, 33, 33-1, 33-2 are converted into a water flow in a fine state by a water flow of pressure water from the pump unit 20. It is swept away to become dissolved hydrogen in which fine hydrogen is dissolved.
 特に本発明では、前述の如くポンプ部20からの水流の流速を調整することにより、水中で電気分解により徐々に大きくなる気泡が押し流されるまでの時間を調整し気泡径を調整することも可能である。 In particular, in the present invention, by adjusting the flow rate of the water flow from the pump unit 20 as described above, it is possible to adjust the time until bubbles that gradually increase due to electrolysis are washed away in the water and adjust the bubble diameter. is there.
 このように気泡径を調整可能とした場合、気泡径を大きく形成すればそれだけ早く水中を脱して早く空気中に放出させることができ、逆に気泡径を小さく形成すればそれだけ長時間浴水中で水素の気泡状態を保持することができることになる。 In this way, when the bubble diameter can be adjusted, if the bubble diameter is increased, it can be removed from the water as soon as possible and released into the air quickly. The hydrogen bubble state can be maintained.
 従って、ポンプ部20からの水流の流速を調整して水素気泡径を大小調整することにより水素水生成装置の利用目的に合致した水素水を得ることができる。 Therefore, by adjusting the flow velocity of the water flow from the pump unit 20 and adjusting the hydrogen bubble diameter, hydrogen water that matches the purpose of use of the hydrogen water generator can be obtained.
 付言すれば、気泡は電極板上に付着している状態において水流による抵抗を受け、その抵抗により生じる剥離力が電極板への付着力を上回った時に剥離されるのであるが、流速を変化させることにより、気泡が小さいうちに付着力を上回る剥離力を生じさせて細かな気泡を水中に遊離させたり、時間の経過と共に気泡が大きく成長し表面積が大きくなった時点で付着力を上回る剥離力を生じさせて大きめの気泡を水中に遊離させることができ、放出する水素ガスの気泡径を自在に調整することができる。 In other words, the bubbles receive resistance due to the water flow while attached to the electrode plate, and are peeled off when the peeling force generated by the resistance exceeds the adhesion force to the electrode plate, but the flow velocity is changed. In this way, a peeling force exceeding the adhesive force is generated while the bubbles are small, releasing fine bubbles in water, or a peeling force exceeding the adhesive force when the bubbles grow large and the surface area increases over time. The large bubbles can be liberated in the water, and the bubble diameter of the released hydrogen gas can be freely adjusted.
 また、水流の流速が早い場合には、水流が対向配置された電極板の間をジグザグ状態で流れる際に、陰極板の板面にて生成された水素気泡が、多孔の縁部分(エッジ部分)にて生起される水流のインジェクション機能によって剪断力を受けて微細化し、効率的に水中に溶存するという効果も得られる。 In addition, when the flow velocity of the water flow is high, hydrogen bubbles generated on the plate surface of the cathode plate are generated in the porous edge portion (edge portion) when the water flow flows in a zigzag state between the electrode plates opposed to each other. The injection function of the water flow that is generated in this way produces the effect of being refined by shearing force and efficiently dissolved in water.
 また、積層電極体426の上方には、樹脂等の絶縁体にて形成された略矩形板状の電極カバー427を配設している。この電極カバー427は、図16(b)に示す切欠放出口401aを介して使用者が誤って手足を挿入した場合など、直接電極に触れることがないよう保護する役割を有するものであり、また、積層電極体426にて生成した電解水素水や気泡の放出を阻害することのないよう、多孔電極板と同様に多数の孔427aが規則的に穿設されている。 In addition, a substantially rectangular plate-shaped electrode cover 427 made of an insulating material such as resin is disposed above the laminated electrode body 426. The electrode cover 427 has a role of protecting the electrode from being directly touched when the user accidentally inserts a limb through the notch discharge port 401a shown in FIG. 16B. A large number of holes 427a are regularly formed in the same manner as the porous electrode plate so as not to hinder the release of electrolytic hydrogen water and bubbles generated in the laminated electrode body 426.
 特に、この電極カバー427に形成された多数の孔427aは、対向する多孔電極板同士の穴の位置関係と同様に、最上部の多孔電極板31に対して互い違いとなる位置関係で配置されている。 In particular, the numerous holes 427 a formed in the electrode cover 427 are arranged in a staggered positional relationship with respect to the uppermost porous electrode plate 31 as in the positional relationship of the holes between the opposed porous electrode plates. Yes.
 したがって、図20(a)に示すように、電極カバー427が無い場合は、例えば導電性を有する小片428が積層電極体426上に落下した場合、それぞれ異なる極性を有した対向する2枚の多孔電極板に接触して短絡させるおそれがあるが、本実施形態に係る水素水生成装置400の如く電極カバー427を備えているならば、図20(b)に示すように小片428が多孔電極板31に接触したとしても他方の電極カバー427は通電されておらずまた導電性も有しないため短絡することはなく、更に高い安全性を確保することができる。 Therefore, as shown in FIG. 20 (a), when there is no electrode cover 427, for example, when a small piece 428 having conductivity falls on the laminated electrode body 426, two opposing porous sheets each having different polarities. Although there is a possibility of short-circuiting in contact with the electrode plate, if the electrode cover 427 is provided as in the hydrogen water generator 400 according to the present embodiment, the small piece 428 may be a porous electrode plate as shown in FIG. Even if it contacts 31, the other electrode cover 427 is not energized and does not have electrical conductivity, so it will not be short-circuited, and higher safety can be ensured.
 また、本実施形態に係る水素水生成装置400の積層電極体426における特徴として、図20(b)の拡大図に示すように、各多孔電極板の気泡流通孔431の周縁には、尖鋭状の電荷集中部432が形成されている。なお、図20(b)の拡大図において電荷集中部432は、構成の理解を容易とするために誇張して模式的に示しており、各多孔電極板の厚み等との関係においてその大きさや数は必ずしも正確ではない。 Further, as a feature of the laminated electrode body 426 of the hydrogen water generator 400 according to the present embodiment, as shown in the enlarged view of FIG. 20B, the peripheral edge of the bubble circulation hole 431 of each porous electrode plate has a sharp shape. The charge concentration portion 432 is formed. In the enlarged view of FIG. 20B, the charge concentrating portion 432 is schematically shown exaggerated for easy understanding of the configuration, and the size and the size of each porous electrode plate are related to each other. The number is not always accurate.
 本実施形態において各多孔電極板は、チタン製の基板433aの表面に白金メッキ層433bを形成してなるものであるが、このように形成した白金メッキ済みチタン基板にパンチング加工を施して穿孔することで気泡流通孔431を備えた多孔電極板を形成している。 In the present embodiment, each porous electrode plate is formed by forming a platinum plating layer 433b on the surface of a titanium substrate 433a. The platinum plated titanium substrate thus formed is punched and punched. As a result, a porous electrode plate having the bubble circulation holes 431 is formed.
 それゆえ、このパンチング加工の際に白金メッキ済みチタン基板を貫通するパンチにより、形成した気泡流通孔431の周縁にエッジ状の電荷集中部432が形成されることとなる。 Therefore, an edge-shaped charge concentration portion 432 is formed at the periphery of the formed bubble circulation hole 431 by the punch penetrating the platinum-plated titanium substrate during the punching process.
 電荷集中部432は、水素水生成装置400の使用時に、使用者が視認可能な程度の気泡径を有する水素気泡を生成する役割を有している。 The charge concentration unit 432 has a role of generating hydrogen bubbles having a bubble diameter that is visible to the user when the hydrogen water generator 400 is used.
 本来、浴槽中の被電解水を電解して水素を含有する電解水素水を生成するのであれば、水素気泡は小径であるほど溶存効率が高まるため好ましい。 Originally, if electrolyzed hydrogen water containing hydrogen is produced by electrolyzing the electrolyzed water in the bath, the smaller the diameter of the hydrogen bubbles, the higher the dissolution efficiency, which is preferable.
 しかしながら、ナノバブルの如き極めて小径の気泡ばかりが発生すると、水素水生成装置400の使用者は、実際に気泡が発生している状況を視認することはできず、電解水素水で入浴している実感を得難いという問題がある。 However, when only extremely small-sized bubbles such as nanobubbles are generated, the user of the hydrogen water generating apparatus 400 cannot visually recognize the state in which bubbles are generated, and feels that bathing is performed with electrolytic hydrogen water. There is a problem that it is difficult to obtain.
 そこで水素水生成装置400では、気泡流通孔431の周縁に尖鋭状の電荷集中部432を設け、同電荷集中部432に電荷を集中させて電解を部分的に促進することで、白濁状に視認されうる水素気泡を生成するようにしている。 Therefore, in the hydrogen water generation apparatus 400, a sharp charge concentration portion 432 is provided at the periphery of the bubble circulation hole 431, and the charge is concentrated on the charge concentration portion 432 so as to partially promote electrolysis, so that it is visually recognized as cloudy. Hydrogen bubbles that can be generated are generated.
 このような構成とすることで、水中への溶解性が比較的高いながらも、使用者により視認可能な水素気泡を多く生成することができ、水素生成の演出効果を発揮しつつ使用者に電解水素水で入浴している実感を持たせることができる。 By adopting such a configuration, it is possible to generate a lot of hydrogen bubbles that can be visually recognized by the user even though the solubility in water is relatively high. You can feel that you are bathing in hydrogen water.
 なお、電荷集中部432は、白金メッキ済みチタン基板をパンチング加工することで形成したが、尖鋭状の電荷集中部432を備えるのであれば、パンチング加工を施したチタン基板に白金メッキ処理したものを各多孔電極板としても良い。ただ、穿孔後にメッキ処理を行うと、尖鋭状に形成されたエッジ部分が鈍り、白濁状に視認されうる水素気泡の生成効率が落ちる場合があるので留意すべきである。 The charge concentration portion 432 is formed by punching a platinum-plated titanium substrate. However, if the sharp charge-concentration portion 432 is provided, the platinum substrate subjected to the platinum processing is punched. Each porous electrode plate may be used. However, it should be noted that if the plating process is performed after drilling, the sharply formed edge portion becomes dull and the generation efficiency of hydrogen bubbles that can be visually recognized as cloudy may be reduced.
 また、本実施形態において電荷集中部432はパンチング加工により形成したが、必ずしもパンチング加工に限定されるものではなく、尖鋭状の電荷集中部432が形成されるのであれば、その形成方法は公知のあらゆる方法を適用可能である。 Further, in the present embodiment, the charge concentration portion 432 is formed by punching, but is not necessarily limited to punching processing. If the sharp charge concentration portion 432 is formed, the formation method is known. Any method is applicable.
 従って、図20(b)の拡大図では、各多孔電極板の孔部周縁の一側面のみに電荷集中部432を形成したが、孔部周縁の両側面に電荷集中部432を設けても良いのは勿論である。 Therefore, in the enlarged view of FIG. 20B, the charge concentration portion 432 is formed only on one side surface of the hole periphery of each porous electrode plate, but the charge concentration portion 432 may be provided on both side surfaces of the hole periphery. Of course.
 次に、本実施形態に係る水素水生成装置400の電気的構成について説明するが、ここではまず、構成の理解を容易とすべく、水素水生成装置400が有するいくつかの特徴的な機能について言及する。 Next, the electrical configuration of the hydrogen water generating apparatus 400 according to the present embodiment will be described. First, here, in order to facilitate understanding of the configuration, some characteristic functions of the hydrogen water generating apparatus 400 are described. Mention.
 水素水生成装置400は、特筆すべき機能として、剥離困難気泡遊離機能、極性反転機能、短絡防止機能を有している。 The hydrogen water generator 400 has a function of releasing difficult bubbles to peel off, a polarity reversal function, and a short-circuit prevention function as notable functions.
 まず、剥離困難気泡遊離機能は、電極表面に発生する剥離困難な気泡を遊離させ、水流にのせて切欠放出口401aから放散させる機能である。 First, the difficult-to-separate bubble releasing function is a function to release the difficult-to-separate bubbles generated on the electrode surface and dissipate them from the notch discharge port 401a on a water stream.
 前述したように、水素水生成装置400は、積層電極体426を構成する多孔電極板31、32、33、33-1、33-2の板面に向かう水流をポンプ部20により発生させることで、各多孔電極板表面に発生した水素気泡を効率的に剥離して浴槽中に放散させる。 As described above, the hydrogen water generating apparatus 400 causes the pump unit 20 to generate a water flow toward the plate surfaces of the porous electrode plates 31, 32, 33, 33-1 and 33-2 constituting the laminated electrode body 426. The hydrogen bubbles generated on the surface of each porous electrode plate are efficiently peeled and diffused into the bath.
 しかしながら、本発明者らが長年に亘り行ってきた鋭意研究において、電極板表面には、発生する大多数の剥離容易な水素気泡(以下、剥離容易気泡ともいう。)に混じり、電極表面からの剥離が困難な水素気泡が所定割合で発生しているということが新たに見出された。 However, in the diligent research conducted by the present inventors for many years, the surface of the electrode plate is mixed with a large number of easily generated hydrogen bubbles (hereinafter, also referred to as easy-to-peel bubbles), and from the electrode surface. It has been newly found that hydrogen bubbles that are difficult to peel off are generated at a predetermined rate.
 大多数の剥離容易気泡は、ポンプ部20によって発生する安定した水流によっても電極表面から容易に剥離し拡散するのであるが、この剥離困難気泡は、定流量の流水によっては容易に剥離しない。 The majority of the easy-to-peel bubbles can be easily peeled and diffused from the electrode surface even by a stable water flow generated by the pump unit 20, but the difficult-to-peel bubbles are not easily peeled by a constant flow of flowing water.
 それゆえ、経時的に一定割合で発生する剥離困難気泡は、電解時間が経過するにつれ電極表面で徐々に多くの面積を占めるようになり、電解効率が低下する一因となっていた。 Therefore, difficult-to-separate bubbles generated at a constant rate over time gradually occupy a large area on the electrode surface as the electrolysis time elapses, which contributes to a decrease in electrolysis efficiency.
 そこで、本実施形態に係る水素水生成装置400では、制御部によりポンプ部20を制御して電解中に水流の流量を変動させることとし、剥離困難気泡に対して水流抵抗の変化を与えて剥離を促進することで剥離困難気泡遊離機能を実現している。 Therefore, in the hydrogen water generating apparatus 400 according to the present embodiment, the control unit controls the pump unit 20 to change the flow rate of the water flow during electrolysis, and changes the water flow resistance against the difficult-to-peel bubbles to separate the water. This facilitates the function of releasing bubbles that are difficult to peel off.
 より具体的には、電解中に、制御部によりポンプ部20を、水流を発生させる相対的に長時間の稼動状態と、水流を発生させない相対的に短時間の停止状態とに繰り返し切替制御して間欠動作させることとしている。 More specifically, during electrolysis, the controller 20 repeatedly switches and controls the pump unit 20 between a relatively long operation state that generates a water flow and a relatively short stop state that does not generate a water flow. Intermittent operation.
 このように、稼動状態と停止状態とよりなる剥離サイクルを制御部によりポンプ部で電解中に実行させることにより、停止状態の後に再度稼動状態となった際、これまで剥離が困難であった剥離困難気泡を電極表面から剥離させることができ、各多孔電極板表面における電解に有効な面積を確保して、電解効率の維持を図ることが可能となる。 In this way, by performing a peeling cycle consisting of an operating state and a stopped state during electrolysis in the pump unit by the control unit, peeling that has been difficult until now when the operation state is resumed after the stopped state Difficult bubbles can be peeled off from the electrode surface, and an area effective for electrolysis on the surface of each porous electrode plate can be secured to maintain electrolysis efficiency.
 なお、剥離困難気泡の存在は、水素水生成装置400にとって必ずしも邪魔なばかりの存在ではなく、電極表面から剥離がなされた後は、極めて優れた効果を発揮するものでもある。 Note that the presence of bubbles that are difficult to peel off is not necessarily an obstacle to the hydrogen water generator 400, but it also exhibits an extremely excellent effect after peeling from the electrode surface.
 遊離した剥離困難気泡は、電極表面から容易に剥離されなかった気泡、すなわち、電極表面で長時間に亘り付着していた気泡であるため、その気泡径は剥離容易気泡に比して大きい。 The released difficult-to-peel bubbles are bubbles that have not been easily detached from the electrode surface, that is, bubbles that have adhered to the electrode surface for a long time, and therefore the bubble diameter is larger than that of the easily-peeled bubbles.
 従って、水中に遊離した後は比較的大きな浮力を得ることとなり、速やかに水面に達し、浴室の気相に拡散する。この拡散した水素は、使用者の呼吸により肺を介して体内に直接的に取り込まれることとなり、浴槽中に生成される水素水の効果に加え、より効率的なレドックス効果を期待することができる。 Therefore, after being released into the water, a relatively large buoyancy is obtained, and it quickly reaches the surface of the water and diffuses into the vapor phase of the bathroom. This diffused hydrogen is taken directly into the body through the lungs by the user's breathing, and in addition to the effect of hydrogen water generated in the bathtub, a more efficient redox effect can be expected. .
 また、剥離容易気泡はその多くが所謂ナノバブルであり、使用者による水素気泡の目視は困難であるが、剥離困難気泡は剥離容易気泡に比して気泡径が大きいため、使用者による目視確認が可能であり、水素の発生を視覚的に感じさせることで、水素によるレドックス効果を精神的な側面から更に助長することができる。 In addition, many of the easily peelable bubbles are so-called nanobubbles, and it is difficult for the user to visually observe the hydrogen bubbles. However, since the difficultly peelable bubbles have a larger bubble diameter than the easily peelable bubbles, the user can visually confirm the bubbles. It is possible, and by making the generation of hydrogen visually feel, the redox effect by hydrogen can be further promoted from a mental aspect.
 すなわち、本実施形態に係る水素水生成装置400では、剥離困難気泡による大型気泡を意図的に集約して放出させるべく、剥離サイクルを繰り返し行って、ポンプ部20の再稼働を定期的又は不定期的に行う剥離困難気泡遊離手段(剥離困難気泡遊離部)を備えていると理解することもできる。 That is, in the hydrogen water generating apparatus 400 according to the present embodiment, in order to intentionally collect and release large bubbles due to bubbles that are difficult to peel, the peeling cycle is repeatedly performed to restart the pump unit 20 regularly or irregularly. It can also be understood that it is provided with a difficult-to-peel bubble releasing means (a difficult-to-peel bubble releasing part).
 剥離サイクルを構成するポンプ部20の稼動状態と停止状態との時間的な割合は、相対的に稼動状態が長く、停止状態が短ければ特に限定されるものではない。また、剥離サイクル1周期分の時間も特に限定されるものではない。 The time ratio between the operating state and the stopped state of the pump unit 20 constituting the peeling cycle is not particularly limited as long as the operating state is relatively long and the stopped state is short. Further, the time for one peeling cycle is not particularly limited.
 構成の理解のために敢えて限定的な一例を述べるならば、剥離サイクル1周期分の時間は30秒~120秒とすることができ、また、稼動状態と停止状態との時間配分は、57~59.5:3~0.5とすることができる。また、より限定的には、剥離サイクル1周期分の時間を30秒~120秒、好ましくは45秒~90秒としつつ、停止状態となる時間を0.5秒~3秒とし、剥離サイクル1周期分の時間から停止状態となる時間を差し引いた残余時間を稼動時間とすることができる。 For a comprehensible example to understand the configuration, the time for one cycle of the peeling cycle can be 30 to 120 seconds, and the time distribution between the operating state and the stopping state is 57 to 59.5: Can be 3 to 0.5. More specifically, the time for one cycle of the peeling cycle is 30 seconds to 120 seconds, preferably 45 seconds to 90 seconds, while the time for stopping is 0.5 seconds to 3 seconds, and one cycle of the peeling cycle. The remaining time obtained by subtracting the time for the stop state from the time can be set as the operation time.
 極性反転機能は、被電解水中に溶存するカルシウム等のミネラル成分、特に水中で陽イオンの状態で存在する金属イオン類が電解中にスケールとして固着するのを防止するための機能である。 The polarity reversal function is a function for preventing mineral components such as calcium dissolved in the water to be electrolyzed, in particular, metal ions present in a cation state in water as a scale during electrolysis.
 特に、本実施形態に係る水素水生成装置400では、剥離サイクル所定周期毎に極性の反転を行うこととしている。 In particular, in the hydrogen water generator 400 according to the present embodiment, the polarity is reversed every predetermined cycle of the peeling cycle.
 従って、陰極として機能していた多孔電極板は陽極に、陽極として機能していた多孔電極板は陰極に、所定時間毎に切り替わるため、スケールの沈着が各多孔電極板毎に略均等となり、しかも、陽極に切り替えられた多孔電極板上では沈着したスケールが水中に再溶解してスケールの除去が行われるため、スケール付着による電解効率の低下を抑制することができる。 Therefore, since the porous electrode plate functioning as the cathode is switched to the anode, and the porous electrode plate functioning as the anode is switched to the cathode every predetermined time, the deposition of the scale becomes substantially uniform for each porous electrode plate. Since the deposited scale is redissolved in water and the scale is removed on the porous electrode plate switched to the anode, it is possible to suppress a reduction in electrolytic efficiency due to scale adhesion.
 短絡防止機能は、極性の反転に伴う電極間の短絡を防止して、電極の切替を行う回路等を保護するための機能である。 The short-circuit prevention function is a function for preventing a short circuit between electrodes due to polarity reversal and protecting a circuit for switching electrodes.
 前述の通り、積層電極体426は、一定間隔を保持して複数(5枚)の多孔電極板31、32、33、33-1、33-2を対向配置することで構成しており、各多孔電極板毎に交互に正負の電圧を印加することで電気分解を行うこととしている。 As described above, the laminated electrode body 426 is configured by arranging a plurality (five) of porous electrode plates 31, 32, 33, 33-1, and 33-2 so as to face each other at a constant interval. Electrolysis is performed by alternately applying positive and negative voltages to each porous electrode plate.
 ここで、これら各多孔電極板のうち正負に印加された対向する任意の一対の多孔電極板に着目すると、多孔電極板への電力の供給を停止した場合、多孔電極板間の電位差はその間に存在する水を介して導通することにより解消されると一見考えられるが、実際はそれぞれの多孔電極板間にはかなりの電位差が保持されたままの状態となることが本発明者らの研究により明らかとなっている。 Here, paying attention to any pair of opposed porous electrode plates applied positively and negatively among these porous electrode plates, when the supply of power to the porous electrode plates is stopped, the potential difference between the porous electrode plates is between them. Although it seems that it is solved by conducting through the existing water, it is clear from the study by the present inventors that in reality, a considerable potential difference is maintained between the respective porous electrode plates. It has become.
 これは、電解を受けた水が多孔電極板間に存在すると容量を持つことが原因であり、この知見もまた本発明者らの更なる解析により新たに分かった事象である。 This is because the electrolyzed water has a capacity when it exists between the porous electrode plates, and this knowledge is also an event newly found by further analysis by the present inventors.
 このような状態で電極の切替が行われ、電力の供給が行われると、短絡した状態と実質的に同じ状態となってしまい、電極の切替を行う回路等にダメージを与えてしまうおそれがある。特に、FETなどの半導体素子によって切替の回路を実現している場合には、故障を誘発する可能性が高まるという問題がある。 If the electrodes are switched and power is supplied in such a state, the state is substantially the same as the short-circuited state, and there is a risk of damaging the circuit that switches the electrodes. . In particular, when a switching circuit is realized by a semiconductor element such as an FET, there is a problem that the possibility of inducing a failure is increased.
 そこで、本実施形態に係る水素水生成装置400では、極性の切替に際し、まず各多孔電極板への電力の供給を停止し、更にポンプ部20により電解を受けていない新鮮な水を供給し、各多孔電極板間の水が新鮮な水に置き換わる0.3秒~2秒程度の所定時間(以下、水流置換時間ともいう。)の経過後に極性の切替を行うこととしている。 Therefore, in the hydrogen water generating apparatus 400 according to the present embodiment, when switching the polarity, first, the supply of power to each porous electrode plate is stopped, and further, fresh water that has not been electrolyzed by the pump unit 20 is supplied. The polarity is switched after a lapse of a predetermined time of about 0.3 seconds to 2 seconds (hereinafter also referred to as a water flow replacement time) in which the water between the porous electrode plates is replaced with fresh water.
 このような構成とすることにより、多孔電極板間の容量を低減し、また、多孔電極板間の電位差を無視可能な程度に解消することができ、極性切替時の実質的な短絡状態を防止又は許容可能な程度として、電極の切替を行う回路等へのダメージを抑制することができる。 By adopting such a configuration, the capacity between the porous electrode plates can be reduced, and the potential difference between the porous electrode plates can be eliminated to a negligible level, thereby preventing a substantial short-circuit state during polarity switching. Alternatively, as an allowable level, damage to a circuit that performs electrode switching can be suppressed.
 また、この極性の切替のタイミングは、回路保護の観点から、前述したポンプ部が再稼動した直後の剥離困難気泡の少ない状態であるのが望ましい。 Also, it is desirable that the timing of switching the polarity is in a state where there are few bubbles that are difficult to peel off immediately after the pump unit described above is restarted from the viewpoint of circuit protection.
 この点、水素水生成装置400では、剥離サイクル所定周期毎に極性の反転を行うこととしているため、剥離サイクル開始直後に極性を切り替えるタイミングをはかりやすく、堅実に回路の保護を行うことができる。なお、ポンプ部20の再稼働直後は流速が十分に安定していない場合もあるため、極性の切替に際し、各多孔電極板への電力の供給を停止に先立って、水流の流速が安定化するまで待機する0.3秒~2秒程度の時間(以下、水流安定化時間ともいう。)を設けることとしても良い。 In this respect, since the hydrogen water generating apparatus 400 reverses the polarity every predetermined cycle of the peeling cycle, it is easy to measure the timing of switching the polarity immediately after the peeling cycle starts, and the circuit can be protected steadily. Since the flow rate may not be sufficiently stable immediately after the pump unit 20 is restarted, the flow rate of the water flow is stabilized prior to stopping the supply of power to each porous electrode plate when switching the polarity. A time of about 0.3 second to 2 seconds (hereinafter also referred to as a water flow stabilization time) may be provided.
 次に、これら機能の説明を踏まえ、本実施形態に係る水素水生成装置400の電気的構成について図21を参照しながら説明する。なお、本実施形態に係る水素水生成装置400では、剥離サイクルを稼動状態時間58秒、停止状態時間2秒の60秒とし、剥離サイクル5周期毎に極性の切替を行い、水流安定化時間は0.5秒とし、水流置換時間は0.5秒とし、剥離サイクル15回となる約15分で自動的に電解を終了する構成として説明するが、これに限定されるものではない。 Next, based on the description of these functions, the electrical configuration of the hydrogen water generator 400 according to this embodiment will be described with reference to FIG. In the hydrogen water generator 400 according to the present embodiment, the separation cycle is set to 60 seconds, ie, the operation state time of 58 seconds and the stop state time of 2 seconds, the polarity is switched every five cycles of the separation cycle, and the water flow stabilization time is The description will be made on the assumption that the electrolysis is automatically terminated in about 15 minutes, which is 0.5 seconds, the water flow replacement time is 0.5 seconds, and the separation cycle is 15 times. However, the present invention is not limited to this.
 図21は水素水生成装置400の電気的構成を示した説明図である。制御・充電基板18上に構築される制御部440は、その構成としてCPU441、ROM442、RAM443、EEPROM444、RTC446等を備えており、水素水生成装置400の稼動に必要なプログラムを実行可能としている。 FIG. 21 is an explanatory diagram showing an electrical configuration of the hydrogen water generator 400. The control unit 440 constructed on the control / charge board 18 includes a CPU 441, a ROM 442, a RAM 443, an EEPROM 444, an RTC 446, and the like as its components, and can execute a program necessary for the operation of the hydrogen water generator 400.
 具体的には、ROM442はCPU441の処理において必要なプログラム等が格納されており、RAM443はそのプログラム等の実行に際し一時的な記憶領域として機能する。 Specifically, the ROM 442 stores programs and the like necessary for the processing of the CPU 441, and the RAM 443 functions as a temporary storage area when the programs and the like are executed.
 例えばROM442の所定領域には、処理を実現するためのプログラムの他、ポンプ部20を稼動状態に維持しておく時間である稼動状態時間の値(58秒)や、ポンプ部20を停止状態に維持しておく時間である停止状態時間の値(2秒)、水流安定化時間の値(0.5秒)、水流置換時間の値(0.5秒)、切替ギャップ時間の値(0.1秒)、通電再開待機時間の値(0.1秒)などが記憶されている。なお、本段落における括弧内の値は本実施形態における設定値であり、仕様等に応じて適宜変更可能であることは言うまでもない。 For example, in a predetermined area of the ROM 442, in addition to a program for realizing processing, a value of an operating state time (58 seconds) that is a time for maintaining the pump unit 20 in an operating state, and the pump unit 20 in a stopped state. Stop time value (2 seconds), water stabilization time value (0.5 seconds), water flow replacement time value (0.5 seconds), switching gap time value (0.1 seconds), resumption of current The value of the waiting time (0.1 seconds) is stored. Needless to say, the values in parentheses in this paragraph are set values in the present embodiment, and can be changed as appropriate according to the specifications.
 また例えばRAM443の所定領域には、極性を反転させるタイミングか否かを示す「極性反転フラグ」や、極性切替のために剥離サイクルの周期数をカウントする「極性切替用カウンタ」、電解終了のために剥離サイクルの周期数をカウントする「サイクル数カウンタ」、水素水生成装置400の稼働中に操作スイッチ15が長押しされて電解が中断されたときに参照される「中断フラグ」等が記憶される。 Further, for example, in a predetermined area of the RAM 443, a “polarity reversal flag” indicating whether or not to reverse the polarity, a “polarity switching counter” for counting the number of cycles of the peeling cycle for polarity switching, and for completion of electrolysis The “cycle number counter” that counts the number of cycles of the peeling cycle, the “interruption flag” that is referred to when the operation switch 15 is pressed for a long time during the operation of the hydrogen water generator 400 and the electrolysis is interrupted are stored. The
 また、EEPROM444は、電解が中断された際にいずれの導体棒が陽極であったかを記憶(本実施形態では、後述する2種の陽極信号のうちいずれの陽極信号を発出していたかについて記憶)したり、そのときのサイクル数を記憶する。EEPROM444は、電力の供給が遮断された後においても記憶を保持する無電源記憶部として機能するものであり、再起動時にCPU441により参照されて、中断した際の極性やサイクル数に応じて再起同時の極性が選択され、また実行される剥離サイクル数が変化する。 In addition, the EEPROM 444 stores which conductor rod was the anode when the electrolysis was interrupted (in this embodiment, which one of the two types of anode signals described later was emitted). Or the number of cycles at that time is stored. The EEPROM 444 functions as a non-power source storage unit that retains memory even after power supply is cut off. The EEPROM 444 is referred to by the CPU 441 at the time of restart, and restarts simultaneously according to the polarity and the number of cycles at the time of interruption. And the number of stripping cycles performed varies.
 符号446で示されるRTC(Real Time Clock)は、後述の割込処理を実行するための基準となるクロックパルスを発生させるためのものである。CPU441は、処理を実行している状態であっても、このRTC446から所定の周期(例えば2ミリ秒)毎に発生されるクロックパルスに応じて処理を中断させ割込処理を実行する。 An RTC (Real Time Clock) denoted by reference numeral 446 is used to generate a clock pulse serving as a reference for executing an interrupt process described later. Even in a state where the processing is being executed, the CPU 441 interrupts the processing according to a clock pulse generated every predetermined cycle (for example, 2 milliseconds) from the RTC 446 and executes an interrupt processing.
 制御部440には、操作スイッチ15やLED16、ポンプ部20、電源部40、第1導体棒34、第2導体棒35が接続されており、制御部440におけるプログラムの実行状況に応じて参照されたり、制御駆動するよう構成している。 The control unit 440 is connected to the operation switch 15, the LED 16, the pump unit 20, the power supply unit 40, the first conductor rod 34, and the second conductor rod 35, and is referred to according to the program execution status in the controller 440. Or is configured to be controlled and driven.
 例えば、制御部440は、ポンプ部20に対し、ポンプ部稼動信号を送信する。ポンプ部20は、このポンプ部稼動信号の状態に応じて動作するよう構成しており、ポンプ部稼動信号が送信されている状態(ON状態)の時は、ポンプ部20は稼動し、送信されていない状態(OFF状態)の時は、ポンプ部20は停止する。 For example, the control unit 440 transmits a pump unit operation signal to the pump unit 20. The pump unit 20 is configured to operate in accordance with the state of the pump unit operation signal. When the pump unit operation signal is transmitted (ON state), the pump unit 20 operates and is transmitted. When not in the state (OFF state), the pump unit 20 stops.
 また、制御部440には、極性切替回路445が備えられている。この極性切替回路445は、CPU441が発出する第1導体棒陽極信号や第2導体棒陽極信号、電圧印加信号を受信して、電源部40からの電力を第1導体棒34及び第2導体棒35に供給したり、第1導体棒34及び第2導体棒35の正負の極性切替を行う。具体的には、第1導体棒陽極信号を受信した極性切替回路445は、第1導体棒34を陽極とし第2導体棒35が陰極となるよう電圧を印加し、第2導体棒陽極信号を受信した際は、第1導体棒34を陰極とし第2導体棒35が陽極となるよう電圧を印加する。また、電圧印加信号を受信した極性切替回路445は、受信している陽極信号に応じて各導体棒への電力の供給を行う。 Also, the control unit 440 is provided with a polarity switching circuit 445. The polarity switching circuit 445 receives the first conductor rod anode signal, the second conductor rod anode signal, and the voltage application signal emitted from the CPU 441, and supplies the power from the power supply unit 40 to the first conductor rod 34 and the second conductor rod. 35, and switching between positive and negative polarities of the first conductor rod 34 and the second conductor rod 35 is performed. Specifically, the polarity switching circuit 445 that has received the first conductor rod anode signal applies a voltage so that the first conductor rod 34 serves as an anode and the second conductor rod 35 serves as a cathode, and the second conductor rod anode signal is applied. When receiving, a voltage is applied so that the first conductor rod 34 serves as a cathode and the second conductor rod 35 serves as an anode. In addition, the polarity switching circuit 445 that has received the voltage application signal supplies power to each conductor bar in accordance with the received anode signal.
 次に、制御部440において実行される処理について、図22~図26を参照しつつ説明する。図22は制御部440のCPU441にて実行されるメイン処理を示したフローであり、図23~図26は各サブルーチンでの処理を示したフローである。 Next, processing executed in the control unit 440 will be described with reference to FIGS. FIG. 22 is a flowchart showing main processing executed by the CPU 441 of the control unit 440, and FIGS. 23 to 26 are flowcharts showing processing in each subroutine.
 図22に示すように、メイン処理においてCPU441はまず、操作スイッチ15がON動作(押下動作)がされたか否かについて判断を行う(ステップS11)。ここで、操作スイッチ15がON動作されていないと判断した場合(ステップS11:No)には、CPU441は処理を再びステップS11へ戻す。一方、操作スイッチ15がON動作されたと判断した場合(ステップS11:Yes)には、CPU441は処理をステップS12へ移す。 As shown in FIG. 22, in the main process, the CPU 441 first determines whether or not the operation switch 15 has been turned on (pressed down) (step S11). Here, when it is determined that the operation switch 15 is not turned ON (step S11: No), the CPU 441 returns the process to step S11 again. On the other hand, if it is determined that the operation switch 15 has been turned ON (step S11: Yes), the CPU 441 moves the process to step S12.
 ステップS12においてCPU441は、起動時処理を実行する。本起動時処理においてCPU441は、EEPROM444を参照し、前回の終了時に送信していた陽極信号の種類、及び電極切替用カウンタ値の読み込みを行う。ここでは、前回の終了は中断によるものではなく、また、第2導体棒陽極信号が送信されていた状態で終了したものと仮定し、本起動時処理においてCPU441は、第1導体棒陽極信号を送出することを決定する。また、本起動時処理では、RAM443の各種カウンタやフラグの値のリセットを行う。なお、CPU441がEEPROM444を参照した際に中断フラグがON状態である旨記憶されていた場合には、CPU441は、本起動時処理において、EEPROM444から読み込んだ電極切替用カウンタ値をRAM443上の所定アドレスに書き込みを行い、読み込んだ種類の陽極信号を送出することを決定する。 In step S12, the CPU 441 executes startup processing. In the start-up process, the CPU 441 refers to the EEPROM 444 and reads the type of anode signal and electrode switching counter value transmitted at the end of the previous time. Here, it is assumed that the previous termination was not due to interruption, and the termination was performed in a state where the second conductor rod anode signal was being transmitted, and in the start-up processing, the CPU 441 outputs the first conductor rod anode signal. Decide to send. Further, in the startup process, various counters and flag values in the RAM 443 are reset. When the CPU 441 refers to the EEPROM 444 and it is stored that the interruption flag is in the ON state, the CPU 441 stores the electrode switching counter value read from the EEPROM 444 in a predetermined address on the RAM 443 in the activation process. Is written, and it is determined that the anode signal of the read type is transmitted.
 次にCPU441はステップS13において、初回時ポンプ駆動処理を行う。この初回時ポンプ駆動処理は、電解開始に先んじて(例えば、次に述べる通電開始処理の1~3秒前に前もって)多孔電極板間に水流を形成するための処理であり、ポンプ部稼動信号を送信してポンプ部20を稼動状態とする。 Next, in step S13, the CPU 441 performs an initial pump driving process. This initial pump drive process is a process for forming a water flow between the porous electrode plates prior to the start of electrolysis (for example, 1 to 3 seconds before the energization start process described below). Is sent to place the pump unit 20 in an operating state.
 次にCPU441はステップS14において、通電開始処理を実行する。通電開始処理においてCPU441は、ステップS12の起動時処理において決定した種類の陽極信号と、電圧印加信号とを極性切替回路445へ送信することで第1導体棒34及び第2導体棒35間、すなわち、各多孔電極板間に所定の極性で電圧を印加する。 Next, in step S14, the CPU 441 executes energization start processing. In the energization start process, the CPU 441 transmits the anode signal of the type determined in the start-up process in step S12 and the voltage application signal to the polarity switching circuit 445, so that between the first conductor bar 34 and the second conductor bar 35, that is, A voltage is applied between the porous electrode plates with a predetermined polarity.
 次にCPU441は、ポンプ駆動処理を実行すると共に、計時を開始する(ステップS15)。本ポンプ駆動処理においてCPU441は、ポンプ部20に対してポンプ部稼動信号を送信し、ポンプ部20を稼動状態とする。ステップS13において既にポンプ部稼動信号を送出している場合には、そのままポンプ部稼動信号の送出を継続する。 Next, the CPU 441 executes pump drive processing and starts measuring time (step S15). In this pump driving process, the CPU 441 transmits a pump unit operation signal to the pump unit 20 to place the pump unit 20 in an operating state. If the pump unit operation signal has already been transmitted in step S13, the pump unit operation signal is transmitted as it is.
 次いでCPU441はステップS16においてRAM443の所定アドレスを参照し、極性反転フラグがONであるか否かについて判断を行う。ここで極性反転フラグがONではないと判断した場合(S16:No)には、CPU441は処理をステップS19へ移す。一方、極性反転フラグがONであると判断した場合(S16:Yes)には、CPU441は処理をステップS17へ移す。 Next, in step S16, the CPU 441 refers to a predetermined address in the RAM 443 and determines whether or not the polarity inversion flag is ON. If it is determined that the polarity reversal flag is not ON (S16: No), the CPU 441 moves the process to step S19. On the other hand, if it is determined that the polarity inversion flag is ON (S16: Yes), the CPU 441 moves the process to step S17.
 ステップS17においてCPU441は、極性反転処理を行う。この極性反転処理は第1導体棒34及び第2導体棒35に印加する電圧の極性を切り替える処理であり、後に図25を参照しつつ説明する。 In step S17, the CPU 441 performs polarity inversion processing. This polarity inversion processing is processing for switching the polarity of the voltage applied to the first conductor rod 34 and the second conductor rod 35, and will be described later with reference to FIG.
 次いでCPU441は、RAM443の所定アドレスに記憶されている極性反転フラグの値をOFFとし(ステップS18)、処理をステップS19へ移す。 Next, the CPU 441 turns off the value of the polarity inversion flag stored at a predetermined address in the RAM 443 (step S18), and moves the process to step S19.
 ステップS19においてCPU441は、ステップS15にて計時を開始したタイマを参照し、稼動状態時間(本実施形態では58秒)が経過したか否かについて判断を行う。ここで稼動状態時間が経過していないと判断した場合(ステップS19:No)には、CPU441は処理をステップS19へ戻す。一方、稼動状態時間が経過したと判断した場合(ステップS19:Yes)には、CPU441は処理をステップS20へ移す。 In step S19, the CPU 441 refers to the timer that started timing in step S15, and determines whether or not the operating state time (58 seconds in this embodiment) has elapsed. If it is determined that the operating state time has not elapsed (step S19: No), the CPU 441 returns the process to step S19. On the other hand, when determining that the operating state time has elapsed (step S19: Yes), the CPU 441 moves the process to step S20.
 ステップS20においてCPU441は、RAM443の所定アドレスに記憶させた電極切替用カウンタに1を加算すると共に、サイクル数カウンタに1を加算する。 In step S20, the CPU 441 adds 1 to the electrode switching counter stored in the predetermined address of the RAM 443 and adds 1 to the cycle number counter.
 次にCPU441は、RAM443の所定アドレスを参照し、サイクル数カウンタの値が15であるか否かについて判断を行う(ステップS21)。ここでサイクル数カウンタの値が15であると判断した場合(ステップS21:Yes)には、CPU441は終了処理(ステップS22)を実行し、一連のプログラムの実行を終える(又は、メイン処理のスタートに戻る。)。一方、サイクル数カウンタの値が15ではないと判断した場合(ステップS21:No)には、CPU441はポンプ停止処理(ステップS23)を実行し、処理を再びステップS15へ戻す。なお、ステップS22の終了処理、及びステップS23のポンプ停止処理については、後に図24及び図26を参照しつつ説明する。 Next, the CPU 441 refers to a predetermined address in the RAM 443 and determines whether or not the value of the cycle number counter is 15 (step S21). If it is determined that the value of the cycle number counter is 15 (step S21: Yes), the CPU 441 executes an end process (step S22) and finishes a series of programs (or starts the main process). Return to.) On the other hand, when it is determined that the value of the cycle number counter is not 15 (step S21: No), the CPU 441 executes the pump stop process (step S23), and returns the process to step S15 again. Note that the termination process in step S22 and the pump stop process in step S23 will be described later with reference to FIGS.
 次に、図23を参照しつつ割込処理について説明する。CPU441は、処理を実行している状態であっても処理を中断させ割込処理を実行する場合がある。RTC446から所定の周期(例えば2ミリ秒)毎に発生されるクロックパルスに応じて、以下の割込処理を実行する。 Next, the interrupt process will be described with reference to FIG. The CPU 441 may interrupt the process and execute the interrupt process even when the process is being executed. The following interrupt processing is executed in accordance with clock pulses generated from the RTC 446 every predetermined cycle (for example, 2 milliseconds).
 割込処理においてCPU441は、操作スイッチ15が長押し状態であるか否かについて判断を行う(ステップS31)。ここで操作スイッチ15が長押し状態ではないと判断した場合(ステップS31:No)には、CPU441は処理を分岐前のアドレスに戻す。一方、操作スイッチ15が長押し状態であると判断した場合(ステップS31:Yes)には、CPU441は処理をステップ32へ移す。 In the interrupt process, the CPU 441 determines whether or not the operation switch 15 is in the long-pressed state (step S31). If it is determined that the operation switch 15 is not in the long-pressed state (step S31: No), the CPU 441 returns the process to the address before branching. On the other hand, if it is determined that the operation switch 15 is in the long-pressed state (step S31: Yes), the CPU 441 moves the process to step 32.
 ステップS32においてCPU441は、RAM443の所定アドレスを参照し、中断フラグの値をONとする書き込みを行う。 In step S32, the CPU 441 refers to a predetermined address in the RAM 443 and performs writing to set the value of the interruption flag to ON.
 次いでCPU441は、ステップS33において終了処理(後述)を実行し、再度RAM443の所定アドレスを参照して中断フラグの値をOFFとする書き込みを行い、一連のプログラムの実行を終える(又は、メイン処理のスタートに戻る。)。 Next, in step S33, the CPU 441 executes an end process (described later), refers to a predetermined address in the RAM 443 again, writes the interrupt flag to OFF, and finishes the execution of a series of programs (or the main process). Return to start.)
 次に、図24を参照しつつ、メイン処理のステップS23において実行されるポンプ停止処理について説明する。 Next, the pump stop process executed in step S23 of the main process will be described with reference to FIG.
 ポンプ停止処理においてCPU441は、ポンプ部20に対するポンプ部稼動信号の送出を停止することで、ポンプ部20の停止を行う(ステップS41)。 In the pump stop process, the CPU 441 stops the pump unit 20 by stopping sending the pump unit operation signal to the pump unit 20 (step S41).
 次いでCPU441は、ポンプ部稼動信号の送出停止から停止状態時間(本実施形態では2秒)が経過したか否かについて判断を行う(ステップS42)。ここで停止状態時間が経過していないと判断した場合(ステップS42:No)には、CPU441は処理を再びステップS42へ戻す。一方、停止状態時間が経過したと判断した場合(ステップS42:Yes)には、CPU441はRAM443の所定アドレスを参照し、電極切替用カウンタの値が5であるか否かの判断を行う(ステップS43)。 Next, the CPU 441 determines whether or not the stop state time (2 seconds in the present embodiment) has elapsed since the stop of the pump unit operation signal transmission (step S42). If it is determined that the stop state time has not elapsed (step S42: No), the CPU 441 returns the process to step S42 again. On the other hand, when it is determined that the stop state time has elapsed (step S42: Yes), the CPU 441 refers to a predetermined address in the RAM 443 and determines whether or not the value of the electrode switching counter is 5 (step). S43).
 ここで電極切替用カウンタの値が5であると判断した場合(ステップS43:Yes)には、RAM443の所定アドレスを参照し、極性反転フラグの値をONにすると共に、極性切替カウンタの値をリセットし(ステップS44)、処理を分岐前のアドレスに戻す。一方、ステップS43において電極切替用カウンタの値が5でないと判断した場合(ステップS43:No)には、CPU441は処理を分岐前のアドレスに戻す。 When it is determined that the value of the electrode switching counter is 5 (step S43: Yes), the predetermined address in the RAM 443 is referred to, the value of the polarity inversion flag is turned ON, and the value of the polarity switching counter is changed. Reset (step S44) and return the processing to the address before branching. On the other hand, when it is determined in step S43 that the value of the electrode switching counter is not 5 (step S43: No), the CPU 441 returns the processing to the address before branching.
 次に、図25を参照しつつ、メイン処理のステップS17において実行される極性反転処理について説明する。 Next, the polarity reversal process executed in step S17 of the main process will be described with reference to FIG.
 極性反転処理においてCPU441は、ステップS15にて計時を開始した時点から水流安定化時間(本実施形態では0.5秒)が経過したか否かについて判断を行う(ステップS51)。ここで水流安定化時間が経過していないと判断した場合(ステップS51:No)には、CPU441は処理をステップS51へ戻す。一方、水流安定化時間が経過したと判断した場合(ステップS51:Yes)には、CPU441は処理をステップS52へ移す。 In the polarity inversion process, the CPU 441 determines whether or not the water flow stabilization time (0.5 seconds in this embodiment) has elapsed since the time measurement was started in step S15 (step S51). If it is determined that the water flow stabilization time has not elapsed (step S51: No), the CPU 441 returns the process to step S51. On the other hand, when determining that the water flow stabilization time has elapsed (step S51: Yes), the CPU 441 moves the process to step S52.
 ステップS52においてCPU441は、極性切替回路445に対する電圧印加信号の送出を停止し、通電の停止処理を行う(ステップS52)。 In step S52, the CPU 441 stops sending the voltage application signal to the polarity switching circuit 445 and performs energization stop processing (step S52).
 次いでCPU441は、計時開始から水流安定化時間と水流置換時間(本実施形態では0.5秒)の和の時間(本実施形態では1秒)が経過したか否かについて判断を行う。ここで上記和の時間が経過していないと判断した場合(ステップS53:No)には、CPU441は処理をステップS53へ戻す。一方、和の時間が経過したと判断した場合(ステップS53:Yes)には、CPU441は送出していた陽極信号を停止する(ステップS54)。 Next, the CPU 441 determines whether or not a time (1 second in the present embodiment) of the water flow stabilization time and the water flow replacement time (0.5 seconds in the present embodiment) has elapsed since the start of timing. If it is determined that the sum time has not elapsed (step S53: No), the CPU 441 returns the process to step S53. On the other hand, if it is determined that the sum time has elapsed (step S53: Yes), the CPU 441 stops the anode signal that has been sent (step S54).
 次にCPU441は、計時開始から水流安定化時間と水流置換時間と切替ギャップ時間(本実施形態では0.1秒)の和の時間が経過したか否かについて判断を行う(ステップS55)。ここで上記和の時間が経過していないと判断した場合(ステップS55:No)には、CPU441は処理を再びステップS55へ移す。一方、和の時間が経過したと判断した場合(ステップS55:Yes)には、CPU441は先に送出していた陽極信号とは別の種類の陽極信号、すなわち、先に送出していた陽極信号が第1導体棒陽極信号であれば第2導体棒陽極信号、先に送出していた陽極信号が第2導体棒陽極信号であれば第1導体棒陽極信号の送出を開始し(ステップS56)、処理をステップS57へ移す。 Next, the CPU 441 determines whether or not the sum of the water flow stabilization time, the water flow replacement time, and the switching gap time (0.1 seconds in this embodiment) has elapsed since the start of time measurement (step S55). If it is determined that the sum time has not elapsed (step S55: No), the CPU 441 moves the process to step S55 again. On the other hand, if it is determined that the sum time has elapsed (step S55: Yes), the CPU 441 uses a different type of anode signal from the previously sent anode signal, that is, the previously sent anode signal. If is the first conductor rod anode signal, transmission of the second conductor rod anode signal is started, and if the previously sent anode signal is the second conductor rod anode signal, transmission of the first conductor rod anode signal is started (step S56). The process proceeds to step S57.
 ステップS57においてCPU441は、計時開始から水流安定化時間と水流置換時間と切替ギャップ時間と通電再開待機時間(本実施形態では0.1秒)との和の時間が経過したか否かについて判断を行う。ここで上記和の時間が経過していないと判断した場合(ステップS57:No)には、CPU441は処理を再びステップS57へ戻す。一方、和の時間が経過したと判断した場合(ステップS57:Yes)には、CPU441は処理をステップS58へ移す。 In step S57, the CPU 441 determines whether or not the sum of the water flow stabilization time, the water flow replacement time, the switching gap time, and the energization resumption waiting time (0.1 seconds in this embodiment) has elapsed since the start of timing. If it is determined that the sum time has not elapsed (step S57: No), the CPU 441 returns the process to step S57 again. On the other hand, when determining that the sum time has elapsed (step S57: Yes), the CPU 441 moves the process to step S58.
 ステップS58においてCPU441は、極性切替回路445に対し、電圧印加信号を送出することで、通電の開始処理を行い、処理を分岐前のアドレスへ戻す。 In step S58, the CPU 441 sends a voltage application signal to the polarity switching circuit 445 to perform energization start processing, and returns the processing to the address before branching.
 次に、メイン処理のステップS22や、割込処理のステップS33にて実行される終了処理について図26を参照しつつ説明する。 Next, the termination process executed in step S22 of the main process and step S33 of the interrupt process will be described with reference to FIG.
 終了処理においてCPU441は、RAM443の所定アドレスを参照し、中断フラグの値がONであるか否かについて判断を行う(ステップS61)。ここで中断フラグがONであると判断した場合(ステップS61:Yes)には、CPU441は極性切替回路445に対して送出していた電圧印加信号を止め、通電を停止する処理(ステップS62)を行った後、ステップS66へ処理を移す。一方、中断フラグがONではないと判断した場合(ステップS61:No)には、CPU441は、処理をステップS63へ移す。 In the termination process, the CPU 441 refers to a predetermined address in the RAM 443 and determines whether or not the value of the interruption flag is ON (step S61). If it is determined that the interrupt flag is ON (step S61: Yes), the CPU 441 stops the voltage application signal sent to the polarity switching circuit 445 and stops the energization (step S62). After performing, the process proceeds to step S66. On the other hand, when determining that the interruption flag is not ON (step S61: No), the CPU 441 moves the process to step S63.
 ステップS63においてCPU441は、停止時間の0.1秒前、すなわち、本実施形態では計時を開始してから59.9秒の時点か否かについて判断を行う。ここで停止時間の0.1秒前ではないと判断した場合(ステップS63:No)には、CPU441は処理を再びステップS63へ戻す。一方、停止時間の0.1秒前であると判断した場合(ステップS63:Yes)には、CPU441は処理をステップS64へ移す。 In step S63, the CPU 441 determines whether it is 0.1 seconds before the stop time, that is, 59.9 seconds from the start of timing in this embodiment. If it is determined that it is not 0.1 second before the stop time (step S63: No), the CPU 441 returns the process to step S63 again. On the other hand, when determining that it is 0.1 second before the stop time (step S63: Yes), the CPU 441 moves the process to step S64.
 ステップS64においてCPU441は、極性切替回路445に対して送出していた電圧印加信号を止め、通電を停止する処理を行う。 In step S64, the CPU 441 performs processing to stop the voltage application signal sent to the polarity switching circuit 445 and stop energization.
 次にCPU441は、停止時間であるか否かについて判断を行う(ステップS65)。ここで停止時間ではないと判断した場合(ステップS65:No)には、CPU441は処理を再びステップS65へ戻す。一方、停止時間であると判断した場合(ステップS65:Yes)には、CPU441は、処理をステップS66へ移す。 Next, the CPU 441 determines whether it is a stop time (step S65). If it is determined that the stop time is not reached (step S65: No), the CPU 441 returns the process to step S65 again. On the other hand, when determining that it is the stop time (step S65: Yes), the CPU 441 moves the process to step S66.
 ステップS66においてCPU441は、極性切替回路445に対して送出していた陽極信号と、ポンプ部20に対して送出していたポンプ部稼動信号とを停止しする。 In step S66, the CPU 441 stops the anode signal sent to the polarity switching circuit 445 and the pump part operation signal sent to the pump part 20.
 次いでCPU441は、EEPROM444の所定アドレスに発信していた陽極信号の種類や、電極切替カウンタの値、中断フラグの値等の書き込みを行い(ステップS67)、処理を分岐前のアドレスへ戻す。 Next, the CPU 441 writes the type of anode signal transmitted to the predetermined address of the EEPROM 444, the value of the electrode switching counter, the value of the interruption flag, etc. (step S67), and returns the processing to the address before branching.
 次に、上述してきた構成を備える水素水生成装置400の動作について、図27及び図28を参照しながら説明する。図27は水素水生成装置400の操作スイッチ15及び制御部440(CPU441)より発信される各種信号の状態を示したタイミングチャートであり、図28は図27にて示した一部時間を拡大して示したタイミングチャートである。 Next, the operation of the hydrogen water generator 400 having the above-described configuration will be described with reference to FIGS. FIG. 27 is a timing chart showing states of various signals transmitted from the operation switch 15 and the control unit 440 (CPU 441) of the hydrogen water generating apparatus 400, and FIG. 28 is an enlarged partial time shown in FIG. It is the timing chart shown.
 図27に示すように、水素水生成装置400は、使用者の操作スイッチ15の押下動作を契機に、約15分間(約900秒間)に亘り各種処理を実行しつつ、被電解水を電解して水素の生成を行う。 As shown in FIG. 27, the hydrogen water generator 400 electrolyzes the water to be electrolyzed while performing various treatments for about 15 minutes (about 900 seconds) when the user presses the operation switch 15. To produce hydrogen.
 また、水素水生成装置400は、ポンプ部稼動信号の稼動状態時間(ON時間)と停止状態時間(OFF時間)とよりなる剥離サイクルの1周期分を基準として擬似的な動作クロック信号とみなし、各種処理を実行するようにしている。例えば、各多孔電極板(各導体棒)の極性の切替は剥離サイクル5周期毎、すなわち約5分毎に実行し、電解処理は剥離サイクル15周期分、すなわち約15分で自動的に終了する構成としている。 Further, the hydrogen water generator 400 regards it as a pseudo operation clock signal on the basis of one cycle of the peeling cycle consisting of the operation state time (ON time) and the stop state time (OFF time) of the pump unit operation signal, Various processes are executed. For example, the polarity of each porous electrode plate (each conductor rod) is switched every 5 cycles of the peeling cycle, that is, about every 5 minutes, and the electrolytic treatment is automatically terminated after 15 cycles of the peeling cycle, ie, about 15 minutes. It is configured.
 次に、主なイベント毎に各種信号等を参照しながら水素水生成装置400の動作について説明する。 Next, the operation of the hydrogen water generator 400 will be described with reference to various signals for each major event.
 図28の左拡大図は水素水生成装置400の起動時におけるタイミングチャートであり、中拡大図はポンプ部20を停止状態とする際のタイミングチャートであり、右拡大図は極性切替動作時におけるタイミングチャートを示している。 The left enlarged view of FIG. 28 is a timing chart when the hydrogen water generator 400 is started, the middle enlarged view is a timing chart when the pump unit 20 is stopped, and the right enlarged view is a timing when the polarity switching operation is performed. A chart is shown.
 図28の左拡大図からわかるように、使用者により操作スイッチ15が押下されると、制御部440は初回時ポンプ駆動処理(ステップS13)を実行することで、電解に約2秒先立って水流の生成を開始する。 As can be seen from the left enlarged view of FIG. 28, when the operation switch 15 is pressed by the user, the control unit 440 executes the initial pump driving process (step S13), so that the water flow is about 2 seconds prior to the electrolysis. Start generating.
 次いで制御部440は、起動時処理(ステップS12)にて発信を決定した陽極信号、ここでは第1導体棒陽極信号を通電開始処理(ステップS14)の実行により電圧印加信号と共に発出し、第1導体棒34を陽極とし第2導体棒35を陰極とする各多孔電極板への電力の供給を開始する。また、ステップS15による計時が開始される。 Next, the control unit 440 emits the anode signal determined to be transmitted in the start-up process (step S12), here the first conductor rod anode signal together with the voltage application signal by executing the energization start process (step S14). Supply of electric power to each porous electrode plate having the conductor rod 34 as an anode and the second conductor rod 35 as a cathode is started. Moreover, the time measurement by step S15 is started.
 次に制御部440は、図28の中拡大図に示すように、計時を開始してから稼動状態時間(58秒)が経過したと判断すると(ステップS19:Yes)、ポンプ停止処理(ステップS41)を実行してポンプ部稼動信号の発信を停止し、ポンプ部20の稼動を停止させる。 Next, as shown in the middle enlarged view of FIG. 28, when the control unit 440 determines that the operation state time (58 seconds) has elapsed since the start of time measurement (step S19: Yes), the pump stop process (step S41). ) To stop sending the pump unit operation signal and stop the operation of the pump unit 20.
 この停止状態が約2秒間継続したのち、制御部440はポンプ駆動処理(ステップS15)を実行することにより、再びポンプ部20を稼動状態とする。 After this stop state continues for about 2 seconds, the control unit 440 executes the pump driving process (step S15), thereby bringing the pump unit 20 into an operating state again.
 ここで、図中黒矢印で示すポンプ部20の再稼働のタイミングで、剥離困難気泡の多孔電極板表面からの剥離が行われることとなる。すなわち、制御部440は、上述の如く稼働中のポンプ部20の停止及び再稼働の処理を実行することにより、多孔電極板に付着生成した剥離困難気泡を遊離させるための剥離困難気泡遊離手段(剥離困難気泡遊離部)として機能することとなる。 Here, at the timing of restart of the pump unit 20 indicated by the black arrow in the figure, the bubbles that are difficult to peel off are peeled off from the surface of the porous electrode plate. In other words, the control unit 440 performs the process of stopping and restarting the operating pump unit 20 as described above, thereby separating the difficult-to-separate bubbles releasing means (for releasing the difficult-to-separate bubbles generated on the porous electrode plate). It will function as a difficult-to-peel bubble free part).
 次に、図27で示す約300秒付近について図28の右拡大図を参照すると、ステップS15にて計時を開始してから稼動状態時間(58秒:ここでは、剥離サイクル4周期分である240秒+58秒=298秒)が経過したと判断すると(ステップS19:Yes)、ポンプ停止処理(ステップS41)を実行してポンプ部稼動信号の発信を停止し、ポンプ部20の稼動を停止させる。 Next, referring to the right enlarged view of FIG. 28 about about 300 seconds shown in FIG. 27, the operation state time (58 seconds: 240 cycles corresponding to four cycles of the peeling cycle in this case) after starting the time measurement in step S15. If it is determined that (second + 58 seconds = 298 seconds) has elapsed (step S19: Yes), the pump stop process (step S41) is executed to stop the transmission of the pump unit operation signal, and the pump unit 20 is stopped.
 ここでRAM443に記憶されている電極切替用カウンタの値は、ステップS20の実行により”5”になっているため、ポンプ停止処理において極性反転フラグがONとなり(ステップS44)、6周期目の剥離サイクルに入り、ステップS15によりポンプ部20が稼動状態となった後に極性反転処理(ステップS17)が行われる。すなわち、極性反転処理は、ポンプ部20の稼働中に行うよう構成している。 Here, since the value of the electrode switching counter stored in the RAM 443 is “5” by the execution of step S20, the polarity inversion flag is turned ON in the pump stop process (step S44), and the peeling in the sixth cycle is performed. After entering the cycle and the pump unit 20 is in an operating state in step S15, the polarity inversion process (step S17) is performed. That is, the polarity inversion process is configured to be performed while the pump unit 20 is in operation.
 従って、多孔電極板間に存在する既に電解された水が容量を持つことに由来する極性切替時の多孔電極板間の一時的な短絡状態を回避することができ、多孔電極板への給電や切替等を行う電気回路の保全を行うことができる。 Therefore, it is possible to avoid a temporary short circuit state between the porous electrode plates at the time of polarity switching due to the fact that the already electrolyzed water existing between the porous electrode plates has a capacity. It is possible to maintain an electric circuit that performs switching or the like.
 また、極性の反転処理は、ポンプ部20の再稼働後、水流安定化時間(0.5秒)及び水流置換時間(0.5秒)の分だけ待機してから実行するよう構成しているため、短絡状態をより堅実に回避することができる。 In addition, the polarity inversion process is configured to be executed after waiting for the water flow stabilization time (0.5 seconds) and the water flow replacement time (0.5 seconds) after the pump unit 20 is restarted. Can be avoided more steadily.
(5)第4の実施形態の変形例:
 次に、上述してきた第4の実施形態に係る水素水生成装置400の変形例について、図29及び図30を参照しながら説明する。
(5) Modification of the fourth embodiment:
Next, a modified example of the hydrogen water generator 400 according to the fourth embodiment described above will be described with reference to FIGS. 29 and 30.
 本変形例に係る水素水生成装置は、水素水生成装置400と略同様の構成を備えるものであるが、水素水生成装置400に比して、圧力室13b内(電解部収容凹部424内)や積層電極体426を構成する多孔電極板31~33-2間における水の流れを改善するための構成備える点で異なっている。 The hydrogen water generating apparatus according to this modification has substantially the same configuration as that of the hydrogen water generating apparatus 400, but in the pressure chamber 13b (in the electrolysis part accommodating recess 424) as compared with the hydrogen water generating apparatus 400. And a difference in that a configuration for improving the flow of water between the porous electrode plates 31 to 33-2 constituting the laminated electrode body 426 is provided.
 具体的には、本変形例に係る水素水生成装置に特徴的な点として、上ケース410aの電解部収容凹部424の底面に水流規制板を立設している点や、開口部425に対向する多孔電極板(本実施形態では多孔電極板33-2)に無孔領域を形成している点、多孔電極板に穿設された気泡流通孔の一部に閉塞片を配置した点が挙げられる。 Specifically, as a characteristic point of the hydrogen water generating apparatus according to the present modification, a water flow restriction plate is erected on the bottom surface of the electrolysis part accommodating recess 424 of the upper case 410a, or opposed to the opening 425. The non-porous region is formed in the porous electrode plate (the porous electrode plate 33-2 in the present embodiment), and the closed piece is disposed in a part of the bubble circulation hole formed in the porous electrode plate. It is done.
 図29は、本変形例に係る水素水生成装置の水素水生成本体部410に関し、電解部30を分解した状態を示した斜視図である。なお説明の便宜上、電極カバー427等の一部構成については図示を省略している。 FIG. 29 is a perspective view illustrating a state in which the electrolysis unit 30 is disassembled with respect to the hydrogen water generation main body 410 of the hydrogen water generation apparatus according to the present modification. For convenience of explanation, illustration of a part of the configuration of the electrode cover 427 and the like is omitted.
 図29の下図に示すように、上ケース410aに形成された平面視略矩形状の電解部収容凹部424の底面510には、L形水流規制板511と、第2水流規制板512と、第3水流規制板513と、第4水流規制板514とが立設されている。 As shown in the lower diagram of FIG. 29, an L-shaped water flow restriction plate 511, a second water flow restriction plate 512, a first water flow restriction plate 512, and a bottom surface 510 of a substantially rectangular electrolytic part accommodating recess 424 formed in the upper case 410 a. A three water flow restriction plate 513 and a fourth water flow restriction plate 514 are provided upright.
 図30(a)に示すように、電解部収容凹部424の底面510には、略矩形状の電解部収容凹部424の長手方向を二等分する補助線x1と、同じく短手方向を二等分する補助線y1とで区画される左上領域の略中央位置、すなわち底面510上で長手方向及び短手方向に偏倚した位置に開口部425が形成されている。なお、以下の説明において、矩形状の電解部収容凹部424を構成する一対の長手壁のうち、開口部425に近い長手壁を近位長手壁530n、遠い長手壁を遠位長手壁530fと称し、同じく一対の短手壁のうち、開口部425に近い短手壁を近位短手壁531n、遠い短手壁を遠位短手壁531fと称する。 As shown in FIG. 30 (a), the bottom surface 510 of the electrolysis portion receiving recess 424 has an auxiliary line x1 that bisects the longitudinal direction of the substantially rectangular electrolysis portion receiving recess 424, and the short direction is also bisected. An opening 425 is formed at a substantially central position of the upper left area defined by the auxiliary line y1 to be divided, that is, a position biased in the longitudinal direction and the lateral direction on the bottom surface 510. In the following description, of the pair of longitudinal walls constituting the rectangular electrolytic part accommodating recess 424, the longitudinal wall near the opening 425 is referred to as a proximal longitudinal wall 530n, and the far longitudinal wall is referred to as a distal longitudinal wall 530f. Similarly, of the pair of short walls, the short wall near the opening 425 is referred to as a proximal short wall 531n, and the distant short wall is referred to as a distal short wall 531f.
 L形水流規制板511は、長さP1に亘り補助線y1上に伸延するよう配置した第1水流規制板515と、同第1水流規制板515の端部からL字状に延設した第5水流規制板516とで構成している。 The L-shaped water flow restricting plate 511 has a first water flow restricting plate 515 arranged to extend on the auxiliary line y1 over the length P1, and a first water flow restricting plate 515 extending in an L shape from the end of the first water flow restricting plate 515. 5 water flow restricting plate 516.
 第1水流規制板515は、開口部425の近傍の水流を規制しつつ流れを整えるための部材であり、開口部425を横断する短手方向への補助線x2と交差する位置、例えば第1水流規制板515の伸延方向中点が補助線x2上又はその近傍に位置するよう立設している。また、長さP1は、電解部収容凹部424の長手方向の長さPに対し、P/3<P1≦P/4.5となるよう、より好ましくは略P/4となるよう構成している。 The first water flow restricting plate 515 is a member for regulating the flow while restricting the water flow in the vicinity of the opening 425, and a position intersecting the auxiliary line x2 in the short direction crossing the opening 425, for example, the first The water flow restriction plate 515 is erected so that the midpoint in the extending direction is located on the auxiliary line x2 or in the vicinity thereof. Further, the length P1 is configured such that P / 3 <P1 ≦ P / 4.5, more preferably substantially P / 4, with respect to the length P in the longitudinal direction of the electrolysis portion housing recess 424.
 第5水流規制板516は、第1水流規制板515の両端部のうち遠位短手壁531f側の端部から遠位長手壁530fへ向けてL字状に延設された水流規制板であり、開口部425より吐出され近位短手壁531nから遠位長手壁530fに沿った流れを規制する役割を有する。なお、本実施形態において第5水流規制板516は、一端を第1水流規制板515に、他端を遠位長手壁530fに接続するよう構成しているが、第1水流規制板515との間や遠位長手壁530fとの間に多少の隙間が設けられていても良い。すなわち、第1水流規制板515と、第5水流規制板516と、遠位長手壁530fと近位短手壁531nとで囲まれる領域内(以下、第3渦形成領域という。)に、後述する渦の形成が可能な程度であれば、上記隙間が形成されていても良い。 The fifth water flow restricting plate 516 is a water flow restricting plate extending in an L shape from the end on the distal short wall 531f side to the distal long wall 530f of both ends of the first water flow restricting plate 515. There is a role of regulating the flow from the proximal short wall 531n to the distal long wall 530f discharged from the opening 425. In the present embodiment, the fifth water flow restriction plate 516 is configured such that one end is connected to the first water flow restriction plate 515 and the other end is connected to the distal longitudinal wall 530f. Some clearance may be provided between them and the distal longitudinal wall 530f. That is, in a region surrounded by the first water flow restricting plate 515, the fifth water flow restricting plate 516, the distal long wall 530f, and the proximal short wall 531n (hereinafter referred to as a third vortex forming region). The gap may be formed as long as the vortex can be formed.
 第2水流規制板512は、電解部収容凹部424の短手方向の長さMを略四分する各補助線y2、補助線y1、補助線y3のうち、近位長手壁530nに最も近い補助線y2上に、長さP2に亘り伸延するよう配置した水流規制板である。長さP2は、電解部収容凹部424の長手方向の長さPに対し、P/3<P2≦P/4.5となるよう、より好ましくは略P/4となるよう構成している。 The second water flow restricting plate 512 is the auxiliary closest to the proximal longitudinal wall 530n among the auxiliary lines y2, auxiliary lines y1, and auxiliary lines y3 that substantially divide the length M in the short direction of the electrolysis part accommodating recess 424. It is a water flow regulating plate arranged on the line y2 so as to extend over the length P2. The length P2 is configured to satisfy P / 3 <P2 ≦ P / 4.5, more preferably substantially P / 4, with respect to the length P in the longitudinal direction of the electrolysis portion housing recess 424.
 第3水流規制板513は、第2水流規制板512と同様、遠位長手壁530fに最も近い補助線y3上に、長さP3に亘り伸延するよう配置した水流規制板である。長さP3は、電解部収容凹部424の長手方向の長さPに対し、P/3<P3≦P/4.5となるよう、より好ましくは略P/4となるよう構成している。 The third water flow restriction plate 513 is a water flow restriction plate arranged so as to extend over the length P3 on the auxiliary line y3 closest to the distal long wall 530f, similarly to the second water flow restriction plate 512. The length P3 is configured to satisfy P / 3 <P3 ≦ P / 4.5, more preferably substantially P / 4, with respect to the length P in the longitudinal direction of the electrolysis portion housing recess 424.
 これら第2水流規制板512及び第3水流規制板513は、いずれも電解部収容凹部424の略中央部の水流を整えるための部材であり、補助線x1と交差する位置、例えば第2水流規制板512や第3水流規制板513の伸延方向中点が補助線x1上又はその近傍に位置するよう配置されている。 Each of the second water flow restriction plate 512 and the third water flow restriction plate 513 is a member for adjusting the water flow in the substantially central portion of the electrolysis portion housing recess 424, and is a position intersecting the auxiliary line x1, for example, the second water flow restriction plate. The middle point in the extending direction of the plate 512 and the third water flow regulating plate 513 is arranged on the auxiliary line x1 or in the vicinity thereof.
 第4水流規制板514は、開口部425から遠い位置の水流を規制しつつ流れを整えるための水流規制板であり、長さP4に亘り補助線y1上に伸延するよう配置されている。長さP4は、電解部収容凹部424の長手方向の長さPに対し、P/3<P4≦P/4.5となるよう、より好ましくは略P/4となるよう構成している。 The fourth water flow restriction plate 514 is a water flow restriction plate for regulating the flow while restricting the water flow far from the opening 425, and is arranged to extend on the auxiliary line y1 over the length P4. The length P4 is configured to satisfy P / 3 <P4 ≦ P / 4.5, more preferably approximately P / 4, with respect to the length P in the longitudinal direction of the electrolysis portion housing recess 424.
 また、第4水流規制板514は、電解部収容凹部424の長手方向の長さPを四分した際に遠位短手壁531fに最も近い補助線x3と交差する位置、例えば第4水流規制板514の伸延方向中点が補助線x3上又はその近傍に位置するよう配置している。 The fourth water flow restriction plate 514 intersects with the auxiliary line x3 closest to the distal short wall 531f when the length P in the longitudinal direction of the electrolysis part accommodating recess 424 is divided into four, for example, the fourth water flow restriction plate 514. The plate 514 is arranged such that the midpoint in the extending direction is located on the auxiliary line x3 or in the vicinity thereof.
 また、第1水流規制板515と、第2水流規制板512と、第3水流規制板513と、第4水流規制板514とは、それぞれ長手方向に所定の間隔を開けて配置している。 In addition, the first water flow restriction plate 515, the second water flow restriction plate 512, the third water flow restriction plate 513, and the fourth water flow restriction plate 514 are arranged at predetermined intervals in the longitudinal direction.
 具体的には、第1水流規制板515は、近位短手壁531nとの間に間隔d1を開けて配置すると共に、第2水流規制板512は、第1水流規制板515との間に間隔d2aを開けて配置し、第3水流規制板513は、第1水流規制板515との間に感覚d2bを開けて配置し、第4水流規制板514は、第2水流規制板512及び第3水流規制板513との間にそれぞれ間隔d3a及び間隔d3bを開け、遠位短手壁531fとの間に間隔d4を開けて配置している。 Specifically, the first water flow restriction plate 515 is disposed with a gap d1 between the proximal short wall 531n and the second water flow restriction plate 512 is disposed between the first water flow restriction plate 515 and the first water flow restriction plate 515. The third water flow restricting plate 513 is disposed with a sense d2b between the first water flow restricting plate 515 and the fourth water flow restricting plate 514 includes the second water flow restricting plate 512 and the first water flow restricting plate 512. A space d3a and a space d3b are opened between the three water flow restricting plates 513 and a space d4 is placed between the water flow restricting plate 513 and the distal short wall 531f.
 これらの間隔d1~d4は、長さP1~P4よりも短い長さであれば特に限定されるものではない。なお、前述した電解部収容凹部424の長手方向の長さPは、P=d1+P1+d2a+P2+d3a+P4+d4(P=d1+P1+d2b+P3+d3b+P4+d4)が成り立つ。 These intervals d1 to d4 are not particularly limited as long as they are shorter than the lengths P1 to P4. In addition, the length P in the longitudinal direction of the above-described electrolytic unit housing recess 424 is P = d1 + P1 + d2a + P2 + d3a + P4 + d4 (P = d1 + P1 + d2b + P3 + d3b + P4 + d4).
 また、底面510上に立設される第1水流規制板515、第2水流規制板512、第3水流規制板513、第4水流規制板514、第5水流規制板516の高さは、後述する渦を形成可能であれば特に限定されるものではないが、積層電極体426の最下層を構成する多孔電極板(本実施形態では多孔電極板33-2)と底面510との間の距離、すなわち圧力室13bの高さの0.5倍~1倍とすることができる。 The heights of the first water flow restricting plate 515, the second water flow restricting plate 512, the third water flow restricting plate 513, the fourth water flow restricting plate 514, and the fifth water flow restricting plate 516 provided on the bottom surface 510 will be described later. The distance between the bottom electrode 510 and the porous electrode plate (in this embodiment, the porous electrode plate 33-2) constituting the lowermost layer of the laminated electrode body 426 is not particularly limited as long as the vortex can be formed. That is, it can be 0.5 to 1 times the height of the pressure chamber 13b.
 一方、図29に示すように、積層電極体426を構成する多孔電極板31~33-2のうち、最下層の多孔電極板33-2には、開口部425と対向する位置に、気泡流通孔431が形成されていない無孔領域517(図中、破線で示す)を形成している。 On the other hand, as shown in FIG. 29, among the porous electrode plates 31 to 33-2 constituting the laminated electrode body 426, the lowermost porous electrode plate 33-2 has a bubble flow at a position facing the opening 425. A non-porous region 517 (indicated by a broken line in the figure) where the hole 431 is not formed is formed.
 特に本変形例では、白金メッキ済みチタン基板に対し千鳥パンチング加工、より具体的には45°千鳥又は60°千鳥でパンチング加工を施すことにより規則的に気泡流通孔431が形成されているところ、開口部425と対向する気泡流通孔431に、同気泡流通孔431を閉塞する閉塞片518を装着することで無孔領域517を形成している。なお、この無孔領域517は、形成されている気泡流通孔431を閉塞することで形成する場合に限られず、開口部425と対向する位置に気泡流通孔431を穿設しないことで無孔領域517を形成しても良い。 In particular, in this modification, the bubble circulation holes 431 are regularly formed by performing a staggered punching process on a platinum-plated titanium substrate, more specifically, a 45 ° staggered or 60 ° staggered punching process. A non-porous region 517 is formed by attaching a closing piece 518 that closes the bubble circulation hole 431 to the bubble circulation hole 431 facing the opening 425. The non-porous region 517 is not limited to being formed by closing the formed bubble flow hole 431, and the non-porous region is not formed by forming the bubble flow hole 431 at a position facing the opening 425. 517 may be formed.
 また、本変形例における多孔電極板32と多孔電極板33-1には、千鳥状に規則的に穿設された気泡流通孔431のうち一部の気泡流通孔431に、同気泡流通孔431を閉塞する閉塞片518を装着して配置している。 Further, in the porous electrode plate 32 and the porous electrode plate 33-1 in this modification, a part of the bubble circulation holes 431 among the bubble circulation holes 431 regularly formed in a zigzag manner are connected to the same bubble circulation hole 431. A closing piece 518 for closing is attached and arranged.
 このように、本変形例に係る水素水生成装置は、簡潔に述べるならば以下の(1)や(2)の特徴を有していることとなる。
(1)最下層の多孔電極板において開口部425と対向する位置に無孔領域517を形成した点
(2)平面視略矩形状の電解部収容凹部424の底面510における長手方向及び短手方向に偏倚した位置に開口部425を形成し、前記底面510と電解部収容凹部424に装着された電解部30との間に形成される下部空間(圧力室)に、底面510より立設した前記長手方向に同長手方向の略1/3~1/4.5の長さで伸延する第1~第4の水流規制板を備え、第1水流規制板515は前記開口部425を横断する短手方向略中央部に配置され、第2水流規制板512及び第3水流規制板513は四分した短手方向の略1/4及び略3/4の位置に配置され、第4水流規制板514は短手方向略中央部に配置されており、しかも、第1水流規制板515の端部又は端部近傍からは、開口部425から遠い長手壁である遠位長手壁530f又はその近傍に至るまで第5水流規制板516が略L字状に立設されている点
As described above, the hydrogen water generating apparatus according to the present modification has the following features (1) and (2) if briefly described.
(1) A point in which a non-porous region 517 is formed at a position facing the opening 425 in the lowermost porous electrode plate. (2) Longitudinal direction and short-side direction of the bottom surface 510 of the electrolytic portion accommodating recess 424 having a substantially rectangular shape in plan view. The opening 425 is formed at a position biased to the bottom, and the lower space (pressure chamber) formed between the bottom surface 510 and the electrolysis part 30 attached to the electrolysis part accommodating recess 424 is erected from the bottom surface 510. First to fourth water flow restricting plates extending in the longitudinal direction at a length of about 1/3 to 1 / 4.5 of the longitudinal direction are provided, and the first water flow restricting plate 515 is a short direction crossing the opening 425 The second water flow restricting plate 512 and the third water flow restricting plate 513 are disposed at approximately 1/4 and approximately 3/4 of the quarter direction, and the fourth water flow restricting plate 514 It is located at the approximate center in the short direction and the first water flow guide From end or end portion of the plate 515, that the fifth flow regulation plate 516 up to the distal longitudinal wall 530f or near a distant longitudinal wall from the opening portion 425 is erected into a substantially L-shaped
 そして、本変形例に係る水素水生成装置では、(1)の構成を備えたことで、多孔電極板33-1と多孔電極板33-2との間に形成された空間における水平方向(空間の広がり方向)への水流の速度ベクトルを大凡均一化することができる。 In the hydrogen water generating apparatus according to this modification, the configuration (1) is provided, so that the horizontal direction (space) in the space formed between the porous electrode plate 33-1 and the porous electrode plate 33-2 is provided. The velocity vector of the water flow in the direction of the spread of the water can be made almost uniform.
 すなわち、無孔領域517を設けず、多孔電極板33-2上の開口部425と対向する位置に気泡流通孔431が穿設されている場合、開口部425から圧力室13bへ吐出された水流が、そのまま気泡流通孔431を介して多孔電極板33-1と多孔電極板33-2との間に形成された空間へ入り、多孔電極板33-1と衝突して水平方向へ広がることとなるため、流れに偏りができてしまう。 That is, in the case where the non-porous region 517 is not provided and the bubble circulation hole 431 is formed at a position facing the opening 425 on the porous electrode plate 33-2, the water flow discharged from the opening 425 to the pressure chamber 13b. Enters the space formed between the porous electrode plate 33-1 and the porous electrode plate 33-2 through the bubble circulation hole 431 as it is, collides with the porous electrode plate 33-1 and spreads in the horizontal direction. Therefore, the flow is biased.
 一方、本変形例の如く無孔領域517を設けることにより、開口部425からの吐水が直接的に多孔電極板33-1と多孔電極板33-2との間に形成された空間に流入することを防ぐと共に、圧力室13b内でこの流れを一旦緩衝させることができ、多孔電極板33-1と多孔電極板33-2との間に形成された空間での流れの偏りを抑制し、同空間における水流の速度ベクトルを大凡均一化することができる。 On the other hand, by providing the non-porous region 517 as in this modification, the water discharged from the opening 425 flows directly into the space formed between the porous electrode plate 33-1 and the porous electrode plate 33-2. In addition to preventing this, the flow can be temporarily buffered in the pressure chamber 13b, and the deviation of the flow in the space formed between the porous electrode plate 33-1 and the porous electrode plate 33-2 can be suppressed, The velocity vector of the water flow in the same space can be made almost uniform.
 また、本変形例に係る水素水生成装置では、(2)の構成を備えたことで、圧力室13bにおいて渦を積極的に形成することができ、積層電極体426へ向かう水流の均一化を図ることができる。 Moreover, in the hydrogen water generating apparatus according to this modification, the configuration (2) is provided, so that a vortex can be actively formed in the pressure chamber 13b, and the water flow toward the laminated electrode body 426 can be made uniform. Can be planned.
 ここで渦の形成について図30(b)を参照しつつ説明すると、まず、開口部425からの吐水のうち水流F3は、第1水流規制板515により分流され、開口部425から遠位短手壁531f方向へ向かう水流F1と、近位短手壁531n方向へ向かう水流F2とに分流する。 Here, the formation of the vortex will be described with reference to FIG. 30 (b). First, the water flow F 3 out of the water discharged from the opening 425 is diverted by the first water flow restricting plate 515, and the distal short side from the opening 425. The water flow F1 is directed toward the wall 531f, and the water flow F2 is directed toward the proximal short wall 531n.
 水流F1は、第2水流規制板512及び第3水流規制板513により分流され、近位長手壁530nと第2水流規制板512との間を流れる水流F1aや、第2水流規制板512と第3水流規制板513との間を流れる水流F1bや、第3水流規制板513と遠位長手壁530fとの間を流れる水流F1cにそれぞれ分流される。 The water flow F1 is divided by the second water flow restriction plate 512 and the third water flow restriction plate 513, and the water flow F1a flowing between the proximal longitudinal wall 530n and the second water flow restriction plate 512, or the second water flow restriction plate 512 and the first water flow restriction plate 512. The flow is divided into a water flow F1b flowing between the three water flow restriction plates 513 and a water flow F1c flowing between the third water flow restriction plate 513 and the distal longitudinal wall 530f.
 また、水流F1bは、第4水流規制板514により、第4水流規制板514及び近位長手壁530nの間の領域(以下、第1渦形成領域という。)に向かう水流F1b1と、第4水流規制板514及び遠位長手壁530fの間の領域(以下、第2渦形成領域という。)に向かう水流F1b2とに更に分流される。 Further, the water flow F1b is caused by the fourth water flow by the fourth water flow restriction plate 514 and the water flow F1b1 toward the region between the fourth water flow restriction plate 514 and the proximal longitudinal wall 530n (hereinafter referred to as a first vortex formation region). The flow is further divided into a water flow F1b2 directed to a region between the restricting plate 514 and the distal longitudinal wall 530f (hereinafter referred to as a second vortex forming region).
 そして、第1渦形成領域では、水流F1aと水流F1b1とが合流・衝突し、乱雑な流れを形成することにより渦が形成されることとなる。 In the first vortex formation region, the water flow F1a and the water flow F1b1 merge and collide to form a turbulent flow, thereby forming a vortex.
 また、第2渦形成領域では、水流F1b2と水流F1cとが合流・衝突することで乱雑な流れが形成され、ここにも渦が形成されることとなる。なお、図30(b)において示した渦は、渦が形成されることを単に模式的に示したものであり、その大きさや数、形状、巻き方向は必ずしも正確ではない。 Also, in the second vortex formation region, a turbulent flow is formed by the water flow F1b2 and the water flow F1c joining and colliding with each other, and a vortex is also formed here. Note that the vortex shown in FIG. 30B merely schematically shows that the vortex is formed, and the size, number, shape, and winding direction are not necessarily accurate.
 また、水流F2は、近位短手壁531nに突き当たると、同近位短手壁531nに沿って遠位長手壁530fへ向かって流れ、次いで、遠位長手壁530fに沿って流れ始める。 Also, when the water flow F2 hits the proximal short wall 531n, the water flow F2 flows along the proximal short wall 531n toward the distal long wall 530f, and then starts flowing along the distal long wall 530f.
 この遠位長手壁530fに沿って遠位短手壁531f側へ流れ始めた水流F2は、第5水流規制板516に衝突する。すなわち、遠位長手壁530fに沿った水流F2は第5水流規制板516により分断され、第5水流規制板516に沿う方向へ向きを変え、更に第1水流規制板515に沿った水流となり、第3渦形成領域において新たに流入する水流F2と相俟って複雑な流れを形成し渦を形成することとなる。 The water flow F2 that has started to flow toward the distal short wall 531f along the distal long wall 530f collides with the fifth water flow restriction plate 516. That is, the water flow F2 along the distal longitudinal wall 530f is divided by the fifth water flow restriction plate 516, changes its direction in the direction along the fifth water flow restriction plate 516, and becomes a water flow along the first water flow restriction plate 515. In the third vortex formation region, a complex flow is formed in combination with the newly flowing water flow F2 to form a vortex.
 このように、本変形例に係る水素水生成装置では、各水流規制板が整流手段(整流部)や区画手段(区画部)、分流手段(分流部)、渦形成手段(渦形成部)として機能することにより、圧力室13bにおいて各水流規制板の存在により複数の渦が積極的に形成され、積層電極体426へ向かう水流の均一化が図られる。 As described above, in the hydrogen water generating apparatus according to the present modification, each water flow regulating plate is used as a rectifying means (rectifying part), a dividing means (compartment part), a diverting means (dividing part), and a vortex forming means (vortex forming part). By functioning, a plurality of vortices are positively formed by the presence of each water flow regulating plate in the pressure chamber 13b, and the water flow toward the laminated electrode body 426 is made uniform.
 そして、上述の構成を備える水素水生成装置によれば、長手方向及び短手方向に偏倚した底面510上の位置に開口部425を設けた場合であっても、電解部30の上部から略均一に水素気泡を含む水流を放出させることができる。 Then, according to the hydrogen water generating apparatus having the above-described configuration, even when the opening 425 is provided at a position on the bottom surface 510 that is biased in the longitudinal direction and the lateral direction, it is substantially uniform from the top of the electrolysis unit 30. A water stream containing hydrogen bubbles can be released.
 また、使用者により視認可能な水素気泡を含む水流が放出される場合にあっては、このような構成を備えることにより、視認可能な水素気泡が片寄った状態で放出される場合に比して、水素が浴槽中に満遍なく拡散する心証を使用者に抱かせることができ、水素気泡や水素水によるレドックス効果を心理的な側面からも助長することができる。 Further, in the case where a water flow containing hydrogen bubbles that can be visually recognized by the user is released, by providing such a configuration, compared with the case where the visible hydrogen bubbles are released in a biased state. Therefore, it is possible to give the user an idea that hydrogen diffuses evenly in the bathtub, and it is possible to promote the redox effect caused by hydrogen bubbles and hydrogen water from the psychological viewpoint.
(5)まとめ:
 以上説明した各実施形態によれば、水中に浸漬可能であって水の流入口11と流出口12とを連通する通水路313を有するケース10と、ケース10に収容され、通水路313に水流を発生させるポンプ部20と、通水路313に配設される電解部30と、ケース10に収容され、ポンプ部20及び電解部30に給電する電源部40と、を備え、電解部30は、一定間隔を保持して配設された複数の多孔電極板31~33を有し、ポンプ部20は、多孔電極板31~33の板面に向かう水流を発生する水素水生成装置を実現することができる。
(5) Summary:
According to each embodiment described above, the case 10 having the water passage 313 that can be immersed in water and that allows the water inlet 11 and the water outlet 12 to communicate with each other, and the case 10 are accommodated in the water passage 313. A pump unit 20 that generates water, an electrolysis unit 30 disposed in the water passage 313, and a power supply unit 40 that is accommodated in the case 10 and supplies power to the pump unit 20 and the electrolysis unit 30. A plurality of porous electrode plates 31 to 33 arranged at regular intervals are provided, and the pump unit 20 realizes a hydrogen water generating device that generates a water flow toward the plate surfaces of the porous electrode plates 31 to 33. Can do.
 このように構成された水素水生成装置は、水中に浸漬し、ポンプ部20によってケース10の流入口11と流出口12の間の通水路313に水流を発生させ、通水路313に配設された電解部30によって通水路313を流通する水を電気分解する。このとき、電解部30を構成する一定間隔を保持して配設された多孔電極板31~33の板面に向かう水流をポンプ部20が発生する。このように、水流の圧力を多孔電極板31~33の板面に加えることで、多孔電極板31~33の表面に電解で発生する水素や酸素の気泡を電解の瞬間に押しのけるように水流内に取り込む効果があり、水素水生成装置の流出口から流出する水が含む水素の気泡を微泡化したり、分子レベル水素、ナノバブルやマイクロバブル状態での水素溶存も期待できる。 The hydrogen water generating apparatus configured as described above is immersed in water, and a water flow is generated in the water passage 313 between the inlet 11 and the outlet 12 of the case 10 by the pump unit 20, and the hydrogen water generator is disposed in the water passage 313. The water flowing through the water passage 313 is electrolyzed by the electrolytic unit 30. At this time, the pump unit 20 generates a water flow toward the plate surfaces of the porous electrode plates 31 to 33 that are arranged at regular intervals that constitute the electrolysis unit 30. Thus, by applying the pressure of the water flow to the plate surfaces of the porous electrode plates 31 to 33, the hydrogen or oxygen bubbles generated by the electrolysis on the surfaces of the porous electrode plates 31 to 33 are pushed away at the moment of electrolysis. The hydrogen bubbles contained in the water flowing out from the outlet of the hydrogen water generator can be microbubbled or dissolved in molecular level hydrogen, nanobubbles or microbubbles.
 また、多孔電極板231~233は、多孔電極板231~233の気泡流通孔の間を区画する区画ワイヤWが、ポンプ部20の発生する水流に向かう尖端となる角部を有する断面多角形状になっている。 In addition, the porous electrode plates 231 to 233 have a polygonal cross-section in which the partition wires W that partition the bubble flow holes of the porous electrode plates 231 to 233 have corners that are sharpened toward the water flow generated by the pump unit 20. It has become.
 このように構成された水素水生成装置では、多孔電極板231~233の気泡流通孔の間において、区画ワイヤWがポンプ部20の発生する水流を両側の気泡流通孔に向かって受け流す傾斜面を有するため、多孔電極板231~233の表面における離泡性が向上する。また、多孔電極板231~233の気泡流通孔の間の面が、角部を挟んで別面として構成されるため、一方の面で発生した泡が他方の面で発生した泡と合体せず、多孔電極板231~233から離脱する気泡がより微泡化したり、分子レベル水素、ナノバブルやマイクロバブル状態での水素溶存も期待できる。また、気泡流通孔の間の多孔電極板231~233が水流に向かう角部を有することにより、多孔電極板231~233の気泡流通孔を流通する水流がスムーズになり、ポンプ部20から最も遠い多孔電極板231~233の気泡流通孔を流通するまで水勢を維持できる。また、角部は表面張力が小さいため、水流が直接当たる多孔電極板231~233の気泡流通孔の間の角部で発生する気泡の離泡性が向上する。 In the hydrogen water generating apparatus configured as described above, an inclined surface through which the partition wire W receives the water flow generated by the pump unit 20 toward the bubble circulation holes on both sides between the bubble circulation holes of the porous electrode plates 231 to 233. Therefore, the defoaming property on the surfaces of the porous electrode plates 231 to 233 is improved. In addition, since the surface between the bubble circulation holes of the porous electrode plates 231 to 233 is configured as a separate surface across the corner, the bubbles generated on one surface do not merge with the bubbles generated on the other surface. Further, bubbles released from the porous electrode plates 231 to 233 are expected to become finer, and hydrogen can be dissolved in a molecular level hydrogen, nanobubble or microbubble state. Further, since the porous electrode plates 231 to 233 between the bubble circulation holes have corners directed toward the water flow, the water flow flowing through the bubble circulation holes of the porous electrode plates 231 to 233 becomes smooth and is farthest from the pump unit 20. The water flow can be maintained until the bubble circulation holes of the porous electrode plates 231 to 233 are circulated. In addition, since the corner portion has a small surface tension, the bubble releasing property of the bubbles generated at the corner portion between the bubble circulation holes of the porous electrode plates 231 to 233 that the water flow directly hits is improved.
 また、複数の多孔電極板31~33の気泡流通孔31a~33aは、隣接する多孔電極板の間で略互い違いの位置関係で設けられている。 In addition, the bubble circulation holes 31a to 33a of the plurality of porous electrode plates 31 to 33 are provided in a substantially staggered positional relationship between adjacent porous electrode plates.
 このように構成された水素水生成装置においては、複数の多孔電極板31~33にそれぞれ形成される気泡流通孔31a~33aの位置が互い違いに形成されているため、気泡流通孔31a~33aを通る水流が多孔電極板の間の隅々まで多孔電極板に沿って流通することとなり、多孔電極板の表面全体における離泡性を向上させるとともに、複数の多孔電極板の間で水の置換効率を向上することができる。 In the hydrogen water generating apparatus configured as described above, the positions of the bubble circulation holes 31a to 33a formed in the plurality of porous electrode plates 31 to 33 are alternately formed. The flowing water flow will flow along the porous electrode plate to every corner between the porous electrode plates, improving the foam releasing property on the entire surface of the porous electrode plate, and improving the water replacement efficiency between the multiple porous electrode plates. Can do.
 なお、本発明は上述した実施形態に限られず、上述した実施形態の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術並びに上述した実施形態の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も含まれる。また,本発明の技術的範囲は上述した実施形態に限定されず,特許請求の範囲に記載された事項とその均等物まで及ぶものである。 Note that the present invention is not limited to the above-described embodiments, and the configurations disclosed in the above-described embodiments are interchanged with each other or the combinations thereof are changed, disclosed in the known technology, and in the above-described embodiments. A configuration in which each configuration is mutually replaced or a combination is changed is also included. Further, the technical scope of the present invention is not limited to the above-described embodiments, but extends to the matters described in the claims and equivalents thereof.
 例えば、上記実施形態において電源部40は蓄電可能に構成したが、これに限定されるものではなく、商用電源などに接続して外的に電力を得るよう電源部40を構成しても良い。 For example, in the above-described embodiment, the power supply unit 40 is configured to be capable of storing electricity. However, the power supply unit 40 is not limited thereto, and the power supply unit 40 may be configured to be connected to a commercial power supply to obtain power externally.
10…ケース、10a…上ケース、10b…下ケース、10c…保護部材、10c1…基部、10c2…リブ、10c3…開口、10c4…開口、11…流入口、12…流出口、13…通水路、13a…貫通孔、13b…圧力室、14…フィルター、15…操作スイッチ、16…照明・動作確認LED、17…充電端子、18…充電基板、20…ポンプ部、21…内部通水路、30…電解部、31…多孔電極板、31~33…多孔電極板、31a~33a…気泡流通孔、32…多孔電極板、33…多孔電極板、34…導体棒、35…導体棒、40…電源部、50…制御部、100…水素水生成装置、231~233…多孔電極板、231a~233a…気泡流通孔、232…多孔電極板、233…多孔電極板、313…通水路、313b…圧力室、313c…筒状水路、313d…縮径部、313e…拡径部、313f1~313f4…整流フィン、電荷集中部…432、制御部…440、H1…頂部、H2…頂部、H3…頂部、H4…頂部、L1…第1対角線、L2…第2対角線、W…区画ワイヤ、X…連結部 DESCRIPTION OF SYMBOLS 10 ... Case, 10a ... Upper case, 10b ... Lower case, 10c ... Protection member, 10c1 ... Base, 10c2 ... Rib, 10c3 ... Opening, 10c4 ... Opening, 11 ... Inlet, 12 ... Outlet, 13 ... Waterway, 13a ... Through hole, 13b ... Pressure chamber, 14 ... Filter, 15 ... Operation switch, 16 ... Illumination / operation check LED, 17 ... Charging terminal, 18 ... Charging board, 20 ... Pump part, 21 ... Internal water passage, 30 ... Electrolytic part 31 ... Porous electrode plate, 31-33 ... Porous electrode plate, 31a-33a ... Bubble passage hole, 32 ... Porous electrode plate, 33 ... Porous electrode plate, 34 ... Conductor rod, 35 ... Conductor rod, 40 ... Power supply 50, control unit, 100 ... hydrogen water generator, 231 to 233 ... porous electrode plate, 231a to 233a ... bubble flow hole, 232 ... porous electrode plate, 233 ... porous electrode plate, 313 ... water passage, 313b ... pressure Chamber, 313c ... cylindrical channel, 313d ... reduced diameter part, 313e ... expanded diameter part, 313f1-313f4 ... rectifying fin, charge concentration part ... 432, control part ... 440, H1 ... top part, H2 ... top part, H3 ... top part, H4 ... Top, L1 ... First diagonal, L2 ... Second diagonal, W ... Partition wire, X ... Connection

Claims (11)

  1.  水中に浸漬可能であって、水の流入口と流出口とを連通する通水路と、
     前記通水路に水流を発生させるポンプ部と、
     前記通水路に配設される電解部と、
     前記ポンプ部及び前記電解部に給電する電源部と、
    を備え、
     前記電解部は、一定間隔を保持して配設された複数の多孔電極板を有し、
     前記ポンプ部は、前記多孔電極板の板面に向かう水流を発生する、ことを特徴とする水素水生成装置。
    A water passage that can be immersed in water and communicates the water inlet and outlet;
    A pump unit for generating a water flow in the water passage;
    An electrolysis unit disposed in the water passage;
    A power supply unit for supplying power to the pump unit and the electrolysis unit;
    With
    The electrolysis unit has a plurality of perforated electrode plates arranged at regular intervals,
    The hydrogen generator according to claim 1, wherein the pump unit generates a water flow toward the plate surface of the porous electrode plate.
  2.  電解中に前記多孔電極板の極性を所定時間毎に反転させる制御部を備えることを特徴とする請求項1に記載の水素水生成装置。 The hydrogen water generator according to claim 1, further comprising a control unit that reverses the polarity of the porous electrode plate at predetermined time intervals during electrolysis.
  3.  前記制御部は、前記極性の反転を前記ポンプ部の稼働中に行うことを特徴とする請求項2に記載の水素水生成装置。 The hydrogen water generating apparatus according to claim 2, wherein the control unit performs the reversal of the polarity while the pump unit is in operation.
  4.  電解中に前記ポンプ部を制御して前記水流の流量を変動させる制御部を備えることを特徴とする請求項1~3いずれか1項に記載の水素水生成装置。 The hydrogen water generating apparatus according to any one of claims 1 to 3, further comprising a control unit that controls the pump unit during electrolysis to vary a flow rate of the water flow.
  5.  水流を発生させる相対的に長時間の稼動状態と、水流を発生させない相対的に短時間の停止状態とに前記ポンプ部を電解中に繰り返し切替制御する制御部により前記ポンプ部の稼動状態において多孔電極板に付着生成した剥離困難気泡を遊離させる手段を備えたことを特徴とする請求項4に記載の水素水生成装置。 Porous in the operating state of the pump unit by a control unit that repeatedly switches and controls the pump unit during electrolysis between a relatively long operating state that generates water flow and a relatively short stop state that does not generate water flow The hydrogen water generating apparatus according to claim 4, further comprising means for releasing difficult-to-peel bubbles generated and adhered to the electrode plate.
  6.  前記多孔電極板に形成された気泡流通孔の周縁に尖鋭状の電荷集中部を形成したことを特徴とする請求項1~5いずれか1項に記載の水素水生成装置。 The hydrogen water generator according to any one of claims 1 to 5, wherein a sharp charge concentrating portion is formed at a peripheral edge of a bubble circulation hole formed in the porous electrode plate.
  7.  前記多孔電極板は、当該多孔電極板の気泡流通孔の間を区画する区画部が、前記水流に向かう尖端となる角部を有する断面多角形状である、ことを特徴とする請求項1~6いずれか1項に記載の水素水生成装置。 7. The porous electrode plate according to claim 1, wherein a partition portion partitioning between the bubble circulation holes of the porous electrode plate has a polygonal cross section having a corner portion that becomes a tip toward the water flow. The hydrogen water production | generation apparatus of any one of Claims.
  8.  複数の前記多孔電極板の気泡流通孔は、隣り合う多孔電極板と略互い違いに設けられている、請求項1~7いずれか1項に記載の水素水生成装置。 The hydrogen water generating apparatus according to any one of claims 1 to 7, wherein the plurality of perforated electrode plate air holes are provided substantially alternately with adjacent perforated electrode plates.
  9.  前記複数の多孔電極板の間隙で前記ポンプより吐出された水流を加圧することにより、多孔電極板にて生成された水素を加圧下で水流中に溶解すべく構成したことを特徴とする請求項1~8いずれか1項に記載の水素水生成装置。 The hydrogen flow generated by the porous electrode plate is pressurized to be dissolved in the water flow under pressure by pressurizing the water flow discharged from the pump between the plurality of porous electrode plates. The hydrogen water generator according to any one of 1 to 8.
  10.  前記電解部には多孔電極板の上部に絶縁性を有する電極カバーが配置されており、同電極カバーには対向する多孔電極板に形成された気泡流通孔と略互い違いの位置に気泡流通孔が設けられていることを特徴とする請求項1~9いずれか1項に記載の水素水生成装置。 An electrode cover having an insulating property is arranged on the upper part of the porous electrode plate in the electrolysis part, and the bubble cover holes are formed in the electrode cover at positions substantially alternate with the bubble flow holes formed in the opposed porous electrode plate. The hydrogen water generating apparatus according to any one of claims 1 to 9, wherein the hydrogen water generating apparatus is provided.
  11.  前記流出口から流出する水流と交差する方向へ光を出射する発光手段を備えたことを特徴とする請求項1~10いずれか1項に記載の水素水生成装置。 The hydrogen water generator according to any one of claims 1 to 10, further comprising light emitting means for emitting light in a direction intersecting with a water flow flowing out from the outlet.
PCT/JP2016/077078 2015-10-14 2016-09-14 Hydrogen water generating device WO2017064967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680053536.7A CN108025933B (en) 2015-10-14 2016-09-14 Hydrogen water generator

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-203257 2015-10-14
JP2015203257 2015-10-14
JP2016099020 2016-05-17
JP2016-099020 2016-05-17
JP2016169967A JP6789730B2 (en) 2015-10-14 2016-08-31 Hydrogen water generator
JP2016-169967 2016-08-31

Publications (1)

Publication Number Publication Date
WO2017064967A1 true WO2017064967A1 (en) 2017-04-20

Family

ID=58518108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077078 WO2017064967A1 (en) 2015-10-14 2016-09-14 Hydrogen water generating device

Country Status (2)

Country Link
CN (1) CN108025933B (en)
WO (1) WO2017064967A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032368A (en) * 2018-08-30 2020-03-05 株式会社ハタノ製作所 Portable electrolytic water production device
JP2020093219A (en) * 2018-12-13 2020-06-18 マクセルホールディングス株式会社 Hydrogen water generator
JP2020124685A (en) * 2019-02-05 2020-08-20 マクセルホールディングス株式会社 Electrolytic hydrogen water generator
EP4019475A1 (en) * 2020-12-23 2022-06-29 Airxone Limited Apparatus and method for generating and delivering microbubbles and nanobubbles of hydrogen gas, oxygen gas and oxyhydrogen gas in water
WO2022136664A1 (en) 2020-12-23 2022-06-30 Airxone Limited Apparatus and method for generating and delivering microbubbles and nanobubbles of hydrogen gas, oxygen gas and/or oxyhydrogen gas in water
US20240116781A1 (en) * 2018-06-19 2024-04-11 FisherH2O, LLC Apparatuses and methods for treating, purifying and/or extracting from wastewater

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010286A1 (en) * 1997-08-27 1999-03-04 Miz Co., Ltd. Electrolytic cell and electrolyzed water generating device
JP2003220389A (en) * 2002-01-30 2003-08-05 Kosumosu Enterp:Kk Reduced water former
JP2004122108A (en) * 2002-08-01 2004-04-22 Satoyuki Den Electrolyzed reduced water generator
JP2007521133A (en) * 2003-09-25 2007-08-02 ザ プロクター アンド ギャンブル カンパニー Electrolyzer for treating water storage containers
JP3143019U (en) * 2008-04-24 2008-07-03 株式会社ヴィネーション Active hydrogen water generator for underwater
JP3155538U (en) * 2009-09-09 2009-11-19 株式会社フラックス Reduced water generator
JP2009285647A (en) * 2008-03-29 2009-12-10 Alpha Kikaku:Kk Solution modifying device and solution modifying method
JP2014231024A (en) * 2013-03-25 2014-12-11 中国電機製造株式会社 Hydrogen-containing water production apparatus
JP2015157281A (en) * 2014-01-21 2015-09-03 邦昭 堀越 Electric field type gas generator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2547183A1 (en) * 2006-05-17 2007-11-17 Ozomax Inc. Portable ozone generator for purifying water and use thereof
CN103418257B (en) * 2012-05-17 2015-09-16 九阳股份有限公司 Family expenses prepare gas-liquid transfer device and the Ozone Water preparing device of Ozone Water fast
KR101250470B1 (en) * 2012-08-10 2013-04-08 장현덕 A hydrogen water generating equipment
CN104556309A (en) * 2014-12-25 2015-04-29 福建金源泉科技发展有限公司 Magnetized and activated hydrogen-rich water kettle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010286A1 (en) * 1997-08-27 1999-03-04 Miz Co., Ltd. Electrolytic cell and electrolyzed water generating device
JP2003220389A (en) * 2002-01-30 2003-08-05 Kosumosu Enterp:Kk Reduced water former
JP2004122108A (en) * 2002-08-01 2004-04-22 Satoyuki Den Electrolyzed reduced water generator
JP2007521133A (en) * 2003-09-25 2007-08-02 ザ プロクター アンド ギャンブル カンパニー Electrolyzer for treating water storage containers
JP2009285647A (en) * 2008-03-29 2009-12-10 Alpha Kikaku:Kk Solution modifying device and solution modifying method
JP3143019U (en) * 2008-04-24 2008-07-03 株式会社ヴィネーション Active hydrogen water generator for underwater
JP3155538U (en) * 2009-09-09 2009-11-19 株式会社フラックス Reduced water generator
JP2014231024A (en) * 2013-03-25 2014-12-11 中国電機製造株式会社 Hydrogen-containing water production apparatus
JP2015157281A (en) * 2014-01-21 2015-09-03 邦昭 堀越 Electric field type gas generator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240116781A1 (en) * 2018-06-19 2024-04-11 FisherH2O, LLC Apparatuses and methods for treating, purifying and/or extracting from wastewater
JP2020032368A (en) * 2018-08-30 2020-03-05 株式会社ハタノ製作所 Portable electrolytic water production device
JP7054521B2 (en) 2018-08-30 2022-04-14 株式会社ハタノ製作所 Portable electrolyzed water generator
JP2020093219A (en) * 2018-12-13 2020-06-18 マクセルホールディングス株式会社 Hydrogen water generator
JP7271156B2 (en) 2018-12-13 2023-05-11 マクセル株式会社 hydrogen water generator
JP2020124685A (en) * 2019-02-05 2020-08-20 マクセルホールディングス株式会社 Electrolytic hydrogen water generator
JP7193365B2 (en) 2019-02-05 2022-12-20 マクセル株式会社 Electrolyzed hydrogen water generator
EP4019475A1 (en) * 2020-12-23 2022-06-29 Airxone Limited Apparatus and method for generating and delivering microbubbles and nanobubbles of hydrogen gas, oxygen gas and oxyhydrogen gas in water
WO2022136664A1 (en) 2020-12-23 2022-06-30 Airxone Limited Apparatus and method for generating and delivering microbubbles and nanobubbles of hydrogen gas, oxygen gas and/or oxyhydrogen gas in water

Also Published As

Publication number Publication date
CN108025933B (en) 2021-12-21
CN108025933A (en) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2017064967A1 (en) Hydrogen water generating device
JP2017205753A (en) Hydrogen water generating device
US5314589A (en) Ion generator and method of generating ions
RU2701736C2 (en) Gas generator
US6632336B2 (en) Acidic liquid atomizer
KR101005476B1 (en) Flush toilet apparatus
EP2246029A1 (en) Microbubble therapy method and generating apparatus
EP2226057A1 (en) Microbubble therapy method and generating apparatus
EP2226056B1 (en) Microbubble generating apparatus
JP2007283180A (en) Ozone water generator and ozone water generation method
KR101347635B1 (en) Beauty-health improved device
JP6895636B2 (en) Liquid processing equipment
EP2226055A1 (en) Microbubble therapy method and generating apparatus
KR101986910B1 (en) Hydrogen Water Face Cleanser
KR102024236B1 (en) Bottle for generating hydrogen water
KR102051556B1 (en) Bottle for generating hydrogen water
CN101024092B (en) Air filtering apparatus
KR200371538Y1 (en) Catridge-type device for producing hydrogen-abundant water
JP2018093919A (en) Mist generator
JP7054521B2 (en) Portable electrolyzed water generator
CN220351821U (en) Electrolysis device and clothes treatment equipment
JP7271156B2 (en) hydrogen water generator
KR102649121B1 (en) Microbubble cleanser including electrolysis tube
JP7340744B2 (en) portable electrolyzed water sprayer
JP2002065819A (en) Acidic water spray

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855221

Country of ref document: EP

Kind code of ref document: A1