WO2017064835A1 - Target information detection system and target information detection method - Google Patents

Target information detection system and target information detection method Download PDF

Info

Publication number
WO2017064835A1
WO2017064835A1 PCT/JP2016/004299 JP2016004299W WO2017064835A1 WO 2017064835 A1 WO2017064835 A1 WO 2017064835A1 JP 2016004299 W JP2016004299 W JP 2016004299W WO 2017064835 A1 WO2017064835 A1 WO 2017064835A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
speed
target information
measurement
detection device
Prior art date
Application number
PCT/JP2016/004299
Other languages
French (fr)
Japanese (ja)
Inventor
慎吾 山之内
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017545081A priority Critical patent/JP6874686B2/en
Priority to US15/765,305 priority patent/US10809368B2/en
Publication of WO2017064835A1 publication Critical patent/WO2017064835A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/536Discriminating between fixed and moving objects or between objects moving at different speeds using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • G01S13/38Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal wherein more than one modulation frequency is used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0272Multifunction radar

Definitions

  • the present invention relates to a target information detection system and a target information detection method for measuring target information such as a distance to a target and a relative speed.
  • the on-vehicle radar emits radio waves toward targets such as other vehicles and obstacles, and receives the reflected waves reflected by this target. Then, the presence of the target, the distance to the target (target distance), and the relative speed of the target are measured by analyzing the received signal based on the received wave (reflected wave).
  • target information the presence of the target, the target distance, and the relative speed of the target are collectively referred to as target information.
  • Such an on-vehicle radar is used as a system for improving the movement safety of an automobile such as a collision mitigation (braking) system or a preceding vehicle following system. At this time, it is important to improve the detection resolution of the target in order to improve reliability and safety of movement.
  • braking collision mitigation
  • the detection resolution in the distance direction is improved by widening the RF (Radio Frequency) signal and the baseband signal (BB signal) used as the base of the radiated radio wave.
  • RF Radio Frequency
  • BB signal baseband signal
  • a desired detection resolution can be obtained with a narrow RF signal bandwidth, the number of channels that can be used increases, so there is an advantage that radio wave interference between in-vehicle radars is suppressed.
  • FMCW Frequency Modulated Continuous Wave
  • pulse radar pulse compression radar
  • multi-frequency CW radar using continuous wave CW: Continuous Wave
  • ICW Interrupted Continuous Wave
  • CW Continuous Wave
  • ICW Interrupted Continuous Wave
  • CW Continuous Wave
  • CPC Complementary Phase Code
  • the signal bandwidth in each of the FM-CW method, the two-frequency CW method, the pulse method, and the pulse compression method was calculated from the formula shown in the lower column of each method (see Non-Patent Document 3).
  • the value of the signal bandwidth in the multi-frequency CPC method refers to the actual measurement value in Non-Patent Document 2.
  • the number of frequencies used in the multi-frequency CW method is two.
  • both the FM-CW method and the pulse / pulse compression method require a wide RF signal bandwidth given by c / (2 ⁇ R).
  • c is the speed of light
  • ⁇ R is the distance resolution.
  • the multi-frequency CPC method is a method in which the multi-frequency CW method and the pulse compression method are combined.
  • the RF signal bandwidth of the same level as the pulse compression used for the combination is still required.
  • the 2-frequency CW system (or multi-frequency CW system) has an advantage that both the bandwidth of the RF signal and the BB signal can be suppressed.
  • each target cannot be individually recognized (target information corresponding to each target cannot be acquired).
  • FIG. 8 is a block diagram of a two-frequency CW system on-vehicle radar.
  • This on-vehicle radar includes an antenna 101, a circulator 102, a mixer 103, a low-pass filter (LPF) 104, an oscillator 105, an analog-digital (A / D) converter 106, a Fourier transform unit 107, a calculator 109, and a controller 110.
  • LPF low-pass filter
  • a / D analog-digital converter
  • the Fourier transform unit 107 is provided with two of Fourier transformer 108 1 and Fourier transformer 108 2.
  • the oscillator 105 switches the RF signals (transmission signals) of the two frequencies f 1 and f 2 in accordance with instructions from the controller 110 and outputs them to the circulator 102 and the mixer 103.
  • Tc is a period.
  • the RF signal output from the oscillator 105 to the circulator 102 is output as a transmission wave Wt via the antenna 101.
  • This transmission wave Wt is reflected by the target T and received by the antenna 101 as a reception wave Wr.
  • the received wave Wr received by the antenna 101 is input to the mixer 103 via the circulator 102.
  • the mixer 103 mixes the transmission signals of the frequencies f 1 and f 2 and the reception signals of the reception frequencies f 1 + f d and f 2 + f d from the oscillator 105, and outputs them to the A / D converter 106 via the BPF 104. To do.
  • a signal input to the A / D converter 106 is referred to as a beat signal.
  • the frequency of the beat signal is, the Doppler frequency f d.
  • the beat signal when the frequency of the RF signal output from the oscillator 105 is f 1 and f 2 is S f1 (t) and S f2 (t) and the indefinite constant of the in-vehicle radar is ⁇ 0
  • the beat signal S f1 (t) and S f2 (t) are S f1 (t) ⁇ cos [2 ⁇ f d t ⁇ 4 ⁇ f 1 R / c + ⁇ 0 ] (1)
  • S f2 (t) ⁇ cos [2 ⁇ f d t ⁇ 4 ⁇ f 2 R / c + ⁇ 0 ] (2) Are given by Equations 1 and 2.
  • the beat signal is converted into a digital signal by the A / D converter 106 and input to the Fourier transform unit 107, and the spectrum phase is obtained by the Fourier transform unit 107.
  • the Fourier transformers 108 1 and 108 2 used for the calculation of the spectrum phase are selected in synchronization with the frequency switching timing signal of the RF signal (transmitted wave Wt) output from the controller 110 to the oscillator 105, and the Fourier transform unit. This is performed based on the instruction output to 107.
  • Patent Document 1 proposes a method (equivalent to the multi-frequency CPC method) in which a multi-frequency CW method and a pulse method are combined.
  • This proposal switches from the 2-frequency CW method to another radar method in a situation where the 2-frequency CW method cannot be used (when the relative speed of the target is “0” or there are a plurality of targets having the same speed).
  • the other radar methods can detect the target even in a situation where the two-frequency CW method cannot be used (when the relative speed of the target is “0” or there are a plurality of targets having the same speed).
  • the FMCW system in Patent Documents 1 and 2 the FMCW system in Patent Documents 3 and 4 or the frequency pulse CW system, and the 2-frequency Ramp modulation system in Patent Documents 5 and 6 can be exemplified.
  • Takayuki Inaba “Multi-target separation method using multi-frequency step ICW radar", IEICE Transactions B, Vol. J89-B, No. 3, pp. 373-383, 2006 Masato Watanabe, Manabu Akita, Takayuki Inaba, "Millimeter Wave Radar using Stepped Frequency Complementary Phase Code Modulation 13 RE 20 Tetsuro Kirimoto, “Fundamentals of Automotive Radar” MWE 2007 Digest, 2007
  • an RF signal or a BB signal is generated even in a method using a time waveform combining a multi-frequency CW method and a pulse method in Patent Document 7 for a radar.
  • Patent Document 7 There is a problem of wide bandwidth.
  • the transmission frequency of the transmission radio wave is set at a timing synchronized with the sample frequency of A / D conversion.
  • a method of switching has been proposed.
  • this method also has a problem that the RF signal has a wide band.
  • the bandwidth of the RF signal is 1 GHz.
  • a main object of the present invention is to provide a target information detection apparatus and a target information detection method that can be easily designed and can separately detect a plurality of targets having the same speed by using a narrow band RF signal and a BB signal at low cost. Is to provide.
  • target information is obtained by irradiating a plurality of targets with a transmission wave having a predetermined frequency from a measurement-side moving body, and obtaining the distance between the measurement-side moving body and the target as target information from the Doppler frequency included in the reflected wave.
  • the invention according to the detection system includes a target information detection device that calculates target information based on a Doppler frequency, a measurement-side speed detection device that detects the speed of a measurement-side moving body as a moving-body speed, a target information detection device, and a measurement-side speed.
  • a measurement-side communication device that includes at least a measurement-side communication device that communicates with the detection device, a measurement-side unit mounted on the measurement-side moving body, a target-side speed detection device that detects a target velocity as a target velocity, and a target-side velocity detection device And a target-side communication device that communicates with the measurement-side communication device.
  • a target unit mounted on the target, and the target information detection device determines from the Doppler frequency that the relative speed between the measurement-side moving body and the target is equal to or lower than a preset mode switching speed. Switches the target information detection mode from the Doppler mode to the communication mode, acquires the moving body speed via the measurement side communication apparatus, and acquires the target speed via the measurement side communication apparatus and the target side speed detection apparatus.
  • the target information is calculated using the moving body speed and the target speed. Further, a plurality of targets are irradiated with a transmission wave having a predetermined frequency from the measuring-side moving body, and the Doppler frequency included in the reflected wave is calculated. Information detection that determines the distance between the measurement-side moving object and the target as target information According to the present invention, the target information is calculated based on the Doppler frequency by the target information detection device, the velocity of the measurement-side moving body is calculated as the moving-body velocity by the measurement-side velocity detection device, and the target-information detection device is calculated by the measurement-side communication device And the target side speed detection device detects the target speed as the target speed, the target side communication device communicates with the target side speed detection device and the measurement side communication device, and measures from the Doppler frequency.
  • the target information detection mode is switched from the Doppler mode to the communication mode, and the moving body speed is acquired via the measurement side communication device. And the measurement side communication device and the target side speed detection device To obtain the target speed through, and calculates the target information using the mobile speed and the target speed, characterized in that.
  • a target information detection apparatus and a target information detection method that are easy to design and can separately detect a plurality of targets having the same speed by using a narrow band RF signal and a BB signal. .
  • FIG. 1 is an explanatory diagram of a target information detection system 2 according to the present embodiment.
  • the target information detection system 2 includes a measurement side unit 3 and a target side unit 4.
  • FIG. 1 a vehicle (moving body) A and a vehicle (target) B are illustrated, the measurement side unit 3 is mounted on the vehicle A, and the target side unit 4 is mounted on the vehicle B.
  • FIG. 1A shows the case where the speed of the vehicle A> the vehicle B
  • FIG. 1B shows the case where the speed of the vehicle A ⁇ the vehicle B
  • FIG. 1C shows the case where the speed of the vehicle A ⁇ the vehicle B. Yes.
  • the inter-vehicle distance (target information) between the vehicle A and the vehicle B is acquired by the measurement side unit 3 mounted on the vehicle A.
  • the target information may include information on the relative speed between the vehicle A and the vehicle B, the presence of the vehicle B, and the like.
  • Vehicle A and vehicle B are examples, and are not limited to vehicles. For example, it may be a transport carrier in a factory, and the vehicle B may be a stationary object.
  • the measurement side unit 3 includes a measurement side speed detection device 3A, a measurement side communication device 3B, and a target information detection device 3C.
  • the measurement-side speed detection device 3A detects the speed of the vehicle A (moving body speed).
  • the measurement-side communication device 3B communicates with the target information detection device 3C and the measurement-side speed detection device 3A, and also communicates with the target-side communication device 4B.
  • the target information detection device 3 ⁇ / b> C detects target information of the vehicle B based on a Doppler frequency or the like based on the relative speed between the vehicle A and the vehicle B.
  • the target side unit 4 includes a target side speed detection device 4A and a target side communication device 4B.
  • the target-side speed detection device 4A detects the target speed (target speed).
  • the target side communication device 4B communicates with the target side speed detection device 4A and the measurement side communication device 3B.
  • the measurement-side speed detection device 3A and the target-side speed detection device 4A may be a speed detection device such as a speed meter attached to each vehicle A or vehicle B (may be used in combination).
  • the target information detection device 3C determines from the Doppler frequency that the relative speed between the vehicle A and the vehicle B is equal to or lower than the predetermined speed
  • the target information detection device 3C acquires the moving body speed via the measurement-side communication device 3B.
  • the target speed is acquired via the measurement side communication device 3B and the target side speed detection device 4A. Thereafter, the target information detection device 3C calculates target information using the moving body speed and the target speed.
  • the target information detection device 3C is desirably a two-frequency CW method (or a multi-frequency CW method).
  • the speeds of the vehicles A and B are V A and V B , the vehicle B moves in front of the vehicle A, and the vehicles A and B are moving in the same direction.
  • the present embodiment is not limited to such conditions. That is, the vehicle B may be moving in the direction opposite to the moving direction of the vehicle A. Therefore, the irradiation direction of the transmission wave Wt is not limited to the moving direction of the vehicle A. Assuming such various cases, the irradiation direction of the transmission wave Wt may be radiated forward, backward, left and right at predetermined time intervals.
  • the target information detection procedure will be described with reference to the flowchart shown in FIG.
  • Steps S1, S2 When the process is started, the target information detection mode is set to the Doppler mode.
  • the target information detection mode includes a Doppler mode in which target information is acquired from the Doppler frequency and a communication mode in which target information is acquired from an actual measurement value of relative speed.
  • the target information detection device 3C transmits N transmission signals having different frequencies and receives a reflected wave from the target. Then, the Doppler frequency is calculated from the difference between the transmission signal and the reception signal.
  • Step S3 The Doppler frequency is proportional to the relative speed between the vehicle A and the target T. Therefore, it is determined whether or not the calculated absolute value of the relative speed is equal to or less than a preset mode switching speed.
  • the target distance is calculated by integrating the relative speeds of the vehicles A and B as will be described later. Therefore, when speed V A ⁇ speed V B (that is, absolute value of relative speed ⁇ mode switching speed), measurement errors of speed V A and speed V B are accumulated and increased, and the detection accuracy of the target distance is increased. It will decrease.
  • the mode switching speed is a value set according to the detection accuracy of the allowable target distance.
  • the relative speeds of the vehicles A and B are (1) when the speed V A > the speed V B (corresponding to FIG. 1 (a)), (2) when the speed V A ⁇ the speed V B (FIG. 1 (b) ), And (3) the case where the speed V A ⁇ the speed V B (corresponding to FIG. 1C).
  • Speed V A > Speed V B and (3) Speed V A ⁇ Speed V B the absolute value of the relative speed> Mode switching speed
  • (2) Speed V A ⁇ Speed for V B an absolute value ⁇ mode switching speed of the relative velocity.
  • Step S4 (in the case of absolute value of relative speed> mode switching speed: Doppler mode)
  • the distance (target distance) between the vehicle A and the vehicle B decreases with the passage of time (the vehicle A and the vehicle B approach each other), or the target distance increases with the passage of time ( Vehicle A and vehicle B are separated). That is, the relationship of absolute value of relative speed> mode switching speed is satisfied.
  • the frequency of the reception wave Wr is Doppler modulated according to the relative speed between the vehicle A and the vehicle B with respect to the transmission wave Wt, and the frequency of the reception wave Wr is shifted by the Doppler frequency f d with respect to the frequency of the transmission wave Wt. Frequency. Therefore, the target information detection device 3C calculates the Doppler frequency based on the transmission wave Wt and the reception wave Wr, and acquires target information such as the relative position, target distance, and relative speed of the vehicle B.
  • This reset process means resetting the initial value.
  • Steps S5 to S7 (In the case of absolute value of relative speed ⁇ mode switching speed: communication mode)
  • speed V A ⁇ speed V B as shown in FIG. 1B
  • the relationship of absolute value of relative speed ⁇ mode switching speed is satisfied, so that there is almost no change in the target distance with time.
  • the Doppler frequency f d becomes f d ⁇ 0, so that it is difficult to acquire the target information of the vehicle B with high accuracy.
  • the target information detection device 3C determines that the Doppler frequency f d ⁇ 0
  • the target information detection device 3C outputs a speed request command to the measurement-side communication device 3B.
  • the measurement side communication device 3B requests the current speed of the own device (vehicle A) from the measurement side speed detection device 3A. Thereby, the speed V A of the vehicle A is sent from the measurement side speed detection device 3A to the target information detection device 3C via the measurement side communication device 3B.
  • the measurement side communication device 3B transmits the speed request command to the target side communication device 4B.
  • the target side communication device 4B acquires the current speed of the target (vehicle B) from the target side speed detection device 4A, and sends it to the target information detection device 3C via the target side communication device 4B. Send.
  • R 0 is a target distance between the vehicle A and the vehicle B at the time of mode switching.
  • the target information is acquired using the two-frequency CW method (or the multi-frequency CW method) and the Doppler frequency cannot be measured with high accuracy (the absolute value of the relative speed ⁇ the mode switching speed)
  • the measurement side speed detection device, the measurement side communication device, the target side speed detection device, and the target side communication device the presence of the vehicle B can be detected with high accuracy and the target information can be acquired. Will be able to.
  • target information of the target can be acquired even when the target is moving at the same speed as the own device.
  • each target cannot be identified and the target information cannot be acquired. Therefore, in this embodiment, target information of each target can be acquired even in such a case.
  • FIG. 3 is a diagram for explaining target information detection by the target information detection system 2 in such a system.
  • the vehicle (mobile unit) A moving at velocity V A, and detects the vehicle target information (second type target) C moving vehicle moving at a speed V B (Type 1 target) B, at a velocity V C Yes.
  • the vehicle A is equipped with a measurement-side speed detection device 3A, a measurement-side communication device 3B, and a target information detection device 3C.
  • the vehicle B is equipped with a target-side speed detection device 4A and a target-side communication device 4B.
  • the vehicle C does not include such speed detection means and communication means. Further, the front-rear relationship between the vehicle B and the vehicle C as viewed from the vehicle A does not matter.
  • FIG. 4 is a block diagram of the target information detection apparatus 3C.
  • the target information detection apparatus 3C includes at least an antenna 11, a circulator 12, a mixer unit 13, an oscillator 15, a Fourier transform unit 17, a calculator 19, and a controller 20.
  • the mixer unit 13 includes a mixer 13a, a band pass filter (BPF) 13b, and an analog-digital (A / D) converter 13c.
  • the Fourier transform unit 17 includes N Fourier transformers 18 1 ... 18 N.
  • the target T is composed of M targets T 1 ... T M , and each target T is moving at the same speed. Then, the target information detection device 3C identifies a plurality of targets T and acquires target information of each target. In FIG. 4, the target T is also illustrated, but it is added that the target T does not constitute the target information detection device 3 ⁇ / b> C.
  • the Fourier transform unit 17 is configured by N Fourier transformers 18 1 ... 18 N.
  • each Fourier transformer 18 1 ... 18 N is different only in the frequency of the signal to be processed, and therefore a common description may be described as a Fourier transformer 18 or a Fourier transformer 18 i .
  • the oscillator 15 outputs RF signals (transmission signals) G3 having N frequencies f 1 ... F N.
  • FIG. 5 is a diagram illustrating frequencies f 1 ... F N in the oscillator 15. Again, there may be described a frequency f 1 ... f N and frequency f or frequency f i.
  • the number M of targets T, the number N of Fourier transformers 18, and the number N of frequencies f are positive integers and are required to satisfy the relationship of N ⁇ M + 1 as will be described later.
  • the controller 20 outputs a frequency switching command G1 to the oscillator 15 and outputs a Fourier transformer switching command G2 to the Fourier transform unit 17 in synchronization with the frequency switching command G1.
  • the oscillator 15 outputs a transmission signal G3 of a frequency f i that is specified by the frequency switching command G1 to the circulator 12 and the mixer unit 13.
  • the Fourier transform unit 17, selects the Fourier transformer 18 i corresponding to the specified frequency f i in the Fourier transformer switching command G2, the selected Fourier transformer 18 i is FFT was (Fast Fourier Transform) conversion Process.
  • Such target information detection apparatus 3C operates as follows. First, the transmission signal G3 output from the oscillator 15 to the circulator 12 is irradiated from the antenna 11 toward the target T as a transmission wave Wt. The irradiated transmission wave Wt is reflected by the target T and received by the antenna 11 as a reception wave Wr.
  • the received wave Wr is received by the antenna 11 and input to the mixer unit 13 via the circulator 12 as a received signal.
  • the mixer 13a mixes the reception signal and the transmission signal, and outputs the mixed signal as a beat signal to the A / D converter 13c via the BPF 13b.
  • Beat signal S M (t, f i) in the case of the frequency of the transmitted signal G3 is f i is, S M (t, f i ) ⁇ B j (6) Given in. Note that ⁇ means the sum of 1 ... M for j.
  • B j is the beat signal of the received signal by the reflected received wave Wr at each target T j. That is, the beat signal S M (t, f i ) in Expression 6 is the sum of the beat signals based on the received signals from the respective targets T.
  • R j is the target distance of each target T j
  • a j is the amplitude of the beat signal obtained from the received signal from the target T j
  • ⁇ 0 is an indefinite constant.
  • the beat signal is converted into a digital signal by the A / D converter 13c, and an FFT conversion process is performed by the Fourier transform unit 17 to calculate a spectrum phase.
  • Fourier controller 20 when instructed to output the transmission signal G3 of the frequency f i with the frequency switching command G1 relative to oscillator 15, corresponding to the frequency f i for the Fourier transform unit 17
  • the converter 18 i is instructed to perform the FFT conversion process.
  • the computing unit 19 calculates the target distance R i using the spectral phase calculated by the Fourier transformer 18 i .
  • K is a constant, K ⁇ 4 ⁇ / c (11)
  • the function X (A 1 , A 2 , R 1 , R 2 , f i ) is X (A 1 , A 2 , R 1 , R 2 , f i ) ⁇ A 2 ⁇ sin (K ⁇ f i (R 2 ⁇ R 1 )) / [A 1 + A 2 ⁇ cos (K ⁇ f i (R 2 -R 1 ))] ... (12) Given in.
  • the beat signal S 2 (t, f i ) will contain only a single Doppler frequency f d .
  • the amplitude A 12 (f i ) and the phase ⁇ 12 (f i ) of the beat signal expressed by the equations 8 to 10 are values based on the observation result, and the frequency f i of the transmission signal G3 output from the oscillator 15 is expressed as follows. When changed, each takes a different value.
  • first type targets B including a target side speed detection device 4A and a target side communication device 4B, and vehicles (second type targets) C not including these, and each When the vehicle moves at the same speed, the target information of each target is acquired individually.
  • FIG. 6 is an explanatory diagram of such a target information detection system 2.
  • the first type target vehicle B is described as p units (vehicles B 1 ... B p )
  • Equation 16 (M ⁇ 1) (f i ) + tan ⁇ 1 [ ⁇ (A 12... (M ⁇ 1) (f i ), A M , R M , f i , ⁇ 0 )] (17) are given by Equation 16 and Equation 17.
  • the beat signal amplitudes A 12... M (f i ) and phases ⁇ 12... M (f i ) are converted into amplitude parameters A 1 , A 2. ... A M , phase parameter ⁇ 0 , and position parameters R 1 , R 2 ... R M can generate equations.
  • the beat signal amplitude A 12 ... M (f i) and phase ⁇ 12 ... M (f i) are known variables obtained by measuring the amplitude parameter A 1, A 2 ... A M and the phase parameter ⁇ 0 and the position parameters R 1 , R 2 ... RM are unknown variables.
  • the frequency f i N number of values (i 1,2, ..., N ) when taken in, the beat signal amplitude A 12 ... M a (f i) and phase ⁇ 12 ... M (f i) , the amplitude parameter and a 1, a 2 ... a M and the phase parameter phi 0, equations expressed in positional parameters R 1, R 2 ... R M is the 2N generated in total.
  • the total number of unknown variables [amplitude parameters A 1 , A 2 ... A M , phase parameter ⁇ 0 and position parameters R 1 , R 2 ... R M ] is 2M + 1.
  • p pieces of positional parameters of the M position parameters R 1, R 2 ... R M i.e., the vehicle B 1 ... position of B p
  • the number of net unknown parameters is (2M ⁇ p + 1).
  • the target distance R 1, R 2 ... R M is obtained by solving the above 2N number of simultaneous equations. Note that (2M ⁇ p + 1) / 2 is also q + (p + 1) / 2.
  • the above description be arbitrarily interchanged positional relationship between the vehicle B 1 ... vehicle B p and the vehicle C 1 ... vehicle C q holds it.
  • the direction in which the target information detection device 3C irradiates the transmission wave Wt is the forward direction of the vehicle A.
  • the irradiation direction of the transmission wave Wt is not particularly limited. As described above, the horizontal direction may be used.
  • the communication unit and the speed detection unit are used together, so that the two-frequency CW method or the multi-frequency CW method can be used. Even when the relative speed between the target information detection device and the target is “0”, the target information of each target can be acquired. Further, even when there are a plurality of targets having the same speed as the target information detection device, each target information can be acquired while identifying each target.
  • the bandwidth of the RF signal and the BB signal can be made narrower than when a broadband radar system is used. This facilitates circuit design and enables cost reduction of the device. In addition, there is an effect that it is possible to avoid the problem of spectrum efficiency reduction and interference due to the broadening of the transmission signal G3.
  • the target information detection device and the target can be regarded as “0” or approximately “0”, so that the target information can be acquired, so that the vehicle speed (throttle / throttle) is set so that the relative speed does not become “0”. Control such as automatic control of the brake is not required. Therefore, it is possible to detect the other vehicle while maintaining the state where the vehicle has moved at the same speed as that of the other vehicle, thereby obtaining an effect that enables stable movement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

In order to make it possible to separately detect a plurality of targets having the same speed using a narrow-band RF signal and BB signal by an inexpensive and easily designed means, the target information detection system according to the present invention includes a measurement-side speed detection device for detecting the speed of a measurement-side moving body as a moving body speed, and a target-side speed detection device for detecting the speed of a target as a target speed, and when it is determined from a Doppler frequency that the relative speed of the measurement-side moving body and the target is equal to or less than a mode switching speed set in advance, a target information detection device switches a target information detection mode from a Doppler mode to a communication mode, acquires a moving-body speed via the measurement-side speed detection device and acquires a target speed via the target-side speed detection device, and calculates target information using the moving-body speed and the target speed.

Description

ターゲット情報検出システム及びターゲット情報検出方法Target information detection system and target information detection method
 本発明は、ターゲットとの距離や相対速度等のターゲット情報を測定するターゲット情報検出システム及びターゲット情報検出方法に関する。 The present invention relates to a target information detection system and a target information detection method for measuring target information such as a distance to a target and a relative speed.
 車載レーダは、他車や障害物等のターゲットに向けて電波を照射し、このターゲットで反射された反射波を受信する。そして、受信波(反射波)による受信信号を解析することで、当該ターゲットの存在、ターゲットとの距離(ターゲット距離)、ターゲットの相対速度を測定する。以下、ターゲットの存在、ターゲット距離、ターゲットの相対速度を総称してターゲット情報と記載する。 The on-vehicle radar emits radio waves toward targets such as other vehicles and obstacles, and receives the reflected waves reflected by this target. Then, the presence of the target, the distance to the target (target distance), and the relative speed of the target are measured by analyzing the received signal based on the received wave (reflected wave). Hereinafter, the presence of the target, the target distance, and the relative speed of the target are collectively referred to as target information.
 このような車載レーダは、衝突軽減(ブレーキ)システムや先行車追従システム等の自動車の移動安全性を向上させるシステムとして利用されている。このときターゲットの検出分解能を向上させることは、信頼性及び移動安全性を向上させるために重要である。 Such an on-vehicle radar is used as a system for improving the movement safety of an automobile such as a collision mitigation (braking) system or a preceding vehicle following system. At this time, it is important to improve the detection resolution of the target in order to improve reliability and safety of movement.
 一般に、照射する電波の基として使用するRF(Radio Frequency)信号やベースバンド信号(BB信号)を広帯域化することで、距離方向の検出分解能は向上する。しかしながら、検出分解能を向上しつつ、RF信号やベースバンド信号(BB信号)の帯域幅を狭くすることが望ましい。これは信号の帯域幅を狭くすることで、要求される検出分解能を備える回路設計が容易になり、またシステムコストが低減できるためである。さらに、狭いRF信号の帯域幅で所望の検出分解能を得ることができれば、使用できるチャネル数が増えるため、車載レーダ間の電波干渉が抑制される利点もある。 Generally, the detection resolution in the distance direction is improved by widening the RF (Radio Frequency) signal and the baseband signal (BB signal) used as the base of the radiated radio wave. However, it is desirable to reduce the bandwidth of the RF signal and the baseband signal (BB signal) while improving the detection resolution. This is because by narrowing the signal bandwidth, circuit design with the required detection resolution can be facilitated, and the system cost can be reduced. Furthermore, if a desired detection resolution can be obtained with a narrow RF signal bandwidth, the number of channels that can be used increases, so there is an advantage that radio wave interference between in-vehicle radars is suppressed.
 このような車載レーダとして、FMCW(Frequency Modulated Continuous Wave)レーダ、パルスレーダ、パルス圧縮レーダが知られている。また、周波数を時間的に切り替える連続波(CW:Continuous Wave)を用いる多周波CWレーダ、多周波CWレーダ方式とパルスレーダ方式を組み合わせた多周波ICW(Interrupted Continuous Wave)レーダ(非特許文献1参照)が提案されている。さらには、多周波CWレーダ方式とパルス圧縮レーダ方式を組み合わせた多周波CPC(Complementary Phase Code)レーダ方式(非特許文献2参照)が提案されている。 As such an on-vehicle radar, FMCW (Frequency Modulated Continuous Wave) radar, pulse radar, and pulse compression radar are known. Also, multi-frequency CW radar using continuous wave (CW: Continuous Wave) that switches the frequency in time, multi-frequency ICW (Interrupted Continuous Wave) radar that combines multi-frequency CW radar system and pulse radar system (see Non-Patent Document 1) ) Has been proposed. Furthermore, a multi-frequency CPC (Complementary Phase Code) radar system (see Non-Patent Document 2) that combines a multi-frequency CW radar system and a pulse compression radar system has been proposed.
 ここで、各種の車載レーダにおいて、必要とされるRF信号及びBB信号の帯域幅について検討する。図7は、周波数fが60.5[GHz]のRF信号を用いて、ターゲットを所定の検出分解能で検出する際に必要なRF信号及びBB信号の帯域幅を纏めた図である。なお、ターゲットは車載レーダの前方に位置し、ターゲット距離RはR=50[m]、速度VはV=30[km/h]であるとしている。そして、距離分解能ΔRをΔR=0.3[m]、速度分解能ΔVをΔV=0.3[km/s]とする。 Here, the required bandwidths of the RF signal and the BB signal in various in-vehicle radars are examined. 7, using the RF signal of frequency f c is 60.5 [GHz], is a diagram summarizing the bandwidth of the RF signal and BB signal required in detecting the target at a predetermined detection resolution. The target is located in front of the on-vehicle radar, the target distance R is R = 50 [m], and the speed V is V = 30 [km / h]. The distance resolution ΔR is set to ΔR = 0.3 [m], and the speed resolution ΔV is set to ΔV = 0.3 [km / s].
 図7において、FM-CW方式、2周波CW方式、パルス方式、パルス圧縮方式の各方式における信号帯域幅は、各方式の下段の欄に示した公式(非特許文献3参照)から算出した。また、多周波CPC方式における信号帯域幅の値は、非特許文献2における実測値を引用している。なお、2周波CW方式は、多周波CW方式において使用する周波数の数を2としたものである。 In FIG. 7, the signal bandwidth in each of the FM-CW method, the two-frequency CW method, the pulse method, and the pulse compression method was calculated from the formula shown in the lower column of each method (see Non-Patent Document 3). In addition, the value of the signal bandwidth in the multi-frequency CPC method refers to the actual measurement value in Non-Patent Document 2. In the two-frequency CW method, the number of frequencies used in the multi-frequency CW method is two.
 図7から、所望の距離分解能ΔRを達成するために、RF信号及びBB信号の帯域幅の両方が抑制できる2周波CW方式が有効であることが分かる。 7 that the two-frequency CW method that can suppress both the bandwidth of the RF signal and the BB signal is effective to achieve the desired distance resolution ΔR.
 なお、FM-CW方式とパルス/パルス圧縮方式とは、共にc/(2ΔR)で与えられる広帯域のRF信号帯域幅が必要となる。ここで、cは光速、ΔRは距離分解能である。また、多周波CPC方式は、多周波CW方式とパルス圧縮方式の組み合わせた方式であるが、組み合わせに用いたパルス圧縮と同程度の広帯域のRF信号帯域幅がやはり要求される。 Note that both the FM-CW method and the pulse / pulse compression method require a wide RF signal bandwidth given by c / (2ΔR). Here, c is the speed of light, and ΔR is the distance resolution. In addition, the multi-frequency CPC method is a method in which the multi-frequency CW method and the pulse compression method are combined. However, the RF signal bandwidth of the same level as the pulse compression used for the combination is still required.
 2周波CW方式(又は多周波CW方式)は、RF信号及びBB信号の帯域幅の両方が抑制できる利点がある。しかし、車載レーダと同じ速度のターゲットが複数存在する場合、各ターゲットを個別に認識できない(各ターゲットに対応したターゲット情報を取得できない)問題がある。 The 2-frequency CW system (or multi-frequency CW system) has an advantage that both the bandwidth of the RF signal and the BB signal can be suppressed. However, when there are a plurality of targets having the same speed as the in-vehicle radar, there is a problem that each target cannot be individually recognized (target information corresponding to each target cannot be acquired).
 かかる2周波CW方式における問題を、図8に示した2周波CW方式における車載レーダのブロック図(非特許文献3参照)を参照して説明する。 The problem in the two-frequency CW method will be described with reference to the block diagram of the on-vehicle radar in the two-frequency CW method shown in FIG. 8 (see Non-Patent Document 3).
 先ず、ターゲット距離の算出原理を説明する。図8は、2周波CW方式の車載レーダのブロック図である。この車載レーダは、アンテナ101、サーキュレータ102、ミキサ103、ローパスフィルタ(LPF)104、発振器105、アナログ-ディジタル(A/D)変換器106、フーリエ変換ユニット107、演算器109、制御器110を含んで構成されている。なお、フーリエ変換ユニット107は、フーリエ変換器108とフーリエ変換器108との2つを備える。 First, the calculation principle of the target distance will be described. FIG. 8 is a block diagram of a two-frequency CW system on-vehicle radar. This on-vehicle radar includes an antenna 101, a circulator 102, a mixer 103, a low-pass filter (LPF) 104, an oscillator 105, an analog-digital (A / D) converter 106, a Fourier transform unit 107, a calculator 109, and a controller 110. It consists of Incidentally, the Fourier transform unit 107 is provided with two of Fourier transformer 108 1 and Fourier transformer 108 2.
 そして、発振器105は、図9で示すように、2つの周波数f、fのRF信号(送信信号)を制御器110からの指示に従い切り替えて、サーキュレータ102とミキサ103とに出力する。なお、図9においてTcは周期である。 Then, as shown in FIG. 9, the oscillator 105 switches the RF signals (transmission signals) of the two frequencies f 1 and f 2 in accordance with instructions from the controller 110 and outputs them to the circulator 102 and the mixer 103. In FIG. 9, Tc is a period.
 発振器105からサーキュレータ102に出力されたRF信号は、アンテナ101を経由して送信波Wtとして出力される。この送信波Wtは、ターゲットTにより反射されて、受信波Wrとしてアンテナ101により受波される。 The RF signal output from the oscillator 105 to the circulator 102 is output as a transmission wave Wt via the antenna 101. This transmission wave Wt is reflected by the target T and received by the antenna 101 as a reception wave Wr.
 受信波Wrの周波数は、相対速度VのターゲットTによりドップラー効果を受けて、送信波Wtの周波数に対してドップラー周波数f(=2V/λ、λは送信波Wtの波長)だけシフト(ドップラーシフト)する。 The frequency of the reception wave Wr is subjected to the Doppler effect by the target T having the relative velocity V, and is shifted by the Doppler frequency f d (= 2V / λ, λ is the wavelength of the transmission wave Wt) with respect to the frequency of the transmission wave Wt (Doppler). shift.
 アンテナ101で受信された受信波Wrは、サーキュレータ102を経由してミキサ103に入力する。ミキサ103は、発振器105からの周波数f,fの送信信号と受信周波数f+f,f+fの受信信号とをミキシングし、BPF104を経由してA/D変換器106に出力する。なお、A/D変換器106に入力する信号をビート信号と記載する。このビート信号の周波数が、ドップラー周波数fとなる。 The received wave Wr received by the antenna 101 is input to the mixer 103 via the circulator 102. The mixer 103 mixes the transmission signals of the frequencies f 1 and f 2 and the reception signals of the reception frequencies f 1 + f d and f 2 + f d from the oscillator 105, and outputs them to the A / D converter 106 via the BPF 104. To do. A signal input to the A / D converter 106 is referred to as a beat signal. The frequency of the beat signal is, the Doppler frequency f d.
 発振器105から出力されるRF信号の周波数がf、fの時のビート信号をSf1(t)、Sf2(t)とし、車載レーダが持つ不定定数をφとすると、ビート信号Sf1(t)、Sf2(t)は、
 Sf1(t)∝cos[2πft-4πfR/c+φ] …(1)
 Sf2(t)∝cos[2πft-4πfR/c+φ] …(2)
の式1,2で与えられる。
If the beat signal when the frequency of the RF signal output from the oscillator 105 is f 1 and f 2 is S f1 (t) and S f2 (t) and the indefinite constant of the in-vehicle radar is φ 0 , the beat signal S f1 (t) and S f2 (t) are
S f1 (t) ∝cos [2πf d t−4πf 1 R / c + φ 0 ] (1)
S f2 (t) ∝cos [2πf d t−4πf 2 R / c + φ 0 ] (2)
Are given by Equations 1 and 2.
 ビート信号は、A/D変換器106でディジタル信号に変換されてフーリエ変換ユニット107に入力し、このフーリエ変換ユニット107でスペクトル位相が求められる。 The beat signal is converted into a digital signal by the A / D converter 106 and input to the Fourier transform unit 107, and the spectrum phase is obtained by the Fourier transform unit 107.
 なお、送信波Wtの周波数がfである時、受信波Wrのスペクトル位相φ(=φ-4πfR/c)は、フーリエ変換器108が算出する。また、送信波Wtの周波数がfである時、受信波Wrのスペクトル位相φ(=φ-4πfR/c)は、フーリエ変換器108が算出する。 When the frequency of the transmission wave Wt is f 1 , the Fourier transformer 108 1 calculates the spectrum phase φ 1 (= φ 0 −4πf 1 R / c) of the reception wave Wr. Further, when the frequency of the transmission wave Wt is f 2 , the spectrum phase φ 2 (= φ 0 −4πf 2 R / c) of the reception wave Wr is calculated by the Fourier transformer 108 2 .
 スペクトル位相の算出に用いられるフーリエ変換器108、108の選定は、制御器110から発振器105に出力されるRF信号(送信波Wt)の周波数の切替タイミング信号に同期して、フーリエ変換ユニット107に出力される指示に基づき行われる。 The Fourier transformers 108 1 and 108 2 used for the calculation of the spectrum phase are selected in synchronization with the frequency switching timing signal of the RF signal (transmitted wave Wt) output from the controller 110 to the oscillator 105, and the Fourier transform unit. This is performed based on the instruction output to 107.
 演算器19は、ビート信号Sf1(t)、Sf2(t)のスペクトル位相φ,φの差分Δφが、 Δφ=φ-φ
で与えられるので、これを用いて、ターゲット距離Rを、
 R=cΔφ/4π(f-f) …(3)
の式3により算出する。
The calculator 19 determines that the difference Δφ between the spectrum phases φ 1 and φ 2 of the beat signals S f1 (t) and S f2 (t) is Δφ = φ 1 −φ 2.
Therefore, using this, the target distance R is
R = cΔφ / 4π (f 2 −f 1 ) (3)
It calculates with the formula 3 of.
 次に、このようなターゲット距離算出原理に基づき、図10で示すように2つのターゲットT、Tを同時に検出する場合を考える。このとき、2つのターゲットT、Tの相対速度を、それぞれV、Vとする。 Next, based on such a target distance calculation principle, consider a case where two targets T 1 and T 2 are detected simultaneously as shown in FIG. At this time, the relative speeds of the two targets T 1 and T 2 are set to V 1 and V 2 , respectively.
 BPF104から出力されるビート信号は、受信波Wrに含まれるターゲットTによるビート信号Sと、ターゲットT2によるビート信号Sとの重ね合わせとなる(S=S+S)。そして、ビート信号S、Sの周波数は、それぞれドップラー周波数fd1=2V/λ、fd2=2V/λとなる。即ち、ターゲットT、Tを同時に検出する場合、ビート信号のスペクトルは、図11で示すように、ビート信号S、Sからなる2本のスペクトルが立った状態となる。 The beat signal output from the BPF 104 is a superposition of the beat signal S 1 from the target T 1 included in the received wave Wr and the beat signal S 2 from the target T 2 (S = S 1 + S 2 ). The frequencies of the beat signals S 1 and S 2 are Doppler frequencies f d1 = 2V 1 / λ and f d2 = 2V 2 / λ, respectively. That is, when the targets T 1 and T 2 are detected at the same time, the spectrum of the beat signal is in a state in which two spectra consisting of the beat signals S 1 and S 2 are standing as shown in FIG.
 このとき、2つのターゲットT、Tで速度V、Vが異なる場合(V≠V)、ビート信号S、Sのドップラー周波数fd1=2V/λ、fd2=2V/λも異なる値となる(fd1≠fd2)。従って、図11で示すように、ビート信号S、Sのスペクトルは異なる周波数のスペクトルとして観測されるので、ビート信号S、Sのスペクトル位相を、それぞれ分離して求めることができる。依って、検出したスペクトル位相と式3とから、ターゲットT、Tのターゲット距離が、それぞれ個別に算出できるようになる。 At this time, when the speeds V 1 and V 2 are different between the two targets T 1 and T 2 (V 1 ≠ V 2 ), the Doppler frequencies f d1 = 2V 1 / λ and f d2 = of the beat signals S 1 and S 2 2V 2 / λ is also a different value (f d1 ≠ f d2 ). Therefore, as shown in FIG. 11, the spectrum of the beat signals S 1 and S 2 is observed as a spectrum having different frequencies, so that the spectrum phases of the beat signals S 1 and S 2 can be obtained separately. Therefore, the target distances of the targets T 1 and T 2 can be calculated individually from the detected spectral phase and Equation 3.
 一方、ターゲットT、Tの速度V、Vが同じ場合(V=V)、ビート信号S、Sの周波数fd1=2V/λ、fd2=2V/λも同じ値となる(fd1=fd2)。従って、図12で示すように、ビート信号S、Sのスペクトル位相は同じ周波数となり、ビート信号S、Sを、それぞれ分離して検出することができなくなる。依って、ターゲットT、Tのターゲット距離が、それぞれ個別に算出できないという問題が発生する。 On the other hand, when the speeds V 1 and V 2 of the targets T 1 and T 2 are the same (V 1 = V 2 ), the frequencies f d1 = 2V 1 / λ and f d2 = 2V 2 / λ of the beat signals S 1 and S 2 Also have the same value (f d1 = f d2 ). Therefore, as shown in FIG. 12, the spectrum phases of the beat signals S 1 and S 2 have the same frequency, and the beat signals S 1 and S 2 cannot be detected separately. Therefore, there arises a problem that the target distances of the targets T 1 and T 2 cannot be calculated individually.
 このような2周波CW方式の問題点を解決する方法として、特許文献1において多周波CW方式とパルス方式とを組み合わせた方式(多周波CPC方式と同等)が提案されている。 As a method for solving such problems of the two-frequency CW method, Patent Document 1 proposes a method (equivalent to the multi-frequency CPC method) in which a multi-frequency CW method and a pulse method are combined.
 この提案では、2周波CW方式が対応できない状況(ターゲットの相対速度が「0」、又は同じ速度のターゲットが複数存在する場合)において、2周波CW方式から他のレーダ方式に切り替えている。 This proposal switches from the 2-frequency CW method to another radar method in a situation where the 2-frequency CW method cannot be used (when the relative speed of the target is “0” or there are a plurality of targets having the same speed).
 ここで、他のレーダ方式は、2周波CW方式と異なり、2周波CW方式が対応できない状況(ターゲットの相対速度が「0」、又は同じ速度のターゲットが複数存在する場合)でもターゲットの検出が可能な方式とする。例えば、特許文献1、2におけるFMCW方式、特許文献3、4におけるFMCW方式もしくは又は周波数パルスCW方式、特許文献5、6における2周波Ramp変調方式が、例示できる。 Here, unlike the two-frequency CW method, the other radar methods can detect the target even in a situation where the two-frequency CW method cannot be used (when the relative speed of the target is “0” or there are a plurality of targets having the same speed). Make it possible. For example, the FMCW system in Patent Documents 1 and 2, the FMCW system in Patent Documents 3 and 4 or the frequency pulse CW system, and the 2-frequency Ramp modulation system in Patent Documents 5 and 6 can be exemplified.
特開2000-292530号公報JP 2000-292530 A 特開2002-71793号公報JP 2002-71793 A 特開2004-69693号公報JP 2004-69693 A 特開2006-317456号公報JP 2006-317456 A 特開2006-258709号公報JP 2006-258709 A 特開2009-36514号公報JP 2009-36514 A 特開2009-244136号公報JP 2009-244136 A 特開2003-167048号公報Japanese Patent Laid-Open No. 2003-167048 特開2009-44A1号公報JP 2009-44A1 特開平11-198678号公報Japanese Patent Laid-Open No. 11-198678 特開2006-163615号公報JP 2006-163615 A 特開2013-250147号公報JP 2013-250147 A
 しかしながら、上述した各方式では、車載レーダとターゲットとの相対速度が「0」等の場合に、2周波CW方式以外の方式を用いたときは、RF信号又はBB信号が広帯域となるため、回路設計が困難となり、またシステムコストが増大するという問題がある。さらに、RF信号の広帯域化によりスペクトル効率が低下すると共に、電波の干渉が起きる恐れがある。 However, in each method described above, when the relative speed between the in-vehicle radar and the target is “0” or the like, when a method other than the two-frequency CW method is used, the RF signal or the BB signal has a wide band. There are problems that design becomes difficult and system cost increases. Furthermore, there is a risk that radio frequency interference may occur while the spectral efficiency decreases due to the broadening of the RF signal.
 また、同じ速度のターゲットが複数存在する場合でもターゲットの検出を可能にするために、特許文献7の多周波CW方式とパルス方式を組み合わせた時間波形をレーダに用いる方式でもRF信号ないしBB信号が広帯域となる問題がある。 Further, in order to enable detection of a target even when there are a plurality of targets having the same speed, an RF signal or a BB signal is generated even in a method using a time waveform combining a multi-frequency CW method and a pulse method in Patent Document 7 for a radar. There is a problem of wide bandwidth.
 また、2周波CW方式を用いて相対速度「0」のターゲットを検出する方法として、特許文献8の送信波に通常の2周波CWの波形を用いて受信波と高速な鋸波をミキシングする場合には、同じ速度の複数ターゲットを分離して検出するので、RF信号(送信波)の帯域幅は狭帯域で済むが、BB信号の帯域幅は鋸波の影響で広帯域になってしまう。このため、回路設計が難しくなると共に、システムコストが増大する問題がある。 Also, as a method of detecting a target having a relative speed of “0” using the two-frequency CW method, a received wave and a high-speed sawtooth wave are mixed using a normal two-frequency CW waveform in the transmission wave of Patent Document 8. In this case, since a plurality of targets having the same speed are detected separately, the bandwidth of the RF signal (transmission wave) may be narrow, but the bandwidth of the BB signal becomes wide due to the influence of the sawtooth wave. For this reason, there are problems that circuit design becomes difficult and system cost increases.
 また、2周波CW方式の第1及び第2問題点を解決する方法として、特許文献9で開示されているように、A/D変換のサンプル周波数と同期したタイミングで、送信電波の送信周波数を切り替えるという方式が提案されている。しかし、この方式も、RF信号が広帯域になるという問題がある。なお、特許文献9の実施例では、RF信号の帯域幅は1GHzとされている。 As a method for solving the first and second problems of the two-frequency CW method, as disclosed in Patent Document 9, the transmission frequency of the transmission radio wave is set at a timing synchronized with the sample frequency of A / D conversion. A method of switching has been proposed. However, this method also has a problem that the RF signal has a wide band. In the example of Patent Document 9, the bandwidth of the RF signal is 1 GHz.
 さらに、2周波CW方式の問題点を解決する方法として、特許文献10で開示されているように、車載レーダとターゲットとの相対速度が「0」に近づいた場合、相対速度を変えるように車載レーダを搭載している車両の速度を制御(スロットル/ブレーキ)するという方式の場合には、車両の速度が不安定になるという問題点がある。 Furthermore, as a method for solving the problems of the two-frequency CW system, as disclosed in Patent Document 10, when the relative speed between the in-vehicle radar and the target approaches “0”, the in-vehicle is changed so that the relative speed is changed. In the method of controlling the speed of a vehicle equipped with a radar (throttle / brake), there is a problem that the speed of the vehicle becomes unstable.
 そこで、本発明の主目的は、設計が容易に行え、かつ、安価に狭帯域なRF信号及びBB信号を用いて同じ速度の複数ターゲットを分離して検出できるターゲット情報検出装置及びターゲット情報検出方法を提供することである。 Accordingly, a main object of the present invention is to provide a target information detection apparatus and a target information detection method that can be easily designed and can separately detect a plurality of targets having the same speed by using a narrow band RF signal and a BB signal at low cost. Is to provide.
 上記課題を解決するため、複数のターゲットに所定周波数の送信波を測定側移動体から照射し、その反射波に含まれるドップラー周波数から測定側移動体とターゲットとの距離をターゲット情報として求めるターゲット情報検出システムにかかる発明は、ドップラー周波数に基づきターゲット情報を算出するターゲット情報検出装置と、測定側移動体の速度を移動体速度として検出する測定側速度検出装置と、ターゲット情報検出装置及び測定側速度検出装置と通信する測定側通信装置と、を少なくとも含んで、測定側移動体に搭載された測定側ユニットと、ターゲットの速度をターゲット速度として検出するターゲット側速度検出装置と、ターゲット側速度検出装置及び測定側通信装置と通信するターゲット側通信装置と、を少なくとも含んで、ターゲットに搭載されたターゲット側ユニットと、を備え、ターゲット情報検出装置が、ドップラー周波数から測定側移動体とターゲットとの相対速度が予め設定されたモード切替速度以下であると判断した場合には、ターゲット情報検出モードをドップラーモードから通信モードに切り替えて、測定側通信装置を介して移動体速度を取得すると共に、当該測定側通信装置及びターゲット側速度検出装置を介してターゲット速度を取得して、移動体速度及びターゲット速度を用いてターゲット情報を算出する、ことを特徴とする
 また、複数のターゲットに所定周波数の送信波を測定側移動体から照射し、その反射波に含まれるドップラー周波数から測定側移動体とターゲットとの距離をターゲット情報として求めるターゲット情報検出方法にかかる発明は、ターゲット情報検出装置によりドップラー周波数に基づきターゲット情報を算出し、測定側速度検出装置により測定側移動体の速度を移動体速度として算出し、測定側通信装置によりターゲット情報検出装置及び測定側速度検出装置と通信し、ターゲット側速度検出装置によりターゲットの速度をターゲット速度として検出し、ターゲット側通信装置によりターゲット側速度検出装置及び測定側通信装置と通信して、ドップラー周波数から測定側移動体とターゲットとの相対速度が予め設定されたモード切替速度以下である場合には、ターゲット情報検出モードをドップラーモードから通信モードに切り替えて、測定側通信装置を介して移動体速度を取得すると共に、当該測定側通信装置及びターゲット側速度検出装置を介してターゲット速度を取得して、移動体速度及びターゲット速度を用いてターゲット情報を算出する、ことを特徴とする。
In order to solve the above problems, target information is obtained by irradiating a plurality of targets with a transmission wave having a predetermined frequency from a measurement-side moving body, and obtaining the distance between the measurement-side moving body and the target as target information from the Doppler frequency included in the reflected wave. The invention according to the detection system includes a target information detection device that calculates target information based on a Doppler frequency, a measurement-side speed detection device that detects the speed of a measurement-side moving body as a moving-body speed, a target information detection device, and a measurement-side speed. A measurement-side communication device that includes at least a measurement-side communication device that communicates with the detection device, a measurement-side unit mounted on the measurement-side moving body, a target-side speed detection device that detects a target velocity as a target velocity, and a target-side velocity detection device And a target-side communication device that communicates with the measurement-side communication device. A target unit mounted on the target, and the target information detection device determines from the Doppler frequency that the relative speed between the measurement-side moving body and the target is equal to or lower than a preset mode switching speed. Switches the target information detection mode from the Doppler mode to the communication mode, acquires the moving body speed via the measurement side communication apparatus, and acquires the target speed via the measurement side communication apparatus and the target side speed detection apparatus. The target information is calculated using the moving body speed and the target speed. Further, a plurality of targets are irradiated with a transmission wave having a predetermined frequency from the measuring-side moving body, and the Doppler frequency included in the reflected wave is calculated. Information detection that determines the distance between the measurement-side moving object and the target as target information According to the present invention, the target information is calculated based on the Doppler frequency by the target information detection device, the velocity of the measurement-side moving body is calculated as the moving-body velocity by the measurement-side velocity detection device, and the target-information detection device is calculated by the measurement-side communication device And the target side speed detection device detects the target speed as the target speed, the target side communication device communicates with the target side speed detection device and the measurement side communication device, and measures from the Doppler frequency. When the relative speed between the side moving body and the target is less than or equal to the preset mode switching speed, the target information detection mode is switched from the Doppler mode to the communication mode, and the moving body speed is acquired via the measurement side communication device. And the measurement side communication device and the target side speed detection device To obtain the target speed through, and calculates the target information using the mobile speed and the target speed, characterized in that.
 本発明に依れば、設計が容易で、かつ、安価に狭帯域なRF信号及びBB信号を用いて同じ速度の複数ターゲットを分離して検出できるターゲット情報検出装置及びターゲット情報検出方法が提供できる。 According to the present invention, it is possible to provide a target information detection apparatus and a target information detection method that are easy to design and can separately detect a plurality of targets having the same speed by using a narrow band RF signal and a BB signal. .
第1実施形態にかかるターゲット情報検出システムの説明図である。It is explanatory drawing of the target information detection system concerning 1st Embodiment. ターゲット情報検出手順を示すフローチャートである。It is a flowchart which shows a target information detection procedure. 第2実施形態にかかるターゲット情報検出システムによるターゲット情報検出を説明する図である。It is a figure explaining target information detection by the target information detection system concerning a 2nd embodiment. ターゲット情報検出装置のブロック図である。It is a block diagram of a target information detection apparatus. 発振器における各周波数を例示した図である。It is the figure which illustrated each frequency in an oscillator. 第3実施形態にかかるターゲット情報検出システムの説明図である。It is explanatory drawing of the target information detection system concerning 3rd Embodiment. 関連技術の説明に適用される、ターゲットを所定の検出分解能で検出する際に必要なRF信号及びBB信号の帯域幅を纏めた図である。It is the figure which put together the bandwidth of RF signal and BB signal which are applied when explanation of a related art is necessary for detecting a target by predetermined detection resolution. 2周波CW方式における車載レーダのブロック図である。It is a block diagram of the vehicle-mounted radar in a 2 frequency CW system. 2つの周波数のRF信号(送信信号)を例示した図である。It is the figure which illustrated RF signal (transmission signal) of two frequencies. 2つのターゲットを同時に検出する際の車載レーダのブロック図である。It is a block diagram of the vehicle-mounted radar at the time of detecting two targets simultaneously. 周波数の異なるビート信号を例示した図である。It is the figure which illustrated the beat signal from which frequency differs. 周波数が同じビート信号を例示した図である。It is the figure which illustrated the beat signal with the same frequency.
 <第1実施形態>
 本発明の実施形態を説明する。図1は、本実施形態にかかるターゲット情報検出システム2の説明図である。ターゲット情報検出システム2は、測定側ユニット3とターゲット側ユニット4とにより構成されている。
<First Embodiment>
An embodiment of the present invention will be described. FIG. 1 is an explanatory diagram of a target information detection system 2 according to the present embodiment. The target information detection system 2 includes a measurement side unit 3 and a target side unit 4.
 図1において、車両(移動体)Aと車両(ターゲット)Bとが例示され、車両Aに測定側ユニット3が搭載され、車両Bにターゲット側ユニット4が搭載されている。このとき、図1(a)は、車両Aの速度>車両Bの場合、(b)は車両Aの速度≒車両Bの場合、(c)は車両Aの速度<車両Bの場合を示している。 In FIG. 1, a vehicle (moving body) A and a vehicle (target) B are illustrated, the measurement side unit 3 is mounted on the vehicle A, and the target side unit 4 is mounted on the vehicle B. At this time, FIG. 1A shows the case where the speed of the vehicle A> the vehicle B, FIG. 1B shows the case where the speed of the vehicle A≈the vehicle B, and FIG. 1C shows the case where the speed of the vehicle A <the vehicle B. Yes.
 そして、車両Aに搭載されている測定側ユニット3により、車両Aと車両Bとの車間距離(ターゲット情報)を取得する。なお、ターゲット情報には、車両Aと車両Bとの相対速度や、車両Bの存在等に関する情報も含まれる場合がある。また、車両A,車両Bは例示であって、車両に限定するものではない。例えば、工場における搬送キャリアであってもよく、車両Bは静止物であっても良い。 Then, the inter-vehicle distance (target information) between the vehicle A and the vehicle B is acquired by the measurement side unit 3 mounted on the vehicle A. The target information may include information on the relative speed between the vehicle A and the vehicle B, the presence of the vehicle B, and the like. Vehicle A and vehicle B are examples, and are not limited to vehicles. For example, it may be a transport carrier in a factory, and the vehicle B may be a stationary object.
 測定側ユニット3には、測定側速度検出装置3A、測定側通信装置3B、ターゲット情報検出装置3Cが含まれる。測定側速度検出装置3Aは、車両Aの速度(移動体速度)を検出する。測定側通信装置3Bは、ターゲット情報検出装置3Cや測定側速度検出装置3Aと通信すると共に、ターゲット側通信装置4Bと通信する。ターゲット情報検出装置3Cは、車両Aと車両Bとの相対速度によるドップラー周波数等により車両Bのターゲット情報を検出する。 The measurement side unit 3 includes a measurement side speed detection device 3A, a measurement side communication device 3B, and a target information detection device 3C. The measurement-side speed detection device 3A detects the speed of the vehicle A (moving body speed). The measurement-side communication device 3B communicates with the target information detection device 3C and the measurement-side speed detection device 3A, and also communicates with the target-side communication device 4B. The target information detection device 3 </ b> C detects target information of the vehicle B based on a Doppler frequency or the like based on the relative speed between the vehicle A and the vehicle B.
 ターゲット側ユニット4には、ターゲット側速度検出装置4A、ターゲット側通信装置4Bが含まれている。ターゲット側速度検出装置4Aは、ターゲットの速度(ターゲット速度)を検出する。ターゲット側通信装置4Bは、ターゲット側速度検出装置4A及び測定側通信装置3Bと通信する。 The target side unit 4 includes a target side speed detection device 4A and a target side communication device 4B. The target-side speed detection device 4A detects the target speed (target speed). The target side communication device 4B communicates with the target side speed detection device 4A and the measurement side communication device 3B.
 なお、測定側速度検出装置3A、ターゲット側速度検出装置4Aは、各車両Aや車両Bに備え付けの速度メータ等の速度検出装置であってもよい(併用してもよい)。 The measurement-side speed detection device 3A and the target-side speed detection device 4A may be a speed detection device such as a speed meter attached to each vehicle A or vehicle B (may be used in combination).
 そして、ターゲット情報検出装置3Cが、ドップラー周波数から車両Aと車両Bとの相対速度が所定速度以下であると判断した場合には、測定側通信装置3Bを介して移動体速度を取得すると共に当該測定側通信装置3B及びターゲット側速度検出装置4Aを介してターゲット速度を取得する。その後、ターゲット情報検出装置3Cは、移動体速度及びターゲット速度を用いてターゲット情報を算出する。なお、ターゲット情報検出装置3Cは、2周波CW方式(又は多周波CW方式)であることが望ましい。 When the target information detection device 3C determines from the Doppler frequency that the relative speed between the vehicle A and the vehicle B is equal to or lower than the predetermined speed, the target information detection device 3C acquires the moving body speed via the measurement-side communication device 3B. The target speed is acquired via the measurement side communication device 3B and the target side speed detection device 4A. Thereafter, the target information detection device 3C calculates target information using the moving body speed and the target speed. Note that the target information detection device 3C is desirably a two-frequency CW method (or a multi-frequency CW method).
 以下、車両A,車両Bの速度をV、Vとし、車両Bは車両Aの前を移動し、かつ、車両Aと車両Bとは同じ方向に移動しているとして説明する。しかし、本実施形態は、このような条件に限定されない。即ち、車両Bが車両Aの移動方向と逆方向に移動していることもある。従って、送信波Wtの照射方向は車両Aの移動方向に限定しない。このような種々の場合を想定すると、送信波Wtの照射方向を所定時間間隔で、前後左右に放射してもよい。 Hereinafter, it is assumed that the speeds of the vehicles A and B are V A and V B , the vehicle B moves in front of the vehicle A, and the vehicles A and B are moving in the same direction. However, the present embodiment is not limited to such conditions. That is, the vehicle B may be moving in the direction opposite to the moving direction of the vehicle A. Therefore, the irradiation direction of the transmission wave Wt is not limited to the moving direction of the vehicle A. Assuming such various cases, the irradiation direction of the transmission wave Wt may be radiated forward, backward, left and right at predetermined time intervals.
 ターゲット情報検出手順を図2に示すフローチャートに従い説明する。 The target information detection procedure will be described with reference to the flowchart shown in FIG.
 ステップS1,S2: 処理が開始されると、ターゲット情報検出モードはドップラーモードに設定される。なお、ターゲット情報検出モードには、ドップラー周波数からターゲット情報を取得するドップラーモードと、相対速度の実測値からターゲット情報を取得する通信モードがある。 Steps S1, S2: When the process is started, the target information detection mode is set to the Doppler mode. The target information detection mode includes a Doppler mode in which target information is acquired from the Doppler frequency and a communication mode in which target information is acquired from an actual measurement value of relative speed.
 この状態で、ターゲット情報検出装置3Cは、周波数の異なるN個の送信信号を送信し、ターゲットからの反射波を受信する。そして、送信信号と受信信号との差分からドップラー周波数を算出する。 In this state, the target information detection device 3C transmits N transmission signals having different frequencies and receives a reflected wave from the target. Then, the Doppler frequency is calculated from the difference between the transmission signal and the reception signal.
 ステップS3: ドップラー周波数は、車両AとターゲットTとの相対速度に比例する。そこで、算出した相対速度の絶対値が予め設定したモード切替速度以下か否かを判断する。ターゲット距離は、後述するように、車両A,車両Bの相対速度を積分して算出する。従って、速度V≒速度Vの場合(即ち、相対速度の絶対値≦モード切替速度)には、速度Vや速度Vの測定誤差が累積されて大きくなり、ターゲット距離の検出精度を低下させてしまう。なお、モード切替速度は、許容されるターゲット距離の検出精度に応じて設定される値である。 Step S3: The Doppler frequency is proportional to the relative speed between the vehicle A and the target T. Therefore, it is determined whether or not the calculated absolute value of the relative speed is equal to or less than a preset mode switching speed. The target distance is calculated by integrating the relative speeds of the vehicles A and B as will be described later. Therefore, when speed V A ≈ speed V B (that is, absolute value of relative speed ≦ mode switching speed), measurement errors of speed V A and speed V B are accumulated and increased, and the detection accuracy of the target distance is increased. It will decrease. The mode switching speed is a value set according to the detection accuracy of the allowable target distance.
 車両A,車両Bの相対速度には、(1)速度V>速度Vの場合(図1(a)に対応)、(2)速度V≒速度Vの場合(図1(b)に対応)、(3)速度V<速度Vの場合(図1(c)に対応)がある。なお、(1)速度V>速度Vの場合、及び、(3)速度V<速度Vの場合は、相対速度の絶対値>モード切替速度とし、(2)速度V≒速度Vの場合は、相対速度の絶対値≦モード切替速度とする。 The relative speeds of the vehicles A and B are (1) when the speed V A > the speed V B (corresponding to FIG. 1 (a)), (2) when the speed V A ≈the speed V B (FIG. 1 (b) ), And (3) the case where the speed V A <the speed V B (corresponding to FIG. 1C). When (1) Speed V A > Speed V B and (3) Speed V A <Speed V B , the absolute value of the relative speed> Mode switching speed, and (2) Speed V A ≈ Speed for V B, an absolute value ≦ mode switching speed of the relative velocity.
 (1)速度V>速度Vの場合、及び、(3)速度V<速度Vの場合は、相対速度の絶対値>モード切替速度なので、ターゲット情報検出装置3Cはドップラーモードに切り替えて、ドップラー周波数を用いてターゲット情報を算出する(ステップS4に進む)。一方、(2)速度V≒速度Vの場合は、相対速度の絶対値≦モード切替速度なので通信モードに切り替えて(ステップS5に進む)、実測した相対速度を積分することによりターゲット距離を算出する。 (1) When speed V A > speed V B , and (3) When speed V A <speed V B , the absolute value of the relative speed> mode switching speed, so the target information detection device 3C switches to the Doppler mode. Then, target information is calculated using the Doppler frequency (proceeding to step S4). On the other hand, in the case of (2) speed V A ≈ speed V B , the absolute value of the relative speed ≤ the mode switching speed, so switch to the communication mode (proceed to step S5), and integrate the measured relative speed to obtain the target distance. calculate.
 ステップS4:(相対速度の絶対値>モード切替速度の場合:ドップラーモード)
 この場合は、車両Aと車両Bとの距離(ターゲット距離)は、時間の経過に伴い小さくなり(車両Aと車両Bとは接近する)、又は、ターゲット距離は時間の経過に伴い大きくなる(車両Aと車両Bとは離れる)。即ち、相対速度の絶対値>モード切替速度の関係を満たす。
Step S4: (in the case of absolute value of relative speed> mode switching speed: Doppler mode)
In this case, the distance (target distance) between the vehicle A and the vehicle B decreases with the passage of time (the vehicle A and the vehicle B approach each other), or the target distance increases with the passage of time ( Vehicle A and vehicle B are separated). That is, the relationship of absolute value of relative speed> mode switching speed is satisfied.
 受信波Wrは、送信波Wtに対して車両Aと車両Bとの相対速度に応じて周波数がドップラー変調され、受信波Wrの周波数は、送信波Wtの周波数に対してドップラー周波数fだけシフトした周波数となる。そこで、ターゲット情報検出装置3Cは、送信波Wtと受信波Wrとに基づきドップラー周波数を算出して、車両Bの相対位置、ターゲット距離、相対速度等のターゲット情報を取得する。 The frequency of the reception wave Wr is Doppler modulated according to the relative speed between the vehicle A and the vehicle B with respect to the transmission wave Wt, and the frequency of the reception wave Wr is shifted by the Doppler frequency f d with respect to the frequency of the transmission wave Wt. Frequency. Therefore, the target information detection device 3C calculates the Doppler frequency based on the transmission wave Wt and the reception wave Wr, and acquires target information such as the relative position, target distance, and relative speed of the vehicle B.
 なお、モード切替を行った際には、前のモードで取得した車両Bに関するターゲット情報をリセットすることが、各モードにおけるターゲット情報の精度を向上させるために好ましい。このリセット処理は、初期値をリセットすることを意味する。 Note that when mode switching is performed, it is preferable to reset the target information regarding the vehicle B acquired in the previous mode in order to improve the accuracy of the target information in each mode. This reset process means resetting the initial value.
 ステップS5~S7:(相対速度の絶対値≦モード切替速度の場合:通信モード)
 一方、速度V≒速度Vの場合は、図1(b)に示すように、相対速度の絶対値≦モード切替速度の関係が満たされるので、ターゲット距離の時間変化は殆ど無い。このような場合には、2周波CW方式(又は多周波CW方式)では、ドップラー周波数fがf≒0となるため、車両Bのターゲット情報を高精度で取得することが困難である。
Steps S5 to S7: (In the case of absolute value of relative speed ≦ mode switching speed: communication mode)
On the other hand, when speed V A ≈speed V B , as shown in FIG. 1B, the relationship of absolute value of relative speed ≦ mode switching speed is satisfied, so that there is almost no change in the target distance with time. In such a case, in the two-frequency CW method (or the multi-frequency CW method), the Doppler frequency f d becomes f d ≈0, so that it is difficult to acquire the target information of the vehicle B with high accuracy.
 そこで、ターゲット情報検出装置3Cは、ドップラー周波数f≒0と判断した場合、測定側通信装置3Bに速度要求指令を出力する。測定側通信装置3Bは、速度要求指令を受信すると、測定側速度検出装置3Aに現在の自機(車両A)の速度を要求する。これにより車両Aの速度Vが、測定側速度検出装置3Aから測定側通信装置3Bを介してターゲット情報検出装置3Cに送られる。 Therefore, when the target information detection device 3C determines that the Doppler frequency f d ≈0, the target information detection device 3C outputs a speed request command to the measurement-side communication device 3B. When receiving the speed request command, the measurement side communication device 3B requests the current speed of the own device (vehicle A) from the measurement side speed detection device 3A. Thereby, the speed V A of the vehicle A is sent from the measurement side speed detection device 3A to the target information detection device 3C via the measurement side communication device 3B.
 また、測定側通信装置3Bは、速度要求指令を受信すると、当該速度要求指令をターゲット側通信装置4Bに送信する。ターゲット側通信装置4Bは、この速度要求指令を受信すると、ターゲット側速度検出装置4Aから現在のターゲット(車両B)の速度を取得して、ターゲット側通信装置4Bを介してターゲット情報検出装置3Cに送信する。 Further, when receiving the speed request command, the measurement side communication device 3B transmits the speed request command to the target side communication device 4B. When the target side communication device 4B receives this speed request command, the target side communication device 4B acquires the current speed of the target (vehicle B) from the target side speed detection device 4A, and sends it to the target information detection device 3C via the target side communication device 4B. Send.
 これらの処理により、ターゲット情報検出装置3Cは、車両Aの速度Vと車両Bの速度Vとを取得し、相対速度ΔVを
 ΔV=V-V …(4)
の式4に従い算出する。
By these processes, the target information detection apparatus 3C acquires the speed V B of the speeds V A and the vehicle B of the vehicle A, the relative speed [Delta] V a ΔV = V B -V A ... ( 4)
This is calculated according to Equation 4 below.
 そして、ターゲット情報検出装置3Cは、この相対速度を用いて、ターゲット距離Rを
 R=R+∫ΔV・dt …(5)
の式5に従い算出する。ここで、Rはモード切替時における、車両Aと車両Bとのターゲット距離である。
Then, the target information detection device 3C uses this relative speed to change the target distance R to R = R 0 + ∫ΔV · dt (5)
This is calculated according to Equation 5 below. Here, R 0 is a target distance between the vehicle A and the vehicle B at the time of mode switching.
 以上説明したように、2周波CW方式(又は多周波CW方式)を用いてターゲット情報を取得する系であって、ドップラー周波数が高精度で測定できない場合(相対速度の絶対値≦モード切替速度の場合)でも、測定側速度検出装置、測定側通信装置、ターゲット側速度検出装置、ターゲット側通信装置を用いることにより、高精度に車両Bの存在を検出し、かつ、そのターゲット情報を取得することができるようになる。 As described above, when the target information is acquired using the two-frequency CW method (or the multi-frequency CW method) and the Doppler frequency cannot be measured with high accuracy (the absolute value of the relative speed ≦ the mode switching speed) However, by using the measurement side speed detection device, the measurement side communication device, the target side speed detection device, and the target side communication device, the presence of the vehicle B can be detected with high accuracy and the target information can be acquired. Will be able to.
 <第2実施形態>
 次に、本発明の第2実施形態を説明する。なお、第1実施形態と同一構成に関しては、同一符号を用いて説明を適宜省略する。
Second Embodiment
Next, a second embodiment of the present invention will be described. In addition, about the same structure as 1st Embodiment, description is abbreviate | omitted suitably using the same code | symbol.
 第1実施形態においては、通信手段や速度検出手段を別途用いることにより、ターゲットが自機と同じ速度で移動している場合でも、当該ターゲットのターゲット情報が取得できるようにした。しかし、ターゲットが複数存在する場合には、各ターゲットを識別して、それぞれのターゲット情報を取得することができない。そこで、本実施形態では、かかる場合でも各ターゲットのターゲット情報が取得できるようにしたものである。 In the first embodiment, by separately using communication means and speed detection means, target information of the target can be acquired even when the target is moving at the same speed as the own device. However, when there are a plurality of targets, each target cannot be identified and the target information cannot be acquired. Therefore, in this embodiment, target information of each target can be acquired even in such a case.
 図3は、このような系でのターゲット情報検出システム2によるターゲット情報検出を説明する図である。速度Vで移動する車両(移動体)Aにより、速度Vで移動する車両(第1種ターゲット)B、速度Vで移動する車両(第2種ターゲット)Cのターゲット情報を検出している。 FIG. 3 is a diagram for explaining target information detection by the target information detection system 2 in such a system. The vehicle (mobile unit) A moving at velocity V A, and detects the vehicle target information (second type target) C moving vehicle moving at a speed V B (Type 1 target) B, at a velocity V C Yes.
 車両Aには、測定側速度検出装置3A、測定側通信装置3B、ターゲット情報検出装置3Cが搭載されている。また、車両Bには、ターゲット側速度検出装置4A、ターゲット側通信装置4Bがそれぞれ搭載されている。しかし、車両Cには、かかる速度検出手段や通信手段は含まれていない。また、車両Aから見て、車両Bと車両Cとの前後関係は問わない。 The vehicle A is equipped with a measurement-side speed detection device 3A, a measurement-side communication device 3B, and a target information detection device 3C. In addition, the vehicle B is equipped with a target-side speed detection device 4A and a target-side communication device 4B. However, the vehicle C does not include such speed detection means and communication means. Further, the front-rear relationship between the vehicle B and the vehicle C as viewed from the vehicle A does not matter.
 図4は、ターゲット情報検出装置3Cのブロック図である。ターゲット情報検出装置3Cは、少なくとも、アンテナ11、サーキュレータ12、ミキサユニット13、発振器15、フーリエ変換ユニット17、演算器19、制御器20を備えている。また、ミキサユニット13は、ミキサ13a、バンドパスフィルタ(BPF)13b、アナログ-ディジタル(A/D)変換器13cを含んでいる。フーリエ変換ユニット17はN個のフーリエ変換器18…18を含んでいる。 FIG. 4 is a block diagram of the target information detection apparatus 3C. The target information detection apparatus 3C includes at least an antenna 11, a circulator 12, a mixer unit 13, an oscillator 15, a Fourier transform unit 17, a calculator 19, and a controller 20. The mixer unit 13 includes a mixer 13a, a band pass filter (BPF) 13b, and an analog-digital (A / D) converter 13c. The Fourier transform unit 17 includes N Fourier transformers 18 1 ... 18 N.
 ターゲットTはM個のターゲットT…Tからなり、各ターゲットTはそれぞれ同じ速度で移動しているとする。そして、ターゲット情報検出装置3Cは複数のターゲットTを識別して、各ターゲットのターゲット情報を取得する。なお、図4には、ターゲットTも併せて図示しているが、当該ターゲットTはターゲット情報検出装置3Cを構成しないことを敢えて付言する。 The target T is composed of M targets T 1 ... T M , and each target T is moving at the same speed. Then, the target information detection device 3C identifies a plurality of targets T and acquires target information of each target. In FIG. 4, the target T is also illustrated, but it is added that the target T does not constitute the target information detection device 3 </ b> C.
 このように複数のターゲットTのターゲット情報を取得するために、上述したように、フーリエ変換ユニット17はN個のフーリエ変換器18…18により構成されている。以下、各フーリエ変換器18…18は、処理対象とする信号の周波数が異なるだけなので、共通の説明に関してはフーリエ変換器18又はフーリエ変換器18のように記載することがある。 Thus, in order to acquire target information of a plurality of targets T, as described above, the Fourier transform unit 17 is configured by N Fourier transformers 18 1 ... 18 N. In the following, each Fourier transformer 18 1 ... 18 N is different only in the frequency of the signal to be processed, and therefore a common description may be described as a Fourier transformer 18 or a Fourier transformer 18 i .
 また、発振器15は、N個の周波数f…fのRF信号(送信信号)G3を出力する。図5は、発振器15における周波数f…fを例示した図である。この場合も、周波数f…fを周波数f又は周波数fと記載することがある。 The oscillator 15 outputs RF signals (transmission signals) G3 having N frequencies f 1 ... F N. FIG. 5 is a diagram illustrating frequencies f 1 ... F N in the oscillator 15. Again, there may be described a frequency f 1 ... f N and frequency f or frequency f i.
 ターゲットTの数M、及び、フーリエ変換器18の数N、周波数fの周波数の数Nは、それぞれ正の整数であり、後述するようにN≧M+1の関係を満たすことが要求される。 The number M of targets T, the number N of Fourier transformers 18, and the number N of frequencies f are positive integers and are required to satisfy the relationship of N ≧ M + 1 as will be described later.
 制御器20は、発振器15に周波数切替指令G1を出力すると共に、この周波数切替指令G1に同期してフーリエ変換器切替指令G2をフーリエ変換ユニット17に出力する。これにより、発振器15は周波数切替指令G1で指定された周波数fの送信信号G3をサーキュレータ12とミキサユニット13とに出力する。また、フーリエ変換ユニット17は、フーリエ変換器切替指令G2で指定された周波数fに対応したフーリエ変換器18を選定し、当該選定されたフーリエ変換器18がFFT(Fast Fourier Transform)変換処理を行う。 The controller 20 outputs a frequency switching command G1 to the oscillator 15 and outputs a Fourier transformer switching command G2 to the Fourier transform unit 17 in synchronization with the frequency switching command G1. Thus, the oscillator 15 outputs a transmission signal G3 of a frequency f i that is specified by the frequency switching command G1 to the circulator 12 and the mixer unit 13. Further, the Fourier transform unit 17, selects the Fourier transformer 18 i corresponding to the specified frequency f i in the Fourier transformer switching command G2, the selected Fourier transformer 18 i is FFT was (Fast Fourier Transform) conversion Process.
 このようなターゲット情報検出装置3Cは、以下のように動作する。先ず、発振器15からサーキュレータ12に出力された送信信号G3は、アンテナ11から送信波WtとしてターゲットTに向けて照射される。照射された送信波Wtは、ターゲットTで反射されて受信波Wrとしてアンテナ11で受波される。 Such target information detection apparatus 3C operates as follows. First, the transmission signal G3 output from the oscillator 15 to the circulator 12 is irradiated from the antenna 11 toward the target T as a transmission wave Wt. The irradiated transmission wave Wt is reflected by the target T and received by the antenna 11 as a reception wave Wr.
 送信波WtがターゲットTで反射される際には、ドップラー効果による変調を受ける。即ち、速度VのターゲットTにより、受信波Wrの周波数は、送信波Wtの周波数に対してドップラー周波数fdi(=2V/λ)だけドップラーシフトした周波数となる。 When the transmission wave Wt is reflected by the target T, it is modulated by the Doppler effect. That is, the frequency of the reception wave Wr becomes a frequency that is Doppler shifted by the Doppler frequency f di (= 2V i / λ) with respect to the frequency of the transmission wave Wt by the target T i of the speed V i .
 この受信波Wrは、アンテナ11で受波され、受信信号としてサーキュレータ12を経由してミキサユニット13に入力する。ミキサ13aは、受信信号と送信信号とのミキシングを行い、BPF13bを経由してビート信号として、A/D変換器13cに出力する。 The received wave Wr is received by the antenna 11 and input to the mixer unit 13 via the circulator 12 as a received signal. The mixer 13a mixes the reception signal and the transmission signal, and outputs the mixed signal as a beat signal to the A / D converter 13c via the BPF 13b.
 送信信号G3の周波数がfの場合のビート信号S(t,f)は、
 S(t,f)=ΣB …(6)
で与えられる。なお、Σはjについて1…M間での和を意味する。ここで、Bは、
 B=A・sin[2πfdjt+φ-4πf/c]
である。Bは、各ターゲットTで反射された受信波Wrによる受信信号のビート信号である。即ち、式6のビート信号S(t,f)は、各ターゲットTからの受信信号に基づくビート信号の和である。また、Rは各ターゲットTのターゲット距離、AはターゲットTからの受信信号から求めたビート信号の振幅、φは不定定数である。
Beat signal S M (t, f i) in the case of the frequency of the transmitted signal G3 is f i is,
S M (t, f i ) = ΣB j (6)
Given in. Note that Σ means the sum of 1 ... M for j. Where B j is
B j = A j · sin [2πf dj t + φ 0 -4πf i R j / c]
It is. B j is the beat signal of the received signal by the reflected received wave Wr at each target T j. That is, the beat signal S M (t, f i ) in Expression 6 is the sum of the beat signals based on the received signals from the respective targets T. R j is the target distance of each target T j , A j is the amplitude of the beat signal obtained from the received signal from the target T j , and φ 0 is an indefinite constant.
 そして、ビート信号は、A/D変換器13cによりディジタル信号に変換され、フーリエ変換ユニット17でFFT変換処理が行われてスペクトル位相が算出される。このとき、制御器20が、発振器15に対して周波数切替指令G1により周波数fの送信信号G3を出力するように指示したとすると、フーリエ変換ユニット17に対しては周波数fに対応したフーリエ変換器18がFFT変換処理を行うように指示される。 The beat signal is converted into a digital signal by the A / D converter 13c, and an FFT conversion process is performed by the Fourier transform unit 17 to calculate a spectrum phase. At this time, Fourier controller 20, when instructed to output the transmission signal G3 of the frequency f i with the frequency switching command G1 relative to oscillator 15, corresponding to the frequency f i for the Fourier transform unit 17 The converter 18 i is instructed to perform the FFT conversion process.
 演算器19は、フーリエ変換器18により算出されたスペクトル位相を用いて、ターゲット距離Rを算出する。 The computing unit 19 calculates the target distance R i using the spectral phase calculated by the Fourier transformer 18 i .
 次に、ターゲット距離の算出手順を説明する。なお、説明を簡単にするため、速度が同じ2つのターゲットT、Tを考える。 Next, the procedure for calculating the target distance will be described. For simplicity of explanation, two targets T 1 and T 2 having the same speed are considered.
 この場合、ターゲットT、Tによるドップラー周波数は、fd1、fd2であり、これらはfd1=fd2(≡f)となる。従って、式6に示すビート信号S(t,f)は、
 S(t,f)=B+B …(7)
の式7で与えられる。ここで、B及びBは、
 B=A・sin[2πft+φ-4πf/c]
 B=A・sin[2πft+φ-4πf/c]
である。
In this case, the Doppler frequencies by the targets T 1 and T 2 are f d1 and f d2 , and these are f d1 = f d2 (≡f d ). Therefore, the beat signal S M (t, f i ) shown in Equation 6 is
S 2 (t, f i ) = B 1 + B 2 (7)
Is given by Equation 7. Where B 1 and B 2 are
B 1 = A 1 · sin [2πf d t + φ 0 -4πf i R 1 / c]
B 2 = A 2 · sin [2πf d t + φ 0 -4πf i R 2 / c]
It is.
 この式7のビート信号S(t)を変形すると、
 S(t,f)=A12(f)・sin[2πft+Φ12(f)] …(8)
となる。
When the beat signal S 2 (t) of Equation 7 is transformed,
S 2 (t, f i ) = A 12 (f i ) · sin [2πf d t + Φ 12 (f i )] (8)
It becomes.
 ここで、{A12(f)}及びΦ12(f)は、
 {A12(f)}=A +A +2Acos[K・f(R-R)] …(9)
 Φ12(f)≡φ-K・f・R+tan-1[X(A,A,R,R,f)] …(10)
である。
Where {A 12 (f i )} 2 and Φ 12 (f i ) are
{A 12 (f i )} 2 = A 1 2 + A 2 2 + 2A 1 A 2 cos [K · f i (R 2 −R 1 )] (9)
Φ 12 (f i ) ≡φ 0 −K · f i · R 1 + tan −1 [X (A 1 , A 2 , R 1 , R 2 , f i )] (10)
It is.
 なお、Kは定数であり、
 K≡4π/c …(11)
で与えられる。また、関数X(A,A,R,R,f)は、
 X(A,A,R,R,f)≡A・sin(K・f(R-R))/[A+A・cos(K・f(R-R))] …(12)
で与えられる。
K is a constant,
K≡4π / c (11)
Given in. The function X (A 1 , A 2 , R 1 , R 2 , f i ) is
X (A 1 , A 2 , R 1 , R 2 , f i ) ≡A 2 · sin (K · f i (R 2 −R 1 )) / [A 1 + A 2 · cos (K · f i (R 2 -R 1 ))] ... (12)
Given in.
 各ターゲットT、Tが同じ速度の場合、式8から、ビート信号S(t,f)は、単一のドップラー周波数fのみを含むようになる。 If each target T 1 , T 2 has the same speed, from Equation 8, the beat signal S 2 (t, f i ) will contain only a single Doppler frequency f d .
 式8~式10で示したビート信号の振幅A12(f)と位相Φ12(f)とは観測結果に基づく値であり、発振器15から出力される送信信号G3の周波数fを変えた場合に、それぞれ異なる値を取る。 The amplitude A 12 (f i ) and the phase Φ 12 (f i ) of the beat signal expressed by the equations 8 to 10 are values based on the observation result, and the frequency f i of the transmission signal G3 output from the oscillator 15 is expressed as follows. When changed, each takes a different value.
 周波数f…fのN個の送信信号に対して、式7と式8は、それぞれN個の式が成り立つ。従って、式の総数は2N個となる。 For N transmission signals of frequencies f 1 ... F N , Expressions 7 and 8 hold N expressions, respectively. Therefore, the total number of expressions is 2N.
 そして、式9及び式10に含まれる未知数は、A、A、φ、R、Rの計5個である。従って、周波数の数Nはターゲットの数M(=2)より1多い数(N≧M+1)であれば、方程式の数(=2N≧2(M+1)=6)が未知数の数より多くなる。そこで得られた方程式の内、未知数の数と同数の方程式を選び出して、その方程式を解く事で未知数を決定できる。なお、Rは、第1実施形態の手順に従い求めることができる。このため、未知数は、A、A、φ、Rの計4個となる。 The unknowns included in the formula 9 and formula 10, A 1, A 2, φ 0, R 1, a total of five R 2. Therefore, if the number N of frequencies is one more than the number M (= 2) of targets (N ≧ M + 1), the number of equations (= 2N ≧ 2 (M + 1) = 6) is larger than the number of unknowns. From the equations obtained, the same number of equations as the number of unknowns is selected and the unknowns can be determined by solving the equations. Incidentally, R 1 can be obtained according to the procedure of the first embodiment. For this reason, there are a total of four unknowns A 1 , A 2 , φ 0 , and R 2 .
 これにより式9と式10を解くことが可能になって、同じ速度で移動している複数のターゲットを識別して、各ターゲットのターゲット情報が検出できるようになる。
<第3実施形態>
 本発明の第3実施形態を説明する。なお、第1、2実施形態と同一構成に関しては、同一符号を用いて説明を適宜省略する。
This makes it possible to solve Equation 9 and Equation 10, and it is possible to identify a plurality of targets moving at the same speed and detect target information of each target.
<Third Embodiment>
A third embodiment of the present invention will be described. In addition, about the same structure as 1st, 2 embodiment, description is abbreviate | omitted suitably using the same code | symbol.
 本実施形態では、ターゲット側速度検出装置4Aとターゲット側通信装置4Bとを備える車両(第1種ターゲット)Bと、これらを備えない車両(第2種ターゲット)Cが複数存在し、かつ、各車両が同じ速度で移動する場合に、各ターゲットのターゲット情報を個別に取得する。 In the present embodiment, there are a plurality of vehicles (first type targets) B including a target side speed detection device 4A and a target side communication device 4B, and vehicles (second type targets) C not including these, and each When the vehicle moves at the same speed, the target information of each target is acquired individually.
 図6は、このようなターゲット情報検出システム2の説明図である。以下の説明では、第1種ターゲットである車両Bはp台(車両B…B)、第2種ターゲットである車両Cはq台(車両C…C)として説明する。従って、ターゲット数Mは、M=p+qである。なお、図6においては、車両B及び車両Cが2台(p=q=2)の場合を例示している。 FIG. 6 is an explanatory diagram of such a target information detection system 2. In the following description, the first type target vehicle B is described as p units (vehicles B 1 ... B p ), and the second type target vehicle C is described as q units (vehicles C 1 ... C q ). Therefore, the target number M is M = p + q. FIG. 6 illustrates a case where there are two vehicles B and C (p = q = 2).
 各ターゲットが同じ速度の場合、式6のビート信号Sにおけるドップラー周波数fdjは、全て同じ周波数(fdj=f)と等しい値となる。 If the target is the same speed, the Doppler frequency f dj in beat signal S M of the formula 6 is a value equal all the same frequency (f dj = f d).
 即ち、式6で示すビート信号Sは、同じ周波数fを持つM個のターゲットによるビート信号の和なので、
 S(t,f)=A12…M(f)・sin[2πft+Φ12…M(f)] …(13)
のように式13のように表現される。
That is, the beat signal S M given by the equation 6, since the sum of the beat signal by the M targets having the same frequency f d,
S M (t, f i ) = A 12... M (f i ) · sin [2πf i t + Φ 12... M (f i )] (13)
Is expressed as shown in Equation 13.
 また、式6のビート信号Sを帰納的に表現すると、
 S(t,f)=S(M-1)(t,f)+A・sin[2πft+φ-4πf/c] …(14)
 S(M-1)(t,f)=A12…(M-1)(f)・sin[2πft+Φ12…(M-1)(f)] …(15)
のように式14~式15のようになる。
In addition, if the inductively to represent the beat signal S M of the formula 6,
S M (t, f i ) = S (M−1) (t, f i ) + A M · sin [2πf d t + φ 0 −4πf i R M / c] (14)
S (M−1) (t, f i ) = A 12 (M−1) (f i ) · sin [2πf d t + Φ 12 (M−1) (f i )] (15)
Equations 14 to 15 are obtained as follows.
 ターゲットがM個存在する時のビート信号S(t,f)の振幅及び位相と、ターゲットが(M-1)個存在する時のビート信号S(M-1)(t,f)の振幅及び位相の関係は、
 {A12…M(f)}={A12…(M-1)(f)}+A +2A12…(M-1)(f)・Acos[α(Φ12…(M-1)(f),R,f,φ)] …(16)
 Φ12…M(f)=Φ12…(M-1)(f)+tan-1[β(A12…(M-1)(f),A,R,f,φ)] …(17)
の式16,式17で与えられる。
The amplitude and phase of the beat signal S M (t, f i ) when there are M targets, and the beat signal S (M−1) (t, f i ) when there are (M−1) targets. The relationship between the amplitude and phase of
{A 12... M (f i )} 2 = {A 12... (M−1) (f i )} 2 + A M 2 + 2A 12... (M−1) (f i ) · A M cos [α (Φ 12 ... (M-1) (f i ), R M , f i , φ 0 )] ... (16)
Φ 12... M (f i ) = Φ 12... (M−1) (f i ) + tan −1 [β (A 12... (M−1) (f i ), A M , R M , f i , φ 0 )] (17)
Are given by Equation 16 and Equation 17.
 ここで、
 α(Φ12…(M-1)(f),R,f,φ)=φ-4πf/c+Φ12…(M-1)(f) …(18)
 β(A12…(M-1)(f),A,R,f,φ)=A・sin(α(Φ12…(M-1)(f),R,f,φ))/[A12…(M-1)(f)+A・cos(α(Φ12…(M-1)(f),R,f,φ))] …(19)
である。
here,
α (Φ 12... (M−1) (f i ), R M , f i , φ 0 ) = φ 0 −4π f i R M / c + Φ 12 (M−1) (f i ) (18)
β (A 12... (M−1) (f i ), A M , R M , f i , φ 0 ) = A M · sin (α (Φ 12... (M−1) (f i ), R M , f i, φ 0)) / [A 12 ... (M-1) (f i) + A M · cos (α (Φ 12 ... (M-1) (f i), R M, f i, φ 0 ))] ... (19)
It is.
 式16~式19に対しターゲット数Mに関する帰納法を適用することで、ビート信号の振幅A12…M(f)及び位相Φ12…M(f)を、振幅パラメータA、A…Aと位相パラメータφと、位置パラメータR、R…Rで表した方程式を生成することができる。 By applying an induction method for the number of targets M to Equations 16 to 19, the beat signal amplitudes A 12... M (f i ) and phases Φ 12... M (f i ) are converted into amplitude parameters A 1 , A 2. ... A M , phase parameter φ 0 , and position parameters R 1 , R 2 ... R M can generate equations.
 ここで、ビート信号の振幅A12…M(f)及び位相Φ12…M(f)は、測定で得られる既知変数であり、振幅パラメータA、A…Aと位相パラメータφと、位置パラメータR、R…Rは未知変数となる。 Here, the beat signal amplitude A 12 ... M (f i) and phase Φ 12 ... M (f i) are known variables obtained by measuring the amplitude parameter A 1, A 2 ... A M and the phase parameter φ 0 and the position parameters R 1 , R 2 ... RM are unknown variables.
 周波数fをN個の値(i=1,2,…,N)に取った時、ビート信号の振幅A12…M(f)及び位相Φ12…M(f)を、振幅パラメータA、A…Aと位相パラメータφと、位置パラメータR、R…Rで表した方程式が合計で2N個生成される。 The frequency f i N number of values (i = 1,2, ..., N ) when taken in, the beat signal amplitude A 12 ... M a (f i) and phase Φ 12 ... M (f i) , the amplitude parameter and a 1, a 2 ... a M and the phase parameter phi 0, equations expressed in positional parameters R 1, R 2 ... R M is the 2N generated in total.
 一方、未知変数[振幅パラメータA、A…Aと位相パラメータφと、位置パラメータR、R…R]の数は合計で2M+1個である。なお、M個の位置パラメータR、R…Rのうちp個の位置パラメータ(即ち、車両B…Bの位置)は、ターゲット側速度検出装置4A…4Aから求められるので、既知パラメータとなる。従って、正味の未知パラメータの数は(2M-p+1)個となる。 On the other hand, the total number of unknown variables [amplitude parameters A 1 , A 2 ... A M , phase parameter φ 0 and position parameters R 1 , R 2 ... R M ] is 2M + 1. Incidentally, p pieces of positional parameters of the M position parameters R 1, R 2 ... R M ( i.e., the vehicle B 1 ... position of B p), so obtained from the target-side speed detecting apparatus 4A 1 ... 4A p Becomes a known parameter. Therefore, the number of net unknown parameters is (2M−p + 1).
 このことから測定周波数である送信信号の周波数の数Nを(2M-p+1)/2個以上に取れば、上記2N個の連立方程式を解いてターゲット距離R、R…Rが求まる。なお、(2M-p+1)/2個は、q+(p+1)/2個でもある。 Taking the number N of the frequency of the transmission signal that is a measurement frequency from this that the (2M-p + 1) / 2 or more, the target distance R 1, R 2 ... R M is obtained by solving the above 2N number of simultaneous equations. Note that (2M−p + 1) / 2 is also q + (p + 1) / 2.
 なお、上記の説明は、車両B…車両Bと車両C…車両Cの位置関係を任意に入れ替えてもそのまま成立する。また、図6では、ターゲット情報検出装置3Cが送信波Wtを照射する方向を車両Aの前方方向としているが、送信波Wtの照射方向に特に制限が有る訳ではなく、車両Aの後方方向ないし横方向としても良いことは、先に述べたとおりである。 Incidentally, the above description be arbitrarily interchanged positional relationship between the vehicle B 1 ... vehicle B p and the vehicle C 1 ... vehicle C q holds it. In FIG. 6, the direction in which the target information detection device 3C irradiates the transmission wave Wt is the forward direction of the vehicle A. However, the irradiation direction of the transmission wave Wt is not particularly limited. As described above, the horizontal direction may be used.
 本実施形態では、2周波CW方式(多周波CW方式)で動作するターゲット情報検出装置のみを用いながら、通信手段と速度検出手段を併用することで、2周波CW方式ないし多周波CW方式によってもターゲット情報検出装置とターゲットとの相対速度が「0」となる場合でも、各ターゲットのターゲット情報が取得できるようになる。また、ターゲット情報検出装置と同じ速度のターゲットが複数存在する場合でも、各ターゲットを識別しながら各ターゲット情報が取得できるようになる。 In the present embodiment, using only the target information detection device that operates in the two-frequency CW method (multi-frequency CW method), the communication unit and the speed detection unit are used together, so that the two-frequency CW method or the multi-frequency CW method can be used. Even when the relative speed between the target information detection device and the target is “0”, the target information of each target can be acquired. Further, even when there are a plurality of targets having the same speed as the target information detection device, each target information can be acquired while identifying each target.
 従って、広帯域のレーダ方式を用いた場合に比べ、RF信号及びBB信号の帯域幅をより狭帯域にすることができる。これにより、回路の設計が容易になると共に、装置のコストダウンが可能になる。また、送信信号G3の広帯域化に伴うスペクトル効率の低下や干渉の問題も回避できるという効果がある。 Therefore, the bandwidth of the RF signal and the BB signal can be made narrower than when a broadband radar system is used. This facilitates circuit design and enables cost reduction of the device. In addition, there is an effect that it is possible to avoid the problem of spectrum efficiency reduction and interference due to the broadening of the transmission signal G3.
 さらに、ターゲット情報検出装置とターゲットとの相対速度が「0」又は概ね「0」と見なせる場合においても、ターゲット情報を取得できるため、相対速度が「0」にならないように車の速度(スロットル/ブレーキ)を自動制御する等の制御が不要になる。従って、他の車両と同じ速度で移動した状態を維持しながら、他車の検知ができるようになり安定した移動が可能になるという効果が得られる。 Further, even when the relative speed between the target information detection device and the target can be regarded as “0” or approximately “0”, the target information can be acquired, so that the vehicle speed (throttle / throttle) is set so that the relative speed does not become “0”. Control such as automatic control of the brake is not required. Therefore, it is possible to detect the other vehicle while maintaining the state where the vehicle has moved at the same speed as that of the other vehicle, thereby obtaining an effect that enables stable movement.
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described with reference to the embodiments (and examples), the present invention is not limited to the above embodiments (and examples). Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2015年10月16日に出願された日本出願特願2015-204174を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-204174 filed on October 16, 2015, the entire disclosure of which is incorporated herein.
 2  ターゲット情報検出システム
 3  測定側ユニット
 3A  測定側速度検出装置
 3B  測定側通信装置
 3C  ターゲット情報検出装置
 4  ターゲット側ユニット
 4A  ターゲット側速度検出装置
 4B  ターゲット側通信装置
 11  アンテナ
 12  サーキュレータ
 13  ミキサユニット
 13a  ミキサ
 13b  バンドパスフィルタ(BPF)
 13c  アナログ-ディジタル(A/D)変換器
 15  発振器
 17  フーリエ変換ユニット
 18…18  フーリエ変換器
 19  演算器
 20  制御器
2 target information detection system 3 measurement side unit 3A measurement side speed detection device 3B measurement side communication device 3C target information detection device 4 target side unit 4A target side speed detection device 4B target side communication device 11 antenna 12 circulator 13 mixer unit 13a mixer 13b Band pass filter (BPF)
13c Analog-digital (A / D) converter 15 Oscillator 17 Fourier transform unit 18 1 ... 18 N Fourier transformer 19 Calculator 20 Controller

Claims (6)

  1.  複数のターゲットに所定周波数の送信波を測定側移動体から照射し、その反射波に含まれるドップラー周波数から前記測定側移動体と前記ターゲットとの距離をターゲット情報として求めるターゲット情報検出システムであって、
     前記ドップラー周波数に基づき前記ターゲット情報を算出するターゲット情報検出装置と、
     前記測定側移動体の速度を移動体速度として検出する測定側速度検出装置と、
     前記ターゲット情報検出装置及び前記測定側速度検出装置と通信する測定側通信装置と、を少なくとも含んで、前記測定側移動体に搭載された測定側ユニットと、
     前記ターゲットの速度をターゲット速度として検出するターゲット側速度検出装置と、
     前記ターゲット側速度検出装置及び前記測定側通信装置と通信するターゲット側通信装置と、を少なくとも含んで、前記ターゲットに搭載されたターゲット側ユニットと、を備え、
     前記ターゲット情報検出装置が、前記ドップラー周波数から前記測定側移動体と前記ターゲットとの相対速度が予め設定されたモード切替速度以下であると判断した場合には、ターゲット情報検出モードをドップラーモードから通信モードに切り替えて、前記測定側通信装置を介して前記移動体速度を取得すると共に、当該測定側通信装置及び前記ターゲット側速度検出装置を介して前記ターゲット速度を取得して、前記移動体速度及び前記ターゲット速度を用いて前記ターゲット情報を算出する、
     ことを特徴とするターゲット情報検出システム。
    A target information detection system that irradiates a plurality of targets with a transmission wave having a predetermined frequency from a measurement-side moving body and obtains the distance between the measurement-side moving body and the target as target information from a Doppler frequency included in the reflected wave. ,
    A target information detection device for calculating the target information based on the Doppler frequency;
    A measurement side speed detection device for detecting the speed of the measurement side mobile body as a mobile body speed;
    A measurement-side communication device that at least includes a measurement-side communication device that communicates with the target information detection device and the measurement-side speed detection device; and a measurement-side unit mounted on the measurement-side moving body;
    A target-side speed detection device that detects the target speed as a target speed;
    A target-side unit mounted on the target, including at least a target-side communication device that communicates with the target-side speed detection device and the measurement-side communication device,
    When the target information detection device determines from the Doppler frequency that the relative speed between the measurement-side moving body and the target is equal to or lower than a preset mode switching speed, the target information detection mode is communicated from the Doppler mode. Switch to mode, acquire the moving body speed via the measurement side communication device, acquire the target speed via the measurement side communication device and the target side speed detection device, and Calculating the target information using the target speed;
    A target information detection system.
  2.  請求項1に記載のターゲット情報検出システムであって、
     前記ターゲット情報検出装置は、使用する周波数の個数Nが2以上(N≧2:Nは正の整数)の多周波CW方式により前記ターゲット情報を測定することを特徴とするターゲット情報検出システム。
    The target information detection system according to claim 1,
    The target information detection system is characterized in that the target information is measured by a multi-frequency CW method in which the number N of frequencies to be used is 2 or more (N ≧ 2: N is a positive integer).
  3.  請求項2に記載のターゲット情報検出システムであって、
     前記ターゲットには、前記ターゲット側通信装置及び前記ターゲット側速度検出装置を具備した第1種ターゲットがp個(pは正の整数)含まれ、前記ターゲット側通信装置及び前記ターゲット側速度検出装置が非具備の第2種ターゲットをq個(qは正の整数)含む場合に、前記ターゲット情報検出装置が使用する周波数の個数NはN≧q+(p+1)/2を満たすことを特徴とするターゲット情報検出システム。
    The target information detection system according to claim 2,
    The target includes p first type targets (p is a positive integer) including the target-side communication device and the target-side speed detection device, and the target-side communication device and the target-side speed detection device include When the number of non-equipped second type targets is included (q is a positive integer), the number N of frequencies used by the target information detection device satisfies N ≧ q + (p + 1) / 2. Information detection system.
  4.  複数のターゲットに所定周波数の送信波を測定側移動体から照射し、その反射波に含まれるドップラー周波数から前記測定側移動体と前記ターゲットとの距離をターゲット情報として求めるターゲット情報検出方法であって、
     ターゲット情報検出装置により前記ドップラー周波数に基づき前記ターゲット情報を算出し、
     測定側速度検出装置により前記測定側移動体の速度を移動体速度として算出し、
     測定側通信装置により前記ターゲット情報検出装置及び前記測定側速度検出装置と通信し、
     ターゲット側速度検出装置により前記ターゲットの速度をターゲット速度として検出し、
     ターゲット側通信装置により前記ターゲット側速度検出装置及び前記測定側通信装置と通信して、
     前記ドップラー周波数から前記測定側移動体と前記ターゲットとの相対速度が予め設定されたモード切替速度以下である場合には、ターゲット情報検出モードをドップラーモードから通信モードに切り替えて、前記測定側通信装置を介して前記移動体速度を取得すると共に、当該測定側通信装置及び前記ターゲット側速度検出装置を介して前記ターゲット速度を取得して、前記移動体速度及び前記ターゲット速度を用いて前記ターゲット情報を算出する、
     ことを特徴とするターゲット情報検出方法。
    A target information detection method for irradiating a plurality of targets with a transmission wave having a predetermined frequency from a measurement-side moving body, and obtaining a distance between the measurement-side moving body and the target as target information from a Doppler frequency included in the reflected wave. ,
    The target information is calculated based on the Doppler frequency by a target information detection device,
    Calculate the speed of the measurement-side moving body as the moving body speed by the measurement-side speed detection device,
    Communicate with the target information detection device and the measurement side speed detection device by the measurement side communication device,
    The target speed is detected as a target speed by the target side speed detection device,
    Communicate with the target side speed detection device and the measurement side communication device by the target side communication device,
    When the relative speed between the measurement side moving body and the target is less than or equal to a preset mode switching speed from the Doppler frequency, the target information detection mode is switched from the Doppler mode to the communication mode, and the measurement side communication apparatus The mobile body speed is acquired via the measurement side communication device and the target side speed detection device, the target speed is acquired, and the target information is obtained using the mobile body speed and the target speed. calculate,
    A method for detecting target information.
  5.  請求項4に記載のターゲット情報検出方法であって、
     前記ターゲット情報検出装置は、使用する周波数の個数Nが2以上(N≧2:Nは正の整数)の多周波CW方式により前記ターゲット情報を測定することを特徴とするターゲット情報検出方法。
    The target information detection method according to claim 4,
    The target information detection apparatus measures the target information by a multi-frequency CW method in which the number N of frequencies to be used is 2 or more (N ≧ 2: N is a positive integer).
  6.  請求項5に記載のターゲット情報検出方法であって、
     前記ターゲットには、前記ターゲット側通信装置及び前記ターゲット側速度検出装置を具備した第1種ターゲットがp個(pは正の整数)が含まれ、前記ターゲット側通信装置及び前記ターゲット側速度検出装置が非具備の第2種ターゲットをq個(qは正の整数)を含む場合に、前記ターゲット情報検出装置が使用する周波数の個数NはN≧q+(p+1)/2を満たすことを特徴とするターゲット情報検出方法。
    The target information detection method according to claim 5,
    The target includes p first-type targets (p is a positive integer) including the target side communication device and the target side speed detection device, and the target side communication device and the target side speed detection device. The number N of frequencies used by the target information detection apparatus satisfies N ≧ q + (p + 1) / 2 when q includes the second type target (q is a positive integer) that is not included. Target information detection method.
PCT/JP2016/004299 2015-10-16 2016-09-21 Target information detection system and target information detection method WO2017064835A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017545081A JP6874686B2 (en) 2015-10-16 2016-09-21 Target information detection system and target information detection method
US15/765,305 US10809368B2 (en) 2015-10-16 2016-09-21 Target information detection system and target information detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-204174 2015-10-16
JP2015204174 2015-10-16

Publications (1)

Publication Number Publication Date
WO2017064835A1 true WO2017064835A1 (en) 2017-04-20

Family

ID=58517680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004299 WO2017064835A1 (en) 2015-10-16 2016-09-21 Target information detection system and target information detection method

Country Status (3)

Country Link
US (1) US10809368B2 (en)
JP (1) JP6874686B2 (en)
WO (1) WO2017064835A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433813B2 (en) 2019-08-29 2024-02-20 日清紡マイクロデバイス株式会社 Target object detection device, system, method and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821977B2 (en) * 2019-07-10 2023-11-21 Samsung Electronics Co., Ltd. Target detection and tracking for feature extraction
CN110619373B (en) * 2019-10-31 2021-11-26 北京理工大学 Infrared multispectral weak target detection method based on BP neural network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286257A (en) * 1996-04-23 1997-11-04 Nissan Motor Co Ltd Inter-vehicle distance controller
JP2006317456A (en) * 2002-07-26 2006-11-24 Hitachi Ltd Radio-wave radar system and adaptive cruise control system
JP2008145425A (en) * 2006-11-13 2008-06-26 Toyota Central R&D Labs Inc Radar device
WO2010097943A1 (en) * 2009-02-27 2010-09-02 トヨタ自動車株式会社 Vehicle relative position estimation apparatus and vehicle relative position estimation method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143370A (en) * 1972-05-20 1979-03-06 Toyota Kogyo Kabushiki Kaisha Vehicle collision anticipating method and device
JP3395623B2 (en) 1998-01-19 2003-04-14 株式会社日立製作所 Vehicle travel control device
JP2000292530A (en) 1999-04-09 2000-10-20 Hino Motors Ltd Radar
JP2002071793A (en) 2000-08-24 2002-03-12 Hitachi Ltd Radar device
JP2003167048A (en) 2001-12-03 2003-06-13 Hitachi Ltd Two-frequency cw system radar
US6888622B2 (en) * 2002-03-12 2005-05-03 Nissan Motor Co., Ltd. Method for determining object type of reflective object on track
JP3964362B2 (en) 2002-07-26 2007-08-22 株式会社日立製作所 Radio wave radar device and inter-vehicle distance control device
DE10337620B4 (en) * 2003-08-16 2017-09-28 Daimler Ag Motor vehicle with a pre-safe system
JP4720166B2 (en) 2004-12-03 2011-07-13 トヨタ自動車株式会社 Vehicle speed detection device
JP2006258709A (en) 2005-03-18 2006-09-28 Yokogawa Denshikiki Co Ltd Radar device
JP5097467B2 (en) 2007-07-31 2012-12-12 日立オートモティブシステムズ株式会社 Automotive radar equipment
JP4724694B2 (en) 2007-08-08 2011-07-13 日立オートモティブシステムズ株式会社 Radio radar equipment
JP5371277B2 (en) 2008-03-31 2013-12-18 三菱電機株式会社 Radar equipment
JP5912879B2 (en) 2012-05-31 2016-04-27 株式会社デンソー Radar equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286257A (en) * 1996-04-23 1997-11-04 Nissan Motor Co Ltd Inter-vehicle distance controller
JP2006317456A (en) * 2002-07-26 2006-11-24 Hitachi Ltd Radio-wave radar system and adaptive cruise control system
JP2008145425A (en) * 2006-11-13 2008-06-26 Toyota Central R&D Labs Inc Radar device
WO2010097943A1 (en) * 2009-02-27 2010-09-02 トヨタ自動車株式会社 Vehicle relative position estimation apparatus and vehicle relative position estimation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433813B2 (en) 2019-08-29 2024-02-20 日清紡マイクロデバイス株式会社 Target object detection device, system, method and program

Also Published As

Publication number Publication date
JP6874686B2 (en) 2021-05-19
US20180275263A1 (en) 2018-09-27
JPWO2017064835A1 (en) 2018-08-02
US10809368B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
CN109923435B (en) Radar sensor for motor vehicle
KR101757949B1 (en) Method for unambiguously determining a range and/or a relative speed of an object, driver assistance device and motor vehicle
JP6533288B2 (en) MIMO radar measurement method
US10012726B2 (en) Rapid-chirps-FMCW radar
KR20190096291A (en) Rader sensing with phase correction
JP6372965B2 (en) Radar measurement method using multiple different fields of view
US9696415B2 (en) Radar apparatus
CN102356332B (en) Radar system having arrangements and method for decoupling transmission and reception signals and suppression of interference radiation
WO2015190565A1 (en) Radar device using chirp wave, and method for signal processing in radar device
US10613217B2 (en) On-board radar apparatus, notification system, and travelling vehicle detection method of on-board radar apparatus
JP2004340755A (en) Radar device for vehicle
EP2952926A1 (en) Radar system
US10371809B2 (en) On-board radar apparatus and notification system
JP2017522574A (en) Radar measurement method
JP2003270336A (en) Method and apparatus for detecting multiple object by using frequency modulated continuous wave radar
JP2016148515A (en) Radar device
US10151832B2 (en) Method for determining the distance and relative speed of a remote object
EP4099056A1 (en) A vehicle radar system arranged for interference reduction
US20170176585A1 (en) On-board radar apparatus and notification system
US20140285372A1 (en) Object detecting device, object detecting method, object detecting program, and motion control system
WO2017064835A1 (en) Target information detection system and target information detection method
JP2023537329A (en) Radar Modulation Method with High Range Resolution at Low Signal Processing Load
US20130268173A1 (en) Object detecting device, object detecting method, object detecting program, and motion control system
JP2006046962A (en) Target detection device
US20160003941A1 (en) In-vehicle radar apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545081

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15765305

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855092

Country of ref document: EP

Kind code of ref document: A1