WO2017061637A1 - Wearable device and method for measuring user's physical activity - Google Patents

Wearable device and method for measuring user's physical activity Download PDF

Info

Publication number
WO2017061637A1
WO2017061637A1 PCT/KR2015/010528 KR2015010528W WO2017061637A1 WO 2017061637 A1 WO2017061637 A1 WO 2017061637A1 KR 2015010528 W KR2015010528 W KR 2015010528W WO 2017061637 A1 WO2017061637 A1 WO 2017061637A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
acceleration data
axis direction
amount
activity
Prior art date
Application number
PCT/KR2015/010528
Other languages
French (fr)
Korean (ko)
Inventor
이성호
이종성
Original Assignee
주식회사 스탠딩에그
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스탠딩에그 filed Critical 주식회사 스탠딩에그
Priority to PCT/KR2015/010528 priority Critical patent/WO2017061637A1/en
Priority to CN201580007454.4A priority patent/CN106068443A/en
Publication of WO2017061637A1 publication Critical patent/WO2017061637A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning

Definitions

  • the present invention relates to a wearable device and a user activity measuring method.
  • a wearable device represents a computer system provided in a form that can be worn on a user's body.
  • the wearable device may measure an amount of activity of the user using various sensors and provide the measurement result to the user.
  • the wearable device may automatically classify the user's activity into sitting, walking, and running according to the intensity of the movement.
  • the wearable device may monitor the amount of activity of the user at a specific cycle to provide additional information such as calorie consumption and activity time.
  • the technical problem of the present invention is to provide a wearable device capable of measuring the amount of activity of a user using only an acceleration sensor and a method of measuring the amount of activity of a user.
  • Another technical problem of the present invention is to provide a wearable device and a user's activity measuring method which can improve the measurement accuracy in measuring the user's activity using only the acceleration sensor.
  • a wearable device may be worn on a user's body, and includes at least one acceleration sensor and acceleration data in three axes detected by the at least one acceleration sensor.
  • the controller may further include a controller configured to measure an amount of activity of the user associated with the step, wherein the controller determines a wearing state of the user by comparing the change amount of the acceleration data in the first axis direction with the change amount of the acceleration data in the second axis direction. In the first wearing state, the amount of activity of the user is measured using a first algorithm, and in the second wearing state, the amount of activity of the user is measured using a second algorithm.
  • control unit may include the change amount of the acceleration data in the first axial direction and the second except for the acceleration data in the third axial direction perpendicular to the ground among the acceleration data in the three axis direction.
  • the wearing state may be determined by comparing the amount of change of the acceleration data in the axial direction.
  • the first wearing state may be a state in which the wearable device is worn on the arm or leg of the user
  • the second wearing state may be a state in which the wearable device is worn on the body of the user. have.
  • control unit measures the amount of activity of the user using the acceleration data in the three-axis direction passing through the high pass filter in the first wearing state, and low pass in the second wearing state.
  • the amount of activity of the user may be measured using the acceleration data in the three-axis direction passing through the filter.
  • a wearable device may be worn on a user's body, and includes at least one acceleration sensor and acceleration data in three axes detected by the at least one acceleration sensor.
  • the controller may further include a controller configured to measure an amount of activity of a user associated with a step, wherein the controller determines an operation mode by comparing a change amount of acceleration data in a first axis direction with a change amount of acceleration data in a second axis direction. In the first mode, the amount of activity of the user is measured using the acceleration data in the three-axis direction passing through the first filter, and in the second mode, the user is measured using the acceleration data in the three-axis direction passing through the second filter. Measure your activity.
  • a method of measuring an activity amount of a user comprising: receiving acceleration data in a 3-axis direction detected by at least one acceleration sensor; Determining a user's wearing state by comparing the change amount of the acceleration data in the first axis direction and the change amount of the acceleration data in the second axis direction among the acceleration data in the 3-axis direction, and the detected acceleration data in the 3-axis direction.
  • the determining of the wearing state may include the acceleration data in the first axial direction except for the acceleration data in the third axial direction perpendicular to the ground, among the acceleration data in the three axial directions.
  • the wearing state may be determined by comparing the change amount and the change amount of the acceleration data in the second axial direction.
  • the first wearing state may be a state in which the wearable device is worn on the arm or leg of the user
  • the second wearing state may be a state in which the wearable device is worn on the body of the user. have.
  • the measuring of the amount of activity of the user may include: measuring the amount of activity of the user using the acceleration data in the three-axis direction passing through the high pass filter in the first wearing state; In the second wearing state, the amount of activity of the user may be measured using the acceleration data in the three-axis direction passing through the low pass filter.
  • a method of measuring activity of a user comprising: receiving acceleration data in three axis directions detected by at least one acceleration sensor, Determining an operation mode by comparing the change amount of the acceleration data in the first axis direction with the change amount of the acceleration data in the second axis direction among the acceleration data in the three axis direction, and using the detected acceleration data in the three axis direction
  • the method may include measuring an amount of activity of a user associated with a step, wherein measuring the amount of activity of the user comprises: in the first mode, the amount of activity of the user using acceleration data in the three-axis direction passing through a first filter. In the second mode, the user's bow is measured using the acceleration data in the three-axis direction passing through the second filter. Measure the amount.
  • the power consumption of the wearable device can be reduced, and the production price of the wearable device can be reduced.
  • the present invention by comparing the amount of change of the acceleration data in the two axial direction to determine the user's wearing state, and measuring the user's activity using a different algorithm according to the wearing state, the user using only the acceleration sensor Can accurately measure activity.
  • FIG. 1 is a block diagram schematically illustrating a configuration of a wearable device according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a state in which a wearable device according to an embodiment of the present invention is worn on a user's body.
  • FIG. 3 is a flowchart schematically illustrating a method of measuring activity of a user according to an embodiment of the present invention.
  • FIG. 4 is a flowchart schematically illustrating a configuration of a step of determining a wearing state of the user of FIG. 3.
  • FIG. 5 is a diagram schematically illustrating a result of comparing changes in acceleration data in two axial directions passing through a high pass filter in a first wearing state.
  • FIG. 6 is a diagram schematically illustrating a result of comparing changes in acceleration data in two axial directions passing through a high pass filter in a second wearing state.
  • FIG. 7 is a view schematically showing a result of comparing changes in acceleration data in two axial directions passing through a low pass filter in a first wearing state.
  • FIG. 8 is a view schematically showing a result of comparing changes of acceleration data in two axial directions passing through a low pass filter in a second wearing state.
  • FIG. 9 is a diagram schematically showing acceleration data in the three-axis direction passing through the high pass filter in the first wearing state.
  • FIG. 10 is a view schematically showing acceleration data in the 3-axis direction passing through the high pass filter in the second wearing state.
  • FIG. 11 is a view schematically showing acceleration data in the three axis direction passing through the low pass filter in the first wearing state.
  • FIG. 12 is a diagram schematically showing acceleration data in the 3-axis direction passing through the low pass filter in the second wearing state.
  • FIG. 13 is a block diagram schematically illustrating a configuration of a wearable device according to another exemplary embodiment of the present invention.
  • FIG. 14 is a block diagram schematically illustrating a configuration of a wearable device according to still another embodiment of the present invention.
  • FIG. 15 is a diagram schematically illustrating a case in which movement of a specific body part on which a wearable device is worn according to an embodiment of the present invention is limited.
  • FIG. 1 is a block diagram schematically illustrating a configuration of a wearable device according to an embodiment of the present invention.
  • the wearable device 100 may include an acceleration sensor 110, a storage 120, an input 130, an output 140, a controller 150, and a power supply. 160.
  • the acceleration sensor 110 detects acceleration in three axis directions (for example, X axis, Y axis, and Z axis). Although only one acceleration sensor is illustrated in FIG. 1, the present invention is not limited thereto, and a plurality of acceleration sensors capable of detecting acceleration in one axial direction may be provided.
  • the acceleration sensor 110 may transmit acceleration data in three axis directions to the controller 150.
  • the storage unit 120 stores various data and commands.
  • the storage unit 120 may store various software modules including system software for operating the wearable device 100 and an application for performing a method for measuring an activity amount of a user according to an embodiment of the present invention.
  • the storage unit 120 may be a random access memory (RAM), read only memory (ROM), erasable-programmable ROM (EPROM), electrically EPROM (EEPROM), flash memory, a removable disk, or well known in the art. Any type of computer readable recording medium may be included.
  • the input unit 130 receives various information from the user.
  • the input unit 130 may include various input means such as keys, buttons, switches, wheels, and touch pads.
  • the output unit 140 notifies the user of various information.
  • the output unit 140 may output information in the form of text, video or audio.
  • the output unit 140 may include a display module 141 and a speaker module 142.
  • the display module 141 is a liquid crystal display (LCD), a thin film transistor (TFT) LCD, an organic light emitting diode (OLED), a flexible display, a three-dimensional display, an electronic ink display, or a technique well known in the art. It may be provided in any form.
  • the controller 150 controls other components to control the overall operation of the wearable device 100.
  • the controller 150 may perform various software modules including system software for operating the wearable device 100 and an application for performing a method for measuring an activity amount of a user according to an embodiment of the present invention.
  • the controller 150 may measure the amount of activity of the user associated with the step, such as the number of steps, moving distance, calorie consumption, and activity time, using the acceleration data in the three axis direction transmitted from the acceleration sensor 110.
  • the controller 150 may include a high pass filter 151 and a low pass filter 152 to filter the acceleration data in the 3-axis direction transmitted from the acceleration sensor 110.
  • the controller 150 may optionally measure the amount of activity of the user using the acceleration data in the three-axis direction that passed through the high pass filter 151, or the acceleration data in the three-axis direction that passed through the low pass filter 152. Can measure the amount of activity of the user.
  • the high pass filter 151 and the low pass filter 152 may be provided as independent components outside the controller 150 or may be provided as internal components of the acceleration sensor 110.
  • the power supply unit 160 supplies power required for the operation of the acceleration sensor 110, the storage unit 120, the input unit 130, the output unit 140, and the control unit 150.
  • the power supply unit 160 may include a built-in battery or convert power supplied from the outside into a power suitable for the above components.
  • the wearable device 100 may be modified to include more components or fewer components.
  • FIG. 2 is a diagram schematically illustrating a state in which a wearable device according to an embodiment of the present invention is worn on a user's body.
  • the wearable device 100 may be worn on a user's body.
  • the wearable device 100 may be worn on an extremity such as an arm or a leg of a user, or may be worn on a user's torso, but the present invention is not limited thereto and other parts (head, hand, foot, etc.). It may be worn on at least a portion of the body of the user including.
  • the wearable device 100 may be provided inside any item (hat, gloves, shoes, etc.) worn on the user's body.
  • the pattern of change in acceleration data that appears when a user wears and wears the wearable device 100 on an extremity such as an arm or a leg (that is, a body part with relatively large movement) and the user wears the wearable device 100 ie, The patterns of change in acceleration data that appear when worn and operated on body parts with relatively small movements will be different. Therefore, in order to improve the accuracy of measuring the activity of the user, a method capable of measuring the activity of the user using different algorithms according to the user's wearing state is required. Information regarding the wearing state may be input from the user, but this may hinder user convenience.
  • the controller 150 determines the wearing state of the user by comparing the amount of change of acceleration data in two axial directions according to a method of measuring the amount of activity of the user according to an embodiment of the present invention, and the wearing state of the user. According to different algorithms, the user's activity can be measured.
  • FIG. 3 is a flowchart schematically illustrating a method of measuring activity of a user according to an embodiment of the present invention.
  • the controller 150 receives acceleration data in the three axis direction detected by the at least one acceleration sensor 110.
  • the received acceleration data in the 3-axis direction may be acceleration data in the 3-axis direction passed through the high pass filter 151 or the low pass filter 152.
  • the acceleration data in the three axis direction may be collected at a predetermined unit time (for example, 500 msec).
  • step S420 the controller 150 determines a wearing state of the user by comparing the change amounts of the acceleration data in two axial directions among the acceleration data in three axial directions. Specifically, referring to FIG. 4, in step S421, the controller 150 compares the change amount of the acceleration data in the first axis direction with the change amount of the acceleration data in the second axis direction among the acceleration data in the three axis direction. At this time, the controller 150 may use the remaining acceleration data in the first and second axis directions except the acceleration data in the third axis direction perpendicular to the ground among the acceleration data in the three axis directions as the acceleration data for comparing the change amounts. Can be.
  • step S422 the controller 150 determines whether the ratio of the change amount of the acceleration data in the two axial directions is greater than or equal to the reference value.
  • the reference value may be provided differently depending on whether the acceleration data passed through the high pass filter 151 or the acceleration data passed through the low pass filter 152.
  • step S423 the controller 150 determines the user's wearing state as the first wearing state if the ratio is greater than or equal to the reference value, and determines the user's wearing state as the second wearing state if the ratio is less than the reference value.
  • the first wearing state may represent a state in which the wearable device 100 is worn on an extremity such as an arm or a leg of the user
  • the second wearing state may represent a state in which the wearable device 100 is worn on the torso of a user.
  • the controller 150 controls the acceleration data in the third axis direction in which the acceleration data having the largest absolute value among the acceleration data in the three axis direction is perpendicular to the ground. It can be estimated as In order to estimate the vertical axis, the controller 150 may use acceleration data in the three-axis direction passing through the low pass filter 152. Since the wearing position of the user's wearable device 100 may be changed, the controller 150 may perform a low frequency (even while applying the high pass filter 151) at a predetermined unit time (for example, 1 sec or more). By applying the pass filter 152, it is possible to check the acceleration data in the three-axis direction passing through.
  • FIG. 5 is a view schematically showing a result of comparing changes in acceleration data in two axial directions in a first wearing state
  • FIG. 6 is a result of comparing changes in acceleration data in two axial directions in a second wearing state
  • FIG. 7 is a view schematically showing a result of comparing the change amounts of two axial acceleration data passing through the low pass filter in the first wearing state
  • FIG. 8 is a view showing two passing through the low pass filter in the second wearing state. It is a figure which shows schematically the result of having compared the change amount of acceleration data of two axial directions. 5 to 8 assume that the Y axis is a vertical axis.
  • the controller 150 measures the amount of activity of the user using different algorithms according to the user's wearing state.
  • the controller 150 may measure the amount of activity of the user using the first algorithm in the first wearing state, and may measure the amount of activity of the user using the second algorithm in the second wearing state.
  • the controller 150 may measure the amount of activity of the user using the acceleration data in the three-axis direction passing through the high pass filter 151 according to the first algorithm.
  • the controller 150 may measure the amount of activity of the user by using the acceleration data in the 3-axis direction passing through the low pass filter 152.
  • FIG. 9 is a view schematically showing acceleration data in the 3-axis direction passing through the high pass filter in the first wearing state
  • FIG. 10 is a schematic view of acceleration data in the 3-axis direction passing through the high pass filter in the second wearing state. It is a figure shown.
  • FIG. 11 is a view schematically showing acceleration data in the 3-axis direction passing through the low pass filter in the first wearing state
  • FIG. 12 is a schematic view of acceleration data in the 3-axis direction passing through the low pass filter in the second wearing state. It is a figure shown.
  • the high pass filter may be applied
  • the low pass filter may be applied to measure the amount of activity of the user, thereby increasing the accuracy of the measurement.
  • FIG. 13 is a block diagram schematically illustrating a configuration of a wearable device according to another exemplary embodiment of the present invention. For convenience of description, duplicate descriptions of components that are the same as the wearable device 100 described with reference to FIG. 1 will be omitted.
  • the wearable device 200 according to another embodiment of the present invention further includes a wireless communication unit 230 and a vibrator 260 as compared with the wearable device 100 described with reference to FIG. 1. do.
  • the wireless communication unit 230 may wirelessly communicate with an external device (such as a server or a user device).
  • the wireless communication unit 230 may wirelessly communicate with an external device by using a wireless communication method such as mobile communication, WiBro, Wi-Fi, Bluetooth, Zigbee, ultrasonic wave, infrared ray, or RF (Radio Frequency). have.
  • the wireless communication unit 230 may transmit data and / or information received from the external device to the controller 270, and may transmit data and / or information transmitted from the controller 270 to the external device.
  • the wireless communication unit 230 may include a mobile communication module, a short-range communication module and the like.
  • the vibrator 260 may perform a vibration notification for notifying the user of various kinds of information.
  • the controller 270 may perform the method for measuring the amount of activity of the user described with reference to FIGS. 3 to 4.
  • the wearable device 200 may transmit / receive information regarding an activity amount of a user with various servers or user devices (not shown).
  • FIG. 14 is a block diagram schematically illustrating a configuration of a wearable device according to still another embodiment of the present invention. For convenience of description, duplicate descriptions of components that are the same as the wearable device described with reference to FIG. 13 will be omitted.
  • the wearable device 300 according to another embodiment of the present invention further includes a gyro sensor 320 as compared to the wearable device 200 described with reference to FIG. 13.
  • the gyro sensor 320 detects the angular velocity in three axis directions (for example, a pitch axis, a yaw axis, and a roll axis). Although only one gyro sensor is illustrated in FIG. 14, the present invention is not limited thereto, and a plurality of gyro sensors capable of detecting angular velocity in one axial direction may be provided.
  • the gyro sensor 320 may transmit angular velocity data in three axes to the controller 380.
  • the controller 380 may perform the method for measuring the amount of activity of the user described with reference to FIGS. 3 to 4.
  • the wearable device 300 may measure the amount of activity of the user using not only the acceleration data in the three axis direction detected by the acceleration sensor 310 but also the angular velocity data detected in the three axis direction detected by the gyro sensor 320.
  • the wearable device 300 is detected by the acceleration sensor 310 according to the user's activity measuring method described with reference to FIGS. 3 to 4.
  • the power consumption can be reduced by measuring the amount of activity of the user using only the three-axis acceleration data.
  • the wearable device according to the embodiment of the present invention may be provided as any computer system wearable on the body of the user, which is not illustrated.
  • the user's activity measuring method even if the user wears the wearable device (100 ⁇ 300) on a specific body part, for example, the arm is fixed or the movement of the arm is limited Even special cases such as the case may be applied in a substantially identical manner.
  • 15 illustrates an example in which movement of a specific body part on which the wearable devices 100 to 300 are worn is restricted. Although FIG. 15 illustrates a case in which a baby carriage is being pushed, there may be a case where a hand is held in a pocket, a predetermined baggage is used, or a walking aid is used.
  • the wearable device 100 compares the change amount of the acceleration data in two axial directions to determine the operation mode, and the first mode (ie, a specific body part).
  • the first mode ie, a specific body part
  • the user's activity is measured by using the acceleration data in the three-axis direction passing through the high pass filter
  • the second mode that is, the mode where the movement of a specific body part is relatively small
  • the amount of activity of the user may be measured using the acceleration data in the 3-axis direction passing through the pass filter.
  • the method described in connection with an embodiment of the present invention may be implemented as a software module performed by a processor.
  • the software module may reside in RAM, ROM, EPROM, EEPROM, flash memory, hard disk, removable disk, CD-ROM, or any form of computer readable recording medium well known in the art. .

Abstract

Provided are a wearable device and a method for measuring a user's physical activity. The wearable device, which is a device wearable on a user's body, comprises: at least one acceleration sensor; and a control unit for measuring a user's physical activity related to walking by using acceleration data in a three-axis direction, the data being detected by the at least one acceleration sensor, wherein the control unit compares a variation amount of acceleration data in a first-axis direction with a variation amount of acceleration data in a second-axis direction so as to determine a user's wearing-state, measures the user's physical activity by using a first algorithm in a first wearing-state, and measures the user's physical activity by using a second algorithm in a second wearing-state.

Description

웨어러블 장치 및 사용자의 활동량 측정 방법How to measure activity of wearable devices and users
본 발명은 웨어러블 장치 및 사용자의 활동량 측정 방법에 관한 것이다.The present invention relates to a wearable device and a user activity measuring method.
웨어러블 장치는 사용자의 신체에 착용될 수 있는 형태로 제공되는 컴퓨터 시스템을 나타낸다. 웨어러블 장치는 각종 센서를 이용하여 사용자의 활동량을 측정하고, 측정 결과를 사용자에게 제공할 수 있다. 웨어러블 장치는 사용자의 활동을 움직임의 강도에 따라 앉아있기, 걷기, 뛰기 등으로 자동적으로 구분할 수 있다. 웨어러블 장치는 사용자의 활동량을 특정 주기로 모니터링하여, 칼로리 소모량, 활동 시간 등의 부가적인 정보도 제공할 수 있다.A wearable device represents a computer system provided in a form that can be worn on a user's body. The wearable device may measure an amount of activity of the user using various sensors and provide the measurement result to the user. The wearable device may automatically classify the user's activity into sitting, walking, and running according to the intensity of the movement. The wearable device may monitor the amount of activity of the user at a specific cycle to provide additional information such as calorie consumption and activity time.
본 발명의 기술적 과제는, 가속도 센서만을 이용하여 사용자의 활동량을 측정할 수 있는 웨어러블 장치 및 사용자의 활동량 측정 방법을 제공하는 것이다.The technical problem of the present invention is to provide a wearable device capable of measuring the amount of activity of a user using only an acceleration sensor and a method of measuring the amount of activity of a user.
본 발명의 다른 기술적 과제는, 가속도 센서만을 이용하여 사용자의 활동량을 측정함에 있어서, 측정 정확도를 향상시킬 수 있는 웨어러블 장치 및 사용자의 활동량 측정 방법을 제공하는 것이다.Another technical problem of the present invention is to provide a wearable device and a user's activity measuring method which can improve the measurement accuracy in measuring the user's activity using only the acceleration sensor.
본 발명의 기술적 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The technical problems of the present invention are not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 기술적 과제를 해결하기 위한 본 발명의 일 면에 따른 웨어러블 장치는, 사용자의 신체에 착용 가능한 장치로서, 적어도 하나의 가속도 센서, 및 상기 적어도 하나의 가속도 센서에 의해 검출된 3축 방향의 가속도 데이터를 이용하여, 걸음과 관련된 사용자의 활동량을 측정하는 제어부를 포함하되, 상기 제어부는, 제1 축 방향의 가속도 데이터의 변화량과 제2 축 방향의 가속도 데이터의 변화량을 비교하여 사용자의 착용 상태를 결정하고, 제1 착용 상태에서는 제1 알고리즘을 이용하여 상기 사용자의 활동량을 측정하고, 제2 착용 상태에서는 제2 알고리즘을 이용하여 상기 사용자의 활동량을 측정한다.According to an aspect of the present invention, a wearable device may be worn on a user's body, and includes at least one acceleration sensor and acceleration data in three axes detected by the at least one acceleration sensor. The controller may further include a controller configured to measure an amount of activity of the user associated with the step, wherein the controller determines a wearing state of the user by comparing the change amount of the acceleration data in the first axis direction with the change amount of the acceleration data in the second axis direction. In the first wearing state, the amount of activity of the user is measured using a first algorithm, and in the second wearing state, the amount of activity of the user is measured using a second algorithm.
본 발명의 일부 실시예에서, 상기 제어부는, 상기 3축 방향의 가속도 데이터 중, 지면에 수직하는 제3 축 방향의 가속도 데이터를 제외하고, 상기 제1 축 방향의 가속도 데이터의 변화량과 상기 제2 축 방향의 가속도 데이터의 변화량을 비교하여 상기 착용 상태를 결정할 수 있다.In some embodiments of the present disclosure, the control unit may include the change amount of the acceleration data in the first axial direction and the second except for the acceleration data in the third axial direction perpendicular to the ground among the acceleration data in the three axis direction. The wearing state may be determined by comparing the amount of change of the acceleration data in the axial direction.
본 발명의 일부 실시예에서, 상기 제1 착용 상태는 상기 웨어러블 장치가 상기 사용자의 팔 또는 다리에 착용된 상태이고, 상기 제2 착용 상태는 상기 웨어러블 장치가 상기 사용자의 몸통에 착용된 상태일 수 있다.In some embodiments of the present disclosure, the first wearing state may be a state in which the wearable device is worn on the arm or leg of the user, and the second wearing state may be a state in which the wearable device is worn on the body of the user. have.
본 발명의 일부 실시예에서, 상기 제어부는, 상기 제1 착용 상태에서는 고역통과필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정하고, 상기 제2 착용 상태에서는 저역통과필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정할 수 있다.In some embodiments of the present disclosure, the control unit measures the amount of activity of the user using the acceleration data in the three-axis direction passing through the high pass filter in the first wearing state, and low pass in the second wearing state. The amount of activity of the user may be measured using the acceleration data in the three-axis direction passing through the filter.
상기 기술적 과제를 해결하기 위한 본 발명의 다른 면에 따른 웨어러블 장치는, 사용자의 신체에 착용 가능한 장치로서, 적어도 하나의 가속도 센서, 및 상기 적어도 하나의 가속도 센서에 의해 검출된 3축 방향의 가속도 데이터를 이용하여, 걸음과 관련된 사용자의 활동량을 측정하는 제어부를 포함하되, 상기 제어부는, 제1 축 방향의 가속도 데이터의 변화량과 제2 축 방향의 가속도 데이터의 변화량을 비교하여 동작 모드를 결정하고, 제1 모드에서는 제1 필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정하고, 제2 모드에서는 제2 필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정한다.According to another aspect of the present invention, a wearable device may be worn on a user's body, and includes at least one acceleration sensor and acceleration data in three axes detected by the at least one acceleration sensor. The controller may further include a controller configured to measure an amount of activity of a user associated with a step, wherein the controller determines an operation mode by comparing a change amount of acceleration data in a first axis direction with a change amount of acceleration data in a second axis direction. In the first mode, the amount of activity of the user is measured using the acceleration data in the three-axis direction passing through the first filter, and in the second mode, the user is measured using the acceleration data in the three-axis direction passing through the second filter. Measure your activity.
상기 기술적 과제를 해결하기 위한 본 발명의 일면에 따른 사용자의 활동량 측정 방법은, 컴퓨터 시스템에 의해 수행되는 방법으로서, 적어도 하나의 가속도 센서에 의해 검출된 3축 방향의 가속도 데이터를 수신하는 단계, 상기 3축 방향의 가속도 데이터 중, 제1 축 방향의 가속도 데이터의 변화량과 제2 축 방향의 가속도 데이터의 변화량을 비교하여 사용자의 착용 상태를 결정하는 단계, 및 상기 검출된 3축 방향의 가속도 데이터를 이용하여, 걸음과 관련된 사용자의 활동량을 측정하는 단계를 포함하되, 상기 사용자의 활동량을 측정하는 단계는, 제1 착용 상태에서는 제1 알고리즘을 이용하여 상기 사용자의 활동량을 측정하고, 제2 착용 상태에서는 제2 알고리즘을 이용하여 상기 사용자의 활동량을 측정한다.According to an aspect of the present invention, there is provided a method of measuring an activity amount of a user, the method being performed by a computer system, the method comprising: receiving acceleration data in a 3-axis direction detected by at least one acceleration sensor; Determining a user's wearing state by comparing the change amount of the acceleration data in the first axis direction and the change amount of the acceleration data in the second axis direction among the acceleration data in the 3-axis direction, and the detected acceleration data in the 3-axis direction. By using, the step of measuring the activity of the user associated with the step, wherein the step of measuring the activity of the user, in the first wearing state to measure the activity of the user using a first algorithm, the second wearing state In the step of measuring the activity of the user using a second algorithm.
본 발명의 일부 실시예에서, 상기 착용 상태를 결정하는 단계는, 상기 3축 방향의 가속도 데이터 중, 지면에 수직하는 제3 축 방향의 가속도 데이터를 제외하고, 상기 제1 축 방향의 가속도 데이터의 변화량과 상기 제2 축 방향의 가속도 데이터의 변화량을 비교하여 상기 착용 상태를 결정할 수 있다.In some embodiments of the present disclosure, the determining of the wearing state may include the acceleration data in the first axial direction except for the acceleration data in the third axial direction perpendicular to the ground, among the acceleration data in the three axial directions. The wearing state may be determined by comparing the change amount and the change amount of the acceleration data in the second axial direction.
본 발명의 일부 실시예에서, 상기 제1 착용 상태는 상기 웨어러블 장치가 상기 사용자의 팔 또는 다리에 착용된 상태이고, 상기 제2 착용 상태는 상기 웨어러블 장치가 상기 사용자의 몸통에 착용된 상태일 수 있다.In some embodiments of the present disclosure, the first wearing state may be a state in which the wearable device is worn on the arm or leg of the user, and the second wearing state may be a state in which the wearable device is worn on the body of the user. have.
본 발명의 일부 실시예에서, 상기 사용자의 활동량을 측정하는 단계는, 상기 제1 착용 상태에서는 고역통과필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정하고, 상기 제2 착용 상태에서는 저역통과필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정할 수 있다.In some embodiments of the present disclosure, the measuring of the amount of activity of the user may include: measuring the amount of activity of the user using the acceleration data in the three-axis direction passing through the high pass filter in the first wearing state; In the second wearing state, the amount of activity of the user may be measured using the acceleration data in the three-axis direction passing through the low pass filter.
상기 기술적 과제를 해결하기 위한 본 발명의 다른 면에 따른 사용자의 활동량 측정 방법은, 컴퓨터 시스템에 의해 수행되는 방법으로서, 적어도 하나의 가속도 센서에 의해 검출된 3축 방향의 가속도 데이터를 수신하는 단계, 상기 3축 방향의 가속도 데이터 중, 제1 축 방향의 가속도 데이터의 변화량과 제2 축 방향의 가속도 데이터의 변화량을 비교하여 동작 모드를 결정하는 단계, 및 상기 검출된 3축 방향의 가속도 데이터를 이용하여, 걸음과 관련된 사용자의 활동량을 측정하는 단계를 포함하되, 상기 사용자의 활동량을 측정하는 단계는, 제1 모드에서는 제1 필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정하고, 제2 모드에서는 제2 필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정한다.According to another aspect of the present invention, there is provided a method of measuring activity of a user, the method being performed by a computer system, the method comprising: receiving acceleration data in three axis directions detected by at least one acceleration sensor, Determining an operation mode by comparing the change amount of the acceleration data in the first axis direction with the change amount of the acceleration data in the second axis direction among the acceleration data in the three axis direction, and using the detected acceleration data in the three axis direction The method may include measuring an amount of activity of a user associated with a step, wherein measuring the amount of activity of the user comprises: in the first mode, the amount of activity of the user using acceleration data in the three-axis direction passing through a first filter. In the second mode, the user's bow is measured using the acceleration data in the three-axis direction passing through the second filter. Measure the amount.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Other specific details of the invention are included in the detailed description and drawings.
본 발명에 의하면, 가속도 센서만을 이용하여 사용자의 활동량을 측정함으로써, 웨어러블 장치의 소비 전력을 감소시킬 수 있으며, 웨어러블 장치의 생산 가격을 하락시킬 수 있다.According to the present invention, by measuring the activity of the user using only the acceleration sensor, the power consumption of the wearable device can be reduced, and the production price of the wearable device can be reduced.
또한, 본 발명에 의하면, 두 개의 축 방향의 가속도 데이터의 변화량을 비교하여 사용자의 착용 상태를 결정하고, 착용 상태에 따라 서로 다른 알고리즘을 이용하여 사용자의 활동량을 측정하므로, 가속도 센서만을 이용하면서도 사용자의 활동량을 정확하게 측정할 수 있다.In addition, according to the present invention, by comparing the amount of change of the acceleration data in the two axial direction to determine the user's wearing state, and measuring the user's activity using a different algorithm according to the wearing state, the user using only the acceleration sensor Can accurately measure activity.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.Effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명의 일 실시예에 따른 웨어러블 장치의 구성을 개략적으로 도시하는 블록도이다.1 is a block diagram schematically illustrating a configuration of a wearable device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 웨어러블 장치가 사용자의 신체에 착용된 상태를 개략적으로 도시하는 도면이다.2 is a diagram schematically illustrating a state in which a wearable device according to an embodiment of the present invention is worn on a user's body.
도3은 본 발명의 실시예에 따른 사용자의 활동량 측정 방법을 개략적으로 도시하는 흐름도이다. 3 is a flowchart schematically illustrating a method of measuring activity of a user according to an embodiment of the present invention.
도 4는 도 3의 사용자의 착용 상태를 결정하는 단계의 구성을 개략적으로 도시하는 흐름도이다.4 is a flowchart schematically illustrating a configuration of a step of determining a wearing state of the user of FIG. 3.
도 5는 제1 착용 상태에서 고역통과필터를 통과한 두 개의 축 방향의 가속도 데이터의 변화량을 비교한 결과를 개략적으로 도시하는 도면이다.FIG. 5 is a diagram schematically illustrating a result of comparing changes in acceleration data in two axial directions passing through a high pass filter in a first wearing state. FIG.
도 6은 제2 착용 상태에서 고역통과필터를 통과한 두 개의 축 방향의 가속도 데이터의 변화량을 비교한 결과를 개략적으로 도시하는 도면이다.FIG. 6 is a diagram schematically illustrating a result of comparing changes in acceleration data in two axial directions passing through a high pass filter in a second wearing state.
도 7은 제1 착용 상태에서 저역통과필터를 통과한 두 개의 축 방향의 가속도 데이터의 변화량을 비교한 결과를 개략적으로 도시하는 도면이다.FIG. 7 is a view schematically showing a result of comparing changes in acceleration data in two axial directions passing through a low pass filter in a first wearing state.
도 8은 제2 착용 상태에서 저역통과필터를 통과한 두 개의 축 방향의 가속도 데이터의 변화량을 비교한 결과를 개략적으로 도시하는 도면이다.FIG. 8 is a view schematically showing a result of comparing changes of acceleration data in two axial directions passing through a low pass filter in a second wearing state.
도9는 제1 착용 상태에서 고역통과필터를 통과한 3축 방향의 가속도 데이터를 개략적으로 도시하는 도면이다.FIG. 9 is a diagram schematically showing acceleration data in the three-axis direction passing through the high pass filter in the first wearing state. FIG.
도 10은 제2 착용 상태에서 고역통과필터를 통과한 3축 방향의 가속도 데이터를 개략적으로 도시하는 도면이다.FIG. 10 is a view schematically showing acceleration data in the 3-axis direction passing through the high pass filter in the second wearing state. FIG.
도 11은 제1 착용 상태에서 저역통과필터를 통과한 3축 방향의 가속도 데이터를 개략적으로 도시하는 도면이다.FIG. 11 is a view schematically showing acceleration data in the three axis direction passing through the low pass filter in the first wearing state. FIG.
도 12는 제2 착용 상태에서 저역통과필터를 통과한 3축 방향의 가속도 데이터를 개략적으로 도시하는 도면이다.12 is a diagram schematically showing acceleration data in the 3-axis direction passing through the low pass filter in the second wearing state.
도 13은 본 발명의 다른 실시예에 따른 웨어러블 장치의 구성을 개략적으로 도시하는 블록도이다.13 is a block diagram schematically illustrating a configuration of a wearable device according to another exemplary embodiment of the present invention.
도 14는 본 발명의 또 다른 실시예에 따른 웨어러블 장치의 구성을 개략적으로 도시하는 블록도이다.14 is a block diagram schematically illustrating a configuration of a wearable device according to still another embodiment of the present invention.
도 15는 본 발명의 실시예에 따른 웨어러블 장치가 착용된 특정 신체 부위의 움직임이 제한되는 경우를 개략적으로 도시하는 도면이다.FIG. 15 is a diagram schematically illustrating a case in which movement of a specific body part on which a wearable device is worn according to an embodiment of the present invention is limited.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be embodied in various different forms, and the present embodiments merely make the disclosure of the present invention complete, and are common in the art to which the present invention pertains. It is provided to fully inform those skilled in the art of the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used in a sense that can be commonly understood by those skilled in the art. In addition, terms that are defined in a commonly used dictionary are not ideally or excessively interpreted unless they are specifically defined clearly.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, "comprises" and / or "comprising" does not exclude the presence or addition of one or more other components in addition to the mentioned components.
도 1은 본 발명의 일 실시예에 따른 웨어러블 장치의 구성을 개략적으로 도시하는 블록도이다.1 is a block diagram schematically illustrating a configuration of a wearable device according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 웨어러블 장치(100)는 가속도 센서(110), 저장부(120), 입력부(130), 출력부(140), 제어부(150), 전원 공급부(160)를 포함한다.Referring to FIG. 1, the wearable device 100 according to an embodiment of the present invention may include an acceleration sensor 110, a storage 120, an input 130, an output 140, a controller 150, and a power supply. 160.
가속도 센서(110)는 3축 방향(예를 들어, X축, Y축, Z축)의 가속도를 검출한다. 도 1에는 하나의 가속도 센서만을 도시하였으나, 본 발명이 이에 제한되는 것은 아니고, 각각 하나의 축 방향의 가속도를 검출할 수 있는 복수 개의 가속도 센서가 제공될 수도 있다. 가속도 센서(110)는 제어부(150)에 3축 방향의 가속도 데이터를 전송할 수 있다.The acceleration sensor 110 detects acceleration in three axis directions (for example, X axis, Y axis, and Z axis). Although only one acceleration sensor is illustrated in FIG. 1, the present invention is not limited thereto, and a plurality of acceleration sensors capable of detecting acceleration in one axial direction may be provided. The acceleration sensor 110 may transmit acceleration data in three axis directions to the controller 150.
저장부(120)는 각종 데이터 및 명령을 저장한다. 저장부(120)는 웨어러블 장치(100)의 동작을 위한 시스템 소프트웨어와 본 발명의 실시예에 따른 사용자의 활동량 측정 방법을 수행하기 위한 애플리케이션을 포함한 각종 소프트웨어 모듈을 저장할 수도 있다. 저장부(120)는 RAM(Random Access Memory), ROM(Read Only Memory), EPROM(Erasable-Programmable ROM), EEPROM(Electrically EPROM), 플래시 메모리, 착탈형 디스크, 또는 본 발명이 속하는 기술 분야에서 잘 알려진 임의의 형태의 컴퓨터로 읽을 수 있는 기록 매체를 포함할 수 있다.The storage unit 120 stores various data and commands. The storage unit 120 may store various software modules including system software for operating the wearable device 100 and an application for performing a method for measuring an activity amount of a user according to an embodiment of the present invention. The storage unit 120 may be a random access memory (RAM), read only memory (ROM), erasable-programmable ROM (EPROM), electrically EPROM (EEPROM), flash memory, a removable disk, or well known in the art. Any type of computer readable recording medium may be included.
입력부(130)는 사용자로부터 각종 정보를 입력받는다. 입력부(130)는 키, 버튼, 스위치, 휠, 터치 패드 등의 각종 입력 수단을 포함할 수 있다.The input unit 130 receives various information from the user. The input unit 130 may include various input means such as keys, buttons, switches, wheels, and touch pads.
출력부(140)는 사용자에게 각종 정보를 통보한다. 출력부(140)는 텍스트, 영상 또는 음성의 형태로 정보를 출력할 수 있다. 이를 위하여, 출력부(140)는 디스플레이 모듈(141) 및 스피커 모듈(142)을 포함할 수 있다. 디스플레이 모듈(141)은 LCD(Liquid Crystal Display), TFT(Thin Film Transistor) LCD, OLED(Organic Light Emitting Diode), 플렉시블 디스플레이, 3차원 디스플레이, 전자잉크 디스플레이, 또는 본 발명이 속하는 기술 분야에서 잘 알려진 임의의 형태로 제공될 수 있다.The output unit 140 notifies the user of various information. The output unit 140 may output information in the form of text, video or audio. To this end, the output unit 140 may include a display module 141 and a speaker module 142. The display module 141 is a liquid crystal display (LCD), a thin film transistor (TFT) LCD, an organic light emitting diode (OLED), a flexible display, a three-dimensional display, an electronic ink display, or a technique well known in the art. It may be provided in any form.
제어부(150)는 다른 구성요소들을 제어하여 웨어러블 장치(100)의 전반적인 동작을 제어한다. 제어부(150)는 웨어러블 장치(100)의 동작을 위한 시스템 소프트웨어와 본 발명의 실시예에 따른 사용자의 활동량 측정 방법을 수행하기 위한 애플리케이션을 포함한 각종 소프트웨어 모듈을 수행할 수 있다.The controller 150 controls other components to control the overall operation of the wearable device 100. The controller 150 may perform various software modules including system software for operating the wearable device 100 and an application for performing a method for measuring an activity amount of a user according to an embodiment of the present invention.
제어부(150)는 가속도 센서(110)로부터 전송된 3축 방향의 가속도 데이터를 이용하여, 걸음수, 이동 거리, 칼로리 소모량, 활동 시간 등의 걸음과 관련된 사용자의 활동량을 측정할 수 있다. 제어부(150)는 고역통과필터(151)와 저역통과필터(152)를 포함하여 가속도 센서(110)로부터 전송된 3축 방향의 가속도 데이터를 필터링할 수 있다. 제어부(150)는, 선택적으로, 고역통과필터(151)를 통과한 3축 방향의 가속도 데이터를 이용하여 사용자의 활동량을 측정하거나, 저역통과필터(152)를 통과한 3축 방향의 가속도 데이터를 이용하여 사용자의 활동량을 측정할 수 있다. 한편, 고역통과필터(151)와 저역통과필터(152)는 제어부(150)의 외부에 독립된 구성요소로 제공되거나, 가속도 센서(110)의 내부 구성요소로 제공될 수도 있다.The controller 150 may measure the amount of activity of the user associated with the step, such as the number of steps, moving distance, calorie consumption, and activity time, using the acceleration data in the three axis direction transmitted from the acceleration sensor 110. The controller 150 may include a high pass filter 151 and a low pass filter 152 to filter the acceleration data in the 3-axis direction transmitted from the acceleration sensor 110. The controller 150 may optionally measure the amount of activity of the user using the acceleration data in the three-axis direction that passed through the high pass filter 151, or the acceleration data in the three-axis direction that passed through the low pass filter 152. Can measure the amount of activity of the user. Meanwhile, the high pass filter 151 and the low pass filter 152 may be provided as independent components outside the controller 150 or may be provided as internal components of the acceleration sensor 110.
전원 공급부(160)는 가속도 센서(110), 저장부(120), 입력부(130), 출력부(140), 제어부(150)의 동작에 필요한 전원을 공급한다. 전원 공급부(160)는 내장 배터리를 포함하거나, 외부로부터 공급되는 전원을 상기 구성요소들에 적합한 전원으로 변환할 수 있다.The power supply unit 160 supplies power required for the operation of the acceleration sensor 110, the storage unit 120, the input unit 130, the output unit 140, and the control unit 150. The power supply unit 160 may include a built-in battery or convert power supplied from the outside into a power suitable for the above components.
한편, 도 1에 도시된 구성요소들이 필수적인 것은 아니어서, 웨어러블 장치(100)는 그보다 많은 구성요소들을 포함하거나, 그보다 적은 구성요소들을 포함하도록 변형될 수 있다.Meanwhile, since the components illustrated in FIG. 1 are not essential, the wearable device 100 may be modified to include more components or fewer components.
도 2는 본 발명의 일 실시예에 따른 웨어러블 장치가 사용자의 신체에 착용된 상태를 개략적으로 도시하는 도면이다.2 is a diagram schematically illustrating a state in which a wearable device according to an embodiment of the present invention is worn on a user's body.
도 2를 참조하면, 본 발명의 일 실시예에 따른 웨어러블 장치(100)가 사용자의 신체에 착용될 수 있다. 예를 들어, 웨어러블 장치(100)는 사용자의 팔 또는 다리와 같은 사지에 착용되거나, 사용자의 몸통에 착용될 수 있으나, 본 발명이 이에 제한되는 것은 아니고, 기타 부위(머리, 손, 발 등)를 포함하는 사용자의 신체의 적어도 일부에 착용될 수 있다. 또는, 웨어러블 장치(100)는 사용자의 신체에 착용된 임의의 물건(모자, 장갑, 신발 등)의 내부에 제공될 수도 있다.Referring to FIG. 2, the wearable device 100 according to an embodiment of the present invention may be worn on a user's body. For example, the wearable device 100 may be worn on an extremity such as an arm or a leg of a user, or may be worn on a user's torso, but the present invention is not limited thereto and other parts (head, hand, foot, etc.). It may be worn on at least a portion of the body of the user including. Alternatively, the wearable device 100 may be provided inside any item (hat, gloves, shoes, etc.) worn on the user's body.
사용자가 웨어러블 장치(100)를 팔 또는 다리와 같은 사지(즉, 움직임이 상대적으로 큰 신체 부위)에 착용하고 활동하는 때에 나타나는 가속도 데이터의 변화 패턴과 사용자가 웨어러블 장치(100)를 몸통(즉, 움직임이 상대적으로 작은 신체 부위)에 착용하고 활동하는 때에 나타나는 가속도 데이터의 변화 패턴은 서로 다를 것이다. 따라서, 사용자의 활동량의 측정 정확도를 향상시킬 수 있도록, 사용자의 착용 상태에 따라 서로 다른 알고리즘을 이용하여 사용자의 활동량을 측정할 수 있는 방법이 요구된다. 사용자로부터 착용 상태에 관한 정보를 입력받을 수 있으나, 이는 사용자 편의를 저해할 수 있다. The pattern of change in acceleration data that appears when a user wears and wears the wearable device 100 on an extremity such as an arm or a leg (that is, a body part with relatively large movement) and the user wears the wearable device 100 (ie, The patterns of change in acceleration data that appear when worn and operated on body parts with relatively small movements will be different. Therefore, in order to improve the accuracy of measuring the activity of the user, a method capable of measuring the activity of the user using different algorithms according to the user's wearing state is required. Information regarding the wearing state may be input from the user, but this may hinder user convenience.
이를 해결하기 위해, 제어부(150)는 후술하는 본 발명의 실시예에 따른 사용자의 활동량 측정 방법에 따라 두 개의 축 방향의 가속도 데이터의 변화량을 비교하여 사용자의 착용 상태를 결정하고, 사용자의 착용 상태에 따라 서로 다른 알고리즘을 이용하여 사용자의 활동량을 측정할 수 있다.In order to solve this problem, the controller 150 determines the wearing state of the user by comparing the amount of change of acceleration data in two axial directions according to a method of measuring the amount of activity of the user according to an embodiment of the present invention, and the wearing state of the user. According to different algorithms, the user's activity can be measured.
도3은 본 발명의 실시예에 따른 사용자의 활동량 측정 방법을 개략적으로 도시하는 흐름도이다. 3 is a flowchart schematically illustrating a method of measuring activity of a user according to an embodiment of the present invention.
도 3을 참조하면, 단계 S410에서, 제어부(150)는 적어도 하나의 가속도 센서(110)에 의해 검출된 3축 방향의 가속도 데이터를 수신한다. 수신되는 3축 방향의 가속도 데이터는 고역통과필터(151) 또는 저역통과필터(152)를 통과한 3축 방향의 가속도 데이터일 수 있다. 데이터 오류를 감소시키기 위하여, 3축 방향의 가속도 데이터는 소정의 단위 시간(예를 들어, 500 msec)을 주기로 하여 수집될 수 있다.Referring to FIG. 3, in step S410, the controller 150 receives acceleration data in the three axis direction detected by the at least one acceleration sensor 110. The received acceleration data in the 3-axis direction may be acceleration data in the 3-axis direction passed through the high pass filter 151 or the low pass filter 152. In order to reduce the data error, the acceleration data in the three axis direction may be collected at a predetermined unit time (for example, 500 msec).
이어서, 단계 S420에서, 제어부(150)는 3축 방향의 가속도 데이터 중 두 개의 축 방향의 가속도 데이터의 변화량을 비교하여 사용자의 착용 상태를 결정한다. 구체적으로, 도 4를 참조하면, 단계 S421에서, 제어부(150)는 3축 방향의 가속도 데이터 중, 제1 축 방향의 가속도 데이터의 변화량과 제2 축 방향의 가속도 데이터의 변화량을 비교한다. 이 때, 제어부(150)는 3축 방향의 가속도 데이터 중, 지면에 수직하는 제3 축 방향의 가속도 데이터를 제외한, 나머지 제1 및 제2 축 방향의 가속도 데이터를 변화량 비교를 위한 가속도 데이터로 이용할 수 있다. 이어서, 단계 S422에서, 제어부(150)는 두 개의 축 방향의 가속도 데이터의 변화량의 비율이 기준값 이상인지 판단한다. 여기서, 기준값은 고역통과필터(151)를 통과한 가속도 데이터인지 또는 저역통과필터(152)를 통과한 가속도 데이터인지에 따라 서로 다르게 제공될 수 있다. 이어서, 단계 S423에서, 제어부(150)는 상기 비율이 기준값 이상이면 사용자의 착용 상태를 제1 착용 상태로 결정하고, 상기 비율이 기준값보다 작으면 사용자의 착용 상태를 제2 착용 상태로 결정한다. 여기서, 제1 착용 상태는 웨어러블 장치(100)가 사용자의 팔 또는 다리와 같은 사지 등에 착용된 상태를 나타내며, 제2 착용 상태는 웨어러블 장치(100)가 사용자의 몸통 등에 착용된 상태를 나타낼 수 있다.Subsequently, in step S420, the controller 150 determines a wearing state of the user by comparing the change amounts of the acceleration data in two axial directions among the acceleration data in three axial directions. Specifically, referring to FIG. 4, in step S421, the controller 150 compares the change amount of the acceleration data in the first axis direction with the change amount of the acceleration data in the second axis direction among the acceleration data in the three axis direction. At this time, the controller 150 may use the remaining acceleration data in the first and second axis directions except the acceleration data in the third axis direction perpendicular to the ground among the acceleration data in the three axis directions as the acceleration data for comparing the change amounts. Can be. Subsequently, in step S422, the controller 150 determines whether the ratio of the change amount of the acceleration data in the two axial directions is greater than or equal to the reference value. Here, the reference value may be provided differently depending on whether the acceleration data passed through the high pass filter 151 or the acceleration data passed through the low pass filter 152. Subsequently, in step S423, the controller 150 determines the user's wearing state as the first wearing state if the ratio is greater than or equal to the reference value, and determines the user's wearing state as the second wearing state if the ratio is less than the reference value. Here, the first wearing state may represent a state in which the wearable device 100 is worn on an extremity such as an arm or a leg of the user, and the second wearing state may represent a state in which the wearable device 100 is worn on the torso of a user. .
지구 중심 방향의 중력의 영향을 고려하여, 사용자의 움직임이 없는 상태에서, 제어부(150)는 3축 방향의 가속도 데이터 중에서 절대값이 가장 큰 가속도 데이터를 지면에 수직하는 제 3축 방향의 가속도 데이터로 추정할 수 있다. 수직축을 추정하기 위해, 제어부(150)는 저역통과필터(152)를 통과한 3축 방향의 가속도 데이터를 이용할 수 있다. 사용자의 웨어러블 장치(100)의 착용 위치가 변경될 수 있으므로, 제어부(150)는 소정의 단위 시간(예를 들어, 1 sec 이상)을 주기로 하여 (고역통과필터(151)를 적용하는 중에도) 저역통과필터(152)를 적용하고, 이를 통과한 3축 방향의 가속도 데이터를 확인할 수 있다.In consideration of the influence of gravity in the direction of the earth's center, in a state in which there is no user's movement, the controller 150 controls the acceleration data in the third axis direction in which the acceleration data having the largest absolute value among the acceleration data in the three axis direction is perpendicular to the ground. It can be estimated as In order to estimate the vertical axis, the controller 150 may use acceleration data in the three-axis direction passing through the low pass filter 152. Since the wearing position of the user's wearable device 100 may be changed, the controller 150 may perform a low frequency (even while applying the high pass filter 151) at a predetermined unit time (for example, 1 sec or more). By applying the pass filter 152, it is possible to check the acceleration data in the three-axis direction passing through.
도 5는 제1 착용 상태에서 두 개의 축 방향의 가속도 데이터의 변화량을 비교한 결과를 개략적으로 도시하는 도면이고, 도 6은 제2 착용 상태에서 두 개의 축 방향의 가속도 데이터의 변화량을 비교한 결과를 개략적으로 도시하는 도면이다. 도 7은 제1 착용 상태에서 저역통과필터를 통과한 두 개의 축 방향의 가속도 데이터의 변화량을 비교한 결과를 개략적으로 도시하는 도면이고, 도 8은 제2 착용 상태에서 저역통과필터를 통과한 두 개의 축 방향의 가속도 데이터의 변화량을 비교한 결과를 개략적으로 도시하는 도면이다. 도 5 내지 도 8에서는 Y축이 수직축인 것으로 가정한다. 도 5 및 도 7에 도시된, 웨어러블 장치(100)가 사용자의 팔 또는 다리와 같은 사지 등에 착용된 상태에서 X축 및 Z축 방향의 가속도 데이터의 변화량의 비율과, 도 6 및 도 8에 도시된, 웨어러블 장치(100)가 사용자의 몸통에 착용된 상태에서 X축 및 Z축 방향의 가속도 데이터의 변화량의 비율이 서로 다름을 확인할 수 있다. 도 5 내지 도 8에서는 각각의 축 방향의 가속도 데이터의 최대/최소 편차의 절대값을 이용하였으나, 본 발명이 이에 제한되는 것은 아니다.FIG. 5 is a view schematically showing a result of comparing changes in acceleration data in two axial directions in a first wearing state, and FIG. 6 is a result of comparing changes in acceleration data in two axial directions in a second wearing state It is a figure which shows schematically. FIG. 7 is a view schematically showing a result of comparing the change amounts of two axial acceleration data passing through the low pass filter in the first wearing state, and FIG. 8 is a view showing two passing through the low pass filter in the second wearing state. It is a figure which shows schematically the result of having compared the change amount of acceleration data of two axial directions. 5 to 8 assume that the Y axis is a vertical axis. 5 and 7, the ratio of the amount of change of acceleration data in the X-axis and Z-axis directions when the wearable device 100 is worn on a limb such as an arm or a leg of a user, and shown in FIGS. 6 and 8. In the state where the wearable device 100 is worn on the user's torso, the ratio of the change amount of the acceleration data in the X-axis and Z-axis directions is different. In FIGS. 5 to 8, the absolute value of the maximum / minimum deviation of the acceleration data in each axial direction is used, but the present invention is not limited thereto.
이어서, 다시 도 3을 참조하면, 단계 S430에서, 제어부(150)는 사용자의 착용 상태에 따라 서로 다른 알고리즘을 이용하여 사용자의 활동량을 측정한다. 이 때, 제어부(150)는 제1 착용 상태에서는 제1 알고리즘을 이용하여 사용자의 활동량을 측정하고, 제2 착용 상태에서는 제2 알고리즘을 이용하여 사용자의 활동량을 측정할 수 있다. 구체적으로, 제어부(150)는 제1 착용 상태에서는 제1 알고리즘에 따라 고역통과필터(151)를 통과한 3축 방향의 가속도 데이터를 이용하여 사용자의 활동량을 측정할 수 있다. 그리고, 제어부(150)는 제2 착용 상태에서는 저역통과필터(152)를 통과한 3축 방향의 가속도 데이터를 이용하여 사용자의 활동량을 측정할 수 있다.Subsequently, referring again to FIG. 3, in step S430, the controller 150 measures the amount of activity of the user using different algorithms according to the user's wearing state. In this case, the controller 150 may measure the amount of activity of the user using the first algorithm in the first wearing state, and may measure the amount of activity of the user using the second algorithm in the second wearing state. Specifically, in the first wearing state, the controller 150 may measure the amount of activity of the user using the acceleration data in the three-axis direction passing through the high pass filter 151 according to the first algorithm. In addition, in the second wearing state, the controller 150 may measure the amount of activity of the user by using the acceleration data in the 3-axis direction passing through the low pass filter 152.
도 9는 제1 착용 상태에서 고역통과필터를 통과한 3축 방향의 가속도 데이터를 개략적으로 도시하는 도면이고, 도 10은 제2 착용 상태에서 고역통과필터를 통과한 3축 방향의 가속도 데이터를 개략적으로 도시하는 도면이다. 도 11은 제1 착용 상태에서 저역통과필터를 통과한 3축 방향의 가속도 데이터를 개략적으로 도시하는 도면이고, 도 12는 제2 착용 상태에서 저역통과필터를 통과한 3축 방향의 가속도 데이터를 개략적으로 도시하는 도면이다. 제1 착용 상태에서는 고역통과필터를 적용하고, 제2 착용 상태에서는 저역통과필터를 적용하여 사용자의 활동량을 측정하는 것이 측정의 정확도를 증가시킬 수 있음을 확인할 수 있다.FIG. 9 is a view schematically showing acceleration data in the 3-axis direction passing through the high pass filter in the first wearing state, and FIG. 10 is a schematic view of acceleration data in the 3-axis direction passing through the high pass filter in the second wearing state. It is a figure shown. FIG. 11 is a view schematically showing acceleration data in the 3-axis direction passing through the low pass filter in the first wearing state, and FIG. 12 is a schematic view of acceleration data in the 3-axis direction passing through the low pass filter in the second wearing state. It is a figure shown. In the first wearing state, the high pass filter may be applied, and in the second wearing state, the low pass filter may be applied to measure the amount of activity of the user, thereby increasing the accuracy of the measurement.
도 13은 본 발명의 다른 실시예에 따른 웨어러블 장치의 구성을 개략적으로 도시하는 블록도이다. 설명의 편의를 위하여, 도 1을 참조하여 설명한 웨어러블 장치(100)와 동일한 구성요소에 대해서는 중복된 설명을 생략하기로 한다.13 is a block diagram schematically illustrating a configuration of a wearable device according to another exemplary embodiment of the present invention. For convenience of description, duplicate descriptions of components that are the same as the wearable device 100 described with reference to FIG. 1 will be omitted.
도 13을 참조하면, 본 발명의 다른 실시예에 따른 웨어러블 장치(200)는, 도 1을 참조하여 설명한 웨어러블 장치(100)와 비교하여, 무선 통신부(230), 진동부(260)를 더 포함한다.Referring to FIG. 13, the wearable device 200 according to another embodiment of the present invention further includes a wireless communication unit 230 and a vibrator 260 as compared with the wearable device 100 described with reference to FIG. 1. do.
무선 통신부(230)는 외부 디바이스(각종 서버 또는 사용자 디바이스 등)와 무선 통신할 수 있다. 무선 통신부(230)는 이동 통신, 와이브로, 와이파이(WiFi), 블루투스(Bluetooth), 지그비(Zigbee), 초음파, 적외선, RF(Radio Frequency) 등과 같은 무선 통신 방식을 이용하여 외부 디바이스와 무선 통신할 수 있다. 무선 통신부(230)는 외부 디바이스로부터 수신한 데이터 및/또는 정보를 제어부(270)에 전달하고, 제어부(270)로부터 전달된 데이터 및/또는 정보를 외부 디바이스에 전송할 수 있다. 이를 위하여, 무선 통신부(230)는 이동 통신 모듈, 근거리 통신 모듈 등을 포함할 수 있다.The wireless communication unit 230 may wirelessly communicate with an external device (such as a server or a user device). The wireless communication unit 230 may wirelessly communicate with an external device by using a wireless communication method such as mobile communication, WiBro, Wi-Fi, Bluetooth, Zigbee, ultrasonic wave, infrared ray, or RF (Radio Frequency). have. The wireless communication unit 230 may transmit data and / or information received from the external device to the controller 270, and may transmit data and / or information transmitted from the controller 270 to the external device. To this end, the wireless communication unit 230 may include a mobile communication module, a short-range communication module and the like.
진동부(260)는 사용자에게 각종 정보를 통보하기 위한 진동 알림을 수행할 수 있다.The vibrator 260 may perform a vibration notification for notifying the user of various kinds of information.
제어부(270)는 도 3 내지 도 4를 참조하여 설명한 사용자의 활동량 측정 방법을 수행할 수 있다.The controller 270 may perform the method for measuring the amount of activity of the user described with reference to FIGS. 3 to 4.
웨어러블 장치(200)는 각종 서버 또는 사용자 디바이스(미도시)와 사용자의 활동량에 관한 정보를 송수신할 수 있다.The wearable device 200 may transmit / receive information regarding an activity amount of a user with various servers or user devices (not shown).
도 14는 본 발명의 또 다른 실시예에 따른 웨어러블 장치의 구성을 개략적으로 도시하는 블록도이다. 설명의 편의를 위하여, 도 13을 참조하여 설명한 웨어러블 장치와 동일한 구성요소에 대해서는 중복된 설명을 생략하기로 한다.14 is a block diagram schematically illustrating a configuration of a wearable device according to still another embodiment of the present invention. For convenience of description, duplicate descriptions of components that are the same as the wearable device described with reference to FIG. 13 will be omitted.
도 14를 참조하면, 본 발명의 또 다른 실시예에 따른 웨어러블 장치(300)는, 도 13을 참조하여 설명한 웨어러블 장치(200)와 비교하여, 자이로 센서(320)를 더 포함한다.Referring to FIG. 14, the wearable device 300 according to another embodiment of the present invention further includes a gyro sensor 320 as compared to the wearable device 200 described with reference to FIG. 13.
자이로 센서(320)는 3축 방향(예를 들어, 피치(Pitch)축, 요(Yaw)축, 롤(Roll)축)의 각속도를 검출한다. 도 14에는 하나의 자이로 센서만을 도시하였으나, 본 발명이 이에 제한되는 것은 아니고, 각각 하나의 축 방향의 각속도를 검출할 수 있는 복수 개의 자이로 센서가 제공될 수도 있다. 자이로 센서(320)는 제어부(380)에 3축 방향의 각속도 데이터를 전송할 수 있다.The gyro sensor 320 detects the angular velocity in three axis directions (for example, a pitch axis, a yaw axis, and a roll axis). Although only one gyro sensor is illustrated in FIG. 14, the present invention is not limited thereto, and a plurality of gyro sensors capable of detecting angular velocity in one axial direction may be provided. The gyro sensor 320 may transmit angular velocity data in three axes to the controller 380.
제어부(380)는 도 3 내지 도 4를 참조하여 설명한 사용자의 활동량 측정 방법을 수행할 수 있다.The controller 380 may perform the method for measuring the amount of activity of the user described with reference to FIGS. 3 to 4.
웨어러블 장치(300)는 가속도 센서(310)에 의해 검출된 3축 방향의 가속도 데이터뿐만 아니라, 자이로 센서(320)에 의해 검출된 3축 방향의 각속도 데이터까지 이용하여 사용자의 활동량을 측정할 수 있을 것이다. 그러나, 자이로 센서(320)는계속적인 전원 공급을 필요로 하는 점에서, 웨어러블 장치(300)는 도 3 내지 도 4를 참조하여 설명한 사용자의 활동량 측정 방법에 따라, 가속도 센서(310)에 의해 검출된 3축 방향의 가속도 데이터만을 이용하여 사용자의 활동량을 측정함으로써 소비 전력을 감소시킬 수 있다.The wearable device 300 may measure the amount of activity of the user using not only the acceleration data in the three axis direction detected by the acceleration sensor 310 but also the angular velocity data detected in the three axis direction detected by the gyro sensor 320. will be. However, since the gyro sensor 320 requires continuous power supply, the wearable device 300 is detected by the acceleration sensor 310 according to the user's activity measuring method described with reference to FIGS. 3 to 4. The power consumption can be reduced by measuring the amount of activity of the user using only the three-axis acceleration data.
본 발명의 실시예에 따른 웨어러블 장치는 예시되지 않은 사용자의 신체에 착용 가능한 임의의 컴퓨터 시스템으로 제공될 수 있다.The wearable device according to the embodiment of the present invention may be provided as any computer system wearable on the body of the user, which is not illustrated.
한편, 본 발명의 실시예에 따른 사용자의 활동량 측정 방법은, 사용자가 웨어러블 장치(100~300)를 특정 신체 부위, 예를 들어 팔에 착용하였음에도 불구하고 팔이 고정되어 있거나 팔의 움직임이 제한되는 경우와 같은 특수한 경우에 대해서도 실질적으로 동일하게 변형되어 적용될 수 있다. 도 15는 웨어러블 장치(100~300)가 착용된 특정 신체 부위의 움직임이 제한되는 경우의 일 예를 도시한다. 도 15는 유모차를 밀고 있는 경우를 도시하였으나, 그 밖에도 주머니에 손을 넣거나, 소정의 짐을 들고 있거나, 보행 보조기를 이용하는 경우 등이 있을 수 있다. 이 경우, 웨어러블 장치(100)가 팔에 착용되었음에도 불구하고, 그 가속도 데이터의 변화 패턴은 웨어러블 장치(100~300)가 몸통에 착용된 경우와 유사하게 나타날 것이다. 따라서, 사용자의 착용 상태를 구분하는 것과 실질적으로 동일하게, 웨어러블 장치(100~300)는 두 개의 축 방향의 가속도 데이터의 변화량을 비교하여 동작 모드를 결정하고, 제1 모드(즉, 특정 신체 부위의 움직임이 상대적으로 큰 모드)에서는 고역통과필터를 통과한 3축 방향의 가속도 데이터를 이용하여 사용자의 활동량을 측정하고, 제2 모드(즉, 특정 신체 부위의 움직임이 상대적으로 작은 모드)에서는 저역통과필터를 통과한 3축 방향의 가속도 데이터를 이용하여 사용자의 활동량을 측정할 수 있을 것이다.On the other hand, the user's activity measuring method according to an embodiment of the present invention, even if the user wears the wearable device (100 ~ 300) on a specific body part, for example, the arm is fixed or the movement of the arm is limited Even special cases such as the case may be applied in a substantially identical manner. 15 illustrates an example in which movement of a specific body part on which the wearable devices 100 to 300 are worn is restricted. Although FIG. 15 illustrates a case in which a baby carriage is being pushed, there may be a case where a hand is held in a pocket, a predetermined baggage is used, or a walking aid is used. In this case, although the wearable device 100 is worn on the arm, the change pattern of the acceleration data will appear similar to the case where the wearable devices 100 to 300 are worn on the body. Therefore, substantially the same as distinguishing the user's wearing state, the wearable device 100 to 300 compares the change amount of the acceleration data in two axial directions to determine the operation mode, and the first mode (ie, a specific body part). In the mode where the movement of the body is relatively large, the user's activity is measured by using the acceleration data in the three-axis direction passing through the high pass filter, and in the second mode (that is, the mode where the movement of a specific body part is relatively small) The amount of activity of the user may be measured using the acceleration data in the 3-axis direction passing through the pass filter.
본 발명의 실시예와 관련하여 설명된 방법은 프로세서에 의해 수행되는 소프트웨어 모듈로 구현될 수 있다. 소프트웨어 모듈은 RAM, ROM, EPROM, EEPROM, 플래시 메모리, 하드 디스크, 착탈형 디스크, CD-ROM, 또는 본 발명이 속하는 기술 분야에서 잘 알려진 임의의 형태의 컴퓨터로 읽을 수 있는 기록 매체에 상주할 수도 있다.The method described in connection with an embodiment of the present invention may be implemented as a software module performed by a processor. The software module may reside in RAM, ROM, EPROM, EEPROM, flash memory, hard disk, removable disk, CD-ROM, or any form of computer readable recording medium well known in the art. .
이상, 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains may implement the present invention in other specific forms without changing the technical spirit or essential features thereof. You will understand that. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (10)

  1. 사용자의 신체에 착용 가능한 장치로서,A device that can be worn on the user's body,
    적어도 하나의 가속도 센서; 및At least one acceleration sensor; And
    상기 적어도 하나의 가속도 센서에 의해 검출된 3축 방향의 가속도 데이터를 이용하여, 걸음과 관련된 사용자의 활동량을 측정하는 제어부를 포함하되,And a controller configured to measure an amount of activity of a user associated with a step by using acceleration data in the three axis direction detected by the at least one acceleration sensor.
    상기 제어부는,The control unit,
    제1 축 방향의 가속도 데이터의 변화량과 제2 축 방향의 가속도 데이터의 변화량을 비교하여 사용자의 착용 상태를 결정하고, 제1 착용 상태에서는 제1 알고리즘을 이용하여 상기 사용자의 활동량을 측정하고, 제2 착용 상태에서는 제2 알고리즘을 이용하여 상기 사용자의 활동량을 측정하는, 웨어러블 장치.The amount of change of the acceleration data in the first axial direction is compared with the amount of change in the acceleration data in the second axial direction to determine the user's wearing state. In the first wearing state, the amount of activity of the user is measured using a first algorithm, 2, the wearable device of measuring a user's activity using a second algorithm.
  2. 제1항에 있어서,The method of claim 1,
    상기 제어부는,The control unit,
    상기 3축 방향의 가속도 데이터 중, 지면에 수직하는 제3 축 방향의 가속도 데이터를 제외하고, 상기 제1 축 방향의 가속도 데이터의 변화량과 상기 제2 축 방향의 가속도 데이터의 변화량을 비교하여 상기 착용 상태를 결정하는, 웨어러블 장치.The change amount of the acceleration data in the first axis direction and the change amount of the acceleration data in the second axis direction are compared with each other except for the acceleration data in the third axis direction perpendicular to the ground among the acceleration data in the three axis directions. The wearable device that determines the state.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1 착용 상태는 상기 웨어러블 장치가 상기 사용자의 팔 또는 다리에 착용된 상태이고, 상기 제2 착용 상태는 상기 웨어러블 장치가 상기 사용자의 몸통에 착용된 상태인, 웨어러블 장치.The first wearing state is a state in which the wearable device is worn on the arm or leg of the user, and the second wearing state is a state in which the wearable device is worn on the body of the user.
  4. 제1항에 있어서,The method of claim 1,
    상기 제어부는,The control unit,
    상기 제1 착용 상태에서는 고역통과필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정하고, 상기 제2 착용 상태에서는 저역통과필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정하는, 웨어러블 장치.In the first wearing state, the amount of activity of the user is measured using the acceleration data in the three-axis direction passing through the high pass filter, and in the second wearing state, the acceleration data in the three axis direction passing the low pass filter is measured. Wearable device for measuring the amount of activity of the user using.
  5. 사용자의 신체에 착용 가능한 장치로서,A device that can be worn on the user's body,
    적어도 하나의 가속도 센서; 및At least one acceleration sensor; And
    상기 적어도 하나의 가속도 센서에 의해 검출된 3축 방향의 가속도 데이터를 이용하여, 걸음과 관련된 사용자의 활동량을 측정하는 제어부를 포함하되,And a controller configured to measure an amount of activity of a user associated with a step by using acceleration data in the three axis direction detected by the at least one acceleration sensor.
    상기 제어부는,The control unit,
    제1 축 방향의 가속도 데이터의 변화량과 제2 축 방향의 가속도 데이터의 변화량을 비교하여 동작 모드를 결정하고, 제1 모드에서는 제1 필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정하고, 제2 모드에서는 제2 필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정하는, 웨어러블 장치.The operation mode is determined by comparing the change amount of the acceleration data in the first axis direction with the change amount of the acceleration data in the second axis direction, and in the first mode, the user is made using the acceleration data in the 3-axis direction passing through the first filter. The amount of activity of the wearable device, and in the second mode, the wearable device for measuring the amount of activity of the user using the acceleration data in the three-axis direction passed through the second filter.
  6. 컴퓨터 시스템에 의해 수행되는 방법으로서,A method performed by a computer system,
    적어도 하나의 가속도 센서에 의해 검출된 3축 방향의 가속도 데이터를 수신하는 단계;Receiving acceleration data in the three axis direction detected by the at least one acceleration sensor;
    상기 3축 방향의 가속도 데이터 중, 제1 축 방향의 가속도 데이터의 변화량과 제2 축 방향의 가속도 데이터의 변화량을 비교하여 사용자의 착용 상태를 결정하는 단계; 및Determining the wearing state of the user by comparing the change amount of the acceleration data in the first axis direction with the change amount of the acceleration data in the second axis direction among the acceleration data in the three axis direction; And
    상기 검출된 3축 방향의 가속도 데이터를 이용하여, 걸음과 관련된 사용자의 활동량을 측정하는 단계를 포함하되,Measuring the amount of activity of the user associated with the step by using the detected acceleration data in the three axis direction,
    상기 사용자의 활동량을 측정하는 단계는,Measuring the amount of activity of the user,
    제1 착용 상태에서는 제1 알고리즘을 이용하여 상기 사용자의 활동량을 측정하고, 제2 착용 상태에서는 제2 알고리즘을 이용하여 상기 사용자의 활동량을 측정하는, 사용자의 활동량 측정 방법.Measuring the amount of activity of the user using a first algorithm in a first wearing state, and measuring the amount of activity of the user using a second algorithm in a second wearing state.
  7. 제6항에 있어서,The method of claim 6,
    상기 착용 상태를 결정하는 단계는,Determining the wearing state,
    상기 3축 방향의 가속도 데이터 중, 지면에 수직하는 제3 축 방향의 가속도 데이터를 제외하고, 상기 제1 축 방향의 가속도 데이터의 변화량과 상기 제2 축 방향의 가속도 데이터의 변화량을 비교하여 상기 착용 상태를 결정하는, 사용자의 활동량 측정 방법.The change amount of the acceleration data in the first axis direction and the change amount of the acceleration data in the second axis direction are compared with each other except for the acceleration data in the third axis direction perpendicular to the ground among the acceleration data in the three axis directions. A method of measuring the amount of activity of a user that determines a state.
  8. 제6항에 있어서,The method of claim 6,
    상기 제1 착용 상태는 상기 웨어러블 장치가 상기 사용자의 팔 또는 다리에 착용된 상태이고, 상기 제2 착용 상태는 상기 웨어러블 장치가 상기 사용자의 몸통에 착용된 상태인, 사용자의 활동량 측정 방법.The first wearing state is a state in which the wearable device is worn on the arm or leg of the user, and the second wearing state is a state in which the wearable device is worn on the torso of the user.
  9. 제6항에 있어서,The method of claim 6,
    상기 사용자의 활동량을 측정하는 단계는,Measuring the amount of activity of the user,
    상기 제1 착용 상태에서는 고역통과필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정하고, 상기 제2 착용 상태에서는 저역통과필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정하는, 사용자의 활동량 측정 방법.In the first wearing state, the amount of activity of the user is measured using the acceleration data in the three-axis direction passing through the high pass filter, and in the second wearing state, the acceleration data in the three axis direction passing the low pass filter is measured. Measuring the amount of activity of the user by using the;
  10. 컴퓨터 시스템에 의해 수행되는 방법으로서,A method performed by a computer system,
    적어도 하나의 가속도 센서에 의해 검출된 3축 방향의 가속도 데이터를 수신하는 단계;Receiving acceleration data in the three axis direction detected by the at least one acceleration sensor;
    상기 3축 방향의 가속도 데이터 중, 제1 축 방향의 가속도 데이터의 변화량과 제2 축 방향의 가속도 데이터의 변화량을 비교하여 동작 모드를 결정하는 단계; 및Determining an operation mode by comparing the change amount of the acceleration data in the first axis direction with the change amount of the acceleration data in the second axis direction among the acceleration data in the three axis direction; And
    상기 검출된 3축 방향의 가속도 데이터를 이용하여, 걸음과 관련된 사용자의 활동량을 측정하는 단계를 포함하되,Measuring the amount of activity of the user associated with the step by using the detected acceleration data in the three axis direction,
    상기 사용자의 활동량을 측정하는 단계는,Measuring the amount of activity of the user,
    제1 모드에서는 제1 필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정하고, 제2 모드에서는 제2 필터를 통과한 상기 3축 방향의 가속도 데이터를 이용하여 상기 사용자의 활동량을 측정하는, 사용자의 활동량 측정 방법.In the first mode, the amount of activity of the user is measured using the acceleration data in the three-axis direction passing through the first filter, and in the second mode, the user is measured using the acceleration data in the three-axis direction passing through the second filter. How to measure the amount of activity of a user.
PCT/KR2015/010528 2015-10-06 2015-10-06 Wearable device and method for measuring user's physical activity WO2017061637A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2015/010528 WO2017061637A1 (en) 2015-10-06 2015-10-06 Wearable device and method for measuring user's physical activity
CN201580007454.4A CN106068443A (en) 2015-10-06 2015-10-06 The activity assay method of wearable device and user

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/010528 WO2017061637A1 (en) 2015-10-06 2015-10-06 Wearable device and method for measuring user's physical activity

Publications (1)

Publication Number Publication Date
WO2017061637A1 true WO2017061637A1 (en) 2017-04-13

Family

ID=57419757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010528 WO2017061637A1 (en) 2015-10-06 2015-10-06 Wearable device and method for measuring user's physical activity

Country Status (2)

Country Link
CN (1) CN106068443A (en)
WO (1) WO2017061637A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072386B (en) * 2016-11-11 2020-08-14 华为技术有限公司 Step counting method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122376A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Momentum measuring device and momentum measuring program
JP2008246179A (en) * 2007-03-30 2008-10-16 Matsushita Electric Works Ltd Activity meter
KR20110022917A (en) * 2009-08-28 2011-03-08 한국전자통신연구원 Apparatus and method for user adapted activity recognition
KR20130044477A (en) * 2011-10-24 2013-05-03 아주대학교산학협력단 Apparatus and method for calculating calori consumption using tri-accelerometer sensor
JP2013106768A (en) * 2011-11-21 2013-06-06 Seiko Epson Corp State detecting device, electronic device, and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4992595B2 (en) * 2007-07-27 2012-08-08 オムロンヘルスケア株式会社 Activity meter
US20120116177A1 (en) * 2010-11-08 2012-05-10 Lho Hyung-Suk Apparatus and method for calculating calorie consumption using 3-axial accelerometer
CN201912098U (en) * 2010-11-17 2011-08-03 重庆大学 Portable digital type human body activity level measurement device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122376A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Momentum measuring device and momentum measuring program
JP2008246179A (en) * 2007-03-30 2008-10-16 Matsushita Electric Works Ltd Activity meter
KR20110022917A (en) * 2009-08-28 2011-03-08 한국전자통신연구원 Apparatus and method for user adapted activity recognition
KR20130044477A (en) * 2011-10-24 2013-05-03 아주대학교산학협력단 Apparatus and method for calculating calori consumption using tri-accelerometer sensor
JP2013106768A (en) * 2011-11-21 2013-06-06 Seiko Epson Corp State detecting device, electronic device, and program

Also Published As

Publication number Publication date
CN106068443A (en) 2016-11-02

Similar Documents

Publication Publication Date Title
WO2014204092A1 (en) Wearable device and communication method using wearable device
WO2016175501A1 (en) Step recognition system and method therefor, and storage medium in which program for processing same method is recorded
WO2010053260A2 (en) Mouse controlled via finger movements in air
WO2018217060A1 (en) Method and wearable device for performing actions using body sensor array
US20190339766A1 (en) Tracking User Movements to Control a Skeleton Model in a Computer System
CN101751126A (en) Hand-free interface based on gesture using a plurality of sensor spaces
WO2014081154A1 (en) Shoe insole, shoes including same, and gait correction system
WO2009123396A2 (en) Training apparatus and method based on motion content
WO2016088918A1 (en) Service robot
CN107145232B (en) A kind of method and apparatus using capacitance detecting identification user's hand behavior
US11237632B2 (en) Ring device having an antenna, a touch pad, and/or a charging pad to control a computing device based on user motions
WO2014200323A1 (en) User input device using alternating current magnetic field and electric device having same
US20210068674A1 (en) Track user movements and biological responses in generating inputs for computer systems
WO2018135886A2 (en) Method for estimating location of wearable device and device using same
WO2017061637A1 (en) Wearable device and method for measuring user's physical activity
CN102592161A (en) Electronic work card and attendance management system based on same
WO2018044059A1 (en) Fitness monitoring system.
KR20100065074A (en) System for controlling robot based on motion recognition and method thereby
KR20120064921A (en) Portable electromyogram sensor and motion sensor with wireless data transmission
Julian et al. An IoT based wearable device for healthcare monitoring
Yi et al. 6LoWPAN-enabled fall detection and health monitoring system with Android smartphone
WO2019074280A1 (en) Positioning interval adjustment using acceleration sensor
KR20170047848A (en) Wearable device and method for measuring activity of user
US20210318759A1 (en) Input device to control a computing device with a touch pad having a curved surface configured to sense touch input
Salicone et al. Low-cost real-time motion capturing system using inertial measurement units

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17.09.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15905880

Country of ref document: EP

Kind code of ref document: A1