WO2017061214A1 - Semiconductor ion sensor - Google Patents

Semiconductor ion sensor Download PDF

Info

Publication number
WO2017061214A1
WO2017061214A1 PCT/JP2016/076120 JP2016076120W WO2017061214A1 WO 2017061214 A1 WO2017061214 A1 WO 2017061214A1 JP 2016076120 W JP2016076120 W JP 2016076120W WO 2017061214 A1 WO2017061214 A1 WO 2017061214A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
semiconductor
sensor
ion sensor
sensor chip
Prior art date
Application number
PCT/JP2016/076120
Other languages
French (fr)
Japanese (ja)
Inventor
芳英 鈴木
孝博 仲橋
幸夫 玉井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017061214A1 publication Critical patent/WO2017061214A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Definitions

  • the present invention relates to a semiconductor ion sensor for measuring ion concentration.
  • the semiconductor ion sensor includes a sensitive film, and when measuring the ion concentration, charges are accumulated in the sensitive film by ions in the solution, and this changes the potential inside the semiconductor element.
  • the semiconductor ion sensor is a device that measures the ion concentration by detecting the potential that has changed at this time.
  • ISFET Ion-Sensitive-Field-Effective-Transistor
  • CCD Charge-Cupled-Carrier
  • the former has a structure in which a sensitive film is provided on the gate of a MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
  • MOSFET Metal-Oxide-Semiconductor-Field-Effect-Transistor
  • the latter has a structure in which a sensitive film is provided on a photodiode, and the ion concentration is detected by a charge transfer element.
  • Non-Patent Document 1 discloses an example of neuronal imaging research using a CCD ion image sensor.
  • FIG. 16 is a diagram showing a configuration of a conventional technique disclosed in Patent Document 1.
  • the ISFET sensor region is separated into a plurality of partial regions by a partition wall made of acrylic glass or the like, and a different virus or nucleic acid is arranged in each partial region.
  • a method for accurately detecting the ion concentration in a short time by making any one of the partial areas a free area for drift detection.
  • FIG. 17 is a diagram showing a configuration of the conventional technique disclosed in Patent Document 2.
  • the sensor region of ISFET is separated into a plurality of partial regions by the microwells formed thereon, and different types of reagents (nucleic acid, protein, etc.) are provided inside each partial region.
  • reagents nucleic acid, protein, etc.
  • Antibodies, cells for sequencing a large number of genomes.
  • FIG. 18 is a diagram showing a configuration of a conventional technique disclosed in Patent Document 3.
  • Patent Document 3 discloses a method in which a frame is provided so as to surround an ion sensitive portion of a semiconductor ion sensor, and the ion sensitive portion is sealed with a resin by pressing a molding die against the frame.
  • the frame is made of epoxy resin or fluororesin, and is bonded to the semiconductor ion sensor via a buffer member using silicone rubber or the like.
  • the specimen used for detecting the ion concentration is often supplied to the semiconductor ion sensor as a solution.
  • the technique of each literature mentioned above has a problem resulting from this.
  • Patent Document 1 Although the method of Patent Document 1 can be easily executed, the specimen as a solution is likely to evaporate because the upper part of the partition wall is open. Therefore, there is a drawback that the measurement of the specimen becomes unstable.
  • the specimen as a solution hardly evaporates.
  • the microwell is formed by resist patterning by photolithography. This facilitates microfabrication, but on the other hand, since the resist is generally hard, the semiconductor chip is easily damaged and the microwell is liable to crack. Therefore, it is difficult to directly connect the lid glass or the solution guide on the microwell, which makes it difficult to reduce the size of the semiconductor ion sensor.
  • the present invention has been made in view of the above problems. And the objective is providing the small semiconductor ion sensor which can detect ion concentration accurately.
  • a semiconductor ion sensor has a semiconductor chip having a region where an ion sensitive portion is formed, and is arranged so as to surround the region, has elasticity, and And a frame body directly bonded to the surface of the semiconductor chip.
  • FIG. 6 is a view showing a modification of the frame in the semiconductor ion sensor according to Embodiments 1 to 3 of the present invention.
  • FIG. 6 is a view showing a modification of the frame in the semiconductor ion sensor according to Embodiments 1 to 3 of the present invention.
  • FIG. 6 is a view showing a modification of the frame in the semiconductor ion sensor according to Embodiments 1 to 3 of the present invention.
  • FIG. It is a figure which shows the structure of the prior art disclosed by patent document 2.
  • FIG. It is a figure which shows the structure of the prior art disclosed by patent document 3.
  • Embodiment 1 A first embodiment of the present invention will be described below with reference to FIGS.
  • FIG. 1 is a diagram showing a configuration of a sensor chip 1 (semiconductor chip) according to Embodiment 1 of the present invention.
  • (A) of this figure shows the upper surface of the sensor chip 1, and (b) shows the front of the sensor chip 1.
  • the sensor chip 1 includes a sensitive film 2, an ion sensitive part 3, and a terminal part 4.
  • the sensor chip 1 is manufactured using a known silicon semiconductor process.
  • the surface of the sensor chip 1 is covered with a sensitive film 2 which is a dielectric thin film.
  • a plurality of ion sensitive portions 3 are provided in a two-dimensional array immediately below the sensitive film 2 in the display portion.
  • the ion sensitive unit 3 is used as a detection unit for detecting a biochemical reaction by measuring an ion concentration.
  • the ion sensitive part 3 is, for example, a MOSFET or a photodiode, but is not limited thereto.
  • the size of the ion sensitive portion 3 is 1 to 100 ⁇ m square per piece.
  • the terminal portion 4 is formed at an end portion on the surface of the sensor chip 1. Each terminal portion 4 is for outputting a signal indicating the detected amount of ion concentration in the sensor chip 1 to the outside of the sensor chip 1.
  • the size of the sensor chip 1 is, for example, a length of one side of 2 to 20 mm and a thickness of 0.02 to 0.7 mm, but is not limited thereto.
  • FIG. 2 is a diagram showing a connection state between the sensor chip 1 and the substrate 7 according to the first embodiment of the present invention.
  • the substrate 7 shown in this figure includes a terminal portion 8 and a heat radiating plate 9.
  • the sensor chip 1 is first die-bonded to the substrate 7. At that time, the terminal portion 4 of the sensor chip 1 and the terminal portion 8 of the substrate 7 are wire-bonded using the wire 6. Thereby, the terminal part 4 and the terminal part 8 are electrically connected.
  • the substrate 7 shown in FIG. 2 is a lead frame in which a predetermined wiring pattern is formed on the surface thereof by etching a metal plate.
  • the terminal portion 8 and the heat radiating plate 9 are integrally formed.
  • the semiconductor ion sensor 14 When the semiconductor ion sensor 14 is used as a biosensor, it is preferable that heat can be released from the sensor chip 1 because some specimens are vulnerable to heat. In order to realize this, in FIG. 2, the heat radiating plate 9 is provided on the back surface of the sensor chip 1.
  • FIG. 3 is a diagram illustrating a connection state between the sensor chip 1 and the substrate 7a according to the first embodiment of the present invention.
  • the sensor chip 1 may be connected to the substrate 7 a instead of the substrate 7.
  • the substrate 7a includes a terminal portion 8a, a heat sink 9a, and a core material 10.
  • the core material 10 is made of a material such as glass epoxy resin or ceramic.
  • a plurality of through holes 11 are formed in the core material 10.
  • Terminal portions 8a and heat sinks 9a are arranged on the front and back surfaces of the core material 10.
  • Terminal portion 8a and heat sink 9a are formed, for example, as metal foil.
  • the size of the substrate 7 and the substrate 7a is, for example, 4 to 30 mm on a side and 0.1 to 0.5 mm in thickness, but is not limited thereto.
  • FIG. 4 is a diagram illustrating a process in the method of manufacturing the semiconductor ion sensor 14 according to the first embodiment of the present invention.
  • the sensor chip 1 connected to the substrate 7 is mounted on a mold 13.
  • the entire surface of the sensitive film 2 in the sensor chip 1 is brought into close contact with the mold 13.
  • a resin material is injected into the gap of the sensor chip 1-substrate 7 composite and cured.
  • the resin material a thermosetting epoxy resin generally used in the manufacture of electronic components can be used.
  • the mold 13 is removed as shown in FIG. Thereby, the sealing resin 12 is formed so as to expose the sensitive film 2 in the sensor chip 1.
  • the thickness of the sealing resin 12 is, for example, 0.1 to 3 mm upward with respect to the upper surface of the sensor chip 1, but is not limited thereto.
  • FIG. 5 is a perspective view showing an example of the frame 15 constituting the semiconductor ion sensor 14 according to Embodiment 1 of the present invention.
  • FIG. 6 is a cross-sectional view showing an example of the frame 15 constituting the semiconductor ion sensor 14 according to Embodiment 1 of the present invention.
  • the frame 15 includes an outer peripheral wall 16 and a partition wall 17.
  • FIG. 6A shows the state of the frame 15 as viewed from above, and FIG. 6B shows the AA cross section of FIG.
  • the frame body 15 has a structure in which a square outer peripheral wall 16 is attached around a cross-shaped partition wall 17. Thus, a plurality of sections 18 (four in FIG. 5) are formed inside the frame body 15. The number of the divisions 18 in the frame 15 may be one. In this case, for example, the frame 15 is configured only by the outer peripheral wall 16.
  • the material of the frame body 15 (that is, the material of the outer peripheral wall 16 and the partition wall 17) is preferably chemically stable and physiologically inert.
  • the material of the frame 15 include silicone rubber and fluororubber.
  • a low-clay liquid called a liquid silicone rubber
  • a material that cures at room temperature or thermosets is particularly preferable because of good workability and bonding properties.
  • An example of the liquid silicone rubber is PDMS (PolyDiMethyl Siloxane).
  • the size of the frame body 15 is, for example, that the length of one side of the outer peripheral wall 16 is 1 to 20 mm and the total thickness of the frame body 15 is 0.02 to 3 mm, but is not limited thereto.
  • the frame body 15 is manufactured as follows, for example. First, PDMS is put into a predetermined acrylic mold. Then, it is thermally cured in air at 65 ° C. for 4 hours. After completion of thermosetting, the frame 15 having a predetermined shape is obtained by removing the cured PDMS from the pressing mold.
  • the frame body 15 is activated.
  • the methyl group on the surface of the frame 15 is substituted with a hydroxyl group.
  • the activation treatment include atmospheric pressure plasma irradiation and UV light irradiation.
  • the surface of the sensor chip 1 it is desirable to perform O 2 plasma irradiation, atmospheric pressure plasma irradiation, and UV irradiation in order to clean the surface.
  • O 2 plasma irradiation atmospheric pressure plasma irradiation
  • UV irradiation UV irradiation
  • FIG. 7 is a diagram illustrating a configuration of the semiconductor ion sensor 14 in a state where the frame body 15 is bonded to the sensor chip 1 according to the first embodiment of the present invention. As shown in this figure, the frame 15 is bonded onto the sensitive film 2 of the sensor chip 1, thereby completing the manufacture of the semiconductor ion sensor 14. After joining the frame body 15, a plurality of sections 18 exist on the sensitive film 2. Different specimens for measuring the ion concentration are introduced into each compartment 18.
  • Embodiment 2 A second embodiment according to the present invention will be described below with reference to FIGS.
  • Each member common to Embodiment 1 described above is denoted by the same reference numeral, and detailed description thereof is omitted.
  • the manufacturing procedure of the semiconductor ion sensor 14 is different from that in the first embodiment.
  • the configuration of the semiconductor ion sensor 14 after completion is the same as that of the first embodiment.
  • the manufacturing method of the sensor chip 1 is the same as that of the first embodiment (FIG. 1). Further, the process of die-bonding the sensor chip 1 to the substrate 7 and connecting the terminal portion 4 of the sensor chip 1 and the terminal portion 8 of the substrate 7 by wire bonding using the wire 6 is the same as in the first embodiment (FIG. 2 or FIG. 3).
  • FIG. 8 is a diagram illustrating a process of manufacturing the semiconductor ion sensor 14 according to the second embodiment of the present invention.
  • a separately prepared frame 15 (FIG. 5) is joined to the sensor chip 1.
  • the outer shape, material, formation method, activation method, and joining method of the frame body 15 are all the same as those in the first embodiment.
  • FIG. 9 is a diagram illustrating a process in the method of manufacturing the semiconductor ion sensor 14 according to the second embodiment of the present invention.
  • a complex made up of the sensor chip 1, the substrate 7, and the frame 15 is mounted on the mold 13.
  • the mold 13 is brought into close contact with the upper surface of the frame body 15 instead of the sensitive film 2.
  • a resin material is injected into the gap of the sensor chip 1-substrate 7-frame 15 complex and cured.
  • the resin material is the same as in the first embodiment.
  • the mold 13 is removed as shown in FIG. Thereby, the sealing resin 12 is formed so as to expose the sensitive film 2 in the sensor chip 1 and the upper surface and the inside of the frame body 15.
  • the outer shape of the sealing resin 12 after formation is the same as that of the first embodiment.
  • the sealing resin 12 when the sealing resin 12 is formed, if the frame body 15 in which a plurality of sections 18 are formed by the partition wall 17 is bonded to the sensor chip 1, the frame body 15 is sealed with the sealing resin 12. This is preferable because it can support the stress at the time of injection.
  • the mold 13 is not in direct contact with the surface of the sensor chip 1 when the sealing resin 12 is formed. Therefore, the manufacturing method of the present embodiment is particularly effective when the ultrathin sensitive film 2 or the like is formed on the surface of the sensor chip 1.
  • Embodiment 3 With reference to FIG. 10, Embodiment 3 which concerns on this invention is demonstrated below. Each member common to the above-described second embodiment is given the same reference numeral, and detailed description thereof is omitted.
  • the manufacturing procedure of the semiconductor ion sensor 14 is different from that of the second embodiment.
  • the configuration of the completed semiconductor ion sensor 14 is different from that of the second embodiment.
  • the manufacturing procedure of the semiconductor ion sensor 14 in the present embodiment is as follows.
  • the manufacturing method of the sensor chip 1 is the same as that of the second embodiment (FIG. 1). Further, the process of die-bonding the sensor chip 1 to the substrate 7 and connecting the terminal portion 4 of the sensor chip 1 and the terminal portion 8 of the substrate 7 by wire bonding using the wire 6 is the same as in the second embodiment (FIG. 2 or FIG. 3). The process of joining the frame 15 onto the sensor chip 1 before forming the sealing resin 12 is the same as in the second embodiment.
  • FIG. 10 is a diagram illustrating a process of manufacturing the semiconductor ion sensor 14 according to the third embodiment of the present invention.
  • the terminal portion 4, the wire 6, and the terminal portion are not mounted on the mold 13 on the sensor chip 1 -substrate 7 -frame body 15 complex. 8 is coated with a resin material.
  • the sealing resin 12 is disposed so as to expose the upper surface and the inside of the sensitive film 2 and the frame body 15. After the resin material is disposed, the sealing resin 12 is formed by curing the resin material. Thereby, the manufacture of the semiconductor ion sensor 14 is completed.
  • the outer shape of the sealing resin 12 has a gentle shape along the outer shape of the wire 6.
  • the semiconductor ion sensor 14 can be manufactured more easily than in the second embodiment.
  • FIG. 11 is a diagram showing a configuration of the semiconductor ion sensor 14 in which the lid glass 19 is connected to the frame body 15 according to the first to third embodiments of the present invention.
  • a lid glass 19 solution supply unit
  • the lid glass 19 is formed with a plurality of solution inlets / outlets 20 for injecting a solution into each compartment 18 in the frame 15.
  • a specimen solution
  • a specimen is supplied to each compartment 18 through the solution inlet / outlet 20. After the supply is completed, the ion concentration is measured.
  • the frame body 15 has elasticity. Therefore, the lid glass 19 can be joined to the frame 15 by pressing it with an external force.
  • the bonding surface (lower surface) of the lid glass 19 and the bonding surface (upper surface) of the frame body 15 are subjected to activation treatment by O 2 plasma irradiation, atmospheric pressure plasma irradiation, UV light irradiation, or the like, and then the lid glass 19 and The frame body 15 may be joined.
  • the material of the lid glass 19 can be selected from a relatively hard material such as glass or Teflon (registered trademark) to a relatively soft material such as rubber.
  • FIG. 12 is a diagram showing a configuration of the semiconductor ion sensor 14 in which the solution guide 21 is connected to the frame 15 according to the first to third embodiments of the present invention.
  • a solution guide 21 solution supply unit
  • the material of the solution guide 21 and the bonding method to the frame 15 are basically the same as those of the lid glass 19.
  • the frame body 15 is directly bonded to the upper surface of the sensor chip 1, no other member for bonding the frame body 15 to the sensor chip 1 is required. Further, since the frame 15 has elasticity, a supply unit (lid glass or solution guide) for supplying a solution (specimen) to the formation region of the ion sensitive unit 3 is directly connected to the frame 15. Can do. From these things, the structure of the semiconductor ion sensor 14 can be made small and simple. Furthermore, in the semiconductor ion sensor 14 in a state where the lid glass 19 or the solution guide 21 is connected, evaporation of the solution can be prevented, so that the ion concentration can be stably measured.
  • a supply unit lid glass or solution guide
  • reagents nucleic acids, proteins, antibodies, cells, surface-modified microbeads, etc.
  • any one of the plurality of sections 18 can be set as a free area for drift detection.
  • a solution (specimen) is supplied to the plurality of compartments 18 through the lid glass 19 or the solution guide 21, different types of chemical reactions can be caused in each compartment 18 at the same time. It can be detected well at the same time.
  • the internal structure of the frame 15 is not limited to a simple lattice shape.
  • a flow path may be formed inside the frame body 15, and a step may be provided in the flow path by the height of a part of the frame body 15 being different.
  • FIG. 13B shows a BB cross section of FIG.
  • the filling part 22 is formed, for example, so as to prefill one of the sections 18 with the same material as that of the frame 15.
  • FIG. 13 (c) and 13 (d) shows the free space for drift detection in the frame 15 as a lid 23 and a cavity 24 instead of the section 18.
  • FIG. 13 (d) shows a CC cross section of FIG. 13 (c). This empty area is formed, for example, by placing a lid 23 made of the same material as the material of the frame 15 in advance on the upper part of one of the sections 18.
  • each section 18 is circular according to the shape of the member (the lid glass 19 or the solution guide 21) connected to the upper part of the frame 15.
  • FIG. 14B shows a DD cross section of FIG.
  • the outer shape of the frame 15 (the outer shape of the outer peripheral wall 16) is a square. As shown in FIG. 14B, the upper surface of the frame 15 is flat.
  • the outer peripheral wall 16 is circular in accordance with the shape of the member (the lid glass 19 or the solution guide 21) connected to the upper portion of the frame 15, and in the section 18. A portion defined by the outer peripheral wall 16 has an arc shape.
  • FIG. 14D shows an EE cross section of FIG. As shown in FIG. 14A, the upper surface of the frame 15 is flat. As shown in FIG. 14D, the upper surface of the frame 15 is flat.
  • FIG. 15A and 15B the cross section in the vertical direction of the outer peripheral wall 16 and the partition wall 17 is a semicircular arc (the upper surface is a semicircle).
  • FIG. 15B shows the FF cross section of FIG.
  • FIG. 15D shows a GG cross section of FIG.
  • a semiconductor ion sensor includes a semiconductor chip having a region where an ion sensitive portion is formed, and is disposed so as to surround the region, has elasticity, and is bonded to the surface of the semiconductor chip. It is characterized by having a frame body.
  • a supply unit (lid glass or solution guide) for supplying a solution (specimen) to the formation region of the ion sensitive unit is directly connected to the frame. can do. Therefore, the structure of the semiconductor ion sensor can be made small. Furthermore, in the semiconductor ion sensor in which the solution supply unit is connected, the evaporation of the solution can be prevented, so that the ion concentration can be stably measured.
  • the semiconductor ion sensor according to Aspect 2 of the present invention is characterized in that, in Aspect 1, a lid glass or a solution guide is connected to the upper surface of the frame.
  • the solution can be easily supplied to the semiconductor ion sensor via the lid glass or the solution guide.
  • a semiconductor ion sensor according to aspect 3 of the present invention is characterized in that, in aspect 1 or 2, a plurality of sections are provided inside the frame.
  • the semiconductor ion sensor according to Aspect 4 of the present invention is characterized in that, in any one of Aspects 1 to 3, the frame is directly bonded to the surface of the semiconductor chip.
  • the structure of the semiconductor ion sensor can be further simplified.
  • the semiconductor ion sensor according to aspect 5 of the present invention is characterized in that, in any of the above aspects 1 to 4, the frame is made of silicone rubber.
  • the substance supplied into the compartment can be prevented from changing due to the influence of the frame, so that the ion concentration can be measured stably.
  • the semiconductor ion sensor according to Aspect 6 of the present invention is characterized in that, in any one of Aspects 1 to 5, the upper part of the vertical cross section of the frame body has an arc shape.
  • the adhesion between the frame body and the solution supply unit can be further improved.
  • a method of manufacturing a semiconductor ion sensor according to aspect 7 of the present invention includes a step of preparing a semiconductor chip having a region in which an ion sensitive portion is formed, and an elastic frame body so as to surround the region, and And a step of directly bonding to the surface of the semiconductor chip.
  • a small semiconductor ion sensor capable of accurately detecting the ion concentration with a simple structure can be manufactured.
  • a manufacturing method according to aspect 8 of the present invention is the manufacturing method according to aspect 7, in which a plurality of sections are formed inside the frame body, and the frame body is bonded to the semiconductor chip, and then the frame in the semiconductor chip.
  • the method further includes a step of forming a sealing resin outside the body.
  • the stress at the time of injecting the resin material can be supported by the frame, so that the sealing resin can be stably formed.
  • Sensor chip (Sensor chip 1) 2 Sensitive membrane 3 Ion sensitive part 4 Terminal part 6 Wire 7, 7a Substrate 8, 8a Terminal part 9, 9a Heat sink 10 Core material 11 Through hole 12 Sealing resin 13 Mold 14 Semiconductor ion sensor 15 Frame 16 Outer wall 17 Partition wall 18 Section 19 Lid glass (solution supply part) 20 Solution inlet / outlet 21 Solution guide (solution supply unit) 22 Filling part 23 Lid part 24 Cavity part

Abstract

Provided is a semiconductor ion sensor which enables efficient detection of ion concentration with a small and simple structure, wherein an elastic frame body (15) is bonded to a top surface of a sensor chip (1) in such a manner as to surround a region where a sensitive film (2) is to be formed in the sensor chip (1).

Description

半導体イオンセンサSemiconductor ion sensor
 本発明は、イオン濃度を測定するための半導体イオンセンサに関するものである。 The present invention relates to a semiconductor ion sensor for measuring ion concentration.
 近年、イオン濃度を測定するためのデバイスが、半導体技術を用いて開発されている。このようなデバイスは、一般に半導体イオンセンサと呼ばれる。半導体イオンセンサは感応膜を備えており、イオン濃度の測定時、溶液中のイオンによって感応膜に電荷が蓄積され、これが半導体素子内部の電位を変動させる。半導体イオンセンサは、このとき変動した電位を検出することによってイオン濃度を測定するデバイスである。 In recent years, devices for measuring ion concentration have been developed using semiconductor technology. Such a device is generally called a semiconductor ion sensor. The semiconductor ion sensor includes a sensitive film, and when measuring the ion concentration, charges are accumulated in the sensitive film by ions in the solution, and this changes the potential inside the semiconductor element. The semiconductor ion sensor is a device that measures the ion concentration by detecting the potential that has changed at this time.
 従来の半導体イオンセンサの例として、ISFET(Ion Sensitive Field Effective Transistor)型イオンセンサおよびCCD(Charge Cupled Carrier)型イオンセンサが特に知られている。前者は、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)のゲート上に感応膜を設けている構造を取る。後者は、フォトダイオード上に感応膜を設けた構造を取り、かつ、イオン濃度を電荷転送素子によって検出する。 As examples of conventional semiconductor ion sensors, ISFET (Ion-Sensitive-Field-Effective-Transistor) type ion sensors and CCD (Charge-Cupled-Carrier) type ion sensors are particularly known. The former has a structure in which a sensitive film is provided on the gate of a MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor). The latter has a structure in which a sensitive film is provided on a photodiode, and the ion concentration is detected by a charge transfer element.
 これらのデバイスの製造には、既存のシリコン半導体プロセスが適用できる。したがって感応膜の微細化が容易であり、これにより2次元センサアレイを製造することができる。従来の半導体イオンセンサをバイオセンシングに適用した事例が、以下のように各種の文献に開示されている。 Existing silicon semiconductor processes can be applied to the manufacture of these devices. Therefore, the sensitive film can be easily miniaturized, whereby a two-dimensional sensor array can be manufactured. Examples in which a conventional semiconductor ion sensor is applied to biosensing are disclosed in various documents as follows.
 非特許文献1には、CCD型イオンイメージセンサを用いた神経細胞のイメージング研究例が開示されている。 Non-Patent Document 1 discloses an example of neuronal imaging research using a CCD ion image sensor.
 図16は、特許文献1に開示された従来技術の構成を示す図である。この図に示すように、特許文献1には、ISFETのセンサ領域をアクリルガラス等からなる仕切り壁によって複数の部分領域に分離し、各部分領域にそれぞれ異なるウイルスまたは核酸を配置したり、あるいは各部分領域のいずれかをドリフト検出用の空き領域としたりことによって、イオン濃度を短時間で精度よく検出する方法が示されている。 FIG. 16 is a diagram showing a configuration of a conventional technique disclosed in Patent Document 1. As shown in this figure, in Patent Document 1, the ISFET sensor region is separated into a plurality of partial regions by a partition wall made of acrylic glass or the like, and a different virus or nucleic acid is arranged in each partial region. There is shown a method for accurately detecting the ion concentration in a short time by making any one of the partial areas a free area for drift detection.
 図17は、特許文献2に開示された従来技術の構成を示す図である。この図に示すように、特許文献2には、ISFETのセンサ領域を、この上に形成したマイクロウェルによって複数の部分領域に分離し、各部分領域の内部にそれぞれ異なる種類の試薬(核酸、タンパク質、抗体、細胞)を配置することによって、多数のゲノムをシークエンシングする方法が開示されている。 FIG. 17 is a diagram showing a configuration of the conventional technique disclosed in Patent Document 2. As shown in this figure, in Patent Document 2, the sensor region of ISFET is separated into a plurality of partial regions by the microwells formed thereon, and different types of reagents (nucleic acid, protein, etc.) are provided inside each partial region. , Antibodies, cells) for sequencing a large number of genomes.
 図18は、特許文献3に開示された従来技術の構成を示す図である。この図に示すように、特許文献3には、半導体イオンセンサのイオン感応部を囲むように枠体を設け、この枠体に成形金型を押し当てることによってイオン感応部を樹脂封止する方法が開示されている。この枠体は、エポキシ樹脂またはフッ素樹脂等からなり、シリコーンゴム等を用いた緩衝部材を介して半導体イオンセンサに接着されている。 FIG. 18 is a diagram showing a configuration of a conventional technique disclosed in Patent Document 3. As shown in this figure, Patent Document 3 discloses a method in which a frame is provided so as to surround an ion sensitive portion of a semiconductor ion sensor, and the ion sensitive portion is sealed with a resin by pressing a molding die against the frame. Is disclosed. The frame is made of epoxy resin or fluororesin, and is bonded to the semiconductor ion sensor via a buffer member using silicone rubber or the like.
日本国公開特許公報「特開2013-50426号(2013年3月14日公開)」Japanese Patent Publication “JP 2013-50426 (published on March 14, 2013)” 日本国公開特許公報「特開2013-81463号(2013年5月9日公開)」Japanese Patent Publication “JP 2013-81463 (published May 9, 2013)” 日本国公開特許公報「特開2003-161721号(2013年6月6日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-161721 (published on June 6, 2013)”
 イオン濃度の検出に用いられる検体は、溶液として半導体イオンセンサに供給される場合が多い。上述した各文献の技術には、これに起因する問題がある。 The specimen used for detecting the ion concentration is often supplied to the semiconductor ion sensor as a solution. The technique of each literature mentioned above has a problem resulting from this.
 特許文献1の方法は簡易に実行できるが、仕切り壁の上部が開口しているため、溶液である検体が蒸発しやすい。そのため、検体の測定が不安定になる欠点がある。 Although the method of Patent Document 1 can be easily executed, the specimen as a solution is likely to evaporate because the upper part of the partition wall is open. Therefore, there is a drawback that the measurement of the specimen becomes unstable.
 特許文献2の方法では、溶液である検体の蒸発は殆ど起きない。しかし、この技術ではマイクロウェルがフォトリソグラフィーによるレジストパターニングによって形成される。これにより微細加工が容易にはなるが、一方で、レジストは一般的に硬いため、半導体チップにダメージが入ったり、マイクロウェルにクラックが入ったりしやすい。そのため、マイクロウェルの上にリッドガラスまたは溶液ガイドを直接接続することが難しく、これにより半導体イオンセンサの小型化が困難になる問題がある。 In the method of Patent Document 2, the specimen as a solution hardly evaporates. However, in this technique, the microwell is formed by resist patterning by photolithography. This facilitates microfabrication, but on the other hand, since the resist is generally hard, the semiconductor chip is easily damaged and the microwell is liable to crack. Therefore, it is difficult to directly connect the lid glass or the solution guide on the microwell, which makes it difficult to reduce the size of the semiconductor ion sensor.
 特許文献3の技術でも、枠体が固いため、枠体の上にリッドガラスまたは溶液ガイドを直接接続することが難しく、これにより半導体イオンセンサの小型化が困難になる問題がある。 Even in the technology of Patent Document 3, since the frame is hard, it is difficult to directly connect the lid glass or the solution guide on the frame, which makes it difficult to reduce the size of the semiconductor ion sensor.
 本発明は、上記の課題に鑑みてなされたものである。そして、その目的は、イオン濃度を精度よく検出できる小型の半導体イオンセンサを提供することを目的としている。 The present invention has been made in view of the above problems. And the objective is providing the small semiconductor ion sensor which can detect ion concentration accurately.
 本発明の一態様に係る半導体イオンセンサは、上記の課題を解決するために、イオン感応部が形成される領域を有する半導体チップと、上記領域を取り囲むように配置され、弾性を有し、かつ上記半導体チップの表面に直接接合されている枠体とを備えていることを特徴としている。 In order to solve the above problems, a semiconductor ion sensor according to an aspect of the present invention has a semiconductor chip having a region where an ion sensitive portion is formed, and is arranged so as to surround the region, has elasticity, and And a frame body directly bonded to the surface of the semiconductor chip.
 本発明によれば、イオン濃度を精度よく検出できる小型の半導体イオンセンサを提供することができる。 According to the present invention, it is possible to provide a small semiconductor ion sensor that can accurately detect the ion concentration.
本発明の実施形態1に係るセンサチップの構成を示す図である。It is a figure which shows the structure of the sensor chip which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るセンサチップと基板との接続の状態を示す図である。It is a figure which shows the state of the connection of the sensor chip which concerns on Embodiment 1 of this invention, and a board | substrate. 本発明の実施形態1に係るセンサチップと基板との接続の状態を示す図である。It is a figure which shows the state of the connection of the sensor chip which concerns on Embodiment 1 of this invention, and a board | substrate. 本発明の実施形態1に係る半導体イオンセンサを製造する方法における一行程を示す図である。It is a figure which shows one process in the method of manufacturing the semiconductor ion sensor which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る半導体イオンセンサを構成する枠体の一例を示す斜面図である。It is a perspective view which shows an example of the frame which comprises the semiconductor ion sensor which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る半導体イオンセンサを構成する枠体の一例を示す断面図である。It is sectional drawing which shows an example of the frame which comprises the semiconductor ion sensor which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る、センサチップに枠体が接合される状態の半導体イオンセンサの構成を示す図である。It is a figure which shows the structure of the semiconductor ion sensor of the state by which a frame is joined to the sensor chip based on Embodiment 1 of this invention. 本発明の実施形態2における半導体イオンセンサの製造方法の一行程を示す図である。It is a figure which shows 1 process of the manufacturing method of the semiconductor ion sensor in Embodiment 2 of this invention. 本発明の実施形態2に係る半導体イオンセンサを製造する方法における一行程を示す図である。It is a figure which shows one process in the method of manufacturing the semiconductor ion sensor which concerns on Embodiment 2 of this invention. 本発明の実施形態3における半導体イオンセンサの製造方法の一行程を示す図である。It is a figure which shows 1 process of the manufacturing method of the semiconductor ion sensor in Embodiment 3 of this invention. 本発明の実施形態1に係る、枠体にリッドガラスが接続されている半導体イオンセンサの構成を示す図である。It is a figure which shows the structure of the semiconductor ion sensor by which lid glass is connected to the frame based on Embodiment 1 of this invention. 本発明の実施形態1に係る、枠体に溶液ガイドが接続されている半導体イオンセンサの構成を示す図である。It is a figure which shows the structure of the semiconductor ion sensor based on Embodiment 1 of this invention by which the solution guide is connected to the frame. 本発明の実施形態1~3に係る半導体イオンセンサにおける枠体の変形例を示す図である。FIG. 6 is a view showing a modification of the frame in the semiconductor ion sensor according to Embodiments 1 to 3 of the present invention. 本発明の実施形態1~3に係る半導体イオンセンサにおける枠体の変形例を示す図である。FIG. 6 is a view showing a modification of the frame in the semiconductor ion sensor according to Embodiments 1 to 3 of the present invention. 本発明の実施形態1~3に係る半導体イオンセンサにおける枠体の変形例を示す図である。FIG. 6 is a view showing a modification of the frame in the semiconductor ion sensor according to Embodiments 1 to 3 of the present invention. 特許文献1に開示された従来技術の構成を示す図である。It is a figure which shows the structure of the prior art disclosed by patent document 1. FIG. 特許文献2に開示された従来技術の構成を示す図である。It is a figure which shows the structure of the prior art disclosed by patent document 2. FIG. 特許文献3に開示された従来技術の構成を示す図である。It is a figure which shows the structure of the prior art disclosed by patent document 3. FIG.
 〔実施形態1〕
 図1~図7を参照して、本発明の実施形態1について以下に説明する。
Embodiment 1
A first embodiment of the present invention will be described below with reference to FIGS.
 図1は、本発明の実施形態1に係るセンサチップ1(半導体チップ)の構成を示す図である。この図の(a)に、センサチップ1の上面を示し、(b)にセンサチップ1の正面を示す。図1に示すように、センサチップ1は、感応膜2、イオン感応部3および端子部4を備えている。センサチップ1は、公知のシリコン半導体プロセスを用いて製造される。 FIG. 1 is a diagram showing a configuration of a sensor chip 1 (semiconductor chip) according to Embodiment 1 of the present invention. (A) of this figure shows the upper surface of the sensor chip 1, and (b) shows the front of the sensor chip 1. As shown in FIG. 1, the sensor chip 1 includes a sensitive film 2, an ion sensitive part 3, and a terminal part 4. The sensor chip 1 is manufactured using a known silicon semiconductor process.
 センサチップ1の表面は、誘電体薄膜である感応膜2によって被覆されている。表示部における感応膜2の直下に、複数のイオン感応部3が2次元アレイ状に設けられている。イオン感応部3は、イオン濃度を測定することによって生体化学反応を検出するための検出部として用いられる。イオン感応部3はたとえばMOSFETまたはフォトダイオードであるが、これらには制限されない。イオン感応部3の大きさは、1個あたり1~100μm角である。 The surface of the sensor chip 1 is covered with a sensitive film 2 which is a dielectric thin film. A plurality of ion sensitive portions 3 are provided in a two-dimensional array immediately below the sensitive film 2 in the display portion. The ion sensitive unit 3 is used as a detection unit for detecting a biochemical reaction by measuring an ion concentration. The ion sensitive part 3 is, for example, a MOSFET or a photodiode, but is not limited thereto. The size of the ion sensitive portion 3 is 1 to 100 μm square per piece.
 端子部4は、センサチップ1の表面における端部に形成されている。各端子部4は、センサチップ1におけるイオン濃度の検出量を示す信号をセンサチップ1の外部に出力するためのものである。 The terminal portion 4 is formed at an end portion on the surface of the sensor chip 1. Each terminal portion 4 is for outputting a signal indicating the detected amount of ion concentration in the sensor chip 1 to the outside of the sensor chip 1.
 センサチップ1の大きさは、たとえば1辺の長さが2~20mmであり、かつ厚さが0.02~0.7mmであるが、これらには制限されない。 The size of the sensor chip 1 is, for example, a length of one side of 2 to 20 mm and a thickness of 0.02 to 0.7 mm, but is not limited thereto.
 (半導体イオンセンサ14の製造方法)
 図2~図4を参照して、センサチップ1を備えた半導体イオンセンサ14の製造手順について説明する。
(Manufacturing method of the semiconductor ion sensor 14)
A manufacturing procedure of the semiconductor ion sensor 14 provided with the sensor chip 1 will be described with reference to FIGS.
 図2は、本発明の実施形態1に係るセンサチップ1と基板7との接続の状態を示す図である。この図に示す基板7は、端子部8および放熱板9を備えている。 FIG. 2 is a diagram showing a connection state between the sensor chip 1 and the substrate 7 according to the first embodiment of the present invention. The substrate 7 shown in this figure includes a terminal portion 8 and a heat radiating plate 9.
 半導体イオンセンサ14の製造時、まずセンサチップ1を基板7にダイボンドする。その際、センサチップ1の端子部4と、基板7の端子部8とを、ワイヤ6を用いて、ワイヤボンディングする。これにより、端子部4と端子部8とが電気的に接続される。 When the semiconductor ion sensor 14 is manufactured, the sensor chip 1 is first die-bonded to the substrate 7. At that time, the terminal portion 4 of the sensor chip 1 and the terminal portion 8 of the substrate 7 are wire-bonded using the wire 6. Thereby, the terminal part 4 and the terminal part 8 are electrically connected.
 図2に示した基板7は、金属板をエッチングすることによって、所定の配線パターンをその表面に形成したリードフレームである。端子部8と放熱板9とは一体的に形成されている。 The substrate 7 shown in FIG. 2 is a lead frame in which a predetermined wiring pattern is formed on the surface thereof by etching a metal plate. The terminal portion 8 and the heat radiating plate 9 are integrally formed.
 半導体イオンセンサ14をバイオセンサとして用いる場合、検体の中には熱に弱いものもあるため、熱をセンサチップ1から放出できることが好ましい。これを実現すべく、図2では、放熱板9は、センサチップ1の裏面に設けられている。 When the semiconductor ion sensor 14 is used as a biosensor, it is preferable that heat can be released from the sensor chip 1 because some specimens are vulnerable to heat. In order to realize this, in FIG. 2, the heat radiating plate 9 is provided on the back surface of the sensor chip 1.
 (他の接続例)
 図3は、本発明の実施形態1に係るセンサチップ1と基板7aとの接続の状態を示す図である。センサチップ1は、基板7の代わりに基板7aに接続されてもよい。基板7aは、端子部8a、放熱板9a、およびコア材10を備えている。コア材10は、ガラスエポキシ樹脂またはセラミック等の材料によって構成されている。コア材10の内部に、複数のスルーホール11が形成されている。コア材10の表面および裏面に、端子部8aおよび放熱板9aが配置されている。端子部8aおよび放熱板9aはたとえば金属箔として形成される。
(Other connection examples)
FIG. 3 is a diagram illustrating a connection state between the sensor chip 1 and the substrate 7a according to the first embodiment of the present invention. The sensor chip 1 may be connected to the substrate 7 a instead of the substrate 7. The substrate 7a includes a terminal portion 8a, a heat sink 9a, and a core material 10. The core material 10 is made of a material such as glass epoxy resin or ceramic. A plurality of through holes 11 are formed in the core material 10. Terminal portions 8a and heat sinks 9a are arranged on the front and back surfaces of the core material 10. Terminal portion 8a and heat sink 9a are formed, for example, as metal foil.
 基板7および基板7aの大きさは、たとえば1辺の長さが4~30mmであり、かつ厚さ0.1~0.5mmであるが、これらには制限されない。 The size of the substrate 7 and the substrate 7a is, for example, 4 to 30 mm on a side and 0.1 to 0.5 mm in thickness, but is not limited thereto.
 (封止樹脂12の形成)
 図4は、本発明の実施形態1に係る半導体イオンセンサ14を製造する方法における一行程を示す図である。この図の(a)に示すように、基板7に接続されたセンサチップ1を、金型13に装着する。その際、センサチップ1における感応膜2の全面が金型13に密着するようにする。それから樹脂材料をセンサチップ1-基板7複合体の空隙に注入して硬化させる。樹脂材料として、電子部品の製造に一般的に用いられる熱硬化性エポキシ樹脂を用いることができる。硬化完了後、図4の(b)に示すように、金型13を取り外す。これにより、封止樹脂12が、センサチップ1における感応膜2を露出させるように形成される。
(Formation of sealing resin 12)
FIG. 4 is a diagram illustrating a process in the method of manufacturing the semiconductor ion sensor 14 according to the first embodiment of the present invention. As shown in (a) of this figure, the sensor chip 1 connected to the substrate 7 is mounted on a mold 13. At that time, the entire surface of the sensitive film 2 in the sensor chip 1 is brought into close contact with the mold 13. Then, a resin material is injected into the gap of the sensor chip 1-substrate 7 composite and cured. As the resin material, a thermosetting epoxy resin generally used in the manufacture of electronic components can be used. After the curing is completed, the mold 13 is removed as shown in FIG. Thereby, the sealing resin 12 is formed so as to expose the sensitive film 2 in the sensor chip 1.
 封止樹脂12の厚さは、たとえば、センサチップ1の上面を基準としてそれよりも上向きに0.1~3mmであるが、これらには制限されない。 The thickness of the sealing resin 12 is, for example, 0.1 to 3 mm upward with respect to the upper surface of the sensor chip 1, but is not limited thereto.
 (枠体15)
 封止樹脂12の形成後、あらかじめ別に用意された、弾性を有する枠体15を、感応膜2の上に接合する。枠体15の一例を、図5および図6に示す。図5は、本発明の実施形態1に係る半導体イオンセンサ14を構成する枠体15の一例を示す斜面図である。図6は、本発明の実施形態1に係る半導体イオンセンサ14を構成する枠体15の一例を示す断面図である。これらの図に示すように、枠体15は、外周壁16および仕切り壁17を備えている。図6の(a)に、枠体15を上から見た状態を示し、(b)に、(a)のA-A断面を示す。
(Frame 15)
After forming the sealing resin 12, an elastic frame 15 prepared separately in advance is bonded onto the sensitive film 2. An example of the frame 15 is shown in FIGS. FIG. 5 is a perspective view showing an example of the frame 15 constituting the semiconductor ion sensor 14 according to Embodiment 1 of the present invention. FIG. 6 is a cross-sectional view showing an example of the frame 15 constituting the semiconductor ion sensor 14 according to Embodiment 1 of the present invention. As shown in these drawings, the frame 15 includes an outer peripheral wall 16 and a partition wall 17. FIG. 6A shows the state of the frame 15 as viewed from above, and FIG. 6B shows the AA cross section of FIG.
 枠体15は、十字状の仕切り壁17の周囲に方形の外周壁16が取り付けられた構造を取る。これにより、枠体15の内部には複数の区画18(図5では4つ)が形成されている。枠体15における区画18の数は1つでもよく、この場合、たとえば枠体15は外周壁16のみによって構成される。 The frame body 15 has a structure in which a square outer peripheral wall 16 is attached around a cross-shaped partition wall 17. Thus, a plurality of sections 18 (four in FIG. 5) are formed inside the frame body 15. The number of the divisions 18 in the frame 15 may be one. In this case, for example, the frame 15 is configured only by the outer peripheral wall 16.
 枠体15の材料(すなわち外周壁16および仕切り壁17の材料)は、化学的に安定でありかつ生理的に不活性であるものが好ましい。枠体15の材料として、たとえば、シリコーンゴムまたはフッ素ゴムが挙げられる。なかでも、液状シリコーンゴムと呼ばれる、低粘土の液体でありかつ常温で硬化するかまたは熱硬化する材料が、加工性および接合性が良好であることから特に好ましい。液状シリコーンゴムの一例として、PDMS(PolyDiMethyl Siloxane)が挙げられる。 The material of the frame body 15 (that is, the material of the outer peripheral wall 16 and the partition wall 17) is preferably chemically stable and physiologically inert. Examples of the material of the frame 15 include silicone rubber and fluororubber. Among these, a low-clay liquid called a liquid silicone rubber, and a material that cures at room temperature or thermosets is particularly preferable because of good workability and bonding properties. An example of the liquid silicone rubber is PDMS (PolyDiMethyl Siloxane).
 枠体15の大きさは、たとえば外周壁16における1辺の長さが1~20mmであり、かつ枠体15全体の厚さが0.02~3mmであるが、これらには制限されない。 The size of the frame body 15 is, for example, that the length of one side of the outer peripheral wall 16 is 1 to 20 mm and the total thickness of the frame body 15 is 0.02 to 3 mm, but is not limited thereto.
 枠体15は、たとえば次のようにして製造される。まずPDMSを所定のアクリル製の押し型に入れる。それから大気中で、65℃かつ4時間の条件で熱硬化させる。熱硬化の完了後、硬化したPDMSを押し型から取り出すことによって、所定の形状を有する枠体15が得られる。 The frame body 15 is manufactured as follows, for example. First, PDMS is put into a predetermined acrylic mold. Then, it is thermally cured in air at 65 ° C. for 4 hours. After completion of thermosetting, the frame 15 having a predetermined shape is obtained by removing the cured PDMS from the pressing mold.
 (枠体15の接合)
 感応膜2への枠体15の接合方法の一例を以下に説明する。まず、枠体15の接合前に、枠体15に活性化処理を施す。たとえば、活性化処理として、15秒間のOプラズマ照射(RFパワー=500W、気圧=100Pa)が挙げられる。これにより、枠体15の表面のメチル基が水酸基に置換される。活性化処理として、大気圧プラズマ照射またはUV光照射も挙げられる。
(Join the frame 15)
An example of a method for joining the frame 15 to the sensitive film 2 will be described below. First, before the frame body 15 is joined, the frame body 15 is activated. For example, as the activation process, 15 seconds of O 2 plasma irradiation (RF power = 500 W, atmospheric pressure = 100 Pa) can be mentioned. Thereby, the methyl group on the surface of the frame 15 is substituted with a hydroxyl group. Examples of the activation treatment include atmospheric pressure plasma irradiation and UV light irradiation.
 センサチップ1の表面に対しても、表面をクリーニングするために、Oプラズマ照射、大気圧プラズマ照射、UV照射を行うことが望ましい。センサチップ1の表面に酸化物がない場合、Oプラズマ照射または大気圧プラズマ照射によって、センサチップ1の最表面が酸化される。これにより、センサチップ1の表面の酸化物と、枠体15の表面の水酸基とが結合しやすくなる効果が得られる。 Also for the surface of the sensor chip 1, it is desirable to perform O 2 plasma irradiation, atmospheric pressure plasma irradiation, and UV irradiation in order to clean the surface. When there is no oxide on the surface of the sensor chip 1, the outermost surface of the sensor chip 1 is oxidized by O 2 plasma irradiation or atmospheric pressure plasma irradiation. Thereby, the effect that the oxide on the surface of the sensor chip 1 and the hydroxyl group on the surface of the frame 15 are easily bonded is obtained.
 枠体15の表面がたとえば窒化シリコン(Si)で形成されている場合、枠体15の表面にOプラズマ照射(RFパワー=500W、気圧=100Pa)を300秒行う。活性化処理の完了後、センサチップ1の表面上に枠体15を搭載し、常温で10分静置することによって、枠体15をセンサチップ1に接合する。枠体15をセンサチップ1に接合する際、枠体15の上部に荷重を与えても良い。 When the surface of the frame 15 is made of, for example, silicon nitride (Si 3 N 4 ), the surface of the frame 15 is irradiated with O 2 plasma (RF power = 500 W, atmospheric pressure = 100 Pa) for 300 seconds. After the activation process is completed, the frame body 15 is mounted on the surface of the sensor chip 1 and is left to stand at room temperature for 10 minutes, thereby joining the frame body 15 to the sensor chip 1. When the frame body 15 is joined to the sensor chip 1, a load may be applied to the upper part of the frame body 15.
 図7は、本発明の実施形態1に係る、センサチップ1に枠体15が接合される状態の半導体イオンセンサ14の構成を示す図である。この図に示すように、枠体15がセンサチップ1の感応膜2上に接合されることによって、半導体イオンセンサ14の製造が完了する。枠体15の接合後、感応膜2の上には複数の区画18が存在する。各区画18に、イオン濃度測定用の、それぞれ異なる検体が導入される。 FIG. 7 is a diagram illustrating a configuration of the semiconductor ion sensor 14 in a state where the frame body 15 is bonded to the sensor chip 1 according to the first embodiment of the present invention. As shown in this figure, the frame 15 is bonded onto the sensitive film 2 of the sensor chip 1, thereby completing the manufacture of the semiconductor ion sensor 14. After joining the frame body 15, a plurality of sections 18 exist on the sensitive film 2. Different specimens for measuring the ion concentration are introduced into each compartment 18.
 〔実施形態2〕
 図8および9を参照して、本発明に係る実施形態2を以下に説明する。上述した実施形態1と共通する各部材には同じ符号を付し、詳細な説明を省略する。
[Embodiment 2]
A second embodiment according to the present invention will be described below with reference to FIGS. Each member common to Embodiment 1 described above is denoted by the same reference numeral, and detailed description thereof is omitted.
 本実施形態では、半導体イオンセンサ14の製造手順が実施形態1と異なる。完成後の半導体イオンセンサ14の構成は、実施形態1と変わらない。 In this embodiment, the manufacturing procedure of the semiconductor ion sensor 14 is different from that in the first embodiment. The configuration of the semiconductor ion sensor 14 after completion is the same as that of the first embodiment.
 本実施形態における半導体イオンセンサ14の製造手順への次の通りである。 It is as follows to the manufacturing procedure of the semiconductor ion sensor 14 in this embodiment.
 まず、センサチップ1の製造方法は実施形態1と同じである(図1)。さらに、センサチップ1を基板7にダイボンドし、センサチップ1の端子部4と基板7の端子部8とをワイヤ6を用いてワイヤボンディングで接続する行程も、実施形態1と同じである(図2または図3)。 First, the manufacturing method of the sensor chip 1 is the same as that of the first embodiment (FIG. 1). Further, the process of die-bonding the sensor chip 1 to the substrate 7 and connecting the terminal portion 4 of the sensor chip 1 and the terminal portion 8 of the substrate 7 by wire bonding using the wire 6 is the same as in the first embodiment (FIG. 2 or FIG. 3).
 図8は、本発明の実施形態2における半導体イオンセンサ14の製造方法の一行程を示す図である。この図に示すように、本実施形態では、実施形態1と異なり、封止樹脂12を形成する前に、あらかじめ別に用意された枠体15(図5)をセンサチップ1に接合する。枠体15の外形、材料、その形成方法、活性化方法、および接合方法は、いずれも実施形態1と同じである。 FIG. 8 is a diagram illustrating a process of manufacturing the semiconductor ion sensor 14 according to the second embodiment of the present invention. As shown in this figure, in this embodiment, unlike Embodiment 1, before the sealing resin 12 is formed, a separately prepared frame 15 (FIG. 5) is joined to the sensor chip 1. The outer shape, material, formation method, activation method, and joining method of the frame body 15 are all the same as those in the first embodiment.
 (封止樹脂12の形成)
 図9は、本発明の実施形態2に係る半導体イオンセンサ14を製造する方法における一行程を示す図である。この図の(a)に示すように、センサチップ1、基板7、および枠体15からなる複合体を、金型13に装着する。このとき感応膜2の上に枠体15がすでに配置されているので、金型13は感応膜2ではなく枠体15の上面に密着される。それから樹脂材料をセンサチップ1-基板7-枠体15複合体の空隙に注入して硬化させる。樹脂材料は実施形態1と同じである。硬化完了後、図9の(b)に示すように、金型13を取り外す。これにより、封止樹脂12が、センサチップ1における感応膜2、ならびに枠体15の上面および内部を露出させるように形成される。形成後の封止樹脂12の外形は、実施形態1と同じである。
(Formation of sealing resin 12)
FIG. 9 is a diagram illustrating a process in the method of manufacturing the semiconductor ion sensor 14 according to the second embodiment of the present invention. As shown in (a) of this figure, a complex made up of the sensor chip 1, the substrate 7, and the frame 15 is mounted on the mold 13. At this time, since the frame body 15 is already disposed on the sensitive film 2, the mold 13 is brought into close contact with the upper surface of the frame body 15 instead of the sensitive film 2. Then, a resin material is injected into the gap of the sensor chip 1-substrate 7-frame 15 complex and cured. The resin material is the same as in the first embodiment. After the curing is completed, the mold 13 is removed as shown in FIG. Thereby, the sealing resin 12 is formed so as to expose the sensitive film 2 in the sensor chip 1 and the upper surface and the inside of the frame body 15. The outer shape of the sealing resin 12 after formation is the same as that of the first embodiment.
 本実施形態のように、封止樹脂12の形成時、仕切り壁17によって複数の区画18が形成されている枠体15がセンサチップ1に接合されていれば、枠体15が封止樹脂12の注入時の応力を支えることができるので好ましい。 As in this embodiment, when the sealing resin 12 is formed, if the frame body 15 in which a plurality of sections 18 are formed by the partition wall 17 is bonded to the sensor chip 1, the frame body 15 is sealed with the sealing resin 12. This is preferable because it can support the stress at the time of injection.
 本実施形態では、封止樹脂12の形成時、実施形態1とは異なり、金型13がセンサチップ1の表面と直接接しない。したがって本実施形態の製造方法は、センサチップ1の表面に超薄膜の感応膜2などを形成されている場合に特に有効である。 In this embodiment, unlike the first embodiment, the mold 13 is not in direct contact with the surface of the sensor chip 1 when the sealing resin 12 is formed. Therefore, the manufacturing method of the present embodiment is particularly effective when the ultrathin sensitive film 2 or the like is formed on the surface of the sensor chip 1.
 〔実施形態3〕
 図10を参照して、本発明に係る実施形態3を以下に説明する。上述した実施形態2と共通する各部材には同じ符号を付し、詳細な説明を省略する。
[Embodiment 3]
With reference to FIG. 10, Embodiment 3 which concerns on this invention is demonstrated below. Each member common to the above-described second embodiment is given the same reference numeral, and detailed description thereof is omitted.
 本実施形態では、半導体イオンセンサ14の製造手順が実施形態2と異なる。また、これにより、完成後の半導体イオンセンサ14の構成が実施形態2と異なっている。 In this embodiment, the manufacturing procedure of the semiconductor ion sensor 14 is different from that of the second embodiment. Thereby, the configuration of the completed semiconductor ion sensor 14 is different from that of the second embodiment.
 本実施形態における半導体イオンセンサ14の製造手順は次の通りである。 The manufacturing procedure of the semiconductor ion sensor 14 in the present embodiment is as follows.
 まず、センサチップ1の製造方法は実施形態2と同じである(図1)。さらに、センサチップ1を基板7にダイボンドし、センサチップ1の端子部4と基板7の端子部8とをワイヤ6を用いてワイヤボンディングで接続する行程も、実施形態2と同じである(図2または図3)。また、封止樹脂12を形成する前に枠体15をセンサチップ1上に接合する行程も、実施形態2と同じである。 First, the manufacturing method of the sensor chip 1 is the same as that of the second embodiment (FIG. 1). Further, the process of die-bonding the sensor chip 1 to the substrate 7 and connecting the terminal portion 4 of the sensor chip 1 and the terminal portion 8 of the substrate 7 by wire bonding using the wire 6 is the same as in the second embodiment (FIG. 2 or FIG. 3). The process of joining the frame 15 onto the sensor chip 1 before forming the sealing resin 12 is the same as in the second embodiment.
 図10は、本発明の実施形態3における半導体イオンセンサ14の製造方法の一行程を示す図である。この図に示すように、本実施形態では、実施形態2と異なり、金型13にセンサチップ1-基板7-枠体15複合体に搭載することなく、端子部4、ワイヤ6、および端子部8を樹脂材料で被覆する。その際、封止樹脂12は、感応膜2ならびに枠体15の上面および内部を露出させるように、配置される。樹脂材料の配置後、樹脂材料を硬化させることによって、封止樹脂12が形成される。これにより半導体イオンセンサ14の製造が完了する。封止樹脂12の外形は、実施形態2と異なり、ワイヤ6の外形に沿ったなだらかな形状をしている。 FIG. 10 is a diagram illustrating a process of manufacturing the semiconductor ion sensor 14 according to the third embodiment of the present invention. As shown in this figure, in the present embodiment, unlike the second embodiment, the terminal portion 4, the wire 6, and the terminal portion are not mounted on the mold 13 on the sensor chip 1 -substrate 7 -frame body 15 complex. 8 is coated with a resin material. At that time, the sealing resin 12 is disposed so as to expose the upper surface and the inside of the sensitive film 2 and the frame body 15. After the resin material is disposed, the sealing resin 12 is formed by curing the resin material. Thereby, the manufacture of the semiconductor ion sensor 14 is completed. Unlike the second embodiment, the outer shape of the sealing resin 12 has a gentle shape along the outer shape of the wire 6.
 本実施形態では、半導体イオンセンサ14の製造に金型13が不要であるので、実施形態2よりも半導体イオンセンサ14を簡単に製造することができる。 In this embodiment, since the mold 13 is not necessary for manufacturing the semiconductor ion sensor 14, the semiconductor ion sensor 14 can be manufactured more easily than in the second embodiment.
 〔実施形態1~3に共通〕
 図11~図15を参照して、本発明の実施形態1~3に共通する事項について説明する。
[Common to Embodiments 1 to 3]
Items common to the first to third embodiments of the present invention will be described with reference to FIGS.
 図11は、本発明の実施形態1~3に係る、枠体15にリッドガラス19が接続されている半導体イオンセンサ14の構成を示す図である。この図の例では、半導体イオンセンサ14において、枠体15の上面にリッドガラス19(溶液供給部)が直接接続されている。 FIG. 11 is a diagram showing a configuration of the semiconductor ion sensor 14 in which the lid glass 19 is connected to the frame body 15 according to the first to third embodiments of the present invention. In the example of this figure, in the semiconductor ion sensor 14, a lid glass 19 (solution supply unit) is directly connected to the upper surface of the frame 15.
 リッドガラス19には、枠体15における各区画18に溶液を注入するための複数の溶液出入り口20が形成されている。半導体イオンセンサ14を用いたイオン濃度の測定時、これらの溶液出入り口20を通じて検体(溶液)が各区画18に供給される。供給完了後、イオン濃度の測定が実施される。 The lid glass 19 is formed with a plurality of solution inlets / outlets 20 for injecting a solution into each compartment 18 in the frame 15. When measuring the ion concentration using the semiconductor ion sensor 14, a specimen (solution) is supplied to each compartment 18 through the solution inlet / outlet 20. After the supply is completed, the ion concentration is measured.
 上述したように、枠体15は弾性を有している。したがって、枠体15にリッドガラス19を外力で押し当てる形で接合することができる。あるいは、リッドガラス19の接合面(下面)および枠体15の接合面(上面)にOプラズマ照射、大気圧プラズマ照射、またはUV光照射等による活性化処理を行ってから、リッドガラス19と枠体15とを接合してもよい。 As described above, the frame body 15 has elasticity. Therefore, the lid glass 19 can be joined to the frame 15 by pressing it with an external force. Alternatively, the bonding surface (lower surface) of the lid glass 19 and the bonding surface (upper surface) of the frame body 15 are subjected to activation treatment by O 2 plasma irradiation, atmospheric pressure plasma irradiation, UV light irradiation, or the like, and then the lid glass 19 and The frame body 15 may be joined.
 リッドガラス19の材料は、ガラスまたはテフロン(登録商標)などの比較的硬い材料から、ゴムなどの比較的柔らかい材料まで、幅広く選ぶことができる。 The material of the lid glass 19 can be selected from a relatively hard material such as glass or Teflon (registered trademark) to a relatively soft material such as rubber.
 図12は、本発明の実施形態1~3に係る、枠体15に溶液ガイド21が接続されている半導体イオンセンサ14の構成を示す図である。この図の例では、半導体イオンセンサ14において、枠体15の上面に溶液ガイド21(溶液供給部)が直接接続されている。溶液ガイド21の材料、および枠体15への接合方法は、基本的にリッドガラス19と同じである。 FIG. 12 is a diagram showing a configuration of the semiconductor ion sensor 14 in which the solution guide 21 is connected to the frame 15 according to the first to third embodiments of the present invention. In the example of this figure, in the semiconductor ion sensor 14, a solution guide 21 (solution supply unit) is directly connected to the upper surface of the frame 15. The material of the solution guide 21 and the bonding method to the frame 15 are basically the same as those of the lid glass 19.
 本発明の実施形態1~3によれば、枠体15がセンサチップ1の上面に直接接合されているので、枠体15をセンサチップ1に接合させるための他の部材を必要としない。また、枠体15は弾性を有しているので、イオン感応部3の形成領域へ溶液(検体)を供給するための供給部(リッドガラスまたは溶液ガイド)を、枠体15に直接接続することができる。これらのことから、半導体イオンセンサ14の構造を小型かつ簡易なものとすることができる。さらに、リッドガラス19または溶液ガイド21が接続された状態の半導体イオンセンサ14では、溶液の蒸発を防止することができるので、イオン濃度を安定して測定することができる。 According to the first to third embodiments of the present invention, since the frame body 15 is directly bonded to the upper surface of the sensor chip 1, no other member for bonding the frame body 15 to the sensor chip 1 is required. Further, since the frame 15 has elasticity, a supply unit (lid glass or solution guide) for supplying a solution (specimen) to the formation region of the ion sensitive unit 3 is directly connected to the frame 15. Can do. From these things, the structure of the semiconductor ion sensor 14 can be made small and simple. Furthermore, in the semiconductor ion sensor 14 in a state where the lid glass 19 or the solution guide 21 is connected, evaporation of the solution can be prevented, so that the ion concentration can be stably measured.
 図11および図12に示すように、枠体15に複数の区画18が形成されている場合、異なる種類の試薬(核酸、タンパク質、抗体、細胞、表面修飾されたマイクロビーズ等)を、各区画18にあらかじめ配置することができる。また、複数の区画18うちいずれかを、ドリフト検出用の空き領域とすることができる。これにより、リッドガラス19または溶液ガイド21を通じて複数の区画18に溶液(検体)を供給すれば、異なる種類の化学反応を同時に各区画18において起こさせることができるので、異なる種類のイオン濃度を精度よく同時に検出することができる。 As shown in FIGS. 11 and 12, when a plurality of compartments 18 are formed in the frame 15, different types of reagents (nucleic acids, proteins, antibodies, cells, surface-modified microbeads, etc.) 18 can be pre-arranged. Further, any one of the plurality of sections 18 can be set as a free area for drift detection. Thus, if a solution (specimen) is supplied to the plurality of compartments 18 through the lid glass 19 or the solution guide 21, different types of chemical reactions can be caused in each compartment 18 at the same time. It can be detected well at the same time.
 枠体15の内部構造は、単純な格子状に制限されない。枠体15の内部に流路が形成されてもよい、枠体15の一部の高さが異なることによって流路に段差が設けられていてもよい。これらにより、区画18に溶液を注入した際の、区画18内の試薬またはマイクロビーズ等の濃度分布を制御することができる。 The internal structure of the frame 15 is not limited to a simple lattice shape. A flow path may be formed inside the frame body 15, and a step may be provided in the flow path by the height of a part of the frame body 15 being different. By these, it is possible to control the concentration distribution of reagents or microbeads in the compartment 18 when the solution is injected into the compartment 18.
 図13の(a)および(b)では、枠体15におけるドリフト検出用の空き領域が、区画18ではなく充填部22として形成されている。図13の(b)は、図13の(a)のB-B断面を示す。充填部22は、たとえば、枠体15の材料と同じ材料で区画18の1つをあらかじめ充填するように形成される。 13 (a) and 13 (b), a free space for drift detection in the frame 15 is formed as the filling portion 22 instead of the section 18. FIG. 13B shows a BB cross section of FIG. The filling part 22 is formed, for example, so as to prefill one of the sections 18 with the same material as that of the frame 15.
 図13の(c)および(d)では、枠体15におけるドリフト検出用の空き領域が、区画18ではなく蓋23および空洞部24として構成されている。図13の(d)は、図13の(c)のC-C断面を示す。この空き領域は、たとえば、枠体15の材料と同じ材料で形成された蓋23を、あらかじめ区画18の1つにおける上部に配置させることによって、形成される。 13 (c) and 13 (d), the free space for drift detection in the frame 15 is configured as a lid 23 and a cavity 24 instead of the section 18. FIG. 13 (d) shows a CC cross section of FIG. 13 (c). This empty area is formed, for example, by placing a lid 23 made of the same material as the material of the frame 15 in advance on the upper part of one of the sections 18.
 図14の(a)および(b)では、枠体15の上部に接続される部材(リッドガラス19または溶液ガイド21)の形状に合わせて、各区画18が円形である。図14の(b)は、図14の(a)のD-D断面を示す。枠体15の外形(外周壁16の外形)は、方形である。図14の(b)に示すように、枠体15の上面は平らである。 14 (a) and 14 (b), each section 18 is circular according to the shape of the member (the lid glass 19 or the solution guide 21) connected to the upper part of the frame 15. FIG. 14B shows a DD cross section of FIG. The outer shape of the frame 15 (the outer shape of the outer peripheral wall 16) is a square. As shown in FIG. 14B, the upper surface of the frame 15 is flat.
 図14の(c)および(d)では、枠体15の上部に接続される部材(リッドガラス19または溶液ガイド21)の形状に合わせて、外周壁16が円形であり、かつ、区画18における外周壁16によって規定される箇所が円弧形状となっている。図14の(d)は、図14の(c)のE-E断面を示す。図14の(a)に示すように、枠体15の上面は平らである。図14の(d)に示すように、枠体15の上面は平らである。 In (c) and (d) of FIG. 14, the outer peripheral wall 16 is circular in accordance with the shape of the member (the lid glass 19 or the solution guide 21) connected to the upper portion of the frame 15, and in the section 18. A portion defined by the outer peripheral wall 16 has an arc shape. FIG. 14D shows an EE cross section of FIG. As shown in FIG. 14A, the upper surface of the frame 15 is flat. As shown in FIG. 14D, the upper surface of the frame 15 is flat.
 図15の(a)および(b)では、外周壁16および仕切り壁17の鉛直方向における断面が、半円弧(上面が半円)となっている。図15の(b)は、図14の(a)のF-F断面を示す。外周壁16および仕切り壁17の上面の断面が半円形状を取ることによって、枠体15の上面が外力によって変形しやすくなる。これにより、枠体15と、リッドガラス19または溶液ガイド21との密着性をより高めることができる。 15A and 15B, the cross section in the vertical direction of the outer peripheral wall 16 and the partition wall 17 is a semicircular arc (the upper surface is a semicircle). FIG. 15B shows the FF cross section of FIG. When the cross sections of the upper surfaces of the outer peripheral wall 16 and the partition wall 17 are semicircular, the upper surface of the frame body 15 is easily deformed by an external force. Thereby, the adhesiveness of the frame 15 and the lid glass 19 or the solution guide 21 can be improved more.
 図15の(c)および(d)では、外周壁16および仕切り壁17の鉛直方向における断面が、円形(上面および下面が両方とも半円)となっている。図15の(d)は、図15の(c)のG-G断面を示す。外周壁16および仕切り壁17の断面が円形状を取ることによって、枠体15の上面および下面が外力によって変形しやすくなる。これにより、枠体15と、センサチップ1との密着性を高めると共に、枠体15と、リッドガラス19または溶液ガイド21との密着性をより高めることができる。 15 (c) and 15 (d), the cross section in the vertical direction of the outer peripheral wall 16 and the partition wall 17 is circular (both upper and lower surfaces are semicircles). FIG. 15D shows a GG cross section of FIG. When the cross section of the outer peripheral wall 16 and the partition wall 17 is circular, the upper surface and the lower surface of the frame 15 are easily deformed by an external force. Thereby, while improving the adhesiveness of the frame 15 and the sensor chip 1, the adhesiveness of the frame 15 and the lid glass 19 or the solution guide 21 can be improved more.
 〔まとめ〕
 本発明の態様1に係る半導体イオンセンサは、イオン感応部が形成される領域を有する半導体チップと、上記領域を取り囲むように配置され、弾性を有し、かつ上記半導体チップの表面に接合されている枠体とを備えていることを特徴としている。
[Summary]
A semiconductor ion sensor according to aspect 1 of the present invention includes a semiconductor chip having a region where an ion sensitive portion is formed, and is disposed so as to surround the region, has elasticity, and is bonded to the surface of the semiconductor chip. It is characterized by having a frame body.
 上記の構成によれば、枠体は弾性を有しているので、イオン感応部の形成領域へ溶液(検体)を供給するための供給部(リッドガラスまたは溶液ガイド)を、枠体に直接接続することができる。したがって、半導体イオンセンサの構造を小型なものとすることができる。さらに、溶液の供給部が接続された状態の半導体イオンセンサでは、溶液の蒸発を防止することができるので、イオン濃度を安定して測定することができる。 According to the above configuration, since the frame has elasticity, a supply unit (lid glass or solution guide) for supplying a solution (specimen) to the formation region of the ion sensitive unit is directly connected to the frame. can do. Therefore, the structure of the semiconductor ion sensor can be made small. Furthermore, in the semiconductor ion sensor in which the solution supply unit is connected, the evaporation of the solution can be prevented, so that the ion concentration can be stably measured.
 以上のように、上記の構成によれば、簡易な構造でイオン濃度を精度よく検出できる小型の半導体イオンセンサを提供することができる。 As described above, according to the above configuration, it is possible to provide a small semiconductor ion sensor that can accurately detect the ion concentration with a simple structure.
 本発明の態様2に係る半導体イオンセンサは、上記態様1において、上記枠体の上面にリッドガラスまたは溶液ガイドが接続されていることを特徴としている。 The semiconductor ion sensor according to Aspect 2 of the present invention is characterized in that, in Aspect 1, a lid glass or a solution guide is connected to the upper surface of the frame.
 上記の構成によれば、リッドガラスまたは溶液ガイドを介して半導体イオンセンサに簡易に溶液を供給することができる。 According to the above configuration, the solution can be easily supplied to the semiconductor ion sensor via the lid glass or the solution guide.
 本発明の態様3に係る半導体イオンセンサは、上記態様1または2において、上記枠体の内部に、複数の区画が設けられていることを特徴としている。 A semiconductor ion sensor according to aspect 3 of the present invention is characterized in that, in aspect 1 or 2, a plurality of sections are provided inside the frame.
 上記の構成によれば、複数の異なる種類のイオン濃度測定を、同時に実施することができる。 According to the above configuration, a plurality of different types of ion concentration measurements can be performed simultaneously.
 本発明の態様4に係る半導体イオンセンサは、上記態様1~3のいずれかにおいて、上記枠体が、上記半導体チップの表面に直接接合されていることを特徴としている。 The semiconductor ion sensor according to Aspect 4 of the present invention is characterized in that, in any one of Aspects 1 to 3, the frame is directly bonded to the surface of the semiconductor chip.
 上記の構成によれば、枠体が半導体チップの上面に直接接合されているので、枠体を半導体チップに接合させるための他の部材を必要としない。したがって、半導体イオンセンサの構造をより簡素にすることができる。 According to the above configuration, since the frame is directly bonded to the upper surface of the semiconductor chip, no other member is required for bonding the frame to the semiconductor chip. Therefore, the structure of the semiconductor ion sensor can be further simplified.
 本発明の態様5に係る半導体イオンセンサは、上記態様1~4のいずれかにおいて、上記枠体は、シリコーンゴムによって構成されていることを特徴としている。 The semiconductor ion sensor according to aspect 5 of the present invention is characterized in that, in any of the above aspects 1 to 4, the frame is made of silicone rubber.
 上記の構成によれば、区画内に供給された物質が枠体の影響を受けて変化することを防止できるので、イオン濃度を安定して測定することができる。 According to the above configuration, the substance supplied into the compartment can be prevented from changing due to the influence of the frame, so that the ion concentration can be measured stably.
 本発明の態様6に係る半導体イオンセンサは、上記態様1~5のいずれかにおいて、上記枠体における鉛直方向の断面の上部が円弧形状となっていることを特徴としている。 The semiconductor ion sensor according to Aspect 6 of the present invention is characterized in that, in any one of Aspects 1 to 5, the upper part of the vertical cross section of the frame body has an arc shape.
 上記の構成によれば、枠体と溶液供給部との接続させる際の両者の密着性をより高めることができる。 According to the above configuration, the adhesion between the frame body and the solution supply unit can be further improved.
 本発明の態様7に係る半導体イオンセンサの製造方法は、イオン感応部が形成される領域を有する半導体チップを用意する行程と、弾性を有する枠体を、上記領域を取り囲むように配置させ、かつ上記半導体チップの表面に直接接合させる工程とを有することを特徴としている。 A method of manufacturing a semiconductor ion sensor according to aspect 7 of the present invention includes a step of preparing a semiconductor chip having a region in which an ion sensitive portion is formed, and an elastic frame body so as to surround the region, and And a step of directly bonding to the surface of the semiconductor chip.
 上記の構成によれば、簡易な構造でイオン濃度を精度よく検出できる小型の半導体イオンセンサを製造することができる。 According to the above configuration, a small semiconductor ion sensor capable of accurately detecting the ion concentration with a simple structure can be manufactured.
 本発明の態様8に係る製造方法は、上記態様7において、上記枠体の内部に複数の区画が形成されており、上記枠体が上記半導体チップに接合された後、上記半導体チップにおける上記枠体の外部に封止樹脂を形成する工程をさらに有することを特徴としている。 A manufacturing method according to aspect 8 of the present invention is the manufacturing method according to aspect 7, in which a plurality of sections are formed inside the frame body, and the frame body is bonded to the semiconductor chip, and then the frame in the semiconductor chip. The method further includes a step of forming a sealing resin outside the body.
 上記の構成によれば、樹脂材料注入時の応力を枠体によって支えることができるので、封止樹脂を安定的に形成することができる。 According to the above configuration, the stress at the time of injecting the resin material can be supported by the frame, so that the sealing resin can be stably formed.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 1 センサチップ(センサチップ1)
 2 感応膜
 3 イオン感応部
 4 端子部
 6 ワイヤ
 7,7a 基板
 8,8a 端子部
 9,9a 放熱板
 10 コア材
 11 スルーホール
 12 封止樹脂
 13 金型
 14 半導体イオンセンサ
 15 枠体
 16 外周壁
 17 仕切り壁
 18 区画
 19 リッドガラス(溶液供給部)
 20 溶液出入り口
 21 溶液ガイド(溶液供給部)
 22 充填部
 23 蓋部
 24 空洞部
1 Sensor chip (Sensor chip 1)
2 Sensitive membrane 3 Ion sensitive part 4 Terminal part 6 Wire 7, 7a Substrate 8, 8a Terminal part 9, 9a Heat sink 10 Core material 11 Through hole 12 Sealing resin 13 Mold 14 Semiconductor ion sensor 15 Frame 16 Outer wall 17 Partition wall 18 Section 19 Lid glass (solution supply part)
20 Solution inlet / outlet 21 Solution guide (solution supply unit)
22 Filling part 23 Lid part 24 Cavity part

Claims (5)

  1.  イオン感応部が形成される領域を有する半導体チップと、
     上記領域を取り囲むように配置され、弾性を有し、かつ上記半導体チップの表面に接合されている枠体とを備えていることを特徴とする半導体イオンセンサ。
    A semiconductor chip having a region where an ion sensitive portion is formed;
    A semiconductor ion sensor comprising: a frame body disposed so as to surround the region, having elasticity, and bonded to a surface of the semiconductor chip.
  2.  前記枠体の上面にリッドガラスまたは溶液ガイドが接続されていることを特徴とする請求項1に記載の半導体イオンセンサ。 The semiconductor ion sensor according to claim 1, wherein a lid glass or a solution guide is connected to the upper surface of the frame.
  3.  上記枠体の内部に、複数の区画が設けられていることを特徴とする請求項1または2に記載の半導体イオンセンサ。 The semiconductor ion sensor according to claim 1 or 2, wherein a plurality of sections are provided inside the frame.
  4.  上記枠体が、上記半導体チップの表面に直接接合されていることを特徴とする請求項1~3のいずれか1項に記載の半導体イオンセンサ。 4. The semiconductor ion sensor according to claim 1, wherein the frame body is directly bonded to the surface of the semiconductor chip.
  5.  上記枠体は、シリコーンゴムによって構成されていることを特徴とする請求項1~4のいずれか1項に記載の半導体イオンセンサ。 The semiconductor ion sensor according to any one of claims 1 to 4, wherein the frame is made of silicone rubber.
PCT/JP2016/076120 2015-10-05 2016-09-06 Semiconductor ion sensor WO2017061214A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-197611 2015-10-05
JP2015197611 2015-10-05

Publications (1)

Publication Number Publication Date
WO2017061214A1 true WO2017061214A1 (en) 2017-04-13

Family

ID=58487507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076120 WO2017061214A1 (en) 2015-10-05 2016-09-06 Semiconductor ion sensor

Country Status (1)

Country Link
WO (1) WO2017061214A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161721A (en) * 2001-11-26 2003-06-06 Matsushita Electric Works Ltd Semiconductor ion sensor and manufacturing method thereof
JP2009524045A (en) * 2006-01-20 2009-06-25 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Biosensor
JP2013224934A (en) * 2012-03-21 2013-10-31 National Institute For Materials Science Sensor element for measuring trace quantity of samples

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161721A (en) * 2001-11-26 2003-06-06 Matsushita Electric Works Ltd Semiconductor ion sensor and manufacturing method thereof
JP2009524045A (en) * 2006-01-20 2009-06-25 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Biosensor
JP2013224934A (en) * 2012-03-21 2013-10-31 National Institute For Materials Science Sensor element for measuring trace quantity of samples

Similar Documents

Publication Publication Date Title
US10989685B2 (en) Method of using biochip with biosensors
KR101491257B1 (en) A method of manufacturing a biological field-effect transistor(biofet) device and the device
US9324586B2 (en) Chip-packaging module for a chip and a method for forming a chip-packaging module
JP2007279049A (en) Field effect transistor having gold layer, microfluidic device having the same, and method for detecting analyte containing thiol group by utilizing field effect transistor and microfluidic device
US20190113475A1 (en) Microfluidic chip and manufacturing method thereof and integrated microfluidic chip system
US20230076887A1 (en) Structure and Method to Use Active Surface of a Sensor
US9470652B1 (en) Sensing field effect transistor devices and method of their manufacture
TW201017832A (en) Biochip package structure
US20080211090A1 (en) Packed Semiconductor Sensor Chip For Use In Liquids
WO2017061214A1 (en) Semiconductor ion sensor
US9719873B2 (en) Pressure sensor and method for manufacturing the same
Annese et al. Micromolar metabolite measurement in an electronically multiplexed format
US20190161345A1 (en) Deposition of protective material at wafer level in front end for early stage particle and moisture protection
KR100727533B1 (en) Plate-shaped covering structure for field effect transistor type sensor system and field effect transistor sensor system formed of the same
Reinecke et al. Scalable hybrid microelectronic-microfluidic integration of highly sensitive biosensors
TWI716730B (en) Apparatus for biological or chemical analysis and method using the same
JP2012073113A (en) Chemical sensor, manufacturing method of chemical sensor
KR101220285B1 (en) Processing method of bio sensor using nano-wire devices
TWI612300B (en) Sensor and manufacturing method thereof
JP4700427B2 (en) Semiconductor sensor having liquid contact portion and method for manufacturing the same
US9754836B2 (en) Packaging methods for fabrication of analytical device packages and analytical device packages made thereof
TWI742469B (en) Biochip package structure
WO2012091540A1 (en) Integrated microfluidics sensor
Van Loo et al. Low temperature assembly method of microfluidic bio-molecules detection device
Khanna Critical issues, processes and solutions in ISFET packaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP