WO2017061396A1 - Battery-shaped power source device - Google Patents

Battery-shaped power source device Download PDF

Info

Publication number
WO2017061396A1
WO2017061396A1 PCT/JP2016/079366 JP2016079366W WO2017061396A1 WO 2017061396 A1 WO2017061396 A1 WO 2017061396A1 JP 2016079366 W JP2016079366 W JP 2016079366W WO 2017061396 A1 WO2017061396 A1 WO 2017061396A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
terminal
output transistor
power supply
supply device
Prior art date
Application number
PCT/JP2016/079366
Other languages
French (fr)
Japanese (ja)
Inventor
小山 和宏
顕宏 岡部
哲也 野邉
Original Assignee
ノバルス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノバルス株式会社 filed Critical ノバルス株式会社
Publication of WO2017061396A1 publication Critical patent/WO2017061396A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation

Definitions

  • the present invention relates to a battery-type power supply device.
  • Patent Document 1 discloses a configuration in which a wireless reception driving device houses a built-in battery and a wireless reception driving device reception board portion, and an output terminal of the wireless reception driving device reception board portion is connected to an input terminal of a motor. Yes.
  • a wireless communication function can be imparted to the toy vehicle. The user can move the toy vehicle using a device that operates the wireless reception driving device.
  • the toy vehicle motor and the external switch are connected in series to the wireless reception drive device.
  • an inductive load such as a motor is turned on / off
  • a high surge voltage due to counter electromotive force is generated in the motor.
  • Generation of a surge voltage in the motor leads to breakage of the substrate of the wireless reception driving device connected to the motor.
  • an external battery is connected in series to the wireless reception driving device.
  • the purpose is to protect the internal circuit of the battery-type power supply device from a surge voltage generated by an inductive load, and to prevent or reduce the consumption of the external battery used with the battery-type power supply device.
  • a battery-type power supply device includes a load, a battery box, a power switch interposed between the load and the battery box, and the battery box of the external load device in series with an external battery. Installed.
  • a battery having a shape and size conforming to a battery standard, and a built-in battery inside the housing, the battery having an inner positive terminal and an inner negative terminal contacting the front and rear terminals of the stored built-in battery
  • a housing portion an outer positive terminal provided on a front end face of the housing and connected to the inner positive terminal; an outer negative terminal provided on a rear end face of the housing and connected to the inner negative terminal;
  • An output transistor interposed between a negative electrode terminal and the outer negative terminal or between the inner positive terminal and the outer positive terminal, an antenna housed in the housing, and external information processing via the antenna
  • a control circuit for generating a control signal for the output transistor in accordance with an RF signal received from the device; and the output transistor from a back electromotive voltage generated by the load.
  • a diode disposed in parallel with the output transistor with respect to the load from the outer negative terminal toward the outer positive terminal, and a leakage current of the external battery.
  • a Zener diode connected in the opposite direction to the diode is provided.
  • FIG. 1 is a perspective view showing an appearance of a battery-type power supply device having a wireless communication function according to the first embodiment.
  • FIG. 2 is a diagram showing an internal structure of the battery-type power supply device according to the first embodiment.
  • FIG. 3 is a diagram illustrating a usage mode of the battery-type power supply device according to the first embodiment.
  • FIG. 4 is an equivalent circuit diagram illustrating an example of the battery-type power supply device according to the first embodiment.
  • FIG. 5 is an equivalent circuit diagram illustrating another example of the battery-type power supply device according to the first embodiment.
  • FIG. 6 is a flowchart showing a procedure for changing the communication interval by the battery-type power supply device of FIG.
  • FIG. 7 is an equivalent circuit diagram illustrating an example of a battery-type power supply device according to the second embodiment.
  • FIG. 8 is a timing chart showing changes in the input signal of the EN terminal of the DCDC converter with respect to the output of the RFIC of FIG.
  • FIG. 9 is an equivalent circuit diagram illustrating an example of a battery-type power supply device according to the third embodiment.
  • FIG. 10 is an equivalent circuit diagram illustrating an example of a battery-type power supply device according to the fourth embodiment.
  • FIG. 11 is a timing chart showing changes in input / output of each terminal during PWM control by the RFIC of FIG.
  • FIG. 12 is a flowchart showing the procedure of the on / off switching process of the transmission / reception operation by the control unit of the RFIC of FIG.
  • FIG. 13 is an equivalent circuit diagram showing an example of a battery-type power supply device according to the fifth embodiment.
  • FIG. 14 is a diagram showing the terminal voltage level of each transistor that varies as the power switch of FIG. 13 is turned on / off.
  • FIG. 15 is an equivalent circuit diagram illustrating another first example of the battery-type power supply device according to the second embodiment.
  • FIG. 16 is an equivalent circuit diagram illustrating another second example of the battery-type power supply device according to the second embodiment.
  • FIG. 17 is an equivalent circuit diagram showing another third example of the battery-type power supply device according to the second embodiment.
  • FIG. 18 is an equivalent circuit diagram showing another fourth example of the battery-type power supply device according to the second embodiment.
  • a battery-type power supply device 100 having a wireless function according to an embodiment of the present invention will be described with reference to the drawings.
  • components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description will be given only when necessary.
  • FIG. 1 is a perspective view showing an appearance of a battery-type power supply device 100 having a wireless communication function according to the first embodiment.
  • FIG. 2 is a diagram showing an internal structure of the battery-type power supply device 100 according to the first embodiment.
  • the battery-type power supply device 100 having a wireless function according to the first embodiment (hereinafter simply referred to as the battery-type power supply device 100) is configured with a shape and outer dimensions in accordance with the battery standard.
  • the battery-type power supply device 100 is configured by a cylindrical body having a height and a diameter in accordance with the AA standard.
  • the battery-type power supply device 100 may be configured with a shape and size according to other battery standards.
  • the battery-type power supply devices 100 according to the second to fifth embodiments are also configured with the same shape and dimensions as the battery-type power supply device 100 according to the first embodiment.
  • the main body 117 of the battery-type power supply device 100 is externally mounted on a cylindrical housing 118 having the same shape and size as the AA battery standard.
  • a circular conductive plate is attached as the outer positive terminal 103 at the center of the upper end surface (also referred to as the front end surface) of the main body 117.
  • a circular conductive plate is attached as the outer negative terminal 104 at the center of the lower end surface (also referred to as the rear end surface) of the main body.
  • a part of the peripheral surface of the housing 118 is cut out in an oval shape.
  • the length of the notch 119 is the same as that of the AAA battery, and the width is slightly wider than that of the AAA battery. The user can insert and remove the AAA battery from the notch 119 with respect to the battery storage unit 102.
  • the shape of the battery housing portion 102 is a cylindrical space having a length and a diameter according to the AAA standard.
  • the central axis of the battery housing portion 102 is offset in the radial direction with respect to the cylindrical central axis of the battery-type power supply device 100. This offset provides a small space between the housing 118 and the battery compartment 102.
  • a board 107 for realizing various functions of the battery-type power supply device 100 is mounted in this small space.
  • a conductive plate is attached as an inner positive terminal 105 at the center of the front end of the battery housing portion 102, that is, on the same side as the outer positive terminal 103.
  • a conductive plate having a spring property is attached as the inner negative terminal 106 at the center of the rear end of the battery housing portion 102 and on the same side as the outer negative terminal 104.
  • the positive terminal of the AAA battery stored in the battery storage unit 102 contacts the inner positive terminal 105, and the negative terminal of the AAA battery contacts the inner negative terminal 106.
  • the inner negative terminal 106 is connected to the outer negative terminal 104 and the substrate 107 via the wiring cable 108.
  • the inner negative terminal 106 may be composed of the outer negative terminal 104 and a common conductive plate.
  • the inner positive terminal 105 is connected to the substrate 107 by a wiring cable 109.
  • the outer positive terminal 103 is connected to the substrate 107 by a wiring cable 110.
  • FIG. 3 is a diagram showing a usage state of the battery-type power supply device 100 of FIG.
  • the external load device 111 includes a load 115, a battery box 112, and a power switch (external switch) 114.
  • the external load device 111 is driven by a single AA battery.
  • the battery-type power supply device 100 is mounted on the battery box 112 alone.
  • the external load device 111 is an electronic toy, electric work toy, disaster prevention sensor, security sensor, flashlight, bicycle light, battery cooker, electric cooker, electric pet feeding device, battery powered fan, battery powered hand soap dispenser, etc. Equipment.
  • the external load device 111 will be described as an electric toy driven by a motor 115.
  • the electric toy are a miniature train that moves at a constant speed when the switch is turned on, a miniature car, and the like.
  • Wheels 116 are connected to the motor 115 via a transmission mechanism.
  • the power switch 114 When the power switch 114 is turned on, electrical connection between the motor 115 and the battery box 112 is ensured.
  • the power switch 114 When the power switch 114 is turned off, the motor 115 and the battery box 112 are electrically disconnected.
  • the external information processing apparatus 200 is typically a portable digital electronic device having a communication function and an operation function such as a smartphone, a mobile phone, a tablet terminal, and a radio control communication device.
  • the external information processing apparatus 200 may be a dedicated machine for operating the battery-type power supply apparatus 100.
  • the user can turn on / off the motor 115 by operating the external information processing apparatus 200.
  • the user may designate an arbitrary value between 0% (no drive signal output) and 100% (maximum drive signal output value) by operating the external information processing apparatus 200. it can.
  • the battery-type power supply device 100 is wirelessly connected to the external information processing device 200.
  • a motor output instruction selected by the user is wirelessly transmitted from the external information processing apparatus 200 to the battery-type power supply apparatus 100.
  • an output transistor 120 is interposed between the inner positive terminal 105 and the outer positive terminal 103 or between the inner negative terminal 106 and the outer negative terminal 104 of the battery housing portion 102 of the battery-type power supply device 100.
  • the battery-type power supply device 100 adjusts the power output by turning on / off the output transistor 120 in accordance with a motor output instruction from the external information processing device 200.
  • FIG. 4 is an equivalent circuit diagram illustrating an example of the battery-type power supply device 100 according to the first embodiment.
  • the battery-type power supply device 100 is attached to the battery box 112 so as to be connected in series to an external battery.
  • a built-in battery is mounted in the battery housing portion 102 of the battery-type power supply device 100.
  • the battery-type power supply device 100 includes an output transistor 120, a DCDC converter (internal power supply circuit) 121, an RFIC (control circuit) 122, an inverter 123, a pull-up resistor (detection resistor) 124, a pull-up resistor 125, A leakage current prevention unit 170 is included. These electronic components are mounted on the substrate 107.
  • the output transistor 120 is typically a P-channel MOSFET, and is interposed between the inner positive terminal 105 and the outer positive terminal 103.
  • the source terminal of the output transistor 120 is connected to the inner positive terminal 105 via the wiring cable 109.
  • the drain terminal of the output transistor 120 is connected to the outer positive terminal 103 via the wiring cable 110.
  • the pull-up resistor (detection resistor) 124 is disposed in parallel with the output transistor 120 between the inner positive terminal 105 and the outer positive terminal 103.
  • the pull-up resistor 125 is interposed between the gate terminal of the output transistor 120 and the inner positive terminal 105.
  • the Vcc terminal of the DCDC converter 121 is connected to the inner positive terminal 105, the EN terminal is connected to the outer positive terminal 103, and the OUTPUT terminal is connected to the Vdd terminal of the RFIC 122.
  • the DCDC converter 121 is an internal power supply circuit, and boosts the battery voltage Vcc of the AAA dry battery mounted in the battery storage unit 102 to a power supply voltage Vdd of, for example, 3.0 V for internal circuit operation.
  • the DCDC converter 121 is configured to supply the power supply voltage Vdd to the RFIC 122 when the EN terminal is at a high level, and not to supply the power supply voltage Vdd to the RFIC 122 when the EN terminal is at a low level.
  • the DCDC converter 121 functions as an internal power supply circuit that supplies the driving voltage of the RFIC 122, but the internal power supply circuit that supplies the driving voltage to the RFIC 122 may be an electronic component other than the DCDC converter 121.
  • An inverter 123 is interposed between the drain terminal of the output transistor 120 and the EN terminal of the DCDC converter 121. By disposing the inverter 123 at the input stage of the DCDC converter 121, it is possible to avoid destruction of the DCDC converter due to the counter electromotive voltage generated in the motor 115.
  • the input terminal of the inverter 123 is connected to the drain terminal of the output transistor 120, and the output terminal is connected to the EN terminal of the DCDC converter 121.
  • the inverter 123 inverts the input signal and outputs it.
  • the RFIC 122 is a control circuit that is driven by the power supply voltage Vdd and controls the battery-type power supply device 100 in an integrated manner.
  • An antenna 127 for wireless communication is connected to the ANT terminal of the RFIC 122.
  • the OUTPUT terminal of the RFIC 122 is connected to the gate terminal of the output transistor 120.
  • the RFIC 122 functionally includes a communication unit, a control signal generation unit, a control unit, and the like.
  • the communication unit is driven under the control of the control unit, and performs wireless communication with the external information processing apparatus 200 via the antenna 127 in conformity with the Bluetooth (registered trademark) standard.
  • the RFIC 122 may perform wireless communication complying with another wireless communication standard, for example, a wireless LAN standard.
  • the communication unit receives a code wireless signal indicating on / off of the motor 115 from the external information processing apparatus 200 via the antenna 127.
  • the control signal generator is driven according to the control of the controller and generates a low level gate control signal.
  • the control signal generation unit When the code wireless signal indicating that the motor 115 is turned off is received, the control signal generation unit generates a high-level gate control signal according to the control of the control unit. Alternatively, the control signal generator is turned off in accordance with the control of the controller, thereby opening the OUTPUT terminal.
  • the high level of the gate control signal generated by the control signal generator is a voltage value sufficiently lower than the threshold voltage Vth of the output transistor 120, and the low level is higher than the threshold voltage Vth of the output transistor 120. Is a sufficiently high voltage value.
  • the output transistor 120 is controlled to be turned on / off by a voltage (gate voltage) applied by a gate control signal input to the gate.
  • a voltage gate voltage
  • Vth threshold voltage
  • a channel is formed between the source and the drain, and the maximum drain current flows.
  • the output transistor 120 is on.
  • the output transistor 120 is turned on, a current flows between the outer positive terminal 103 and the outer negative terminal 104 of the battery-type power supply device 100 via the built-in battery. If the power switch 114 of the external load device 111 is in the ON state, a current flows between the outer positive terminal 103 and the outer negative terminal 104 of the battery type power supply device 100, and the motor 115 of the external load device 111 is driven.
  • the output transistor 120 is off.
  • the outer positive terminal 103 and the outer negative terminal 104 of the battery-type power supply device 100 are disconnected. Thereby, even if the power switch 114 of the external load device 111 is in the ON state, the circuit of the external load device 111 is cut off and the motor 115 is not driven.
  • the protective diode 171 is arranged in parallel with the output transistor 120 with respect to the motor 115 so as to be in the forward direction from the outer negative terminal 104 toward the outer positive terminal 103.
  • the Zener diode 172 is disposed in the opposite direction to the protective diode 171.
  • the protective diode 171 and the Zener diode 172 are connected in parallel to the output transistor 120 and the built-in battery with respect to the motor 115 between the outer positive terminal 103 and the outer negative terminal 104.
  • the input terminal of the protective diode 171 is connected to the outer negative terminal 104
  • the output terminal is connected to the output terminal of the Zener diode 172
  • the input terminal of the Zener diode 172 is connected to the outer positive terminal 103.
  • the total voltage of the Zener voltage of the Zener diode 172 and the forward voltage of the protective diode 171 is smaller than the absolute value of the reverse breakdown voltage of the output transistor 120. Accordingly, even if a surge voltage (counterelectromotive voltage) is instantaneously generated in the motor 115 as the output transistor 120 is turned on / off, the surge current is consumed in a closed circuit including the protection diode 171 and the motor 115. Is done. Thereby, it can be avoided that a high voltage is applied between the drain and source of the output transistor 120, and the output transistor 120 can be protected from the surge voltage generated by the motor 115.
  • the total voltage of the Zener voltage of the Zener diode 172 and the forward voltage of the protection diode 171 is at least larger than the total voltage of the external battery 300.
  • the Zener diode 172 has a Zener diode 172. Since only a reverse voltage lower than the voltage is applied, the Zener diode 172 is in the OFF state.
  • the closed circuit including the protective diode 171 and the motor 115 is interrupted by the Zener diode 172, thereby preventing or reducing the occurrence of leakage current by the external battery 300.
  • the protective diode 171 When both the external switch 114 and the output transistor 120 are in the on state, the protective diode 171 is applied with a reverse voltage lower than the reverse breakdown voltage of the diode, and thus the protective diode is in the off state. Therefore, the closed circuit including the output transistor 120, the built-in battery, and the protective diode 171 is blocked by the protective diode 171, thereby avoiding a short circuit of the built-in battery.
  • the external load device 11 when the power switch 114 is off, the external load device 11 is off, when the power switch 114 is on but the motor 115 is not operating, the external load device 111 is on standby, and the motor 115 operates This state is referred to as an operating state of the external load device 111. Further, the state in which the control unit of the RFIC 122 is not driven is in the off state of the battery-type power supply device 100, and the state in which the control unit of the RFIC 122 is being driven but the transmission / reception operation by the wireless communication unit is off is the battery-type power supply device.
  • the standby state of 100 the state in which the transmission / reception operation by the wireless communication unit is turned on is referred to as a communicable state of the battery-type power supply device 100, and the state in which the gate control signal is output from the RFIC 122 is referred to as the operation state of the battery-type power supply device 100.
  • the inner positive terminal 105 is configured so that the voltage level of the outer positive terminal 103 with respect to the reference potential varies in conjunction with the on / off of the power switch 114.
  • a pull-up resistor (detection resistor) 124 is arranged in parallel with the output transistor 120 between the outer positive terminal 103 and the outer positive terminal 103.
  • the reference potential is set to the GND potential.
  • the outer positive terminal 103 is connected to GND via the power switch 114, and thus switches from the high level to the low level. In this way, the voltage level of the outer positive terminal 103 varies in conjunction with the on / off of the power switch 114.
  • the battery-type power supply device 100 detects ON / OFF of the power switch 114 by detecting a change in the voltage level of the outer positive terminal 103.
  • the input terminal of the inverter 123 is connected to the inner positive terminal 105 through the pull-up resistor 124 and is therefore at a high level, and the EN terminal of the DCDC converter 121 (the output terminal of the inverter 123). ) Is low level. Therefore, the power supply voltage Vdd generated by the DCDC converter 121 is not supplied to the RFIC 122. Therefore, the battery-type power supply device 100 is in an off state.
  • the power switch 114 When the power switch 114 is turned on, the input terminal of the inverter 123 is connected to GND via the power switch 114, so that it switches from high level to low level, and the EN terminal of the DCDC converter 121 switches from low level to high level. . Thereby, the power supply voltage Vdd generated by the DCDC converter 121 is supplied to the RFIC 122, whereby the control unit of the RFIC 122 is driven, and the state of the battery-type power supply device 100 is changed from the off state to the standby state.
  • the RFIC 122 When the RFIC 122 is driven, the transmission / reception operation by the wireless communication unit is switched from OFF to ON according to the control of the control unit, whereby the battery-type power supply device 100 transitions from the standby state to the communicable state.
  • the input terminal of the inverter 123 is again connected to the inner positive terminal 105 through the pull-up resistor 124, so that it switches from the low level to the high level.
  • the state of the apparatus 100 is switched from the communicable state to the off state.
  • the battery-type power supply apparatus 100 can perform various processes according to the radio signal received from the external information processing apparatus 200. For example, when a code wireless signal instructing to turn on the motor 115 is received from the external information processing apparatus 200 via the wireless communication unit, the control signal generating unit generates a low-level gate control signal. As a result, the gate terminal of the output transistor 120 becomes low level, so that the output transistor 120 is turned on and the motor 115 is driven. Thus, the user can turn on the external load device 111 at any timing by operating the external information processing device 200.
  • the state of the battery-type power supply device 100 can be communicated from the off state in conjunction with the power switch 114 of the external load device 111 being turned on. It is possible to switch from the communicable state to the off state in conjunction with the power switch 114 being switched off. Thereby, the battery-type power supply device 100 does not need to be equipped with a switch for switching the state between the off state and the communicable state, which contributes to downsizing of the device and reduction of component costs. Further, when the external load device 111 is in the initial state, the DCDC converter 121 and the RFIC 122 are not driven, so that unnecessary power consumption can be reduced.
  • the output signal of the inverter 123 is input to the DCDC converter 121, but the output signal of the inverter 123 may be input to the RFIC 122.
  • FIG. 5 is an equivalent circuit diagram showing another example of the battery-type power supply device 100 according to the first embodiment.
  • the output terminal of the inverter 123 is connected to the INPUT terminal of the RFIC 122.
  • the EN terminal of the DCDC converter 121 is connected to the inner positive terminal 105. Accordingly, since the DCDC converter 121 is turned on while the built-in battery is mounted in the electronic storage unit 2, the battery-type power supply device 100 is in a standby state.
  • the RFIC 122 switches on / off of the transmission / reception operation of the RF signal via the antenna 127 according to on / off of the power switch 114 determined by the voltage level of the outer positive terminal 103.
  • the power switch 114 can be turned on / off based on the voltage level of the output signal of the inverter 123.
  • the output signal of the inverter 123 is at a high level
  • the power switch 114 is off the output signal of the inverter 123 is at a low level. Therefore, when the INPUT terminal is at a low level, it is determined that the power switch 114 is turned off.
  • the transmission / reception operation by the wireless communication unit is turned off under the control of the control unit, and the state of the battery-type power supply device 100 is communicable. Switches from standby to standby. When the INPUT terminal is at a high level, it is determined that the power switch 114 is turned on. Therefore, the transmission / reception operation by the wireless communication unit is turned on under the control of the control unit, and the state of the battery-type power supply device 100 can be communicated from the standby state. Switch to state. Switching of the transmission / reception operation of the wireless communication unit by the control unit is performed by controlling the feeding of the drive voltage Vdd to the communication module of the wireless communication unit. Of course, on / off switching of the transmission / reception operation of the wireless communication unit by the control unit may be performed by controlling the output of radio waves with software while the communication module is driven.
  • the state of the battery-type power supply device 100 is changed in conjunction with the power switch 114 of the external load device 111 being turned on.
  • the standby state can be switched to the communicable state, and the communicable state can be switched to the standby state in conjunction with the power switch 114 being turned off.
  • the battery-type power supply device 100 does not need to be equipped with a switch for switching the state between the standby state and the communicable state, which contributes to the downsizing of the device and the reduction of component costs.
  • the DCDC converter 121 and the RFIC 122 are not driven, so that unnecessary power consumption can be reduced.
  • the battery-type power supply device 100 is in a standby state while the built-in battery is mounted in the battery storage unit 102.
  • the control unit may execute processing other than on / off of the transmission / reception operation by the wireless communication unit in conjunction with the on / off of the power switch 114.
  • the control unit changes the communication interval with the external information processing apparatus 200 in conjunction with the on / off of the power switch 114.
  • FIG. 6 is a flowchart showing a procedure of a communication interval changing process by the battery-type power supply device 100 of FIG. When the external load device 111 is in the initial state, the battery-type power supply device 100 is in a standby state.
  • the wireless communication unit communicates with the external information processing apparatus 200 at the communication interval T1 according to the control of the control unit (step S11).
  • the power switch 114 is turned on (step S12), that is, when the INPUT terminal of the RFIC 122 is switched from the low level to the high level, the wireless communication unit is connected to the external information processing apparatus 200 and the communication interval T1 according to the control of the control unit.
  • the communication is performed with a short communication interval T2 (step S13).
  • the communication intervals T1 and T2 may be preset, or may be values set by the user via the external information processing apparatus 200.
  • step S14 When the power switch 114 is turned off (step S14), that is, when the INPUT terminal of the RFIC 122 is switched from the high level to the low level, the processing step returns to step S11, and the wireless communication unit performs external information according to the control of the control unit. It communicates with the processing apparatus 200 at the communication interval T1.
  • the response interval of the battery-type power supply device 100 with respect to an instruction from the external information processing device 200 is improved by shortening the communication interval with the external information processing device 200, and Also, the connectivity of communication with the external information processing apparatus 200 can be improved. Further, when the external load device 111 is in the off state (the power switch 114 is in the off state), unnecessary power consumption can be reduced by increasing the communication interval with the external information processing device 200.
  • the battery-type power supply device 100 according to the second embodiment is configured such that a PWM signal can be used as a gate control signal of the output transistor 120 of the battery-type power supply device 100 according to the first embodiment.
  • FIG. 7 is an equivalent circuit diagram illustrating an example of the battery-type power supply device 100 according to the second embodiment.
  • One feature of the battery-type power supply device 100 according to the second embodiment is that an OR circuit 131 is arranged in front of the EN terminal of the DCDC converter 121.
  • the protective diode 171 and the Zener diode 172 are connected in the same manner as the battery-type power supply device 100 according to the first embodiment, and thereby the same effects as in the first embodiment. Demonstrate.
  • the OR circuit 131 has two input terminals and one output terminal.
  • the OR circuit 131 outputs a high level signal when at least one of the two input terminals is at a high level.
  • the OR circuit 131 outputs a low level signal when both of its two input terminals are at a low level.
  • the output terminal of the OR circuit 131 is connected to the EN terminal of the DCDC converter 121.
  • a low pass filter 132 is interposed between the output terminal of the OR circuit 131 and the EN terminal of the DCDC converter 121.
  • the low-pass filter 132 is composed of, for example, a resistor and a capacitor. The low-pass filter 132 allows a component having a frequency lower than the cutoff frequency to pass therethrough, gradually decreases a component having a frequency higher than the cutoff frequency, and suppresses instantaneous signal fluctuation due to noise or the like.
  • One input terminal (first input terminal) of the OR circuit 131 is connected to the OUTPUT terminal of the RFIC 122.
  • the other input terminal (second input terminal) of the OR circuit 131 is connected to the inner positive terminal 105 via the detection transistor 130.
  • the first and second input terminals of the OR circuit 131 are connected to GND via pull-down resistors 136 and 135.
  • An inverter 133 is interposed between the OUTPUT terminal of the RFIC 122 and the gate terminal of the output transistor 120.
  • the output of the inverter 133 is input to the gate of the output transistor 120.
  • the detection transistor 130 is typically a P-channel MOSFET, and detects ON / OFF of the power switch 114.
  • the drain terminal of the detection transistor 130 is connected to the second input terminal of the OR circuit 131, the source terminal is connected to the inner positive terminal 105, and the gate terminal is connected to the outer positive terminal 103.
  • the pull-up resistor (detection resistor) 124 is arranged in parallel with the output transistor 120 between the inner positive terminal 105 and the outer positive terminal 103. Thereby, the signal level of the outer positive terminal 103 can be switched between the low level and the high level in conjunction with the on / off of the power switch 114.
  • the detection transistor 130 By connecting the gate terminal of the detection transistor 130 to the outer positive terminal 103, the detection transistor 130 can be turned on / off in conjunction with the on / off of the power switch 114.
  • the control signal generation unit generates a gate control signal corresponding to the received motor output instruction value according to the control of the control unit.
  • the gate control signal is provided as a PWM (pulse width signal modulation) signal.
  • PWM pulse width signal modulation
  • the control signal generator when the motor output instruction value is 0%, the control signal generator generates a PWM signal with a duty ratio of 0% (only low level).
  • the control signal generator When the motor output instruction value is 100%, the control signal generator generates a PWM signal with a duty ratio of 100% (only high level).
  • the control signal generator When the motor output instruction value is 50%, the control signal generator generates a signal with a duty ratio of 50% (the ratio between the low level and the high level is half).
  • the PWM signal generated by the control signal generator is input to the output transistor 120 as a gate control signal.
  • the output transistor 120 When the PWM signal is at a high level (the gate terminal is at a low level), the output transistor 120 is on. Therefore, the circuit of the external load device 111 is conducted and the motor 115 is driven.
  • the PWM signal gate control signal
  • the output transistor 120 When the PWM signal (gate control signal) is at a low level (the gate terminal is at a high level), the output transistor 120 is in an off state. Therefore, the circuit of the external load device 111 is cut off and the motor 115 is not driven.
  • the motor 115 While the PWM signal is input to the gate terminal, the motor 115 repeats the rotation start and the rotation stop at a predetermined cycle.
  • the motor 115 gradually rotates due to its coil characteristics. However, when the output transistor 120 is switched from on to off, the rotation becomes faster again. Using this characteristic, the motor 115 can be rotated at an arbitrary rotational speed by PWM control.
  • One feature of the battery-type power supply device 100 according to the second embodiment is that an OR circuit 131 is arranged in the previous stage of the DCDC converter 121.
  • the OR circuit 131 receives the gate control signal output from the RFIC 122 and the detection signal of the detection transistor 130, and outputs a high-level or low-level signal to the DCDC converter 121 as a logical sum operation result. Thereby, if the power switch 114 is in the on state, the battery-type power supply device 100 can be prevented from switching from the communicable state to the off state or the standby state.
  • both the detection transistor 130 and the RFIC 122 are turned off, so that the first and second input terminals of the OR circuit 131 go through the pull-down resistors 136 and 135, respectively. Since it is connected to GND, it is at a low level. Therefore, the power supply voltage Vdd generated by the DCDC converter 121 is not supplied to the RFIC 122. Therefore, the battery-type power supply device 100 is in an off state.
  • the gate terminal of the detection transistor 130 is connected to GND via the power switch 114, so that the high level is switched to the low level.
  • the second input terminal of the OR circuit 131 is connected to the inner positive terminal 105 via the detection transistor 130 and is switched from the low level to the high level, whereby the OR circuit 131 outputs a high level signal.
  • the EN terminal of the DCDC converter 121 is switched from the low level to the high level, and the power supply voltage Vdd generated by the DCDC converter 121 is supplied to the RFIC 122, whereby the control unit of the RFIC 122 is driven and the state of the battery-type power supply device 100 is off. Switch from state to standby state.
  • the transmission / reception operation by the wireless communication unit is switched from OFF to ON according to the control of the control unit, and the state of the battery-type power supply device 100 is switched from the standby state to the communicable state.
  • the power output of the output transistor 120 is adjusted according to a PWM signal according to a motor output instruction from the external information processing apparatus 200.
  • the gate terminal of the detection transistor 130 is connected to GND via the power switch 114. Therefore, the detection transistor 130 is turned on.
  • the detection transistor 130 is turned on, the first input terminal of the OR circuit 131 is connected to the inner positive electrode terminal 105 via the detection transistor 130, so that the OR circuit 131 outputs a high level signal. It outputs to the DCDC converter 121.
  • the gate terminal of the detection transistor 130 is connected to the inner positive terminal 105 via the output transistor 120. Therefore, the detection transistor 130 is turned off. Since the first input terminal of the OR circuit 131 is connected to GND through the pull-down resistor 136, it is at a low level. On the other hand, when the output transistor 120 is turned on, the gate control signal output from the OUTPUT terminal is at a high level. Therefore, since the second input terminal of the OR circuit 131 is connected to the OUTPUT terminal, it is at a high level, whereby the OR circuit 131 outputs a high level signal to the DCDC converter 121.
  • the OR circuit 131 outputs a high level signal because the first input terminal of the OR circuit 131 is at the high level and the second input terminal is at the low level. .
  • the OR circuit 131 outputs a high level signal because the first input terminal of the OR circuit 131 is at a low level and the second input terminal is at a high level.
  • the OR circuit 131 can maintain the on state even if the output transistor 120 is turned on / off by the gate control signal. Thereby, even when a PWM signal is used as the gate control signal, the state of the battery-type power supply device 100 can be maintained in a communicable state. Since the PWM signal can be used, it is possible to provide a power supply apparatus that can freely adjust the power supply output in the range of 0% to 100%. Thus, for example, by simply mounting the battery-type power supply device 100 according to the second embodiment in the battery box 112, means for adjusting the power output to the external load device 111 that is not originally equipped with means for adjusting the power output. Can be given. The user can operate the external information processing apparatus 200 to freely change the operation speed of the electric toy that is mounted with the battery-type power supply apparatus 100, for example.
  • the output signal of the OR circuit 131 is input to the DCDC converter 121.
  • the output signal of the OR circuit 131 is input to the INPUT terminal of the RFIC 122, and according to the signal level of the INPUT terminal, You may make it switch on / off of the transmission / reception operation
  • a circuit example in which a P-channel MOSFET is used as the output transistor 120 has been described.
  • an N-channel MOSFET may be used as the output transistor 120.
  • N-channel MOSFETs are less expensive than P-channel MOSFETs, and the use of an N-channel MOSFET can reduce the component cost of the battery-type power supply device 100.
  • Some N-channel MOSFETs have a higher withstand voltage than P-channel MOSFETs, and the use of N-channel MOSFETs can increase the number of external batteries that can be connected in series to the battery-type power supply device 100. . This can be expected to expand the range of the external load device 111 in which the battery-type power supply device 100 can be used.
  • the output transistor 120 may be a bipolar transistor, in which case the gate control signal is read as a base control signal.
  • FIG. 9 is an equivalent circuit diagram illustrating an example of the battery-type power supply device 100 according to the third embodiment.
  • FIG. 9 is a circuit example when the output transistor 140 of the circuit of FIG. 7 is changed from a P-channel MOSFET to an N-channel MOSFET.
  • the protective diode 171 and the Zener diode 172 are connected in the same manner as the battery-type power supply device 100 according to the first embodiment, and thereby the same effects as in the first embodiment. Demonstrate.
  • the wiring among the OR circuit 131, the DCDC converter 121, and the RFIC 122 is the same as the circuit of FIG.
  • the output transistor 140 is interposed between the inner negative terminal 106 and the outer negative terminal 104.
  • the output transistor 140 has a source terminal connected to the inner positive terminal 105, a drain terminal connected to the outer negative terminal 104, and a gate terminal connected to the OUTPUT terminal of the RFIC 122.
  • the first detection transistor 130 is a P-channel MOSFET.
  • the source terminal of the first detection transistor 130 is connected to the inner positive terminal 105, the gate terminal is connected to the drain terminal of the second detection transistor 141, and the drain terminal is connected to the second input terminal of the OR circuit 131.
  • the second input terminal of the OR circuit 131 is connected to the GND via the pull-down resistor 135 in order to stabilize the second input terminal of the OR circuit 131 at a low level.
  • the gate terminal of the first detection transistor 130 is connected to the inner positive terminal via the pull-up resistor 134. 105 is connected.
  • the second detection transistor 141 is an N-channel MOSFET.
  • the source terminal of the second detection transistor 141 is connected to GND, the gate terminal is connected to the outer negative terminal 104, and the drain terminal is connected to the gate terminal of the first detection transistor 130.
  • the gate terminal of the second detection transistor 141 is connected to the GND via the pull-down resistor 143 in order to stabilize the gate terminal of the second detection transistor 141 at a low level.
  • the second detection transistor 141 When the external load device 111 is in an initial state (the power switch 114 is in an off state), the second detection transistor 141 is at a low level because its gate terminal is connected to GND via the pull-down resistor 143, and in the off state. is there. Since the gate terminal of the first detection transistor 130 is connected to the inner positive terminal 105 via the pull-up resistor 134, the first detection transistor 130 is at a high level and is in an off state. Since the external load device 111 is in an initial state and the RFIC 122 is not driven, no gate control signal is output. Therefore, the OR circuit 131 outputs a low-level signal because its first and second input terminals are connected to GND via the pull-down resistors 136 and 135, respectively, and thus are at a low level.
  • the gate terminal of the second detection transistor 141 is connected to the inner positive terminal 105 via the outer negative terminal 104, the motor 115, the power switch 114, and the outer positive terminal 103. Because there is, it is turned on.
  • the first detection transistor 130 is turned on because its gate terminal is connected to GND via the second detection transistor 141 and is at a low level.
  • the second input terminal of the OR circuit 131 is connected to the inner positive terminal 105 via the first detection transistor 130 and is switched from the low level to the high level, whereby the OR circuit 131 outputs a high level signal.
  • the EN terminal of the DCDC converter 121 is switched from the low level to the high level, and the power supply voltage Vdd generated by the DCDC converter 121 is supplied to the RFIC 122, whereby the control unit of the RFIC 122 is driven and the state of the battery-type power supply device 100 is off. Switch from state to standby state.
  • the control unit of the RFIC 122 is driven, the transmission / reception operation by the wireless communication unit is switched from OFF to ON according to the control of the control unit, and the state of the battery-type power supply device 100 is switched from the standby state to the communicable state.
  • the power output of the output transistor 120 is adjusted according to a PWM signal according to a motor output instruction from the external information processing apparatus 200.
  • the state can be switched between the off state and the communicable state in conjunction with the on / off of the power switch 114. Further, if the power switch 114 is turned on, the OR circuit 131 can be kept on even when the output transistor 120 is turned on / off by the gate control signal. Thereby, even when a PWM signal is used as the gate control signal, the state of the battery-type power supply device 100 can be maintained in a communicable state. That is, even when an N-channel MOSFET is used for the output transistor 120, it can be operated in the same manner as the battery-type power supply device 100 according to the second embodiment using a P-channel MOSFET for the output transistor 120. The effect can be obtained.
  • an OR circuit 131 is disposed in front of the EN terminal of the DCDC converter 121.
  • the OR circuit 131 outputs the PWM signal output from the RFIC 122 and the detection signal output from the detection transistor 130. If the power switch 114 is in the ON state even when the PWM signal is used as the gate control signal of the output transistor 120, the battery-type power supply device 100 can be maintained in a communicable state. .
  • the processing performed by the OR circuit 131 of the second embodiment is performed inside the RFIC 122.
  • FIG. 10 is a circuit example when the inverter 123 of the circuit of FIG. 5 of the first embodiment is replaced with a P-channel MOSFET.
  • the detection transistor 130 has a gate terminal connected to the outer positive terminal 103, a source terminal connected to the OUTPUT terminal of the DCDC converter 121, and a drain terminal connected to the INPUT terminal of the RFIC 122. Further, when the power switch 114 is turned off, the gate terminal of the detection transistor 130 is connected to the INPUT terminal of the DCDC converter 121 via the pull-up resistor 134 in order to stabilize the gate terminal of the detection transistor 130 at a high level.
  • the INPUT terminal of the RFIC 122 is connected to GND via a pull-down resistor 137 in order to stabilize the INPUT terminal of the RFIC 122 at a low level.
  • the OUTPUT terminal of the RFIC 122 is connected to the gate terminal of the output transistor 120.
  • An inverter 133 is interposed between the OUTPUT terminal of the RFIC 122 and the gate terminal of the output transistor 120. The input terminal of the inverter 133 is connected to the OUTPUT terminal of the RFIC 122, and the output terminal is connected to the gate terminal of the output transistor 120.
  • the protective diode 171 and the Zener diode 172 are connected in the same manner as the battery-type power supply device 100 according to the first embodiment, and thereby the same effects as in the first embodiment. Demonstrate.
  • FIG. 11 is a timing chart showing changes in input / output of each terminal during PWM control by the RFIC 122 of FIG.
  • FIG. 12 is a flowchart showing the procedure of the on / off switching process of the transmission / reception operation by the RFIC 122 of FIG.
  • the control unit controls on / off of the transmission / reception operation by the wireless communication unit according to the logical sum of the gate control signal generated by the control signal generation unit and output from the OUTPUT terminal and the signal input to the INPUT terminal. Specifically, the control unit turns on the transmission / reception operation when the logical sum of the gate control signal output from the OUTPUT terminal and the signal input to the INPUT terminal is high level, and turns off when the logical sum is low level.
  • step S21 when the external load device 111 is in the initial state (the power switch 114 is off), the INPUT terminal of the RFIC 122 is at the low level and the OUTPUT terminal is at the low level (step S21). Therefore, since the logical sum of the signal levels of these two terminals is low level, the transmission / reception operation by the wireless communication unit is not turned on. Therefore, the battery-type power supply device 100 is in a standby state in which the transmission / reception operation is turned off.
  • the INPUT terminal is switched from the low level to the high level, that is, when the power switch 114 is turned on (step S22)
  • the logical sum of the signal levels of these two terminals is switched from the low level to the high level. Thereby, the transmission / reception operation by the wireless communication unit is turned on under the control of the control unit, and the state of the battery-type power supply device 100 is switched from the standby state to the communicable state (step S23).
  • step S24 When the INPUT terminal is at a high level (Yes in step S24), the transmission / reception operation by the wireless communication unit is maintained in the on state according to the control of the control unit, whereby the battery-type power supply device 100 is maintained in the communicable state (step S26). ).
  • the control unit switches on / off of the transmission / reception operation according to the signal level of the OUTPUT terminal.
  • the output transistor 120 is turned on by the high level of the gate control signal, and the motor 115 is driven. Therefore, the battery-type power supply device 100 should be maintained in a communicable state.
  • the transmission / reception operation by the wireless communication unit is maintained in an on state according to the control of the control unit.
  • the power supply apparatus 100 is maintained in a communicable state (step S26).
  • the power switch 114 is turned off. From the viewpoint of reducing unnecessary power consumption, the battery-type power supply device 100 Should be switched from the communicable state to the standby state.
  • the transmission / reception operation by the wireless communication unit is switched from on to off according to the control of the control unit.
  • the state of the power supply apparatus 100 is switched from the communicable state to the standby state (step S27).
  • the transmission / reception operation is turned off and the power switch 114 is turned on while the power switch 114 is turned off, as shown in FIG.
  • the transmission / reception operation can be turned on. Therefore, the battery-type power supply device 100 according to the fourth embodiment reduces the number of parts compared to the battery-type power supply device 100 according to the second embodiment without arranging the OR circuit 131 as in the second embodiment.
  • a PWM signal can be used as a gate control signal.
  • the communication function of the battery-type power supply device 100 is turned on / off in conjunction with the on / off of the power switch 114. However, as described with reference to FIG.
  • the communication interval of the battery-type power supply device 100 may be changed.
  • the response speed of the battery-type power supply device 100 with respect to an instruction from the external information processing device 200 is improved, and between the external information processing device 200
  • the communication connectivity can be improved.
  • unnecessary power consumption can be reduced by increasing the communication interval with the external information processing apparatus 200 in a state where the power switch 114 is turned off.
  • the method for controlling the on / off switching of the transmission / reception operation by the control unit is not limited to the above.
  • the control unit may not perform the on / off control of the transmission / reception operation by the wireless communication unit while outputting the gate control signal from the OUTPUT terminal.
  • the control unit may not perform the on / off control of the transmission / reception operation by the wireless communication unit while outputting the gate control signal from the OUTPUT terminal.
  • the battery-type power supply device 100 When the motor 115 is used as the load of the external load device 111, the battery-type power supply device 100 according to the fifth embodiment can change the direction of the current flowing through the motor 115 of the external load device 111.
  • the protective diode 171 and the Zener diode 172 are connected in the same manner as the battery-type power supply device 100 according to the first embodiment, and thereby the same effects as in the first embodiment. Demonstrate.
  • FIG. 13 is an equivalent circuit diagram illustrating an example of the battery-type power supply device 100 according to the fifth embodiment.
  • the battery-type power supply device 100 according to the fifth embodiment includes an H bridge circuit 160.
  • the H bridge circuit is provided in parallel to the battery.
  • the H bridge circuit 160 includes four output transistors 161, 162, 163, and 164.
  • the first and third output transistors 161 and 163 are P-channel MOSFETs.
  • the second and fourth output transistors 162 and 164 are N-channel MOSFETs.
  • the gate terminal of the detection transistor 130 is connected to the outer positive terminal 103.
  • the gate terminal of the detection transistor is connected to the inner positive terminal 105 via the pull-up resistor 134 in order to stabilize the gate terminal of the detection transistor 130 at a high level.
  • the source terminal of the first output transistor 161 is connected to the inner positive terminal 105, the drain terminal is connected to the outer positive terminal 103, and the gate terminal is connected to the OUTPUT 1 terminal of the RFIC 122 via the inverter 156.
  • the gate terminal of the first output transistor 161 is connected to the inner positive terminal 105 via the pull-up resistor 151 in order to stabilize the gate terminal of the first output transistor 161 at a high level. Is done.
  • the drain terminal of the first output transistor 161 is connected to the inner positive terminal 105 via the pull-up resistor 134 in order to stabilize the drain terminal of the first output transistor 161 at a high level.
  • the source terminal of the second output transistor 162 is connected to the inner negative terminal 106, the drain terminal is connected to the outer positive terminal 103, and the gate terminal is connected to the OUTPUT2 terminal of the RFIC 122.
  • the gate terminal of the second output transistor 162 is connected to the inner negative terminal 106 via the pull-down resistor 152 in order to stabilize the gate terminal of the second output transistor 162 at a low level.
  • the drain terminal of the second output transistor 162 is connected to the inner positive terminal 105 via the pull-up resistor 134 in order to stabilize the drain terminal of the second output transistor 162 at a high level.
  • the source terminal of the third output transistor 163 is connected to the inner positive terminal 105, the drain terminal is connected to the outer negative terminal 104, and the gate terminal is connected to the OUTPUT2 terminal of the RFIC 122 via the inverter 157.
  • the gate terminal of the third output transistor 163 is connected to the inner positive terminal 105 via the pull-up resistor 153 in order to stabilize the gate terminal of the third output transistor 163 at a high level. Is done.
  • the source terminal of the fourth output transistor 164 is connected to the inner negative terminal 106, the drain terminal is connected to the outer negative terminal 104, and the gate terminal is connected to the OUTPUT1 terminal of the RFIC 122.
  • the gate terminal of the fourth output transistor 164 is connected to the inner positive terminal 105 via the pull-up resistor 154 in order to stabilize the gate terminal of the fourth output transistor 164 at a high level. Is done.
  • the OR circuit 145 is disposed in front of the first input terminal of the OR circuit 131.
  • the OR circuit 145 has a first input terminal connected to the OUTPUT 1 terminal of the RFIC 122 and a second input terminal connected to the OUTPUT 2 terminal of the RFIC 122.
  • a gate control signal is output from one of the OUTPUT1 terminal and the OUTPUT2 terminal, even if there are two OUTPUT terminals, the OUTPUT1 terminal or the OUTPUT2 terminal can be used as in the second embodiment.
  • FIG. 14 is a diagram showing the terminal voltage of each transistor that varies with the on / off of the power switch 114 of FIG.
  • the first and third output transistors 161 and 163 have their source terminals at the high level and their gate terminals connected to the inner positive terminal 105 via the pull-up resistors 151 and 153. Since it is connected and is at a high level, it is in an off state.
  • the second output transistor 162 is in an off state because its source terminal is low level and its gate terminal is connected to the inner negative terminal 106 via the pull-down resistor 152 and is at low level.
  • the fourth output transistor 164 is at a high level and is in an on state because its source terminal is connected to the low level and its gate terminal is connected to the inner positive terminal 105 via the pull-up resistor 154.
  • the detection transistor 130 is at a high level and has an off state because its source terminal is connected to the inner positive electrode terminal 105 via a pull-up resistor 134 and its gate terminal is high level.
  • the gate terminal of the detection transistor 130 is connected to the inner negative terminal 106 via the fourth output transistor 164, so that the detection transistor 130 is turned on. .
  • the detection transistor 130 is turned on, the second input terminal of the OR circuit 131 becomes high level, the drive voltage Vdd is supplied from the DCDC converter 121 to the RFIC 122, the RFIC 122 is driven, and the state of the battery-type power supply device 100 is Switch from off to communicable state.
  • the battery-type power supply apparatus 100 receives a code wireless signal related to a motor rotation direction switching instruction from the external information processing apparatus 200 via a wireless communication unit.
  • a code wireless signal for forward rotation of the motor is received
  • the gate control signal generated by the control signal generator is output from the OUTPUT1 terminal according to the control of the controller.
  • the gate control signal generated by the control signal generator is output from the OUTPUT2 terminal according to the control of the controller.
  • the first and fourth output transistors 161 and 164 are turned on / off simultaneously.
  • the gate control signal when the gate control signal is output from the OUTPUT2 terminal, the second and third output transistors 162 and 163 are simultaneously turned on / off.
  • the gate control signal is set so as not to be output simultaneously from the OUTPUT 1 terminal and the OUTPUT terminal 2.
  • the fourth output transistor 164 is turned on.
  • the gate terminal of the detection transistor 130 can be switched from the high level to the low level. That is, if one of the four output transistors 161, 162, 163, and 164 is turned on, the battery-type power supply device 100 can detect the on / off of the power switch 114.
  • the power switch 114 Since ON / OFF of the power switch 114 can be detected, even when the battery-type power supply device 100 includes an H-bridge control circuit for enabling forward and reverse rotation of the motor 115, as described above, the power switch The communication function of the battery-type power supply device 100 can be turned on / off, the communication interval can be changed, etc.
  • or 5th embodiment is a circuit comprised with an external load, an external power supply, and a power switch. Therefore, by incorporating the circuit of the battery-type power supply device 100 into another electronic device having an external load, an external power supply, and a power switch, the electronic device can be configured as the battery-type power supply device 100 according to the first to fifth embodiments. The same operation can be obtained and the same effect can be obtained.
  • the protective diode 171 is forwardly directed from the outer negative terminal 104 toward the outer positive terminal 103 in parallel with the output transistor 120 with respect to the motor 115.
  • the Zener diode 172 is connected to the protective diode 171 in the opposite direction.
  • the circuit configuration for preventing or reducing the occurrence of leakage current by the external battery 300 is not limited to this.
  • FIGS. 15, 16, 17, and 18 are equivalent circuit diagrams showing other examples of the battery-type power supply device 100 according to the second embodiment.
  • FIGS. 15, 16, 17, and 18 another circuit configuration for preventing or reducing the occurrence of leakage current by the external battery 300 will be described.
  • 2nd Embodiment is demonstrated to an example, the other structure which prevents or reduces generation
  • the protection transistor 173 is connected to the motor 115. Arranged in parallel with the output transistor 120.
  • the protection transistor 173 is an N-channel MOSFET, its drain terminal is connected to the outer positive terminal 103, its gate terminal is connected to the OUTPUT 2 terminal of the RFIC 122, and its source terminal is connected to the outer negative terminal 104. Further, when the OUTPUT2 terminal is open, the gate terminal of the protection transistor 173 is connected to GND via the pull-down resistor 176 in order to stabilize the gate terminal of the protection transistor 173 at a low level.
  • the protection transistor 173 is controlled to be turned on / off in accordance with a control signal from the RFIC 122. Specifically, the protection transistor 173 is turned on immediately before the output transistor 120 is switched from on to off under the control of the RFIC 122. Further, the protection transistor 173 is turned off after a lapse of a certain time when the surge voltage generated in the motor 115 is settled after being turned on in accordance with the control of the RFIC 122. That is, at least while the surge voltage is generated by the motor 115, the protection transistor 173 is in the on state.
  • the protection transistor 173 When the protection transistor 173 is in the off state, the protection transistor 173 cuts off the closed circuit including the built-in battery, the output transistor 120, and the protection transistor 173, so that a short circuit of the built-in battery can be avoided. Further, when the protection transistor 173 is in the off state, the protection transistor 173 can cut off the closed circuit including the external battery 400, the motor 115, and the protection transistor 173, thereby preventing or reducing the leakage current of the external battery 300. be able to.
  • the protection transistor 173 Since the protection transistor 173 is turned on immediately before the output transistor 120 is turned off, a period in which both the protection transistor 173 and the output transistor 120 are on occurs. If no measures are taken, the built-in battery will be short-circuited by a current path from the inner positive terminal 105 to the inner negative terminal 106 via the output transistor 120 and the protection transistor 173.
  • the output transistor 120, the protection transistor 173, and the protection transistor 173 are connected by connecting a short-circuit avoidance diode 177 in series so as to be in the forward direction from the outer negative terminal 104 to the outer positive terminal 103. When both are in the on state, a short circuit of the internal battery can be avoided.
  • the short-circuit avoidance diode 177 can be omitted. Further, the short circuit of the built-in battery can be avoided by substituting the diode 177 for avoiding the short circuit with a resistor or the like.
  • the protective diode 171 may be simply disposed in parallel with the output transistor 120 with respect to the motor 115.
  • the protective diode 171 having a forward voltage characteristic lower than the reverse breakdown voltage of the output transistor 120 the output transistor 120 can be protected from a surge voltage generated in the motor 115.
  • the protective diode 171 having forward voltage characteristics higher than the total voltage of the external battery 300 the generation of leakage current by the external battery 300 can be prevented or reduced.
  • the output transistor 120 is protected from a surge voltage generated in the motor 115.
  • the function and the function of preventing or reducing the occurrence of leakage current by the external battery 300 can be combined.
  • the protective diode 171 becomes conductive due to the surge voltage.
  • the surge current is consumed in a closed circuit including the protective diode 171 and the motor 115, and no high voltage is applied to the output transistor 120. Therefore, the output transistor 120 can be protected from a surge voltage generated by the motor 115.
  • the protective diode 171 is in an off state because only a low reverse voltage is applied to the protective diode 171. Thereby, the closed circuit including the protective diode 171 and the motor 115 is cut off, and the occurrence of leakage current by the external battery 300 can be prevented or reduced. Further, the closed circuit including the protective diode 171 and the output transistor 120 is cut off, and a short circuit of the built-in battery can be avoided.
  • a protective diode 171 is connected to the motor 115 in parallel with the output transistor 120, and from the outer negative terminal 104 to the outer positive terminal 103.
  • the reduction resistor 174 may be connected to the protection diode 171.
  • the closed circuit including the protection diode 171 and the motor 115 is in a conductive state.
  • a protective diode 171 is connected to the motor 115 in parallel with the output transistor 120, and from the outer negative terminal 104 to the outer positive terminal 103.
  • the capacitor 175 may be connected to the protection diode 171. Capacitor 175 blocks the direct current component of the current. Since the leakage current generated by the external battery 300 is a direct current, the leakage current of the external battery 300 does not flow through a closed circuit including the protection diode 171 and the motor 115.
  • the capacitor 175 can prevent or reduce the occurrence of leakage current by the external battery 300 when the output transistor 120 is in a steady state.
  • the instantaneously generated surge voltage is absorbed and reduced by the capacitor 175, thereby protecting the output transistor 120 from the surge voltage.
  • DESCRIPTION OF SYMBOLS 100 Battery type power supply device, 103 ... Outer positive terminal, 104 ... Outer negative terminal, 105 ... Inner positive terminal, 106 ... Inner negative terminal, 108, 109, 110 ... Wiring cable, 114 ... Power switch, 115 ... Motor, 120 ... Output transistor, 121 ... DCDC converter, 122 ... RFIC, 123 ... Inverter, 124,125 ... Pull-up resistor, 171 ... Protective diode, 172 ... Zener diode.

Abstract

The present invention protects an internal circuit of a battery-shaped power source device from surge voltage generated in an inductive load, and prevents or reduces exhaustion of an external battery which is used together with the battery-shaped power source device. A battery-shaped power source device 100 includes: a battery container part 102 having an inside positive electrode terminal 105 and an inside negative electrode terminal 106 which are in contact with the front and rear terminals of a built-in battery contained in a housing 118 having a shape and size conforming to a battery standard; an outside positive electrode terminal 103 connected to the inside positive electrode terminal; an outside negative electrode terminal 104 connected to the inside negative electrode terminal; an output transistor 120 interposed between the inside negative electrode terminal and the outside negative electrode terminal, or between the inside positive electrode terminal and the outside positive electrode terminal; a diode 171 that is arranged to be parallel, with respect to a load 115, to the output transistor and to be in the forward direction from the outside negative electrode terminal to the outside positive electrode terminal; and a Zener diode 172 connected to the diode so as to be oriented in a direction opposite to that of the diode.

Description

電池形電源装置Battery type power supply
 本発明は、電池形電源装置に関する。 The present invention relates to a battery-type power supply device.
 外観が円柱形状で乾電池と見ることができる無線受信駆動装置がある(特許文献1)。特許文献1には、無線受信駆動装置が、内蔵電池と無線受信駆動装置受信基板部を収納し、該無線受信駆動装置受信基板部の出力端子をモータの入力端子に接続する構成が開示されている。この無線受信駆動装置を電動式のおもちゃ乗り物の電池ボックスにセットすることで、おもちゃ乗り物に無線通信機能を付与することができる。ユーザは無線受信駆動装置を操作する装置を使って、おもちゃ乗り物を動かすことができる。 There is a wireless reception drive device that can be seen as a dry cell with a cylindrical appearance (Patent Document 1). Patent Document 1 discloses a configuration in which a wireless reception driving device houses a built-in battery and a wireless reception driving device reception board portion, and an output terminal of the wireless reception driving device reception board portion is connected to an input terminal of a motor. Yes. By setting this wireless reception driving device in the battery box of an electric toy vehicle, a wireless communication function can be imparted to the toy vehicle. The user can move the toy vehicle using a device that operates the wireless reception driving device.
 無線受信駆動装置をおもちゃ乗り物の電池ボックスに装着した状態で、無線受信駆動装置に対して、おもちゃ乗り物のモータ及び外部スイッチが直列に接続される。モータ等の誘導性負荷のオン/オフに伴って、モータには逆起電力による高いサージ電圧が発生する。モータでのサージ電圧の発生は、モータに接続されている無線受信駆動装置の基板の破損につながる。また、無線受信駆動装置に対して直列に外部電池が接続される場合がある。このように無線受信駆動装置が使用された場合、電動式おもちゃ乗り物のスイッチがオン状態であれば、おもちゃ乗り物が動いていない状態であっても、無線受信駆動装置の基板に外部電池のリーク電流が流れ込み、それにより外部電池が消耗してしまう可能性がある。 In the state where the wireless reception drive device is mounted on the battery box of the toy vehicle, the toy vehicle motor and the external switch are connected in series to the wireless reception drive device. As an inductive load such as a motor is turned on / off, a high surge voltage due to counter electromotive force is generated in the motor. Generation of a surge voltage in the motor leads to breakage of the substrate of the wireless reception driving device connected to the motor. In some cases, an external battery is connected in series to the wireless reception driving device. When the wireless reception driving device is used in this way, if the electric toy vehicle is switched on, the leakage current of the external battery on the substrate of the wireless reception driving device even if the toy vehicle is not moving May flow, and the external battery may be consumed.
実用新案登録第3143765号Utility model registration No. 3143765
 目的は、誘導性負荷で発生したサージ電圧から電池形電源装置の内部回路を保護するとともに、電池形電源装置と共に使用される外部電池の消耗を防止又は低減することにある。 The purpose is to protect the internal circuit of the battery-type power supply device from a surge voltage generated by an inductive load, and to prevent or reduce the consumption of the external battery used with the battery-type power supply device.
 本発明の一実施形態に係る電池形電源装置は、負荷と電池ボックスと前記負荷と前記電池ボックスとの間に介在される電源スイッチとを有する外部負荷装置の前記電池ボックスに外部電池と直列に装着される。電池規格に準じた形状及び寸法のハウジングと、前記ハウジングの内側に内蔵電池を収納するものであって、前記収納された内蔵電池の前後端子に接触する内側正極端子と内側負極端子とを有する電池収納部と、前記ハウジングの前端面に設けられ、前記内側正極端子に接続される外側正極端子と、前記ハウジングの後端面に設けられ、前記内側負極端子に接続される外側負極端子と、前記内側負極端子と前記外側負極端子との間、又は前記内側正極端子と前記外側正極端子との間に介在される出力トランジスタと、前記ハウジング内に収納されるアンテナと、前記アンテナを介して外部情報処理装置から受信したRF信号に従って前記出力トランジスタの制御信号を発生する制御回路と、前記負荷で発生した逆起電圧から前記出力トランジスタを保護するために、前記負荷に対して前記出力トランジスタと並列に、前記外側負極端子から前記外側正極端子に向かって順方向となるように配置されるダイオードと、前記外部電池のリーク電流を防止又は低減するために、前記ダイオードと逆向きに接続されるツェナーダイオードと、を具備する。 A battery-type power supply device according to an embodiment of the present invention includes a load, a battery box, a power switch interposed between the load and the battery box, and the battery box of the external load device in series with an external battery. Installed. A battery having a shape and size conforming to a battery standard, and a built-in battery inside the housing, the battery having an inner positive terminal and an inner negative terminal contacting the front and rear terminals of the stored built-in battery A housing portion; an outer positive terminal provided on a front end face of the housing and connected to the inner positive terminal; an outer negative terminal provided on a rear end face of the housing and connected to the inner negative terminal; An output transistor interposed between a negative electrode terminal and the outer negative terminal or between the inner positive terminal and the outer positive terminal, an antenna housed in the housing, and external information processing via the antenna A control circuit for generating a control signal for the output transistor in accordance with an RF signal received from the device; and the output transistor from a back electromotive voltage generated by the load. A diode disposed in parallel with the output transistor with respect to the load from the outer negative terminal toward the outer positive terminal, and a leakage current of the external battery. In order to prevent or reduce, a Zener diode connected in the opposite direction to the diode is provided.
図1は、第1実施形態に係る無線通信機能を備える電池形電源装置の外観を示す斜視図である。FIG. 1 is a perspective view showing an appearance of a battery-type power supply device having a wireless communication function according to the first embodiment. 図2は、第1実施形態に係る電池形電源装置の内部構造を示す図である。FIG. 2 is a diagram showing an internal structure of the battery-type power supply device according to the first embodiment. 図3は、第1実施形態に係る電池形電源装置の使用態様を示す図である。FIG. 3 is a diagram illustrating a usage mode of the battery-type power supply device according to the first embodiment. 図4は、第1実施形態に係る電池形電源装置の一例を示す等価回路図である。FIG. 4 is an equivalent circuit diagram illustrating an example of the battery-type power supply device according to the first embodiment. 図5は、第1実施形態に係る電池形電源装置の他の例を示す等価回路図である。FIG. 5 is an equivalent circuit diagram illustrating another example of the battery-type power supply device according to the first embodiment. 図6は、図5の電池形電源装置による通信間隔の変更処理の手順を示すフローチャートである。FIG. 6 is a flowchart showing a procedure for changing the communication interval by the battery-type power supply device of FIG. 図7は、第2実施形態に係る電池形電源装置の一例を示す等価回路図である。FIG. 7 is an equivalent circuit diagram illustrating an example of a battery-type power supply device according to the second embodiment. 図8は、図7のRFICの出力に対するDCDCコンバータのEN端子の入力信号の変化を示すタイミングチャートである。FIG. 8 is a timing chart showing changes in the input signal of the EN terminal of the DCDC converter with respect to the output of the RFIC of FIG. 図9は、第3実施形態に係る電池形電源装置の一例を示す等価回路図である。FIG. 9 is an equivalent circuit diagram illustrating an example of a battery-type power supply device according to the third embodiment. 図10は、第4実施形態に係る電池形電源装置の一例を示す等価回路図である。FIG. 10 is an equivalent circuit diagram illustrating an example of a battery-type power supply device according to the fourth embodiment. 図11は、図10のRFICによるPWM制御中の各端子の入出力の変化を示すタイミングチャートである。FIG. 11 is a timing chart showing changes in input / output of each terminal during PWM control by the RFIC of FIG. 図12は、図10のRFICの制御部による送受信動作のオン/オフの切り替え処理の手順を示すフローチャートである。FIG. 12 is a flowchart showing the procedure of the on / off switching process of the transmission / reception operation by the control unit of the RFIC of FIG. 図13は、第5実施形態に係る電池形電源装置の一例を示す等価回路図である。FIG. 13 is an equivalent circuit diagram showing an example of a battery-type power supply device according to the fifth embodiment. 図14は、図13の電源スイッチのオン/オフに伴って変動する各トランジスタの端子電圧レベルを示す図である。FIG. 14 is a diagram showing the terminal voltage level of each transistor that varies as the power switch of FIG. 13 is turned on / off. 図15は、第2実施形態に係る電池形電源装置の他の第1例を示す等価回路図である。FIG. 15 is an equivalent circuit diagram illustrating another first example of the battery-type power supply device according to the second embodiment. 図16は、第2実施形態に係る電池形電源装置の他の第2例を示す等価回路図である。FIG. 16 is an equivalent circuit diagram illustrating another second example of the battery-type power supply device according to the second embodiment. 図17は、第2実施形態に係る電池形電源装置の他の第3例を示す等価回路図である。FIG. 17 is an equivalent circuit diagram showing another third example of the battery-type power supply device according to the second embodiment. 図18は、第2実施形態に係る電池形電源装置の他の第4例を示す等価回路図である。FIG. 18 is an equivalent circuit diagram showing another fourth example of the battery-type power supply device according to the second embodiment.
 以下、図面を参照しながら本発明の一実施形態に係る無線機能を備えた電池形電源装置100を説明する。以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。 Hereinafter, a battery-type power supply device 100 having a wireless function according to an embodiment of the present invention will be described with reference to the drawings. In the following description, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description will be given only when necessary.
 図1は、第1実施形態に係る無線通信機能を備える電池形電源装置100の外観を示す斜視図である。図2は、第1実施形態に係る電池形電源装置100の内部構造を示す図である。第1実施形態に係る無線機能を備えた電池形電源装置100(以下、単に電池形電源装置100と称す)は、電池規格に準じた形状及び外寸で構成される。典型的には電池形電源装置100は、単3形規格に準じた高さ及び直径の円柱体で構成される。しかし、電池形電源装置100は、他の電池規格に準じた形状及び寸法で構成されていてもよい。ここでは電池形電源装置100は単3形規格に準じているものとして説明する。なお、他の第2乃至第5実施形態に係る電池形電源装置100も第1実施形態に係る電池形電源装置100と同様の形状及び寸法で構成される。 FIG. 1 is a perspective view showing an appearance of a battery-type power supply device 100 having a wireless communication function according to the first embodiment. FIG. 2 is a diagram showing an internal structure of the battery-type power supply device 100 according to the first embodiment. The battery-type power supply device 100 having a wireless function according to the first embodiment (hereinafter simply referred to as the battery-type power supply device 100) is configured with a shape and outer dimensions in accordance with the battery standard. Typically, the battery-type power supply device 100 is configured by a cylindrical body having a height and a diameter in accordance with the AA standard. However, the battery-type power supply device 100 may be configured with a shape and size according to other battery standards. Here, the description will be made assuming that the battery-type power supply device 100 conforms to the AA standard. The battery-type power supply devices 100 according to the second to fifth embodiments are also configured with the same shape and dimensions as the battery-type power supply device 100 according to the first embodiment.
 電池形電源装置100の本体部117は単3形電池規格と同一の形状及び寸法で構成された円筒状体のハウジング118に外装されている。本体部117の上端面(前端面ともいう)の中央には、外側正極端子103として円形状の導電板が取り付けられる。本体部の下端面(後端面ともいう)の中央には、外側負極端子104として円形状の導電板が取り付けられる。ハウジング118の周面の一部分は長円形状に切り欠かれている。切り欠き部119の長さは単4乾電池と同等であり、幅は単4乾電池の幅より若干広い。ユーザは、この切り欠き部119から単4形電池を電池収納部102に対して挿抜することができる。電池収納部102の形状は単4形規格に準じた長さ及び直径の円柱形状のスペースである。電池収納部102の中心軸は電池形電源装置100の円柱中心軸に対して半径方向にオフセットされる。このオフセットは、ハウジング118と電池収納部102との間に僅かなスペースを提供する。この僅かなスペースに電池形電源装置100の各種機能を実現する基板107が搭載される。 The main body 117 of the battery-type power supply device 100 is externally mounted on a cylindrical housing 118 having the same shape and size as the AA battery standard. A circular conductive plate is attached as the outer positive terminal 103 at the center of the upper end surface (also referred to as the front end surface) of the main body 117. A circular conductive plate is attached as the outer negative terminal 104 at the center of the lower end surface (also referred to as the rear end surface) of the main body. A part of the peripheral surface of the housing 118 is cut out in an oval shape. The length of the notch 119 is the same as that of the AAA battery, and the width is slightly wider than that of the AAA battery. The user can insert and remove the AAA battery from the notch 119 with respect to the battery storage unit 102. The shape of the battery housing portion 102 is a cylindrical space having a length and a diameter according to the AAA standard. The central axis of the battery housing portion 102 is offset in the radial direction with respect to the cylindrical central axis of the battery-type power supply device 100. This offset provides a small space between the housing 118 and the battery compartment 102. A board 107 for realizing various functions of the battery-type power supply device 100 is mounted in this small space.
 電池収納部102の前端中央、つまり外側正極端子103と同じ側には内側正極端子105として導電板が取り付けられる。電池収納部102の後端中央、外側負極端子104と同じ側には内側負極端子106としてバネ性を有した導電板が取り付けられる。電池収納部102に収納された単4乾電池の正極端子は内側正極端子105に接触し、単4乾電池の負極端子は内側負極端子106に接触する。内側負極端子106は配線ケーブル108を介して外側負極端子104と基板107とに接続される。内側負極端子106は外側負極端子104と共通導電板で構成されてもよい。内側正極端子105は配線ケーブル109により基板107に接続される。外側正極端子103は配線ケーブル110により基板107に接続される。 A conductive plate is attached as an inner positive terminal 105 at the center of the front end of the battery housing portion 102, that is, on the same side as the outer positive terminal 103. A conductive plate having a spring property is attached as the inner negative terminal 106 at the center of the rear end of the battery housing portion 102 and on the same side as the outer negative terminal 104. The positive terminal of the AAA battery stored in the battery storage unit 102 contacts the inner positive terminal 105, and the negative terminal of the AAA battery contacts the inner negative terminal 106. The inner negative terminal 106 is connected to the outer negative terminal 104 and the substrate 107 via the wiring cable 108. The inner negative terminal 106 may be composed of the outer negative terminal 104 and a common conductive plate. The inner positive terminal 105 is connected to the substrate 107 by a wiring cable 109. The outer positive terminal 103 is connected to the substrate 107 by a wiring cable 110.
 図3は図1の電池形電源装置100の使用状態を示す図である。図3に示すように、外部負荷装置111は、負荷115と電池ボックス112と電源スイッチ(外部スイッチ)114とを有する。ここでは外部負荷装置111は1本の単3乾電池で駆動する。電池形電源装置100は電池ボックス112に単独で装着される。外部負荷装置111としては電動玩具、電動工作玩具、防災センサ、防犯センサ、懐中電灯、自転車ライト、電池式調理器、電気ウキ、電動ペット給餌装置、電池式ファン、電池式ハンドソープディスペンサー等の電子機器である。ここでは外部負荷装置111はモータ115で駆動する電動玩具として説明する。電動玩具の具体例としてはスイッチをオンすると一定速度で動くミニチュアの列車や、ミニチュアカー等である。モータ115には、伝達機構を介して車輪116が接続される。電源スイッチ114がオンされると、モータ115と電池ボックス112との電気的な接続が確保される。電源スイッチ114がオフされると、モータ115と電池ボックス112とは電気的に切断される。 FIG. 3 is a diagram showing a usage state of the battery-type power supply device 100 of FIG. As shown in FIG. 3, the external load device 111 includes a load 115, a battery box 112, and a power switch (external switch) 114. Here, the external load device 111 is driven by a single AA battery. The battery-type power supply device 100 is mounted on the battery box 112 alone. The external load device 111 is an electronic toy, electric work toy, disaster prevention sensor, security sensor, flashlight, bicycle light, battery cooker, electric cooker, electric pet feeding device, battery powered fan, battery powered hand soap dispenser, etc. Equipment. Here, the external load device 111 will be described as an electric toy driven by a motor 115. Specific examples of the electric toy are a miniature train that moves at a constant speed when the switch is turned on, a miniature car, and the like. Wheels 116 are connected to the motor 115 via a transmission mechanism. When the power switch 114 is turned on, electrical connection between the motor 115 and the battery box 112 is ensured. When the power switch 114 is turned off, the motor 115 and the battery box 112 are electrically disconnected.
 外部情報処理装置200はスマートフォンや、携帯電話機や、タブレット端末、ラジオコントロール通信機等の通信機能及び操作機能等を備えた典型的には携帯型のディジタル電子機器である。もちろん、外部情報処理装置200は、電池形電源装置100を操作するための専用機であってもよい。ユーザは、外部情報処理装置200を操作することで、モータ115をオン/オフすることができる。また、ユーザは、外部情報処理装置200を操作することでモータ出力指示値を0%(駆動信号出力なし)から100%(駆動信号出力値最大)までの間の任意の値を指定することができる。電池形電源装置100は外部情報処理装置200と無線接続される。外部情報処理装置200から電池形電源装置100にはユーザにより選択されたモータ出力指示が無線で送信される。後述するように、電池形電源装置100の電池収納部102の内側正極端子105と外側正極端子103との間又は内側負極端子106と外側負極端子104との間に出力トランジスタ120が介在される。電池形電源装置100は外部情報処理装置200からのモータ出力指示に従って出力トランジスタ120をON/OFFさせることで、電源出力を調整する。 The external information processing apparatus 200 is typically a portable digital electronic device having a communication function and an operation function such as a smartphone, a mobile phone, a tablet terminal, and a radio control communication device. Of course, the external information processing apparatus 200 may be a dedicated machine for operating the battery-type power supply apparatus 100. The user can turn on / off the motor 115 by operating the external information processing apparatus 200. In addition, the user may designate an arbitrary value between 0% (no drive signal output) and 100% (maximum drive signal output value) by operating the external information processing apparatus 200. it can. The battery-type power supply device 100 is wirelessly connected to the external information processing device 200. A motor output instruction selected by the user is wirelessly transmitted from the external information processing apparatus 200 to the battery-type power supply apparatus 100. As will be described later, an output transistor 120 is interposed between the inner positive terminal 105 and the outer positive terminal 103 or between the inner negative terminal 106 and the outer negative terminal 104 of the battery housing portion 102 of the battery-type power supply device 100. The battery-type power supply device 100 adjusts the power output by turning on / off the output transistor 120 in accordance with a motor output instruction from the external information processing device 200.
 (第1実施形態) 
 第1実施形態に係る電池形電源装置100は、電源スイッチ114のオン/オフに連動してオン/オフする。具体的には、電池形電源装置100の無線通信機能が電源スイッチ114のオン/オフに連動してオン/オフする。図4は、第1実施形態に係る電池形電源装置100の一例を示す等価回路図である。ここでは、電池ボックス112には、電池形電源装置100が外部電池に直列に接続されるように装着されている。電池形電源装置100の電池収納部102には内蔵電池が装着されている。
(First embodiment)
The battery-type power supply device 100 according to the first embodiment is turned on / off in conjunction with the power switch 114 being turned on / off. Specifically, the wireless communication function of the battery-type power supply device 100 is turned on / off in conjunction with the power switch 114 being turned on / off. FIG. 4 is an equivalent circuit diagram illustrating an example of the battery-type power supply device 100 according to the first embodiment. Here, the battery-type power supply device 100 is attached to the battery box 112 so as to be connected in series to an external battery. A built-in battery is mounted in the battery housing portion 102 of the battery-type power supply device 100.
 (回路構成) 
 第1実施形態に係る電池形電源装置100は、出力トランジスタ120、DCDCコンバータ(内部電源回路)121、RFIC(制御回路)122、インバータ123、プルアップ抵抗(検出抵抗)124、プルアップ抵抗125及びリーク電流防止部170を有する。これら電子部品は基板107に実装される。
(Circuit configuration)
The battery-type power supply device 100 according to the first embodiment includes an output transistor 120, a DCDC converter (internal power supply circuit) 121, an RFIC (control circuit) 122, an inverter 123, a pull-up resistor (detection resistor) 124, a pull-up resistor 125, A leakage current prevention unit 170 is included. These electronic components are mounted on the substrate 107.
 出力トランジスタ120は、典型的にはPチャンネルMOSFETであり、内側正極端子105と外側正極端子103との間に介在される。出力トランジスタ120のソース端子は、配線ケーブル109を介して内側正極端子105に接続される。出力トランジスタ120のドレイン端子は、配線ケーブル110を介して外側正極端子103に接続される。 The output transistor 120 is typically a P-channel MOSFET, and is interposed between the inner positive terminal 105 and the outer positive terminal 103. The source terminal of the output transistor 120 is connected to the inner positive terminal 105 via the wiring cable 109. The drain terminal of the output transistor 120 is connected to the outer positive terminal 103 via the wiring cable 110.
 プルアップ抵抗(検出抵抗)124は、内側正極端子105と外側正極端子103との間に、出力トランジスタ120と並列に配置される。プルアップ抵抗125は、出力トランジスタ120のゲート端子と内側正極端子105との間に介在される。 The pull-up resistor (detection resistor) 124 is disposed in parallel with the output transistor 120 between the inner positive terminal 105 and the outer positive terminal 103. The pull-up resistor 125 is interposed between the gate terminal of the output transistor 120 and the inner positive terminal 105.
 DCDCコンバータ121のVcc端子は内側正極端子105に接続され、EN端子は外側正極端子103に接続され、OUTPUT端子はRFIC122のVdd端子に接続される。DCDCコンバータ121は、内部電源回路であり、電池収納部102に装着された単4乾電池の電池電圧Vccを内部回路動作用の例えば3.0Vの電源電圧Vddに昇圧する。DCDCコンバータ121は、そのEN端子がハイレベルのとき電源電圧VddをRFIC122に給電し、そのEN端子がローレベルのとき電源電圧VddをRFIC122に給電しないように構成されている。ここでは、DCDCコンバータ121がRFIC122の駆動電圧を給電する内部電源回路として機能するが、RFIC122に駆動電圧を給電する内部電源回路はDCDCコンバータ121以外の他の電子部品等であってもよい。 The Vcc terminal of the DCDC converter 121 is connected to the inner positive terminal 105, the EN terminal is connected to the outer positive terminal 103, and the OUTPUT terminal is connected to the Vdd terminal of the RFIC 122. The DCDC converter 121 is an internal power supply circuit, and boosts the battery voltage Vcc of the AAA dry battery mounted in the battery storage unit 102 to a power supply voltage Vdd of, for example, 3.0 V for internal circuit operation. The DCDC converter 121 is configured to supply the power supply voltage Vdd to the RFIC 122 when the EN terminal is at a high level, and not to supply the power supply voltage Vdd to the RFIC 122 when the EN terminal is at a low level. Here, the DCDC converter 121 functions as an internal power supply circuit that supplies the driving voltage of the RFIC 122, but the internal power supply circuit that supplies the driving voltage to the RFIC 122 may be an electronic component other than the DCDC converter 121.
 出力トランジスタ120のドレイン端子とDCDCコンバータ121のEN端子との間にはインバータ123が介在される。DCDCコンバータ121の入力段にインバータ123を配置することで、モータ115に発生する逆起電圧によるDCDCコンバータの破壊等を回避することができる。インバータ123の入力端子は出力トランジスタ120のドレイン端子に接続され、出力端子はDCDCコンバータ121のEN端子に接続される。インバータ123は、入力信号を反転して出力する。 An inverter 123 is interposed between the drain terminal of the output transistor 120 and the EN terminal of the DCDC converter 121. By disposing the inverter 123 at the input stage of the DCDC converter 121, it is possible to avoid destruction of the DCDC converter due to the counter electromotive voltage generated in the motor 115. The input terminal of the inverter 123 is connected to the drain terminal of the output transistor 120, and the output terminal is connected to the EN terminal of the DCDC converter 121. The inverter 123 inverts the input signal and outputs it.
 RFIC122は、電源電圧Vddで駆動し、電池形電源装置100を統括して制御する制御回路である。RFIC122のANT端子には無線通信用のアンテナ127が接続される。RFIC122のOUTPUT端子は出力トランジスタ120のゲート端子に接続される。RFIC122は、機能上、通信部、制御信号発生部、制御部等を備える。通信部は、制御部の制御に従って駆動され、アンテナ127を介して外部情報処理装置200とBluetooth(登録商標)規格に準拠した無線通信を行う。なお、RFIC122は、他の無線通信規格、例えば無線LAN規格に準拠した無線通信を行ってもよい。通信部は、アンテナ127を介して外部情報処理装置200からモータ115のオン/オフを表すコード無線信号を受信する。モータ115のオンを表すコード無線信号を受信したとき、制御信号発生部は、制御部の制御に従って駆動され、ローレベルのゲート制御信号を発生する。モータ115のオフを表すコード無線信号を受信したとき、制御信号発生部は、制御部の制御に従って、ハイレベルのゲート制御信号を発生する。または、制御信号発生部は、制御部の制御に従ってオフされ、それによりOUTPUT端子は開放される。制御信号発生部により発生されるゲート制御信号のハイレベルとは、出力トランジスタ120のしきい値電圧Vthよりも十分低い電圧値であり、ローレベルとは、出力トランジスタ120のしきい値電圧Vthよりも十分高い電圧値である。 The RFIC 122 is a control circuit that is driven by the power supply voltage Vdd and controls the battery-type power supply device 100 in an integrated manner. An antenna 127 for wireless communication is connected to the ANT terminal of the RFIC 122. The OUTPUT terminal of the RFIC 122 is connected to the gate terminal of the output transistor 120. The RFIC 122 functionally includes a communication unit, a control signal generation unit, a control unit, and the like. The communication unit is driven under the control of the control unit, and performs wireless communication with the external information processing apparatus 200 via the antenna 127 in conformity with the Bluetooth (registered trademark) standard. Note that the RFIC 122 may perform wireless communication complying with another wireless communication standard, for example, a wireless LAN standard. The communication unit receives a code wireless signal indicating on / off of the motor 115 from the external information processing apparatus 200 via the antenna 127. When the code wireless signal indicating ON of the motor 115 is received, the control signal generator is driven according to the control of the controller and generates a low level gate control signal. When the code wireless signal indicating that the motor 115 is turned off is received, the control signal generation unit generates a high-level gate control signal according to the control of the control unit. Alternatively, the control signal generator is turned off in accordance with the control of the controller, thereby opening the OUTPUT terminal. The high level of the gate control signal generated by the control signal generator is a voltage value sufficiently lower than the threshold voltage Vth of the output transistor 120, and the low level is higher than the threshold voltage Vth of the output transistor 120. Is a sufficiently high voltage value.
 出力トランジスタ120は、ゲートに入力されるゲート制御信号により印加される電圧(ゲート電圧)により、そのオン/オフが制御される。ゲート電圧がしきい値電圧Vthよりも十分低いローレベルであるとき、ソース・ドレイン間にチャネルが形成され、最大ドレイン電流が流れる。この状態は出力トランジスタ120がオン状態である。出力トランジスタ120がオンされると、電池形電源装置100の外側正極端子103と外側負極端子104との間に内蔵電池を介して電流が流れる。外部負荷装置111の電源スイッチ114がオン状態であれば、電池形電源装置100の外側正極端子103と外側負極端子104との間に電流が流れ、外部負荷装置111のモータ115が駆動する。一方、ゲート電圧がしきい値電圧Vthよりも十分高いハイレベルであるとき、ソース・ドレイン間にドレイン電流が流れない。この状態は出力トランジスタ120がオフ状態である。出力トランジスタ120がオフされると、電池形電源装置100の外側正極端子103と外側負極端子104との間が遮断される。これにより、外部負荷装置111の電源スイッチ114がオン状態であっても、外部負荷装置111の回路は遮断され、モータ115は駆動しない。 The output transistor 120 is controlled to be turned on / off by a voltage (gate voltage) applied by a gate control signal input to the gate. When the gate voltage is at a low level sufficiently lower than the threshold voltage Vth, a channel is formed between the source and the drain, and the maximum drain current flows. In this state, the output transistor 120 is on. When the output transistor 120 is turned on, a current flows between the outer positive terminal 103 and the outer negative terminal 104 of the battery-type power supply device 100 via the built-in battery. If the power switch 114 of the external load device 111 is in the ON state, a current flows between the outer positive terminal 103 and the outer negative terminal 104 of the battery type power supply device 100, and the motor 115 of the external load device 111 is driven. On the other hand, when the gate voltage is at a high level sufficiently higher than the threshold voltage Vth, no drain current flows between the source and the drain. In this state, the output transistor 120 is off. When the output transistor 120 is turned off, the outer positive terminal 103 and the outer negative terminal 104 of the battery-type power supply device 100 are disconnected. Thereby, even if the power switch 114 of the external load device 111 is in the ON state, the circuit of the external load device 111 is cut off and the motor 115 is not driven.
 保護用ダイオード171は、モータ115に対して出力トランジスタ120と並列に、外側負極端子104から外側正極端子103に向かって順方向となるように配置される。ツェナーダイオード172は、保護用ダイオード171と逆向きに配置される。ここでは、保護用ダイオード171及びツェナーダイオード172は、外側正極端子103と外側負極端子104との間にモータ115に対して出力トランジスタ120及び内蔵電池に並列に接続される。保護用ダイオード171の入力端子は外側負極端子104に接続され、出力端子はツェナーダイオード172の出力端子に接続され、ツェナーダイオード172の入力端子は外側正極端子103に接続される。 The protective diode 171 is arranged in parallel with the output transistor 120 with respect to the motor 115 so as to be in the forward direction from the outer negative terminal 104 toward the outer positive terminal 103. The Zener diode 172 is disposed in the opposite direction to the protective diode 171. Here, the protective diode 171 and the Zener diode 172 are connected in parallel to the output transistor 120 and the built-in battery with respect to the motor 115 between the outer positive terminal 103 and the outer negative terminal 104. The input terminal of the protective diode 171 is connected to the outer negative terminal 104, the output terminal is connected to the output terminal of the Zener diode 172, and the input terminal of the Zener diode 172 is connected to the outer positive terminal 103.
 ツェナーダイオード172のツェナー電圧と保護用ダイオード171の順方向電圧との合計電圧は、出力トランジスタ120の逆降伏電圧の絶対値よりも小さい。それにより、出力トランジスタ120のオン/オフに伴って、モータ115で瞬間的にサージ電圧(逆起電圧)が発生しても、サージ電流が保護用ダイオード171とモータ115とを含む閉回路で消費される。それにより出力トランジスタ120のドレイン-ソース間に高電圧がかかることを回避することができ、出力トランジスタ120をモータ115で発生したサージ電圧から保護することができる。 The total voltage of the Zener voltage of the Zener diode 172 and the forward voltage of the protective diode 171 is smaller than the absolute value of the reverse breakdown voltage of the output transistor 120. Accordingly, even if a surge voltage (counterelectromotive voltage) is instantaneously generated in the motor 115 as the output transistor 120 is turned on / off, the surge current is consumed in a closed circuit including the protection diode 171 and the motor 115. Is done. Thereby, it can be avoided that a high voltage is applied between the drain and source of the output transistor 120, and the output transistor 120 can be protected from the surge voltage generated by the motor 115.
 また、ツェナーダイオード172のツェナー電圧と保護用ダイオード171の順方向電圧との合計電圧は、少なくとも外部電池300の合計電圧よりも大きい。それにより、外部スイッチ114がオンされた状態で、出力トランジスタ120が定常状態であるとき、つまり、外部スイッチ114がオン状態でモータ115でサージ電圧が発生していないとき、ツェナーダイオード172にはツェナー電圧よりも低い逆方向電圧しかかからないため、ツェナーダイオード172はオフ状態である。保護用ダイオード171とモータ115とを含む閉回路はツェナーダイオード172により遮断され、それにより外部電池300によるリーク電流の発生を防止又は低減することができる。なお、外部スイッチ114と出力トランジスタ120とが共にオン状態であるとき、保護用ダイオード171にはダイオードの逆降伏電圧よりも低い逆方向電圧しかかからないため、保護用ダイオードはオフ状態である。そのため出力トランジスタ120と内蔵電池と保護用ダイオード171とを含む閉回路は保護用ダイオード171により遮断され、それにより内蔵電池のショートを回避することができる。 Further, the total voltage of the Zener voltage of the Zener diode 172 and the forward voltage of the protection diode 171 is at least larger than the total voltage of the external battery 300. Thus, when the output transistor 120 is in a steady state with the external switch 114 turned on, that is, when the external switch 114 is on and no surge voltage is generated in the motor 115, the Zener diode 172 has a Zener diode 172. Since only a reverse voltage lower than the voltage is applied, the Zener diode 172 is in the OFF state. The closed circuit including the protective diode 171 and the motor 115 is interrupted by the Zener diode 172, thereby preventing or reducing the occurrence of leakage current by the external battery 300. When both the external switch 114 and the output transistor 120 are in the on state, the protective diode 171 is applied with a reverse voltage lower than the reverse breakdown voltage of the diode, and thus the protective diode is in the off state. Therefore, the closed circuit including the output transistor 120, the built-in battery, and the protective diode 171 is blocked by the protective diode 171, thereby avoiding a short circuit of the built-in battery.
 (動作説明) 
 以下、電源スイッチ114がオフされている状態を外部負荷装置11のオフ状態、電源スイッチ114がオンされているがモータ115が動作していない状態を外部負荷装置111の待機状態、モータ115が動作している状態を外部負荷装置111の動作状態という。また、RFIC122の制御部が駆動していない状態を電池形電源装置100のオフ状態、RFIC122の制御部は駆動しているが、無線通信部による送受信動作がオフされている状態を電池形電源装置100の待機状態、無線通信部による送受信動作がオンされている状態を電池形電源装置100の通信可能状態、RFIC122からゲート制御信号が出力されている状態を電池形電源装置100の動作状態という。
(Description of operation)
Hereinafter, when the power switch 114 is off, the external load device 11 is off, when the power switch 114 is on but the motor 115 is not operating, the external load device 111 is on standby, and the motor 115 operates This state is referred to as an operating state of the external load device 111. Further, the state in which the control unit of the RFIC 122 is not driven is in the off state of the battery-type power supply device 100, and the state in which the control unit of the RFIC 122 is being driven but the transmission / reception operation by the wireless communication unit is off is the battery-type power supply device. The standby state of 100, the state in which the transmission / reception operation by the wireless communication unit is turned on is referred to as a communicable state of the battery-type power supply device 100, and the state in which the gate control signal is output from the RFIC 122 is referred to as the operation state of the battery-type power supply device 100.
 第1実施形態に係る電池形電源装置100の一つの特徴は、電源スイッチ114のオン/オフに連動して、外側正極端子103の、基準電位に対する電圧レベルが変動するように、内側正極端子105と外側正極端子103との間に出力トランジスタ120と並列にプルアップ抵抗(検出抵抗)124を配置したことにある。ここでは、基準電位はGND電位とする。電源スイッチ114がオフされているとき、外側正極端子103はプルアップ抵抗124を介して内側正極端子105に接続されるため、ハイレベルである。一方、電源スイッチ114がオフからオンに切り替わると、外側正極端子103は電源スイッチ114を経由してGNDに接続されるため、ハイレベルからローレベルに切り替わる。このように、電源スイッチ114のオン/オフに連動して外側正極端子103の電圧レベルは変動する。電池形電源装置100は、外側正極端子103の電圧レベルの変動を検出することで、電源スイッチ114のオン/オフを検出する。 One feature of the battery-type power supply device 100 according to the first embodiment is that the inner positive terminal 105 is configured so that the voltage level of the outer positive terminal 103 with respect to the reference potential varies in conjunction with the on / off of the power switch 114. In other words, a pull-up resistor (detection resistor) 124 is arranged in parallel with the output transistor 120 between the outer positive terminal 103 and the outer positive terminal 103. Here, the reference potential is set to the GND potential. When the power switch 114 is turned off, the outer positive terminal 103 is connected to the inner positive terminal 105 via the pull-up resistor 124 and is therefore at a high level. On the other hand, when the power switch 114 is switched from OFF to ON, the outer positive terminal 103 is connected to GND via the power switch 114, and thus switches from the high level to the low level. In this way, the voltage level of the outer positive terminal 103 varies in conjunction with the on / off of the power switch 114. The battery-type power supply device 100 detects ON / OFF of the power switch 114 by detecting a change in the voltage level of the outer positive terminal 103.
 外部負荷装置111が初期状態であるとき、インバータ123の入力端子はプルアップ抵抗124を介して内側正極端子105に接続されるためハイレベルであり、DCDCコンバータ121のEN端子(インバータ123の出力端子)はローレベルである。したがって、DCDCコンバータ121により発生された電源電圧VddがRFIC122に給電されない。そのため、電池形電源装置100はオフ状態である。 When the external load device 111 is in the initial state, the input terminal of the inverter 123 is connected to the inner positive terminal 105 through the pull-up resistor 124 and is therefore at a high level, and the EN terminal of the DCDC converter 121 (the output terminal of the inverter 123). ) Is low level. Therefore, the power supply voltage Vdd generated by the DCDC converter 121 is not supplied to the RFIC 122. Therefore, the battery-type power supply device 100 is in an off state.
 電源スイッチ114がオンされたとき、インバータ123の入力端子は電源スイッチ114を経由してGNDに接続されるためハイレベルからローレベルに切り替わり、DCDCコンバータ121のEN端子はローレベルからハイレベルに切り替わる。それにより、DCDCコンバータ121により発生された電源電圧VddがRFIC122に給電され、それによりRFIC122の制御部は駆動し、電池形電源装置100の状態はオフ状態から待機状態に遷移する。RFIC122が駆動されたのを契機に、制御部の制御に従って、無線通信部による送受信動作がオフからオンに切り替えられ、それにより電池形電源装置100は待機状態から通信可能状態に遷移する。 When the power switch 114 is turned on, the input terminal of the inverter 123 is connected to GND via the power switch 114, so that it switches from high level to low level, and the EN terminal of the DCDC converter 121 switches from low level to high level. . Thereby, the power supply voltage Vdd generated by the DCDC converter 121 is supplied to the RFIC 122, whereby the control unit of the RFIC 122 is driven, and the state of the battery-type power supply device 100 is changed from the off state to the standby state. When the RFIC 122 is driven, the transmission / reception operation by the wireless communication unit is switched from OFF to ON according to the control of the control unit, whereby the battery-type power supply device 100 transitions from the standby state to the communicable state.
 電源スイッチ114がオフされたとき、再びインバータ123の入力端子はプルアップ抵抗124を介して内側正極端子105に接続されるためローレベルからハイレベルに切り替わり、それによりRFIC122はオフされ、電池形電源装置100の状態は通信可能状態からオフ状態に切り替わる。 When the power switch 114 is turned off, the input terminal of the inverter 123 is again connected to the inner positive terminal 105 through the pull-up resistor 124, so that it switches from the low level to the high level. The state of the apparatus 100 is switched from the communicable state to the off state.
 電池形電源装置100が通信可能状態であるとき、電池形電源装置100は、外部情報処理装置200から受信した無線信号に従って、種々の処理を行うことができる。例えば無線通信部を介して、外部情報処理装置200からモータ115のオンを指示するコード無線信号を受信したとき、制御信号発生部はローレベルのゲート制御信号を発生する。それにより出力トランジスタ120のゲート端子はローレベルになるため、出力トランジスタ120はオンし、モータ115が駆動する。このように、ユーザは、外部情報処理装置200を操作することで、外部負荷装置111を自由なタイミングでオンすることができる。 When the battery-type power supply apparatus 100 is in a communicable state, the battery-type power supply apparatus 100 can perform various processes according to the radio signal received from the external information processing apparatus 200. For example, when a code wireless signal instructing to turn on the motor 115 is received from the external information processing apparatus 200 via the wireless communication unit, the control signal generating unit generates a low-level gate control signal. As a result, the gate terminal of the output transistor 120 becomes low level, so that the output transistor 120 is turned on and the motor 115 is driven. Thus, the user can turn on the external load device 111 at any timing by operating the external information processing device 200.
 図4で説明したように、第1実施形態に係る電池形電源装置100によれば、外部負荷装置111の電源スイッチ114のオンに連動して電池形電源装置100の状態をオフ状態から通信可能状態に切り替え、電源スイッチ114のオフに連動して、通信可能状態からオフ状態に切り替えることができる。これにより、電池形電源装置100は、その状態をオフ状態と通信可能状態との間で切り替えるためのスイッチを装備する必要がなく、これは装置の小型化と部品コストの低減に寄与する。また、外部負荷装置111が初期状態であるとき、DCDCコンバータ121とRFIC122とが駆動していないため、不要な電力消費を低減することができる。 As described with reference to FIG. 4, according to the battery-type power supply device 100 according to the first embodiment, the state of the battery-type power supply device 100 can be communicated from the off state in conjunction with the power switch 114 of the external load device 111 being turned on. It is possible to switch from the communicable state to the off state in conjunction with the power switch 114 being switched off. Thereby, the battery-type power supply device 100 does not need to be equipped with a switch for switching the state between the off state and the communicable state, which contributes to downsizing of the device and reduction of component costs. Further, when the external load device 111 is in the initial state, the DCDC converter 121 and the RFIC 122 are not driven, so that unnecessary power consumption can be reduced.
 なお、第1実施形態に係る電池形電源装置100では、インバータ123の出力信号をDCDCコンバータ121に入力しているが、インバータ123の出力信号をRFIC122に入力する構成であってもよい。 In the battery-type power supply device 100 according to the first embodiment, the output signal of the inverter 123 is input to the DCDC converter 121, but the output signal of the inverter 123 may be input to the RFIC 122.
 図5は、第1実施形態に係る電池形電源装置100の他の例を示す等価回路図である。インバータ123の出力端子はRFIC122のINPUT端子に接続される。RFIC122の入力段にインバータ123を配置することで、モータ115に発生する逆起電圧によるRFIC122の破壊等を回避することができる。DCDCコンバータ121のEN端子は内側正極端子105に接続される。したがって、内蔵電池が電子収納部2に装着されている間、DCDCコンバータ121はオンされるため、電池形電源装置100は待機状態である。 FIG. 5 is an equivalent circuit diagram showing another example of the battery-type power supply device 100 according to the first embodiment. The output terminal of the inverter 123 is connected to the INPUT terminal of the RFIC 122. By disposing the inverter 123 at the input stage of the RFIC 122, destruction of the RFIC 122 due to a counter electromotive voltage generated in the motor 115 can be avoided. The EN terminal of the DCDC converter 121 is connected to the inner positive terminal 105. Accordingly, since the DCDC converter 121 is turned on while the built-in battery is mounted in the electronic storage unit 2, the battery-type power supply device 100 is in a standby state.
 RFIC122は、外側正極端子103の電圧レベルで判別される電源スイッチ114のオン/オフに従って、アンテナ127を介したRF信号の送受信動作のオン/オフを切り替える。図4で説明したように、電源スイッチ114のオン/オフは、インバータ123の出力信号の電圧レベルで判別できる。電源スイッチ114がオンしているとき、インバータ123の出力信号はハイレベルであり、電源スイッチ114がオフしているとき、インバータ123の出力信号がローレベルである。したがって、INPUT端子がローレベルのとき、電源スイッチ114はオフされていると判別されるため、制御部の制御に従って無線通信部による送受信動作がオフされ、電池形電源装置100の状態が通信可能状態から待機状態に切り替わる。INPUT端子がハイレベルのとき、電源スイッチ114はオンされていると判別されるため、制御部の制御に従って無線通信部による送受信動作がオンされ、電池形電源装置100の状態は待機状態から通信可能状態に切り替わる。制御部による無線通信部の送受信動作のオン/オフの切り替えは、無線通信部の通信モジュールへの駆動電圧Vddの給電を制御することで行われる。もちろん、制御部による無線通信部の送受信動作のオン/オフの切り替えは、通信モジュールが駆動している状態で、ソフトウェアで電波の出力を制御することで行われてもよい。 The RFIC 122 switches on / off of the transmission / reception operation of the RF signal via the antenna 127 according to on / off of the power switch 114 determined by the voltage level of the outer positive terminal 103. As described with reference to FIG. 4, the power switch 114 can be turned on / off based on the voltage level of the output signal of the inverter 123. When the power switch 114 is on, the output signal of the inverter 123 is at a high level, and when the power switch 114 is off, the output signal of the inverter 123 is at a low level. Therefore, when the INPUT terminal is at a low level, it is determined that the power switch 114 is turned off. Therefore, the transmission / reception operation by the wireless communication unit is turned off under the control of the control unit, and the state of the battery-type power supply device 100 is communicable. Switches from standby to standby. When the INPUT terminal is at a high level, it is determined that the power switch 114 is turned on. Therefore, the transmission / reception operation by the wireless communication unit is turned on under the control of the control unit, and the state of the battery-type power supply device 100 can be communicated from the standby state. Switch to state. Switching of the transmission / reception operation of the wireless communication unit by the control unit is performed by controlling the feeding of the drive voltage Vdd to the communication module of the wireless communication unit. Of course, on / off switching of the transmission / reception operation of the wireless communication unit by the control unit may be performed by controlling the output of radio waves with software while the communication module is driven.
 図5で説明したように、第1実施形態に係る電池形電源装置100の他の例によれば、外部負荷装置111の電源スイッチ114のオンに連動して、電池形電源装置100の状態を待機状態から通信可能状態に切り替え、電源スイッチ114のオフに連動して、通信可能状態から待機状態に切り替えることができる。これより、電池形電源装置100は、その状態を待機状態と通信可能状態との間で切り替えるためのスイッチを装備する必要がなく、これは装置の小型化と部品コストの低減に寄与する。また、外部負荷装置111が初期状態であるとき、DCDCコンバータ121とRFIC122とが駆動していないため、不要な電力消費を低減することができる。 As described in FIG. 5, according to another example of the battery-type power supply device 100 according to the first embodiment, the state of the battery-type power supply device 100 is changed in conjunction with the power switch 114 of the external load device 111 being turned on. The standby state can be switched to the communicable state, and the communicable state can be switched to the standby state in conjunction with the power switch 114 being turned off. Thus, the battery-type power supply device 100 does not need to be equipped with a switch for switching the state between the standby state and the communicable state, which contributes to the downsizing of the device and the reduction of component costs. Further, when the external load device 111 is in the initial state, the DCDC converter 121 and the RFIC 122 are not driven, so that unnecessary power consumption can be reduced.
 また、図5のように回路を構成することで、内蔵電池が電池収納部102に装着されている間、電池形電源装置100は待機状態である。制御部は、電源スイッチ114のオン/オフに連動して、無線通信部による送受信動作のオン/オフ以外の処理を実行してもよい。例えば、制御部は、電源スイッチ114のオン/オフに連動して、外部情報処理装置200との間の通信間隔を変更させる。図6は、図5の電池形電源装置100による通信間隔の変更処理の手順を示すフローチャートである。外部負荷装置111が初期状態であるとき、電池形電源装置100は待機状態である。無線通信部は、制御部の制御に従って、外部情報処理装置200と通信間隔T1で通信する(ステップS11)。電源スイッチ114がオンされたとき(ステップS12)、つまりRFIC122のINPUT端子がローレベルからハイレベルに切り替わったとき、無線通信部は、制御部の制御に従って、外部情報処理装置200と通信間隔T1よりも短い通信間隔T2で通信する(ステップS13)。通信間隔T1,T2はプリセットされていてもよいし、外部情報処理装置200を介してユーザにより設定された値であってもよい。電源スイッチ114がオフされたとき(ステップS14)、つまりRFIC122のINPUT端子がハイレベルからローレベルに切り替わったとき、処理ステップはステップS11に戻り、無線通信部は、制御部の制御に従って、外部情報処理装置200と通信間隔T1で通信する。 Further, by configuring the circuit as shown in FIG. 5, the battery-type power supply device 100 is in a standby state while the built-in battery is mounted in the battery storage unit 102. The control unit may execute processing other than on / off of the transmission / reception operation by the wireless communication unit in conjunction with the on / off of the power switch 114. For example, the control unit changes the communication interval with the external information processing apparatus 200 in conjunction with the on / off of the power switch 114. FIG. 6 is a flowchart showing a procedure of a communication interval changing process by the battery-type power supply device 100 of FIG. When the external load device 111 is in the initial state, the battery-type power supply device 100 is in a standby state. The wireless communication unit communicates with the external information processing apparatus 200 at the communication interval T1 according to the control of the control unit (step S11). When the power switch 114 is turned on (step S12), that is, when the INPUT terminal of the RFIC 122 is switched from the low level to the high level, the wireless communication unit is connected to the external information processing apparatus 200 and the communication interval T1 according to the control of the control unit. The communication is performed with a short communication interval T2 (step S13). The communication intervals T1 and T2 may be preset, or may be values set by the user via the external information processing apparatus 200. When the power switch 114 is turned off (step S14), that is, when the INPUT terminal of the RFIC 122 is switched from the high level to the low level, the processing step returns to step S11, and the wireless communication unit performs external information according to the control of the control unit. It communicates with the processing apparatus 200 at the communication interval T1.
 外部負荷装置111が待機状態であるとき、外部情報処理装置200との間の通信間隔を短くすることで、外部情報処理装置200からの指示に対する電池形電源装置100の応答速度を向上し、また、外部情報処理装置200との間の通信の接続性も向上することができる。また、外部負荷装置111がオフ状態(電源スイッチ114がオフ状態)であるとき、外部情報処理装置200との間の通信間隔を長くすることで、不要な電力消費を低減することができる。 When the external load device 111 is in a standby state, the response interval of the battery-type power supply device 100 with respect to an instruction from the external information processing device 200 is improved by shortening the communication interval with the external information processing device 200, and Also, the connectivity of communication with the external information processing apparatus 200 can be improved. Further, when the external load device 111 is in the off state (the power switch 114 is in the off state), unnecessary power consumption can be reduced by increasing the communication interval with the external information processing device 200.
 (第2実施形態) 
 第2実施形態に係る電池形電源装置100は、第1実施形態に係る電池形電源装置100の出力トランジスタ120のゲート制御信号としてPWM信号を使用可能に構成される。
(Second Embodiment)
The battery-type power supply device 100 according to the second embodiment is configured such that a PWM signal can be used as a gate control signal of the output transistor 120 of the battery-type power supply device 100 according to the first embodiment.
 (回路構成) 
 図7は、第2実施形態に係る電池形電源装置100の一例を示す等価回路図である。第2実施形態に係る電池形電源装置100の一つの特徴は、DCDCコンバータ121のEN端子の前段にOR回路131が配置される点にある。第2実施形態に係る電池形電源装置100において、保護用ダイオード171及びツェナーダイオード172は、第1実施形態に係る電池形電源装置100と同様に接続され、それにより第1実施形態と同様の効果を発揮する。
(Circuit configuration)
FIG. 7 is an equivalent circuit diagram illustrating an example of the battery-type power supply device 100 according to the second embodiment. One feature of the battery-type power supply device 100 according to the second embodiment is that an OR circuit 131 is arranged in front of the EN terminal of the DCDC converter 121. In the battery-type power supply device 100 according to the second embodiment, the protective diode 171 and the Zener diode 172 are connected in the same manner as the battery-type power supply device 100 according to the first embodiment, and thereby the same effects as in the first embodiment. Demonstrate.
 OR回路131は2つの入力端子と1つの出力端子とを有する。OR回路131は、その2つの入力端子のうち、少なくとも一方がハイレベルのとき、ハイレベルの信号を出力する。また、OR回路131は、その2つの入力端子の両方がローレベルのときローレベルの信号を出力する。OR回路131の出力端子はDCDCコンバータ121のEN端子に接続される。OR回路131の出力端子とDCDCコンバータ121のEN端子との間にはローパスフィルタ132が介在される。ローパスフィルタ132は、例えば抵抗とコンデンサとで構成される。ローパスフィルタ132は、遮断周波数より低い周波数の成分を通過させ、遮断周波数より高い周波数の成分を逓減させ、ノイズ等による瞬間的な信号の変動を抑制する。 The OR circuit 131 has two input terminals and one output terminal. The OR circuit 131 outputs a high level signal when at least one of the two input terminals is at a high level. The OR circuit 131 outputs a low level signal when both of its two input terminals are at a low level. The output terminal of the OR circuit 131 is connected to the EN terminal of the DCDC converter 121. A low pass filter 132 is interposed between the output terminal of the OR circuit 131 and the EN terminal of the DCDC converter 121. The low-pass filter 132 is composed of, for example, a resistor and a capacitor. The low-pass filter 132 allows a component having a frequency lower than the cutoff frequency to pass therethrough, gradually decreases a component having a frequency higher than the cutoff frequency, and suppresses instantaneous signal fluctuation due to noise or the like.
 OR回路131の一方の入力端子(第1入力端子)は、RFIC122のOUTPUT端子に接続される。OR回路131の他方の入力端子(第2入力端子)は、検出トランジスタ130を経由して内側正極端子105に接続される。また、OR回路131の第1、第2入力端子はプルダウン抵抗136,135を介してGNDに接続される。 One input terminal (first input terminal) of the OR circuit 131 is connected to the OUTPUT terminal of the RFIC 122. The other input terminal (second input terminal) of the OR circuit 131 is connected to the inner positive terminal 105 via the detection transistor 130. The first and second input terminals of the OR circuit 131 are connected to GND via pull-down resistors 136 and 135.
 RFIC122のOUTPUT端子と出力トランジスタ120のゲート端子との間にはインバータ133が介在される。インバータ133の出力は出力トランジスタ120のゲートに入力される。 An inverter 133 is interposed between the OUTPUT terminal of the RFIC 122 and the gate terminal of the output transistor 120. The output of the inverter 133 is input to the gate of the output transistor 120.
 検出トランジスタ130は、典型的にはPチャンネルMOSFETであり、電源スイッチ114のオン/オフを検出する。検出トランジスタ130のドレイン端子はOR回路131の第2入力端子に接続され、ソース端子は内側正極端子105に接続され、ゲート端子は外側正極端子103に接続される。第1実施形態と同様に、プルアップ抵抗(検出抵抗)124は、内側正極端子105と外側正極端子103との間に出力トランジスタ120と並列に配置される。それにより、電源スイッチ114のオン/オフに連動して、外側正極端子103の信号レベルをローレベルとハイレベルとの間で切り替えることができる。検出トランジスタ130のゲート端子を外側正極端子103に接続することで、電源スイッチ114のオン/オフに連動して検出トランジスタ130をオン/オフさせることができる。 The detection transistor 130 is typically a P-channel MOSFET, and detects ON / OFF of the power switch 114. The drain terminal of the detection transistor 130 is connected to the second input terminal of the OR circuit 131, the source terminal is connected to the inner positive terminal 105, and the gate terminal is connected to the outer positive terminal 103. Similar to the first embodiment, the pull-up resistor (detection resistor) 124 is arranged in parallel with the output transistor 120 between the inner positive terminal 105 and the outer positive terminal 103. Thereby, the signal level of the outer positive terminal 103 can be switched between the low level and the high level in conjunction with the on / off of the power switch 114. By connecting the gate terminal of the detection transistor 130 to the outer positive terminal 103, the detection transistor 130 can be turned on / off in conjunction with the on / off of the power switch 114.
 制御信号発生部は、制御部の制御に従って、受信したモータ出力指示値に応じたゲート制御信号を発生する。ここでは、ゲート制御信号は、PWM(パルス幅信号変調)信号で提供される。例えば、モータ出力指示値が0%の場合において、制御信号発生部はデューティー比0%(ローレベルのみ)のPWM信号を発生する。モータ出力指示値が100%の場合において、制御信号発生部はデューティー比100%(ハイレベルのみ)のPWM信号を発生する。モータ出力指示値が50%の場合において、制御信号発生部はデューティー比50%(ローレベルとハイレベルの比が半分)の信号を発生する。制御信号発生部により発生されたPWM信号は出力トランジスタ120にゲート制御信号として入力される。 The control signal generation unit generates a gate control signal corresponding to the received motor output instruction value according to the control of the control unit. Here, the gate control signal is provided as a PWM (pulse width signal modulation) signal. For example, when the motor output instruction value is 0%, the control signal generator generates a PWM signal with a duty ratio of 0% (only low level). When the motor output instruction value is 100%, the control signal generator generates a PWM signal with a duty ratio of 100% (only high level). When the motor output instruction value is 50%, the control signal generator generates a signal with a duty ratio of 50% (the ratio between the low level and the high level is half). The PWM signal generated by the control signal generator is input to the output transistor 120 as a gate control signal.
 PWM信号がハイレベル(ゲート端子がローレベル)のとき、出力トランジスタ120はオン状態である。そのため、外部負荷装置111の回路は導通され、モータ115は駆動する。PWM信号(ゲート制御信号)がローレベル(ゲート端子がハイレベル)のとき、出力トランジスタ120はオフ状態である。そのため、外部負荷装置111の回路は遮断され、モータ115は駆動しない。PWM信号がゲート端子に入力されている間、モータ115は回転開始と回転停止とを所定の周期で繰り返す。出力トランジスタ120がオンからオフに切り替わると、モータ115はそのコイル特性により、徐々に回転が落ちていくこととなるが、出力トランジスタ120がオンからオフに切り替わると再度回転が速くなる。この特性を使って、PWM制御によりモータ115を任意の回転数で回転させることができる。 When the PWM signal is at a high level (the gate terminal is at a low level), the output transistor 120 is on. Therefore, the circuit of the external load device 111 is conducted and the motor 115 is driven. When the PWM signal (gate control signal) is at a low level (the gate terminal is at a high level), the output transistor 120 is in an off state. Therefore, the circuit of the external load device 111 is cut off and the motor 115 is not driven. While the PWM signal is input to the gate terminal, the motor 115 repeats the rotation start and the rotation stop at a predetermined cycle. When the output transistor 120 is switched from on to off, the motor 115 gradually rotates due to its coil characteristics. However, when the output transistor 120 is switched from on to off, the rotation becomes faster again. Using this characteristic, the motor 115 can be rotated at an arbitrary rotational speed by PWM control.
 (動作説明) 
 第2実施形態に係る電池形電源装置100の一つの特徴は、DCDCコンバータ121の前段にOR回路131を配置した点にある。OR回路131は、RFIC122から出力されるゲート制御信号と検出トランジスタ130の検出信号との入力を受け、論理和の演算結果として、DCDCコンバータ121にハイレベル又はローレベルの信号を出力する。それにより、電源スイッチ114がオン状態であれば、電池形電源装置100が通信可能状態からオフ状態又は待機状態に切り替わるのを回避することができる。
(Description of operation)
One feature of the battery-type power supply device 100 according to the second embodiment is that an OR circuit 131 is arranged in the previous stage of the DCDC converter 121. The OR circuit 131 receives the gate control signal output from the RFIC 122 and the detection signal of the detection transistor 130, and outputs a high-level or low-level signal to the DCDC converter 121 as a logical sum operation result. Thereby, if the power switch 114 is in the on state, the battery-type power supply device 100 can be prevented from switching from the communicable state to the off state or the standby state.
 具体的には、外部負荷装置111が初期状態であるとき、検出トランジスタ130もRFIC122もオフされているため、OR回路131の第1、第2入力端子はそれぞれプルダウン抵抗136,135を経由してGNDに接続されるため、ローレベルである。したがって、DCDCコンバータ121により発生された電源電圧VddがRFIC122に給電されない。そのため、電池形電源装置100はオフ状態である。 Specifically, when the external load device 111 is in the initial state, both the detection transistor 130 and the RFIC 122 are turned off, so that the first and second input terminals of the OR circuit 131 go through the pull-down resistors 136 and 135, respectively. Since it is connected to GND, it is at a low level. Therefore, the power supply voltage Vdd generated by the DCDC converter 121 is not supplied to the RFIC 122. Therefore, the battery-type power supply device 100 is in an off state.
 電源スイッチ114がオンされたとき、検出トランジスタ130のゲート端子は、電源スイッチ114を経由してGNDに接続されるためハイレベルからローレベルに切り替わる。OR回路131の第2入力端子は検出トランジスタ130を経由して内側正極端子105に接続されローレベルからハイレベルに切り替わり、それによりOR回路131はハイレベルの信号を出力する。DCDCコンバータ121のEN端子がローレベルからハイレベルに切り替わり、DCDCコンバータ121により発生された電源電圧VddがRFIC122に給電され、それによりRFIC122の制御部は駆動し、電池形電源装置100の状態はオフ状態から待機状態に切り替わる。RFIC122の制御部が駆動されたのを契機に、制御部の制御に従って、無線通信部による送受信動作がオフからオンに切り替えられ、電池形電源装置100の状態は待機状態から通信可能状態に切り替わる。出力トランジスタ120は、外部情報処理装置200からのモータ出力指示に応じたPWM信号に従ってその電源出力が調整される。 When the power switch 114 is turned on, the gate terminal of the detection transistor 130 is connected to GND via the power switch 114, so that the high level is switched to the low level. The second input terminal of the OR circuit 131 is connected to the inner positive terminal 105 via the detection transistor 130 and is switched from the low level to the high level, whereby the OR circuit 131 outputs a high level signal. The EN terminal of the DCDC converter 121 is switched from the low level to the high level, and the power supply voltage Vdd generated by the DCDC converter 121 is supplied to the RFIC 122, whereby the control unit of the RFIC 122 is driven and the state of the battery-type power supply device 100 is off. Switch from state to standby state. When the control unit of the RFIC 122 is driven, the transmission / reception operation by the wireless communication unit is switched from OFF to ON according to the control of the control unit, and the state of the battery-type power supply device 100 is switched from the standby state to the communicable state. The power output of the output transistor 120 is adjusted according to a PWM signal according to a motor output instruction from the external information processing apparatus 200.
 電源スイッチ114がオンされた状態で、出力トランジスタ120がオフされたとき(出力トランジスタ120のゲート端子がハイレベルであるとき)、検出トランジスタ130のゲート端子は電源スイッチ114を介してGNDに接続されるためローレベルであり、それにより検出トランジスタ130はオンされる。検出トランジスタ130がオンされることで、OR回路131の第1入力端子は検出トランジスタ130を介して内側正極端子105に接続されるためハイレベルであり、それによりOR回路131はハイレベルの信号をDCDCコンバータ121に出力する。 When the output transistor 120 is turned off with the power switch 114 turned on (when the gate terminal of the output transistor 120 is at high level), the gate terminal of the detection transistor 130 is connected to GND via the power switch 114. Therefore, the detection transistor 130 is turned on. When the detection transistor 130 is turned on, the first input terminal of the OR circuit 131 is connected to the inner positive electrode terminal 105 via the detection transistor 130, so that the OR circuit 131 outputs a high level signal. It outputs to the DCDC converter 121.
 電源スイッチ114がオンされた状態で、出力トランジスタ120がオンされたとき(出力トランジスタ120のゲート端子がローレベルであるとき)、検出トランジスタ130のゲート端子は出力トランジスタ120を介して内側正極端子105に接続されるためハイレベルであり、それにより検出トランジスタ130はオフされる。OR回路131の第1入力端子は、プルダウン抵抗136を介してGNDに接続されるためローレベルである。一方で、出力トランジスタ120がオンされているとき、OUTPUT端子から出力されているゲート制御信号はハイレベルである。したがって、OR回路131の第2入力端子はOUTPUT端子に接続されるためハイレベルであり、それによりOR回路131はハイレベルの信号をDCDCコンバータ121に出力する。 When the output transistor 120 is turned on with the power switch 114 turned on (when the gate terminal of the output transistor 120 is at a low level), the gate terminal of the detection transistor 130 is connected to the inner positive terminal 105 via the output transistor 120. Therefore, the detection transistor 130 is turned off. Since the first input terminal of the OR circuit 131 is connected to GND through the pull-down resistor 136, it is at a low level. On the other hand, when the output transistor 120 is turned on, the gate control signal output from the OUTPUT terminal is at a high level. Therefore, since the second input terminal of the OR circuit 131 is connected to the OUTPUT terminal, it is at a high level, whereby the OR circuit 131 outputs a high level signal to the DCDC converter 121.
 したがって、ゲート制御信号により出力トランジスタ120がオフされている間、OR回路131の第1入力端子がハイレベル、第2入力端子がローレベルであるため、OR回路131はハイレベルの信号を出力する。一方、出力トランジスタ120がオンされている間、OR回路131の第1入力端子がローレベル、第2入力端子がハイレベルであるため、OR回路131はハイレベルの信号を出力する。 Therefore, while the output transistor 120 is turned off by the gate control signal, the OR circuit 131 outputs a high level signal because the first input terminal of the OR circuit 131 is at the high level and the second input terminal is at the low level. . On the other hand, while the output transistor 120 is on, the OR circuit 131 outputs a high level signal because the first input terminal of the OR circuit 131 is at a low level and the second input terminal is at a high level.
 このように、電源スイッチ114がオンされていれば、出力トランジスタ120がゲート制御信号によりオン/オフされても、OR回路131はオン状態を維持することができる。それにより、ゲート制御信号にPWM信号を使用した場合でも、電池形電源装置100の状態を通信可能状態で維持することができる。PWM信号の使用が可能となることで、電源出力を0%から100%の範囲で自在に調整できる電源装置を提供することができる。それにより、例えば第2実施形態に係る電池形電源装置100を電池ボックス112に装着するだけで、元々、電源出力を調整する手段を装備していない外部負荷装置111に電源出力を調整する手段を与えることができる。ユーザは、外部情報処理装置200を操作して、例えば電池形電源装置100を装着する電動玩具の動作速度を自由に変更することができる。 Thus, if the power switch 114 is turned on, the OR circuit 131 can maintain the on state even if the output transistor 120 is turned on / off by the gate control signal. Thereby, even when a PWM signal is used as the gate control signal, the state of the battery-type power supply device 100 can be maintained in a communicable state. Since the PWM signal can be used, it is possible to provide a power supply apparatus that can freely adjust the power supply output in the range of 0% to 100%. Thus, for example, by simply mounting the battery-type power supply device 100 according to the second embodiment in the battery box 112, means for adjusting the power output to the external load device 111 that is not originally equipped with means for adjusting the power output. Can be given. The user can operate the external information processing apparatus 200 to freely change the operation speed of the electric toy that is mounted with the battery-type power supply apparatus 100, for example.
 なお、第2実施形態では、OR回路131の出力信号をDCDCコンバータ121に入力する構成としたが、OR回路131の出力信号をRFIC122のINPUT端子に入力する構成にし、INPUT端子の信号レベルに従って、制御部により無線通信部による送受信動作のオン/オフが切り替えるようにしてもよい。
(第3実施形態) 
 第1、第2実施形態では、出力トランジスタ120にPチャンネルMOSFETを使用した場合の回路例について説明したが、出力トランジスタ120として、NチャンネルMOSFETを使用してもよい。NチャンネルMOSFETは、PチャンネルMOSFETに比べて安価なものがあり、NチャンネルMOSFETを使用することで、電池形電源装置100の部品コストを低減することができる。また、NチャンネルMOSFETは、PチャンネルMOSFETに比べて耐圧が高いものがあり、NチャンネルMOSFETを使用することで、電池形電源装置100に対して直列に接続できる外部電池の数を増やすことができる。これは、電池形電源装置100を使用できる外部負荷装置111の範囲の拡大が期待できる。なお、出力トランジスタ120は、バイポーラトランジスタであってもよく、その場合ゲート制御信号はベース制御信号と読み替えられる。
In the second embodiment, the output signal of the OR circuit 131 is input to the DCDC converter 121. However, the output signal of the OR circuit 131 is input to the INPUT terminal of the RFIC 122, and according to the signal level of the INPUT terminal, You may make it switch on / off of the transmission / reception operation | movement by a radio | wireless communication part by a control part.
(Third embodiment)
In the first and second embodiments, a circuit example in which a P-channel MOSFET is used as the output transistor 120 has been described. However, an N-channel MOSFET may be used as the output transistor 120. Some N-channel MOSFETs are less expensive than P-channel MOSFETs, and the use of an N-channel MOSFET can reduce the component cost of the battery-type power supply device 100. Some N-channel MOSFETs have a higher withstand voltage than P-channel MOSFETs, and the use of N-channel MOSFETs can increase the number of external batteries that can be connected in series to the battery-type power supply device 100. . This can be expected to expand the range of the external load device 111 in which the battery-type power supply device 100 can be used. The output transistor 120 may be a bipolar transistor, in which case the gate control signal is read as a base control signal.
 (回路構成) 
 図9は、第3実施形態に係る電池形電源装置100の一例を示す等価回路図である。図9は、図7の回路の出力トランジスタ140をPチャンネルMOSFETからNチャンネルMOSFETに変更した場合の回路例である。第3実施形態に係る電池形電源装置100において、保護用ダイオード171及びツェナーダイオード172は、第1実施形態に係る電池形電源装置100と同様に接続され、それにより第1実施形態と同様の効果を発揮する。
(Circuit configuration)
FIG. 9 is an equivalent circuit diagram illustrating an example of the battery-type power supply device 100 according to the third embodiment. FIG. 9 is a circuit example when the output transistor 140 of the circuit of FIG. 7 is changed from a P-channel MOSFET to an N-channel MOSFET. In the battery-type power supply device 100 according to the third embodiment, the protective diode 171 and the Zener diode 172 are connected in the same manner as the battery-type power supply device 100 according to the first embodiment, and thereby the same effects as in the first embodiment. Demonstrate.
 図9に示すように、OR回路131とDCDCコンバータ121とRFIC122との間の配線は図7の回路と同一である。出力トランジスタ140は内側負極端子106と外側負極端子104との間に介在される。出力トランジスタ140のソース端子は内側正極端子105に接続され、ドレイン端子は外側負極端子104に接続され、ゲート端子はRFIC122のOUTPUT端子に接続される。 As shown in FIG. 9, the wiring among the OR circuit 131, the DCDC converter 121, and the RFIC 122 is the same as the circuit of FIG. The output transistor 140 is interposed between the inner negative terminal 106 and the outer negative terminal 104. The output transistor 140 has a source terminal connected to the inner positive terminal 105, a drain terminal connected to the outer negative terminal 104, and a gate terminal connected to the OUTPUT terminal of the RFIC 122.
 第3実施形態では、2つの検出トランジスタで電源スイッチ114のオン/オフを検出する。第1検出トランジスタ130はPチャンネルMOSFETである。第1検出トランジスタ130のソース端子は内側正極端子105に接続され、ゲート端子は第2検出トランジスタ141のドレイン端子に接続され、ドレイン端子はOR回路131の第2入力端子に接続される。また、第1検出トランジスタ130がオフされているとき、OR回路131の第2入力端子をローレベルで安定させるために、OR回路131の第2入力端子はプルダウン抵抗135を介してGNDに接続される。さらに、第2検出トランジスタ141がオフされているとき、第1検出トランジスタ130のゲート端子をハイレベルで安定させるために、第1検出トランジスタ130のゲート端子はプルアップ抵抗134を介して内側正極端子105に接続される。第2検出トランジスタ141はNチャンネルMOSFETである。第2検出トランジスタ141のソース端子はGNDに接続され、ゲート端子は外側負極端子104に接続され、ドレイン端子は第1検出トランジスタ130のゲート端子に接続される。また、電源スイッチ114がオフされているとき、第2検出トランジスタ141のゲート端子をローレベルで安定させるために、第2検出トランジスタ141のゲート端子はプルダウン抵抗143を介しGNDに接続される。 In the third embodiment, on / off of the power switch 114 is detected by two detection transistors. The first detection transistor 130 is a P-channel MOSFET. The source terminal of the first detection transistor 130 is connected to the inner positive terminal 105, the gate terminal is connected to the drain terminal of the second detection transistor 141, and the drain terminal is connected to the second input terminal of the OR circuit 131. Further, when the first detection transistor 130 is turned off, the second input terminal of the OR circuit 131 is connected to the GND via the pull-down resistor 135 in order to stabilize the second input terminal of the OR circuit 131 at a low level. The Furthermore, in order to stabilize the gate terminal of the first detection transistor 130 at a high level when the second detection transistor 141 is turned off, the gate terminal of the first detection transistor 130 is connected to the inner positive terminal via the pull-up resistor 134. 105 is connected. The second detection transistor 141 is an N-channel MOSFET. The source terminal of the second detection transistor 141 is connected to GND, the gate terminal is connected to the outer negative terminal 104, and the drain terminal is connected to the gate terminal of the first detection transistor 130. Further, when the power switch 114 is turned off, the gate terminal of the second detection transistor 141 is connected to the GND via the pull-down resistor 143 in order to stabilize the gate terminal of the second detection transistor 141 at a low level.
 (動作説明) 
 外部負荷装置111が初期状態(電源スイッチ114がオフ状態)であるとき、第2検出トランジスタ141は、そのゲート端子がプルダウン抵抗143を介してGNDに接続されるためローレベルであり、オフ状態である。第1検出トランジスタ130は、そのゲート端子がプルアップ抵抗134を介して内側正極端子105に接続されるためハイレベルであり、オフ状態である。外部負荷装置111が初期状態でRFIC122は駆動していないため、ゲート制御信号は出力されない。したがって、OR回路131は、その第1、第2入力端子がそれぞれプルダウン抵抗136,135を経由してGNDに接続されるためローレベルであるため、ローレベルの信号を出力する。
(Description of operation)
When the external load device 111 is in an initial state (the power switch 114 is in an off state), the second detection transistor 141 is at a low level because its gate terminal is connected to GND via the pull-down resistor 143, and in the off state. is there. Since the gate terminal of the first detection transistor 130 is connected to the inner positive terminal 105 via the pull-up resistor 134, the first detection transistor 130 is at a high level and is in an off state. Since the external load device 111 is in an initial state and the RFIC 122 is not driven, no gate control signal is output. Therefore, the OR circuit 131 outputs a low-level signal because its first and second input terminals are connected to GND via the pull-down resistors 136 and 135, respectively, and thus are at a low level.
 電源スイッチ114がオンされたとき、第2検出トランジスタ141は、そのゲート端子が外側負極端子104、モータ115、電源スイッチ114、外側正極端子103を経由して内側正極端子105に接続されハイレベルであるため、オンされる。第1検出トランジスタ130は、そのゲート端子が第2検出トランジスタ141を経由してGNDに接続されローレベルであるため、オンされる。OR回路131の第2入力端子は第1検出トランジスタ130を経由して内側正極端子105に接続されローレベルからハイレベルに切り替わり、それによりOR回路131はハイレベルの信号を出力する。DCDCコンバータ121のEN端子がローレベルからハイレベルに切り替わり、DCDCコンバータ121により発生された電源電圧VddがRFIC122に給電され、それによりRFIC122の制御部は駆動し、電池形電源装置100の状態はオフ状態から待機状態に切り替わる。RFIC122の制御部が駆動されたのを契機に、制御部の制御に従って、無線通信部による送受信動作がオフからオンに切り替えられ、電池形電源装置100の状態は待機状態から通信可能状態に切り替わる。出力トランジスタ120は、外部情報処理装置200からのモータ出力指示に応じたPWM信号に従ってその電源出力が調整される。 When the power switch 114 is turned on, the gate terminal of the second detection transistor 141 is connected to the inner positive terminal 105 via the outer negative terminal 104, the motor 115, the power switch 114, and the outer positive terminal 103. Because there is, it is turned on. The first detection transistor 130 is turned on because its gate terminal is connected to GND via the second detection transistor 141 and is at a low level. The second input terminal of the OR circuit 131 is connected to the inner positive terminal 105 via the first detection transistor 130 and is switched from the low level to the high level, whereby the OR circuit 131 outputs a high level signal. The EN terminal of the DCDC converter 121 is switched from the low level to the high level, and the power supply voltage Vdd generated by the DCDC converter 121 is supplied to the RFIC 122, whereby the control unit of the RFIC 122 is driven and the state of the battery-type power supply device 100 is off. Switch from state to standby state. When the control unit of the RFIC 122 is driven, the transmission / reception operation by the wireless communication unit is switched from OFF to ON according to the control of the control unit, and the state of the battery-type power supply device 100 is switched from the standby state to the communicable state. The power output of the output transistor 120 is adjusted according to a PWM signal according to a motor output instruction from the external information processing apparatus 200.
 以上説明した第3実施形態に係る電池形電源装置100によれば、電源スイッチ114のオン/オフに連動して、その状態をオフ状態と通信可能状態との間で切り替えることができる。また、電源スイッチ114がオンされていれば、出力トランジスタ120がゲート制御信号によりオン/オフされても、OR回路131はオン状態を維持することができる。それにより、ゲート制御信号にPWM信号を使用した場合でも、電池形電源装置100の状態を通信可能状態で維持することができる。つまり、出力トランジスタ120にNチャンネルMOSFETを用いた場合であっても、出力トランジスタ120にPチャンネルMOSFETを用いた第2実施形態に係る電池形電源装置100と同様に動作させることができ、同様の効果を得られる。 According to the battery-type power supply device 100 according to the third embodiment described above, the state can be switched between the off state and the communicable state in conjunction with the on / off of the power switch 114. Further, if the power switch 114 is turned on, the OR circuit 131 can be kept on even when the output transistor 120 is turned on / off by the gate control signal. Thereby, even when a PWM signal is used as the gate control signal, the state of the battery-type power supply device 100 can be maintained in a communicable state. That is, even when an N-channel MOSFET is used for the output transistor 120, it can be operated in the same manner as the battery-type power supply device 100 according to the second embodiment using a P-channel MOSFET for the output transistor 120. The effect can be obtained.
 (第4実施形態) 
 第2実施形態に係る電池形電源装置100は、DCDCコンバータ121のEN端子の前段にOR回路131を配置し、OR回路131でRFIC122から出力されたPWM信号と検出トランジスタ130から出力された検出信号との論理和をとることで、出力トランジスタ120のゲート制御信号としてPWM信号を使用した場合でも、電源スイッチ114がオン状態であれば、電池形電源装置100を通信可能状態で維持することができる。第4実施形態に係る電池形電源装置100では、第2実施形態のOR回路131で行われる処理をRFIC122の内部で行う。
(Fourth embodiment)
In the battery-type power supply device 100 according to the second embodiment, an OR circuit 131 is disposed in front of the EN terminal of the DCDC converter 121. The OR circuit 131 outputs the PWM signal output from the RFIC 122 and the detection signal output from the detection transistor 130. If the power switch 114 is in the ON state even when the PWM signal is used as the gate control signal of the output transistor 120, the battery-type power supply device 100 can be maintained in a communicable state. . In the battery-type power supply device 100 according to the fourth embodiment, the processing performed by the OR circuit 131 of the second embodiment is performed inside the RFIC 122.
 (回路構成) 
 図10は、第1実施形態の図5の回路のインバータ123をPチャンネルMOSFETに換挿したときの回路例である。検出トランジスタ130のゲート端子は、外側正極端子103に接続され、ソース端子はDCDCコンバータ121のOUTPUT端子に接続され、ドレイン端子はRFIC122のINPUT端子に接続される。また、電源スイッチ114がオフされているとき、検出トランジスタ130のゲート端子をハイレベルで安定させるために、検出トランジスタ130のゲート端子はプルアップ抵抗134を介してDCDCコンバータ121のINPUT端子に接続される。さらに、検出トランジスタ130がオフされているとき、RFIC122のINPUT端子をローレベルで安定させるために、RFIC122のINPUT端子はプルダウン抵抗137を介してGNDに接続される。RFIC122のOUTPUT端子は出力トランジスタ120のゲート端子に接続される。RFIC122のOUTPUT端子と出力トランジスタ120のゲート端子との間には、インバータ133が介在される。インバータ133の入力端子はRFIC122のOUTPUT端子に接続され、出力端子は出力トランジスタ120のゲート端子に接続される。また、RFIC122のOUTPUT端子が開放されているとき、出力トランジスタ120のゲート端子をハイレベルで安定させるためにインバータ133の入力端子はプルダウン抵抗138を介してGNDに接続される。第4実施形態に係る電池形電源装置100において、保護用ダイオード171及びツェナーダイオード172は、第1実施形態に係る電池形電源装置100と同様に接続され、それにより第1実施形態と同様の効果を発揮する。
(Circuit configuration)
FIG. 10 is a circuit example when the inverter 123 of the circuit of FIG. 5 of the first embodiment is replaced with a P-channel MOSFET. The detection transistor 130 has a gate terminal connected to the outer positive terminal 103, a source terminal connected to the OUTPUT terminal of the DCDC converter 121, and a drain terminal connected to the INPUT terminal of the RFIC 122. Further, when the power switch 114 is turned off, the gate terminal of the detection transistor 130 is connected to the INPUT terminal of the DCDC converter 121 via the pull-up resistor 134 in order to stabilize the gate terminal of the detection transistor 130 at a high level. The Further, when the detection transistor 130 is turned off, the INPUT terminal of the RFIC 122 is connected to GND via a pull-down resistor 137 in order to stabilize the INPUT terminal of the RFIC 122 at a low level. The OUTPUT terminal of the RFIC 122 is connected to the gate terminal of the output transistor 120. An inverter 133 is interposed between the OUTPUT terminal of the RFIC 122 and the gate terminal of the output transistor 120. The input terminal of the inverter 133 is connected to the OUTPUT terminal of the RFIC 122, and the output terminal is connected to the gate terminal of the output transistor 120. Further, when the OUTPUT terminal of the RFIC 122 is opened, the input terminal of the inverter 133 is connected to the GND via the pull-down resistor 138 in order to stabilize the gate terminal of the output transistor 120 at a high level. In the battery-type power supply device 100 according to the fourth embodiment, the protective diode 171 and the Zener diode 172 are connected in the same manner as the battery-type power supply device 100 according to the first embodiment, and thereby the same effects as in the first embodiment. Demonstrate.
 (動作説明) 
 図11は、図10のRFIC122によるPWM制御中の各端子の入出力の変化を示すタイミングチャートである。図12は、図10のRFIC122による送受信動作のオン/オフの切り替え処理の手順を示すフローチャートである。制御部は、制御信号発生部により発生され、OUTPUT端子から出力されたゲート制御信号とINPUT端子に入力される信号との論理和に従って、無線通信部による送受信動作のオン/オフを制御する。具体的には、制御部は、OUTPUT端子から出力するゲート制御信号とINPUT端子に入力される信号との論理和がハイレベルのとき送受信動作をオンし、ローレベルのときオフする。
(Description of operation)
FIG. 11 is a timing chart showing changes in input / output of each terminal during PWM control by the RFIC 122 of FIG. FIG. 12 is a flowchart showing the procedure of the on / off switching process of the transmission / reception operation by the RFIC 122 of FIG. The control unit controls on / off of the transmission / reception operation by the wireless communication unit according to the logical sum of the gate control signal generated by the control signal generation unit and output from the OUTPUT terminal and the signal input to the INPUT terminal. Specifically, the control unit turns on the transmission / reception operation when the logical sum of the gate control signal output from the OUTPUT terminal and the signal input to the INPUT terminal is high level, and turns off when the logical sum is low level.
 図12に示すように、外部負荷装置111が初期状態(電源スイッチ114がオフ状態)であるとき、RFIC122のINPUT端子はローレベル、OUTPUT端子はローレベルである(ステップS21)。したがって、これら2つの端子の信号レベルの論理和はローレベルであるため、無線通信部による送受信動作はオンされていない。したがって、電池形電源装置100は、送受信動作がオフされた待機状態である。INPUT端子がローレベルからハイレベルに切り替わったとき、つまり電源スイッチ114がオンされたとき(ステップS22)、これら2つの端子の信号レベルの論理和はローレベルからハイレベルに切り替わる。それにより、制御部の制御に従って無線通信部による送受信動作がオンされ、電池形電源装置100の状態は待機状態から通信可能状態に切り替わる(ステップS23)。 As shown in FIG. 12, when the external load device 111 is in the initial state (the power switch 114 is off), the INPUT terminal of the RFIC 122 is at the low level and the OUTPUT terminal is at the low level (step S21). Therefore, since the logical sum of the signal levels of these two terminals is low level, the transmission / reception operation by the wireless communication unit is not turned on. Therefore, the battery-type power supply device 100 is in a standby state in which the transmission / reception operation is turned off. When the INPUT terminal is switched from the low level to the high level, that is, when the power switch 114 is turned on (step S22), the logical sum of the signal levels of these two terminals is switched from the low level to the high level. Thereby, the transmission / reception operation by the wireless communication unit is turned on under the control of the control unit, and the state of the battery-type power supply device 100 is switched from the standby state to the communicable state (step S23).
 INPUT端子がハイレベルのとき(ステップS24のYes)、制御部の制御に従って無線通信部による送受信動作がオン状態で維持され、それにより電池形電源装置100は通信可能状態で維持される(ステップS26)。INPUT端子がローレベルのとき、制御部はOUTPUT端子の信号レベルに従って、送受信動作のオン/オフを切り替える。INPUT端子がローレベル、OUTPUT端子がハイレベルのとき、ゲート制御信号のハイレベルにより出力トランジスタ120がオンされ、モータ115が駆動している状態である。したがって、電池形電源装置100は通信可能状態で維持すべきである。そのため、INPUT端子がローレベル(ステップS24のNo)、OUTPUT端子がハイレベルのとき(ステップS25のYes)、制御部の制御に従って無線通信部による送受信動作がオン状態で維持され、それにより電池形電源装置100は通信可能状態で維持される(ステップS26)。INPUT端子がローレベル、OUTPUT端子がローレベルのとき(または開放されているとき)は、電源スイッチ114がオフされている状態であり、不要な電力消費の低減の観点から、電池形電源装置100を通信可能状態から待機状態に切り替えるべきである。したがって、INPUT端子がローレベル(ステップS24のNo)、OUTPUT端子がローレベルのとき(ステップS25のNo)、制御部の制御に従って無線通信部による送受信動作がオンからオフに切り替えられ、それにより電池形電源装置100の状態は通信可能状態から待機状態に切り替わる(ステップS27)。 When the INPUT terminal is at a high level (Yes in step S24), the transmission / reception operation by the wireless communication unit is maintained in the on state according to the control of the control unit, whereby the battery-type power supply device 100 is maintained in the communicable state (step S26). ). When the INPUT terminal is at the low level, the control unit switches on / off of the transmission / reception operation according to the signal level of the OUTPUT terminal. When the INPUT terminal is at the low level and the OUTPUT terminal is at the high level, the output transistor 120 is turned on by the high level of the gate control signal, and the motor 115 is driven. Therefore, the battery-type power supply device 100 should be maintained in a communicable state. Therefore, when the INPUT terminal is at a low level (No in step S24) and the OUTPUT terminal is at a high level (Yes in step S25), the transmission / reception operation by the wireless communication unit is maintained in an on state according to the control of the control unit. The power supply apparatus 100 is maintained in a communicable state (step S26). When the INPUT terminal is at a low level and the OUTPUT terminal is at a low level (or open), the power switch 114 is turned off. From the viewpoint of reducing unnecessary power consumption, the battery-type power supply device 100 Should be switched from the communicable state to the standby state. Therefore, when the INPUT terminal is at a low level (No in step S24) and the OUTPUT terminal is at a low level (No in step S25), the transmission / reception operation by the wireless communication unit is switched from on to off according to the control of the control unit. The state of the power supply apparatus 100 is switched from the communicable state to the standby state (step S27).
 以上説明した制御部による送受信動作のオン/オフの切り替え制御により、図11に示すように、電源スイッチ114がオフされている間、送受信動作をオフし、電源スイッチ114がオンされている間、送受信動作をオンすることができる。したがって、第4実施形態に係る電池形電源装置100は、第2実施形態のようにOR回路131を配置することなく、第2実施形態に係る電池形電源装置100に比べて部品点数を少なくした状態で、ゲート制御信号としてPWM信号を使用することができる。なお、ここでは電源スイッチ114のオン/オフに連動して電池形電源装置100の通信機能をオン/オフするとしたが、図5で説明したように、電源スイッチ114のオン/オフに連動して電池形電源装置100の通信間隔を変更させてもよい。例えば、電源スイッチ114がオン状態であるとき通信間隔を短くすることで、外部情報処理装置200からの指示に対する電池形電源装置100の応答速度を向上し、また、外部情報処理装置200との間の通信の接続性も向上することができる。また、電源スイッチ114がオフされた状態で、外部情報処理装置200との間の通信間隔を長くすることで、不要な電力消費を低減することができる。 As shown in FIG. 11, the transmission / reception operation is turned off and the power switch 114 is turned on while the power switch 114 is turned off, as shown in FIG. The transmission / reception operation can be turned on. Therefore, the battery-type power supply device 100 according to the fourth embodiment reduces the number of parts compared to the battery-type power supply device 100 according to the second embodiment without arranging the OR circuit 131 as in the second embodiment. In the state, a PWM signal can be used as a gate control signal. Here, the communication function of the battery-type power supply device 100 is turned on / off in conjunction with the on / off of the power switch 114. However, as described with reference to FIG. The communication interval of the battery-type power supply device 100 may be changed. For example, by shortening the communication interval when the power switch 114 is in the ON state, the response speed of the battery-type power supply device 100 with respect to an instruction from the external information processing device 200 is improved, and between the external information processing device 200 The communication connectivity can be improved. Further, unnecessary power consumption can be reduced by increasing the communication interval with the external information processing apparatus 200 in a state where the power switch 114 is turned off.
 また、制御部による送受信動作のオン/オフの切り替えを制御する方法は上記に限定されない。例えば、制御部は、OUTPUT端子からゲート制御信号を出力している間、無線通信部による送受信動作のオン/オフ制御を行わないようにしてもよい。これにより、ゲート制御信号により出力トランジスタ120がオン/オフされ、INPUT端子の入力信号の電圧レベルが変化しても、電池形電源装置100を、OUTPUT端子からゲート制御信号が出力される直前の状態、つまり通信可能状態で維持することができる。 Further, the method for controlling the on / off switching of the transmission / reception operation by the control unit is not limited to the above. For example, the control unit may not perform the on / off control of the transmission / reception operation by the wireless communication unit while outputting the gate control signal from the OUTPUT terminal. As a result, even when the output transistor 120 is turned on / off by the gate control signal and the voltage level of the input signal at the INPUT terminal changes, the battery-type power supply device 100 is in a state immediately before the gate control signal is output from the OUTPUT terminal. That is, the communication can be maintained.
 (第5実施形態) 
 外部負荷装置111の負荷としてモータ115を用いた場合において、第5実施形態に係る電池形電源装置100は、外部負荷装置111のモータ115に流す電流の向きを変更することができる。第5実施形態に係る電池形電源装置100において、保護用ダイオード171及びツェナーダイオード172は、第1実施形態に係る電池形電源装置100と同様に接続され、それにより第1実施形態と同様の効果を発揮する。
(Fifth embodiment)
When the motor 115 is used as the load of the external load device 111, the battery-type power supply device 100 according to the fifth embodiment can change the direction of the current flowing through the motor 115 of the external load device 111. In the battery-type power supply device 100 according to the fifth embodiment, the protective diode 171 and the Zener diode 172 are connected in the same manner as the battery-type power supply device 100 according to the first embodiment, and thereby the same effects as in the first embodiment. Demonstrate.
 (回路構成) 
 図13は、第5実施形態に係る電池形電源装置100の一例を示す等価回路図である。第5実施形態に係る電池形電源装置100は、Hブリッジ回路160を備える。Hブリッジ回路は電池に対して並列に設けられる。Hブリッジ回路160は、4つの出力トランジスタ161,162,163,164を有する。第1、第3出力トランジスタ161,163はPチャンネルMOSFETである。第2、第4出力トランジスタ162,164はNチャンネルMOSFETである。
(Circuit configuration)
FIG. 13 is an equivalent circuit diagram illustrating an example of the battery-type power supply device 100 according to the fifth embodiment. The battery-type power supply device 100 according to the fifth embodiment includes an H bridge circuit 160. The H bridge circuit is provided in parallel to the battery. The H bridge circuit 160 includes four output transistors 161, 162, 163, and 164. The first and third output transistors 161 and 163 are P-channel MOSFETs. The second and fourth output transistors 162 and 164 are N-channel MOSFETs.
 検出トランジスタ130のゲート端子は外側正極端子103に接続される。電源スイッチ114がオフされているとき、検出トランジスタ130のゲート端子をハイレベルで安定させるために、検出トランジスタのゲート端子はプルアップ抵抗134を介して内側正極端子105に接続される。 The gate terminal of the detection transistor 130 is connected to the outer positive terminal 103. When the power switch 114 is turned off, the gate terminal of the detection transistor is connected to the inner positive terminal 105 via the pull-up resistor 134 in order to stabilize the gate terminal of the detection transistor 130 at a high level.
 第1出力トランジスタ161のソース端子は内側正極端子105に接続され、ドレイン端子は外側正極端子103に接続され、ゲート端子はインバータ156を介してRFIC122のOUTPUT1端子に接続される。RFIC122のOUTPUT1端子が開放されているとき、第1出力トランジスタ161のゲート端子をハイレベルで安定させるために、第1出力トランジスタ161のゲート端子はプルアップ抵抗151を介して内側正極端子105に接続される。電源スイッチ114がオフされているとき、第1出力トランジスタ161のドレイン端子をハイレベルで安定させるために、第1出力トランジスタ161のドレイン端子はプルアップ抵抗134を介して内側正極端子105に接続される。 The source terminal of the first output transistor 161 is connected to the inner positive terminal 105, the drain terminal is connected to the outer positive terminal 103, and the gate terminal is connected to the OUTPUT 1 terminal of the RFIC 122 via the inverter 156. When the OUTPUT1 terminal of the RFIC 122 is open, the gate terminal of the first output transistor 161 is connected to the inner positive terminal 105 via the pull-up resistor 151 in order to stabilize the gate terminal of the first output transistor 161 at a high level. Is done. When the power switch 114 is off, the drain terminal of the first output transistor 161 is connected to the inner positive terminal 105 via the pull-up resistor 134 in order to stabilize the drain terminal of the first output transistor 161 at a high level. The
 第2出力トランジスタ162のソース端子は内側負極端子106に接続され、ドレイン端子は外側正極端子103に接続され、ゲート端子はRFIC122のOUTPUT2端子に接続される。RFIC122のOUTPUT2端子が開放されているとき、第2出力トランジスタ162のゲート端子をローレベルで安定させるために、第2出力トランジスタ162のゲート端子はプルダウン抵抗152を介して内側負極端子106に接続される。電源スイッチ114がオフされているとき、第2出力トランジスタ162のドレイン端子をハイレベルで安定させるために、第2出力トランジスタ162のドレイン端子はプルアップ抵抗134を介して内側正極端子105に接続される。 The source terminal of the second output transistor 162 is connected to the inner negative terminal 106, the drain terminal is connected to the outer positive terminal 103, and the gate terminal is connected to the OUTPUT2 terminal of the RFIC 122. When the OUTPUT2 terminal of the RFIC 122 is open, the gate terminal of the second output transistor 162 is connected to the inner negative terminal 106 via the pull-down resistor 152 in order to stabilize the gate terminal of the second output transistor 162 at a low level. The When the power switch 114 is turned off, the drain terminal of the second output transistor 162 is connected to the inner positive terminal 105 via the pull-up resistor 134 in order to stabilize the drain terminal of the second output transistor 162 at a high level. The
 第3出力トランジスタ163のソース端子は内側正極端子105に接続され、ドレイン端子は外側負極端子104に接続され、ゲート端子はインバータ157を介してRFIC122のOUTPUT2端子に接続される。RFIC122のOUTPUT2端子が開放されているとき、第3出力トランジスタ163のゲート端子をハイレベルで安定させるために、第3出力トランジスタ163のゲート端子はプルアップ抵抗153を介して内側正極端子105に接続される。 The source terminal of the third output transistor 163 is connected to the inner positive terminal 105, the drain terminal is connected to the outer negative terminal 104, and the gate terminal is connected to the OUTPUT2 terminal of the RFIC 122 via the inverter 157. When the OUTPUT2 terminal of the RFIC 122 is open, the gate terminal of the third output transistor 163 is connected to the inner positive terminal 105 via the pull-up resistor 153 in order to stabilize the gate terminal of the third output transistor 163 at a high level. Is done.
 第4出力トランジスタ164のソース端子は内側負極端子106に接続され、ドレイン端子は外側負極端子104に接続され、ゲート端子はRFIC122のOUTPUT1端子に接続される。RFIC122のOUTPUT1端子が開放されているとき、第4出力トランジスタ164のゲート端子をハイレベルで安定させるために、第4出力トランジスタ164のゲート端子はプルアップ抵抗154を介して内側正極端子105に接続される。 The source terminal of the fourth output transistor 164 is connected to the inner negative terminal 106, the drain terminal is connected to the outer negative terminal 104, and the gate terminal is connected to the OUTPUT1 terminal of the RFIC 122. When the OUTPUT1 terminal of the RFIC 122 is open, the gate terminal of the fourth output transistor 164 is connected to the inner positive terminal 105 via the pull-up resistor 154 in order to stabilize the gate terminal of the fourth output transistor 164 at a high level. Is done.
 OR回路131の第1入力端子の前段にはOR回路145が配置される。OR回路145の第1入力端子はとRFIC122のOUTPUT1端子に接続され、第2入力端子はRFIC122のOUTPUT2端子に接続される。これにより、OUTPUT1端子とOUTPUT2端子の一方からゲート制御信号が出力されていれば、OUTPUT端子が2つになった場合であっても、第2実施形態と同じように、OUTPUT1端子又はOUTPUT2端子からハイレベルのゲート制御信号が出力され、第1、第4出力トランジスタ161,164がオンされた場合であっても、第2、第3出力トランジスタ162,163がオンされた場合であっても、電池形電源装置100の送受信動作がオンされている状態を維持することができる。したがって、ゲート制御信号としてPWM信号を使用することができる。 The OR circuit 145 is disposed in front of the first input terminal of the OR circuit 131. The OR circuit 145 has a first input terminal connected to the OUTPUT 1 terminal of the RFIC 122 and a second input terminal connected to the OUTPUT 2 terminal of the RFIC 122. Thus, if a gate control signal is output from one of the OUTPUT1 terminal and the OUTPUT2 terminal, even if there are two OUTPUT terminals, the OUTPUT1 terminal or the OUTPUT2 terminal can be used as in the second embodiment. Even when a high-level gate control signal is output and the first and fourth output transistors 161 and 164 are turned on, and when the second and third output transistors 162 and 163 are turned on, The state where the transmission / reception operation of the battery-type power supply device 100 is turned on can be maintained. Therefore, a PWM signal can be used as the gate control signal.
 (回路動作) 
 図14は、図13の電源スイッチ114のオン/オフに伴って変動する各トランジスタの端子電圧を示す図である。 
 電源スイッチ114がオフされている状態で、第1、第3出力トランジスタ161、163は、それらのソース端子がハイレベル、それらのゲート端子がプルアップ抵抗151,153を介して内側正極端子105に接続されるためハイレベルであるためオフ状態である。第2出力トランジスタ162は、そのソース端子がローレベル、ゲート端子がプルダウン抵抗152を介して内側負極端子106に接続されローレベルであるためオフ状態である。第4出力トランジスタ164は、そのソース端子がローレベル、ゲート端子がプルアップ抵抗154を介して内側正極端子105に接続されるためハイレベルでありオン状態である。検出トランジスタ130は、そのソース端子がハイレベル、ゲート端子がプルアップ抵抗134を介して内側正極端子105に接続されるためハイレベルでありオフ状態である。
(Circuit operation)
FIG. 14 is a diagram showing the terminal voltage of each transistor that varies with the on / off of the power switch 114 of FIG.
With the power switch 114 turned off, the first and third output transistors 161 and 163 have their source terminals at the high level and their gate terminals connected to the inner positive terminal 105 via the pull-up resistors 151 and 153. Since it is connected and is at a high level, it is in an off state. The second output transistor 162 is in an off state because its source terminal is low level and its gate terminal is connected to the inner negative terminal 106 via the pull-down resistor 152 and is at low level. The fourth output transistor 164 is at a high level and is in an on state because its source terminal is connected to the low level and its gate terminal is connected to the inner positive terminal 105 via the pull-up resistor 154. The detection transistor 130 is at a high level and has an off state because its source terminal is connected to the inner positive electrode terminal 105 via a pull-up resistor 134 and its gate terminal is high level.
 電源スイッチ114がオンされたとき、検出トランジスタ130のゲート端子は第4出力トランジスタ164を介して内側負極端子106に接続されるためハイレベルからローレベルに切り替わり、それにより検出トランジスタ130はオンされる。検出トランジスタ130がオンされることで、OR回路131の第2入力端子はハイレベルになり、DCDCコンバータ121からRFIC122に駆動電圧Vddが給電され、RFIC122が駆動され、電池形電源装置100の状態はオフ状態から通信可能状態に切り替わる。 When the power switch 114 is turned on, the gate terminal of the detection transistor 130 is connected to the inner negative terminal 106 via the fourth output transistor 164, so that the detection transistor 130 is turned on. . When the detection transistor 130 is turned on, the second input terminal of the OR circuit 131 becomes high level, the drive voltage Vdd is supplied from the DCDC converter 121 to the RFIC 122, the RFIC 122 is driven, and the state of the battery-type power supply device 100 is Switch from off to communicable state.
 第5実施形態に係る電池形電源装置100は、無線通信部を介して外部情報処理装置200からモータ回転方向の切替指示とに関するコード無線信号を受信する。モータを正回転させるためのコード無線信号を受信したとき、制御信号発生部により発生されたゲート制御信号は、制御部の制御に従って、OUTPUT1端子から出力される。一方、モータを逆回転させるためのコード無線信号を受信したとき、制御信号発生部により発生されたゲート制御信号は、制御部の制御に従って、OUTPUT2端子から出力される。ゲート制御信号がOUTPUT1端子から出力されたとき、第1、第4出力トランジスタ161、164が互いに同時にオン/オフされる。同様に、ゲート制御信号がOUTPUT2端子から出力されたとき、第2、第3出力トランジスタ162、163は互いに同時にオン/オフされる。なお、OUTPUT1端子とOUTPUT端子2とから同時にゲート制御信号が出力されないように設定されている。それにより、第1、第4出力トランジスタ164がオンされているときに、第2、第3出力トランジスタ163がオンされることはなく、回路の誤動作、回路ショート等を回避できる。 The battery-type power supply apparatus 100 according to the fifth embodiment receives a code wireless signal related to a motor rotation direction switching instruction from the external information processing apparatus 200 via a wireless communication unit. When a code wireless signal for forward rotation of the motor is received, the gate control signal generated by the control signal generator is output from the OUTPUT1 terminal according to the control of the controller. On the other hand, when the code wireless signal for rotating the motor in the reverse direction is received, the gate control signal generated by the control signal generator is output from the OUTPUT2 terminal according to the control of the controller. When the gate control signal is output from the OUTPUT1 terminal, the first and fourth output transistors 161 and 164 are turned on / off simultaneously. Similarly, when the gate control signal is output from the OUTPUT2 terminal, the second and third output transistors 162 and 163 are simultaneously turned on / off. The gate control signal is set so as not to be output simultaneously from the OUTPUT 1 terminal and the OUTPUT terminal 2. Thereby, when the first and fourth output transistors 164 are turned on, the second and third output transistors 163 are not turned on, and a malfunction of the circuit, a circuit short circuit, and the like can be avoided.
 以上説明したように、電源スイッチ114がオフされている状態で、4つの出力トランジスタ161,162,163,164のうち1つの出力トランジスタ、ここでは第4出力トランジスタ164をオン状態にしておくことで、電源スイッチ114がオンされたとき、検出トランジスタ130のゲート端子をハイレベルからローレベルに切り替えることができる。つまり、4つの出力トランジスタ161,162,163,164のうち1つの出力トランジスタをオン状態にしておくことは、電池形電源装置100による電源スイッチ114のオン/オフの検出を可能にする。電源スイッチ114のオン/オフを検出できるため、電池形電源装置100がモータ115の正逆回転を可能にするためのHブリッジ制御回路を備える場合であっても、既に説明したように、電源スイッチ114のオン/オフに連動して、電池形電源装置100の通信機能のオン/オフ、通信間隔の変更等を行うことができる。 As described above, when the power switch 114 is turned off, one of the four output transistors 161, 162, 163, and 164, in this case, the fourth output transistor 164 is turned on. When the power switch 114 is turned on, the gate terminal of the detection transistor 130 can be switched from the high level to the low level. That is, if one of the four output transistors 161, 162, 163, and 164 is turned on, the battery-type power supply device 100 can detect the on / off of the power switch 114. Since ON / OFF of the power switch 114 can be detected, even when the battery-type power supply device 100 includes an H-bridge control circuit for enabling forward and reverse rotation of the motor 115, as described above, the power switch The communication function of the battery-type power supply device 100 can be turned on / off, the communication interval can be changed, etc.
 なお、第1乃至第5実施形態に係る電池形電源装置100を構成する回路は、外部負荷と外部電源と電源スイッチとともに構成される回路である。したがって、外部負荷と外部電源と電源スイッチとを有する他の電子機器に、電池形電源装置100の回路を組み込むことで、その電子機器は、第1乃至第5実施形態に係る電池形電源装置100と同様の動作をし、同様の効果を得られる。 In addition, the circuit which comprises the battery-type power supply device 100 which concerns on 1st thru | or 5th embodiment is a circuit comprised with an external load, an external power supply, and a power switch. Therefore, by incorporating the circuit of the battery-type power supply device 100 into another electronic device having an external load, an external power supply, and a power switch, the electronic device can be configured as the battery-type power supply device 100 according to the first to fifth embodiments. The same operation can be obtained and the same effect can be obtained.
 ここでは、モータ115で発生したサージ電圧から出力トランジスタ120を保護するために保護用ダイオード171をモータ115に対して出力トランジスタ120と並列に、外側負極端子104から外側正極端子103に向かって順方向となるように配置し、外部電池300によるリーク電流の発生を防止又は低減するために、ツェナーダイオード172を保護用ダイオード171と逆向きに接続した。しかしながら、外部電池300によるリーク電流の発生を防止又は低減するための回路構成はこれに限定されない。 Here, in order to protect the output transistor 120 from the surge voltage generated in the motor 115, the protective diode 171 is forwardly directed from the outer negative terminal 104 toward the outer positive terminal 103 in parallel with the output transistor 120 with respect to the motor 115. In order to prevent or reduce the occurrence of leakage current due to the external battery 300, the Zener diode 172 is connected to the protective diode 171 in the opposite direction. However, the circuit configuration for preventing or reducing the occurrence of leakage current by the external battery 300 is not limited to this.
 図15、図16、図17、図18は、第2実施形態に係る電池形電源装置100の他の例を示す等価回路図である。図15、図16、図17、図18を参照して、外部電池300によるリーク電流の発生を防止又は低減するための他の回路構成を説明する。なお、第2実施形態を例に説明するが、リーク電流の発生を防止又は低減する他の構成は、他の実施形態に対して適用することができる。 FIGS. 15, 16, 17, and 18 are equivalent circuit diagrams showing other examples of the battery-type power supply device 100 according to the second embodiment. With reference to FIGS. 15, 16, 17, and 18, another circuit configuration for preventing or reducing the occurrence of leakage current by the external battery 300 will be described. In addition, although 2nd Embodiment is demonstrated to an example, the other structure which prevents or reduces generation | occurrence | production of leakage current is applicable with respect to other embodiment.
 図15に示すように、モータ115で発生したサージ電圧から出力トランジスタ120を保護するとともに、外部電池300によるリーク電流の発生を防止又は低減するために、保護用トランジスタ173が、モータ115に対して出力トランジスタ120と並列に配置される。ここでは、保護用トランジスタ173は、NチャンネルMOSFETであり、そのドレイン端子は外側正極端子103に接続され、ゲート端子はRFIC122のOUTPUT2端子に接続され、ソース端子は外側負極端子104に接続される。また、OUTPUT2端子が開放されているとき、保護用トランジスタ173のゲート端子をローレベルで安定されるために、保護用トランジスタ173のゲート端子はプルダウン抵抗176を介してGNDに接続される。保護用トランジスタ173は、RFIC122からの制御信号に従って、そのオン/オフが制御される。具体的には、保護用トランジスタ173は、RFIC122の制御に従って、出力トランジスタ120がオンからオフに切り替わる直前にオンされる。また、保護用トランジスタ173は、RFIC122の制御に従って、オンされてからモータ115で発生したサージ電圧が収まる一定時間経過後にオフされる。つまり、少なくともモータ115でサージ電圧を発生している間において、保護用トランジスタ173はオン状態である。したがって、出力トランジスタ120のオン/オフに伴って、モータ115でサージ電圧(逆起電圧)が発生しても、サージ電流は保護用トランジスタ173とモータ115とを含む閉回路で消費されるため、出力トランジスタ120のドレイン-ソース間にサージ電圧による高電圧がかからない。したがって、出力トランジスタ120をモータ115で発生したサージ電圧から保護することができる。 As shown in FIG. 15, in order to protect the output transistor 120 from the surge voltage generated in the motor 115 and to prevent or reduce the occurrence of leakage current by the external battery 300, the protection transistor 173 is connected to the motor 115. Arranged in parallel with the output transistor 120. Here, the protection transistor 173 is an N-channel MOSFET, its drain terminal is connected to the outer positive terminal 103, its gate terminal is connected to the OUTPUT 2 terminal of the RFIC 122, and its source terminal is connected to the outer negative terminal 104. Further, when the OUTPUT2 terminal is open, the gate terminal of the protection transistor 173 is connected to GND via the pull-down resistor 176 in order to stabilize the gate terminal of the protection transistor 173 at a low level. The protection transistor 173 is controlled to be turned on / off in accordance with a control signal from the RFIC 122. Specifically, the protection transistor 173 is turned on immediately before the output transistor 120 is switched from on to off under the control of the RFIC 122. Further, the protection transistor 173 is turned off after a lapse of a certain time when the surge voltage generated in the motor 115 is settled after being turned on in accordance with the control of the RFIC 122. That is, at least while the surge voltage is generated by the motor 115, the protection transistor 173 is in the on state. Therefore, even if a surge voltage (counterelectromotive voltage) is generated in the motor 115 as the output transistor 120 is turned on / off, the surge current is consumed in a closed circuit including the protection transistor 173 and the motor 115. A high voltage due to a surge voltage is not applied between the drain and source of the output transistor 120. Therefore, the output transistor 120 can be protected from the surge voltage generated by the motor 115.
 保護用トランジスタ173がオフ状態であるとき、保護用トランジスタ173により内蔵電池、出力トランジスタ120及び保護用トランジスタ173を含む閉回路は遮断され、内蔵電池のショートを回避することができる。また、保護用トランジスタ173がオフ状態であるとき、保護用トランジスタ173により外部電池400、モータ115及び保護用トランジスタ173を含む閉回路を遮断でき、それにより外部電池300のリーク電流を防止又は低減することができる。 When the protection transistor 173 is in the off state, the protection transistor 173 cuts off the closed circuit including the built-in battery, the output transistor 120, and the protection transistor 173, so that a short circuit of the built-in battery can be avoided. Further, when the protection transistor 173 is in the off state, the protection transistor 173 can cut off the closed circuit including the external battery 400, the motor 115, and the protection transistor 173, thereby preventing or reducing the leakage current of the external battery 300. be able to.
 保護用トランジスタ173は出力トランジスタ120がオフされる直前にオンされるため、保護用トランジスタ173と出力トランジスタ120とが共にオン状態である期間が発生する。何も対策を講じなければ、内側正極端子105から出力トランジスタ120、保護用トランジスタ173を経由して内側負極端子106につながる電流経路により、内蔵電池がショートしてしまう。ここでは、外側負極端子104から外側正極端子103に向かって順方向となるように、ショート回避用のダイオード177を保護用トランジスタ173と直列に接続することで、出力トランジスタ120と保護用トランジスタ173とが共にオン状態であるときの、内部電池のショートを回避することができる。 Since the protection transistor 173 is turned on immediately before the output transistor 120 is turned off, a period in which both the protection transistor 173 and the output transistor 120 are on occurs. If no measures are taken, the built-in battery will be short-circuited by a current path from the inner positive terminal 105 to the inner negative terminal 106 via the output transistor 120 and the protection transistor 173. Here, the output transistor 120, the protection transistor 173, and the protection transistor 173 are connected by connecting a short-circuit avoidance diode 177 in series so as to be in the forward direction from the outer negative terminal 104 to the outer positive terminal 103. When both are in the on state, a short circuit of the internal battery can be avoided.
 なお、出力トランジスタ120のオン/オフに保護用トランジスタ173のオフ/オンが同期できるのであれば、ショート回避用のダイオード177は省略することができる。また、ショート回避用のダイオード177を抵抗等で代替するで内蔵電池のショートを回避することはできる。 Note that if the protection transistor 173 can be synchronized with the output transistor 120 on / off, the short-circuit avoidance diode 177 can be omitted. Further, the short circuit of the built-in battery can be avoided by substituting the diode 177 for avoiding the short circuit with a resistor or the like.
 図16に示すように、保護用ダイオード171をモータ115に対して出力トランジスタ120と並列に配置するだけでもよい。出力トランジスタ120の逆降伏電圧よりも低い順電圧特性を有する保護用ダイオード171を用いることで、モータ115で発生するサージ電圧から出力トランジスタ120を保護することができる。また、外部電池300の合計電圧よりも高い順電圧特性を有する保護用ダイオード171を用いることで、外部電池300によるリーク電流の発生を防止又は低減することができる。さらに、外部電池300の合計電圧よりも高く、出力トランジスタ120の逆降伏電圧よりも低い順電圧特性を有する保護用ダイオード171を用いることで、モータ115で発生するサージ電圧から出力トランジスタ120を保護する機能と外部電池300によるリーク電流の発生を防止又は低減する機能とを兼用させることができる。 As shown in FIG. 16, the protective diode 171 may be simply disposed in parallel with the output transistor 120 with respect to the motor 115. By using the protective diode 171 having a forward voltage characteristic lower than the reverse breakdown voltage of the output transistor 120, the output transistor 120 can be protected from a surge voltage generated in the motor 115. In addition, by using the protective diode 171 having forward voltage characteristics higher than the total voltage of the external battery 300, the generation of leakage current by the external battery 300 can be prevented or reduced. Furthermore, by using a protective diode 171 having a forward voltage characteristic higher than the total voltage of the external battery 300 and lower than the reverse breakdown voltage of the output transistor 120, the output transistor 120 is protected from a surge voltage generated in the motor 115. The function and the function of preventing or reducing the occurrence of leakage current by the external battery 300 can be combined.
 出力トランジスタ120がオンからオフに切り替わり、モータ115でサージ電圧が発生した場合、保護用ダイオード171はサージ電圧により導通する。それにより、サージ電流は保護用ダイオード171とモータ115とを含む閉回路で消費され、出力トランジスタ120に高電圧がかからない。そのため、出力トランジスタ120を、モータ115で発生したサージ電圧から保護することができる。一方、出力トランジスタ120が定常状態であるとき、保護用ダイオード171には低い逆方向電圧しかかからないため、保護用ダイオード171はオフ状態である。それにより、保護用ダイオード171とモータ115とを含む閉回路は遮断され、外部電池300によるリーク電流の発生を防止又は低減することができる。また、保護用ダイオード171と出力トランジスタ120とを含む閉回路は遮断され、内蔵電池のショートを回避することができる。 When the output transistor 120 is switched from on to off and a surge voltage is generated in the motor 115, the protective diode 171 becomes conductive due to the surge voltage. As a result, the surge current is consumed in a closed circuit including the protective diode 171 and the motor 115, and no high voltage is applied to the output transistor 120. Therefore, the output transistor 120 can be protected from a surge voltage generated by the motor 115. On the other hand, when the output transistor 120 is in a steady state, the protective diode 171 is in an off state because only a low reverse voltage is applied to the protective diode 171. Thereby, the closed circuit including the protective diode 171 and the motor 115 is cut off, and the occurrence of leakage current by the external battery 300 can be prevented or reduced. Further, the closed circuit including the protective diode 171 and the output transistor 120 is cut off, and a short circuit of the built-in battery can be avoided.
 図17に示すように、モータ115で発生したサージ電圧から出力トランジスタ120を保護するために保護用ダイオード171をモータ115に対して出力トランジスタ120と並列に、外側負極端子104から外側正極端子103に向かって順方向となるように配置し、外部電池300により発生されるリーク電流を低減するために、低減用抵抗174を保護用ダイオード171と接続してもよい。この回路構成では、出力トランジスタ120のオン/オフに関わらず、保護用ダイオード171とモータ115とを含む閉回路は導通した状態である。モータ115にサージ電圧が発生したとき、サージ電流はこの閉回路で消費されるため、出力トランジスタ120を、モータ115で発生したサージ電圧から保護することができる。一方、出力トランジスタ120が定常状態であるとき、外部電池300から閉回路にリーク電流が流れてしまう。しかしながら、この閉回路に抵抗値の高い抵抗174を介在させることで、そのリーク電流を小さくすることができ、それにより外部電池300の消耗を低減することができる。 As shown in FIG. 17, in order to protect the output transistor 120 from the surge voltage generated in the motor 115, a protective diode 171 is connected to the motor 115 in parallel with the output transistor 120, and from the outer negative terminal 104 to the outer positive terminal 103. In order to reduce the leakage current generated by the external battery 300, the reduction resistor 174 may be connected to the protection diode 171. In this circuit configuration, regardless of whether the output transistor 120 is on or off, the closed circuit including the protection diode 171 and the motor 115 is in a conductive state. When a surge voltage is generated in the motor 115, the surge current is consumed in this closed circuit, so that the output transistor 120 can be protected from the surge voltage generated in the motor 115. On the other hand, when the output transistor 120 is in a steady state, a leakage current flows from the external battery 300 to the closed circuit. However, by interposing the resistor 174 having a high resistance value in the closed circuit, the leakage current can be reduced, and thereby the consumption of the external battery 300 can be reduced.
 図18に示すように、モータ115で発生したサージ電圧から出力トランジスタ120を保護するために保護用ダイオード171をモータ115に対して出力トランジスタ120と並列に、外側負極端子104から外側正極端子103に向かって順方向となるように配置し、外部電池300により発生されるリーク電流を防止又は低減するために、コンデンサ175を保護用ダイオード171と接続してもよい。コンデンサ175は電流の直流成分を遮断する。外部電池300により発生されるリーク電流は直流であるため、保護用ダイオード171とモータ115とを含む閉回路に外部電池300のリーク電流が流れない。したがって、コンデンサ175により、出力トランジスタ120が定常状態であるときの外部電池300によるリーク電流の発生を防止又は低減することができる。モータ115でサージ電圧が発生したとき、瞬間的に発生するサージ電圧はコンデンサ175により吸収・低減され、それにより出力トランジスタ120をサージ電圧から保護することができる。 As shown in FIG. 18, in order to protect the output transistor 120 from the surge voltage generated in the motor 115, a protective diode 171 is connected to the motor 115 in parallel with the output transistor 120, and from the outer negative terminal 104 to the outer positive terminal 103. In order to prevent the leakage current generated by the external battery 300 from being reduced or reduced, the capacitor 175 may be connected to the protection diode 171. Capacitor 175 blocks the direct current component of the current. Since the leakage current generated by the external battery 300 is a direct current, the leakage current of the external battery 300 does not flow through a closed circuit including the protection diode 171 and the motor 115. Therefore, the capacitor 175 can prevent or reduce the occurrence of leakage current by the external battery 300 when the output transistor 120 is in a steady state. When a surge voltage is generated in the motor 115, the instantaneously generated surge voltage is absorbed and reduced by the capacitor 175, thereby protecting the output transistor 120 from the surge voltage.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
 100…電池形電源装置、103…外側正極端子、104…外側負極端子、105…内側正極端子、106…内側負極端子、108,109,110…配線ケーブル、114…電源スイッチ、115…モータ、120…出力トランジスタ、121…DCDCコンバータ、122…RFIC、123…インバータ、124,125…プルアップ抵抗、171…保護用ダイオード、172…ツェナーダイオード。 DESCRIPTION OF SYMBOLS 100 ... Battery type power supply device, 103 ... Outer positive terminal, 104 ... Outer negative terminal, 105 ... Inner positive terminal, 106 ... Inner negative terminal, 108, 109, 110 ... Wiring cable, 114 ... Power switch, 115 ... Motor, 120 ... Output transistor, 121 ... DCDC converter, 122 ... RFIC, 123 ... Inverter, 124,125 ... Pull-up resistor, 171 ... Protective diode, 172 ... Zener diode.

Claims (13)

  1.  負荷と電池ボックスと前記負荷と前記電池ボックスとの間に介在される電源スイッチとを有する外部負荷装置の前記電池ボックスに外部電池と直列に装着可能な電池形電源装置であって、
     電池規格に準じた形状及び寸法のハウジングと、
     前記ハウジングの内側に内蔵電池を収納するものであって、前記収納された内蔵電池の前後端子に接触する内側正極端子と内側負極端子とを有する電池収納部と、
     前記ハウジングの前端面に設けられ、前記内側正極端子に接続される外側正極端子と、
     前記ハウジングの後端面に設けられ、前記内側負極端子に接続される外側負極端子と、
     前記内側負極端子と前記外側負極端子との間、又は前記内側正極端子と前記外側正極端子との間に介在される出力トランジスタと、
     前記ハウジング内に収納されるアンテナと、
     前記アンテナを介して外部情報処理装置から受信したRF信号に従って前記出力トランジスタの制御信号を発生する制御回路と、
     前記負荷で発生した逆起電圧から前記出力トランジスタを保護するために、前記負荷に対して前記出力トランジスタと並列に、前記外側負極端子から前記外側正極端子に向かって順方向となるように配置されるダイオードと、
     前記外部電池のリーク電流を防止又は低減するために、前記ダイオードと逆向きに接続されるツェナーダイオードと、
     を具備することを特徴とする電池形電源装置。
    A battery-type power supply device that can be mounted in series with an external battery in the battery box of an external load device having a load, a battery box, and a power switch interposed between the load and the battery box,
    A housing with a shape and dimensions in accordance with the battery standard;
    A battery storage unit for storing a built-in battery inside the housing, and having an inner positive terminal and an inner negative terminal contacting the front and rear terminals of the stored built-in battery,
    An outer positive terminal provided on a front end surface of the housing and connected to the inner positive terminal;
    An outer negative terminal provided on a rear end surface of the housing and connected to the inner negative terminal;
    An output transistor interposed between the inner negative terminal and the outer negative terminal, or between the inner positive terminal and the outer positive terminal;
    An antenna housed in the housing;
    A control circuit for generating a control signal for the output transistor according to an RF signal received from an external information processing apparatus via the antenna;
    In order to protect the output transistor from the back electromotive voltage generated in the load, the output transistor is arranged in parallel with the output transistor in a forward direction from the outer negative terminal to the outer positive terminal. A diode,
    In order to prevent or reduce the leakage current of the external battery, a Zener diode connected in the opposite direction to the diode;
    A battery-type power supply device comprising:
  2.  前記ツェナーダイオード及び前記ダイオードは、前記外側負極端子と前記外側正極端子との間に接続されることを特徴とする請求項1記載の電池形電源装置。 The battery-type power supply device according to claim 1, wherein the Zener diode and the diode are connected between the outer negative terminal and the outer positive terminal.
  3.  前記ツェナーダイオードのツェナー電圧と前記ダイオードの順方向電圧との合計電圧が前記外部電池の合計電圧よりも大きいことを特徴とする請求項1記載の電池形電源装置。 The battery-type power supply device according to claim 1, wherein a total voltage of a Zener voltage of the Zener diode and a forward voltage of the diode is larger than a total voltage of the external battery.
  4.  前記ツェナーダイオードのツェナー電圧と前記ダイオードの順方向電圧との合計電圧が前記出力トランジスタの逆降伏電圧の絶対値よりも小さいことを特徴とする請求項1記載の電池形電源装置。 The battery-type power supply device according to claim 1, wherein a total voltage of a Zener voltage of the Zener diode and a forward voltage of the diode is smaller than an absolute value of a reverse breakdown voltage of the output transistor.
  5.  負荷と電池ボックスと前記負荷と前記電池ボックスとの間に介在される電源スイッチとを有する外部負荷装置の前記電池ボックスに外部電池と直列に装着可能な電池形電源装置であって、
     電池規格に準じた形状及び寸法のハウジングと、
     前記ハウジングの内側に内蔵電池を収納するものであって、前記収納された内蔵電池の前後端子に接触する内側正極端子と内側負極端子とを有する電池収納部と、
     前記ハウジングの前端面に設けられ、前記内側正極端子に接続される外側正極端子と、
     前記ハウジングの後端面に設けられ、前記内側負極端子に接続される外側負極端子と、
     前記内側負極端子と前記外側負極端子との間、又は前記内側正極端子と前記外側正極端子との間に介在される出力トランジスタと、
     前記ハウジング内に収納されるアンテナと、
     前記アンテナを介して外部情報処理装置から受信したRF信号に従って前記出力トランジスタの制御信号を発生する制御回路と、
     前記負荷で発生した逆起電圧から前記出力トランジスタを保護するとともに、前記外部電池のリーク電流を防止又は低減するために、前記負荷に対して前記出力トランジスタと並列に配置される保護用トランジスタと、
     を具備することを特徴とする電池形電源装置。
    A battery-type power supply device that can be mounted in series with an external battery in the battery box of an external load device having a load, a battery box, and a power switch interposed between the load and the battery box,
    A housing with a shape and dimensions in accordance with the battery standard;
    A battery storage unit for storing a built-in battery inside the housing, and having an inner positive terminal and an inner negative terminal contacting the front and rear terminals of the stored built-in battery,
    An outer positive terminal provided on a front end surface of the housing and connected to the inner positive terminal;
    An outer negative terminal provided on a rear end surface of the housing and connected to the inner negative terminal;
    An output transistor interposed between the inner negative terminal and the outer negative terminal, or between the inner positive terminal and the outer positive terminal;
    An antenna housed in the housing;
    A control circuit for generating a control signal for the output transistor according to an RF signal received from an external information processing apparatus via the antenna;
    A protection transistor arranged in parallel with the output transistor with respect to the load in order to protect the output transistor from a back electromotive voltage generated in the load and prevent or reduce a leakage current of the external battery,
    A battery-type power supply device comprising:
  6.  前記制御回路は、前記アンテナを介して外部情報処理装置から受信したRF信号に従って前記保護用トランジスタの制御信号を発生することを特徴とする請求項5記載の電池形電源装置。 6. The battery-type power supply device according to claim 5, wherein the control circuit generates a control signal for the protection transistor in accordance with an RF signal received from an external information processing device via the antenna.
  7.  前記出力トランジスタと前記保護用トランジスタとを含む閉回路を遮断するために、前記外側負極端子から前記外側正極端子に向かって順方向となるように前記保護用トランジスタに接続されるダイオードをさらに備える請求項5記載の電池形電源装置。 A diode connected to the protection transistor so as to be in a forward direction from the outer negative terminal toward the outer positive terminal in order to cut off a closed circuit including the output transistor and the protection transistor. Item 6. The battery-type power supply device according to Item 5.
  8.  前記保護用トランジスタ及び前記ダイオードは、前記外側負極端子と前記外側正極端子との間に接続されることを特徴とする請求項7記載の電池形電源装置。 The battery-type power supply device according to claim 7, wherein the protective transistor and the diode are connected between the outer negative terminal and the outer positive terminal.
  9.  負荷と電池ボックスと前記負荷と前記電池ボックスとの間に介在される電源スイッチとを有する外部負荷装置の前記電池ボックスに外部電池と直列に装着可能な電池形電源装置であって、
     電池規格に準じた形状及び寸法のハウジングと、
     前記ハウジングの内側に内蔵電池を収納するものであって、前記収納された内蔵電池の前後端子に接触する内側正極端子と内側負極端子とを有する電池収納部と、
     前記ハウジングの前端面に設けられ、前記内側正極端子に接続される外側正極端子と、
     前記ハウジングの後端面に設けられ、前記内側負極端子に接続される外側負極端子と、
     前記内側負極端子と前記外側負極端子との間、又は前記内側正極端子と前記外側正極端子との間に介在される出力トランジスタと、
     前記ハウジング内に収納されるアンテナと、
     前記アンテナを介して外部情報処理装置から受信したRF信号に従って前記出力トランジスタの制御信号を発生する制御回路と、
     前記負荷で発生した逆起電圧から前記出力トランジスタを保護するために、前記負荷に対して前記出力トランジスタと並列に、前記外側負極端子から前記外側正極端子に向かって順方向となるように配置されるダイオードと、
     前記外部電池のリーク電流を防止又は低減するために、前記ダイオードと直列に接続されるコンデンサと、
     を具備することを特徴とする電池形電源装置。
    A battery-type power supply device that can be mounted in series with an external battery in the battery box of an external load device having a load, a battery box, and a power switch interposed between the load and the battery box,
    A housing with a shape and dimensions in accordance with the battery standard;
    A battery storage unit for storing a built-in battery inside the housing, and having an inner positive terminal and an inner negative terminal contacting the front and rear terminals of the stored built-in battery,
    An outer positive terminal provided on a front end surface of the housing and connected to the inner positive terminal;
    An outer negative terminal provided on a rear end surface of the housing and connected to the inner negative terminal;
    An output transistor interposed between the inner negative terminal and the outer negative terminal, or between the inner positive terminal and the outer positive terminal;
    An antenna housed in the housing;
    A control circuit for generating a control signal for the output transistor according to an RF signal received from an external information processing apparatus via the antenna;
    In order to protect the output transistor from the back electromotive voltage generated in the load, the output transistor is arranged in parallel with the output transistor in a forward direction from the outer negative terminal to the outer positive terminal. A diode,
    In order to prevent or reduce leakage current of the external battery, a capacitor connected in series with the diode;
    A battery-type power supply device comprising:
  10.  負荷と電池ボックスと前記負荷と前記電池ボックスとの間に介在される電源スイッチとを有する外部負荷装置の前記電池ボックスに外部電池と直列に装着可能な電池形電源装置であって、
     電池規格に準じた形状及び寸法のハウジングと、
     前記ハウジングの内側に内蔵電池を収納するものであって、前記収納された内蔵電池の前後端子に接触する内側正極端子と内側負極端子とを有する電池収納部と、
     前記ハウジングの前端面に設けられ、前記内側正極端子に接続される外側正極端子と、
     前記ハウジングの後端面に設けられ、前記内側負極端子に接続される外側負極端子と、
     前記内側負極端子と前記外側負極端子との間、又は前記内側正極端子と前記外側正極端子との間に介在される出力トランジスタと、
     前記ハウジング内に収納されるアンテナと、
     前記アンテナを介して外部情報処理装置から受信したRF信号に従って前記出力トランジスタの制御信号を発生する制御回路と、
     前記負荷で発生した逆起電圧から前記出力トランジスタを保護するために、前記負荷に対して前記出力トランジスタと並列に、前記外側負極端子から前記外側正極端子に向かって順方向となるように配置されるダイオードと、
     前記外部電池のリーク電流を防止又は低減するために、前記ダイオードと直列に接続される抵抗と、
     を具備することを特徴とする電池形電源装置。
    A battery-type power supply device that can be mounted in series with an external battery in the battery box of an external load device having a load, a battery box, and a power switch interposed between the load and the battery box,
    A housing with a shape and dimensions in accordance with the battery standard;
    A battery storage unit for storing a built-in battery inside the housing, and having an inner positive terminal and an inner negative terminal contacting the front and rear terminals of the stored built-in battery,
    An outer positive terminal provided on a front end surface of the housing and connected to the inner positive terminal;
    An outer negative terminal provided on a rear end surface of the housing and connected to the inner negative terminal;
    An output transistor interposed between the inner negative terminal and the outer negative terminal, or between the inner positive terminal and the outer positive terminal;
    An antenna housed in the housing;
    A control circuit for generating a control signal for the output transistor according to an RF signal received from an external information processing apparatus via the antenna;
    In order to protect the output transistor from the back electromotive voltage generated in the load, the output transistor is arranged in parallel with the output transistor in a forward direction from the outer negative terminal to the outer positive terminal. A diode,
    In order to prevent or reduce leakage current of the external battery, a resistor connected in series with the diode;
    A battery-type power supply device comprising:
  11.  負荷と電池ボックスと前記負荷と前記電池ボックスとの間に介在される電源スイッチとを有する外部負荷装置の前記電池ボックスに外部電池と直列に装着可能な電池形電源装置であって、
     電池規格に準じた形状及び寸法のハウジングと、
     前記ハウジングの内側に内蔵電池を収納するものであって、前記収納された内蔵電池の前後端子に接触する内側正極端子と内側負極端子とを有する電池収納部と、
     前記ハウジングの前端面に設けられ、前記内側正極端子に接続される外側正極端子と、
     前記ハウジングの後端面に設けられ、前記内側負極端子に接続される外側負極端子と、
     前記内側負極端子と前記外側負極端子との間、又は前記内側正極端子と前記外側正極端子との間に介在される出力トランジスタと、
     前記ハウジング内に収納されるアンテナと、
     前記アンテナを介して外部情報処理装置から受信したRF信号に従って前記出力トランジスタの制御信号を発生する制御回路と、
     前記負荷で発生した逆起電圧から前記出力トランジスタを保護するとともに、前記外部電池のリーク電流を防止又は低減するために、前記負荷に対して前記出力トランジスタと並列に、前記外側負極端子から前記外側正極端子に向かって順方向となるように配置されるダイオードと、
     を具備することを特徴とする電池形電源装置。
    A battery-type power supply device that can be mounted in series with an external battery in the battery box of an external load device having a load, a battery box, and a power switch interposed between the load and the battery box,
    A housing with a shape and dimensions in accordance with the battery standard;
    A battery storage unit for storing a built-in battery inside the housing, and having an inner positive terminal and an inner negative terminal contacting the front and rear terminals of the stored built-in battery,
    An outer positive terminal provided on a front end surface of the housing and connected to the inner positive terminal;
    An outer negative terminal provided on a rear end surface of the housing and connected to the inner negative terminal;
    An output transistor interposed between the inner negative terminal and the outer negative terminal, or between the inner positive terminal and the outer positive terminal;
    An antenna housed in the housing;
    A control circuit for generating a control signal for the output transistor according to an RF signal received from an external information processing apparatus via the antenna;
    In order to protect the output transistor from the back electromotive voltage generated in the load and to prevent or reduce the leakage current of the external battery, in parallel to the output transistor with respect to the load, from the outer negative terminal to the outer side A diode arranged in a forward direction toward the positive terminal;
    A battery-type power supply device comprising:
  12.  前記ダイオードは、前記外部電池の合計電圧よりも高い順電圧特性を有することを特徴とする請求項11記載の電池形電源装置。 12. The battery-type power supply device according to claim 11, wherein the diode has a forward voltage characteristic higher than a total voltage of the external battery.
  13.  前記ダイオードは、前記出力トランジスタの逆降伏電圧の絶対値よりも小さい順電圧特性を有することを特徴とする請求項12記載の電池形電源装置。 13. The battery-type power supply device according to claim 12, wherein the diode has a forward voltage characteristic smaller than an absolute value of a reverse breakdown voltage of the output transistor.
PCT/JP2016/079366 2015-10-05 2016-10-03 Battery-shaped power source device WO2017061396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-197812 2015-10-05
JP2015197812 2015-10-05

Publications (1)

Publication Number Publication Date
WO2017061396A1 true WO2017061396A1 (en) 2017-04-13

Family

ID=58487600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079366 WO2017061396A1 (en) 2015-10-05 2016-10-03 Battery-shaped power source device

Country Status (2)

Country Link
TW (1) TW201717515A (en)
WO (1) WO2017061396A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012333A (en) * 2017-06-29 2019-01-24 大阪瓦斯株式会社 Gas stove and monitoring system
JP2019190871A (en) * 2018-04-19 2019-10-31 ノバルス株式会社 Beacon device
US20210050719A1 (en) * 2018-12-06 2021-02-18 Contemporary Amperex Technology Co., Limited Electric protection circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079181A (en) * 2000-09-04 2002-03-19 Fuji Electric Co Ltd Piezoelectric element driver and its driving method
JP2005287282A (en) * 2004-03-04 2005-10-13 Hochiki Corp Electronic apparatus, alarming apparatus, and alarm communicating apparatus
JP3143765U (en) * 2008-04-04 2008-08-07 株式会社ブレイブ A wireless reception drive device that can wirelessly control electric toy vehicles that cannot be wirelessly controlled

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079181A (en) * 2000-09-04 2002-03-19 Fuji Electric Co Ltd Piezoelectric element driver and its driving method
JP2005287282A (en) * 2004-03-04 2005-10-13 Hochiki Corp Electronic apparatus, alarming apparatus, and alarm communicating apparatus
JP3143765U (en) * 2008-04-04 2008-08-07 株式会社ブレイブ A wireless reception drive device that can wirelessly control electric toy vehicles that cannot be wirelessly controlled

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012333A (en) * 2017-06-29 2019-01-24 大阪瓦斯株式会社 Gas stove and monitoring system
JP2019190871A (en) * 2018-04-19 2019-10-31 ノバルス株式会社 Beacon device
US20210050719A1 (en) * 2018-12-06 2021-02-18 Contemporary Amperex Technology Co., Limited Electric protection circuit
US11600992B2 (en) * 2018-12-06 2023-03-07 Contemporary Amperex Technology Co., Limited Electric protection circuit

Also Published As

Publication number Publication date
TW201717515A (en) 2017-05-16

Similar Documents

Publication Publication Date Title
JP6960187B2 (en) Power supply
WO2017061396A1 (en) Battery-shaped power source device
JP4783220B2 (en) Overvoltage protection circuit, electronic device
WO2017122450A1 (en) Battery-shaped power supply device equipped with wireless communication function
JP6512617B2 (en) Battery-type power supply device, circuit and electronic device
US20170094732A1 (en) Electronic protection against circuit reversal
WO2016006044A1 (en) Electrically powered toy
TW200746634A (en) Semiconductor integrated circuit
JP6948577B2 (en) Battery-powered power supply with wireless communication function
JP6802456B2 (en) Battery-powered power supply and battery-powered load device
US8618846B2 (en) Solid-state switch driving circuit for vehicle
WO2019117006A1 (en) Battery-type power supply device and power supply device
JP6474925B2 (en) Wireless reception drive device
JP6284044B2 (en) Wireless reception drive device
AU2020414768A1 (en) Battery power-on circuit
JP2018149438A (en) Power supply device and radio receiving drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP