WO2017063547A1 - 能源网关、家用电器、直流微电网系统及其能源管理方法 - Google Patents

能源网关、家用电器、直流微电网系统及其能源管理方法 Download PDF

Info

Publication number
WO2017063547A1
WO2017063547A1 PCT/CN2016/101786 CN2016101786W WO2017063547A1 WO 2017063547 A1 WO2017063547 A1 WO 2017063547A1 CN 2016101786 W CN2016101786 W CN 2016101786W WO 2017063547 A1 WO2017063547 A1 WO 2017063547A1
Authority
WO
WIPO (PCT)
Prior art keywords
direct
energy
household appliance
gateway
current
Prior art date
Application number
PCT/CN2016/101786
Other languages
English (en)
French (fr)
Inventor
唐文强
南树功
任鹏
黄猛
刘霞
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to AU2016339424A priority Critical patent/AU2016339424A1/en
Priority to EP16854925.1A priority patent/EP3364539A4/en
Priority to CA3001750A priority patent/CA3001750A1/en
Priority to US15/768,036 priority patent/US20180331541A1/en
Priority to MX2018004540A priority patent/MX2018004540A/es
Publication of WO2017063547A1 publication Critical patent/WO2017063547A1/zh
Priority to AU2020200147A priority patent/AU2020200147B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • F24F2005/0067Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy with photovoltaic panels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the method of building a small photovoltaic power station is usually adopted, and the photovoltaic power generation is connected to the household power supply system through the grid-connected inverter.
  • the structure of the typical home microgrid system is shown in Fig. 1.
  • the prior art home microgrid system includes grid-connected inverters, photovoltaic modules, and various loads in the home (such as DC appliances and AC appliances), and DC appliances and AC appliances form a family.
  • Power system 12 The grid-connected inverter connects the photovoltaic module to the mains grid 13.
  • the home microgrid system in the prior art does not improve the entire home power supply structure when the small photovoltaic power generation system is connected to the home through the grid-connected inverter.
  • the rectifier module inside most household appliances converts AC power into DC power, which has many problems such as large conversion loss and harmonic pollution to the power grid.
  • an energy gateway, a household appliance, a DC microgrid system, and an energy management method thereof are provided to solve the problem of low utilization rate of solar power generation and conversion of household appliances in the prior art.
  • the loss is large, which will bring harmonic pollution to the power grid, thus affecting the quality of power and other issues.
  • an embodiment of the present invention provides an energy gateway, including: a DC input terminal for connecting to a DC output terminal connected to an external solar power generation device; and an energy gateway further comprising: for supplying power to an external DC power device.
  • the first DC output terminal and/or the second DC output terminal are connected directly to the DC input terminal, and the second DC output terminal is connected to the DC input terminal through a DC voltage conversion device.
  • the energy gateway further comprises a mains input and a first DC/AC inverter, the mains input being coupled to the DC input via the first DC/AC inverter.
  • the energy gateway further comprises an AC output for supplying power to the external AC appliance and a second DC/AC inverter, the DC input being connected to the AC output via the second DC/AC inverter.
  • the invention also provides a household appliance comprising the energy gateway described above.
  • the household appliance is a photovoltaic direct drive inverter air conditioner.
  • the invention also provides a DC microgrid system comprising: a solar power generation device, a load, and the energy gateway described above, the solar power generation device being connected to the load through the energy gateway.
  • the present invention also provides a direct current microgrid system comprising: a solar power generating device, a load, and the above-mentioned household appliance, wherein the solar power generating device is connected to the load through the household appliance.
  • the invention also provides an energy management method for a DC microgrid system, comprising: connecting a DC output of an external solar power generation device to a DC bus; and directly connecting a DC power source having a pressure range within a DC bus voltage range; DC bus, otherwise it is connected to the DC bus through the DC transformer.
  • the energy management method of the DC microgrid system further comprises: connecting the AC appliance to the direct bus through the first DC/AC inverter.
  • the DC bus, the DC voltage transformer and the first DC/AC inverter are integrated into a household appliance used as an energy gateway.
  • the invention can save the grid-connected inverter, reduce the equipment input and the electric energy conversion link, and improve the utilization efficiency of the new energy photovoltaic power generation. Further, since the household appliance directly uses DC power supply, the internal rectifier module can be removed, thereby reducing equipment input and power conversion loss, and eliminating household electricity.
  • the device brings various problems such as harmonic pollution to the power grid and affects power quality.
  • FIG. 1 is a schematic structural view of a home microgrid system in the prior art
  • FIG. 2 is a schematic structural view of a DC microgrid system in the present invention
  • FIG. 3 is a flow chart of an energy management method for a DC microgrid system in accordance with the present invention.
  • the internals contain a rectification module to rectify the AC power to DC.
  • the photovoltaic module generates electricity for direct current.
  • the photovoltaic module in a typical home microgrid system converts the generated direct current into alternating current and then into the household power supply system. In this way, after multiple conversions, the power loss is large and the utilization rate is low. If the photovoltaic power generation is directly connected to the household appliance, the power conversion loss and equipment investment will be reduced.
  • the present invention provides an energy gateway, in particular a home energy gateway, comprising: a DC input terminal 1 for connecting to a DC output end of an external solar power generation device 2;
  • the energy gateway further comprises a first DC output and/or a second DC output for supplying power to the external DC device 4, the first DC output is directly connected to the DC input 1, and the second DC output is passed
  • the DC voltage transformer 5 is connected to the DC input 1 .
  • the solar power generation device 2 may be a photovoltaic module or the like.
  • the DC transformer device 5 is a DC/DC converter.
  • the present invention can directly supply the direct current generated by the solar power generation device 2 to the photovoltaic direct drive household appliance. For example, if the voltage range of the first DC output terminal is within the pressure range of the DC power source, the DC power source can be directly connected to the first DC output terminal; otherwise, the DC power source is connected to the DC voltage transformer device 5 Connected second DC output. Therefore, compared with the home microgrid system in the prior art, the invention can save the grid-connected inverter, reduce the equipment input and the power conversion link, and improve the utilization efficiency of the new energy photovoltaic power generation.
  • the internal rectification module can be removed, thereby reducing equipment input and power conversion loss, eliminating harmonic pollution caused by household appliances to the power grid, and affecting power quality and the like.
  • the energy gateway further comprises a mains input 6 and a first DC/AC inverter 7, which is connected to the DC input 1 via a first DC/AC inverter 7.
  • the home appliance can be used as an energy gateway.
  • the energy gateway preferentially uses the solar power generation device 2 to generate electricity for the home appliance.
  • the power grid is supplemented by the grid power supply. 2 With surplus, it is integrated into the grid, which optimizes the entire home power supply system.
  • the energy gateway further comprises an AC output 9 and a second DC/AC inverter 10 for supplying power to the external AC appliance 8, the DC input 1 passing through the second DC/AC inverter 10 and the AC output End 9 is connected.
  • the present invention also provides a household appliance, including the energy gateway described above.
  • the household appliance is a photovoltaic direct drive inverter air conditioner 11.
  • Household appliances such as photovoltaic direct-drive inverter air conditioners 11 as energy gateways, can preferentially use photovoltaic new energy to generate electricity to supply household electrical appliances. When the electrical energy is insufficient, it is supplemented by the grid mains, and when the electric energy is surplus, it is integrated into the grid.
  • the present invention also provides a DC microgrid system comprising: a solar power generation device 2, a load, and the above-described energy gateway, the solar power generation device 2 being connected to the load through the energy gateway.
  • the DC microgrid system has compatibility for home appliance access, and the conventional AC-powered home appliance can access the energy gateway through the second DC/AC inverter.
  • the access method can be determined according to the matching of the withstand voltage range and the DC voltage output by the energy gateway, for example, if the DC power source is subjected to a voltage range at the first DC output of the energy gateway.
  • the first DC output terminal can be directly connected; if the DC power supply has a voltage range that is not within the voltage range of the first DC output terminal, it can be connected to the second DC output terminal.
  • the present invention also provides a DC microgrid system, comprising: a solar power generation device 2, a load, and the above-mentioned household appliance, wherein the solar power generation device 2 is connected to the load through a household appliance.
  • a home DC microgrid system can be constructed, so that photovoltaic power generation can be directly utilized directly, thereby optimizing the home power supply structure, reducing the intermediate energy conversion link in the new energy generation and use, thereby reducing the power loss of the power supply.
  • the internal rectifier module can be omitted, thereby reducing equipment input and power conversion loss, eliminating harmonic pollution caused by household appliances to the power grid, and affecting power quality and the like.
  • the DC microgrid system of the present invention uses a household appliance, such as a photovoltaic direct-drive inverter air conditioner as an energy gateway, to ensure energy balance of the home power supply system, and the matched photovoltaic component can directly access the DC side of the photovoltaic direct-drive inverter air conditioner, and at the same time,
  • the DC side of the PV direct-drive inverter air conditioner is directly connected to the main line of the home DC power distribution to form a DC bus.
  • other household appliances in the home can be connected to the DC bus, which is grouped into a home DC microgrid system powered by new energy.
  • the present invention further provides an energy management method for a DC microgrid system, comprising: connecting a DC output of an external solar power generation device 2 to a DC bus; and the pressure range is within a voltage range of the DC bus.
  • the DC power supply is directly connected to the DC bus, otherwise it is connected to the DC bus through the DC voltage transformer 5.
  • the energy management method of the DC microgrid system further comprises: passing the AC electrical appliance The first DC/AC inverter 7 is connected to the direct bus.
  • the DC bus, the DC voltage transformer 5 and the first DC/AC inverter 7 are integrated into one household appliance serving as an energy gateway.
  • the functions described in the method of the present embodiment can be stored in a computing device readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the embodiments of the present invention that contributes to the prior art or a portion of the technical solution may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a
  • the computing device (which may be a personal computer, server, mobile computing device, or network device, etc.) performs all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种能源网关、家用电器、直流微电网系统及其能源管理方法,该能源网关包括:直流输入端(1),用于与外部的太阳能发电装置(2)的直流输出端连接;能源网关还包括用于向外部的直流用电器(4)供电的第一直流输出端和/或第二直流输出端,第一直流输出端直接与直流输入端连接,第二直流输出端通过直流变压装置(5)与直流输入端连接。该能源网关、家用电器、直流微电网系统可以省去并网逆变器,减少设备投入和电能转换环节,提高新能源光伏发电的利用效率。进一步地,由于家用电器直接采用直流供电,可去除内部整流模块,从而减少了设备投入和电能转换损耗、消除家用电器给电网带来谐波污染影响电能质量等多种问题。

Description

能源网关、家用电器、直流微电网系统及其能源管理方法 技术领域
本申请要求于2015年10月15日提交中国专利局、申请号为201510677211.3、发明名称为“能源网关、家用电器、直流微电网系统及其能源管理方法”的国内申请的优先权,其全部内容通过引用结合在本申请中。
背景技术
随着人们对环境问题的日益关注,光伏发电等新能源技术得到了快速发展和广泛应用,国家相关政策也大力鼓励新能源的使用,分布式微电网系统以其有利于就近利用新能源等优势在家庭供电中得到广泛应用。直流微电网具有能量变换环节少、系统效率高和控制简单等诸多优点,对于新能源应用于家庭具有非常大的优势。
目前,对于新能源光伏发电在家庭的应用,通常采取搭建小型光伏电站的方式,通过并网逆变器将光伏发电接入家庭供电系统,典型家庭微电网系统结构如图1所示。如图1所示,现有技术中的家庭微电网系统包含并网逆变器、光伏组件、和家庭中的各种负载(例如直流电器和交流电器等)等,直流电器和交流电器构成家庭用电系统12。并网逆变器将光伏组件与市电电网13并网。现有技术中的家庭微电网系统当于把小型光伏发电系统通过并网逆变器接入家庭,对整个家庭供电结构没有改进。另外,大多数家用电器内部的整流模块将交流电转换为直流电使用,存在转化损耗大、给电网带来谐波污染影响电能质量等多种问题。
发明内容
本发明实施例中提供一种能源网关、家用电器、直流微电网系统及其能源管理方法,以解决现有技术中太阳能发电的利用率低、家用电器转化 损耗大、会给电网带来谐波污染,从而影响电能质量等问题。
为实现上述目的,本发明实施例提供一种能源网关,包括:直流输入端,用于与外部的太阳能发电装置相连接的直流输出端连接;能源网关还包括用于向外部的直流用电器供电的第一直流输出端和/或第二直流输出端,第一直流输出端直接与直流输入端连接,第二直流输出端通过直流变压装置与直流输入端连接。
作为优选,能源网关还包括市电输入端和第一DC/AC逆变器,市电输入端通过第一DC/AC逆变器与直流输入端连接。
作为优选,能源网关还包括用于向外部的交流用电器供电的交流输出端和第二DC/AC逆变器,直流输入端通过第二DC/AC逆变器与交流输出端连接。
本发明还提供了一种家用电器,包括上述的能源网关。
作为优选,家用电器为光伏直驱变频空调。
本发明还提供了一种直流微电网系统,包括:太阳能发电装置、负载、以及上述的能源网关,太阳能发电装置通过能源网关与负载连接。
本发明还提供了一种直流微电网系统,包括:太阳能发电装置、负载、以及上述的家用电器,太阳能发电装置通过家用电器与负载连接。
本发明还提供了一种直流微电网系统的能源管理方法,包括:将外部的太阳能发电装置输出的直流与直流母线连接;将承压范围在直流母线的电压范围内的直流用电器直接接入直流母线,否则通过直流变压装置接入直流母线。
作为优选,直流微电网系统的能源管理方法还包括:将交流用电器通过第一DC/AC逆变器接入直接母线。
作为优选,将直流母线、直流变压装置和第一DC/AC逆变器集成到一个用作能源网关的家用电器中。
本发明可以省去并网逆变器,减少设备投入和电能转换环节,提高新能源光伏发电的利用效率。进一步地,由于家用电器直接采用直流供电,可去除内部整流模块,从而减少了设备投入和电能转换损耗、消除家用电 器给电网带来谐波污染影响电能质量等多种问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中的家庭微电网系统的结构示意图;
图2是本发明中的直流微电网系统的结构示意图;
图3是本发明中的直流微电网系统的能源管理方法的流程图。
附图标记说明:1、直流输入端;2、太阳能发电装置;3、直流微电网系统;4、直流用电器;5、直流变压装置;6、市电输入端;7、第一DC/AC逆变器;8、交流用电器;9、交流输出端;10、第二DC/AC逆变器;11、光伏直驱变频空调;12、家庭用电系统;13、市电电网。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。
目前,大多数家用电器(包括变频电器)都可以采用直流供电,其内部含有整流模块,将交流电整流为直流后使用。光伏组件所发电为直流电,典型家庭微电网系统中的光伏组件将所发直流电先转换为交流电,再接入家庭供电系统。这样,会经过多次转换,电能损耗大、利用率低,若将光伏发电直接接入家用电器设备使用,将会减少电能转换损耗和设备投入。
请参考图2,本发明提供了一种能源网关,特别是一种家庭能源网关,包括:直流输入端1,用于与外部的太阳能发电装置2的直流输出端连接; 能源网关还包括用于向外部的直流用电器4供电的第一直流输出端和/或第二直流输出端,第一直流输出端直接与直流输入端1连接,第二直流输出端通过直流变压装置5与直流输入端1连接。例如,太阳能发电装置2可以为光伏组件等。优选地,直流变压装置5为DC/DC变流器。
由于采用了上述技术方案,本发明可以将太阳能发电装置2所发的直流电,直接提供给光伏直驱家用电器。例如,如果第一直流输出端的电压范围在直流用电器的承压范围内,那么可直接将直流用电器连接至第一直流输出端;否则将直流用电器连接至与直流变压装置5连接的第二直流输出端。因此,相对于现有技术中的家庭微电网系统来说,本发明可以省去并网逆变器,减少设备投入和电能转换环节,提高新能源光伏发电的利用效率。
进一步地,由于家用电器直接采用直流供电,可去除内部整流模块,从而减少了设备投入和电能转换损耗、消除家用电器给电网带来谐波污染影响电能质量等多种问题。
优选地,能源网关还包括市电输入端6和第一DC/AC逆变器7,市电输入端6通过第一DC/AC逆变器7与直流输入端1连接。这样,可将家用电器作为能源网关,此时,能源网关优先使用太阳能发电装置2所发电能供给家庭电器使用,当太阳能发电装置2提供的电能不够时,由电网市电补充,如果太阳能发电装置2有富余,则并入电网,从而优化了整个家庭供电系统。
优选地,能源网关还包括用于向外部的交流用电器8供电的交流输出端9和第二DC/AC逆变器10,直流输入端1通过第二DC/AC逆变器10与交流输出端9连接。
请参考图2,本发明还提供了一种家用电器,包括上述的能源网关。优选地,家用电器为光伏直驱变频空调11。将家用电器,例如光伏直驱变频空调11作为能源网关,可优先使用光伏新能源所发电能供给家庭电器供电,当电能不够时由电网市电补充,当电能多余时则并入电网。
本发明还提供了一种直流微电网系统,包括:太阳能发电装置2、负载、以及上述的能源网关,太阳能发电装置2通过能源网关与负载连接。
由于采用了上述技术,直流微电网系统对于家用电器接入具有兼容性,对于传统交流供电的家用电器可通过第二DC/AC逆变器接入能源网关。对于直流家用电器来说,可根据其承受电压范围与能源网关输出的直流电压的匹配来确定接入方式,例如,如果直流用电器其承受电压范围在能源网关的第一直流输出端的电压范围内,内可直接接入第一直流输出端;如果直流用电器其承受电压范围不在第一直流输出端的电压范围内,可接至第二直流输出端。
请参考图2,本发明还提供了一种直流微电网系统,包括:太阳能发电装置2、负载、以及上述的家用电器,太阳能发电装置2通过家用电器与负载连接。
采用家用电器作为能源网关,可构建家庭直流微电网系统,这样,可优先直接利用光伏发电,从而优化家庭供电结构,减少新能源发电及使用过程中的电能中间转换环节,从而减少供电的电能损耗。另外,当家用电器采用直流供电时,可省去内部的整流模块,从而减少设备投入和电能转换损耗、消除家用电器给电网带来谐波污染影响电能质量等多种问题。
本发明中的直流微电网系统将家用电器,例如光伏直驱变频空调作为能源网关,保证了家庭供电系统能量平衡,匹配的光伏组件则可直接接入光伏直驱变频空调的直流侧,同时,光伏直驱变频空调的直流侧直接与家庭直流配电主线连接,从而构成直流母线。这样,家庭内的其他家用电器则可接入直流母线,组从而成新能源供电的家庭直流微电网系统。
请参考图3,本发明还提供了一种直流微电网系统的能源管理方法,包括:将外部的太阳能发电装置2输出的直流与直流母线连接;将承压范围在直流母线的电压范围内的直流用电器直接接入直流母线,否则通过直流变压装置5接入直流母线。
优选地,直流微电网系统的能源管理方法还包括:将交流用电器通过 第一DC/AC逆变器7接入直接母线。
优选地,将直流母线、直流变压装置5和第一DC/AC逆变器7集成到一个用作能源网关的家用电器中。
本实施例方法所述的功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算设备可读取存储介质中。基于这样的理解,本发明实施例对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一台计算设备(可以是个人计算机,服务器,移动计算设备或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种能源网关,其特征在于,包括:直流输入端(1),用于与外部的太阳能发电装置(2)相连接的直流输出端连接;
    所述能源网关还包括用于向外部的直流用电器(4)供电的第一直流输出端和/或第二直流输出端,所述第一直流输出端直接与所述直流输入端(1)连接,所述第二直流输出端通过直流变压装置(5)与所述直流输入端(1)连接。
  2. 根据权利要求1所述的能源网关,其特征在于,所述能源网关还包括市电输入端(6)和第一DC/AC逆变器(7),所述市电输入端(6)通过所述第一DC/AC逆变器(7)与所述直流输入端(1)连接。
  3. 根据权利要求1所述的能源网关,其特征在于,所述能源网关还包括用于向外部的交流用电器(8)供电的交流输出端(9)和第二DC/AC逆变器(10),所述直流输入端(1)通过所述第二DC/AC逆变器(10)与所述交流输出端(9)连接。
  4. 一种家用电器,其特征在于,包括权利要求1至3中任一项所述的能源网关。
  5. 根据权利要求4所述的家用电器,其特征在于,所述家用电器为光伏直驱变频空调。
  6. 一种直流微电网系统,其特征在于,包括:太阳能发电装置(2)、负载、以及权利要求1至3中任一项所述的能源网关,所述太阳能发电装置(2)通过所述能源网关与所述负载连接。
  7. 一种直流微电网系统,其特征在于,包括:太阳能发电装置(2)、负载、以及权利要求4或5所述的家用电器,所述太阳能发电装置(2)通过所述家用电器与所述负载连接。
  8. 一种直流微电网系统的能源管理方法,其特征在于,包括:
    将外部的太阳能发电装置(2)输出的直流与直流母线连接;
    将承压范围在所述直流母线的电压范围内的直流用电器直接接入所述 直流母线,否则通过直流变压装置(5)接入所述直流母线。
  9. 根据权利要求8所述的直流微电网系统的能源管理方法,其特征在于,所述直流微电网系统的能源管理方法还包括:
    将交流用电器通过第一DC/AC逆变器(7)接入所述直接母线。
  10. 根据权利要求9所述的直流微电网系统的能源管理方法,其特征在于,将所述直流母线、所述直流变压装置(5)和所述第一DC/AC逆变器(7)集成到一个用作能源网关的家用电器中。
PCT/CN2016/101786 2015-10-15 2016-10-11 能源网关、家用电器、直流微电网系统及其能源管理方法 WO2017063547A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2016339424A AU2016339424A1 (en) 2015-10-15 2016-10-11 Energy gateway, household appliance, direct-current micro-grid system and energy management method therefor
EP16854925.1A EP3364539A4 (en) 2015-10-15 2016-10-11 Energy gateway, household appliance, direct-current micro-grid system and energy management method therefor
CA3001750A CA3001750A1 (en) 2015-10-15 2016-10-11 Energy gateway, household appliance, direct-current micro-grid system and energy management method therefor
US15/768,036 US20180331541A1 (en) 2015-10-15 2016-10-11 Energy Gateway, Household Appliance, Direct-Current Micro-Grid System and Energy Management Method Therefor
MX2018004540A MX2018004540A (es) 2015-10-15 2016-10-11 Pasarela de energia, electrodomestico, sistema de microrred de corriente continua y método de gestión de energía para el mismo.
AU2020200147A AU2020200147B2 (en) 2015-10-15 2020-01-08 Energy gateway, household appliance, direct-current micro-grid system and energy management method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510677211.3 2015-10-15
CN201510677211.3A CN105262433B (zh) 2015-10-15 2015-10-15 能源网关、家用电器、直流微电网系统及其能源管理方法

Publications (1)

Publication Number Publication Date
WO2017063547A1 true WO2017063547A1 (zh) 2017-04-20

Family

ID=55101977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101786 WO2017063547A1 (zh) 2015-10-15 2016-10-11 能源网关、家用电器、直流微电网系统及其能源管理方法

Country Status (7)

Country Link
US (1) US20180331541A1 (zh)
EP (1) EP3364539A4 (zh)
CN (1) CN105262433B (zh)
AU (2) AU2016339424A1 (zh)
CA (2) CA3001750A1 (zh)
MX (1) MX2018004540A (zh)
WO (1) WO2017063547A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200079172A1 (en) * 2018-09-12 2020-03-12 Lorenzo Tucker Apparatus for a pre-temperature alteration for an automotive

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105262433B (zh) * 2015-10-15 2018-01-19 珠海格力电器股份有限公司 能源网关、家用电器、直流微电网系统及其能源管理方法
CN106357526A (zh) * 2016-10-31 2017-01-25 天津智艺通科技有限公司 一种新能源型网关设备
CN107154620A (zh) * 2017-05-16 2017-09-12 珠海格力电器股份有限公司 基于公共母线的电气系统及其控制方法
CN107453364B (zh) * 2017-06-28 2021-02-02 北京国电通网络技术有限公司 一种区域能源系统的能量流与信息流融合方法
CN109494788B (zh) * 2018-11-08 2020-09-29 珠海格力电器股份有限公司 光伏电器系统及其电压保护值控制方法、装置
CN110809038B (zh) * 2019-10-29 2022-07-08 深圳供电局有限公司 组合式能源网关
BE1028004B1 (nl) * 2019-12-30 2021-08-24 Futech Bvba DC-bron in elektrische installatie

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208842A (zh) * 2013-04-07 2013-07-17 安徽工程大学 一种新型家庭太阳能供电系统
CN104362612A (zh) * 2014-10-21 2015-02-18 广东美的制冷设备有限公司 空调器的供电系统以及基于光伏供电的家庭微网系统
CN105262433A (zh) * 2015-10-15 2016-01-20 珠海格力电器股份有限公司 能源网关、家用电器、直流微电网系统及其能源管理方法
CN205123675U (zh) * 2015-10-15 2016-03-30 珠海格力电器股份有限公司 能源网关、家用电器和直流微电网系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243136A (ja) * 1996-03-11 1997-09-16 Hitachi Ltd ソーラエアコン
JP2005337639A (ja) * 2004-05-28 2005-12-08 Toshiba Kyaria Kk 空気調和機
JP5081596B2 (ja) * 2007-12-04 2012-11-28 シャープ株式会社 電力供給システム
CN202197140U (zh) * 2011-07-21 2012-04-18 东莞市和风电器有限公司 一种太阳能光伏与电网供电无缝并接的热泵系统
CN103486682B (zh) * 2013-09-25 2021-09-28 珠海格力电器股份有限公司 光伏空调系统
CN103618372B (zh) * 2013-12-11 2016-04-06 厦门大学 一种光伏直流微电网系统
KR101984484B1 (ko) * 2014-03-06 2019-05-31 로베르트 보쉬 게엠베하 Dc 마이크로그리드용 dc 전력 서버
CN204478358U (zh) * 2015-01-26 2015-07-15 山东禄禧新能源科技有限公司 一种太阳能光伏空调系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208842A (zh) * 2013-04-07 2013-07-17 安徽工程大学 一种新型家庭太阳能供电系统
CN104362612A (zh) * 2014-10-21 2015-02-18 广东美的制冷设备有限公司 空调器的供电系统以及基于光伏供电的家庭微网系统
CN105262433A (zh) * 2015-10-15 2016-01-20 珠海格力电器股份有限公司 能源网关、家用电器、直流微电网系统及其能源管理方法
CN205123675U (zh) * 2015-10-15 2016-03-30 珠海格力电器股份有限公司 能源网关、家用电器和直流微电网系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3364539A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200079172A1 (en) * 2018-09-12 2020-03-12 Lorenzo Tucker Apparatus for a pre-temperature alteration for an automotive

Also Published As

Publication number Publication date
AU2016339424A1 (en) 2018-05-31
CA3188809A1 (en) 2017-04-20
CN105262433A (zh) 2016-01-20
CN105262433B (zh) 2018-01-19
EP3364539A1 (en) 2018-08-22
US20180331541A1 (en) 2018-11-15
MX2018004540A (es) 2019-04-15
CA3001750A1 (en) 2017-04-20
EP3364539A4 (en) 2018-10-24
AU2020200147A1 (en) 2020-01-30
AU2020200147B2 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2017063547A1 (zh) 能源网关、家用电器、直流微电网系统及其能源管理方法
WO2015035727A1 (zh) 一种多能源供电电机驱动系统
CN203674793U (zh) 在线式工频不间断电源
CN102013695A (zh) 基于h桥的无变压器风力发电并网拓扑结构
CN203352474U (zh) 太阳能光伏并网逆变器
CN102447396A (zh) 高升压比变换器、太阳能逆变器与太阳能电池系统
TW201803241A (zh) 分散模組式併網轉換裝置及其控制方法
CN204119150U (zh) 一种高效率低成本的光伏发电系统
CN203416041U (zh) 一种交直流双电源配电箱
WO2016004896A1 (zh) 光伏逆变器及空调器
Duan et al. Flexible power distribution unit—A novel power electronic transformer development and demonstration for distribution system
Avdeev et al. On the Use of a Solid-State Transformer in a Power Supply System with Unbalanced Phase Voltages
Ahmadi et al. Selective source power converter for improved photovoltaic power utilization
CN104362670A (zh) 一种不可调度式太阳能发电与市电互补系统
CN202475260U (zh) 高升压比变换器、太阳能逆变器与太阳能电池系统
CN105071676A (zh) 一种太阳能逆变器
CN205123675U (zh) 能源网关、家用电器和直流微电网系统
CN206313674U (zh) 一种多重母排电源
Chen et al. Design and implementation of a photovoltaic grid-connected micro-inverter with power factor correction technology
CN203219215U (zh) 一种包括功率优化装置的太阳能系统
CN104426233A (zh) 一种交直流双电源配电箱
CN204615502U (zh) 双向储能光伏逆变器的系统电源供电装置
CN205961052U (zh) 一种光伏供电系统
de Almeida et al. Modulation technique for a single-stage three-phase bidirectional AC/DC converter with PFC and high-frequency isolation
CN204334372U (zh) 兆瓦级组串式逆变升压装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3001750

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/004540

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15768036

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016854925

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016339424

Country of ref document: AU

Date of ref document: 20161011

Kind code of ref document: A