WO2017063380A1 - 船用氮气制造系统 - Google Patents

船用氮气制造系统 Download PDF

Info

Publication number
WO2017063380A1
WO2017063380A1 PCT/CN2016/087591 CN2016087591W WO2017063380A1 WO 2017063380 A1 WO2017063380 A1 WO 2017063380A1 CN 2016087591 W CN2016087591 W CN 2016087591W WO 2017063380 A1 WO2017063380 A1 WO 2017063380A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
pressure
marine
manufacturing system
compressed air
Prior art date
Application number
PCT/CN2016/087591
Other languages
English (en)
French (fr)
Inventor
陈力
杨莺
Original Assignee
杭州欧斯空分设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州欧斯空分设备有限公司 filed Critical 杭州欧斯空分设备有限公司
Publication of WO2017063380A1 publication Critical patent/WO2017063380A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to the technical field of nitrogen production, and in particular to a marine nitrogen production system. Background technique
  • the International Convention for the Safety of Life at Sea (SOLAS), currently in force at the International Maritime Organization (M0), provides for a flash point of no more than 60 ° C for loadings of more than 20,000 tons and above, and its Reid vapor pressure.
  • SOLAS Safety of Life at Sea
  • M0 International Maritime Organization
  • the protection of cargo tanks shall be achieved by a fixed inert gas system complying with the requirements of the Fire Safety Systems Code.
  • the inert gas generating device is the core component of the inert gas system. According to the principle of inert gas generation, it can be divided into three types: combustion type, hollow fiber membrane space division and pressure swing adsorption type air separation. Among them, hollow fiber membrane air separation and pressure swing adsorption air separation are also called nitrogen generators (referred to as nitrogen generators).
  • the nitrogen produced by the nitrogen-making mechanism is clean and free of contaminants, and is an inert gas that can be used in the emission control zone.
  • the nitrogen generator occupies a larger area than the inert gas equipment and has a high procurement cost. Therefore, the chemical boat for retrofitting or installing nitrogen equipment or the old design of the ship using nitrogen production equipment imposes stringent requirements on the space for installing the nitrogen generator. In addition, reducing the cost of nitrogen is also conducive to the shipowner switching to the nitrogen generator as soon as possible to obtain the airworthiness certificate of the discharge area.
  • a nitrogen gas production apparatus nitrogen PSA apparatus
  • PSA method pressure swing adsorption method
  • a ship (marine platform) user request such a nitrogen manufacturing apparatus is expected to provide more nitrogen generation based on the existing space.
  • the increase in nitrogen supply will help increase the port unloading speed of oil and chemical tankers, thereby reducing the ship's detention time, improving the efficiency of single ship utilization, and improving the economy of oil tankers. benefit.
  • a marine nitrogen manufacturing system is constructed by sequentially connecting the following devices through pipelines:
  • a compressor comprising at least one compression unit for providing compressed air
  • a filtering device comprising at least one filtering unit for filtering compressed air
  • Nitrogen generator comprising at least two nitrogen-making units for preparing nitrogen
  • the working state of the nitrogen generating unit includes a nitrogen generating state and a pressure equalizing state.
  • a nitrogen generating state When operating in a marine nitrogen manufacturing system, at most one nitrogen generating unit in the nitrogen generating unit is in a pressure equalizing state, and the rest The nitrogen-making units are all in a nitrogen-producing state.
  • the volume of the nitrogen buffer tank required per 1 Nm 3 /min of nitrogen production is less than or equal to 20 L.
  • the nitrogen-making unit comprises two adsorption towers, and a desiccant packing layer and a carbon molecular sieve packing layer are sequentially disposed in the adsorption tower along the gas flow direction.
  • the flow pressure regulating device includes a flow purity pressure regulating device and/or a line boosting device.
  • connection between each of the nitrogen generating units is a parallel connection.
  • the marine nitrogen production system of the present invention does not include a cold dryer (or a separate adsorption type compressed air drying device), an air buffer tank, and a nitrogen buffer tank.
  • a cold dryer or a separate adsorption type compressed air drying device
  • an air buffer tank or a nitrogen buffer tank.
  • nitrogen buffer tank large portion of nitrogen plant may be provided with a nitrogen gas buffer tank, the buffer tank volume of nitrogen but also greatly reduced over the prior art, the prior art typically 3 / min nitrogen production requires at least every lNm 0. 3-0. 6m 3 nitrogen
  • the buffer tank, the nitrogen production system of the present invention requires only 20 L of nitrogen buffer tank per 1 Nm 3 /min of nitrogen.
  • the present invention is provided with a desiccant packing layer in the gas flow direction in the adsorption tower of the nitrogen-making unit, which can replace the function of the prior art cold-drying machine (or dryer).
  • the present invention adopts a pressure swing adsorption method for drying and dehydrating a gas. The principle is to utilize the difference in moisture adsorption of the desiccant under different pressures, adsorbing moisture in the gas under pressure, and passing the adsorbed moisture through the dried gas under reduced pressure. Bring out.
  • the invention skillfully utilizes the nitrogen generator to release a large amount of oxygen-rich waste gas every time desorption (the amount of gas released when preparing 95% of nitrogen accounts for 50% of the total amount of input compressed air, and 99.9% purity is more than 70%) ), combining drying and nitrogen production into one, It can solve the problem that the compressed carbon dehydration and purification protects the carbon molecular sieve used for nitrogen production from moisture, and can obtain the dry nitrogen with the dew point requirement.
  • the advantage of this is that it does not increase the investment of equipment, fully utilizes the desorption and exhaust gas of the nitrogen generator, saves fuel and cooling water, and saves the installation space of the nitrogen generating device.
  • the nitrogen-making unit comprises two adsorption towers, namely, an adsorption tower A and an adsorption tower B (consisting of a tank filled with carbon molecular sieves), and one adsorption tower A is supplied with compressed air and adsorbed through the carbon molecular sieve in the adsorption tower.
  • the oxygen in the compressed air is nitrogen, called “nitrogen production”.
  • the carbon molecular sieve in the other adsorption tower B is flushed with the partially prepared nitrogen gas, and the oxygen adsorbed in the carbon molecular sieve is discharged, which is called "regeneration".
  • the nitrogen generator unit of the prior art uses a nitrogen buffer tank to store nitrogen gas, and maintains a continuous supply of nitrogen while the nitrogen unit is in a pressure equalization state.
  • the compressed air buffer tank is also designed to ensure that the compressor is not frequently unloaded due to sudden stop of compressed air consumption when the nitrogen plant is in a pressure equalization state.
  • At least two nitrogen-making units are arranged in the nitrogen generator, and by staggering the equalizing time of the plurality of nitrogen-making units, all the nitrogen-making units are prevented from being pressure-reduced at the same time, that is, the entire system can be maintained normally.
  • Nitrogen supply and compressed air consumption For example, if there are N sets of nitrogen-making units operating at the same time, then the exchange of A and B columns in the N-group nitrogen-making units is performed according to the staggered time T. Assuming that the "nitrogen production" time is T N2 , the time required for the "equal pressure" to alternate is
  • T EQ , T (T N2 + T EQ ) /N. This T is the optimum interval, ensuring that only one set of PSAs is in a uniform pressure state, and the remaining nitrogen units are in a nitrogen-producing state.
  • the inertia required for the inerting of the gas carrier loading and unloading pipeline or the LNG power ship fuel filling pipeline is not large, the nitrogen usage time is very short, but the nitrogen pressure, purity, and instantaneous supply flow are required. Higher.
  • the usual solution is to increase the output pressure of nitrogen by increasing the working pressure of the compressor and increasing the pressure of the PSA nitrogen.
  • this method obviously increases the size of the compressor, which increases the investment and use cost and increases the equipment footprint.
  • the invention adopts the above-mentioned means to simplify the structure of the prior art nitrogen production system, reduce the occupation of the equipment (completely can be arranged into the space occupied by the original inert gas system of the oil tanker), and can ensure the operation of the equipment and nitrogen.
  • the output, pressure, and purity save both equipment investment and energy consumption.
  • FIG. 1 is a schematic structural view of a conventional nitrogen manufacturing system
  • FIG. 2 is a schematic structural view of a nitrogen gas production system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a nitrogen gas production system according to another embodiment of the present invention.
  • compressor 101, compression unit; 20, nitrogen generator; 201, nitrogen unit; 30, flow pressure adjustment device;
  • flow purity pressure regulating device 301, flow purity pressure regulating device; 302, pipeline pressurizing device; 40, nitrogen buffer tank; 50, cold dryer; 60, air buffer tank; 70, filter device.
  • a marine nitrogen manufacturing system is constructed by sequentially connecting the following devices through a pipeline: a compressor 10 including at least one compression unit 101 for supplying compressed air; There are more than 2 compression units.
  • the filtering device 70 includes at least one filtering unit, which is a multi-stage compressed air filtering device for filtering compressed air.
  • the nitrogen generator 20 includes at least two nitrogen-making units 201 for preparing nitrogen gas; and the connection between the nitrogen-making units is connected in parallel.
  • the working state of each of the nitrogen generating units includes a nitrogen producing state and a pressure equalizing state. When operating in a marine nitrogen manufacturing system, only one nitrogen generating unit in the nitrogen generating unit is in a pressure equalizing state, and the remaining nitrogen producing units are in nitrogen production. status.
  • Each of the nitrogen generating units includes two adsorption towers in which a desiccant packing layer and a carbon molecular sieve packing layer (not shown) are respectively loaded in the gas flow direction.
  • Nitrogen buffer tank 40 for storing and buffering nitrogen in this embodiment, the volume of the buffer tank required per 1 Nm 3 /min of nitrogen production is 20 L. Understandably, a small nitrogen system can replace the nitrogen tank function with a large diameter pipe, that is, there is no need to install a nitrogen tank. For a large nitrogen production system (nitrogen production exceeds 10 Nm 3 /min), a nitrogen buffer tank, nitrogen gas is required. The tank volume is up to 20 L X nitrogen production Nm 3 /min.
  • the force adjusting device 301 can also add a line boosting device 302 to the bypass for supplying high-pressure nitrogen gas in the case where high-pressure nitrogen gas is required.
  • the booster adopts a gas-driven booster pump, and the power source is nitrogen. Such a booster pump is directly installed on the pipeline, without connecting the cable and the cooling water (the pressurized heat is taken away by the pressurized gas), and does not occupy additional site.
  • the marine nitrogen production system of the present embodiment and the existing nitrogen production system include a compressor 10, a filtration device 70, a cold dryer 50, an air buffer tank 60, a nitrogen generator, which are sequentially connected through a pipeline. 20. Nitrogen buffer tank 40 and flow pressure adjusting device 30)
  • a compressor 10 compressor 10
  • a filtration device 70 filtration device 70
  • a cold dryer 50 filtration device 70
  • an air buffer tank 60 a nitrogen generator
  • a nitrogen generator which are sequentially connected through a pipeline.
  • Nitrogen buffer tank 40 and flow pressure adjusting device 30 Compared with the marine nitrogen manufacturing system of the present invention, there is no cold drying machine (compressed air drying device), an air buffer tank, and a nitrogen buffer tank (partially large nitrogen production)
  • the equipment can be equipped with a buffer tank, but the volume of the buffer tank is also greatly reduced compared to the prior art, and usually a 20 L buffer tank is required for nitrogen production of 1 Nm 3 /min.
  • a desiccant packing layer is added in the gas flow direction in the adsorption tower of the nitrogen-making unit, which can replace the function of the prior art cold-drying machine.
  • the nitrogen production system of the present embodiment uses a pressure swing adsorption method to dry and dehydrate the gas. The principle is to utilize the difference in adsorption moisture of the desiccant under different pressures, adsorb the moisture in the gas under pressure, and adsorb the adsorbed pressure under reduced pressure. Moisture is carried out by the dry gas.
  • the embodiment of the invention skillfully utilizes the nitrogen generator to release a large amount of oxygen-rich waste gas each time the desorption is performed (the amount of gas released when preparing 95% of nitrogen accounts for 50% of the total amount of input compressed air, and 99.9% of the purity is up to 70%). More than %), the combination of drying and nitrogen production can solve the problem that the compressed carbon desulfurization and purification of the carbon molecular sieve for nitrogen production is free from moisture, and the dry nitrogen with the dew point requirement can be obtained.
  • the advantage of this is that it does not increase the investment of equipment, fully utilizes the desorption and exhaust gas of the nitrogen generator, saves fuel and cooling water, and saves the installation space of the nitrogen generator.
  • the nitrogen-making unit comprises two adsorption towers, namely, an adsorption tower A and an adsorption tower B (consisting of a tank filled with carbon molecular sieves), and one adsorption tower A is supplied with compressed air and adsorbed through the carbon molecular sieve in the adsorption tower.
  • the oxygen in the compressed air is nitrogen, called “nitrogen production”.
  • the carbon molecular sieve in the other adsorption tower B is flushed with the partially prepared nitrogen gas, and the oxygen adsorbed in the carbon molecular sieve is discharged, which is called "regeneration".
  • the nitrogen production process continues. This alternating process is in a pause phase due to "equal pressure". Neither compressed air enters the adsorption tower and no nitrogen is supplied from the adsorption tower.
  • the switching of the adsorption towers of A and B is quite frequent, and it is usually switched once within lmin.
  • the nitrogen generator unit of the prior art uses a nitrogen buffer tank to store nitrogen gas, and maintains a continuous supply of nitrogen while the nitrogen unit is in a pressure equalization state.
  • the compressed air buffer tank is also used to ensure that the compressor is not frequently unloaded due to sudden stop of compressed air consumption when the nitrogen-making unit is in a pressure equalization state.
  • the frequency of loading and unloading of the compressor is limited. After a short period of loading and unloading, not only can not save energy consumption, but also damage the compressor failure caused by loading and unloading valves and switches.
  • At least two nitrogen-making units are arranged in the nitrogen generator, and by staggering the equalizing time of the plurality of nitrogen-making units, all the nitrogen-making units are prevented from being pressured at the same time, that is, the entire system can be maintained normally.
  • the prior art nitrogen manufacturing system is simplified in structure, and the operation of the equipment and the nitrogen production are not affected, thereby saving equipment investment and energy consumption.
  • Example 1 5,500 tons of oilized ship (55KCT) 4, 250Nm 3 /h nitrogen generator installation project, as shown in Figure 2
  • the 55,000-ton oil tanker leaser is required to obtain an airworthiness certificate for the North American Emission Control Zone.
  • the inert gas system in the original design is not allowed to operate in North America for the traditional combustion type.
  • the inert gas system which is necessary for unloading, cannot be operated, meaning that chemical tankers are not allowed to unload at North American ports. Therefore, it is necessary to install a nitrogen generating device.
  • the design of the oil tanker did not consider the cabin where the nitrogen generator was placed, nor did it reserve the power and cooling water required by the nitrogen generator.
  • Two container-type diesel-powered air compressors can be placed on the rear deck, and the platform and deckhouse are equipped with nitrogen generators on the side deck.
  • the DECKHOUSE is only enough to arrange the nitrogen generator, no nitrogen buffer tank, air Buffer tank and dryer.
  • Example 2 85,000 square super large acetaminophen transport vessel (VLEC) nitrogen generator, as shown in Figure 2.
  • VLEC acetaminophen transport vessel
  • Nitrogen is provided with two sets of nitrogen gas, 1.551 ⁇ 21171, purity of 99.8% or more, and one use. It is extremely difficult to maintain space under the cabin and leave enough equipment for maintenance.
  • the nitrogen generator arranged in the cabin is limited in height. Therefore, it is necessary to reduce the size and height of the equipment.
  • the patented technology can remove the cold dryer and the air buffer tank, and the nitrogen buffer tank greatly reduces the equipment occupation. With a combination of multiple sets of nitrogen units, the height of the single set of nitrogen units can be controlled within the permissible range, while reducing the overall investment cost of the nitrogen manufacturing system.
  • Example 3 12,500 tons of stainless steel chemical marine 1,500 Nm 3 /h nitrogen system, as shown in Figure 3.
  • the whole system is composed of two sets of screw air compressors with output flow of 27m 3 /min, working pressure of 8bar, one set of compressed air filter, one set of X1500PSA nitrogen generator (including two PSA units, Containing dry), a set of nitrogen pressurized air drive pump, a set of nitrogen flow, pressure, and purity adjustment devices.
  • the unloading pump can provide 25Nm 3 /min, the purity is 95%, and the pressure of 0. 25bar of nitrogen-filled cargo tank increases the space caused by unloading.
  • a nitrogen purifier can be used to provide a purity of 99.9%, and a maximum flow rate of 5 Nm 3 /min of nitrogen is used for the pigging operation (promoting the cleaning ball to drive the residual liquid in the pipe to the onshore storage tank.)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

提供一种船用氮气制造系统,由如下设备通过管线依次连接而成:压缩机(10),包括至少一个压缩单元(101),用于提供压缩空气;过滤装置(70),包括至少一个过滤单元,用于过滤压缩空气;制氮机(20),包括至少两个制氮单元(201),用于制备氮气;任选的氮气缓冲器(40);以及流量压力调节装置(30),用于调节流量和压力。该系统中不设有冷干机和空气缓冲罐,对系统结构进行了精简,节约了设备投资和能耗,同时还可以输出小流量高压力的氮气。

Description

船用氮气制造系统
技术领域
本发明涉及氮气制造技术领域, 特别是涉及一种船用氮气制造系统。 背景技术
国际海事组织 (M0) 通过的现行生效的 《国际海上人命安全公约》 (SOLAS公约) 规 定, 对于载重吨大于 20, 000吨及以上的载运闪点不超过 60°C, 且其雷德蒸汽压力低于大 气压力的原油和成品油或具有类似失火危险的其他液货货品的液货船, 液货舱的保护应通 过一个符合 《消防安全系统规则》 要求的固定惰性气体系统来达到。
惰性气体发生装置是惰性气体系统的核心部件, 按照惰性气体发生原理的不同, 可将 其分为燃烧式、 中空纤维膜空分和变压吸附式空分三种类型。 其中中空纤维膜空分和变压 吸附式空分又称为制氮发生装置 (简称制氮机)。
燃烧式惰气发生装置由于出现最早且价格低廉, 所以在大型油船和早期化学品船上大 量安装。 但是由于燃料燃烧后产生的惰气即使经过海水淋洗后硫、 氮氧化合物 (N0X) 含 量依然很高, 装货时随着液体的不断加入货液舱, 惰气在港口连续排放, 严重污染了港口 环境。 原来装有惰气的船不能取得 GREENPASS, 而现在装有惰气的船舶不再允许在排放控 制区航行 (ECA ___ emit control area)D
而制氮机制取的氮气干净无污染物, 是可以在排放控制区使用的惰性气体。 但是制氮 机的占地比惰气设备大, 采购成本高。 所以对于改装或加装氮气设备的化学品船或采用制 氮设备的老设计的船型都对安装制氮机的空间提出苛刻的要求。 另外, 降低氮气的成本也 是有利于船东尽早改用制氮机取得排放区适航证。
通常, 利用变压吸附方式 (Pressure Swing Adsorption, PSA方式) 的氮气制造装置 (氮气 PSA装置) 作为简便的氮气供给单元而用于多种用途。 近些年, 作为船舶 (海洋平 台) 用户要求, 这种氮气制造装置期望着在现有空间的基础上提供更多的氮气发生量。 对 于油品、 化学品船而言, 氮气供应量的增加有助于提高油品、 化学品船的港口卸货速度, 从而减少船的滞港时间, 提高单船利用效率, 提高油化船的经济效益。
因此, 现有技术急需开发一种结构精简, 投资低的船用氮气制造系统。 发明内容
基于此, 本发明的目的是提供一种结构精简, 投资低的船用氮气制造系统。 具体的技术方案如下:
一种船用氮气制造系统, 由如下设备通过管线依次连接而成:
压缩机, 包括至少一个压缩单元, 用于提供压缩空气;
过滤装置, 包括至少一个过滤单元, 用于过滤压缩空气;
制氮机, 包括至少两个制氮单元, 用于制备氮气;
和 /或氮气缓冲罐, 用于储存、 缓冲氮气;
以及流量压力调节装置, 用于调节流量和压力。
在其中一个实施例中, 所述制氮单元的工作状态包括制氮状态和均压状态, 在船用氮 气制造系统工作时, 所述制氮机中最多有一个制氮单元处于均压状态, 其余制氮单元均处 于制氮状态。
在其中一个实施例中, 每 lNm3/min氮气产量所需的氮气缓冲罐的体积小于等于 20L。 在其中一个实施例中, 所述制氮单元包括两个吸附塔, 所述吸附塔中沿气体流动方向 依次设有干燥剂填料层和碳分子筛填料层。
在其中一个实施例中, 流量压力调节装置包括流量纯度压力调节装置和 /或管路增压 装置。
在其中一个实施例中, 各所述制氮单元之间的连接方式为并联连接。
本发明的原理及优点如下:
与现有的氮气制造系统 (如图 1所示) 相比, 本发明的船用氮气制造系统中不设有冷 干机 (或单独的吸附式压缩空气干燥装置)、 空气缓冲罐以及氮气缓冲罐 (部分大型的制 氮设备可以设有氮气缓冲罐, 但氮气缓冲罐的体积也较现有技术大大缩小, 现有技术通常 每 lNm3/min氮气产量至少需要 0. 3-0. 6m3氮气缓冲罐, 本发明的氮气制造系统每 lNm3/min 氮气产量最大只需要 20L氮气缓冲罐)。
本发明在制氮单元的吸附塔中沿气体流动方向增加设置了干燥剂填料层, 可以替代现 有技术中冷干机 (或吸干机) 的功能。 且本发明采用变压吸附方法对气体进行干燥脱水, 其原理是利用干燥剂在不同压力下吸附水分的不同, 在加压下吸附气体中水分, 在减压时 将吸附的水分通过干燥的气体带出。
现有技术中如果单独采用变压吸附干燥装置于压缩机后进行压缩空气脱水处理, 需要 耗损处理气量 14-20%的气量来冲洗带走解吸出来的水分。不但整套制氮设备没法减小安装 面积, 还要增加压缩机的排气量增加投资和能耗。
本发明巧妙地利用制氮机每次解吸时放出大量富氧废气 (制取 95%氮气时放出的气体 量占输入压缩空气总量的 50%, 99. 9%纯度时更是高达 70%以上), 将干燥和制氮合二为一, 既可解决压缩空气脱水净化保护制氮用的碳分子筛不受潮, 又可以获得露点要求符合要求 的干燥氮气。 这样做的好处是没有多增加设备投资, 充分利用了制氮机的解吸排放废气, 节省了燃料和冷却水, 并达到节省了氮气发生装置安装空间的目的。
现有技术中制氮单元包括两个吸附塔, 分别为吸附塔 A和吸附塔 B (由装满碳分子筛 的罐子构成), 一个吸附塔 A通入压缩空气, 通过吸附塔内的碳分子筛吸附压缩空气中的 氧气获得氮气, 称为 "制氮" 。 同时, 另外用部分制取的氮气对另外一个吸附塔 B内的碳 分子筛进行冲洗, 将碳分子筛内吸附的氧气排出, 称为 "再生" 。 当 "制氮" 的吸附塔 A 内的碳分子筛吸附氧气饱和时, "制氮"和 "再生" 同时暂停, "再生"和 "制氮"完成 的 A、 B吸附塔通过一个称为 "均压" 的过程将 A吸附罐内的氮气转移到 B吸附塔内, 使 得八、 B吸附塔的压力近乎相等。 "均压"后, B吸附塔通入压缩空气 "制氮" , A吸附塔 用氮气冲洗且排空 "再生" 。 在 A、 B 吸附塔交替的 "制氮"和 "再生"过程中, 制氮过 程得以延续。 这个交替过程由于 "均压"时, "制氮"处于暂停阶段。 既无压缩空气进入 吸附塔被消耗, 也无氮气从吸附塔供出。 A、 B吸附塔的切换相当频繁, 一般 lmin内就要 切换一次。
为了维持氮气供应的连续性, 现有技术中的制氮单元后面都会采用一个氮气缓冲罐储 存氮气, 在制氮单元处于均压状态时维持氮气的连续供应。 同样, 压缩空气缓冲罐也是为 了在制氮单元处于均压状态时保证压缩机不会因为压缩空气消耗骤停而频繁加卸载。 压缩 机的加卸载频率是有一定限制的。 过短时间的加卸载, 不但不可以节省能耗还会损坏加卸 载阀门和开关造成压缩机故障。
本发明为了解决上述问题, 制氮机中设置至少两个制氮单元, 通过将多组制氮单元的 均压时间错开, 避免所有制氮单元在同一时间均压, 即可以保证整个系统维持正常的氮气 供应和压缩空气消耗。 例如如果有 N组制氮单元同时工作, 那么这 N组制氮单元内 A、 B 塔交换按照错开时间 T进行。 假定 "制氮"时间为 TN2, "均压"交替所需要时间为
TEQ,T= (TN2+TEQ) /N。 这个 T就是最佳的间隔时间, 保证最多只有一组 PSA处于均压状态, 其 余制氮单元都处于制氮状态。
对于化学品船清管作业, 气体运输船装卸载管道或 LNG动力船装燃料加注管道的惰化 需要的氮气总量不大, 氮气使用时间很短, 但是要求氮气压力, 纯度, 瞬间供应流量较高。 针对这种作业要求, 通常方案是通过提高压缩机工作压力进而提高 PSA制氮压力来提高氮 气的输出压力。 但是这样做法显然会加大压缩机的规格尺寸, 即增加了投资和使用成本又 增加设备占地。 通过在管道上安装气驱动增压阀或泵就可以在不增加压缩机规格和占地的 情况下解决这个问题。 本发明采取上述手段, 将现有技术的氮气制造系统进行了结构精简, 减小了设备的占 地(完全可以布置进油化船原有的惰气系统占用的空间)又能保证设备运转和氮气的产量、 压力、 纯度, 同时节约了设备投资和能耗。 附图说明
图 1为现有的氮气制造系统的结构示意图;
图 2为本发明一实施例的氮气制造系统的结构示意图;
图 3为本发明另一实施例的氮气制造系统的结构示意图。
附图标记说明:
10、 压缩机; 101、 压缩单元; 20、 制氮机; 201、 制氮单元; 30、 流量压力调节装置;
301、 流量纯度压力调节装置; 302、 管路增压装置; 40、 氮气缓冲罐; 50、 冷干机; 60、 空气缓冲罐; 70、 过滤装置。 具体实施方式
以下通过实施例对本申请做进一步阐述。
参考图 2、 3, 一种船用氮气制造系统, 由如下设备通过管线依次连接而成: 压缩机 10, 包括至少一个压缩单元 101, 用于提供压缩空气; 按照船级社规则通常压 缩机中设有 2个以上压缩单元。
过滤装置 70, 包括至少一个过滤单元, 所述过滤单元为多级压缩空气过滤装置, 用于 过滤压缩空气。
制氮机 20, 包括至少两个制氮单元 201, 用于制备氮气; 各所述制氮单元之间的连接 方式为并联连接。 各所述制氮单元的工作状态包括制氮状态和均压状态, 在船用氮气制造 系统工作时, 所述制氮机中只有一个制氮单元处于均压状态, 其余制氮单元均处于制氮状 态。
每个所述制氮单元均包括两个吸附塔, 所述吸附塔中沿气体流动方向分别装填干燥剂 填料层和碳分子筛填料层 (图中未示出)。
氮气缓冲罐 40, 用于储存、 缓冲氮气; 本实施例每 lNm3/min氮气产量所需的缓冲罐 的体积为 20L。 可以理解地, 小型制氮系统采用大直径的管道即可取代氮气罐功能, 即不 需要设置氮气罐, 对于大型的氮气制造系统 (氮气产量超过 10Nm3/min), 需要设置氮气 缓冲罐, 氮气罐体积最大按照 20L X氮气产量 Nm3/min。
以及流量压力调节装置 30, 用于调节流量和压力; 流量压力调节装置包括流量纯度压 力调节装置 301, 在需要高压氮气的情况下, 还可以在旁路上增设管路增压装置 302, 用 于提供高压的氮气。 增压装置采用气驱增压泵, 动力来源为氮气, 这样的增压泵直接安装 在管道上, 不用连接电缆和冷却水 (增压热被排出的增压气带走), 不占用额外的场地。
本实施例的船用氮气制造系统与现有的氮气制造系统 (如图 1所示, 包括通过管路依 次连接的压缩机 10、 过滤装置 70、 冷干机 50、 空气缓冲罐 60、 制氮机 20、 氮气缓冲罐 40 以及流量压力调节装置 30 ) 相比, 本发明的船用氮气制造系统中不设有冷干机 (压缩 空气干燥装置)、 空气缓冲罐以及氮气缓冲罐 (部分大型的制氮设备可以设有缓冲罐, 但 缓冲罐的体积也较现有技术大大缩小, 通常 lNm3/min氮气产量需要 20L缓冲罐)。
本实施例在制氮单元的吸附塔中沿气体流动方向增加设置了干燥剂填料层, 可以替代 现有技术中冷干机的功能。 且本实施例的氮气制造系统采用变压吸附方法对气体进行干燥 脱水, 其原理是利用干燥剂在不同压力下吸附水分的不同, 在加压下吸附气体中水分, 在 减压时将吸附的水分通过干燥的气体带出。
现有技术中如果单独采用这种干燥装置于压缩机后进行压缩空气脱水处理, 需要耗损 处理气量 14-20%的气量来冲洗带走解吸出来的水分。 不但整套制氮设备没法减小安装面 积, 还要增加压缩机的排气量增加投资和能耗。
本发明实施例巧妙地利用制氮机每次解吸时放出大量富氧废气 (制取 95%氮气时放出 的气体量占输入压缩空气总量的 50%, 99. 9%纯度时更是高达 70%以上) , 将干燥和制氮合 二为一, 即可解决压缩空气脱水净化保护制氮用的碳分子筛不受潮, 又可以获得露点要求 符合要求的干燥氮气。 这样做的好处是没有多增加设备投资, 充分利用了制氮机的解吸排 放废气, 节省了燃料和冷却水, 并达到节省了氮气发生装置安装空间的目的。
现有技术中制氮单元包括两个吸附塔, 分别为吸附塔 A和吸附塔 B (由装满碳分子筛 的罐子构成), 一个吸附塔 A通入压缩空气, 通过吸附塔内的碳分子筛吸附压缩空气中的 氧气获得氮气, 称为 "制氮" 。 同时, 另外用部分制取的氮气对另外一个吸附塔 B内的碳 分子筛进行冲洗, 将碳分子筛内吸附的氧气排出, 称为 "再生" 。 当 "制氮" 的吸附塔 A 内的碳分子筛吸附氧气饱和时, "制氮 "和 "再生" 同时暂停, "再生 "和 "制氮"完成 的 A、 B吸附塔通过一个称为 "均压" 的过程将 A吸附罐内的氮气转移到 B吸附塔内, 使 得八、 B吸附塔的压力近乎相等。 "均压"后, B吸附塔通入压缩空气 "制氮" , A吸附塔 用氮气冲洗且排空 "再生" 。 在 A、 B 吸附塔交替的 "制氮"和 "再生"过程中, 制氮过 程得以延续。 这个交替过程由于 "均压"时, "制氮"处于暂停阶段。 既无压缩空气进入 吸附塔被消耗, 也无氮气从吸附塔供出。 A、 B吸附塔的切换相当频繁, 一般 lmin内就要 切换一次。 为了维持氮气供应的连续性, 现有技术中的制氮单元后面都会用一个氮气缓冲罐储存 氮气, 在制氮单元处于均压状态时维持氮气的连续供应。 同样, 压缩空气缓冲罐也是为了 在制氮单元处于均压状态时保证压缩机不会因为压缩空气消耗骤停而频繁加卸载。 压缩机 的加卸载频率是有一定限制的。 过短时间的加卸载, 不但不可以节省能耗还会损坏加卸载 阀门和开关造成压缩机故障。
本实施例为了解决上述问题, 制氮机中设置至少两个制氮单元, 通过将多组制氮单元 的均压时间错开, 避免所有制氮单元在同一时间均压, 即可以保证整个系统维持正常的氮 气供应和压缩空气消耗。 例如如果有 N组制氮单元同时工作, 那么这 N组制氮单元内 A、 B 塔交换按照错开时间 T 进行。 假定 "制氮" 时间为 TN2, "均压" 交替所需要时间为 TEQ,T= (TN2+TEQ) /N。 这个 T就是最佳的间隔时间, 保证最多只有一组 PSA处于均压状态, 其 余制氮单元都处于制氮状态。
本发明实施例采取上述手段, 将现有技术的氮气制造系统进行了结构精简, 又能保证 设备运转和氮气的产量不受影响, 节约了设备投资和能耗。
上述船用氮气制造系统的实际应用:
例 1 : 55, 000吨油化船 (55KCT) 4, 250Nm3/h制氮机加装项目, 如图 2所示
55, 000吨油化船租赁方需要取得北美排放控制区的适航证。原设计中惰气系统为传统 的燃烧式不允许在北美地区运行。 而作为卸货必须的惰气系统不能运行, 意味化学品船不 允许在北美港口卸货。 所以需要加装氮气发生装置。 而油化船的设计时未考虑预留制氮机 摆放的机舱, 也没有预留氮气发生器需要的电力和冷却水。 通过在后甲板加装平台可以布 置两台集装箱型柴驱空气压缩机, 在侧面甲板加装平台和 deckhouse 布置制氮机, 舷侧 DECKHOUSE仅够布置下制氮机, 没有布置氮气缓冲罐、 空气缓冲罐和冷干机。 通过采用本 专利所述办法, 成功将 4250Nm3/h氮气制造系统安装在 55000吨油化船上。
例 2 : 85000方超大型乙垸运输船 (VLEC)氮气发生装置, 如图 2所示
氮气配置有两套氮气 1,500½1171 纯度99. 8%以上的氮气系统, 一用一备。 要在机舱布 置下且留有足够的设备维护空间难度极大。 布置在机舱内的氮气发生装置限高。 所以需要 减小设备占地尺寸和高度, 采用本专利技术可以去掉冷干机和空气缓冲罐、 氮气缓冲罐大 大减少设备的占地。 采用多组制氮单元的组合, 单组制氮单元的高度可以控制在许可范围 内, 同时从整体上降低了氮气制造系统的投资成本。 例 3 : 12500吨不锈钢化学品船用 1, 500Nm3/h氮气系统, 如图 3所示
完全采用本专利技术方案, 整套系统构成为输出流量 27m3/min,工作压力 8bar的螺杆 式空压机两套, 一套压缩空气过滤器, 一套 X1500PSA制氮机 (包含两个 PSA单元, 含干 燥), 一套氮气增压气驱泵, 一套氮气流量、 压力、 纯度调节装置。
当卸货作业时, 卸货泵全开时可以提供 25Nm3/min, 纯度 95%, 压力 0. 25bar的氮气填 充液货舱因为卸货造成的空间增加。 卸货完成, 借助氮气增压器可以提供纯度 99. 9%, 最 大流量 5Nm3/min的氮气用于清管作业(推动清洗球将管道中的残留液体驱赶到岸上储罐。) 以上所述实施例的各技术特征可以进行任意的组合, 为使描述简洁, 未对上述实施例 中的各个技术特征所有可能的组合都进行描述, 然而, 只要这些技术特征的组合不存在矛 盾, 都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式, 其描述较为具体和详细, 但并不能 因此而理解为对发明专利范围的限制。 应当指出的是, 对于本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和改进, 这些都属于本发明的保护范 围。 因此, 本发明专利的保护范围应以所附权利要求为准。

Claims

权利要求书
1、 一种船用氮气制造系统, 其特征在于, 由如下设备通过管线依次连接而成: 压缩机, 包括至少一个压缩单元, 用于提供压缩空气;
过滤装置, 包括至少一个过滤单元, 用于过滤压缩空气;
制氮机, 包括至少两个制氮单元, 用于制备氮气;
和 /或氮气缓冲罐, 用于储存、 缓冲氮气;
以及流量压力调节装置, 用于调节流量和压力。
2、 根据权利要求 1 所述的船用氮气制造系统, 其特征在于, 所述制氮单元的工作状 态包括制氮状态和均压状态, 在船用氮气制造系统工作时, 所述制氮机中最多有一个制氮 单元处于均压状态, 其余制氮单元均处于制氮状态。
3、 根据权利要求 1所述的船用氮气制造系统, 其特征在于, 每 lNm3/min氮气产量所 需的氮气缓冲罐的体积小于等于 20L。
4、 根据权利要求 1-3 任一项所述的船用氮气制造系统, 其特征在于, 所述制氮单元 包括两个吸附塔, 所述吸附塔中沿气体流动方向依次设有干燥剂填料层和碳分子筛填料 层。
5、 根据权利要求 1-3 任一项所述的船用氮气制造系统, 其特征在于, 流量压力调节 装置包括流量纯度压力调节装置和 /或管路增压装置。
6、 根据权利要求 1-3 任一项所述的船用氮气制造系统, 其特征在于, 各所述制氮单 元之间的连接方式为并联连接。
PCT/CN2016/087591 2015-10-14 2016-06-29 船用氮气制造系统 WO2017063380A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510664217.7A CN105197898B (zh) 2015-10-14 2015-10-14 船用氮气制造系统
CN201510664217.7 2015-10-14

Publications (1)

Publication Number Publication Date
WO2017063380A1 true WO2017063380A1 (zh) 2017-04-20

Family

ID=54945936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087591 WO2017063380A1 (zh) 2015-10-14 2016-06-29 船用氮气制造系统

Country Status (2)

Country Link
CN (1) CN105197898B (zh)
WO (1) WO2017063380A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105197898B (zh) * 2015-10-14 2017-02-01 杭州欧斯空分设备有限公司 船用氮气制造系统
CN105621376B (zh) * 2016-04-01 2018-12-07 佛山市嘉瑞达科技有限公司 变压吸附制氮系统
CN105621375B (zh) * 2016-04-01 2018-12-07 利华益维远化学股份有限公司 可降低企业综合成本的变压吸附制氮系统
CN108918789A (zh) * 2018-09-08 2018-11-30 深圳市能源环保有限公司 一种电厂烟气连续在线监测系统的吹扫气供气系统
CN111232938A (zh) * 2020-04-29 2020-06-05 山东恒业石油新技术应用有限公司 一种车载快移型高纯psa制氮注氮设备
CN112624065B (zh) * 2020-12-30 2023-10-27 海德威科技集团(青岛)有限公司 一种集成了多种功能的具有安全冗余的船用氮气制备装置及其控制方法
CN113041784A (zh) * 2021-05-06 2021-06-29 广州烈得高压缩机有限公司 一种制氮系统及制氮方法
CN114733317A (zh) * 2022-05-10 2022-07-12 威海柏林圣康空氧科技有限公司 一种多层次分子筛吸附塔装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201245436Y (zh) * 2008-07-02 2009-05-27 苏州班顺工业气体设备有限公司 多塔变压吸附制氮机
CN203845820U (zh) * 2014-05-29 2014-09-24 西梅卡亚洲气体系统成都有限公司 一种吸附塔无压紧结构的变压吸附制氮装置
CN104066493A (zh) * 2012-01-30 2014-09-24 大阳日酸株式会社 富氮气体制备方法、气体分离方法及富氮气体制备装置
CN105197898A (zh) * 2015-10-14 2015-12-30 杭州欧斯空分设备有限公司 船用氮气制造系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201470294U (zh) * 2009-07-21 2010-05-19 苏州苏净保护气氛有限公司 多塔组合式变压吸附制氮装置
GB2507557B (en) * 2012-11-05 2015-06-10 Nano Porous Solutions Ltd Pressure swing adsorption apparatus
CN205023856U (zh) * 2015-10-14 2016-02-10 杭州欧斯空分设备有限公司 船用氮气制造系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201245436Y (zh) * 2008-07-02 2009-05-27 苏州班顺工业气体设备有限公司 多塔变压吸附制氮机
CN104066493A (zh) * 2012-01-30 2014-09-24 大阳日酸株式会社 富氮气体制备方法、气体分离方法及富氮气体制备装置
CN203845820U (zh) * 2014-05-29 2014-09-24 西梅卡亚洲气体系统成都有限公司 一种吸附塔无压紧结构的变压吸附制氮装置
CN105197898A (zh) * 2015-10-14 2015-12-30 杭州欧斯空分设备有限公司 船用氮气制造系统

Also Published As

Publication number Publication date
CN105197898B (zh) 2017-02-01
CN105197898A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
WO2017063380A1 (zh) 船用氮气制造系统
JP4579983B2 (ja) 二段全回収変圧吸着によるガス分離方法
US9845916B2 (en) Station and method for filling gas tanks
CN108759301B (zh) 一种氢气液化工艺
CN108619859B (zh) 一种耦合式变压吸附制气系统及方法
JP4357046B2 (ja) ガス回収装置
AU2011280022A1 (en) Natural gas purification system
CN202297537U (zh) 采用富氢氮气预冷的富含甲烷气体的净化装置
AU2014216630B2 (en) Process for floating liquified natural gas pretreatment
KR100790696B1 (ko) 가스상태 탄화수소의 처리 및 회수 장치 및 그 방법
CA2246915A1 (en) Process for the removal of water, co2, ethane and c3+ hydrocarbons from a gas stream
KR20170136266A (ko) 해양 설비, 부유식 원유 생산 설비 및 액화천연가스 생성 방법
CA2991985C (en) Pretreatment equipment for hydrocarbon gas to be liquefied and shipping base equipment
CN113184850B (zh) 一种高纯度二氧化碳气体提纯方法及其装置
KR101883878B1 (ko) 천연가스에 함유된 산성가스를 제거하는 장치 및 방법
KR20170002480A (ko) 벌크선의 질소 가스 공급 설비
CN110921636B (zh) 节能型模块式变压吸附制氮系统及其控制流程
CN205023856U (zh) 船用氮气制造系统
AU2015410455B2 (en) Nonhydrocarbon gas separation device and nonhydrocarbon gas separation method
JP4823949B2 (ja) 混合ガス貯蔵容器
KR20120009158A (ko) 질소 공급 장치
CN104073310A (zh) 一种天然气净化与干燥的装置和方法
JP5462763B2 (ja) 高純度水素ガス製造用psa装置の運転方法
JPH03207420A (ja) 窒素ガス分離方法
CN209836108U (zh) 天然气净化系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.10.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16854764

Country of ref document: EP

Kind code of ref document: A1