WO2017061188A1 - Vehicle-mounted charging device - Google Patents

Vehicle-mounted charging device Download PDF

Info

Publication number
WO2017061188A1
WO2017061188A1 PCT/JP2016/074971 JP2016074971W WO2017061188A1 WO 2017061188 A1 WO2017061188 A1 WO 2017061188A1 JP 2016074971 W JP2016074971 W JP 2016074971W WO 2017061188 A1 WO2017061188 A1 WO 2017061188A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charging device
vehicle
battery
abnormality
Prior art date
Application number
PCT/JP2016/074971
Other languages
French (fr)
Japanese (ja)
Inventor
修 武井
鳥羽 章夫
八須 康明
政和 鷁頭
西田 廣治
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2017061188A1 publication Critical patent/WO2017061188A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to an in-vehicle charging device having a function of estimating an abnormality of output voltage detecting means.
  • FIG. 3 shows a vehicle drive device for an electric vehicle or a hybrid vehicle described in Patent Document 1.
  • 1 is a battery
  • 2 and 4 are capacitors
  • 3 is a boost converter
  • 5 is an inverter
  • 6 is a control device
  • 7 is a voltage sensor for detecting the voltage of the battery 1
  • 8 is an input voltage (capacitor) of the boost converter 3.
  • 2 is a voltage sensor for detecting the output voltage of the boost converter 3 (the voltage of the capacitor 4)
  • 10 is a current sensor for detecting a direct current flowing between the battery 1 and the boost converter 3.
  • 11u, 11v, 11w are current sensors for detecting each phase current of the motor generator MG for driving the vehicle.
  • the boost converter 3 boosts the voltage of the battery 1 and supplies it to the inverter 5, and the inverter 5 supplies the AC power obtained by DC / AC conversion to the motor generator MG. Make it work. Further, during regenerative operation, AC power of motor generator MG that operates as a generator is regenerated to battery 1 via inverter 5 and boost converter 3. These operations are executed by the control device 6 controlling the boost converter 3 and the inverter 5 based on the voltage detection values and current detection values by the voltage sensors 7, 8, 9 and the current sensors 10, 11u, 11v, 11w. Is done.
  • the difference between the input and output voltages of the boost converter 3 is much larger than the set value.
  • the situation that operates is generated. In this case, an overcurrent suddenly flows in the boost converter 3, which may cause a failure or destruction of the switching element or the like.
  • the process which judges the normality / abnormality of the voltage sensor 9 is performed with a fixed period, and specifically, the voltage detection value by the voltage sensor 9 starts over a fixed time after starting control.
  • An abnormality of the voltage sensor 9 is detected based on a phenomenon such as a fixed value or a voltage detection value deviating significantly from a predetermined range.
  • FIG. 4 shows a vehicle drive device for an electric vehicle or a hybrid vehicle described in Patent Document 2.
  • 21 is a battery
  • 22 and 25 are capacitors
  • 23 is a power conversion unit
  • 24 is a boost converter
  • 26 and 27 are inverters
  • 28 is a motor generator controller
  • 29 is a DC / DC converter
  • 30 is an auxiliary battery.
  • 31 is an auxiliary machine load
  • 32 is a charging device
  • 33 is a main control unit
  • 34 is a power supply control unit
  • 35 is a voltage sensor that detects the voltage of the battery 21
  • 36 is a voltage sensor that detects the input voltage of the boost converter 24
  • 37 is a voltage sensor for detecting the output voltage of the boost converter 24
  • 38 is a voltage sensor for detecting the output voltage of the charging device 32
  • 39 is a charging relay
  • 40 is an external AC power source
  • MG1 and MG2 are motor generators.
  • the charging device 32 is configured to charge the battery 21 using the AC power supply 40 while the vehicle is stopped, according to a command from the main control unit 33.
  • the charging relay 39 is turned off during traveling and turned on during charging while the vehicle is stopped.
  • the smoothing capacitor on the output side of the charging device 32 is normally discharged, so that the voltage is almost zero. . Nevertheless, when a constant voltage is detected by the voltage sensor 38, the main control unit 33 determines whether the voltage detection value by the voltage sensor 38 is due to the residual voltage of the smoothing capacitor or due to an abnormality of the voltage sensor 38. Alternatively, it cannot be determined whether the charging relay 39 is broken and stuck in the on state.
  • the main control unit 33 determines that the voltage detection value V 38 by the voltage sensor 38 exceeds the first threshold value ⁇ . If it has, then calculates the difference between the voltage detection value V 35 and the voltage detection value V 38 by the voltage sensor 35 of the battery 21 side, the absolute value
  • JP 2012-170286 A paragraphs [0079] to [0081], FIG. 1, FIG. 9, etc.
  • Patent Document 1 it is necessary to monitor the voltage detection value by the voltage sensor 9 over a certain period of time, and there is a problem that it takes time to determine abnormality. Moreover, in the prior art described in Patent Document 2, since it is necessary to compare with a plurality of threshold values ⁇ and ⁇ , the calculation processing is complicated. In general, when verifying normality / abnormality of a voltage sensor or the like, it is conceivable to attach a plurality of sensors to the same detection site and compare the detection values of these plurality of sensors. Cost increases associated with redundant sensors, restrictions on sensor mounting location, and the like become problems.
  • the problem to be solved by the present invention is that the vehicle does not require continuous monitoring of the voltage detection value or complicated calculation processing, and can easily estimate the abnormality of the output voltage detection means without making the sensor redundant. It is providing a type charging device.
  • the invention converts a DC voltage obtained by rectifying an AC power supply voltage into an AC voltage, and converts the AC voltage into a DC voltage via a transformer and a rectifier circuit to thereby convert the battery.
  • the in-vehicle charging device provided with the output voltage detecting means for detecting the output voltage of the charging device, And an abnormality estimating means for estimating an abnormality of the output voltage detecting means when a difference between a voltage detected value by the output voltage detecting means and a terminal voltage equivalent value of the battery exceeds a preset threshold value.
  • the terminal voltage equivalent value is a voltage detection value by a voltage sensor for detecting a terminal voltage of the battery.
  • the invention according to claim 3 is characterized in that, in the in-vehicle charging apparatus according to claim 1, the terminal voltage equivalent value is a terminal voltage command value of the battery included in an external controller.
  • the threshold value may be set to a value in consideration of a voltage drop in a path from the charging device main body to the battery.
  • the output voltage detection means can be estimated easily and at low cost.
  • FIG. 1 is an overall configuration diagram of an in-vehicle charging apparatus according to an embodiment of the present invention. It is a schematic block diagram of the principal part in embodiment of this invention. 1 is a configuration diagram of a vehicle drive device described in Patent Document 1. FIG. It is a block diagram of the vehicle drive device described in patent document 2.
  • FIG. 1 is an overall configuration diagram of an in-vehicle charging device according to this embodiment.
  • 100 is a power factor correction circuit
  • 300 is its control circuit
  • 200 is a DC-DC conversion circuit
  • 500 is its control circuit
  • 800 communicates with an external main controller and battery controller to be described later.
  • communication / abnormality estimation means for estimating an abnormality of the output voltage detection means.
  • the power factor correction circuit 100 includes a lightning surge countermeasure circuit 102 connected to an AC power source 101, an input filter circuit 103, a relay 104 for preventing inrush current, a reactor 105, diodes 106 and 108, and a semiconductor switching element 110. , 111, shunt resistors 112 and 113, a capacitor 114, and a series circuit of a resistor 115 and a semiconductor switching element 116.
  • a DC intermediate capacitor 117 is connected in parallel to the series circuit of the resistor 115 and the semiconductor switching element 116, and a DC-DC conversion circuit 200 is connected to both ends thereof.
  • the DC-DC conversion circuit 200 includes a full-bridge inverter composed of semiconductor switching elements 201 to 204 connected to both ends of a capacitor 117, a transformer 205 and a resonance capacitor connected in series between the AC terminals, A rectifier circuit 208 connected to the secondary side, a capacitor 210 and a shunt resistor 209a connected in series between its output terminals, a resistor 211, a semiconductor switching element 212, and a shunt resistor 209b connected to both ends of the capacitor 210.
  • Terminal 217 is connected to the battery (see FIG. It is adapted to be connected to a reference) to.
  • the transformer 205 is a step-up transformer that steps up the voltage on the primary side and supplies it to the secondary side.
  • the communication / abnormality estimation means 800 communicates with the main controller and the battery controller by CAN communication or the like, receives various commands from the main controller and receives the battery voltage detection value V from the battery controller, as will be described later. B is received. Further, the communication / abnormality estimation unit 800 receives an output voltage detection value V O from an output voltage detection unit 604 described later, and transmits an activation signal and an output voltage command value to the control circuit 500 described later. Further, the communication / abnormality estimation unit 800 performs the abnormality estimation process of the output voltage detection unit 604.
  • an input voltage detection means 401 On the power factor correction circuit 100 side, an input voltage detection means 401, an input current detection means 402, a bulk voltage detection means 403, an overcurrent detection means 404, and an overvoltage detection means 405 are provided, and the detection values by these detection means are controlled. Input to the circuit 300.
  • each of the detection means 401 to 405 is configured by hardware or software.
  • a relay drive circuit 406, a gate drive circuit 407, and a discharge control circuit 408 are connected to the control circuit 300, and the relay 104 and the switching elements 110, 111, and 116 are operated by drive signals or control signals output from these circuits, respectively. It is supposed to be.
  • a start signal is input to the control circuit 300 from the control circuit 500 via the start circuit 607.
  • the control circuit 300 switches the switching elements 110 and 111 via the gate drive circuit 407 so that the input power factor becomes 1 based on the detection values by the input voltage detection unit 401 and the input current detection unit 402.
  • the configuration and operation thereof are not the gist of the present invention, detailed description thereof is omitted.
  • a gate drive circuit 601, primary current detection means 602, secondary current detection means 603, and output voltage detection means 604 are provided on the DC-DC conversion circuit 200 side. These detection means 602 to 604 are also configured by hardware or software.
  • the detection values by the detection means 602 and 603 and the output voltage of the rectifier circuit 208 are input to the abnormality detection circuit 605 together with the output signal (PWM pulse) from the control circuit 500, and the output signal of the abnormality detection circuit 605 is output voltage detection. This is input to the control circuit 500 together with the detection value by the means 604.
  • a discharge control circuit 606 for controlling the switching element 212 is connected to the control circuit 500.
  • the output signal of a current transformer (insulated current sensor) 207 provided on the primary side of the transformer 205 is input to the primary side current detection unit 602, and the secondary side current detection unit 603 receives the rectification.
  • Output signals of shunt resistors (non-insulated current sensors) 209a and 209b provided on the negative line of the circuit 208 are input.
  • the control circuit 500 switches the switching elements 201 to 204 of the DC-DC conversion circuit 200 so that the voltage detection value by the output voltage detection means 604 matches the output voltage command value from the communication / abnormality estimation means 800.
  • the current transformer 207 is provided to determine whether or not the primary current of the transformer 205 is within a predetermined range.
  • the shunt resistor 209a is provided to determine whether or not the secondary current of the transformer 205 matches the command value, and the shunt resistor 209b connects the capacitor 210 charged to a constant voltage to turn on the switching element 212. It is provided for detecting the discharge current when discharged by the above and mainly detecting abnormality of the capacitor 210.
  • FIG. 2 is a configuration diagram schematically showing an application example of the communication / abnormality estimation means 800 in the present embodiment.
  • 1000 is a main controller
  • 850 is a communication path for performing CAN communication
  • 900 is a battery controller.
  • the charging device main body 600 corresponds to the entire circuit excluding the AC power supply 101 from FIG. 1, and the output terminal 217 of the internal DC / DC conversion circuit 200 is connected via a charging cable 218 and a relay 219 as shown in FIG.
  • the battery 700 to be charged is connected.
  • the battery 700 is provided with a voltage sensor 701 that detects a terminal voltage thereof, and a battery voltage detection value V B obtained by the voltage sensor 701 is input to the battery controller 900.
  • the battery controller 900 receives a battery relay ON command from the main controller 1000, transmits the battery voltage detection value V B to the communication / abnormality estimation means 800, and can output a relay drive signal for the relay 219. ing.
  • Communication / abnormality estimation means 800 receives a start command, output voltage command command, battery relay ON command from main controller 1000, battery voltage detection value V B from battery controller 900, and output voltage detection value V O from output voltage detection means 604. Are received respectively.
  • the abnormality estimation of the output voltage detection means 604 in the communication / abnormality estimation means 800 is performed as follows, for example.
  • the output voltage detection means when the difference between the output voltage detection value V O and the battery voltage detection value V B exceeds a predetermined threshold value.
  • the threshold value may be set to a value in consideration of a voltage drop in a path from the charging device main body 600 (output terminal 217) to the battery 700.
  • the output voltage detecting unit 604 estimates that there is an abnormality.
  • the functions of the communication / abnormality estimation unit 800 may be mounted on the charging device main body 600, or may be mounted on the main controller 1000, the battery controller 900, or other devices.
  • the abnormality of the output voltage detecting means 604 can be easily estimated, and a plurality of dedicated voltage sensors for detecting an abnormality are provided and made redundant at a low cost. The reliability of the vehicle-mounted charging device can be confirmed.
  • Power factor correction circuit 101 AC power supply 102: Lightning surge countermeasure circuit 103: Input filter circuit 104: Relay 105: Reactor 106, 108: Diodes 110, 111, 116: Semiconductor switching elements 112, 113: Shunt resistors 114, 117 : Capacitor 115: Resistor 200: DC-DC converter circuit 201, 202, 203, 204, 212: Semiconductor switching element 205: Transformer 207: Current transformer 208: Rectifier circuit 209a, 209b: Shunt resistor 210, 214, 216: Capacitor 211: resistors 213, 215: reactor 217: output terminal 218: charging cable 219: relay 300, 500: control circuit 401: input voltage detecting means 402: input current detecting means 403: bulk voltage detecting means 404: overcurrent detecting means 40 : Overvoltage detection means 406: Relay drive circuit 407: Gate drive circuit 408: Discharge control circuit 600: Charger body 601

Abstract

Provided is a vehicle-mounted charging device which does not need continuous monitoring of a voltage detection value or a complicated calculation process, does not make a dedicated voltage sensor redundant, and enables an abnormality in a voltage detecting means to be simply estimated. This vehicle-mounted charging device which converts, to an AC voltage, a DC voltage obtained by rectifying an AC power supply voltage by using an inverter comprising switching elements 201-204, and converts this AC voltage to a DC voltage through a transformer 205 and a rectifying circuit 208 to supply the DC voltage to a battery 700, said vehicle-mounted charging device being provided with an output voltage detecting means 604 for detecting the output voltage, wherein a communication/abnormality estimating means 800 is provided which estimates an abnormality of the output voltage detecting means 604, when the difference between a voltage detection value VO detected by the output voltage detecting means 604 and a voltage detection value VB of the battery 700 exceeds a preset threshold value.

Description

車載型充電装置In-vehicle charger
 本発明は、出力電圧検出手段の異常を推定する機能を備えた車載型充電装置に関するものである。 The present invention relates to an in-vehicle charging device having a function of estimating an abnormality of output voltage detecting means.
 図3は、特許文献1に記載された電気自動車またはハイブリッド自動車用の車両駆動装置を示している。
 図3において、1はバッテリ、2,4はコンデンサ、3は昇圧コンバータ、5はインバータ、6は制御装置、7はバッテリ1の電圧を検出する電圧センサ、8は昇圧コンバータ3の入力電圧(コンデンサ2の電圧)を検出する電圧センサ、9は昇圧コンバータ3の出力電圧(コンデンサ4の電圧)を検出する電圧センサ、10はバッテリ1と昇圧コンバータ3との間に流れる直流電流を検出する電流センサ,11u,11v,11wは車両駆動用のモータジェネレータMGの各相電流を検出する電流センサである。
FIG. 3 shows a vehicle drive device for an electric vehicle or a hybrid vehicle described in Patent Document 1.
In FIG. 3, 1 is a battery, 2 and 4 are capacitors, 3 is a boost converter, 5 is an inverter, 6 is a control device, 7 is a voltage sensor for detecting the voltage of the battery 1, and 8 is an input voltage (capacitor) of the boost converter 3. 2 is a voltage sensor for detecting the output voltage of the boost converter 3 (the voltage of the capacitor 4), and 10 is a current sensor for detecting a direct current flowing between the battery 1 and the boost converter 3. , 11u, 11v, 11w are current sensors for detecting each phase current of the motor generator MG for driving the vehicle.
 この車両駆動装置では、力行運転時に、昇圧コンバータ3がバッテリ1の電圧を昇圧してインバータ5に供給し、インバータ5が直流/交流変換して得た交流電力をモータジェネレータMGに供給して電動機動作させる。また、回生運転時には、発電機動作するモータジェネレータMGの交流電力を、インバータ5及び昇圧コンバータ3を介してバッテリ1に回生する。
 これらの動作は、制御装置6が、電圧センサ7,8,9及び電流センサ10,11u,11v,11wによる電圧検出値、電流検出値に基づいて昇圧コンバータ3及びインバータ5を制御することにより実行される。
In this vehicle drive device, during powering operation, the boost converter 3 boosts the voltage of the battery 1 and supplies it to the inverter 5, and the inverter 5 supplies the AC power obtained by DC / AC conversion to the motor generator MG. Make it work. Further, during regenerative operation, AC power of motor generator MG that operates as a generator is regenerated to battery 1 via inverter 5 and boost converter 3.
These operations are executed by the control device 6 controlling the boost converter 3 and the inverter 5 based on the voltage detection values and current detection values by the voltage sensors 7, 8, 9 and the current sensors 10, 11u, 11v, 11w. Is done.
 ここで、電圧センサ9が故障しており、昇圧コンバータ3の出力電圧を正確に検出できない場合には、例えば昇圧コンバータ3の入出力電圧の差が設定値よりもはるかに大きい状態で昇圧コンバータ3を動作させるような事態が生じる。この場合には、昇圧コンバータ3内に急激に過電流が流れることになり、スイッチング素子等の故障や破壊を招く恐れがある。 Here, when the voltage sensor 9 is out of order and the output voltage of the boost converter 3 cannot be accurately detected, for example, the difference between the input and output voltages of the boost converter 3 is much larger than the set value. The situation that operates is generated. In this case, an overcurrent suddenly flows in the boost converter 3, which may cause a failure or destruction of the switching element or the like.
 このため、特許文献1では、一定周期で電圧センサ9の正常・異常を判断する処理を実行しており、具体的には、制御を開始してから電圧センサ9による電圧検出値が一定時間にわたって固定値である、または、電圧検出値が所定範囲を大幅に逸脱している、等の現象に基づいて電圧センサ9の異常を検出している。 For this reason, in patent document 1, the process which judges the normality / abnormality of the voltage sensor 9 is performed with a fixed period, and specifically, the voltage detection value by the voltage sensor 9 starts over a fixed time after starting control. An abnormality of the voltage sensor 9 is detected based on a phenomenon such as a fixed value or a voltage detection value deviating significantly from a predetermined range.
 次に、図4は、特許文献2に記載された電気自動車またはハイブリッド自動車用の車両駆動装置を示している。
 図4において、21はバッテリ、22,25はコンデンサ、23は電力変換ユニット、24は昇圧コンバータ、26,27はインバータ、28はモータジェネレータ制御部、29はDC/DCコンバータ、30は補機バッテリ、31は補機負荷、32は充電装置、33は主制御部、34は電源制御部、35はバッテリ21の電圧を検出する電圧センサ、36は昇圧コンバータ24の入力電圧を検出する電圧センサ、37は昇圧コンバータ24の出力電圧を検出する電圧センサ、38は充電装置32の出力電圧を検出する電圧センサ、39は充電リレー、40は外部の交流電源、MG1,MG2はモータジェネレータである。
Next, FIG. 4 shows a vehicle drive device for an electric vehicle or a hybrid vehicle described in Patent Document 2.
In FIG. 4, 21 is a battery, 22 and 25 are capacitors, 23 is a power conversion unit, 24 is a boost converter, 26 and 27 are inverters, 28 is a motor generator controller, 29 is a DC / DC converter, and 30 is an auxiliary battery. , 31 is an auxiliary machine load, 32 is a charging device, 33 is a main control unit, 34 is a power supply control unit, 35 is a voltage sensor that detects the voltage of the battery 21, 36 is a voltage sensor that detects the input voltage of the boost converter 24, 37 is a voltage sensor for detecting the output voltage of the boost converter 24, 38 is a voltage sensor for detecting the output voltage of the charging device 32, 39 is a charging relay, 40 is an external AC power source, and MG1 and MG2 are motor generators.
 なお、充電装置32は、主制御部33からの指令により、車両の停車中に交流電源40を用いてバッテリ21を充電するようになっている。また、充電リレー39は走行中にオフされ、停車中の充電時にオンされるものである。 Note that the charging device 32 is configured to charge the battery 21 using the AC power supply 40 while the vehicle is stopped, according to a command from the main control unit 33. The charging relay 39 is turned off during traveling and turned on during charging while the vehicle is stopped.
 この車両駆動装置において、停車中に充電装置32を起動してバッテリ21を充電する場合、通常は、充電装置32の出力側の平滑コンデンサは放電しているのでその電圧はほぼ零になっている。それにも関わらず、電圧センサ38により一定の電圧が検出された場合、主制御部33は、電圧センサ38による電圧検出値が上記平滑コンデンサの残留電圧によるものか、電圧センサ38の異常によるものか、あるいは、充電リレー39が故障してオン状態のまま固着していることによるものか、判別することができない。 In this vehicle drive device, when the charging device 32 is activated and the battery 21 is charged while the vehicle is stopped, the smoothing capacitor on the output side of the charging device 32 is normally discharged, so that the voltage is almost zero. . Nevertheless, when a constant voltage is detected by the voltage sensor 38, the main control unit 33 determines whether the voltage detection value by the voltage sensor 38 is due to the residual voltage of the smoothing capacitor or due to an abnormality of the voltage sensor 38. Alternatively, it cannot be determined whether the charging relay 39 is broken and stuck in the on state.
 そこで、特許文献2では、特に電圧センサ38の異常と充電リレー39の固着による異常とを判別するため、主制御部33は、電圧センサ38による電圧検出値V38が第1の閾値αを超えている場合に、バッテリ21側の電圧センサ35による電圧検出値V35と上記電圧検出値V38との差を演算し、その絶対値|V35-V38|が第2の閾値βを超えている時には電圧センサ38の異常と判断し、|V35-V38|が第2の閾値β未満である時には充電リレー39の固着と判断している。 Therefore, in Patent Document 2, in order to discriminate between the abnormality of the voltage sensor 38 and the abnormality due to the fixing of the charging relay 39 in particular, the main control unit 33 determines that the voltage detection value V 38 by the voltage sensor 38 exceeds the first threshold value α. If it has, then calculates the difference between the voltage detection value V 35 and the voltage detection value V 38 by the voltage sensor 35 of the battery 21 side, the absolute value | V 35 -V 38 | exceeds a second threshold value β When it is determined that the voltage sensor 38 is abnormal, it is determined that the charging relay 39 is stuck when | V 35 −V 38 | is less than the second threshold value β.
特許第4830345号公報(段落[0042]~[0049]、図1,図2等)Japanese Patent No. 4830345 (paragraphs [0042] to [0049], FIG. 1, FIG. 2, etc.) 特開2012-170286号公報(段落[0079]~[0081]、図1,図9等)JP 2012-170286 A (paragraphs [0079] to [0081], FIG. 1, FIG. 9, etc.)
 特許文献1に記載された先行技術では、電圧センサ9による電圧検出値を一定時間にわたって監視する必要があり、異常判断に時間がかかるという問題があった。
 また、特許文献2に記載された先行技術では、複数の閾値α,βとの比較が必要であるため、演算処理が煩雑である。
 一般に、電圧センサ等の正常・異常を検証する場合には、同一の検出部位に複数のセンサを取り付け、これら複数のセンサによる検出値を比較することが考えられるが、その場合には、複数のセンサを冗長化することに伴うコストの上昇、センサ取付場所の制約等が問題になる。
In the prior art described in Patent Document 1, it is necessary to monitor the voltage detection value by the voltage sensor 9 over a certain period of time, and there is a problem that it takes time to determine abnormality.
Moreover, in the prior art described in Patent Document 2, since it is necessary to compare with a plurality of threshold values α and β, the calculation processing is complicated.
In general, when verifying normality / abnormality of a voltage sensor or the like, it is conceivable to attach a plurality of sensors to the same detection site and compare the detection values of these plurality of sensors. Cost increases associated with redundant sensors, restrictions on sensor mounting location, and the like become problems.
 そこで、本発明の解決課題は、電圧検出値の継続的な監視や煩雑な演算処理を必要とせず、また、センサを冗長化することなく出力電圧検出手段の異常を簡便に推定可能とした車載型充電装置を提供することにある。 Accordingly, the problem to be solved by the present invention is that the vehicle does not require continuous monitoring of the voltage detection value or complicated calculation processing, and can easily estimate the abnormality of the output voltage detection means without making the sensor redundant. It is providing a type charging device.
 上記課題を解決するため、請求項1に係る発明は、交流電源電圧を整流して得た直流電圧を交流電圧に変換し、この交流電圧をトランス及び整流回路を介し直流電圧に変換してバッテリに供給する車載型充電装置であって、前記充電装置の出力電圧を検出する出力電圧検出手段を備えた車載型充電装置において、
 前記出力電圧検出手段による電圧検出値と前記バッテリの端子電圧相当値との差が予め設定された閾値を超えた時に、前記出力電圧検出手段の異常を推定する異常推定手段を備えたものである。
In order to solve the above-mentioned problem, the invention according to claim 1 converts a DC voltage obtained by rectifying an AC power supply voltage into an AC voltage, and converts the AC voltage into a DC voltage via a transformer and a rectifier circuit to thereby convert the battery. In the in-vehicle charging device provided with the output voltage detecting means for detecting the output voltage of the charging device,
And an abnormality estimating means for estimating an abnormality of the output voltage detecting means when a difference between a voltage detected value by the output voltage detecting means and a terminal voltage equivalent value of the battery exceeds a preset threshold value. .
 請求項2に係る発明は、請求項1に記載した車載型充電装置において、前記端子電圧相当値が、前記バッテリの端子電圧を検出するための電圧センサによる電圧検出値であることを特徴とする。 According to a second aspect of the present invention, in the in-vehicle charging device according to the first aspect, the terminal voltage equivalent value is a voltage detection value by a voltage sensor for detecting a terminal voltage of the battery. .
 請求項3に係る発明は、請求項1に記載した車載型充電装置において、前記端子電圧相当値が、外部のコントローラが有する前記バッテリの端子電圧指令値であることを特徴とする。 The invention according to claim 3 is characterized in that, in the in-vehicle charging apparatus according to claim 1, the terminal voltage equivalent value is a terminal voltage command value of the battery included in an external controller.
 なお、請求項4に記載するように、前記閾値は、充電装置本体から前記バッテリに至る経路の電圧降下を考慮した値に設定しても良い。 In addition, as described in claim 4, the threshold value may be set to a value in consideration of a voltage drop in a path from the charging device main body to the battery.
 本発明によれば、電圧検出値の継続的な監視や煩雑な演算処理を不要とし、また、異常検出のために専用の電圧センサを複数設置して冗長化する必要もなく、出力電圧検出手段の異常を簡便かつ低コストにて推定することができる。 According to the present invention, there is no need for continuous monitoring of the voltage detection value and complicated calculation processing, and there is no need to install a plurality of dedicated voltage sensors for abnormality detection, and the output voltage detection means Can be estimated easily and at low cost.
本発明の実施形態に係る車載型充電装置の全体構成図である。1 is an overall configuration diagram of an in-vehicle charging apparatus according to an embodiment of the present invention. 本発明の実施形態における主要部の概略的な構成図である。It is a schematic block diagram of the principal part in embodiment of this invention. 特許文献1に記載された車両駆動装置の構成図である。1 is a configuration diagram of a vehicle drive device described in Patent Document 1. FIG. 特許文献2に記載された車両駆動装置の構成図である。It is a block diagram of the vehicle drive device described in patent document 2.
 以下、図に沿って本発明の実施形態を説明する。
 まず、図1は、この実施形態に係る車載型充電装置の全体構成図である。図1において、100は力率改善回路、300はその制御回路、200は直流-直流変換回路、500はその制御回路、800は、後述する外部の主コントローラやバッテリコントローラとの間で通信を行うと共に出力電圧検出手段の異常を推定する通信/異常推定手段である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is an overall configuration diagram of an in-vehicle charging device according to this embodiment. In FIG. 1, 100 is a power factor correction circuit, 300 is its control circuit, 200 is a DC-DC conversion circuit, 500 is its control circuit, and 800 communicates with an external main controller and battery controller to be described later. And communication / abnormality estimation means for estimating an abnormality of the output voltage detection means.
 力率改善回路100は、交流電源101に接続された雷サージ対策回路102と、入力フィルタ回路103と、突入電流防止用のリレー104と、リアクトル105と、ダイオード106,108と、半導体スイッチング素子110,111と、シャント抵抗112,113と、コンデンサ114と、抵抗115及び半導体スイッチング素子116の直列回路と、を備えている。
 抵抗115と半導体スイッチング素子116との直列回路には直流中間コンデンサ117が並列に接続され、その両端には直流-直流変換回路200が接続されている。
The power factor correction circuit 100 includes a lightning surge countermeasure circuit 102 connected to an AC power source 101, an input filter circuit 103, a relay 104 for preventing inrush current, a reactor 105, diodes 106 and 108, and a semiconductor switching element 110. , 111, shunt resistors 112 and 113, a capacitor 114, and a series circuit of a resistor 115 and a semiconductor switching element 116.
A DC intermediate capacitor 117 is connected in parallel to the series circuit of the resistor 115 and the semiconductor switching element 116, and a DC-DC conversion circuit 200 is connected to both ends thereof.
 直流-直流変換回路200は、コンデンサ117の両端に接続された半導体スイッチング素子201~204からなるフルブリッジ型のインバータと、その交流端子間に直列接続されたトランス205及び共振コンデンサと、トランス205の2次側に接続された整流回路208と、その出力端子間に直列に接続されたコンデンサ210及びシャント抵抗209aと、コンデンサ210の両端に接続された抵抗211,半導体スイッチング素子212及びシャント抵抗209bの直列回路と、抵抗211と半導体スイッチング素子212との直列回路の両端に接続されたリアクトル213,215及びコンデンサ214,216からなる直流フィルタと、を備え、コンデンサ216の両端に接続された一対の出力端子217が、バッテリ(図2を参照)に接続されるようになっている。
 ここで、トランス205は、1次側の電圧を昇圧して2次側に供給する昇圧トランスである。
The DC-DC conversion circuit 200 includes a full-bridge inverter composed of semiconductor switching elements 201 to 204 connected to both ends of a capacitor 117, a transformer 205 and a resonance capacitor connected in series between the AC terminals, A rectifier circuit 208 connected to the secondary side, a capacitor 210 and a shunt resistor 209a connected in series between its output terminals, a resistor 211, a semiconductor switching element 212, and a shunt resistor 209b connected to both ends of the capacitor 210. A pair of outputs connected to both ends of the capacitor 216, including a series circuit, and a DC filter including reactors 213 and 215 and capacitors 214 and 216 connected to both ends of the series circuit of the resistor 211 and the semiconductor switching element 212. Terminal 217 is connected to the battery (see FIG. It is adapted to be connected to a reference) to.
Here, the transformer 205 is a step-up transformer that steps up the voltage on the primary side and supplies it to the secondary side.
 通信/異常推定手段800は、CAN通信等により主コントローラやバッテリコントローラとの間で通信を行うものであり、後述する如く、主コントローラから各種のコマンドを受信し、バッテリコントローラからバッテリ電圧検出値Vを受信する。また、通信/異常推定手段800は、後述の出力電圧検出手段604による出力電圧検出値Vを受信し、起動信号及び出力電圧指令値を後述の制御回路500に送信する。更に、通信/異常推定手段800は出力電圧検出手段604の異常推定処理を行う。 The communication / abnormality estimation means 800 communicates with the main controller and the battery controller by CAN communication or the like, receives various commands from the main controller and receives the battery voltage detection value V from the battery controller, as will be described later. B is received. Further, the communication / abnormality estimation unit 800 receives an output voltage detection value V O from an output voltage detection unit 604 described later, and transmits an activation signal and an output voltage command value to the control circuit 500 described later. Further, the communication / abnormality estimation unit 800 performs the abnormality estimation process of the output voltage detection unit 604.
 力率改善回路100側には、入力電圧検出手段401、入力電流検出手段402、バルク電圧検出手段403、過電流検出手段404、過電圧検出手段405が設けられ、これらの検出手段による検出値が制御回路300に入力されている。なお、各検出手段401~405はハードウェアまたはソフトウェアによって構成されている。
 制御回路300にはリレー駆動回路406、ゲート駆動回路407、放電制御回路408が接続され、これらの回路から出力される駆動信号または制御信号によって、リレー104及びスイッチング素子110,111,116がそれぞれ動作するようになっている。
 また、制御回路300には、制御回路500から起動回路607を介して起動信号が入力されている。
On the power factor correction circuit 100 side, an input voltage detection means 401, an input current detection means 402, a bulk voltage detection means 403, an overcurrent detection means 404, and an overvoltage detection means 405 are provided, and the detection values by these detection means are controlled. Input to the circuit 300. Note that each of the detection means 401 to 405 is configured by hardware or software.
A relay drive circuit 406, a gate drive circuit 407, and a discharge control circuit 408 are connected to the control circuit 300, and the relay 104 and the switching elements 110, 111, and 116 are operated by drive signals or control signals output from these circuits, respectively. It is supposed to be.
In addition, a start signal is input to the control circuit 300 from the control circuit 500 via the start circuit 607.
 力率改善回路100は、入力電圧検出手段401及び入力電流検出手段402による検出値に基づいて入力力率が1になるように、制御回路300がゲート駆動回路407を介してスイッチング素子110,111を制御するものであるが、その構成及び動作は本発明の要旨ではないため、詳細な説明を省略する。 In the power factor correction circuit 100, the control circuit 300 switches the switching elements 110 and 111 via the gate drive circuit 407 so that the input power factor becomes 1 based on the detection values by the input voltage detection unit 401 and the input current detection unit 402. However, since the configuration and operation thereof are not the gist of the present invention, detailed description thereof is omitted.
 一方、直流-直流変換回路200側には、ゲート駆動回路601、1次側電流検出手段602、2次側電流検出手段603、出力電圧検出手段604が設けられている。これらの検出手段602~604も、ハードウェアまたはソフトウェアによって構成されている。
 各検出手段602,603による検出値及び整流回路208の出力電圧は、制御回路500からの出力信号(PWMパルス)と共に異常検出回路605に入力され、異常検出回路605の出力信号は、出力電圧検出手段604による検出値と共に制御回路500に入力されている。また、制御回路500には、スイッチング素子212を制御するための放電制御回路606が接続されている。
On the other hand, a gate drive circuit 601, primary current detection means 602, secondary current detection means 603, and output voltage detection means 604 are provided on the DC-DC conversion circuit 200 side. These detection means 602 to 604 are also configured by hardware or software.
The detection values by the detection means 602 and 603 and the output voltage of the rectifier circuit 208 are input to the abnormality detection circuit 605 together with the output signal (PWM pulse) from the control circuit 500, and the output signal of the abnormality detection circuit 605 is output voltage detection. This is input to the control circuit 500 together with the detection value by the means 604. In addition, a discharge control circuit 606 for controlling the switching element 212 is connected to the control circuit 500.
 更に、1次側電流検出手段602には、トランス205の1次側に設けられた変流器(絶縁型電流センサ)207の出力信号が入力され、2次側電流検出手段603には、整流回路208の負側線路に設けられたシャント抵抗(非絶縁型電流センサ)209a,209bの出力信号が入力されている。 Further, the output signal of a current transformer (insulated current sensor) 207 provided on the primary side of the transformer 205 is input to the primary side current detection unit 602, and the secondary side current detection unit 603 receives the rectification. Output signals of shunt resistors (non-insulated current sensors) 209a and 209b provided on the negative line of the circuit 208 are input.
 ここで、制御回路500は、出力電圧検出手段604による電圧検出値と、通信/異常推定手段800からの出力電圧指令値とが一致するように、直流-直流変換回路200のスイッチング素子201~204をオン・オフ制御する。
 また、変流器207は、トランス205の1次側電流が所定範囲内であるか否かを判定するために設けられる。更に、シャント抵抗209aは、トランス205の2次側電流が指令値に一致するか否かを判定するために設けられ、シャント抵抗209bは、一定電圧に充電されたコンデンサ210をスイッチング素子212のオンにより放電させた時の放電電流を検出し、主としてコンデンサ210の異常を検出するために設けられている。
Here, the control circuit 500 switches the switching elements 201 to 204 of the DC-DC conversion circuit 200 so that the voltage detection value by the output voltage detection means 604 matches the output voltage command value from the communication / abnormality estimation means 800. ON / OFF control.
The current transformer 207 is provided to determine whether or not the primary current of the transformer 205 is within a predetermined range. Furthermore, the shunt resistor 209a is provided to determine whether or not the secondary current of the transformer 205 matches the command value, and the shunt resistor 209b connects the capacitor 210 charged to a constant voltage to turn on the switching element 212. It is provided for detecting the discharge current when discharged by the above and mainly detecting abnormality of the capacitor 210.
 さて、上記構成において、出力電圧検出手段604に異常がある場合には、車載型充電装置から実際に出力されている電圧が通信/異常推定手段800からの出力電圧指令値に一致しているかどうかが不明である。制御回路500は、出力電圧検出手段604による電圧検出値をフィードバックして直流-直流変換回路200のスイッチング素子201~204をオン・オフ制御するため、出力電圧検出手段604の異常発生時には、過大または過小の電圧を出力する恐れがあり、適切な充電動作を行えずにバッテリ(図2を参照)を損傷してしまう場合がある。 In the above configuration, if there is an abnormality in the output voltage detection means 604, whether or not the voltage actually output from the in-vehicle charging device matches the output voltage command value from the communication / abnormality estimation means 800. Is unknown. Since the control circuit 500 feeds back a voltage detection value from the output voltage detection means 604 and controls on / off of the switching elements 201 to 204 of the DC-DC conversion circuit 200, when the output voltage detection means 604 is abnormal, There is a possibility that an excessively small voltage may be output, and the battery (see FIG. 2) may be damaged without performing an appropriate charging operation.
 そこで、この実施形態では、以下のようにして出力電圧検出手段604の異常を推定するようにした。
 まず、図2は、本実施形態における通信/異常推定手段800の適用例を概略的に示した構成図である。図2において、1000は主コントローラ、850はCAN通信等を行う通信路、900はバッテリコントローラである。
 充電装置本体600は、図1から交流電源101を除いた回路全体に相当し、内部の直流/直流変換回路200の出力端子217には、図2に示す如く、充電ケーブル218及びリレー219を介して充電対象のバッテリ700が接続されている。
Therefore, in this embodiment, the abnormality of the output voltage detection unit 604 is estimated as follows.
First, FIG. 2 is a configuration diagram schematically showing an application example of the communication / abnormality estimation means 800 in the present embodiment. In FIG. 2, 1000 is a main controller, 850 is a communication path for performing CAN communication, and 900 is a battery controller.
The charging device main body 600 corresponds to the entire circuit excluding the AC power supply 101 from FIG. 1, and the output terminal 217 of the internal DC / DC conversion circuit 200 is connected via a charging cable 218 and a relay 219 as shown in FIG. The battery 700 to be charged is connected.
 バッテリ700には、その端子電圧を検出する電圧センサ701が設けられており、この電圧センサ701によるバッテリ電圧検出値Vがバッテリコントローラ900に入力されている。また、バッテリコントローラ900は、主コントローラ1000からバッテリリレーONコマンドを受信すると共に、バッテリ電圧検出値Vを通信/異常推定手段800に送信し、更に、リレー219に対するリレー駆動信号を出力可能となっている。
 通信/異常推定手段800は、主コントローラ1000から起動コマンド、出力電圧指令コマンド、バッテリリレーONコマンドを、バッテリコントローラ900からバッテリ電圧検出値Vを、出力電圧検出手段604から出力電圧検出値Vを、それぞれ受信する。
The battery 700 is provided with a voltage sensor 701 that detects a terminal voltage thereof, and a battery voltage detection value V B obtained by the voltage sensor 701 is input to the battery controller 900. The battery controller 900 receives a battery relay ON command from the main controller 1000, transmits the battery voltage detection value V B to the communication / abnormality estimation means 800, and can output a relay drive signal for the relay 219. ing.
Communication / abnormality estimation means 800 receives a start command, output voltage command command, battery relay ON command from main controller 1000, battery voltage detection value V B from battery controller 900, and output voltage detection value V O from output voltage detection means 604. Are received respectively.
 通信/異常推定手段800における出力電圧検出手段604の異常推定は、例えば以下のようにして行う。
 主コントローラ1000から受信した起動コマンド及びバッテリリレーONコマンドが有効である場合には、出力電圧検出値Vとバッテリ電圧検出値Vとの差が所定の閾値を超える場合に、出力電圧検出手段604が異常であると推定する。ここで、上記閾値は、充電装置本体600(出力端子217)からバッテリ700に至る経路の電圧降下を考慮した値に設定しても良い。
 また、起動コマンドが無効(停止)の場合は、正常時にはほぼ0であるはずの出力電圧検出値Vが所定の閾値を超える場合に、出力電圧検出手段604が異常であると推定する。
 上記の通信/異常推定手段800が有する機能は充電装置本体600に実装しても良いし、主コントローラ1000またはバッテリコントローラ900その他の装置に実装しても良い。
The abnormality estimation of the output voltage detection means 604 in the communication / abnormality estimation means 800 is performed as follows, for example.
When the start command and the battery relay ON command received from the main controller 1000 are valid, the output voltage detection means when the difference between the output voltage detection value V O and the battery voltage detection value V B exceeds a predetermined threshold value. Estimate that 604 is abnormal. Here, the threshold value may be set to a value in consideration of a voltage drop in a path from the charging device main body 600 (output terminal 217) to the battery 700.
Also, if the start command is disabled (stopped), if the output voltage detection value V O which should approximately equal to 0 in the normal exceeds a predetermined threshold value, the output voltage detecting unit 604 estimates that there is an abnormality.
The functions of the communication / abnormality estimation unit 800 may be mounted on the charging device main body 600, or may be mounted on the main controller 1000, the battery controller 900, or other devices.
 以上のように、この実施形態によれば、出力電圧検出手段604の異常を容易に推定することができ、異常検出用に専用の電圧センサを複数設けて冗長化することなく、低コストにて車載型充電装置の信頼性を確認することができる。 As described above, according to this embodiment, the abnormality of the output voltage detecting means 604 can be easily estimated, and a plurality of dedicated voltage sensors for detecting an abnormality are provided and made redundant at a low cost. The reliability of the vehicle-mounted charging device can be confirmed.
100:力率改善回路
101:交流電源
102:雷サージ対策回路
103:入力フィルタ回路
104:リレー
105:リアクトル
106,108:ダイオード
110,111,116:半導体スイッチング素子
112,113:シャント抵抗
114,117:コンデンサ
115:抵抗
200:直流-直流変換回路
201,202,203,204,212:半導体スイッチング素子
205:トランス
207:変流器
208:整流回路
209a,209b:シャント抵抗
210,214,216:コンデンサ
211:抵抗
213,215:リアクトル
217:出力端子
218:充電ケーブル
219:リレー
300,500:制御回路
401:入力電圧検出手段
402:入力電流検出手段
403:バルク電圧検出手段
404:過電流検出手段
405:過電圧検出手段
406:リレー駆動回路
407:ゲート駆動回路
408:放電制御回路
600:充電装置本体
601:ゲート駆動回路
602:1次側電流検出手段
603:2次側電流検出手段
604:出力電圧検出手段
605:異常検出回路
606:放電制御回路
607:起動回路
700:バッテリ
701:電圧センサ
800:通信/異常推定手段
850:通信路
900:バッテリコントローラ
1000:主コントローラ
100: Power factor correction circuit 101: AC power supply 102: Lightning surge countermeasure circuit 103: Input filter circuit 104: Relay 105: Reactor 106, 108: Diodes 110, 111, 116: Semiconductor switching elements 112, 113: Shunt resistors 114, 117 : Capacitor 115: Resistor 200: DC- DC converter circuit 201, 202, 203, 204, 212: Semiconductor switching element 205: Transformer 207: Current transformer 208: Rectifier circuit 209a, 209b: Shunt resistor 210, 214, 216: Capacitor 211: resistors 213, 215: reactor 217: output terminal 218: charging cable 219: relay 300, 500: control circuit 401: input voltage detecting means 402: input current detecting means 403: bulk voltage detecting means 404: overcurrent detecting means 40 : Overvoltage detection means 406: Relay drive circuit 407: Gate drive circuit 408: Discharge control circuit 600: Charger body 601: Gate drive circuit 602: Primary side current detection means 603: Secondary side current detection means 604: Output voltage detection Means 605: Abnormality detection circuit 606: Discharge control circuit 607: Start-up circuit 700: Battery 701: Voltage sensor 800: Communication / abnormality estimation means 850: Communication path 900: Battery controller 1000: Main controller

Claims (4)

  1.  交流電源電圧を整流して得た直流電圧を交流電圧に変換し、この交流電圧をトランス及び整流回路を介し直流電圧に変換してバッテリに供給する車載型充電装置であって、前記充電装置の出力電圧を検出する出力電圧検出手段を備えた車載型充電装置において、
     前記出力電圧検出手段による電圧検出値と前記バッテリの端子電圧相当値との差が予め設定された閾値を超えた時に、前記出力電圧検出手段の異常を推定する異常推定手段を備えたことを特徴とする車載型充電装置。
    An in-vehicle charging device that converts a DC voltage obtained by rectifying an AC power supply voltage into an AC voltage, converts the AC voltage into a DC voltage via a transformer and a rectifier circuit, and supplies the DC voltage to the battery. In the in-vehicle charging device provided with the output voltage detecting means for detecting the output voltage,
    An abnormality estimation unit is provided that estimates an abnormality of the output voltage detection unit when a difference between a voltage detection value obtained by the output voltage detection unit and a terminal voltage equivalent value of the battery exceeds a preset threshold value. Car-mounted charging device.
  2.  請求項1に記載した車載型充電装置において、
     前記端子電圧相当値が、前記バッテリの端子電圧を検出するための電圧センサによる電圧検出値であることを特徴とする車載型充電装置。
    In the on-vehicle charging device according to claim 1,
    The vehicle-mounted charging device, wherein the terminal voltage equivalent value is a voltage detection value by a voltage sensor for detecting a terminal voltage of the battery.
  3.  請求項1に記載した車載型充電装置において、
     前記端子電圧相当値が、外部のコントローラが有する前記バッテリの端子電圧指令値であることを特徴とする車載型充電装置。
    In the on-vehicle charging device according to claim 1,
    The vehicle-mounted charging device, wherein the terminal voltage equivalent value is a terminal voltage command value of the battery included in an external controller.
  4.  請求項1~3の何れか1項に記載した車載型充電装置において、
     前記閾値が、充電装置本体から前記バッテリに至る経路の電圧降下を考慮した値であることを特徴とする車載型充電装置。
    In the on-vehicle charging device according to any one of claims 1 to 3,
    The vehicle-mounted charging device, wherein the threshold value is a value considering a voltage drop in a path from the charging device main body to the battery.
PCT/JP2016/074971 2015-10-08 2016-08-26 Vehicle-mounted charging device WO2017061188A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015200161 2015-10-08
JP2015-200161 2015-10-08

Publications (1)

Publication Number Publication Date
WO2017061188A1 true WO2017061188A1 (en) 2017-04-13

Family

ID=58487479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074971 WO2017061188A1 (en) 2015-10-08 2016-08-26 Vehicle-mounted charging device

Country Status (1)

Country Link
WO (1) WO2017061188A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109936204A (en) * 2017-12-18 2019-06-25 现代自动车株式会社 Charging system and diagnostic application with sensor diagnostic function are in the method for its sensor
CN110165749A (en) * 2019-06-20 2019-08-23 爱驰汽车有限公司 Electric car, Vehicular charger circuit, battery circuit and charge/discharge control method
CN112349978A (en) * 2020-10-22 2021-02-09 北汽福田汽车股份有限公司 Battery pack, battery management method and vehicle
CN112666467A (en) * 2019-09-30 2021-04-16 Oppo广东移动通信有限公司 Battery leakage current detection method and device, electronic equipment and readable storage medium
WO2023170346A1 (en) 2022-03-11 2023-09-14 Psa Automobiles Sa Method for protecting an on-board charger of an electric vehicle against undervoltage when recharging the traction battery
FR3133713A1 (en) 2022-03-15 2023-09-22 Psa Automobiles Sa METHOD FOR PROTECTING AGAINST OVERVOLTAGES OF AN ON-BOARD CHARGER OF AN ELECTRIFIED VEHICLE FOR RECHARGING THE TRACTION BATTERY

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138528A (en) * 2013-01-18 2014-07-28 Toyota Motor Corp Vehicle drive device
JP2014138451A (en) * 2013-01-15 2014-07-28 Sumitomo Electric Ind Ltd Conversion device, failure determination method and control program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138451A (en) * 2013-01-15 2014-07-28 Sumitomo Electric Ind Ltd Conversion device, failure determination method and control program
JP2014138528A (en) * 2013-01-18 2014-07-28 Toyota Motor Corp Vehicle drive device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109936204A (en) * 2017-12-18 2019-06-25 现代自动车株式会社 Charging system and diagnostic application with sensor diagnostic function are in the method for its sensor
CN110165749A (en) * 2019-06-20 2019-08-23 爱驰汽车有限公司 Electric car, Vehicular charger circuit, battery circuit and charge/discharge control method
CN112666467A (en) * 2019-09-30 2021-04-16 Oppo广东移动通信有限公司 Battery leakage current detection method and device, electronic equipment and readable storage medium
CN112349978A (en) * 2020-10-22 2021-02-09 北汽福田汽车股份有限公司 Battery pack, battery management method and vehicle
WO2023170346A1 (en) 2022-03-11 2023-09-14 Psa Automobiles Sa Method for protecting an on-board charger of an electric vehicle against undervoltage when recharging the traction battery
FR3133346A1 (en) 2022-03-11 2023-09-15 Psa Automobiles Sa METHOD FOR PROTECTING AGAINST UNDERVOLTAGE OF AN ON-BOARD CHARGER OF AN ELECTRIFIED VEHICLE FOR RECHARGING THE TRACTION BATTERY
FR3133713A1 (en) 2022-03-15 2023-09-22 Psa Automobiles Sa METHOD FOR PROTECTING AGAINST OVERVOLTAGES OF AN ON-BOARD CHARGER OF AN ELECTRIFIED VEHICLE FOR RECHARGING THE TRACTION BATTERY

Similar Documents

Publication Publication Date Title
WO2017061188A1 (en) Vehicle-mounted charging device
JP4788461B2 (en) Power supply control device and relay abnormality detection method
US7269535B2 (en) Fault diagnosing apparatus for vehicle and fault diagnosing method for vehicle
CN109428473B (en) Power supply system for vehicle
JP5954356B2 (en) Electric vehicle
EP2860059A2 (en) Electric vehicle power conversion system
US9616753B2 (en) Electric power conversion control device for vehicle, control method, and vehicle equipped therewith
JP5728914B2 (en) Inverter device
US20180358837A1 (en) Charging control device
JP6365226B2 (en) Electric vehicle
US10787136B2 (en) Electric power system for controlling pre-charge of vehicle
US9499063B2 (en) Power-supply device
US20160301233A1 (en) Power supply device and method for controlling power supply device
JP2013172632A (en) Power conversion device
JP2019216491A (en) Power controller
KR20190065906A (en) Method And Apparatus for Detecting Failure by Using Reverse Current Prevention of Electronic Vehicle Charger
WO2016035159A1 (en) In-vehicle charging device
US20140152108A1 (en) Discharge control system and discharge device
KR20150040195A (en) Power conversion system for electric vehicles
JP2018148680A (en) Voltage impression control unit
WO2006016438A1 (en) Electric vehicle controller
JP6344334B2 (en) Power control unit
KR20160063621A (en) Battery charging control apparatus and method for mild hybrid vehicle
US20220052602A1 (en) High-voltage apparatus control device
JP2015136213A (en) Power converter of electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP