WO2017063203A1 - 蓝相液晶显示器及其显示模组 - Google Patents

蓝相液晶显示器及其显示模组 Download PDF

Info

Publication number
WO2017063203A1
WO2017063203A1 PCT/CN2015/092358 CN2015092358W WO2017063203A1 WO 2017063203 A1 WO2017063203 A1 WO 2017063203A1 CN 2015092358 W CN2015092358 W CN 2015092358W WO 2017063203 A1 WO2017063203 A1 WO 2017063203A1
Authority
WO
WIPO (PCT)
Prior art keywords
sawtooth
liquid crystal
phase liquid
blue phase
electrodes
Prior art date
Application number
PCT/CN2015/092358
Other languages
English (en)
French (fr)
Inventor
唐岳军
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US14/891,660 priority Critical patent/US10295879B2/en
Publication of WO2017063203A1 publication Critical patent/WO2017063203A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive

Definitions

  • the present invention relates to the technical field of liquid crystal displays, and in particular to a blue phase liquid crystal display and a display module thereof.
  • blue phase liquid crystals Compared with the currently widely used liquid crystal materials for liquid crystal display, blue phase liquid crystals have the following four outstanding advantages: (1) The response time of blue phase liquid crystals is in the sub-millisecond range, and it does not require overdrive technology (Over Drive) can achieve high-speed driving above 240Hz, which can effectively reduce the motion blur of moving images.
  • Over Drive overdrive technology
  • red, green and blue three primary color light-emitting diodes When (RGB-LED) is used as a backlight, no color filter film is needed, and blue-phase liquid crystal can realize field sequential color timing display; (2) blue phase liquid crystal does not need other orientation layers necessary for various display modes, which is not only simplified The manufacturing process also reduces the cost; (3) Macroscopically, the blue phase liquid crystal is optically isotropic, so that the blue phase liquid crystal display device has the characteristics of wide viewing angle and dark state; (4) as long as the blue phase liquid crystal cell The thickness of the cell exceeds the penetration depth of the electric field, and the influence of the change in the thickness of the cell case on the transmittance is negligible. This characteristic is particularly suitable for manufacturing a large-screen or single-panel liquid crystal display device.
  • the blue phase liquid crystal faces the problem of excessive driving voltage.
  • the industry generally adopts a method of improving the performance of the blue phase liquid crystal material or optimizing the electrode structure.
  • the way to improve the performance of the blue phase liquid crystal material is, for example, a blue phase liquid crystal material for preparing a large Kerr constant, which involves a complicated process of synthesizing a blue phase liquid crystal material, for example, a monomer, a photoinitiator, and a monomer, a photoinitiator.
  • the development cost is very expensive because of a series of factors such as synthesis conditions.
  • the lateral electric field generated by the parallel electrode has a limited penetration depth, requires a high driving voltage, and needs to enhance the electric field. Therefore, the IPS driving is used.
  • the blue phase liquid crystal display technology of the mode needs to be improved.
  • the embodiment of the invention provides a blue phase liquid crystal display and a display module thereof to solve the technical problem that the driving voltage of the blue phase liquid crystal display is too large in the prior art.
  • an embodiment of the present invention provides a blue phase liquid crystal display module
  • the blue phase liquid crystal display module includes: an upper substrate, a lower substrate, and a blue phase liquid crystal, wherein the upper substrate is provided with a plurality of upper layers a zigzag electrode; the lower substrate is disposed opposite to the upper substrate, and the lower substrate is provided with a plurality of lower sawtooth electrodes staggered with the upper zigzag electrodes; and the lower substrate is provided with a reflective layer at intervals Dividing the display module into a transmissive area and a reflective area; the blue phase liquid crystal is disposed between the upper sawtooth electrode and the lower sawtooth electrode; and the spacing between the upper and lower sawtooth electrodes of the transmissive area is smaller than a gap between the upper and lower sawtooth electrodes of the reflective region; an electric field is formed between the upper sawtooth electrode and the lower sawtooth electrode to drive the blue phase liquid crystal, such that a phase delay of the transmissive region is two of the
  • a filling material is disposed between the upper sawtooth electrode and the upper substrate.
  • a filling material is disposed between the lower sawtooth electrode and the lower substrate.
  • the bottom of the upper sawtooth electrode and the top of the lower sawtooth electrode are sequentially corresponding, and the spacing between adjacent sawtooth protrusions of the sawtooth electrode under the reflective area is larger than the sawtooth electrode located under the transmissive area.
  • the spacing between adjacent serrations is such that the gap between the upper and lower sawtooth electrodes of the transmissive region is smaller than the gap between the upper and lower sawtooth electrodes of the reflective region.
  • the bottom of the upper sawtooth electrode and the top of the lower sawtooth electrode are sequentially offset by a certain distance, so that the spacing between the upper and lower sawtooth electrodes of the transmissive area is smaller than that of the upper and lower serrations of the reflective area.
  • the gap between the electrodes is smaller than that of the upper and lower serrations of the reflective area.
  • the bottom of the upper sawtooth electrode and the top of the lower sawtooth electrode are sequentially corresponding, and the height of the sawtooth protrusion in the transmissive area is greater than the height of the serration on the reflective area so as to be on the transmissive area.
  • the spacing between the lower sawtooth electrodes is smaller than the gap between the upper and lower sawtooth electrodes of the reflective region.
  • the angle of inclination of the sawtooth electrode at the transmissive region is greater than the angle of inclination of the sawtooth electrode at the reflective region.
  • the tilt angle of the sawtooth electrode in the transmissive area is greater than 45 degrees, and the tilt angle of the sawtooth electrode in the reflective area is less than 45 degrees.
  • the filler material is a transparent material.
  • the present invention further provides a blue phase liquid crystal display comprising the blue phase liquid crystal display module according to any one of the above embodiments.
  • the blue phase liquid crystal display and the display module thereof provided by the invention have different phase delays between the transmissive region and the reflective region by having different transmissive regions or different tilt angles of the transmissive region and the reflective region.
  • the purpose of the characteristic is to make the light passing through the blue phase liquid crystal layer in the transmissive region and the phase delay of the light accumulated in the reflective region twice through the blue phase liquid crystal layer, while reducing the driving voltage, and also making the transmission and reflection regions have the same Photoelectric characteristics.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a blue phase liquid crystal display module of the present invention
  • Figure 2 is a cross-sectional view showing the energized state of the blue phase liquid crystal display module of the embodiment of Figure 1;
  • Figure 3 is a cross-sectional view showing a second embodiment of the blue phase liquid crystal display module of the present invention.
  • Figure 4 is a cross-sectional view showing a third embodiment of the blue phase liquid crystal display module of the present invention.
  • Figure 5 is a cross-sectional view showing a fourth embodiment of the blue phase liquid crystal display module of the present invention.
  • Figure 6 is a cross-sectional view showing the energized state of the blue phase liquid crystal display module in the embodiment of Figure 5;
  • Figure 7 is a block diagram showing the structural composition of a preferred embodiment of the blue phase liquid crystal display of the present invention.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a blue phase liquid crystal display module of the present invention.
  • the blue phase liquid crystal display module includes, but is not limited to, the following components: an upper substrate 100, a lower substrate 200, and a blue phase liquid crystal 300.
  • the upper substrate 100 is provided with a plurality of upper sawtooth electrodes 110; the lower substrate 200 is disposed opposite to the upper substrate 100, and the lower substrate 200 is provided with a plurality of lower sawtooth electrodes 210 interlaced with the upper sawtooth electrodes 110.
  • the end faces of the upper sawtooth electrode 110 and the lower sawtooth electrode 210 have the same shape, that is, the upper sawtooth electrode 110 and the lower sawtooth electrode 210 have the same sawtooth projection angle a.
  • a reflective layer 230 is disposed on the lower substrate 200 to divide the display module into a transmissive area and a reflective area. The area in which the reflective layer 230 is disposed corresponds to the reflective area.
  • the blue phase liquid crystal 300 is disposed between the upper sawtooth electrode 110 and the lower sawtooth electrode 210; the spacing between the upper and lower sawtooth electrodes of the transmissive region is smaller than the gap between the upper and lower sawtooth electrodes of the reflective region; the upper sawtooth electrode 110 and the lower sawtooth An electric field is formed between the electrodes 210 to drive the blue phase liquid crystal 300 such that the phase retardation of the transmission region is twice that of the reflection region, so that the transmission region and the reflection region have uniform photoelectric characteristics.
  • a filling material 120 is disposed between the upper sawtooth electrode 110 and the upper substrate 100, and a filling material 220 is also disposed between the lower sawtooth electrode 210 and the lower substrate 200 such that the upper and lower sawtooth electrodes are solid structures.
  • the filler material (120, 220) is a transparent material such as a transparent resin, silicon nitride, silicon oxide or the like.
  • the bottom of the upper sawtooth electrode 110 and the top of the lower sawtooth electrode 210 are sequentially corresponding, and the spacing L1 between the adjacent sawtooth protrusions of the sawtooth electrode 210 under the reflective region is larger than that of the sawtooth electrode 210 under the transmissive region.
  • the spacing L2 between the adjacent sawtooth protrusions is such that the spacing d2 between the upper and lower sawtooth electrodes of the transmission region is smaller than the gap d1 between the upper and lower sawtooth electrodes of the reflective region.
  • FIG. 2 is a cross-sectional view showing the state in which the blue phase liquid crystal display module of the embodiment of FIG. 1 is energized.
  • the spacing L1/ between adjacent serrated bump electrodes on the lower substrate 200 can be adjusted.
  • L2 adjusting the relationship of L1>L2 can make d1>d2.
  • the blue phase liquid crystal between the two electrodes forms optical anisotropy.
  • the electric field intensity of the transmissive region is greater than that of the reflective region. Therefore, the optical anisotropy of the blue-phase liquid crystal in the transmissive region is larger than that of the reflective region, and the relationship of controlling d1>d2 (achieved by L1>L2 in this embodiment) can make the phase retardation of the transmissive region twice as large as that of the reflective region, thereby
  • the transmissive and reflective regions have consistent optoelectronic properties.
  • test panels can be manufactured according to several preset d1/d2 or L1/L2 (select L1 and L2 settings near d1 ⁇ 2d2), and these test panels are filled with a blue phase liquid crystal. .
  • the T curve if the curve characteristics of the transmissive area and the reflective area of a test panel are consistent within the error range, the phase retardation of the light passing through the transmissive area is approximately twice the phase retardation of the reflective area, then the ratio of the test panel Relationships can be used as reference values in actual production.
  • FIG. 3 is a cross-sectional view showing a second embodiment of the blue phase liquid crystal display module of the present invention.
  • the adjacent sawtooth electrode pitches of the upper and lower substrates are respectively fixed, and d1>d2 is controlled by controlling the relative positions between the upper and lower substrate sawtooth bump electrodes.
  • the bottom of the upper sawtooth electrode 110 and the top of the lower sawtooth electrode 210 are sequentially offset by a certain distance so that the distance d2 between the upper and lower sawtooth electrodes of the transmission region is smaller than the gap d1 between the upper and lower sawtooth electrodes of the reflective region.
  • FIG. 4 is a cross-sectional view showing a third embodiment of the blue phase liquid crystal display module of the present invention.
  • the upper sawtooth electrode protrusions of the upper substrate 100 in the transmissive area and the reflective area are made to have different height structures, so that the sawtooth protrusion height h1 of the transmissive area is larger than the reflection area.
  • the zigzag protrusion height h2 further causes the gap d2 of the upper and lower sawtooth electrodes of the transmission region to be smaller than the gap d1 of the upper and lower sawtooth electrodes of the reflection region.
  • the bottom of the upper sawtooth electrode 110 and the top of the lower sawtooth electrode 210 sequentially correspond to each other.
  • FIG. 5 is a cross-sectional view showing a fourth embodiment of the blue phase liquid crystal display module of the present invention.
  • the embodiment achieves the purpose of making the blue phase liquid crystals have different optical anisotropy by adjusting the tilt angles of the transmissive region and the reflective region.
  • the sawtooth electrode bumps on the upper and lower substrates have the same end face structure.
  • the inclination angle of the sawtooth electrode in the transmission area is larger than the inclination angle of the sawtooth electrode located in the reflection area.
  • the tilt angle a of the sawtooth electrode in the transmissive region is greater than 45 degrees
  • the tilt angle b of the sawtooth electrode at the reflective region is less than 45 degrees.
  • FIG. 6 is a cross-sectional view showing the energized state of the blue phase liquid crystal display module in the embodiment of FIG. 5. As shown in FIG. 6, when the voltage is applied, the sawtooth protrusion inclination angle a is larger than the reflection area sawtooth due to the transmission area.
  • the convex angle b in the embodiment, the transmissive area and the reflective area have the same electrode gap D1
  • the optical anisotropy formed by the blue phase liquid crystal in the transmissive region is smaller than the reflective region, and the relationship between the tilt angles a and b is controlled so that the phase retardation of the transmissive region is the reflective region. 2 times so that the transmissive and reflective regions have consistent optoelectronic properties. It is also possible to determine the values of a and b by making a test plan.
  • the related description in the first embodiment please refer to the related description in the first embodiment.
  • the upper and lower sawtooth electrodes of the transmission region and the reflection region may also have different sizes of gaps as shown in Embodiments 1, 2, and 3, as long as the adjustments a and b are performed.
  • the relationship between d1 and d2 is such that the phase delay of the transmission region is twice that of the reflection region, so that the transmission region and the reflection region have uniform photoelectric characteristics.
  • the upper electrodes on the same substrate are continuous, that is, as shown in FIG. Show structure.
  • the electrodes on the same substrate protrusion in the pixel portion or all the regions are connected to each other on the substrate surface.
  • the blue phase liquid crystal display module provided by the embodiment of the invention achieves the purpose of making the transmissive region and the reflective region have different phase delay characteristics by making the transmissive region and the reflective region have different electrode spacings or different dip angles, so as to make the environment
  • the light passes through the liquid crystal layer twice as much as the phase delay accumulated through the liquid crystal layer, and the transmission and reflection regions are also made to have uniform photoelectric characteristics while lowering the driving voltage.
  • FIG. 7 is a schematic structural diagram of a preferred embodiment of the blue phase liquid crystal display of the present invention.
  • the blue phase liquid crystal display includes the blue phase liquid crystal display module in the above embodiment.
  • the blue phase liquid crystal display also includes a housing 800, a control circuit (not shown), and the like, which are within the scope of those skilled in the art and will not be described herein.

Abstract

一种蓝相液晶显示模组,包括:上基板、下基板以及蓝相液晶,上基板上设有多条上锯齿电极;下基板与上基板相对设置,下基板上设有与上锯齿电极交错设置的多条下锯齿电极;下基板上间隔设置有反射层,将显示模组分为透射区和反射区。通过使透射区和反射区具有不同的电极间距或者不同的倾角,来达到使透射区和反射区具有不同的相位延迟特性的目的。

Description

蓝相液晶显示器及其显示模组
【技术领域】
本发明涉及液晶显示器的技术领域,具体是涉及一种蓝相液晶显示器及其显示模组。
【背景技术】
与目前广泛使用的液晶显示用液晶材料相比,蓝相液晶具有以下四个突出优点:(1)蓝相液晶的响应时间在亚毫秒范围内,并且其无需采用过驱动技术(Over Drive)即可以实现240Hz以上的高速驱动,从而能够有效减少运动图像的动态模糊。在采用红绿蓝三基色发光二极管 (RGB-LED)做背光源时,无需彩色滤光膜,利用蓝相液晶即可以实现场序彩色时序显示;(2)蓝相液晶不需要其它各种显示模式所必需的取向层,不但简化了制造工艺,也降低了成本;(3)宏观上,蓝相液晶是光学各向同性的,从而使蓝相液晶显示装置具有视角宽、暗态好的特点;(4)只要蓝相液晶盒盒厚超过电场的穿透深度,液晶盒盒厚的变化对透射率的影响就可以忽略,这种特性尤其适合于制造大屏幕或单板液晶显示装置。
然而现有技术中,蓝相液晶面临着驱动电压过大的问题,目前业界通常采用改进蓝相液晶材料性能或者优化电极结构的方式。但是改进蓝相液晶材料性能的方式例如是制备大克尔常数的蓝相液晶材料,其涉及合成蓝相液晶材料的复杂过程例如制备聚合物稳定蓝相液晶时需要考虑单体、光引发剂、合成条件等一系列因素,因此研发成本十分昂贵。而至于优化电极结构的方式方面则由于其所使用的IPS结构的驱动方式,平行电极所产生的侧向电场的穿透深度有限,需要较高的驱动电压,需要增强电场,因此,使用IPS驱动方式的蓝相液晶显示技术还有待改进。
【发明内容】
本发明实施例提供一种蓝相液晶显示器及其显示模组,以解决现有技术中蓝相液晶显示器驱动电压过大的技术问题。
为解决上述问题,本发明实施例提供了一种蓝相液晶显示模组,所述蓝相液晶显示模组包括:上基板、下基板以及蓝相液晶,所述上基板上设有多条上锯齿状电极;所述下基板与所述上基板相对设置,所述下基板上设有与所述上锯齿状电极交错设置的多条下锯齿电极;所述下基板上间隔设置有反射层,将所述显示模组分为透射区和反射区;所述蓝相液晶设于所述上锯齿电极与所述下锯齿电极之间;所述透射区上、下锯齿电极之间的间距小于所述反射区上、下锯齿电极之间的间隙;所述上锯齿电极与所述下锯齿电极之间形成电场驱动所述蓝相液晶,使得所述透射区的相位延迟是所述反射区的两倍,从而使所述透射区和所述反射区具有一致的光电特性。
根据本发明一优选实施例,所述上锯齿电极与所述上基板之间设有填充材料。
根据本发明一优选实施例,所述下锯齿电极与所述下基板之间设有填充材料。
根据本发明一优选实施例,所述上锯齿电极的底部与所述下锯齿电极的顶部依次对应,且位于反射区下锯齿电极的相邻锯齿凸起之间的间距大于位于透射区下锯齿电极的相邻锯齿凸起之间的间距,以使透射区上、下锯齿电极之间的间隙小于反射区上、下锯齿电极之间的间隙。
根据本发明一优选实施例,所述上锯齿电极的底部与所述下锯齿电极的顶部依次以错开一定距离相对,以使透射区上、下锯齿电极之间的间距小于反射区上、下锯齿电极之间的间隙。
根据本发明一优选实施例,所述上锯齿电极的底部与所述下锯齿电极的顶部依次对应,且位于透射区的锯齿凸起高度大于位于反射区的锯齿凸起高度,以使透射区上、下锯齿电极之间的间距小于反射区上、下锯齿电极之间的间隙。
根据本发明一优选实施例,位于所述透射区锯齿电极的倾角大于位于所述反射区锯齿电极的倾角。
根据本发明一优选实施例,所述位于所述透射区锯齿电极的倾角大于45度,位于所述反射区锯齿电极的倾角小于45度。
根据本发明一优选实施例,所述填充材料为透明材料。
为解决上述技术问题,本发明还提供一种蓝相液晶显示器,所述蓝相液晶显示器包括上述实施例中任一项所述的蓝相液晶显示模组。
相对于现有技术,本发明提供的蓝相液晶显示器及其显示模组,通过使透射区和反射区具有不同的电极间距或者不同的倾角,来达到使透射区和反射区具有不同的相位延迟特性的目的,以使光线在透射区一次经过蓝相液晶层与光线在反射区两次经过蓝相液晶层累计的相位延迟相同,在降低驱动电压的同时,还使透射和反射区具有一致的光电特性。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明蓝相液晶显示模组第一实施例的截面图;
图2是图1实施例中蓝相液晶显示模组通电状态的截面剖视图;
图3是本发明蓝相液晶显示模组第二实施例的截面图;
图4是本发明蓝相液晶显示模组第三实施例的截面图;
图5是本发明蓝相液晶显示模组第四实施例的截面图;
图6是图5实施例中蓝相液晶显示模组通电状态的截面剖视图;以及
图7是本发明蓝相液晶显示器一优选实施例的结构组成简图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例一
请参阅图1,图1为本发明蓝相液晶显示模组第一实施例的截面图。该蓝相液晶显示模组包括但不限于以下元件:上基板100、下基板200以及蓝相液晶300。
具体而言,上基板100上设有多条上锯齿状电极110;下基板200与上基板100相对设置,下基板200上设有与上锯齿状电极110交错设置的多条下锯齿电极210。该实施例中,上锯齿电极110与下锯齿电极210的端面形状相同,即上锯齿电极110与下锯齿电极210的锯齿凸起倾角a相同。下基板200上间隔设置有反射层230,将显示模组分为透射区和反射区;其中,设有反射层230的区域对应反射区。
蓝相液晶300设于上锯齿电极110与下锯齿电极210之间;透射区的上、下锯齿电极之间的间距小于反射区上、下锯齿电极之间的间隙;上锯齿电极110与下锯齿电极210之间形成电场驱动蓝相液晶300,使得透射区的相位延迟是反射区的两倍,从而使透射区和反射区具有一致的光电特性。
进一步地,上锯齿电极110与上基板100之间设有填充材料120,下锯齿电极210与下基板200之间也设有填充材料220,以使上、下锯齿电极均为实心结构。优选地,填充材料(120、220)为透明材料,例如透明树脂、氮化硅、氧化硅等。
在该实施例中,上锯齿电极110的底部与下锯齿电极210的顶部依次对应,且位于反射区下锯齿电极210的相邻锯齿凸起之间的间距L1大于位于透射区下锯齿电极210的相邻锯齿凸起之间的间距L2,以使透射区上、下锯齿电极之间的间距d2小于反射区上、下锯齿电极之间的间隙d1。当然,还可以为下基板200上的下锯齿电极210距离固定,通过调整上基板100上的相邻上锯齿电极110的间距来控制d1大于d2的关系。
请一并参阅图2,图2是图1实施例中蓝相液晶显示模组通电状态的截面剖视图。为使得透射区上、下锯齿电极之间间隙d2和反射区上、下锯齿电极之间间隙d1有d1>d2的关系,可以调整下基板200上相邻锯齿凸起电极之间的间距L1/L2,调整L1>L2的关系可以使得d1>d2。当上、下锯齿电极之间不施加电压时,蓝相液晶光学各向同性,为暗态,如图1所示。当上、下锯齿电极之间上施加像素或者common信号时,两电极之间的蓝相液晶形成光学各向异性,如图2所示,由于d1>d2,所以透射区电场强度大于反射区,因此透射区蓝相液晶的光学各向异性大于反射区,控制d1>d2(本实施例中是通过L1>L2来实现)的关系可以使得透射区的相位延迟是反射区的2倍,从而使透射区和反射区具有一致的光电特性。具体作法是可以按照预先设定的几个d1/d2或者L1/L2制造不同的测试面板(选取使得d1≈2d2附近的L1/L2设置),并且,这些测试面板中均填充一种蓝相液晶。绘制这几个测试面板的透射区域和反射区域的 V-T(电压-透过率)曲线特性,在无环境光、背光源开启状态下测得的为透射区V-T曲线,在强环境光、背光源关闭状态下测得的为反射区V-T曲线,若一测试面板的透射区域和反射区域的曲线特性在误差范围内一致,则说明光线经过透射区域的相位延迟量大致为反射区的相位延迟量的2倍,那么该测试面板的比例关系就可以作为实际生产中的参考值。
实施例二
实施例一中是通过控制下基板200上的相邻锯齿凸起之间距离L1/L2来控制d1>d2。请参阅图3,图3是本发明蓝相液晶显示模组第二实施例的截面图。在本实施例中,上、下基板的相邻锯齿电极间距分别固定,通过控制上、下基板锯齿凸起电极之间相对位置来控制得到d1>d2。图中上锯齿电极110的底部与下锯齿电极210的顶部依次以错开一定距离相对,以使透射区上、下锯齿电极之间的间距d2小于反射区上、下锯齿电极之间的间隙d1。
实施例三
请进一步参阅图4,图4是本发明蓝相液晶显示模组第三实施例的截面图。与以上两个实施例不同的是,该实施例中是将透射区和反射区中上基板100的上锯齿电极凸起做成高度不同的结构,使透射区的锯齿凸起高度h1大于反射区的锯齿凸起高度h2,进而使得透射区上、下锯齿电极的间隙d2小于反射区上、下锯齿电极的间隙d1。其中,上锯齿电极110的底部与下锯齿电极210的顶部依次对应。
在实施例二、三中各部分元件的组成、性质及原理等技术特征请参阅实施例一中的相关描述,此处不再详述。
实施例四
上述三个实施例都是通过使透射区和反射区上、下锯齿电极之间间隙不同来达到使透射区和反射区具有不同相位延迟特性的目的。请参阅图5,图5是本发明蓝相液晶显示模组第四实施例的截面图,该实施例是通过调节透射区和反射区电极倾角来达到使蓝相液晶具有不同光学异性的目的。
具体而言,上、下基板上的锯齿电极凸起具有相同的端面结构。且位于透射区锯齿电极的倾角大于位于反射区锯齿电极的倾角。优选地,所述位于透射区锯齿电极的倾角a大于45度,而位于反射区锯齿电极的倾角b小于45度。
如图5所示同一锯齿凸起两侧具有不同的倾角a和b,透射区的倾角a大于反射区的倾角b。请一并参阅图6,图6是图5实施例中蓝相液晶显示模组通电状态的截面剖视图;如图6所示,在施加电压时,由于透射区锯齿凸起倾角a大于反射区锯齿凸起角度b,在本实施例中,透射区和反射区具有相同的电极间隙 d1,因此透/反射区施加相同电压时,透射区蓝相液晶形成的光学各向异性与基板的夹角小于反射区,控制倾角a、b的关系可以使透射区的相位延迟是反射区的2倍,从而使透射区和反射区具有一致的光电特性。同样也可以通过制作测试方案来确定a、b的取值。而关于其他部分结构的技术特征,请参阅实施例一中的相关描述。
可以理解的是, 当透射区锯齿电极的倾角大于反射区锯齿电极的倾角时,透射区和反射区上、下锯齿电极也可以如实施例一、二、三所示具有不同大小的间隙,只要通过调节a、b、d1、d2的关系使得透射区的相位延迟是反射区的两倍,从而使透射区和反射区具有一致的光电特性即可。
另外需要指出的是,当同一基板上锯齿突起紧密相邻,之间没有图1实施例中L1、L2间距时,优选地,同一基板上凸起上电极是连续的,即如图3中所示结构。而当同一基板上锯齿突起没有紧密相邻,之间存在图1实施例中L1、L2间距时,则同一基板凸起上的位于像素部分区域或者全部区域的电极在基板表面延伸相连。
本发明实施例提供的蓝相液晶显示模组,通过使透射区和反射区具有不同的电极间距或者不同的倾角,来达到使透射区和反射区具有不同的相位延迟特性的目的,以使环境光线两次通过液晶层与一次通过液晶层累积的相位延迟相同,在降低驱动电压的同时,还使透射和反射区具有一致的光电特性。
另外,本发明实施例还提供一种蓝相液晶显示器,请参阅图7,图7是本发明蓝相液晶显示器一优选实施例的结构组成简图。该蓝相液晶显示器包括上述实施例中的蓝相液晶显示模组。而蓝相液晶显示器当然还包括壳体800、控制电路(图中未示)等相关结构单元,在本领域技术人员能够理解的范围之内,此处不再赘述。
以上所述仅为本发明的一种实施例,并非因此限制本发明的保护范围,凡是利用本发明说明书及附图内容所作的等效装置或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (19)

  1. 一种蓝相液晶显示模组,其特征在于,所述蓝相液晶显示模组包括:
    上基板,所述上基板上设有多条上锯齿状电极;
    下基板,所述下基板与所述上基板相对设置,所述下基板上设有与所述上锯齿状电极交错设置的多条下锯齿电极;所述下基板上间隔设置有反射层,将所述显示模组分为透射区和反射区,所述上锯齿电极与所述上基板之间设有填充材料,所述下锯齿电极与所述下基板之间设有填充材料;
    蓝相液晶,设于所述上锯齿电极与所述下锯齿电极之间;所述上锯齿电极的底部与所述下锯齿电极的顶部依次对应,且位于反射区下锯齿电极的相邻锯齿凸起之间的间距大于位于透射区下锯齿电极的相邻锯齿凸起之间的间距,以使透射区上、下锯齿电极之间的间隙小于反射区上、下锯齿电极之间的间隙;所述上锯齿电极与所述下锯齿电极之间形成电场驱动所述蓝相液晶,使得所述透射区的相位延迟是所述反射区的两倍,从而使所述透射区和所述反射区具有一致的光电特性。
  2. 一种蓝相液晶显示模组,其特征在于,所述蓝相液晶显示模组包括:
    上基板,所述上基板上设有多条上锯齿状电极;
    下基板,所述下基板与所述上基板相对设置,所述下基板上设有与所述上锯齿状电极交错设置的多条下锯齿电极;所述下基板上间隔设置有反射层,将所述显示模组分为透射区和反射区;
    蓝相液晶,设于所述上锯齿电极与所述下锯齿电极之间;所述透射区上、下锯齿电极之间的间距小于所述反射区上、下锯齿电极之间的间隙;所述上锯齿电极与所述下锯齿电极之间形成电场驱动所述蓝相液晶,使得所述透射区的相位延迟是所述反射区的两倍,从而使所述透射区和所述反射区具有一致的光电特性。
  3. 根据权利要求2所述的蓝相液晶显示模组,其特征在于,所述上锯齿电极与所述上基板之间设有填充材料。
  4. 根据权利要求2所述的蓝相液晶显示模组,其特征在于,所述下锯齿电极与所述下基板之间设有填充材料。
  5. 根据权利要求2所述的蓝相液晶显示模组,其特征在于,所述上锯齿电极的底部与所述下锯齿电极的顶部依次对应,且位于反射区下锯齿电极的相邻锯齿凸起之间的间距大于位于透射区下锯齿电极的相邻锯齿凸起之间的间距,以使透射区上、下锯齿电极之间的间隙小于反射区上、下锯齿电极之间的间隙。
  6. 根据权利要求2所述的蓝相液晶显示模组,其特征在于,所述上锯齿电极的底部与所述下锯齿电极的顶部依次以错开一定距离相对,以使透射区上、下锯齿电极之间的间距小于反射区上、下锯齿电极之间的间隙。
  7. 根据权利要求2所述的蓝相液晶显示模组,其特征在于,所述上锯齿电极的底部与所述下锯齿电极的顶部依次对应,且位于透射区的锯齿凸起高度大于位于反射区的锯齿凸起高度,以使透射区上、下锯齿电极之间的间距小于反射区上、下锯齿电极之间的间隙。
  8. 根据权利要求2所述的蓝相液晶显示模组,其特征在于,位于所述透射区锯齿电极的倾角大于位于所述反射区锯齿电极的倾角。
  9. 根据权利要求8所述的蓝相液晶显示模组,其特征在于,所述位于所述透射区锯齿电极的倾角大于45度,位于所述反射区锯齿电极的倾角小于45度。
  10. 根据权利要求3或4所述的蓝相液晶显示模组,其特征在于,所述填充材料为透明材料。
  11. 一种蓝相液晶显示器,其特征在于,所述蓝相液晶显示器包括蓝相液晶显示模组,所述蓝相液晶显示模组包括:
    上基板,所述上基板上设有多条上锯齿状电极;
    下基板,所述下基板与所述上基板相对设置,所述下基板上设有与所述上锯齿状电极交错设置的多条下锯齿电极;所述下基板上间隔设置有反射层,将所述显示模组分为透射区和反射区;
    蓝相液晶,设于所述上锯齿电极与所述下锯齿电极之间;所述透射区上、下锯齿电极之间的间距小于所述反射区上、下锯齿电极之间的间隙;所述上锯齿电极与所述下锯齿电极之间形成电场驱动所述蓝相液晶,使得所述透射区的相位延迟是所述反射区的两倍,从而使所述透射区和所述反射区具有一致的光电特性。
  12. 根据权利要求11所述的蓝相液晶显示器,其特征在于,所述上锯齿电极与所述上基板之间设有填充材料。
  13. 根据权利要求11所述的蓝相液晶显示器,其特征在于,所述下锯齿电极与所述下基板之间设有填充材料。
  14. 根据权利要求11所述的蓝相液晶显示器,其特征在于,所述上锯齿电极的底部与所述下锯齿电极的顶部依次对应,且位于反射区下锯齿电极的相邻锯齿凸起之间的间距大于位于透射区下锯齿电极的相邻锯齿凸起之间的间距,以使透射区上、下锯齿电极之间的间隙小于反射区上、下锯齿电极之间的间隙。
  15. 根据权利要求11所述的蓝相液晶显示器,其特征在于,所述上锯齿电极的底部与所述下锯齿电极的顶部依次以错开一定距离相对,以使透射区上、下锯齿电极之间的间距小于反射区上、下锯齿电极之间的间隙。
  16. 根据权利要求11所述的蓝相液晶显示器,其特征在于,所述上锯齿电极的底部与所述下锯齿电极的顶部依次对应,且位于透射区的锯齿凸起高度大于位于反射区的锯齿凸起高度,以使透射区上、下锯齿电极之间的间距小于反射区上、下锯齿电极之间的间隙。
  17. 根据权利要求11所述的蓝相液晶显示器,其特征在于,位于所述透射区锯齿电极的倾角大于位于所述反射区锯齿电极的倾角。
  18. 根据权利要求17所述的蓝相液晶显示器,其特征在于,所述位于所述透射区锯齿电极的倾角大于45度,位于所述反射区锯齿电极的倾角小于45度。
  19. 根据权利要求12或13所述的蓝相液晶显示器,其特征在于,所述填充材料为透明材料。
PCT/CN2015/092358 2015-10-13 2015-10-21 蓝相液晶显示器及其显示模组 WO2017063203A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/891,660 US10295879B2 (en) 2015-10-13 2015-10-21 Blue phase mode liquid crystal display apparatus and its display module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510659147.6A CN105204242A (zh) 2015-10-13 2015-10-13 蓝相液晶显示器及其显示模组
CN201510659147.6 2015-10-13

Publications (1)

Publication Number Publication Date
WO2017063203A1 true WO2017063203A1 (zh) 2017-04-20

Family

ID=54952002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092358 WO2017063203A1 (zh) 2015-10-13 2015-10-21 蓝相液晶显示器及其显示模组

Country Status (3)

Country Link
US (1) US10295879B2 (zh)
CN (1) CN105204242A (zh)
WO (1) WO2017063203A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093720B (zh) * 2015-08-03 2017-12-08 武汉华星光电技术有限公司 蓝相液晶显示模组、蓝相液晶显示器及其制作方法
CN107611535A (zh) * 2017-08-23 2018-01-19 电子科技大学 基于异形结构的液晶微波器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782702A (zh) * 2010-02-04 2010-07-21 上海交通大学 降低蓝相液晶显示器驱动电压的装置
CN101900913A (zh) * 2009-05-29 2010-12-01 株式会社半导体能源研究所 液晶显示装置及其制造方法
CN102231027A (zh) * 2011-06-29 2011-11-02 四川大学 一种采用波纹形电极的透反蓝相液晶显示器
CN102778778A (zh) * 2012-07-05 2012-11-14 京东方科技集团股份有限公司 一种透反式液晶显示面板及透反式液晶显示器
CN202600306U (zh) * 2012-06-08 2012-12-12 京东方科技集团股份有限公司 一种蓝相液晶显示面板及液晶显示装置
CN103969899A (zh) * 2014-04-25 2014-08-06 京东方科技集团股份有限公司 一种半透半反液晶显示面板以及液晶显示装置
CN104714344A (zh) * 2015-03-31 2015-06-17 合肥京东方光电科技有限公司 蓝相液晶显示装置及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900913A (zh) * 2009-05-29 2010-12-01 株式会社半导体能源研究所 液晶显示装置及其制造方法
CN101782702A (zh) * 2010-02-04 2010-07-21 上海交通大学 降低蓝相液晶显示器驱动电压的装置
CN102231027A (zh) * 2011-06-29 2011-11-02 四川大学 一种采用波纹形电极的透反蓝相液晶显示器
CN202600306U (zh) * 2012-06-08 2012-12-12 京东方科技集团股份有限公司 一种蓝相液晶显示面板及液晶显示装置
CN102778778A (zh) * 2012-07-05 2012-11-14 京东方科技集团股份有限公司 一种透反式液晶显示面板及透反式液晶显示器
CN103969899A (zh) * 2014-04-25 2014-08-06 京东方科技集团股份有限公司 一种半透半反液晶显示面板以及液晶显示装置
CN104714344A (zh) * 2015-03-31 2015-06-17 合肥京东方光电科技有限公司 蓝相液晶显示装置及其制作方法

Also Published As

Publication number Publication date
US20180031874A1 (en) 2018-02-01
CN105204242A (zh) 2015-12-30
US10295879B2 (en) 2019-05-21

Similar Documents

Publication Publication Date Title
US20190086699A1 (en) Display device and display method thereof
US11016320B2 (en) Display device with viewing angle switching, display method and fabrication method thereof
CN102155674A (zh) 照明装置和显示装置
WO2017067011A1 (zh) 蓝相液晶显示器、蓝相液晶显示模组及其制作方法
WO2020191913A1 (zh) 显示面板及显示装置
KR101963560B1 (ko) 반투과형 블루상 액정 디스플레이 및 그 액정 디스플레이 모듈
WO2017063203A1 (zh) 蓝相液晶显示器及其显示模组
US20240094577A1 (en) Liquid crystal display device
CN1664660A (zh) 反射型液晶显示装置、显示设备及投影系统
WO2017024547A1 (zh) 半透反式蓝相液晶显示器及其液晶显示模组
WO2019039358A1 (ja) 液晶表示パネル及び液晶表示パネルの製造方法
US10509274B2 (en) Blue phase liquid crystal display panel and liquid crystal display device
WO2017084112A1 (zh) 蓝相液晶显示器及其显示模组
CN107490896A (zh) 显示设备以及制造该显示设备的方法
CN100334493C (zh) 用于聚合物稳定配向过程的单体以及包括该单体生成的聚合物的液晶显示面板
TW200909933A (en) Liquid crystal display and liquid crystal display panel
KR100932211B1 (ko) 횡전계 방식의 액정표시장치
WO2013181855A1 (zh) Psva型液晶显示面板、液晶显示面板及液晶显示装置
CN108594514B (zh) 一种显示面板和具有其的显示装置
KR101957920B1 (ko) 고속 응답 액정표시장치
CN109633995A (zh) 一种双层电极结构的视角可控蓝相液晶显示器
CN207650529U (zh) 一种平面转换型内嵌式触控显示面板
CN216670439U (zh) 视角可切换的液晶显示装置
KR102607274B1 (ko) 액정 투명 디스플레이
TW201118478A (en) Fabricating method of liquid crystal display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906086

Country of ref document: EP

Kind code of ref document: A1