WO2017063193A1 - 一种确定传输块大小的方法用户设备和基站 - Google Patents

一种确定传输块大小的方法用户设备和基站 Download PDF

Info

Publication number
WO2017063193A1
WO2017063193A1 PCT/CN2015/092101 CN2015092101W WO2017063193A1 WO 2017063193 A1 WO2017063193 A1 WO 2017063193A1 CN 2015092101 W CN2015092101 W CN 2015092101W WO 2017063193 A1 WO2017063193 A1 WO 2017063193A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
tbs
transport block
resource units
allocate
Prior art date
Application number
PCT/CN2015/092101
Other languages
English (en)
French (fr)
Inventor
官磊
吴作敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580083875.5A priority Critical patent/CN108353285B/zh
Priority to PCT/CN2015/092101 priority patent/WO2017063193A1/zh
Publication of WO2017063193A1 publication Critical patent/WO2017063193A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/04Traffic adaptive resource partitioning

Definitions

  • the embodiments of the present invention relate to the field of communications, and more particularly, to a method, a user equipment, and a base station for determining a transport block size.
  • Orthogonal Frequency Division Multiplexing (OFDM) technology has been adopted by 3GPP organizations because of its anti-multipath capability and easy engineering implementation, and is a key technology in the LTE standard.
  • the applicable physical resources are generally divided into OFDM symbols in the time domain dimension and OFDM subcarriers in the frequency domain; one OFDM symbol in the time domain and one OFDM subcarrier in the frequency domain.
  • the time-frequency grid point constitutes a minimum resource granularity and is called a resource unit (English: Resource Element, abbreviation: RE).
  • the transmission of the service is generally based on the scheduling of the base station, and the basic unit of the scheduling is the resource block pair: a resource block pair (English: Resource Block Pair, abbreviation: RB-Pair) includes continuous time domain.
  • a resource block pair (English: Resource Block Pair, abbreviation: RB-Pair) includes continuous time domain.
  • Two resource blocks (English: Resource Block, abbreviation: RB), one RB includes 7 consecutive OFDM symbols in the time domain (6 OFDM symbols for the case of a long cyclic prefix), and 12 consecutive subcarriers in the frequency domain;
  • One RB-Pair includes two consecutive RBs in the time domain.
  • one RB-Pair occupies one subframe in time, that is, 1 ms.
  • the scheduling process of a service generally includes the following steps:
  • the base station of the LTE system selects a modulation mode, an encoding mode, and a layer number for the user equipment by using channel state information (Crystal State: CSI) reported by the user equipment.
  • CSI Channel State information
  • the base station determines the allocation of the RB-Pair according to the current transport block size (English: Transport Block Size, abbreviated TBS);
  • the base station notifies the user equipment of the modulation mode, the coding mode, the number of layers, and the RB-Pair allocated thereto; the user equipment determines the TBS according to the received indication information, and then performs operations such as demodulation and decoding.
  • the LTE system will evolve toward higher frequency points and larger bandwidths. This means that in the future, when LTE base stations implement a service scheduling, the number of resources (such as RB-Pair) scheduled may be much larger than the existing TBS. The number of resources supported by the form. This makes the existing TBS form unusable, which directly causes the user equipment and the base station to fail to communicate normally.
  • resources such as RB-Pair
  • An embodiment of the present invention provides a method for determining a transport block size to solve the problem that a user equipment and a base station cannot communicate normally when the number of resources scheduled in a service scheduling process exceeds the number of resources supported by the existing TBS table.
  • an embodiment of the present invention provides a method for determining a transport block size, where a maximum number of resource units supported by a transport block size list is NMAX , and the method includes:
  • the base station determines the resource unit allocated to the UE the number N ALLOCATE, wherein the number of resource units N ALLOCATE greater than the maximum supported transport block list resource unit number N MAX ;
  • N ALLOCATE N 1 + N 2 + ... + N M ;
  • the user equipment determines, according to a predefined rule, the number of resource units N i , including:
  • the user equipment determines the M
  • the user equipment determines the N i according to the M.
  • the user equipment determines that the M includes:
  • the user equipment determines the M according to the N ALLOCATE and the N MAX , wherein the M is not less than a value rounded up by N ALLOCATE /N MAX .
  • the user equipment determining that the M further includes:
  • the M is not greater than the maximum number of layers K supported by the transport block size list, wherein the K is a positive integer.
  • the determining, by the user equipment, the number of resource units N i according to the predefined rule includes:
  • the user equipment determines the transport block size TBS i temporary number according to the MCS and the resource units N i, wherein said maximum TBS i is not greater than the size of the coding block.
  • the size of the maximum coding block is specifically 6144.
  • the user equipment is configured according to the modulation and coding mode MCS information sent by the base station And determining the size of the transport block configured by the user equipment by using the number of resource units N i :
  • the user device to temporarily transport block size TBS i N i the number of resource elements corresponding to the number of resource units and the information the MCS determined according to N i;
  • the user equipment determines a transport block size TBS, wherein the transport block size TBS satisfies:
  • TBS TBS 1 +TBS 2 ??+TBS i ??+TBS M .
  • an embodiment of the present invention provides a method for determining a transport block size, where a maximum number of resource units supported by a transport block size list is NMAX , and the method includes:
  • the base station sends a resource allocation indication message to the user equipment, where the resource allocation indication message includes the number of resource units N ALLOCATE allocated by the base station to the user equipment, where the number of resource units N ALLOCATE is greater than the maximum supported by the transport block list. Number of resource units N MAX ;
  • the base station further sends modulation and coding mode MCS information to the user equipment, so that the user equipment determines the size of the transport block configured by the user equipment according to the MCS, the N ALLOCATE, and a predefined rule.
  • the base station further sends modulation coding mode MCS information to the user equipment, so that the user equipment is configured according to the MCS, the N ALLOCATE, and the predefined
  • the rule determines the size of the transport block in which the user equipment is configured, including:
  • N ALLOCATE N 1 + N 2 + ... + N M .
  • the user equipment determines, according to a predefined rule, the number of resource units N i , including:
  • the user equipment determines the M
  • the user equipment determines the N i according to the M.
  • the determining, by the user equipment, that the M includes:
  • the user equipment determines the M according to the N ALLOCATE and the N MAX , wherein the M is not less than a value rounded up by N ALLOCATE /N MAX .
  • the user equipment determines that the M is further include:
  • the M is not greater than the maximum number of layers K supported by the transport block size list, wherein the K is a positive integer.
  • the determining, by the user equipment, the number of resource units N i according to the predefined rule includes:
  • the user equipment determines the transport block size TBS i temporary number according to the MCS and the resource units N i, wherein said maximum TBS i is not greater than the size of the coding block.
  • the size of the maximum coding block is specifically 6144.
  • the user equipment according to the modulation and coding mode MCS information sent by the base station, and the resource The number of units N ALLOCATE determines that the size of the transport block configured by the user equipment includes:
  • the user device to temporarily transport block size TBS i N i the number of resource elements corresponding to the number of resource units and the information the MCS determined according to N i;
  • the user equipment determines a transport block size TBS, wherein the transport block size TBS satisfies:
  • TBS TBS 1 +TBS 2 ??+TBS i ??+TBS M .
  • an embodiment of the present invention provides a user equipment, including a processor and a transceiver, which are characterized by:
  • the transceiver is configured to receive a resource allocation indication message sent by the base station, and a modulation and coding mode MCS sent by the base station, where the resource allocation indication message indicates the number of resource units allocated by the base station to the user equipment, N ALLOCATE , where The number of resource units N ALLOCATE is greater than the maximum number of resource units supported by the transport block list N MAX ;
  • the processor is further configured to determine, according to the modulation and coding mode MCS information and the number of resource units N i sent by the base station, a size of a transport block configured by the user equipment.
  • the processor is configured to determine, according to a predefined rule, a quantity of resource units N i , including:
  • the processor determines the M
  • the processor is further based on the determination of the N i M.
  • the determining, by the processor, that the M includes:
  • the user equipment determines the M according to the N ALLOCATE and the N MAX , wherein the M is not less than a value rounded up by N ALLOCATE /N MAX .
  • the processor determines that the M is further include:
  • the M is not greater than the maximum number of layers K supported by the transport block size list, wherein the K is a positive integer.
  • the determining, by the processor, the number of resource units N i according to the predefined rule includes:
  • the processor determines a corresponding transport block size TBS i temporary number according to the MCS and the resource units N i, wherein said maximum TBS i is not greater than the size of the coding block.
  • the size of the maximum coding block is specifically 6144.
  • the processing is performed according to the modulation and coding mode MCS information sent by the base station
  • the number of resource units N i determining the size of the transport block configured by the user equipment includes:
  • the processor temporary transport block size TBS i N i the number of resource elements corresponding to the number of resource units and the information the MCS determined according to N i;
  • the processor determines a transport block size TBS, wherein the transport block size TBS satisfies:
  • an embodiment of the present invention provides a base station, including a processor and a transceiver, which are characterized by:
  • the transceiver is configured to send, by the processor, a resource allocation indication message to the user equipment, where the resource allocation indication message includes a quantity of resource units N ALLOCATE allocated by the processor to the user equipment, where The number of resource units N ALLOCATE is greater than the maximum number of resource units supported by the transport block list N MAX ;
  • the transceiver is further configured to send, by using the scheduling of the processor, modulation coding mode MCS information to the user equipment, so that the user equipment determines, according to the MCS, the N ALLOCATE, and a predefined rule, The size of the transport block in which the user device is configured.
  • the transceiver is further configured to send modulation coding mode MCS information to the user equipment, so that the user equipment is configured according to the MCS, the N ALLOCATE And a predefined rule, determining a size of the transport block configured by the user equipment, including:
  • N ALLOCATE N 1 + N 2 + ... + N M .
  • the user equipment determines, according to a predefined rule, the number of resource units N i , including:
  • the user equipment determines the M
  • the user equipment according to the determination of the N i M.
  • the determining, by the user equipment, that the M includes:
  • the user equipment determines the M according to the N ALLOCATE and the N MAX , wherein the M is not less than a value rounded up by N ALLOCATE /N MAX .
  • the user equipment determines that the M is further Includes:
  • the M is not greater than the maximum number of layers K supported by the transport block size list, wherein the K is a positive integer.
  • the determining, by the user equipment, the number of resource units N i according to the predefined rule includes:
  • the user equipment determines the transport block size TBS i temporary number according to the MCS and the resource units N i, wherein said maximum TBS i is not greater than the size of the coding block.
  • the size of the maximum coding block is specifically 6144.
  • the user equipment is configured according to the modulation and coding mode MCS information sent by the transceiver
  • the number of resource units N ALLOCATE determining the size of the transport block configured by the user equipment includes:
  • the user device to temporarily transport block size TBS i N i the number of resource elements corresponding to the number of resource units and the information the MCS determined according to N i;
  • the user equipment determines a transport block size TBS, wherein the transport block size TBS satisfies:
  • TBS TBS 1 +TBS 2 ??+TBS i ??+TBS M .
  • the size of the transport block can still be determined based on the existing transport block size table. Not only can the problem of the transport block size table corresponding to the larger resource unit be solved with a smaller storage space, but also the trouble of reformulating the transport block size table is eliminated.
  • FIG. 1 is a flowchart of a method for determining a size of a transport block according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for determining the size of a transport block according to an embodiment of the present invention.
  • the user equipment (English: User Equipment, abbreviation: UE) may be called a terminal (Terminal), a mobile station (English: Mobile Station, abbreviation: MS), and a mobile terminal (Mobile Terminal).
  • the user equipment can communicate with one or more core networks via a radio access network (English: Radio Access Network, RAN), for example, the user equipment can be a mobile phone (or "cellular" phone),
  • RAN Radio Access Network
  • the user equipment can be a mobile phone (or "cellular" phone),
  • the base station may be an evolved base station (English: Evolutional Node B, abbreviated as: eNB or e-NodeB), a macro base station, and a micro base station (also referred to as a "small base station” in an LTE system or a LAA-LTE system. "), the pico base station, the access site (English: Access Point, abbreviation: AP) or the transmission site (English: Transmission Point, abbreviation: TP), etc., the present invention is not limited thereto. However, for convenience of description, the following content will be described by taking a base station and a user equipment as an example.
  • eNB Evolutional Node B
  • AP Access Point
  • TP Transmission Point
  • the service scheduling of the LTE system is implemented by the base station transmitting a control channel, where the control channel can carry scheduling information of the uplink or downlink data data channel, and the scheduling information includes control information such as RA information, MCS, HARQ process number, and the like, and the user equipment
  • the UE performs reception of the downlink data channel or transmission of the uplink data channel according to the scheduling information carried in the control channel.
  • the core is to determine the MCS, resource block to RB pair allocation, and number of layers for the scheduled UE. Specifically, the following data scheduling is used as an example.
  • the base station selects the MCS and the number of layers for the UE based on the channel state information CSI reported by the UE; and then determines the allocation of the RB pair according to the size of the data packet TBS that needs to be transmitted.
  • the UE determines the TBS according to the RB pair allocation, the MCS and the layer number indication in the PDCCH, and then performs operations such as demodulation and decoding. It can be seen that the TBS has a corresponding relationship with the RB pair allocation, the MCS, and the number of layers. This correspondence is predefined, for example, stored in the UE and the base station in the form of a table.
  • the LTE system will continue to evolve toward the direction of adopting more high-frequency points and larger bandwidth, which means that future LTE systems can adopt larger bandwidth scheduling, or take more subframes in consideration of high-frequency point low delay requirements.
  • the scheduling will greatly increase the number of resource units scheduled for one time.
  • the resource unit is similar to the RB pair in the current LTE system, but the number of protected REs may change. Since the number of scheduled resource units is greatly increased, the TBS specified in the current TBS table is not enough, so a larger TBS needs to be designed to adapt to the above requirements.
  • Step 1 Determine CQI and MCS
  • link simulation is performed on various modulation methods (QPSK, 16QAM, 64QAM) and coding rates (1/3, 1/2, 2/3, 3/4, 5/6, etc.) to obtain more a link simulation curve of BLER-to-SNR, each curve representing an embodiment of spectral efficiency;
  • Step 2 Create a TBS form based on MCS and RB pairs assignments
  • the original transmittable number of bits that is, the transport block size TBS, can be determined.
  • the internal interleaver of the LTE Turbo channel encoder is required to satisfy the QPP characteristic to realize the parallel processing capability of the Turbo code, thereby improving the efficiency of the Turbo.
  • the Turbo encoder only receives a limited number of values that satisfy the QPP principle, and specifically meets the values of the QPP interleaver as shown in Table 2.
  • the Ki column is the limited coding block size CBS supported by the Turbo encoder.
  • the maximum CBS supported by the LTE Turbo encoder is 6144. If the TBS is greater than 6144, the TB needs to be divided into multiple CBs to be separately coded, and all TBSs currently supported by LTE support equal-sized CB partitions, and the divided The padding bit is 0.
  • the maximum CBS value is limited to 6144 because, although the CB of the turbo code is longer, the coding gain is larger, but by the 6144 level, the increase of the coding gain is not obvious, and the CBS is continuously increased, which increases the coding complexity.
  • a TBS table it cannot be determined simply based on the MCS and RB pair assignments. Instead, according to the QPP characteristics, a set of values satisfying the QPP interleaver is selected; then the temporary TBS is determined according to the MCS and RB pair allocation, and then a value closest to the temporary TBS is selected from the above set of values as the final TBS. In addition, it is also necessary to consider the segmentation of TB, that is, each CBS of equal size after segmentation must also be in the above numerical set.
  • Step 3 Introduce a new mapping relationship for the case where one codeword is mapped to multiple layers.
  • the above TBS table only supports one layer of transmission. If a code can be transmitted on multiple layers, then the TBS needs to be extended. Since the MCS is determined by the current channel condition, and the number of RB pairs occupied by the layer and the N layer is the same, the extended TBS can check the single layer TBS table by multiplying the number of RB pairs allocated in the PDCCH by N times. .
  • the single-layer TBS table can be checked by 2*N; if N is greater than 110/2, a single layer needs to be established.
  • the TBS mapping relationship to the two layers is as shown in Table 5.
  • the single-layer TBS table can be checked by 3*N; if N is greater than 110/3, then a single layer needs to be established.
  • the TBS mapping relationship to the third layer is as shown in Table 6.
  • the single-layer TBS table can be checked by 4*N; if N is greater than 110/4, then a single layer needs to be established.
  • the TBS mapping relationship to the third layer is as shown in Table 7.
  • the resource unit of the scheduling increases, for example, taking the RB pair as an example, assuming that more than 110 RB pairs are exceeded, then each additional time, it is necessary to repeat at least the above step 2 (assuming the SNR working interval is unchanged, And the number of layers does not increase), the design complexity is increased, and the scalability is poor.
  • the complexity of standards and implementations will increase.
  • the embodiment of the present invention provides a method for determining a transport block size, which is to solve the technical problem that the number of resources scheduled by the base station is too large, and the existing TBS table cannot be supported.
  • the maximum number of resource units supported by the transport block size list is N MAX , N MAX is a positive integer. In the existing LTE system, N MAX is specifically 110.
  • FIG. 1 is a flowchart of a method according to an embodiment of the present invention, and the steps shown in the figure include:
  • Step 101 The user equipment determines, according to the resource allocation indication message sent by the base station, the number of resource units N ALLOCATE allocated by the base station to the user equipment, where the number of resource units N ALLOCATE is greater than the maximum resource unit supported by the transport block list.
  • Quantity N MAX Quantity N MAX ;
  • Step 102 the user receives the modulation and coding mode MCS sent by the base station;
  • Step 103 The user equipment determines, according to the modulation and coding mode MCS information and the number of resource units N i sent by the base station, a size of a transport block configured by the user equipment.
  • the user equipment according to a modulation coding scheme MCS information transmitted from the base station and the number of resource units N i, determining the transport block size of the user equipment is configured comprising:
  • the user equipment information and the resource unit number of the MCS N i determines the number of resource elements corresponding to Ni temporary transport block sizes TBS i according;
  • the user equipment determines a transport block size TBS, wherein the transport block size TBS satisfies:
  • TBS TBS 1 +TBS 2 ??+TBS i ??+TBS M .
  • the method for determining, by the user equipment, the number of resource units N i according to the predefined rule may further include:
  • the user equipment determines the M
  • the user equipment determines the N i according to the M.
  • the method for determining, by the user equipment, the M may include:
  • the user equipment determines the M according to the N ALLOCATE and the N MAX , wherein the M is not less than a value rounded up by N ALLOCATE /N MAX .
  • the user equipment determining that the M further includes:
  • the M is not greater than the maximum number of layers K supported by the transport block size list, wherein the K is a positive integer.
  • K is 4.
  • the size of the transport block can still be determined based on the existing transport block size table. Not only can the problem of the transport block size table corresponding to the larger resource unit be solved with a smaller storage space, but also the trouble of reformulating the transport block size table is eliminated.
  • determining, by the user equipment, the number of resource units N i according to a predefined rule includes:
  • the user equipment determines the transport block size TBS i temporary number according to the MCS and the resource units N i, wherein said maximum TBS i is not greater than the size of the coding block.
  • the size of the maximum coding block is specifically 6144.
  • the problem of the transport block size table corresponding to the larger resource unit can be solved with a smaller storage space, and the trouble of re-deleting the transport block size table is eliminated.
  • the segmentation loss is reduced, so that the number of coding blocks of the dispute is small and the coding gain is high.
  • An embodiment of the present invention provides a method for determining a size of a transport block, which may be performed by a base station to correspond to a method that can be applied to a user equipment according to Embodiment 1 of the present invention.
  • the method provided by the embodiment of the present invention includes the following steps:
  • Step 201 The base station sends a resource allocation indication message to the user equipment, where the resource allocation indication message includes the number of resource units N ALLOCATE allocated by the base station to the user equipment, where the number of resource units N ALLOCATE is greater than the transport block list.
  • the maximum number of resource units supported is N MAX ;
  • Step 202 The base station further sends modulation and coding mode MCS information to the user equipment, so that the user equipment determines, according to the MCS, the N ALLOCATE, and a predefined rule, that the user equipment is configured with a transport block. the size of.
  • the base station further sends modulation and coding mode MCS information to the user equipment, so that the user equipment determines, according to the MCS, the N ALLOCATE, and a predefined rule.
  • the size of the transport block in which the user equipment is configured includes:
  • N ALLOCATE N 1 + N 2 + ... + N M .
  • the user equipment determines, according to a predefined rule, the number of resource units N i , including:
  • the device determines the user M; the user device based on the determination of the N i M.
  • the user equipment determines that the M includes:
  • the user equipment determines the M according to the N ALLOCATE and the N MAX , wherein the M is not less than a value rounded up by N ALLOCATE /N MAX .
  • the user equipment determines that the M further includes:
  • the M is not greater than the maximum number of layers K supported by the transport block size list, wherein the K is a positive integer.
  • determining, by the user equipment, the number of resource units N i according to a predefined rule includes:
  • the user equipment determines the transport block size TBS i temporary number according to the MCS and the resource units N i, wherein said maximum TBS i is not greater than the size of the coding block.
  • the size of the maximum coding block is specifically 6144.
  • the user equipment according to a modulation coding scheme MCS information transmitted from the base station and the number of resource units N ALLOCATE, to determine the transport block user equipment is configured to include the size of :
  • the user equipment information and the resource unit number of the MCS N i determines the number of resource elements corresponding to Ni temporary transport block sizes TBS i according;
  • the user equipment determines a transport block size TBS, wherein the transport block size TBS satisfies:
  • TBS TBS 1 +TBS 2 ??+TBS i ??+TBS M .
  • the size of the transport block can still be determined based on the existing transport block size table. Not only can the problem of the transport block size table corresponding to the larger resource unit be solved with a smaller storage space, but also the trouble of reformulating the transport block size table is eliminated.
  • the embodiment of the invention provides a user equipment, which can be used to implement a method for determining the size of a transport block proposed in Embodiment 1 of the present invention.
  • the user equipment includes a processor and a transceiver, specifically:
  • Modulation and coding scheme MCS for the transceiver receives the base station transmits resource allocation and indication message sent by the base station, wherein said indication message indicating the resource allocation for the user equipment by the base station the number of assigned resource units N ALLOCATE, wherein The number of resource units N ALLOCATE is greater than the maximum number of resource units supported by the transport block list N MAX ;
  • the processor is configured to determine a quantity of resource units N i according to a predefined rule, where
  • N ALLOCATE N 1 + N 2 + whil + N M ;
  • the processor is further configured to determine, according to the modulation and coding mode MCS information and the number of resource units N i sent by the base station, a size of a transport block configured by the user equipment.
  • the processor is configured to determine, according to a predefined rule, a quantity of resource units N i , including:
  • the processor determines the M
  • the processor is further based on the determination of the N i M.
  • the processor determines that the M includes:
  • the user equipment determines the M according to the N ALLOCATE and the N MAX , wherein the M is not less than a value rounded up by N ALLOCATE /N MAX .
  • the determining that the M further includes:
  • the M is not greater than the maximum number of layers K supported by the transport block size list, wherein the K is a positive integer.
  • the determining, by the processor, the number of resource units N i according to a predefined rule includes:
  • the processor determines a corresponding transport block size TBS i temporary number according to the MCS and the resource units N i, wherein said maximum TBS i is not greater than the size of the coding block.
  • the size of the maximum coding block is specifically 6144.
  • the processing, according to the modulation and coding mode MCS information sent by the base station, and the number of resource units N i , determining the size of the transport block configured by the user equipment includes:
  • the processor and the resource unit number information of the MCS N i determines the number of resource elements corresponding to Ni temporary transport block sizes TBS i according;
  • the processor determines a transport block size TBS, wherein the transport block size TBS satisfies:
  • TBS TBS 1 +TBS 2 ??+TBS i ??+TBS M .
  • the user equipment may still determine the size of the transport block based on the existing transport block size table. Not only can the problem of the transport block size table corresponding to the larger resource unit be solved with a smaller storage space, but also the trouble of reformulating the transport block size table is eliminated.
  • the embodiment of the invention provides a base station, which can be used to implement a method for determining the size of a transport block proposed in Embodiment 2 of the present invention.
  • the base station includes a processor and a transceiver, more specifically:
  • the transceiver is configured to send, by the processor, a resource allocation indication message to the user equipment, where the resource allocation indication message includes a quantity of resource units N ALLOCATE allocated by the processor to the user equipment, where The number of resource units N ALLOCATE is greater than the maximum number of resource units supported by the transport block list N MAX ;
  • the transceiver is further configured to send, by using the scheduling of the processor, modulation coding mode MCS information to the user equipment, so that the user equipment determines, according to the MCS, the N ALLOCATE, and a predefined rule, The size of the transport block in which the user device is configured.
  • the transceiver is further configured to send modulation and coding mode MCS information to the user equipment, so that the user equipment is configured according to the MCS, the N ALLOCATE, and the predefined
  • the rule determines the size of the transport block in which the user equipment is configured, including:
  • N ALLOCATE N 1 + N 2 + ... + N M .
  • the user equipment determines, according to a predefined rule, the number of resource units N i , including:
  • the user equipment determines the M; the user equipment determines the Ni according to the M.
  • the user equipment determines that the M includes:
  • the user equipment determines the M according to the N ALLOCATE and the N MAX , wherein the M is not less than a value rounded up by N ALLOCATE /N MAX .
  • the determining, by the user equipment, that the M further includes:
  • the M is not greater than the maximum number of layers K supported by the transport block size list, wherein the K is a positive integer.
  • the determining, by the user equipment, the number of resource units N i according to the predefined rule includes: determining, by the user equipment, the corresponding temporary according to the MCS and the number of resource units N i A transport block size TBS i , wherein the TBS i is not greater than the size of the largest coded block.
  • the size of the maximum coding block is specifically 6144.
  • the modulation and coding scheme to the user equipment transceiver according to the MCS information and the number of resource units N ALLOCATE, to determine the transport block size of the user equipment is configured include:
  • the user device to temporarily transport block size TBS i N i the number of resource elements corresponding to the number of resource units and the information the MCS determined according to N i;
  • the user equipment determines a transport block size TBS, wherein the transport block size TBS satisfies:
  • TBS TBS 1 +TBS 2 ??+TBS i ??+TBS M .
  • the user equipment can still determine the size of the transport block based on the existing transport block size table. Not only can the problem of the transport block size table corresponding to the larger resource unit be solved with a smaller storage space, but also the trouble of reformulating the transport block size table is eliminated.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another The system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (English: Read-Only Memory, abbreviation: ROM), a random access memory (English: Random Access Memory, abbreviation: RAM), a magnetic disk or an optical disk, and the like.
  • a USB flash drive a mobile hard disk
  • a read-only memory English: Read-Only Memory, abbreviation: ROM
  • a random access memory English: Random Access Memory, abbreviation: RAM
  • magnetic disk or an optical disk and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种确定传输块大小的方法,用以在分配的资源单位数量较多时依然可以使用现有的传输块大小列表确定传输块大小,该方法包括:用户设备根据基站发送的资源分配指示消息,确定所述基站为所述用户设备分配的资源单位数量NALLOCATE,其中所述资源单位数量NALLOCATE大于所述传输块列表支持的最大资源单位数量NMAX;所述用户接收所述基站发送的调制编码方式MCS;所述用户设备根据预定义的规则确定资源单位数量Ni,其中i=1,2,……M,所述M为不小于2的整数,所述Ni满足Ni≤NMAX,所述Ni还满足:NALLOCATE=N1+N2+……+NM;所述用户设备根据所述基站发送的所述调制编码方式MCS信息和所述资源单位数量Ni,确定所述用户设备被配置的传输块的大小。

Description

一种确定传输块大小的方法用户设备和基站 技术领域
本发明实施例涉及通信领域,更具体地,本发明涉及一种确定传输块大小的方法、用户设备和基站。
背景技术
正交频分复用(英文:Orthogonal Frequency Division Multiplexing,缩写:OFDM)技术由于具有抗多径能力强,易于工程实现等优点而被3GPP组织采纳,并作为LTE标准中的关键技术。
在应用OFDM技术进行通信时,可以应用的物理资源一般被划分为时间域维度上的OFDM符号和频率域上的OFDM子载波;时间域上的一个OFDM符号和频率域上的一个OFDM子载波的时频格点即构成了一个最小的资源粒度,被称为一个资源单位(英文:Resource Element,缩写:RE)。
现有的LTE系统中,业务的传输一般是基于基站的调度的,调度的基本单位是资源块对:一个资源块对(英文:Resource Block Pair,缩写:RB-Pair)包括时域上连续的两个资源块(英文:Resource Block,缩写:RB),一个RB包括时域上连续的7个OFDM符号(对于长循环前缀的情况时6个OFDM符号)、频域上连续的12个子载波;一个RB-Pair包括时域上连续的两个RB,在现行的LTE标准中,一个RB-Pair在时间上占用一个子帧的长度即1ms。
一般来说业务的调度过程大致包括以下步骤:
LTE系统的基站通过用户设备上报的信道状态信息(英文:Channel State Information,缩写:CSI),为该用户设备选择调制方式、编码方式以及层数;
基站根据当前传输块的大小(英文:Transport Block Size,缩写TBS),来确定RB-Pair的分配;
基站通知该用户设备选定的调制方式、编码方式、层数以及为其分配的RB-Pair;该用户设备根据接收到的这些指示信息,确定TBS,然后进行解调解码等操作。
由上述的业务调度过程可以知道,TBS与RB-Pair的分配,调制方式、编码方式以及层数都有着对应关系。为了使得不同的设备厂商提供的基站或者用户设备可以实现互联互通,这些对应关系都被标准组织规范化。一般来 说,在具体实现时这些对应关系会以TBS表格的形式存储在基站或者用户设备中。
LTE系统会向着采用更高频点、更大带宽的方向演进,这就意味着,未来LTE基站在实施一次业务调度时,调度的资源(例如RB-Pair)数量可能远远多于现有TBS表格支持的资源数量。这会使得现有的TBS表格无法使用,直接导致用户设备与基站无法正常通信。
发明内容
本发明实施例提供了一种确定传输块大小的方法,以解决在业务调度过程中一次调度的资源数量超出现有TBS表格支持的资源数量时,用户设备和基站间无法正常通信的问题。
第一方面,本发明实施例提供了一种确定传输块大小的方法,其中传输块大小列表支持的最大资源单位数量为NMAX,所述方法包括:
用户设备根据基站发送的资源分配指示消息,确定所述基站为所述用户设备分配的资源单位数量NALLOCATE,其中所述资源单位数量NALLOCATE大于所述传输块列表支持的最大资源单位数量NMAX
所述用户接收所述基站发送的调制编码方式MCS;
所述用户设备根据预定义的规则确定资源单位数量Ni,其中i=1,2,……M,所述M为不小于2的整数,所述Ni满足Ni≤NMAX,所述Ni还满足:NALLOCATE=N1+N2+……+NM
所述用户设备根据所述基站发送的所述调制编码方式MCS信息和所述资源单位数量Ni,确定所述用户设备被配置的传输块的大小。
在第一方面的第一种可能的实现方式中,所述所述用户设备根据预定义的规则,确定资源单位数量Ni,包括:
所述用户设备确定所述M;
所述用户设备根据所述M确定所述Ni
结合第一方面第一种可能的实现方式,在第二种可能的实现方式中,所述所述用户设备确定所述M包括:
所述用户设备根据所述NALLOCATE和所述NMAX确定所述M,其中所述M不小于NALLOCATE/NMAX向上取整的值。
结合第一方面第一种可能的实现方式以及第二种可能的实现方式中的 任意一种可能的实现方式,在第三种可能的实现方式中,所述所述用户设备确定所述M还包括:
所述M不大于所述传输块大小列表支持的最大层数K,其中所述K为正整数。
在第一方面的第四种可能的实现方式中,所述所述用户设备根据预定义的规则确定资源单位数量Ni包括:
所述用户设备根据所述MCS和所述资源单位数量Ni确定对应的临时传输块大小TBSi,其中所述TBSi不大于最大编码块的大小。
结合第一方面第四种可能的实现方式,在第五种可能的实现方式中,在LTE系统中,所述最大编码块的大小具体为6144。
结合第一方面,或者第一方面第一至第五种任意一种可能的实现方式,在第六种可能的实现方式中,所述所述用户设备根据所述基站发送的调制编码方式MCS信息和所述资源单位数量Ni,确定所述用户设备被配置的传输块的大小包括:
所述用户设备根据所述MCS信息和所述资源单位数量Ni确定所述资源单元数量Ni对应的临时传输块大小TBSi
所述用户设备确定传输块大小TBS,其中所述传输块大小TBS满足:
TBS=TBS1+TBS2……+TBSi……+TBSM
第二方面,本发明实施例提供了一种确定传输块大小的方法,其中传输块大小列表支持的最大资源单位数量为NMAX,所述方法包括:
基站向用户设备发送资源分配指示消息,所述资源分配指示消息包括所述基站为所述用户设备分配的资源单位数量NALLOCATE,其中所述资源单位数量NALLOCATE大于所述传输块列表支持的最大资源单位数量NMAX
所述基站还向所述用户设备发送调制编码方式MCS信息,以便于所述用户设备根据所述MCS、所述NALLOCATE和预定义的规则,确定所述用户设备被配置的传输块的大小。
在第二方面的第一种可能的实现方式中,所述所述基站还向所述用户设备发送调制编码方式MCS信息,以便于所述用户设备根据所述MCS、所述NALLOCATE和预定义的规则,确定所述用户设备被配置的传输块的大小,包括:
所述用户设备根据预定义的规则,确定资源单位数量Ni,其中i=1,2……M,其中所述M为不小于2的整数,所述Ni满足Ni≤NMAX,所述Ni还满足:
NALLOCATE=N1+N2+……+NM
结合第二方面第一种可能的实现方式,在第二种可能的实现方式中,所述用户设备根据预定义的规则,确定资源单位数量Ni,包括:
所述用户设备确定所述M;
所述用户设备根据所述M确定所述Ni
结合第二方面第二种可能的实现方式,在第三种可能的实现方式中,所述所述用户设备确定所述M包括:
所述用户设备根据所述NALLOCATE和所述NMAX确定所述M,其中所述M不小于NALLOCATE/NMAX向上取整的值。
结合第二方面第二种可能的实现方式以及第三种可能的实现方式中的任意一种可能的实现方式,在第四种可能的实现方式中,所述所述用户设备确定所述M还包括:
所述M不大于所述传输块大小列表支持的最大层数K,其中所述K为正整数。
在第二方面的第五种可能的实现方式中,所述所述用户设备根据预定义的规则确定资源单位数量Ni包括:
所述用户设备根据所述MCS和所述资源单位数量Ni确定对应的临时传输块大小TBSi,其中所述TBSi不大于最大编码块的大小。
结合第二方面第五种可能的实现方式,在第六种可能的实现方式中,在LTE系统中,所述最大编码块的大小具体为6144。
结合第二方面第一到第六种中任意一种可能的实现方式,在第七种可能的实现方式中,所述所述用户设备根据所述基站发送的调制编码方式MCS信息和所述资源单位数量NALLOCATE,确定所述用户设备被配置的传输块的大小包括:
所述用户设备根据所述MCS信息和所述资源单位数量Ni确定所述资源单元数量Ni对应的临时传输块大小TBSi
所述用户设备确定传输块大小TBS,其中所述传输块大小TBS满足:
TBS=TBS1+TBS2……+TBSi……+TBSM
第三方面,本发明实施例提供了一种用户设备,包括处理器和收发器,其特征在于:
所述收发器用于接收基站发送的资源分配指示消息和所述基站发送的 调制编码方式MCS,其中所述资源分配指示消息指示所述基站为所述用户设备分配的资源单位数量NALLOCATE,其中所述资源单位数量NALLOCATE大于传输块列表支持的最大资源单位数量NMAX
所述处理器用于根据预定义的规则确定资源单位数量Ni,其中i=1,2,……M,所述M为不小于2的整数,所述Ni满足Ni≤NMAX,所述Ni还满足:NALLOCATE=N1+N2+……+NM
所述处理器还用于根据所述基站发送的所述调制编码方式MCS信息和所述资源单位数量Ni,确定所述用户设备被配置的传输块的大小。
在第三方面的第一种可能的实现方式中,所述所述处理器用于根据预定义的规则,确定资源单位数量Ni,包括:
所述处理器确定所述M;
所述处理器进一步根据所述M确定所述Ni
结合第三方面第一种可能的实现方式,在第二种可能的实现方式中,所述所述处理器确定所述M包括:
所述用户设备根据所述NALLOCATE和所述NMAX确定所述M,其中所述M不小于NALLOCATE/NMAX向上取整的值。
结合第三方面第一种可能的实现方式以及第二种可能的实现方式中的任意一种可能的实现方式,在第三种可能的实现方式中,所述所述处理器确定所述M还包括:
所述M不大于所述传输块大小列表支持的最大层数K,其中所述K为正整数。
在第三方面的第四种可能的实现方式中,所述所述处理器根据预定义的规则确定资源单位数量Ni包括:
所述处理器根据所述MCS和所述资源单位数量Ni确定对应的临时传输块大小TBSi,其中所述TBSi不大于最大编码块的大小。
结合第三方面第四种可能的实现方式,在第五种可能的实现方式中,在LTE系统中,所述最大编码块的大小具体为6144。
结合第三方面,或者第三方面第一至第五种任意一种可能的实现方式,在第六种可能的实现方式中,所述所述处理根据所述基站发送的调制编码方式MCS信息和所述资源单位数量Ni,确定所述用户设备被配置的传输块的大小包括:
所述处理器根据所述MCS信息和所述资源单位数量Ni确定所述资源单元数量Ni对应的临时传输块大小TBSi
所述处理器确定传输块大小TBS,其中所述传输块大小TBS满足:
TBS=TBS1+TBS2……+TBSi……+TBSM。
第四方面,本发明实施例提供了一种基站,包括处理器和收发器,其特征在于:
所述收发器用于在所述处理器的调度下,向用户设备发送资源分配指示消息,所述资源分配指示消息包括所述处理器为所述用户设备分配的资源单位数量NALLOCATE,其中所述资源单位数量NALLOCATE大于传输块列表支持的最大资源单位数量NMAX
收发器还用于在所述处理器的调度下,向所述用户设备发送调制编码方式MCS信息,以便于所述用户设备根据所述MCS、所述NALLOCATE和预定义的规则,确定所述用户设备被配置的传输块的大小。
在第四方面的第一种可能的实现方式中,所述所述收发器还用于向所述用户设备发送调制编码方式MCS信息,以便于所述用户设备根据所述MCS、所述NALLOCATE和预定义的规则,确定所述用户设备被配置的传输块的大小,包括:
所述用户设备根据预定义的规则,确定资源单位数量Ni,其中i=1,2……M,其中所述M为不小于2的整数,所述Ni满足Ni≤NMAX,所述Ni还满足:
NALLOCATE=N1+N2+……+NM
结合第四方面第一种可能的实现方式,在第二种可能的实现方式中,所述用户设备根据预定义的规则,确定资源单位数量Ni,包括:
所述用户设备确定所述M;
所述用户设备根据所述M确定所述Ni
结合第四方面第二种可能的实现方式,在第三种可能的实现方式中,所述所述用户设备确定所述M包括:
所述用户设备根据所述NALLOCATE和所述NMAX确定所述M,其中所述M不小于NALLOCATE/NMAX向上取整的值。
结合第四方面第二种可能的实现方式以及第三种可能的实现方式中的任意一种可能的实现方式,在第四种可能的实现方式中,所述所述用户设备确定所述M还包括:
所述M不大于所述传输块大小列表支持的最大层数K,其中所述K为正整数。
在第四方面的第五种可能的实现方式中,所述所述用户设备根据预定义的规则确定资源单位数量Ni包括:
所述用户设备根据所述MCS和所述资源单位数量Ni确定对应的临时传输块大小TBSi,其中所述TBSi不大于最大编码块的大小。
结合第四方面第五种可能的实现方式,在第六种可能的实现方式中,在LTE系统中,所述最大编码块的大小具体为6144。
结合第四方面第五到第六种中任意一种可能的实现方式,在第七种可能的实现方式中,所述所述用户设备根据所述收发器发送的调制编码方式MCS信息和所述资源单位数量NALLOCATE,确定所述用户设备被配置的传输块的大小包括:
所述用户设备根据所述MCS信息和所述资源单位数量Ni确定所述资源单元数量Ni对应的临时传输块大小TBSi
所述用户设备确定传输块大小TBS,其中所述传输块大小TBS满足:
TBS=TBS1+TBS2……+TBSi……+TBSM
根据以上的技术方案,用户设备在基站为其分配了超过NMAX个资源单位后,仍然可以基于现有的传输块大小表格确定传输块的大小。不仅可以以较小的存储空间解决较大资源单位对应的传输块大小表格的问题,还省去了重新制定传输块大小表格的麻烦。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例提出的一种确定传输块的大小的方法流程图;
图2示出了本发明实施例提出的一种确定传输块的大小的方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于LTE通信系统,也可以应用于其它与之类似的通信系统中。
应理解,在本发明实施例中,用户设备(英文:User Equipment,缩写:UE)可称之为终端(Terminal)、移动台(英文:Mobile Station,缩写:MS)、移动终端(Mobile Terminal)等,该用户设备可以经无线接入网(英文:Radio Access Network,缩写:RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
在本发明实施例中,基站可以是LTE系统或者LAA-LTE系统中的演进型基站(英文:Evolutional Node B,缩写:eNB或e-NodeB)、宏基站、微基站(也称为“小基站”)、微微基站、接入站点(英文:Access Point,缩写:AP)或传输站点(英文:Transmission Point,缩写:TP)等,本发明对此并不限定。但为描述方便,下述内容将以基站和用户设备为例进行说明。
LTE系统的业务调度是通过基站发送控制信道来实现的,该控制信道可以承载上行或下行数据数据信道的调度信息,该调度信息包括比如RA信息,MCS,HARQ进程号等控制信息,而用户设备UE根据上述控制信道中承载的调度信息来进行下行数据信道的接收或上行数据信道的发送。对于调度,最核心的是为被调度的UE确定MCS、资源块对RB pair分配和层数。具体的,以下行数据调度为例,基站会基于UE上报的信道状态信息CSI,为UE选取MCS和层数;然后再根据当前需要传输的数据包TBS的大小,来确定RB pair的分配。相应的,UE接收到物理下行控制信道PDCCH后,根据该PDCCH中的RB pair分配,MCS和层数指示来确定TBS,然后进行解调解码等操作。可以看出,TBS与RB pair分配、MCS和层数有对应关系,这个对应关系是预先定义好的,比如以表格的形式分别存储在UE和基站中。
LTE系统会朝着采用更高频点更大带宽的方向进行持续演进,意味着将来的LTE系统可以采用更大带宽的调度,或者考虑到高频点低时延的要求,采用更多子帧的调度,都会使得一次调度的资源单位数量大大增加,这里提 到的资源单位与当前LTE系统中的RB pair类似,但保护的RE数量可能会出现变化。由于调度的资源单位数量大大增加,会使得当前TBS表格中规定的TBS不够用,因此需要设计更大的TBS来适配上述需求。
总体上说,如果按照原有的TBS表格设计思路,来设计更大的TBS,设计复杂度会非常大,而不具有更好的可扩展性,即每有增加TBS的需求,就需要按照上述规则设计一次TBS,且标准中的TBS表格会越来越庞大,不适合维护。下面首先介绍一下现有TBS表格的设计思路:
Step 1:确定CQI和MCS
确定SNR的工作区间,比如从-7dB到20dB;
在上述SNR区间内,对各种调制方式(QPSK,16QAM,64QAM)和编码速率(1/3,1/2,2/3,3/4,5/6等)进行链路仿真,得到多条BLER-to-SNR的链路仿真曲线,每条曲线代表了一种频谱效率的体现;
基于上述曲线,以BLER=0.1,SNR间距为1.892dB,从上述多种调制方式和编码速率的组合(对应不同的频谱效率)中选择从15个,作为CQI,具体如表1所示的索引1到15,而索引0为CQI溢出;可以看到,表1的最右侧一列所示的频谱效率为调制阶数*编码速率得到的,以索引1为例,频谱效率为QPSK的调制阶数2乘以编码速率78/1024得到的0.1523;
对上述15个CQI进行插值,得到29个MCS。
Figure PCTCN2015092101-appb-000001
表1.CQI表格
Step 2:基于MCS和RB pairs分配,建立TBS表格
原则上,基于上述MCS,再结合RB pair的分配,就可以确定原始可传输的比特数,即传输块大小TBS。
但是,LTE的Turbo信道编码器的内交织器要求满足QPP特性,以实现Turbo码并行处理的能力,进而提高Turbo的效率。具体的,Turbo编码器只接收满足QPP原则的有限数量的取值,具体满足QPP交织器的取值见表2所示。从表2可以看到,Ki一列就是Turbo编码器支持的有限的编码块大小CBS。LTE的Turbo编码器支持的最大CBS为6144,如果TBS大于6144,则需要将该TB分成多个CB来分别编码,且LTE当前支持的所有TBS,都支持相等大小的CB划分,且划分后的填充比特为0。最大CBS取值限制6144是因为,虽然Turbo码的CB越长,编码增益越大,但是到了6144这个级别,编码增益的增加已经不明显,且继续增加CBS,会增加编码复杂度。
i Ki f1 f2 i Ki f1 f2 i Ki f1 f2 i Ki f1 f2
1 40 3 10 48 416 25 52 95 1120 67 140 142 3200 111 240
2 48 7 12 49 424 51 106 96 1152 35 72 143 3264 443 204
3 56 19 42 50 432 47 72 97 1184 19 74 144 3328 51 104
4 64 7 16 51 440 91 110 98 1216 39 76 145 3392 51 212
5 72 7 18 52 448 29 168 99 1248 19 78 146 3456 451 192
6 80 11 20 53 456 29 114 100 1280 199 240 147 3520 257 220
7 88 5 22 54 464 247 58 101 1312 21 82 148 3584 57 336
8 96 11 24 55 472 29 118 102 1344 211 252 149 3648 313 228
9 104 7 26 56 480 89 180 103 1376 21 86 150 3712 271 232
10 112 41 84 57 488 91 122 104 1408 43 88 151 3776 179 236
11 120 103 90 58 496 157 62 105 1440 149 60 152 3840 331 120
12 128 15 32 59 504 55 84 106 1472 45 92 153 3904 363 244
13 136 9 34 60 512 31 64 107 1504 49 846 154 3968 375 248
14 144 17 108 61 528 17 66 108 1536 71 48 155 4032 127 168
15 152 9 38 62 544 35 68 109 1568 13 28 156 4096 31 64
16 160 21 120 63 560 227 420 110 1600 17 80 157 4160 33 130
17 168 101 84 64 576 65 96 111 1632 25 102 158 4224 43 264
18 176 21 44 65 592 19 74 112 1664 183 104 159 4288 33 134
19 184 57 46 66 608 37 76 113 1696 55 954 160 4352 477 408
20 192 23 48 67 624 41 234 114 1728 127 96 161 4416 35 138
21 200 13 50 68 640 39 80 115 1760 27 110 162 4480 233 280
22 208 27 52 69 656 185 82 116 1792 29 112 163 4544 357 142
23 216 11 36 70 672 43 252 117 1824 29 114 164 4608 337 480
24 224 27 56 71 688 21 86 118 1856 57 116 165 4672 37 146
25 232 85 58 72 704 155 44 119 1888 45 354 166 4736 71 444
26 240 29 60 73 720 79 120 120 1920 31 120 167 4800 71 120
27 248 33 62 74 736 139 92 121 1952 59 610 168 4864 37 152
28 256 15 32 75 752 23 94 122 1984 185 124 169 4928 39 462
29 264 17 198 76 768 217 48 123 2016 113 420 170 4992 127 234
30 272 33 68 77 784 25 98 124 2048 31 64 171 5056 39 158
31 280 103 210 78 800 17 80 125 2112 17 66 172 5120 39 80
32 288 19 36 79 816 127 102 126 2176 171 136 173 5184 31 96
33 296 19 74 80 832 25 52 127 2240 209 420 174 5248 113 902
34 304 37 76 81 848 239 106 128 2304 253 216 175 5312 41 166
35 312 19 78 82 864 17 48 129 2368 367 444 176 5376 251 336
36 320 21 120 83 880 137 110 130 2432 265 456 177 5440 43 170
37 328 21 82 84 896 215 112 131 2496 181 468 178 5504 21 86
38 336 115 84 85 912 29 114 132 2560 39 80 179 5568 43 174
39 344 193 86 86 928 15 58 133 2624 27 164 180 5632 45 176
40 352 21 44 87 944 147 118 134 2688 127 504 181 5696 45 178
41 360 133 90 88 960 29 60 135 2752 143 172 182 5760 161 120
42 368 81 46 89 976 59 122 136 2816 43 88 183 5824 89 182
43 376 45 94 90 992 65 124 137 2880 29 300 184 5888 323 184
44 384 23 48 91 1008 55 84 138 2944 45 92 185 5952 47 186
45 392 243 98 92 1024 31 64 139 3008 157 188 186 6016 23 94
46 400 151 40 93 1056 17 66 140 3072 47 96 187 6080 47 190
47 408 155 102 94 1088 171 204 141 3136 13 28 188 6144 263 480
表2.Turbo编码器的内交织器参数
因此,构建TBS表格时,不能简单的基于MCS和RB pair分配来确定。而是,先要根据QPP特性,选择一个满足QPP交织器的数值集合;然后根据MCS和RB pair分配来确定临时TBS,然后从上述数值集合中选择一个离该临时TBS最接近的数值作为最终的TBS。此外,还需要考虑TB的分段,即分段后的每个大小相等的CBS也必须在上述数值集合中。
具体最终确定的TBS与MCS和RB pair分配的关系如表3和表4所示, 可以看到,当前TBS表格最大支持的RB pair分配的数量为110个RB pair。
Figure PCTCN2015092101-appb-000002
表3.MCS索引、调制阶数、TBS索引的关系
Figure PCTCN2015092101-appb-000003
Figure PCTCN2015092101-appb-000004
Figure PCTCN2015092101-appb-000005
Figure PCTCN2015092101-appb-000006
Figure PCTCN2015092101-appb-000007
表4.TBS数值与TBS索引和RB pair分配的关系
Step 3:对于1个码字映射到多层的情况,引入新的映射关系
上述TBS表格只是支持一层的传输。如果对于一个码子可以在多层上传输,那么还需要扩展TBS。由于MCS是当前信道条件决定的,而一层和N层传输占用的RB pair数量是一样的,那么扩展TBS可以通过把PDCCH中分配的RB pair数量乘以N倍后来查上述单层的TBS表格。
TBS_L1 TBS_L2 TBS_L1 TBS_L2 TBS_L1 TBS_L2 TBS_L1 TBS_L2
1544 3112 3752 7480 10296 20616 28336 57336
1608 3240 3880 7736 10680 21384 29296 59256
1672 3368 4008 7992 11064 22152 30576 61664
1736 3496 4136 8248 11448 22920 31704 63776
1800 3624 4264 8504 11832 23688 32856 66592
1864 3752 4392 8760 12216 24496 34008 68808
1928 3880 4584 9144 12576 25456 35160 71112
1992 4008 4776 9528 12960 25456 36696 73712
2024 4008 4968 9912 13536 27376 37888 76208
2088 4136 5160 10296 14112 28336 39232 78704
2152 4264 5352 10680 14688 29296 40576 81176
2216 4392 5544 11064 15264 30576 42368 84760
2280 4584 5736 11448 15840 31704 43816 87936
2344 4776 5992 11832 16416 32856 45352 90816
2408 4776 6200 12576 16992 34008 46888 93800
2472 4968 6456 12960 17568 35160 48936 97896
2536 5160 6712 13536 18336 36696 51024 101840
2600 5160 6968 14112 19080 37888 52752 105528
2664 5352 7224 14688 19848 39232 55056 110136
2728 5544 7480 14688 20616 40576 57336 115040
2792 5544 7736 15264 21384 42368 59256 119816
2856 5736 7992 15840 22152 43816 61664 124464
2984 5992 8248 16416 22920 45352 63776 128496
3112 6200 8504 16992 23688 46888 66592 133208
3240 6456 8760 17568 24496 48936 68808 137792
3368 6712 9144 18336 25456 51024 71112 142248
3496 6968 9528 19080 26416 52752 73712 146856
3624 7224 9912 19848 27376 55056 75376 149776
表5.一层到两层的TBS映射
具体的,对于两层传输,如果分配的RB pair数量N在1和110/2之间,那么可以用2*N来查上述单层TBS表格;如果N大于110/2,那么需要建立单层到两层的TBS映射关系,具体如表5所示。
Figure PCTCN2015092101-appb-000008
表6.一层到三层的TBS映射
具体的,对于三层传输,如果分配的RB pair数量N在1和110/3之间,那么可以用3*N来查上述单层TBS表格;如果N大于110/3,那么需要建立单层到三层的TBS映射关系,具体如表6所示。
Figure PCTCN2015092101-appb-000009
表7.一层到四层的TBS映射
具体的,对于四层传输,如果分配的RB pair数量N在1和110/4之间,那么可以用4*N来查上述单层TBS表格;如果N大于110/4,那么需要建立单层到三层的TBS映射关系,具体如表7所示。
基于上述TBS设计过程来看,如果调度的资源单位增加,比如以RB pair为例,假设超过了110个RB pair,那么每增加一次,就需要至少重复上述step 2(假设SNR工作区间不变,且层数不增加),设计复杂度增加,且可扩展性差。此外,随着LTE持续演进,需要设计并存储大量的TBS表格,标准和实现的复杂度都会增加。
为了解决面临的问题,下面将结合具体的例子详细描述本发明实施例。 应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围;应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
实施例1
本发明实施例提出一种确定传输块大小的方法,以解决当基站调度的资源数量过多,导致现有的TBS表格无法支持的技术问题,其中,传输块大小列表支持的最大资源单位数量为NMAX,NMAX为正整数,在现有的LTE系统中,NMAX具体为110。图1示出了本发明实施例提出的方法的流程图,图中示出的步骤包括:
步骤101,用户设备根据基站发送的资源分配指示消息,确定所述基站为所述用户设备分配的资源单位数量NALLOCATE,其中所述资源单位数量NALLOCATE大于所述传输块列表支持的最大资源单位数量NMAX
步骤102,所述用户接收所述基站发送的调制编码方式MCS;
步骤103,所述用户设备根据预定义的规则确定资源单位数量Ni,其中i=1,2,……M,所述M为不小于2的整数,所述Ni满足Ni≤NMAX,所述Ni还满足:NALLOCATE=N1+N2+……+NM
步骤103,所述用户设备根据所述基站发送的所述调制编码方式MCS信息和所述资源单位数量Ni,确定所述用户设备被配置的传输块的大小。
在具体的实施过程中,可选的,所述用户设备根据所述基站发送的调制编码方式MCS信息和所述资源单位数量Ni,确定所述用户设备被配置的传输块的大小包括:
所述用户设备根据所述MCS信息和所述资源单位数量Ni确定所述资源单元数量Ni对应的临时传输块大小TBSi
所述用户设备确定传输块大小TBS,其中所述传输块大小TBS满足:
TBS=TBS1+TBS2……+TBSi……+TBSM
在具体实施步骤103的过程中,可选的,所述用户设备根据预定义规则确定资源单位数量Ni的方法可以进一步包括:
所述用户设备确定所述M;
所述用户设备根据所述M确定所述Ni
进一步可选的,所述所述用户设备确定所述M的方法可以包括:
所述用户设备根据所述NALLOCATE和所述NMAX确定所述M,其中所述M不小于NALLOCATE/NMAX向上取整的值。
进一步可选的,所述用户设备确定所述M还包括:
所述M不大于所述传输块大小列表支持的最大层数K,其中所述K为正整数。在基于LTE系统的实施过程中,K为4。
根据以上的技术方案,用户设备在基站为其分配了超过NMAX个资源单位后,仍然可以基于现有的传输块大小表格确定传输块的大小。不仅可以以较小的存储空间解决较大资源单位对应的传输块大小表格的问题,还省去了重新制定传输块大小表格的麻烦。
在另一种可选的技术方案中,所述用户设备根据预定义规则确定资源单位数量Ni包括:
所述用户设备根据所述MCS和所述资源单位数量Ni确定对应的临时传输块大小TBSi,其中所述TBSi不大于最大编码块的大小。具体的,在LTE系统中,所述最大编码块的大小具体为6144。
根据结合这一特性后本发明实施例提出的方法,不仅可以以较小的存储空间解决较大资源单位对应的传输块大小表格的问题,省去了重新制定传输块大小表格的麻烦,还可以降低分段损失,使得纷争的编码块数量少,编码增益高。
实施例2
本发明实施例提出一种确定传输块的大小的方法,可以由基站执行,以对应本发明实施例1提出的可以应用于用户设备的方法,本发明实施例提出的方法包括以下步骤:
步骤201,基站向用户设备发送资源分配指示消息,所述资源分配指示消息包括所述基站为所述用户设备分配的资源单位数量NALLOCATE,其中所述资源单位数量NALLOCATE大于所述传输块列表支持的最大资源单位数量NMAX
步骤202,所述基站还向所述用户设备发送调制编码方式MCS信息,以便于所述用户设备根据所述MCS、所述NALLOCATE和预定义的规则,确定所述用户设备被配置的传输块的大小。
在具体的实施过程中,可选的,所述基站还向所述用户设备发送调制编码方式MCS信息,以便于所述用户设备根据所述MCS、所述NALLOCATE和预定义 的规则,确定所述用户设备被配置的传输块的大小,包括:
所述用户设备根据预定义的规则,确定资源单位数量Ni,其中i=1,2……M,其中所述M为不小于2的整数,所述Ni满足Ni≤NMAX,所述Ni还满足:
NALLOCATE=N1+N2+……+NM
在具体的实施过程中,可选的,所述用户设备根据预定义的规则,确定资源单位数量Ni,包括:
所述用户设备确定所述M;所述用户设备根据所述M确定所述Ni
在具体的实施过程中,可选的,所述所述用户设备确定所述M包括:
所述用户设备根据所述NALLOCATE和所述NMAX确定所述M,其中所述M不小于NALLOCATE/NMAX向上取整的值。
在具体的实施过程中,可选的,所述所述用户设备确定所述M还包括:
所述M不大于所述传输块大小列表支持的最大层数K,其中所述K为正整数。
在具体的实施过程中,可选的,所述所述用户设备根据预定义的规则确定资源单位数量Ni包括:
所述用户设备根据所述MCS和所述资源单位数量Ni确定对应的临时传输块大小TBSi,其中所述TBSi不大于最大编码块的大小。例如在LTE系统中,所述最大编码块的大小具体为6144。
在具体的实施过程中,可选的,所述所述用户设备根据所述基站发送的调制编码方式MCS信息和所述资源单位数量NALLOCATE,确定所述用户设备被配置的传输块的大小包括:
所述用户设备根据所述MCS信息和所述资源单位数量Ni确定所述资源单元数量Ni对应的临时传输块大小TBSi
所述用户设备确定传输块大小TBS,其中所述传输块大小TBS满足:
TBS=TBS1+TBS2……+TBSi……+TBSM
根据以上的技术方案,用户设备在基站为其分配了超过NMAX个资源单位后,仍然可以基于现有的传输块大小表格确定传输块的大小。不仅可以以较小的存储空间解决较大资源单位对应的传输块大小表格的问题,还省去了重新制定传输块大小表格的麻烦。
实施例3
本发明实施例提出一种用户设备,可以用于实施本发明实施例1中提出的一种确定传输块大小的方法。该用户设备包括处理器和收发器,具体的:
所述收发器用于接收基站发送的资源分配指示消息和所述基站发送的调制编码方式MCS,其中所述资源分配指示消息指示所述基站为所述用户设备分配的资源单位数量NALLOCATE,其中所述资源单位数量NALLOCATE大于传输块列表支持的最大资源单位数量NMAX
所述处理器用于根据预定义的规则确定资源单位数量Ni,其中
i=1,2,……M,所述M为不小于2的整数,所述Ni满足Ni≤NMAX,所述Ni还满足:NALLOCATE=N1+N2+……+NM
所述处理器还用于根据所述基站发送的所述调制编码方式MCS信息和所述资源单位数量Ni,确定所述用户设备被配置的传输块的大小。
在具体的实现过程中,可选的,所述所述处理器用于根据预定义的规则,确定资源单位数量Ni,包括:
所述处理器确定所述M;
所述处理器进一步根据所述M确定所述Ni
在具体的实现过程中,可选的,所述所述处理器确定所述M包括:
所述用户设备根据所述NALLOCATE和所述NMAX确定所述M,其中所述M不小于NALLOCATE/NMAX向上取整的值。
在具体的实现过程中,可选的,所述所述处理器确定所述M还包括:
所述M不大于所述传输块大小列表支持的最大层数K,其中所述K为正整数。
在具体的实现过程中,可选的,所述所述处理器根据预定义的规则确定资源单位数量Ni包括:
所述处理器根据所述MCS和所述资源单位数量Ni确定对应的临时传输块大小TBSi,其中所述TBSi不大于最大编码块的大小。
在具体的实现过程中,可选的,在LTE系统中,所述最大编码块的大小具体为6144。
在具体的实现过程中,可选的,所述所述处理根据所述基站发送的调制编码方式MCS信息和所述资源单位数量Ni,确定所述用户设备被配置的传输块的大小包括:
所述处理器根据所述MCS信息和所述资源单位数量Ni确定所述资源单元 数量Ni对应的临时传输块大小TBSi
所述处理器确定传输块大小TBS,其中所述传输块大小TBS满足:
TBS=TBS1+TBS2……+TBSi……+TBSM
根据本发明实施例提出的用户设备,用户设备在基站为其分配了超过NMAX个资源单位后,仍然可以基于现有的传输块大小表格确定传输块的大小。不仅可以以较小的存储空间解决较大资源单位对应的传输块大小表格的问题,还省去了重新制定传输块大小表格的麻烦。
实施例4
本发明实施例提出一种基站,可以用于实施本发明实施例2中提出的一种确定传输块大小的方法。该基站包括处理器和收发器,更具体的:
所述收发器用于在所述处理器的调度下,向用户设备发送资源分配指示消息,所述资源分配指示消息包括所述处理器为所述用户设备分配的资源单位数量NALLOCATE,其中所述资源单位数量NALLOCATE大于传输块列表支持的最大资源单位数量NMAX
收发器还用于在所述处理器的调度下,向所述用户设备发送调制编码方式MCS信息,以便于所述用户设备根据所述MCS、所述NALLOCATE和预定义的规则,确定所述用户设备被配置的传输块的大小。
在具体的实现过程中,可选的,所述所述收发器还用于向所述用户设备发送调制编码方式MCS信息,以便于所述用户设备根据所述MCS、所述NALLOCATE和预定义的规则,确定所述用户设备被配置的传输块的大小,包括:
所述用户设备根据预定义的规则,确定资源单位数量Ni,其中i=1,2……M,其中所述M为不小于2的整数,所述Ni满足Ni≤NMAX,所述Ni还满足:
NALLOCATE=N1+N2+……+NM
在具体的实现过程中,可选的,所述用户设备根据预定义的规则,确定资源单位数量Ni,包括:
所述用户设备确定所述M;所述用户设备根据所述M确定所述Ni。
在具体的实现过程中,可选的,所述所述用户设备确定所述M包括:
所述用户设备根据所述NALLOCATE和所述NMAX确定所述M,其中所述M不小于NALLOCATE/NMAX向上取整的值。
在具体的实现过程中,可选的,所述所述用户设备确定所述M还包括:
所述M不大于所述传输块大小列表支持的最大层数K,其中所述K为正整数。
在具体的实现过程中,可选的,所述所述用户设备根据预定义的规则确定资源单位数量Ni包括:所述用户设备根据所述MCS和所述资源单位数量Ni确定对应的临时传输块大小TBSi,其中所述TBSi不大于最大编码块的大小。具体的,例如在LTE系统中,所述最大编码块的大小具体为6144。
在具体的实现过程中,可选的,所述所述用户设备根据所述收发器发送的调制编码方式MCS信息和所述资源单位数量NALLOCATE,确定所述用户设备被配置的传输块的大小包括:
所述用户设备根据所述MCS信息和所述资源单位数量Ni确定所述资源单元数量Ni对应的临时传输块大小TBSi
所述用户设备确定传输块大小TBS,其中所述传输块大小TBS满足:
TBS=TBS1+TBS2……+TBSi……+TBSM
根据以上的技术方案,基站为用户设备分配了超过NMAX个资源单位后,用户设备仍然可以基于现有的传输块大小表格确定传输块的大小。不仅可以以较小的存储空间解决较大资源单位对应的传输块大小表格的问题,还省去了重新制定传输块大小表格的麻烦。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:Read-Only Memory,缩写:ROM)、随机存取存储器(英文:Random Access Memory,缩写:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种确定传输块大小的方法,其中传输块大小列表支持的最大资源单位数量为NMAX,其特征在于,所述方法包括:
    用户设备根据基站发送的资源分配指示消息,确定所述基站为所述用户设备分配的资源单位数量NALLOCATE,其中所述资源单位数量NALLOCATE大于所述传输块列表支持的最大资源单位数量NMAX
    所述用户接收所述基站发送的调制编码方式MCS;
    所述用户设备根据预定义的规则确定资源单位数量Ni,其中i=1,2,……M,所述M为不小于2的整数,所述Ni满足Ni≤NMAX,所述Ni还满足:NALLOCATE=N1+N2+……+NM
    所述用户设备根据所述基站发送的所述调制编码方式MCS信息和所述资源单位数量Ni,确定所述用户设备被配置的传输块的大小。
  2. 根据权利要求1所述的方法,其特征在于,所述所述用户设备根据预定义的规则,确定资源单位数量Ni,包括:
    所述用户设备确定所述M;
    所述用户设备根据所述M确定所述Ni
  3. 根据权利要求2所述的方法,其特征在于,所述所述用户设备确定所述M包括:
    所述用户设备根据所述NALLOCATE和所述NMAX确定所述M,其中所述M不小于NALLOCATE/NMAX向上取整的值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述所述用户设备确定所述M还包括:
    所述M不大于所述传输块大小列表支持的最大层数K,其中所述K为正整数。
  5. 根据权利要求1所述的方法,其特征在于,所述所述用户设备根据预定义的规则确定资源单位数量Ni包括:
    所述用户设备根据所述MCS和所述资源单位数量Ni确定对应的临时传输 块大小TBSi,其中所述TBSi不大于最大编码块的大小。
  6. 根据权利要求5所述的方法,其特征在于,在LTE系统中,所述最大编码块的大小具体为6144。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述所述用户设备根据所述基站发送的调制编码方式MCS信息和所述资源单位数量Ni,确定所述用户设备被配置的传输块的大小包括:
    所述用户设备根据所述MCS信息和所述资源单位数量Ni确定所述资源单元数量Ni对应的临时传输块大小TBSi
    所述用户设备确定传输块大小TBS,其中所述传输块大小TBS满足:
    TBS=TBS1+TBS2……+TBSi……+TBSM
  8. 一种确定传输块大小的方法,其中传输块大小列表支持的最大资源单位数量为NMAX,其特征在于,所述方法包括:
    基站向用户设备发送资源分配指示消息,所述资源分配指示消息包括所述基站为所述用户设备分配的资源单位数量NALLOCATE,其中所述资源单位数量NALLOCATE大于所述传输块列表支持的最大资源单位数量NMAX
    所述基站还向所述用户设备发送调制编码方式MCS信息,以便于所述用户设备根据所述MCS、所述NALLOCATE和预定义的规则,确定所述用户设备被配置的传输块的大小。
  9. 根据权利要求8所述的方法,其特征在于,所述所述基站还向所述用户设备发送调制编码方式MCS信息,以便于所述用户设备根据所述MCS、所述NALLOCATE和预定义的规则,确定所述用户设备被配置的传输块的大小,包括:
    所述用户设备根据预定义的规则,确定资源单位数量Ni,其中i=1,2……M,其中所述M为不小于2的整数,所述Ni满足Ni≤NMAX,所述Ni还满足:
    NALLOCATE=N1+N2+……+NM
  10. 根据权利要求9所述的方法,其特征在于,所述用户设备根据预定 义的规则,确定资源单位数量Ni,包括:
    所述用户设备确定所述M;
    所述用户设备根据所述M确定所述Ni
  11. 根据权利要求10所述的方法,其特征在于,所述所述用户设备确定所述M包括:
    所述用户设备根据所述NALLOCATE和所述NMAX确定所述M,其中所述M不小于NALLOCATE/NMAX向上取整的值。
  12. 根据权利要求10或11所述的方法,其特征在于,所述所述用户设备确定所述M还包括:
    所述M不大于所述传输块大小列表支持的最大层数K,其中所述K为正整数。
  13. 根据权利要求8所述的方法,其特征在于,所述所述用户设备根据预定义的规则确定资源单位数量Ni包括:
    所述用户设备根据所述MCS和所述资源单位数量Ni确定对应的临时传输块大小TBSi,其中所述TBSi不大于最大编码块的大小。
  14. 根据权利要求13所述的方法,其特征在于,在LTE系统中,所述最大编码块的大小具体为6144。
  15. 根据权利要求9至14任一项所述的方法,其特征在于,所述所述用户设备根据所述基站发送的调制编码方式MCS信息和所述资源单位数量NALLOCATE,确定所述用户设备被配置的传输块的大小包括:
    所述用户设备根据所述MCS信息和所述资源单位数量Ni确定所述资源单元数量Ni对应的临时传输块大小TBSi
    所述用户设备确定传输块大小TBS,其中所述传输块大小TBS满足:
    TBS=TBS1+TBS2……+TBSi……+TBSM
  16. 一种用户设备,包括处理器和收发器,其特征在于:
    所述收发器用于接收基站发送的资源分配指示消息和所述基站发送的调制编码方式MCS,其中所述资源分配指示消息指示所述基站为所述用户设备分配的资源单位数量NALLOCATE,其中所述资源单位数量NALLOCATE大于传输块列表支持的最大资源单位数量NMAX
    所述处理器用于根据预定义的规则确定资源单位数量Ni,其中i=1,2,……M,所述M为不小于2的整数,所述Ni满足Ni≤NMAX,所述Ni还满足:NALLOCATE=N1+N2+……+NM
    所述处理器还用于根据所述基站发送的所述调制编码方式MCS信息和所述资源单位数量Ni,确定所述用户设备被配置的传输块的大小。
  17. 根据权利要求16所述的用户设备,其特征在于,所述所述处理器用于根据预定义的规则,确定资源单位数量Ni,包括:
    所述处理器确定所述M;
    所述处理器进一步根据所述M确定所述Ni
  18. 根据权利要求17所述的用户设备,其特征在于,所述所述处理器确定所述M包括:
    所述用户设备根据所述NALLOCATE和所述NMAX确定所述M,其中所述M不小于NALLOCATE/NMAX向上取整的值。
  19. 根据权利要求17或者18所述的用户设备,其特征在于,所述所述处理器确定所述M还包括:
    所述M不大于所述传输块大小列表支持的最大层数K,其中所述K为正整数。
  20. 根据权利要求16所述的用户设备,其特征在于,所述所述处理器根据预定义的规则确定资源单位数量Ni包括:
    所述处理器根据所述MCS和所述资源单位数量Ni确定对应的临时传输块大小TBSi,其中所述TBSi不大于最大编码块的大小。
  21. 根据权利要求20所述的用户设备,其特征在于,在LTE系统中, 所述最大编码块的大小具体为6144。
  22. 根据权利要求16至21任一项所述的用户设备,其特征在于,所述所述处理根据所述基站发送的调制编码方式MCS信息和所述资源单位数量Ni,确定所述用户设备被配置的传输块的大小包括:
    所述处理器根据所述MCS信息和所述资源单位数量Ni确定所述资源单元数量Ni对应的临时传输块大小TBSi
    所述处理器确定传输块大小TBS,其中所述传输块大小TBS满足:
    TBS=TBS1+TBS2……+TBSi……+TBSM
  23. 一种基站,包括处理器和收发器,其特征在于:
    所述收发器用于在所述处理器的调度下,向用户设备发送资源分配指示消息,所述资源分配指示消息包括所述处理器为所述用户设备分配的资源单位数量NALLOCATE,其中所述资源单位数量NALLOCATE大于传输块列表支持的最大资源单位数量NMAX
    收发器还用于在所述处理器的调度下,向所述用户设备发送调制编码方式MCS信息,以便于所述用户设备根据所述MCS、所述NALLOCATE和预定义的规则,确定所述用户设备被配置的传输块的大小。
  24. 根据权利要求23所述的基站,其特征在于,所述所述收发器还用于向所述用户设备发送调制编码方式MCS信息,以便于所述用户设备根据所述MCS、所述NALLOCATE和预定义的规则,确定所述用户设备被配置的传输块的大小,包括:
    所述用户设备根据预定义的规则,确定资源单位数量Ni,其中i=1,2……M,其中所述M为不小于2的整数,所述Ni满足Ni≤NMAX,所述Ni还满足:
    NALLOCATE=N1+N2+……+NM
  25. 根据权利要求24所述的基站,其特征在于,所述用户设备根据预定义的规则,确定资源单位数量Ni,包括:
    所述用户设备确定所述M;
    所述用户设备根据所述M确定所述Ni。
  26. 根据权利要求25所述的基站,其特征在于,所述所述用户设备确定所述M包括:
    所述用户设备根据所述NALLOCATE和所述NMAX确定所述M,其中所述M不小于NALLOCATE/NMAX向上取整的值。
  27. 根据权利要求25和26所述的基站,其特征在于,所述所述用户设备确定所述M还包括:
    所述M不大于所述传输块大小列表支持的最大层数K,其中所述K为正整数。
  28. 根据权利要求23所述的基站,其特征在于,所述所述用户设备根据预定义的规则确定资源单位数量Ni包括:
    所述用户设备根据所述MCS和所述资源单位数量Ni确定对应的临时传输块大小TBSi,其中所述TBSi不大于最大编码块的大小。
  29. 根据权利要求28所述的基站,其特征在于,在LTE系统中,所述最大编码块的大小具体为6144。
  30. 根据权利要求8至29任一项所述的基站,其特征在于,所述所述用户设备根据所述收发器发送的调制编码方式MCS信息和所述资源单位数量NALLOCATE,确定所述用户设备被配置的传输块的大小包括:
    所述用户设备根据所述MCS信息和所述资源单位数量Ni确定所述资源单元数量Ni对应的临时传输块大小TBSi
    所述用户设备确定传输块大小TBS,其中所述传输块大小TBS满足:
    TBS=TBS1+TBS2……+TBSi……+TBSM
PCT/CN2015/092101 2015-10-16 2015-10-16 一种确定传输块大小的方法用户设备和基站 WO2017063193A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580083875.5A CN108353285B (zh) 2015-10-16 2015-10-16 一种确定传输块大小的方法用户设备和基站
PCT/CN2015/092101 WO2017063193A1 (zh) 2015-10-16 2015-10-16 一种确定传输块大小的方法用户设备和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/092101 WO2017063193A1 (zh) 2015-10-16 2015-10-16 一种确定传输块大小的方法用户设备和基站

Publications (1)

Publication Number Publication Date
WO2017063193A1 true WO2017063193A1 (zh) 2017-04-20

Family

ID=58517015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092101 WO2017063193A1 (zh) 2015-10-16 2015-10-16 一种确定传输块大小的方法用户设备和基站

Country Status (2)

Country Link
CN (1) CN108353285B (zh)
WO (1) WO2017063193A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687936A (zh) * 2017-10-19 2019-04-26 普天信息技术有限公司 一种确定业务信道传输块大小的方法及装置
WO2019096022A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 传输数据的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199044A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 一种tbs的确定方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867440A (zh) * 2009-04-15 2010-10-20 中兴通讯股份有限公司 码块分割预处理方法
CN101911641A (zh) * 2008-01-31 2010-12-08 Lg电子株式会社 用于确定传输块大小的方法和使用其的信号传送方法
EP2624626A1 (en) * 2010-09-30 2013-08-07 Panasonic Corporation Transmission device and transmission method
CN103547340A (zh) * 2013-03-21 2014-01-29 华为终端有限公司 数据传输方法、基站及用户设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931501B (zh) * 2010-08-27 2016-06-29 中兴通讯股份有限公司 一种确定传输块大小的方法及装置
CN102684816A (zh) * 2011-03-09 2012-09-19 中兴通讯股份有限公司 一种热点小区覆盖的数据传输方法、装置及基站
CN102448122B (zh) * 2011-12-30 2017-07-14 中兴通讯股份有限公司 一种确定子帧中传输块大小的方法和基站
EP2813018B1 (en) * 2012-02-06 2018-05-02 Telefonaktiebolaget LM Ericsson (publ) User equipment, network node and methods therein for determining a transport block size in downlink transmissions in a telecommunications system
CN103378924B (zh) * 2012-04-18 2018-09-11 中兴通讯股份有限公司 传输块大小的确定方法及装置、同步方法、装置及系统
US9763246B2 (en) * 2012-06-12 2017-09-12 Qualcomm Incorporated Transport block size determination in new carrier type in LTE
CN103634851B (zh) * 2012-08-27 2016-08-31 重庆重邮信科通信技术有限公司 一种传输块大小的获取方法和装置
CN104144029B (zh) * 2013-05-09 2019-04-19 中兴通讯股份有限公司 一种确定传输块大小的方法、基站和终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101911641A (zh) * 2008-01-31 2010-12-08 Lg电子株式会社 用于确定传输块大小的方法和使用其的信号传送方法
CN101867440A (zh) * 2009-04-15 2010-10-20 中兴通讯股份有限公司 码块分割预处理方法
EP2624626A1 (en) * 2010-09-30 2013-08-07 Panasonic Corporation Transmission device and transmission method
CN103547340A (zh) * 2013-03-21 2014-01-29 华为终端有限公司 数据传输方法、基站及用户设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687936A (zh) * 2017-10-19 2019-04-26 普天信息技术有限公司 一种确定业务信道传输块大小的方法及装置
CN109687936B (zh) * 2017-10-19 2021-09-28 普天信息技术有限公司 一种确定业务信道传输块大小的方法及装置
WO2019096022A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 传输数据的方法和装置
CN109803426A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 传输数据的方法和装置
CN109803426B (zh) * 2017-11-17 2023-04-07 华为技术有限公司 传输数据的方法和装置

Also Published As

Publication number Publication date
CN108353285B (zh) 2021-02-05
CN108353285A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
US11963196B2 (en) Resource assignment for single and multiple cluster transmission
CN109803426B (zh) 传输数据的方法和装置
US8711671B2 (en) Extension of physical downlink control channel coverage
JP5113844B2 (ja) リンク適応に依存した制御シグナリング
JP5367062B2 (ja) リソース割り当てサイズに依存するトランスポートブロックサイズのシグナリング
CN106464428B (zh) 利用蜂窝通信网络中256qam的有效tbs表设计的系统和方法
US8804646B2 (en) Method and device for allocating control channel element
CN105706482B (zh) 信道状态报告方法以及用户设备
CN105144817A (zh) 用于解调参考信号选择的系统和方法
WO2013112482A1 (en) Lte enhancements for small packet transmissions
WO2018028467A1 (zh) 传输块的发送方法和装置、接收方法和装置
WO2018112700A1 (zh) 传输信息的方法、网络设备和终端设备
CN107733560B (zh) 数据分割方法、装置及终端
WO2017063193A1 (zh) 一种确定传输块大小的方法用户设备和基站
WO2018145303A1 (zh) 一种通信方法及设备
CN111010254A (zh) 一种通信、mcs的接收、通知方法及设备
WO2019052370A1 (zh) 用于进行数据传输的方法和装置
WO2020029007A1 (zh) 信息发送和接收方法、用户设备和基站
CN116548044A (zh) 传输方法和装置
CN114258650A (zh) 用于在无线通信系统中管理软缓存的装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906076

Country of ref document: EP

Kind code of ref document: A1