WO2017060984A1 - Hologram reproduction device and hologram reproduction method - Google Patents

Hologram reproduction device and hologram reproduction method Download PDF

Info

Publication number
WO2017060984A1
WO2017060984A1 PCT/JP2015/078436 JP2015078436W WO2017060984A1 WO 2017060984 A1 WO2017060984 A1 WO 2017060984A1 JP 2015078436 W JP2015078436 W JP 2015078436W WO 2017060984 A1 WO2017060984 A1 WO 2017060984A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reference light
hologram
angle
medium
Prior art date
Application number
PCT/JP2015/078436
Other languages
French (fr)
Japanese (ja)
Inventor
弘充 森
誠 保坂
和良 山崎
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Priority to PCT/JP2015/078436 priority Critical patent/WO2017060984A1/en
Publication of WO2017060984A1 publication Critical patent/WO2017060984A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0055Erasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector

Definitions

  • the present invention relates to an apparatus and method for reproducing information from a recording medium using holography.
  • Patent Document 1 An example of holographic memory technology is, for example, Japanese Patent Application Laid-Open No. 2013-097837 (Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-097837
  • a hologram reproducing apparatus capable of reducing the time required and a method for searching for an optimum value of the reference light incident angle at the time of reproduction are provided.
  • a solving means “a hologram recording medium 11 on which page data information is angle-multiplexed recorded” is described.
  • a hologram reproducing device that has an information reproducing unit that reproduces page data information by irradiating a reference light during reproduction, and adjusts the information reproducing unit so that a light wave carrying the page data information is obtained.
  • the signal light incident angle ⁇ s, the recording reference light incident angle ⁇ r, the light wavelength ⁇ , the refractive index n of the recording medium, and the recording medium Based the rate ⁇ to the arithmetic expression for an element provided with a computing means 40 for obtaining the desired reproduction reference beam incident angle .phi.read. Has been described as ".
  • Patent Document 2 Another patent document is, for example, Japanese Patent Application Laid-Open No. 2006-268933 (Patent Document 2).
  • Patent Document 2 describes, as a problem, “to provide a holographic device and a method for reproducing a holographic medium that can be reproduced under conditions of a desired angle and wavelength with respect to a wavelength shift due to an angle shift or a change in ambient temperature”.
  • the holography device of the present invention is designed to multiplex-record each predetermined storage area by changing the angle of the reference light applied to the holographic medium.
  • Reference light irradiation means for irradiating, reproduction light emitted from each information data page by the reference light is incident on the detection surface, and data detection means for reproducing information data from the reproduction light, and emitted from the holographic medium by the reference light
  • the reproduced light is used to detect the light intensity of the reproduced light in each of a plurality of predetermined areas on the detection surface and enter the reference light holographic medium.
  • a reference light control means for controlling the incident angle and wavelength of the reference light according to the detection result of the angle and wavelength deviation of the reproduction light.
  • a hologram corresponding to each reference beam angle is called a page
  • a set of pages angle multiplexed in the same area is called a book.
  • a holographic memory device that records and reproduces a disk-shaped medium reproduces a book recorded along the circumferential direction of the medium.
  • the spindle motor feed rotation angle is controlled, and the book positioning operation with respect to the reference light is repeated.
  • the influence of variations in the characteristics of the rotational drive system and the sensor system is inevitable, even if the same feed rotation angle command value is given, the same feed rotation angle cannot be reproduced.
  • Patent Documents 1 and 2 do not disclose from the viewpoint of expanding the allowable value of the relative error, and cannot cope with the problem of improving the reliability and speed of the hologram reproduction.
  • an object of the present invention is to provide a hologram reproducing apparatus and a reproducing method capable of improving the reliability and speed of hologram reproduction.
  • a hologram reproducing apparatus for reproducing a hologram
  • a reference light angle adjusting unit that adjusts a medium incident angle at which the reference light is incident on the recording medium, and the reproducing light from the recording medium is incident and the reproducing light is transmitted
  • An aperture filter having an aperture, a light detection unit that detects light emitted from the aperture filter and outputs a signal based on the detected light, and a hologram to be reproduced based on the signal output from the light detection unit
  • a positional deviation detection unit for detecting a relative positional deviation amount between the recording position of the reproduction target hologram and the irradiation position on the recording medium of the reference light for reproducing the reproduction target hologram
  • the illumination angle adjustment unit adjusts a medium incident angle in a second direction perpendicular to the
  • the figure which shows a hologram reproducing apparatus in an Example The figure explaining an aperture filter and a photodetector in an Example. The figure explaining the light quantity detection on the photodetector light-receiving surface in an Example. The figure explaining the reproduction
  • derivation explanatory drawing of the medium radial direction correction angle of reference light The graph explaining the correction effect in an Example.
  • the graph explaining the correction effect in an Example. 6 is a flowchart for explaining a book reproduction operation in the first embodiment of the present invention.
  • FIG. 6 is a derivation explanatory diagram of a reference light correction angle in a state where there is recording track eccentricity in the embodiment.
  • a flow for explaining the book reproduction operation The figure explaining an optical pick-up in an Example.
  • Embodiment FIG. 1 shows a configuration example of a hologram reproducing apparatus of the present embodiment.
  • the hologram reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90.
  • the image information output from the image sensor 120 of the optical pickup 11 is converted into an electric signal by the signal processing circuit 85, and this electric signal is transmitted to the external control device 91 by the input / output control circuit 90.
  • a mechanism for detecting the deviation amount of the reference beam angle is provided in the optical pickup 11 to provide a servo signal generation circuit.
  • a servo control signal is generated at 83 and the deviation amount is corrected via the servo control circuit 84.
  • Reference numeral 107 denotes a disc-shaped medium
  • 108 denotes a book which is a set of page data already recorded on the medium 107
  • 123 denotes a circumferential direction of the medium 107
  • 124 denotes a radial direction of the medium 107.
  • the book is reproduced along the circumferential direction 123.
  • one book 108 is shown as a book, but actually, a plurality of books 108 are arranged at predetermined intervals along the circumferential direction 123.
  • the medium 107 is mounted on a spindle motor (not shown) and rotates in the circumferential direction 123.
  • the spindle motor is driven in the radial direction 124 by a feed driving mechanism (not shown).
  • This feed drive mechanism is provided with a position sensor 122 and detects the position in the radial direction 124 when the book 108 is played back.
  • the reference light 102 reflects the angle variable mirror 103 held by the actuator 104, passes through the scanner lens 106, and is irradiated onto the book 108 at a predetermined incident angle.
  • an electromagnetic actuator that can tilt the variable angle mirror 103 in the circumferential direction 123 and the radial direction 124 of the medium 107 can be used as the actuator 104, and the incident angle of the reference light 102 with respect to the medium 107 can be changed.
  • the angle sensor 105 that detects the tilt angle of the actuator 104 and the variable angle mirror 103 is connected to the angle control circuit 125, and controls the variable angle mirror 103 to a desired tilt angle by feedback control.
  • the reference light 102 that has passed through the book 108 is reflected by the mirror 109 to become the reproduction reference light 126, enters the medium 107 again, and is diffracted to generate the reproduction light 110.
  • the reproduction light 110 passes through the objective lens 111, the relay lens 112, the aperture filter 113, the PBS 116, and the PBS 119 and is irradiated to the image sensor 120 such as a CCD sensor or a CMOS sensor, thereby reproducing the book.
  • the position of the aperture filter 113 is adjusted to a reference position in the optical system assembly adjustment. Details of the aperture filter 113 will be separately described later with reference to FIGS.
  • the spindle motor feed rotation angle is controlled and the book positioning operation is performed with respect to the reference light.
  • the influence of variations in the characteristics of the drive system and the sensor system is inevitable, so the same feed rotation angle is set every time. I can't control it. Therefore, the positional deviation of the book 108 always occurs with respect to the reference beam 102, and this positional deviation amount changes every time the book positioning operation is performed. Therefore, a means for detecting the amount of displacement is required.
  • the detection speed cannot be increased because the medium 107 is heavy.
  • an image sensor as the positional deviation amount detection means, it takes time and is not suitable for speeding up since it is calculated from image data with a large amount of information.
  • the positional deviation amount is detected at high speed by providing the optical means described below.
  • the contents will be described below.
  • the photodetector 118 is connected to a signal generation circuit 121, which generates a servo signal corresponding to the output signal of the photodetector 118.
  • the aperture actuator 114 is driven so that the servo signal approaches 0, and the aperture filter 113 is positioned. If the driving amount of the aperture filter 113 at this time is detected by a position detection sensor 115 (for example, PSD: Position Sensitive Detector), the relative position error of the reproduction light 110 with respect to the aperture filter 113, that is, the positional deviation amount of the book 108 with respect to the reference light 102 is obtained. Recognize.
  • This optical means drives the light aperture filter 113, and the photodetector that detects only the light quantity has a high response speed, so that it is possible to detect the amount of displacement at high speed.
  • FIG. 2 is a diagram illustrating a configuration example of the aperture filter 113 and the photodetector 118
  • FIG. 3 is a diagram illustrating an example of light amount detection on the light receiving surface of the photodetector 118.
  • FIG. 2A shows an example of the aperture filter 113, and the X direction in the figure corresponds to the circumferential direction 123 of the medium.
  • a transmission region 201 through which the reproduction light 110 passes is provided at the center, four divided wavelength plate regions 202a, 202b, 202c, and 202d are provided around the transmission region 201, and a light blocking region 203 is provided outside the transmission region 201.
  • the light blocking region 203 blocks unnecessary light other than the 0th-order light diffracted from the reproduction target book 108 in the reproduction light 110 or unnecessary light diffracted from an adjacent book other than the reproduction target book 108 and irradiates the image sensor 120. Do not be.
  • FIG. 2B shows an example of the light receiving surface pattern of the photodetector 118.
  • the light receiving surface 206 is divided into light receiving regions A, B, C, and D by dividing lines 204 and 205, and the amount of light received is determined in each region.
  • a corresponding signal is output.
  • FIG. 3 shows the relative positional relationship of the reproduction light 110 with respect to the aperture filter 113 in the upper stage, and the light receiving state on the light receiving surface 206 of the photodetector 118 corresponding to the relative positional relationship shown in the upper stage.
  • the X direction in the figure corresponds to the circumferential direction 123 of the medium as in FIG.
  • FIG. 3A shows a state in which the reproduction light 110 passes through the transmission region 201 of the aperture filter 113.
  • the relative position error of the reproduction light 110 with respect to the aperture filter 113 is within a predetermined range, and the position detection light of the book 108 is not irradiated to the photodetector 118, from any of the light receiving areas A, B, C, and D However, no signal is output.
  • (B) shows a state where the relative position of the reproduction light 110 with respect to the aperture filter 113 is shifted in the + X direction. The relative position error in the + X direction exceeds the predetermined range, and the position detection signal light 1103 of the book 108 is applied to the light receiving region A of the photodetector 118.
  • (C) shows a state where the relative position of the reproduction light 110 with respect to the aperture filter 113 is shifted in the ⁇ X direction.
  • the relative position error in the ⁇ X direction exceeds a predetermined range, and the position detection signal light 1105 of the book 108 is applied to the light receiving region B of the photodetector 118.
  • the position error signal SX in the X direction is obtained by (Equation 1), and the relationship between the relative position error in the X direction and the position error signal SX. Is a linear relationship.
  • the aperture actuator 114 is driven so that SX approaches 0, and the aperture filter 113 is positioned.
  • a position detection sensor for example, PSD
  • the relative position error of the reproduction light 110 with respect to the aperture filter 113 that is, the positional deviation amount of the book 108 with respect to the reference light 102 is known.
  • the relationship between the detection drive amount E of the aperture filter 113 and the positional deviation amount D of the book 108 is expressed by the following (formula 2) depending on the magnification (ratio of the focal length f1 of the relay lens 112 and the focal length f2 of the objective lens 111). Therefore, the positional deviation amount D of the book 108 can be obtained from the detection drive amount E of the aperture filter 113.
  • (Formula 2) E D ⁇ (f1 / f2)
  • four wavelength plate regions are provided around the transmission region 201 of the aperture filter 113 and four light receiving regions are provided on the light receiving surface 206 of the photodetector 118.
  • the present invention is not limited to this.
  • the aperture filter 113 shown in the figure has the wave plate regions 202a and 202b, and the light receiving surface 206 has the light receiving regions A and B.
  • the positional deviation amount D of the book 108 can be detected by the optical means described above, and the subsequent operation will be described below.
  • the book position deviation detection unit 127 is connected to the position detection sensor 115 and the signal generation circuit 121, stores the position deviation detection result of the book 108 with respect to the reference light 102, and transmits the result to the reference light correction angle calculation unit 129. Further, the position information of the medium 107 in the radial direction 124 is transmitted from the reproduction radius position detection unit 135 to the reference light correction angle calculation unit 129. Further, irradiation angle information of the reference light 102 in the medium circumferential direction 123 is transmitted from the angle control circuit 125 of the angle variable mirror 103 to the reference light correction angle calculation unit 129.
  • the reference light correction angle calculation unit 129 calculates the correction angle of the reference light in the medium radial direction 124 from the transmitted information, stores the result, and transmits the result to the reference light angle change command unit 130.
  • the reference light angle change command unit 130 transmits the command value of the correction angle to the angle control circuit 125 of the angle variable mirror 103 and controls the angle control circuit 125.
  • the angle control circuit 125 performs feedback control by driving the actuator 104 and the output from the angle sensor 105, and changes the angle of the angle variable mirror 103 so as to change the incident angle of the reference light in the medium radial direction 124.
  • the irradiation angle of the reference beam 102 to the reproduction target book 108 in the medium radial direction 124 is changed.
  • the correction angle of the reference beam 102 in the medium radial direction 124 is calculated again as described above, and the book to be reproduced is reproduced. It is comprised so that the reference light irradiation angle with respect to may be changed.
  • the medium 107 may be tilted without changing the reference light irradiation angle.
  • the medium 107 is heavy, the angle cannot be changed at high speed.
  • the lightweight variable angle mirror 103 is driven, the angle can be changed at high speed.
  • FIG. 4A shows a relative shift state between the reference beam 102 and the reproduction target book 108 that occurs when the medium 107 is rotated in the direction 402 around the rotation center 401 and the book 108 is reproduced.
  • (State 1) is an ideal state with no relative deviation, and can be reproduced without any particular problem.
  • (State 2) shows a state in which a relative shift occurs.
  • a translational shift + D and a clockwise rotation angle + ⁇ occur simultaneously with respect to the reference beam 102.
  • a translational shift ⁇ D and a counterclockwise rotation angle ⁇ occur simultaneously with respect to the reference beam 102.
  • FIG. 5 shows the book 108 to be reproduced assuming (state 2) in FIG. 4.
  • the reference light 102 is incident at a predetermined angle ⁇ b in the circumferential direction 123 of the medium, and page reproduction is performed. Assumes to do.
  • the reproduction target book 108 is inclined by ⁇ with respect to the reference light 102, so that when viewed from the book 108, the reproduction target book 108 is in a direction of a line 502 connecting the rotation center 401 of the medium and the center 501 of the book 108.
  • the reference light 102 is tilted by ⁇ 1 and irradiated with the reference light.
  • FIG. 4B described above is a diagram specifically showing the circumferential position displacement amount D of the reproduction target book 108, and the following relational expression is geometrically established.
  • D R ⁇ Sin ⁇
  • the first feature is an angle correction operation for changing the reference light correction angle ⁇ 2 in accordance with the medium radial position R of the reference light.
  • FIG. 6 is a diagram showing the relationship between the deviation amount of the reproduction target book and the correction angle.
  • the horizontal axis indicates the medium circumferential direction deviation D of the book to be reproduced
  • the left vertical axis indicates ⁇ p
  • the right vertical axis indicates ⁇ 2
  • the reference light medium incident angle ⁇ b in the medium circumferential direction is shown. 48 degrees was set.
  • FIG. 6A shows a case where the reference light position R measured from the rotation center of the medium is set to the innermost radius of the medium 24 mm in FIG. 6A and to the outermost radius of the medium 64 mm in FIG.
  • a dotted characteristic line 601 indicates ⁇ 1 in (Expression 3). For example, when D is ⁇ 100 ⁇ m, it reaches ⁇ 0.2 degrees and cannot be reproduced.
  • the characteristic line 602 of the one-dot chain line indicates ⁇ 2 in (Expression 4), and the angle deviation ⁇ p can be set to 0 (straight line 603), so that stable reproduction is possible.
  • a dotted characteristic line 604 indicates ⁇ 1 in (Equation 3). For example, when D is ⁇ 100 ⁇ m, it reaches ⁇ 0.1 ° and cannot be reproduced.
  • a dashed-dotted characteristic line 605 indicates ⁇ 2 in (Equation 4), and the angle deviation ⁇ p can be set to 0 (straight line 606), thereby enabling stable reproduction.
  • ⁇ 1 varies depending on the medium radial position R of the reference light.
  • the innermost radius 24 mm is approximately twice as large as the outermost radius 64 mm. Therefore, in this embodiment, an angle correction operation for changing the reference light correction angle ⁇ 2 according to the medium radius position R of the reference light 102 is performed.
  • the angle deviation ⁇ p can be set to 0 regardless of the medium radial position R, and stable reproduction is possible.
  • the second feature is an angle correction operation in which the reference light correction angle ⁇ 2 is changed according to the incident angle ⁇ b of the reference light in the circumferential direction of the medium.
  • FIG. 7 is a diagram showing the relationship between the incident angle of the reference light and the correction angle.
  • a plurality of pages are recorded in the book 108 by angle multiplex recording in which the medium circumferential incident angle ⁇ b of the reference light is set within a predetermined range, for example, 33 degrees to 63 degrees, and is changed at predetermined angular intervals.
  • the angle of incidence ⁇ b of the reference beam 102 is changed at a predetermined angular interval from 33 degrees to 63 degrees by changing the variable angle mirror 103 in the circumferential direction 123 of the medium at a predetermined angular interval.
  • FIG. 7 shows an example in which R is set to 24 mm, D is set to 100 ⁇ m, the horizontal axis incident angle ⁇ b of the reference light in the horizontal axis, the left vertical axis to the angular deviation ⁇ p, and the right vertical axis to the correction angle ⁇ 2. It is the graph shown.
  • a dotted characteristic line 701 indicates ⁇ 1 in (Equation 3).
  • the characteristic line 702 of the alternate long and short dash line indicates ⁇ 2 in (Equation 4), and the angle deviation ⁇ p can be set to 0 (straight line 703), thereby enabling stable page data reproduction.
  • ⁇ 1 varies depending on the incident angle ⁇ b of the reference light.
  • the characteristic line 701 when ⁇ b is 63 degrees, the value is about twice as large as when ⁇ b is 33 degrees. Therefore, it is necessary to change ⁇ 2 correspondingly. Therefore, in the present embodiment, when each page data is reproduced, an angle correction operation for changing the correction angle ⁇ 2 according to the incident angle ⁇ b of the reference light 102 is performed.
  • This angle correction operation makes it possible to set the angle deviation ⁇ p to 0 regardless of ⁇ b, and stable page data reproduction is possible.
  • the allowable range of D can be expanded from the conventional ⁇ 10 ⁇ m, there is an effect of improving the reproduction reliability of the apparatus.
  • FIG. 8 shows a playback operation flow.
  • the trigger for the reference beam angle correction operation is the timing of moving the book to be played.
  • the feed rotation angle of the spindle motor is controlled, and the book positioning operation is performed with respect to the reference light.
  • the positional deviation amount D of the book 108 with respect to the reference beam 102 does not become the same as the previous book reproduction and changes. That is, the correction angle ⁇ 2 of the reference beam 102 has changed from the previous book reproduction. Therefore, it is necessary to change ⁇ 2 corresponding to the book movement.
  • an angle correction operation for changing the correction angle ⁇ 2 in accordance with the movement of the book to be reproduced is performed. Further, when each page is reproduced, as described in the second feature, an angle correction operation for changing the reference light correction angle ⁇ 2 according to the incident angle ⁇ b of the reference light 102 is performed.
  • FIG. 8 shows a playback operation flow.
  • step S ⁇ b> 801 the book is moved by controlling the feed rotation angle of the spindle motor, and the target book on the medium 107 is positioned with respect to the reference beam 102.
  • the medium radial position of the reference beam 102 is detected.
  • step S802 the irradiation angle in the medium circumferential direction 123 of the reference beam 102 with respect to the target book 108 in the medium 107 is set to an angle necessary for desired page reproduction.
  • step S803 the irradiation angle of the reference light 102 in the medium circumferential direction 123 is detected, and the target book 108 is irradiated with the reference light 102.
  • step S804 the amount and direction of the positional deviation between the target book and the reference light in the circumferential direction of the medium 107 are detected.
  • step S805 based on the information acquired up to step S804 (the medium radial position of the reference light 102, the irradiation angle in the medium circumferential direction 123, and the amount of positional deviation from the target book in the circumferential direction of the medium 107), the reference light 102
  • the correction angle of the irradiation angle in the medium radial direction 124 is calculated, and the irradiation angle of the reference light 102 in the medium radial direction 124 is corrected and changed.
  • page reproduction is executed in step S806.
  • step S806 If the page reproduction is executed in S806, it is determined whether or not another page is reproduced in S807. When reproducing another page, the process returns to step S802, and the operations from step S802 to step S805 are performed again. Each time the playback page changes, the irradiation angle of the reference beam 102 in the medium circumferential direction 123 changes. Accordingly, the correction angle of the irradiation angle of the reference beam 102 in the medium radial direction 124 is changed to the previous page playback. Change to a value different from the time. Thereafter, another page reproduction is executed in step S806.
  • step S808 When the page reproduction is completed, it is determined whether or not another book is reproduced in S808. When reproducing another book, the process returns to step S 801, the book is moved, and the target book 108 on the medium 107 is positioned with respect to the reference beam 102. The operations from step S802 to step S806 are performed again.
  • the correction angle of the irradiation angle of the reference light 102 in the medium radial direction 124 is set accordingly. Change to a value different from the previous book playback.
  • the Example of a present Example is as follows when the effect acquired is put together.
  • (1) Regarding the disturbance during book reproduction, that is, the relative deviation between the book to be reproduced and the reference beam in the circumferential direction of the medium, the allowable value can be increased, so that the reliability of hologram reproduction can be improved.
  • (2) As a means for detecting deviation information between the book to be reproduced and the reference light, an aperture filter which is a light optical element rather than a heavy medium is driven, and a light detector dedicated to light amount detection is used instead of an image pickup element for detecting image information. As a result, deviation information can be detected at high speed.
  • the reflection mirror which is a light optical element rather than a heavy medium, is feedback-controlled based on deviation information from the deviation information detection means, so that the angle Changes can be made at high speed. Therefore, the reproduction speed can be increased.
  • a present Example is not limited to the said Example, Various modifications are included.
  • the detection optical system including the aperture filter 113, the PBS 116, the detection lens 117, and the photodetector 118 is provided as an optical detection unit for the book 108 positional deviation.
  • a detection optical system including a detection lens for example, a photodetector having a two-divided light receiving surface may be used so as to face the objective lens 111 with the medium 107 interposed therebetween.
  • the photodetector may be an image sensor such as a CCD or CMOS.
  • one angle variable mirror is inclined in two axial directions, ie, the circumferential direction and the radial direction of the medium.
  • the first variable angle mirror is arranged in the circumferential direction of the medium.
  • the variable angle mirror may be inclined in the radial direction of the medium.
  • FIG. 9 shows the eccentricity of the track generated at the time of recording.
  • 901 indicates a medium
  • 903 indicates an ideal track at a predetermined radius R
  • 902 indicates the center of the ideal track 903.
  • Reference numeral 905 denotes a recording track
  • the center 904 of the track 905 is decentered from the center 902 by ⁇ .
  • FIG. 10 shows a hologram reproducing apparatus according to the present embodiment, where 1006 is a hologram reproducing apparatus, 1001 is an optical pickup, and 1005 is an optical system of the optical pickup 1001.
  • 1006 is a hologram reproducing apparatus
  • 1001 is an optical pickup
  • 1005 is an optical system of the optical pickup 1001.
  • the same part as FIG. 1 of Example 1 is shown using the same code
  • the hologram reproducing device 1006 is connected to the external control device 91 via the input / output control circuit 90.
  • the image information output from the image sensor 120 of the optical pickup 1001 is converted into an electric signal by the signal processing circuit 85, and this electric signal is transmitted to the external control device 91 by the input / output control circuit 90.
  • the optical pickup 1001 of this embodiment is different from the optical pickup 11 shown in FIG. 1 in that an eccentricity detecting optical means for detecting the eccentricity ⁇ of the track 905 is added.
  • the decentering detection optical means includes a detection lens 1002 and a light detector 1003 provided so as to face the objective lens 111 with the medium 107 interposed therebetween.
  • the reference light 102 irradiated to the book 108 is divided into transmitted light directed to the mirror 109 and diffracted light 1004 directed to the detection lens 1002, and among these, the diffracted light 1004 is used as the eccentricity detection light.
  • the diffracted light 1004 is collected by the detection lens 1002 and irradiated to the photodetector 1003.
  • FIG. 11 shows the light receiving surface of the photodetector 1003.
  • the light receiving surface 1101 of the photodetector 1003 is divided into four light receiving areas 1105a, 1105b, 1105c, and 1105d by a dividing line 1103 and a dividing line 1104, and a light spot 1102 is irradiated to these light receiving areas.
  • the X direction in the figure corresponds to the circumferential direction 123 of the medium 107, and the Y direction corresponds to the radial direction 124 of the medium 107.
  • the eccentricity detection unit 1006 stores the detection result of the eccentricity amount ⁇ and transmits it to the reference light correction angle calculation unit 129. Note that the relationship between the amount of eccentricity ⁇ and the amount of movement of the light spot 1102 is calibrated during assembly adjustment of the optical pickup. Since other parts are the same as those in the first embodiment, description thereof is omitted here.
  • the reference beam correction angle necessary for the radial direction 124 of the medium is derived when the book is reproduced with the recording track being decentered with reference to FIG.
  • FIG. 12A shows a state where the recording track 905 is decentered by ⁇ from the ideal track 903, as shown in FIG.
  • the book 108 is inclined at an angle ⁇ when viewed from the center 1204 of the recording track 905, and the angle ⁇ is expressed by the following (formula 8).
  • (Formula 8) ⁇ ⁇ / R
  • FIG. 12B shows a state in which the book 108 is on the ideal track 903 and the shift amount D is generated in the book positioning operation as shown in the first embodiment.
  • the book 108 is inclined by an angle ⁇ as viewed from the center 902 of the ideal track 903, and this angle ⁇ is expressed in the same manner as in (Equation 6) or (Equation 6 ′) of the first embodiment.
  • FIG. 8 shows a state where the recording track 905 is decentered by ⁇ from the ideal track 903, as shown in FIG.
  • the book 108 is inclined at an angle ⁇ when viewed from the center 1204 of the recording track 905, and the angle
  • the reference light correction angle ⁇ 2 necessary for the radial direction 124 of the medium can be calculated by the following formula in which ⁇ in (Formula 4) of the first embodiment is replaced by ( ⁇ + ⁇ ).
  • step S1301 the target track is moved, and in step S1302, the spindle motor is rotated to detect the eccentricity of the recording track.
  • step S ⁇ b> 801 the feed rotation angle of the spindle motor is controlled to move the book, and the target book on the medium 107 is positioned with respect to the reference beam 102. At this time, the medium radial position of the reference beam 102 is detected.
  • step S802 the irradiation angle in the medium circumferential direction 123 of the reference beam 102 with respect to the target book 108 in the medium 107 is set to an angle necessary for desired page reproduction.
  • step S803 the irradiation angle of the reference light 102 in the medium circumferential direction 123 is detected, and the target book 108 is irradiated with the reference light 102.
  • step S804 the amount and direction of the positional deviation between the target book and the reference light in the circumferential direction of the medium 107 are detected.
  • step S1303 Information acquired up to step S1204 in step S1303 (the medium radial position of the reference beam 102, the amount of eccentricity of the recording track, the irradiation angle in the medium circumferential direction 123, and the amount of positional deviation from the target book in the circumferential direction of the medium 107)
  • the correction angle of the irradiation angle of the reference light 102 in the medium radial direction 124 is calculated, and the irradiation angle of the reference light 102 in the medium radial direction 124 is corrected and changed. Thereafter, page reproduction is executed in step S806.
  • step S2104 determines whether another track is to be reproduced.
  • the process returns to step S2101 to move to the target track. The operations from step S2101 to step S2104 are performed again.
  • the present embodiment is characterized by an angle correction operation in which the reference light correction angle ⁇ 2 is changed in accordance with the amount of eccentricity of the recording track of the medium. Since the influence of the track eccentricity generated during recording can be compensated, the recording of the reproducing method apparatus Speed can be improved.
  • FIG. 14 shows the configuration of the optical pickup in this embodiment.
  • the optical pickup 1401 includes a wedge prism 1403.
  • Reference numeral 1401 denotes an optical pickup in the present embodiment, and the optical pickup 1401 is connected to the signal generation circuit 86, servo control circuit 84, servo signal generation circuit 83, and signal processing circuit 85 shown in FIG.
  • a hologram reproducing apparatus is configured.
  • the same part as Example 1 is shown using the same code
  • the reference light 102 passes through the wedge prism 1403 having a predetermined apex angle, is reflected by the mirror 1407, passes through the scanner lens 106, and is irradiated onto the medium 107 at a predetermined incident angle.
  • the wedge prism 1603 is held by an actuator 1604 that is rotationally driven in one axis direction, and the incident angle of the medium 107 in the radial direction 124 can be changed by rotationally driving the wedge prism 1403.
  • An actuator 1404 and an angle sensor 1405 for detecting the rotation angle of the wedge prism 1403 are connected to the pitch angle control circuit 1619 and control the wedge prism 1403 to a desired rotation angle by feedback control.
  • the mirror 1407 is held by an actuator 1406 that is rotationally driven in one axis direction, and the incident angle in the circumferential direction 123 of the medium 107 can be changed by rotationally driving the mirror 1407.
  • An actuator 1406 and an angle sensor 1409 for detecting the rotation angle of the mirror 1407 are connected to a Bragg angle control circuit 1418 and control the mirror 1407 to a desired rotation angle by feedback control.
  • the reference light 102 irradiated on the book 108 is divided into transmitted light directed to the mirror 109 and diffracted light 1410 directed to the detection lens 1611.
  • This diffracted light 1410 is separated into two polarized light beams having different polarization directions by the polarization separation element 1602.
  • the light in one polarization direction passes through the PBS 1413 and is collected on the photodetector 1415 by the detection lens 1414.
  • the light in the other polarization direction is reflected by the PBS 1413 and collected by the detection lens 1416 on the photodetector 1417. Signals obtained by the photodetectors 1415 and 1417 are used by the Bragg angle control circuit 1418 to generate the control angle signal of ⁇ b.
  • the irradiation angle information regarding the medium circumferential direction 123 of the reference light 102 is transmitted from the Bragg angle control circuit 1418 to the reference light correction angle calculation unit 129.
  • the reference light correction angle calculation unit 129 calculates a correction angle of the reference light in the medium radial direction 124 from the transmitted information, stores the result, and transmits the result to the reference light angle change command unit 130.
  • the reference light angle change command unit 130 transmits the command value of the correction angle to the pitch angle control circuit 1419 and controls the pitch angle control circuit 1419.
  • the pitch angle control circuit 1619 performs feedback control by driving the actuator 1404 and the output from the angle sensor 1605 to change the angle of the wedge prism 1403 in the medium radial direction 124. In this way, the irradiation angle of the reference beam 102 to the reproduction target book 108 in the medium radial direction 124 is changed.
  • the incident angle of the reference beam 102 in the circumferential direction 123 can be controlled at high speed during page reproduction. Since the scanning speed of the incident angle ⁇ b in the medium circumferential direction of the reference light is increased, it is possible to provide a hologram reproducing apparatus having an improved reproducing speed as compared with the hologram reproducing apparatus of the first embodiment.
  • a correction optical unit that optically detects the shift state of the reproduction target area of the hologram medium, and correction that changes the irradiation angle of the reference light based on the shift information of the reproduction target area acquired from the detection optical unit.
  • the hologram reproduction apparatus As a second modification, the hologram reproduction apparatus according to the first modification, wherein the correction is performed when the reproduction target area is moved.
  • the hologram reproduction apparatus As a third modification, the hologram reproduction apparatus according to the first modification, wherein the correction is performed when the reproduction target page is changed.
  • the detection optical unit is provided in an optical path between the medium and the image sensor, and the aperture filter optical element that causes the image sensor to receive only the 0th-order light of the diffracted light; and A detection lens, a photodetector, and an actuator for driving the aperture filter optical element are provided to detect a shift state of a reproduction target area of the hologram medium as a change in state of zero-order light passing through the aperture filter optical element.
  • Hologram playback device is provided in an optical path between the medium and the image sensor, and the aperture filter optical element that causes the image sensor to receive only the 0th-order light of the diffracted light; and A detection lens, a photodetector, and an actuator for driving the aperture filter optical element are provided to detect a shift state of a reproduction target area of the hologram medium as a change in state of zero-order light passing through the aperture filter optical element.
  • a reproducing method of a hologram apparatus for reproducing the page data by irradiating a hologram medium on which page data is angle-multiplexed recorded with reference light and receiving the generated diffracted light as reproducing light by an imaging device.
  • control lines indicate what is considered necessary for the explanation, and not all control lines are necessarily shown on the product.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Holo Graphy (AREA)

Abstract

Provided are a hologram reproduction device and reproduction system capable of improving the reliability and improving the speed of hologram reproduction. Provided is a hologram reproduction device that changes irradiates, with a reference light, a recording medium in which the incident angle of the reference light is changed to a first direction and a hologram has been angle-multiplexing recorded, and reproduces the recorded hologram by receiving, with an imaging element, generated diffracted light as reproduction light, the hologram reproduction device being characterized by being provided with: a reference light angle adjustment unit that adjusts a medium incident angle at which the reference light enters the recording medium; an aperture filter having an aperture which the reproduction light from the recording medium enters and through which the reproduction light is transmitted; a light detection unit that detects light emitted from the aperture filter and outputs a signal on the basis of the detected light; and a positional deviation detection unit that, on the basis of the signal outputted by the light detection unit, detects an amount of relative positional deviation of the recording position of a hologram to be reproduced and the irradiation position on the recording medium of the reference light for reproducing the hologram to be reproduced. The reference light angle adjustment unit adjusts a medium incident angle of the reference light in a second direction which is perpendicular to the first direction on the basis of the positional deviation amount detected by the positional deviation detection unit.

Description

ホログラム再生装置およびホログラム再生方法Hologram reproducing apparatus and hologram reproducing method
 本発明は、ホログラフィを用い、記録媒体から情報を再生する装置及び方法に関する。 The present invention relates to an apparatus and method for reproducing information from a recording medium using holography.
 ホログラフィックメモリ技術の例として、例えば特開2013-097837号公報(特許文献1)がある。本公報には、課題として、「ページデータ情報が多重記録されたホログラム記録媒体の収縮や膨張、あるいは可換型の記録媒体を設置したとき等に生じるホログラムの位置ずれを補償する、あるいは補償に要する時間の短縮化を図り得るホログラム再生装置および再生時参照光入射角度の最適値探索方法を提供する。」と記載され、解決手段として、「ページデータ情報が角度多重記録されたホログラム記録媒体11に再生時参照光を照射してページデータ情報を再生する情報再生部を有し、この情報再生部により、ページデータ情報を担持した光波が得られるように調整するホログラム再生装置であって、各ページデータ情報の再生時に、信号光入射角度Θs、記録時参照光入射角度Θr、光の波長λ、記録媒体の屈折率nおよび記録媒体の収縮率αを要素とする演算式に基づいて所望の再生時参照光入射角度Φreadを求める演算手段40を備えている。」と記載されている。 An example of holographic memory technology is, for example, Japanese Patent Application Laid-Open No. 2013-097837 (Patent Document 1). In this publication, as a problem, “a contraction or expansion of a hologram recording medium on which page data information is recorded in a multiplexed manner, or a hologram misalignment that occurs when a replaceable recording medium is installed, etc. A hologram reproducing apparatus capable of reducing the time required and a method for searching for an optimum value of the reference light incident angle at the time of reproduction are provided. As a solving means, “a hologram recording medium 11 on which page data information is angle-multiplexed recorded” is described. A hologram reproducing device that has an information reproducing unit that reproduces page data information by irradiating a reference light during reproduction, and adjusts the information reproducing unit so that a light wave carrying the page data information is obtained. When reproducing the page data information, the signal light incident angle Θs, the recording reference light incident angle Θr, the light wavelength λ, the refractive index n of the recording medium, and the recording medium Based the rate α to the arithmetic expression for an element provided with a computing means 40 for obtaining the desired reproduction reference beam incident angle .phi.read. Has been described as ".
 また、その他の特許文献として例えば特開2006-268933号公報(特許文献2)がある。本公報には、課題として「角度のずれや周囲温度の変化による波長のずれに対し、所望の角度と波長との条件で再生できるホログラフィー装置及びホログラフィー媒体の再生方法を提供する。」と記載され、解決手段として、「本発明のホログラフィー装置は、ホログラフィー媒体に照射する参照光の角度を変えて所定の記憶領域毎に多重記録するものであり、ホログラフィー媒体に対し、角度を変えて参照光を照射する参照光照射手段と、参照光により、各情報データページから出射される再生光を検出面に入射し、該再生光から情報データを再生するデータ検出手段と、参照光によりホログラフィー媒体から出射される再生光により、検出面の複数の所定の領域各々における再生光の光強度を検出し、参照光のホログラフィー媒体に入射される角度及び波長のずれを検出する再生光ずれ検出手段と、再生光の角度及び波長のずれの検出結果により、参照光の入射角度及び波長を制御する参照光制御手段とを有する。」と記載されている。 Another patent document is, for example, Japanese Patent Application Laid-Open No. 2006-268933 (Patent Document 2). This publication describes, as a problem, “to provide a holographic device and a method for reproducing a holographic medium that can be reproduced under conditions of a desired angle and wavelength with respect to a wavelength shift due to an angle shift or a change in ambient temperature”. As a solution, “The holography device of the present invention is designed to multiplex-record each predetermined storage area by changing the angle of the reference light applied to the holographic medium. Reference light irradiation means for irradiating, reproduction light emitted from each information data page by the reference light is incident on the detection surface, and data detection means for reproducing information data from the reproduction light, and emitted from the holographic medium by the reference light The reproduced light is used to detect the light intensity of the reproduced light in each of a plurality of predetermined areas on the detection surface and enter the reference light holographic medium. And a reference light control means for controlling the incident angle and wavelength of the reference light according to the detection result of the angle and wavelength deviation of the reproduction light. Has been.
特開2013-097837号公報JP 2013-097837 A 特開2006-268933号公報JP 2006-268933 A
 媒体の同じ領域に角度多重記録されたホログラムにおいて、1つ1つの参照光角度に対応したホログラムのことをページと呼び、同領域に角度多重されたページの集合をブックと呼ぶことにする。 In a hologram recorded in an angle multiplexed manner in the same area of the medium, a hologram corresponding to each reference beam angle is called a page, and a set of pages angle multiplexed in the same area is called a book.
 ディスク状媒体を記録再生するホログラフィックメモリ装置において、媒体の円周方向に沿って記録されたブックを再生する場合を考える。この場合、再生対象とするブックが変わる毎にスピンドルモータの送り回転角度を制御し、参照光に対してブックの位置付け動作を繰り返す。この際、回転駆動系、センサ系の特性ばらつきの影響は避けられないため、全て同じ送り回転角度指令値を与えたとしても同一の送り回転角度は再現できない。 Suppose that a holographic memory device that records and reproduces a disk-shaped medium reproduces a book recorded along the circumferential direction of the medium. In this case, every time the book to be reproduced changes, the spindle motor feed rotation angle is controlled, and the book positioning operation with respect to the reference light is repeated. At this time, since the influence of variations in the characteristics of the rotational drive system and the sensor system is inevitable, even if the same feed rotation angle command value is given, the same feed rotation angle cannot be reproduced.
 その結果、ブックの位置付け動作を繰返す度に、媒体の円周方向に関し参照光に対するブックの相対誤差として傾き誤差、位置誤差が生じることになるが、この誤差におりブック再生時の再生光量が低下するため再生品質も低下してしまうため、ホログラフィックメモリ装置では高品質で安定した再生を行うには上記相対誤差の許容値を厳しくする必要性があった。そのため、上記相対誤差の許容値を拡大してホログラム媒体再生の信頼性、再生速度を向上させることが難しいという課題が発生する。 As a result, every time the book positioning operation is repeated, a tilt error and a position error occur as a relative error of the book with respect to the reference light in the circumferential direction of the medium. This error reduces the amount of light reproduced during book reproduction. Therefore, the reproduction quality also deteriorates. Therefore, in the holographic memory device, it is necessary to tighten the allowable value of the relative error in order to perform high-quality and stable reproduction. Therefore, there arises a problem that it is difficult to increase the reliability of the hologram medium and the reproduction speed by increasing the allowable value of the relative error.
 一方、上記特許文献1、2では上記相対誤差の許容値を拡大するという観点での開示はなされておらず、上記ホログラム再生の信頼性と速度を向上させるという課題に対応できない。 On the other hand, Patent Documents 1 and 2 do not disclose from the viewpoint of expanding the allowable value of the relative error, and cannot cope with the problem of improving the reliability and speed of the hologram reproduction.
 そこで、本発明ではホログラム再生の信頼性向上、速度向上を図ることが可能なホログラム再生装置および再生方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a hologram reproducing apparatus and a reproducing method capable of improving the reliability and speed of hologram reproduction.
 上記課題は、例えば下記に記載の構成により解決される。 The above problem is solved by the following configuration, for example.
 第一の方向に参照光の入射角度を変化させてホログラムを角度多重記録した記録媒体に対して参照光を照射し、発生した回折光を再生光として撮像素子で受光することにより前記記録されたホログラムを再生するホログラム再生装置において、前記参照光が前記記録媒体に入射する媒体入射角度を調整する参照光角度調整部と、前記記録媒体からの前記再生光が入射し、該再生光が透過する開口部を有する開口フィルタと、前記開口フィルタを出射した光を検出し、該検出した光に基づいて信号を出力する光検出部と、前記光検出部が出力した信号に基づいて、再生対象ホログラムの記録位置と該再生対象ホログラムを再生するための参照光の前記記録媒体上の照射位置との相対的な位置ずれ量を検出する位置ずれ検出部と、を備え、前記参照光角度調整部は、位置ずれ検出部で検出した位置ずれ量に基づいて、前記参照光の前記第一の方向に垂直な第二の方向の媒体入射角度を調整することを特徴とするホログラム再生装置。 The recording was performed by irradiating the recording medium on which the hologram was angle-multiplexed recorded by changing the incident angle of the reference light in the first direction, and receiving the generated diffracted light as reproduction light by the imaging device. In a hologram reproducing apparatus for reproducing a hologram, a reference light angle adjusting unit that adjusts a medium incident angle at which the reference light is incident on the recording medium, and the reproducing light from the recording medium is incident and the reproducing light is transmitted An aperture filter having an aperture, a light detection unit that detects light emitted from the aperture filter and outputs a signal based on the detected light, and a hologram to be reproduced based on the signal output from the light detection unit A positional deviation detection unit for detecting a relative positional deviation amount between the recording position of the reproduction target hologram and the irradiation position on the recording medium of the reference light for reproducing the reproduction target hologram, and The illumination angle adjustment unit adjusts a medium incident angle in a second direction perpendicular to the first direction of the reference light based on a positional shift amount detected by the positional shift detection unit. apparatus.
 本発明によれば、再生の信頼性向上、速度向上を図ったホログラム再生装置を提供することができる。 According to the present invention, it is possible to provide a hologram reproducing apparatus that improves the reproduction reliability and speed.
実施例において、ホログラム再生装置を示す図。The figure which shows a hologram reproducing apparatus in an Example. 実施例において、開口フィルタと光検出器について説明する図。The figure explaining an aperture filter and a photodetector in an Example. 実施例において、光検出器受光面上の光量検出を説明する図。The figure explaining the light quantity detection on the photodetector light-receiving surface in an Example. 実施例において、位置ずれが生じた再生対象ブックを説明する図。The figure explaining the reproduction | regeneration object book in which the position shift occurred in the Example. 実施例において、参照光の媒体半径方向補正角度の導出説明図。In an Example, derivation explanatory drawing of the medium radial direction correction angle of reference light. 実施例において、補正効果を説明するグラフ。The graph explaining the correction effect in an Example. 実施例において、補正効果を説明するグラフ。The graph explaining the correction effect in an Example. 実施例において、補正効果を説明するグラフ。The graph explaining the correction effect in an Example. 本発明の実施例1において、ブック再生動作を説明するフロー。6 is a flowchart for explaining a book reproduction operation in the first embodiment of the present invention. 実施例において、記録時トラックの偏心状態を示した図。The figure which showed the eccentric state of the track | truck at the time of recording in an Example. 実施例において、ホログラム再生装置を示す図The figure which shows a hologram reproducing apparatus in an Example. 実施例において、光検出器の受光面を示す図。The figure which shows the light-receiving surface of a photodetector in an Example. 実施例において、記録トラック偏心がある状態での参照光補正角度の導出説明図。FIG. 6 is a derivation explanatory diagram of a reference light correction angle in a state where there is recording track eccentricity in the embodiment. 実施例において、ブック再生動作を説明するフローIn the embodiment, a flow for explaining the book reproduction operation 実施例において、光ピックアップを説明する図。The figure explaining an optical pick-up in an Example.
 以下、実施例を図面を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.
 実施例図1は本実施例のホログラム再生装置の構成例である。 Embodiment FIG. 1 shows a configuration example of a hologram reproducing apparatus of the present embodiment.
 ホログラム再生装置10は、入出力制御回路90を介し外部制御装置91と接続されている。再生する場合、光ピックアップ11の撮像素子120から出力された画像情報を信号処理回路85により電気信号に変換し、この電気信号を入出力制御回路90により外部制御装置91に送信する。 The hologram reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90. When reproducing, the image information output from the image sensor 120 of the optical pickup 11 is converted into an electric signal by the signal processing circuit 85, and this electric signal is transmitted to the external control device 91 by the input / output control circuit 90.
 ホログラフィの角度多重を利用した記録再生では、参照光角度のずれに対する許容誤差が小さくなる傾向があるので、光ピックアップ11内に、参照光角度のずれ量を検出する機構を設けてサーボ信号生成回路83にてサーボ制御信号を生成し、サーボ制御回路84を介して該ずれ量を補正する。 In recording and reproduction using holographic angle multiplexing, the tolerance for the deviation of the reference beam angle tends to be small. Therefore, a mechanism for detecting the deviation amount of the reference beam angle is provided in the optical pickup 11 to provide a servo signal generation circuit. A servo control signal is generated at 83 and the deviation amount is corrected via the servo control circuit 84.
 以下、本実施例の特徴である光ピックアップ11、光ピックアップ11の光学系101について説明する。107はディスク状媒体を、108は媒体107に既に記録されたページデータの集合であるブックを、123は媒体107の円周方向を、124は媒体107の半径方向を示している。ブックの再生は、円周方向123に沿って行われる。図ではブックとして1カ所のブック108を記載しているが、実際には円周方向123に沿って所定の間隔で複数配置される。 Hereinafter, the optical pickup 11 and the optical system 101 of the optical pickup 11 which are features of the present embodiment will be described. Reference numeral 107 denotes a disc-shaped medium, 108 denotes a book which is a set of page data already recorded on the medium 107, 123 denotes a circumferential direction of the medium 107, and 124 denotes a radial direction of the medium 107. The book is reproduced along the circumferential direction 123. In the figure, one book 108 is shown as a book, but actually, a plurality of books 108 are arranged at predetermined intervals along the circumferential direction 123.
 媒体107は図示しないスピンドルモータに装着されて円周方向123に回転し、このスピンドルモータは図示しない送り駆動機構によって半径方向124に駆動する。この送り駆動機構には位置センサ122が設けられており、ブック108再生時に半径方向124位置を検出する。 The medium 107 is mounted on a spindle motor (not shown) and rotates in the circumferential direction 123. The spindle motor is driven in the radial direction 124 by a feed driving mechanism (not shown). This feed drive mechanism is provided with a position sensor 122 and detects the position in the radial direction 124 when the book 108 is played back.
 参照光102はアクチュエータ104に保持された角度可変ミラー103を反射してスキャナレンズ106を通過し、ブック108に対し所定の入射角度で照射される。なお、アクチュエータ104として例えば、角度可変ミラー103を媒体107の円周方向123と半径方向124に傾斜可能な電磁アクチュエータを用い、媒体107に対する参照光102の入射角度を変更することができる。 The reference light 102 reflects the angle variable mirror 103 held by the actuator 104, passes through the scanner lens 106, and is irradiated onto the book 108 at a predetermined incident angle. For example, an electromagnetic actuator that can tilt the variable angle mirror 103 in the circumferential direction 123 and the radial direction 124 of the medium 107 can be used as the actuator 104, and the incident angle of the reference light 102 with respect to the medium 107 can be changed.
 アクチュエータ104と角度可変ミラー103の傾斜角度を検出する角度センサ105は角度制御回路125に接続され、フィードバック制御によって角度可変ミラー103を所望の傾斜角度に制御する。 The angle sensor 105 that detects the tilt angle of the actuator 104 and the variable angle mirror 103 is connected to the angle control circuit 125, and controls the variable angle mirror 103 to a desired tilt angle by feedback control.
 ブック108を透過した参照光102はミラー109で反射されて再生用参照光126となり、媒体107に再び入射した後、回折されて再生光110が生成される。再生光110は対物レンズ111、リレーレンズ112、開口フィルタ113、PBS116、PBS119を透過してCCDセンサあるいはCMOSセンサ等の撮像素子120に照射され、ブックの再生が行われる。なお、開口フィルタ113の位置は光学系組立調整の際、基準となる位置に調整されている。開口フィルタ113の詳細については後ほど図2、図3を用いて別途説明する。 The reference light 102 that has passed through the book 108 is reflected by the mirror 109 to become the reproduction reference light 126, enters the medium 107 again, and is diffracted to generate the reproduction light 110. The reproduction light 110 passes through the objective lens 111, the relay lens 112, the aperture filter 113, the PBS 116, and the PBS 119 and is irradiated to the image sensor 120 such as a CCD sensor or a CMOS sensor, thereby reproducing the book. Note that the position of the aperture filter 113 is adjusted to a reference position in the optical system assembly adjustment. Details of the aperture filter 113 will be separately described later with reference to FIGS.
 ところで、ブック再生ではスピンドルモータの送り回転角度を制御し、参照光に対してブックの位置付け動作を行うが、駆動系、センサ系の特性ばらつきの影響は避けられないため毎回同一の送り回転角度に制御することができない。そのため、参照光102に対しブック108の位置ずれが必ず発生し、この位置ずれ量はブックの位置付け動作する度に異なる。よってこの位置ずれ量を検出する手段が必要になるが、例えば媒体107を円周方向123に移動させることで検出しようとすると、媒体107は重いために検出速度を高速にできない。また、この位置ずれ量検出手段として撮像素子を用いることも考えられるが、情報量が多い画像データから演算するので時間がかかり高速化には適さない。 By the way, in the book reproduction, the spindle motor feed rotation angle is controlled and the book positioning operation is performed with respect to the reference light. However, the influence of variations in the characteristics of the drive system and the sensor system is inevitable, so the same feed rotation angle is set every time. I can't control it. Therefore, the positional deviation of the book 108 always occurs with respect to the reference beam 102, and this positional deviation amount changes every time the book positioning operation is performed. Therefore, a means for detecting the amount of displacement is required. However, for example, if the medium 107 is moved by moving it in the circumferential direction 123, the detection speed cannot be increased because the medium 107 is heavy. Although it is conceivable to use an image sensor as the positional deviation amount detection means, it takes time and is not suitable for speeding up since it is calculated from image data with a large amount of information.
 そこで、本実施例では、以下に説明する光学的手段を設けることにより位置ずれ量を高速に検出する。以下、その内容を説明する。 Therefore, in this embodiment, the positional deviation amount is detected at high speed by providing the optical means described below. The contents will be described below.
 参照光102に対しブック108の位置ずれが発生すると、開口フィルタ113に対し再生光110の相対位置誤差が発生する。このとき、再生光110の一部は図2で示す分割波長板領域に入射、偏光方向が略90度回転した状態で出射し、PBS116の反射面で反射されブック108の位置検出光128として分離される。その後、検出レンズ117により集光されて光検出器118に照射される。 When the position deviation of the book 108 occurs with respect to the reference light 102, a relative position error of the reproduction light 110 occurs with respect to the aperture filter 113. At this time, a part of the reproduction light 110 is incident on the divided wavelength plate region shown in FIG. 2, is emitted with the polarization direction rotated by approximately 90 degrees, is reflected by the reflection surface of the PBS 116, and is separated as the position detection light 128 of the book 108. Is done. Thereafter, the light is condensed by the detection lens 117 and irradiated to the photodetector 118.
 光検出器118は信号生成回路121に接続されており、この回路では光検出器118の出力信号に応じたサーボ信号を生成する。このサーボ信号が0に近づくように開口アクチュエータ114を駆動し開口フィルタ113の位置決めを行う。この際の開口フィルタ113の駆動量を位置検出センサ115(例えばPSD:Position Sensitive Detector)で検出すると開口フィルタ113に対する再生光110の相対位置誤差、すなわち、参照光102に対するブック108の位置ずれ量がわかる。この光学的手段は軽量の開口フィルタ113を駆動させること、光量のみ検出する光検出器は応答速度が高いことから位置ずれ量を高速に検出することが可能となる。 The photodetector 118 is connected to a signal generation circuit 121, which generates a servo signal corresponding to the output signal of the photodetector 118. The aperture actuator 114 is driven so that the servo signal approaches 0, and the aperture filter 113 is positioned. If the driving amount of the aperture filter 113 at this time is detected by a position detection sensor 115 (for example, PSD: Position Sensitive Detector), the relative position error of the reproduction light 110 with respect to the aperture filter 113, that is, the positional deviation amount of the book 108 with respect to the reference light 102 is obtained. Recognize. This optical means drives the light aperture filter 113, and the photodetector that detects only the light quantity has a high response speed, so that it is possible to detect the amount of displacement at high speed.
 図2、図3を用いて開口フィルタ113、光検出器118の詳細について説明する。図2は開口フィルタ113と光検出器118の構成例を示す図、図3は光検出器118の受光面上光量検出の例を示す図である。 Details of the aperture filter 113 and the photodetector 118 will be described with reference to FIGS. FIG. 2 is a diagram illustrating a configuration example of the aperture filter 113 and the photodetector 118, and FIG. 3 is a diagram illustrating an example of light amount detection on the light receiving surface of the photodetector 118.
 図2(a)は開口フィルタ113の例を示しており、図のX方向は媒体の円周方向123に相当する。中央に再生光110が通過する透過領域201を、その周囲に4か所の分割波長板領域202a、202b、202c、202dを、その外側には光遮断領域203を設けている。光遮断領域203は再生光110のうち再生対象ブック108から回折された0次光以外の不要光、あるいは再生対象ブック108以外の隣接ブックから回折された不要光を遮断し、撮像素子120に照射されないようにする。図2(b)は光検出器118の受光面パターンの例を示しており、受光面206は分割線204、205によって受光領域A、B、C、Dに分割され、各領域では受光量に応じた信号が出力される。 FIG. 2A shows an example of the aperture filter 113, and the X direction in the figure corresponds to the circumferential direction 123 of the medium. A transmission region 201 through which the reproduction light 110 passes is provided at the center, four divided wavelength plate regions 202a, 202b, 202c, and 202d are provided around the transmission region 201, and a light blocking region 203 is provided outside the transmission region 201. The light blocking region 203 blocks unnecessary light other than the 0th-order light diffracted from the reproduction target book 108 in the reproduction light 110 or unnecessary light diffracted from an adjacent book other than the reproduction target book 108 and irradiates the image sensor 120. Do not be. FIG. 2B shows an example of the light receiving surface pattern of the photodetector 118. The light receiving surface 206 is divided into light receiving regions A, B, C, and D by dividing lines 204 and 205, and the amount of light received is determined in each region. A corresponding signal is output.
 図3は上段に開口フィルタ113に対する再生光110の相対位置関係を、下段には上段で示した相対位置関係に対応する、光検出器118受光面206上の受光状態を示す。図のX方向は、図2と同様に媒体の円周方向123に相当する。 3 shows the relative positional relationship of the reproduction light 110 with respect to the aperture filter 113 in the upper stage, and the light receiving state on the light receiving surface 206 of the photodetector 118 corresponding to the relative positional relationship shown in the upper stage. The X direction in the figure corresponds to the circumferential direction 123 of the medium as in FIG.
 図3(a)は再生光110が開口フィルタ113の透過領域201を通過している状態を示す。この場合、開口フィルタ113に対する再生光110の相対位置誤差が所定の範囲内にあり、ブック108の位置検出光は光検出器118に照射されないため、受光領域A、B、C、Dのいずれからも信号は出力されない。(b)は、開口フィルタ113に対し再生光110の相対位置が+X方向へずれた状態を示す。+X方向の相対位置誤差が所定範囲内を超え、ブック108の位置検出信号光1103は光検出器118の受光領域Aに照射される。(c)は、開口フィルタ113に対し再生光110の相対位置が-X方向へずれた状態を示す。-X方向の相対位置誤差が所定範囲内を超え、前記ブック108の位置検出信号光1105は光検出器118の受光領域Bに照射される。 FIG. 3A shows a state in which the reproduction light 110 passes through the transmission region 201 of the aperture filter 113. In this case, since the relative position error of the reproduction light 110 with respect to the aperture filter 113 is within a predetermined range, and the position detection light of the book 108 is not irradiated to the photodetector 118, from any of the light receiving areas A, B, C, and D However, no signal is output. (B) shows a state where the relative position of the reproduction light 110 with respect to the aperture filter 113 is shifted in the + X direction. The relative position error in the + X direction exceeds the predetermined range, and the position detection signal light 1103 of the book 108 is applied to the light receiving region A of the photodetector 118. (C) shows a state where the relative position of the reproduction light 110 with respect to the aperture filter 113 is shifted in the −X direction. The relative position error in the −X direction exceeds a predetermined range, and the position detection signal light 1105 of the book 108 is applied to the light receiving region B of the photodetector 118.
 ここで、受光領域A、Bから得られる信号をSigA、SigBと表記すると、X方向の位置誤差信号SXは(式1)により得られ、X方向の相対位置誤差と、位置誤差信号SXの関係は直線関係になる。
(式1)SX=SigA-SigB
 SXが0に近づくように開口アクチュエータ114を駆動し、開口フィルタ113の位置決めを行う。この際の開口フィルタ113の駆動量を位置検出センサ(例えばPSD)で検出すると開口フィルタ113に対する再生光110の相対位置誤差、すなわち、参照光102に対するブック108の位置ずれ量がわかる。
Here, if the signals obtained from the light receiving areas A and B are expressed as SigA and SigB, the position error signal SX in the X direction is obtained by (Equation 1), and the relationship between the relative position error in the X direction and the position error signal SX. Is a linear relationship.
(Formula 1) SX = SigA-SigB
The aperture actuator 114 is driven so that SX approaches 0, and the aperture filter 113 is positioned. When the driving amount of the aperture filter 113 at this time is detected by a position detection sensor (for example, PSD), the relative position error of the reproduction light 110 with respect to the aperture filter 113, that is, the positional deviation amount of the book 108 with respect to the reference light 102 is known.
 ここで、開口フィルタ113の検出駆動量Eとブック108の位置ずれ量Dの関係は倍率(リレーレンズ112の焦点距離f1と対物レンズ111の焦点距離f2の比)によって以下の(式2)で決まるので、開口フィルタ113の検出駆動量Eからブック108の位置ずれ量Dを求めることができる。
(式2)E=D・(f1/f2)
 なお、図2では開口フィルタ113の透過領域201の周囲に4か所の波長板領域を光検出器118の受光面206に4か所の受光領域を設けているが、これに限定されない。例えば、同図のX方向である媒体の円周方向に関する参照光102と再生対象ブック108の位置ずれ量を検出することに限定すれば、最低限、開口フィルタ113の透過領域201の周囲に2か所の波長板領域、光検出器118の受光面206には2か所の受光領域があれば良い。すなわち、同図の開口フィルタ113では波長板領域202aと202b、受光面206では受光領域A、Bの構成とする。
Here, the relationship between the detection drive amount E of the aperture filter 113 and the positional deviation amount D of the book 108 is expressed by the following (formula 2) depending on the magnification (ratio of the focal length f1 of the relay lens 112 and the focal length f2 of the objective lens 111). Therefore, the positional deviation amount D of the book 108 can be obtained from the detection drive amount E of the aperture filter 113.
(Formula 2) E = D · (f1 / f2)
In FIG. 2, four wavelength plate regions are provided around the transmission region 201 of the aperture filter 113 and four light receiving regions are provided on the light receiving surface 206 of the photodetector 118. However, the present invention is not limited to this. For example, if the amount of positional deviation between the reference beam 102 and the reproduction target book 108 in the circumferential direction of the medium that is the X direction in FIG. There may be two light receiving regions on the two wavelength plate regions and the light receiving surface 206 of the photodetector 118. That is, the aperture filter 113 shown in the figure has the wave plate regions 202a and 202b, and the light receiving surface 206 has the light receiving regions A and B.
 以上説明した光学的手段によってブック108の位置ずれ量Dを検出することができ、以下、その後の動作について説明する。 The positional deviation amount D of the book 108 can be detected by the optical means described above, and the subsequent operation will be described below.
 ブック位置ずれ検出部127は、位置検出センサ115と信号生成回路121と接続され、参照光102に対するブック108の位置ずれ検出結果を格納するとともに参照光補正角度演算部129に伝送する。また、媒体107の半径方向124の位置情報が再生半径位置検出部135から参照光補正角度演算部129に伝送される。さらに、参照光102の媒体円周方向123に関する照射角度情報が角度可変ミラー103の角度制御回路125から参照光補正角度演算部129に伝送される。 The book position deviation detection unit 127 is connected to the position detection sensor 115 and the signal generation circuit 121, stores the position deviation detection result of the book 108 with respect to the reference light 102, and transmits the result to the reference light correction angle calculation unit 129. Further, the position information of the medium 107 in the radial direction 124 is transmitted from the reproduction radius position detection unit 135 to the reference light correction angle calculation unit 129. Further, irradiation angle information of the reference light 102 in the medium circumferential direction 123 is transmitted from the angle control circuit 125 of the angle variable mirror 103 to the reference light correction angle calculation unit 129.
 参照光補正角度演算部129では、伝送された情報から参照光の媒体半径方向124への補正角度を演算し、その結果を格納するとともに参照光角度変更指令部130に伝送する。参照光角度変更指令部130は、補正角度の指令値を角度可変ミラー103の角度制御回路125を伝送するとともに、角度制御回路125をコントロールする。角度制御回路125はアクチュエータ104の駆動と角度センサ105からの出力によりフィードバック制御を行い、参照光の媒体半径方向124への入射角度を変更するよう、角度可変ミラー103の角度を変更する。 The reference light correction angle calculation unit 129 calculates the correction angle of the reference light in the medium radial direction 124 from the transmitted information, stores the result, and transmits the result to the reference light angle change command unit 130. The reference light angle change command unit 130 transmits the command value of the correction angle to the angle control circuit 125 of the angle variable mirror 103 and controls the angle control circuit 125. The angle control circuit 125 performs feedback control by driving the actuator 104 and the output from the angle sensor 105, and changes the angle of the angle variable mirror 103 so as to change the incident angle of the reference light in the medium radial direction 124.
 このようにして、再生対象ブック108に対する参照光102の媒体半径方向124への照射角度を変更する。また、媒体の再生対象ブックが現在の位置から別の位置に移動する際には、再び、先ほど説明したのと同様に参照光102の媒体半径方向124への補正角度を演算し、再生対象ブックに対する参照光照射角度を変更するように構成されている。 In this way, the irradiation angle of the reference beam 102 to the reproduction target book 108 in the medium radial direction 124 is changed. When the book to be reproduced on the medium moves from the current position to another position, the correction angle of the reference beam 102 in the medium radial direction 124 is calculated again as described above, and the book to be reproduced is reproduced. It is comprised so that the reference light irradiation angle with respect to may be changed.
 ここで、再生対象ブックに対する参照光照射角度を変更する手段として、例えば参照光照射角度は変えずに媒体107を傾けることも考えられるが、媒体107は重いため角度変更を高速に行うことができない。それに対し本実施例では軽量の角度可変ミラー103を駆動させるため、角度変更を高速に行うことができる。 Here, as a means for changing the reference light irradiation angle with respect to the reproduction target book, for example, the medium 107 may be tilted without changing the reference light irradiation angle. However, since the medium 107 is heavy, the angle cannot be changed at high speed. . On the other hand, in this embodiment, since the lightweight variable angle mirror 103 is driven, the angle can be changed at high speed.
 ここで、図4、図5を用い、参照光102の媒体半径方向124への補正角度φ2を決定するパラメータと、このφ2の導出について説明する。まず、図4を用いて参照光102と再生対象ブック108との相対ずれ状態について説明する。図4(a)は媒体107を401を回転中心として402の方向に回転させ、ブック108を再生する際に生じる、参照光102と再生対象ブック108との相対ずれ状態を示している。 Here, the parameters for determining the correction angle φ2 of the reference light 102 in the medium radial direction 124 and the derivation of φ2 will be described with reference to FIGS. First, the relative shift state between the reference beam 102 and the reproduction target book 108 will be described with reference to FIG. FIG. 4A shows a relative shift state between the reference beam 102 and the reproduction target book 108 that occurs when the medium 107 is rotated in the direction 402 around the rotation center 401 and the book 108 is reproduced.
 (状態1)は相対ずれが無い理想的な状態であり、特に問題なく再生することができる。(状態2)は相対ずれが発生する状態を示しており、矢印403の方向にずれる場合、参照光102に対し並進ずれ+Dと、時計回りの回転角+θが同時に発生することになる。一方、矢印404の方向にずれる場合、参照光102に対し並進ずれ-Dと反時計回りの回転角-θが同時に発生することになる。 (State 1) is an ideal state with no relative deviation, and can be reproduced without any particular problem. (State 2) shows a state in which a relative shift occurs. When the shift is in the direction of the arrow 403, a translational shift + D and a clockwise rotation angle + θ occur simultaneously with respect to the reference beam 102. On the other hand, when the direction is shifted in the direction of the arrow 404, a translational shift −D and a counterclockwise rotation angle −θ occur simultaneously with respect to the reference beam 102.
 図5は図4の(状態2)を想定した再生対象ブック108を示し、角度可変ミラー103を傾斜させることにより参照光102を媒体の円周方向123に所定角度φbで入射させ、ページ再生を行うことを想定している。この状態では、再生対象ブック108は参照光102に対してθだけ傾いた状態になっているため、ブック108から見ると、媒体の回転中心401とブック108の中心501を結ぶライン502の方向にφ1だけ参照光102が傾いて参照光が照射されることになる。そこで、ライン502の方向に参照光102を移動させるように補正角度φ2を設定するとφpは0となる。
(式3)φ1=φb・Sinθ
(式4)φ2=-φb・Sinθ
(式5)φp=φ1+φ2=0
  また、先ほど説明した図4(b)は、再生対象ブック108の円周方向の位置ずれ量Dを具体的に示した図であり、幾何学的に以下の関係式が成り立つ。
(式6)D=R・Sinθ
また、より簡易には、実際の装置動作で想定されるブック回転量θは十分に小さい為、Sinθ≒θと近似することで、以下の関係式で考えても構わない。
(式6‘)D=R・θ
 この補正角度φ2は(式4)と(式6‘)から以下の(式7)で演算され、参照光の媒体円周方向入射角度φbと、参照光と再生対象ブックの媒体円周方向ずれDと、媒体の回転中心から測った参照光位置Rのパラメータにより決定することがわかる。先ほどの図1中の参照光補正角度演算部129にはこれらのパラメータ情報が伝送され、参照光補正角度演算部129で(式7)の演算式を用い参照光補正角度φ2を算出することができる。
(式7)φ2=-φb・Sin(D/R)
 本実施例では、参照光102の媒体半径方向124への補正角度φ2の算出に関して以下に示す特徴がある。
FIG. 5 shows the book 108 to be reproduced assuming (state 2) in FIG. 4. By tilting the variable angle mirror 103, the reference light 102 is incident at a predetermined angle φb in the circumferential direction 123 of the medium, and page reproduction is performed. Assumes to do. In this state, the reproduction target book 108 is inclined by θ with respect to the reference light 102, so that when viewed from the book 108, the reproduction target book 108 is in a direction of a line 502 connecting the rotation center 401 of the medium and the center 501 of the book 108. The reference light 102 is tilted by φ1 and irradiated with the reference light. Therefore, if the correction angle φ2 is set so that the reference beam 102 is moved in the direction of the line 502, φp becomes zero.
(Formula 3) φ1 = φb · Sinθ
(Formula 4) φ2 = −φb · Sinθ
(Formula 5) φp = φ1 + φ2 = 0
FIG. 4B described above is a diagram specifically showing the circumferential position displacement amount D of the reproduction target book 108, and the following relational expression is geometrically established.
(Expression 6) D = R · Sinθ
Further, more simply, since the book rotation amount θ assumed in the actual apparatus operation is sufficiently small, the following relational expression may be considered by approximating Sinθ≈θ.
(Formula 6 ′) D = R · θ
The correction angle φ2 is calculated from (Equation 4) and (Equation 6 ′) by the following (Equation 7), and the medium circumferential incident angle φb of the reference light and the deviation of the reference light and the book to be reproduced in the medium circumferential direction are calculated. It can be seen that it is determined by D and the parameter of the reference light position R measured from the rotation center of the medium. The parameter information is transmitted to the reference light correction angle calculation unit 129 in FIG. 1, and the reference light correction angle calculation unit 129 calculates the reference light correction angle φ2 using the calculation formula of (Formula 7). it can.
(Expression 7) φ2 = −φb · Sin (D / R)
This embodiment has the following characteristics regarding the calculation of the correction angle φ2 of the reference light 102 in the medium radial direction 124.
 第1の特徴は、参照光の媒体半径位置Rに応じて参照光補正角度φ2を変化させる角度補正動作である。図6は、再生対象ブックのずれ量と補正角度の関係を示した図である。図6(b)横軸に再生対象ブックの媒体円周方向ずれDを、左側縦軸にφpを、右側縦軸にφ2をとって示しており、参照光の媒体円周方向入射角度φbを48度に設定した。図6(a)は媒体の回転中心から測った参照光位置Rを図6(a)では媒体最内周半径24mmに、図6(b)では媒体最外周半径64mmに設定した場合を示す。 The first feature is an angle correction operation for changing the reference light correction angle φ2 in accordance with the medium radial position R of the reference light. FIG. 6 is a diagram showing the relationship between the deviation amount of the reproduction target book and the correction angle. In FIG. 6B, the horizontal axis indicates the medium circumferential direction deviation D of the book to be reproduced, the left vertical axis indicates φp, the right vertical axis indicates φ2, and the reference light medium incident angle φb in the medium circumferential direction is shown. 48 degrees was set. FIG. 6A shows a case where the reference light position R measured from the rotation center of the medium is set to the innermost radius of the medium 24 mm in FIG. 6A and to the outermost radius of the medium 64 mm in FIG.
 図6(a)において、点線の特性線601は(数式3)のφ1を示しており、例えばDが±100μmの場合に±0.2度に達し再生が不可能となる。一方、一点鎖線の特性線602は(式4)のφ2を示しており、角度ズレφpを0(直線603)にすることができ、安定した再生が可能となる。図6(b)において、点線の特性線604は(式3)のφ1を示しており、例えばDが±100μmの場合に±0.1度に達し再生が不可能となる。一方、一点鎖線の特性線605は(式4)のφ2を示しており、角度ズレφpを0(直線606)にすることができ、安定した再生が可能となる。 6A, a dotted characteristic line 601 indicates φ1 in (Expression 3). For example, when D is ± 100 μm, it reaches ± 0.2 degrees and cannot be reproduced. On the other hand, the characteristic line 602 of the one-dot chain line indicates φ2 in (Expression 4), and the angle deviation φp can be set to 0 (straight line 603), so that stable reproduction is possible. In FIG. 6B, a dotted characteristic line 604 indicates φ1 in (Equation 3). For example, when D is ± 100 μm, it reaches ± 0.1 ° and cannot be reproduced. On the other hand, a dashed-dotted characteristic line 605 indicates φ2 in (Equation 4), and the angle deviation φp can be set to 0 (straight line 606), thereby enabling stable reproduction.
 特に、φ1は参照光の媒体半径位置Rによって変化する。たとえば、図6(a)の特性線601、図6(b)の特性線604から最内周半径24mmでは最外周半径64mmの時の約2倍の値となる。そこで、本実施例では参照光102の媒体半径位置Rに応じて、参照光補正角度φ2を変化させる角度補正動作を行う。この角度補正動作により媒体半径位置Rに係らず角度ズレφpを0にすることができ、安定した再生が可能となる。 Particularly, φ1 varies depending on the medium radial position R of the reference light. For example, from the characteristic line 601 in FIG. 6A and the characteristic line 604 in FIG. 6B, the innermost radius 24 mm is approximately twice as large as the outermost radius 64 mm. Therefore, in this embodiment, an angle correction operation for changing the reference light correction angle φ2 according to the medium radius position R of the reference light 102 is performed. By this angle correction operation, the angle deviation φp can be set to 0 regardless of the medium radial position R, and stable reproduction is possible.
 第2の特徴は、参照光の媒体の円周方向への入射角度φbに応じて参照光補正角度φ2を変化させる角度補正動作である。図7、参照光の入射角度と補正角度の関係を示した図である。参照光の媒体円周方向入射角度φbを所定の範囲、例えば、33度から63度に設定し、所定の角度間隔で変化させる角度多重記録によりブック108に複数のページが記録されている。これらのページを再生する場合は、角度可変ミラー103を媒体の円周方向123に所定の角度間隔で変化させることにより参照光102の入射角度φbを33度から63度まで所定の角度間隔で変化させる。図7は例として、Rを24mm、Dを100μmに設定し、横軸に参照光の媒体円周方向入射角度φbを、左側縦軸に角度ズレφpを、右側縦軸に補正角度φ2をとって示したグラフである。点線の特性線701は(式3)のφ1を示しており、例えばφbが33度の場合に約0.15度、φbが63度の場合に0.25度に達し再生が不可能となる。一方、一点鎖線の特性線702は(式4)のφ2を示しており、角度ズレφpを0(直線703)にすることができ、安定したページデータ再生が可能となる。 The second feature is an angle correction operation in which the reference light correction angle φ2 is changed according to the incident angle φb of the reference light in the circumferential direction of the medium. FIG. 7 is a diagram showing the relationship between the incident angle of the reference light and the correction angle. A plurality of pages are recorded in the book 108 by angle multiplex recording in which the medium circumferential incident angle φb of the reference light is set within a predetermined range, for example, 33 degrees to 63 degrees, and is changed at predetermined angular intervals. When reproducing these pages, the angle of incidence φb of the reference beam 102 is changed at a predetermined angular interval from 33 degrees to 63 degrees by changing the variable angle mirror 103 in the circumferential direction 123 of the medium at a predetermined angular interval. Let FIG. 7 shows an example in which R is set to 24 mm, D is set to 100 μm, the horizontal axis incident angle φb of the reference light in the horizontal axis, the left vertical axis to the angular deviation φp, and the right vertical axis to the correction angle φ2. It is the graph shown. A dotted characteristic line 701 indicates φ1 in (Equation 3). For example, when φb is 33 degrees, it reaches about 0.15 degrees, and when φb is 63 degrees, it reaches 0.25 degrees and reproduction becomes impossible. . On the other hand, the characteristic line 702 of the alternate long and short dash line indicates φ2 in (Equation 4), and the angle deviation φp can be set to 0 (straight line 703), thereby enabling stable page data reproduction.
 特に、φ1は参照光の入射角度φbによって変化する。たとえば、特性線701よりφbが63度ではφbが33度の時の約2倍の値となるので、これに対応してφ2を変化させることが必要となる。そこで、本実施例では各ページデータを再生する際、参照光102の入射角度φbに応じて補正角度φ2を変化させる角度補正動作を行う。 Particularly, φ1 varies depending on the incident angle φb of the reference light. For example, from the characteristic line 701, when φb is 63 degrees, the value is about twice as large as when φb is 33 degrees. Therefore, it is necessary to change φ2 correspondingly. Therefore, in the present embodiment, when each page data is reproduced, an angle correction operation for changing the correction angle φ2 according to the incident angle φb of the reference light 102 is performed.
 この角度補正動作によりφbに係らず角度ズレφpを0にすることができ、安定したページデータ再生が可能となる。以上より、Dの許容範囲を従来の±10μmから拡大することが可能となるため、装置の再生信頼性を向上させる効果がある。 This angle correction operation makes it possible to set the angle deviation φp to 0 regardless of φb, and stable page data reproduction is possible. As described above, since the allowable range of D can be expanded from the conventional ± 10 μm, there is an effect of improving the reproduction reliability of the apparatus.
 以上で説明した参照光角度補正動作の契機と再生動作フローについて、図8を用いて説明する。図8は再生動作フローを示す。 The trigger of the reference light angle correction operation described above and the reproduction operation flow will be described with reference to FIG. FIG. 8 shows a playback operation flow.
 参照光角度補正動作の契機は、再生対象のブックを移動するタイミングである。所定のブックにてページデータの再生が終了し、別の再生対象ブックに移動する際、スピンドルモータの送り回転角度を制御し、参照光に対してブックの位置付け動作を行う。このとき、参照光102に対するブック108の位置ずれ量Dは、以前のブック再生時と同一にはならず変化する。すなわち、参照光102の補正角度φ2が以前のブック再生時から変わっている。そのため、ブック移動に対応してφ2を変えることが必要となる。 The trigger for the reference beam angle correction operation is the timing of moving the book to be played. When the reproduction of page data in a predetermined book is completed and moved to another reproduction target book, the feed rotation angle of the spindle motor is controlled, and the book positioning operation is performed with respect to the reference light. At this time, the positional deviation amount D of the book 108 with respect to the reference beam 102 does not become the same as the previous book reproduction and changes. That is, the correction angle φ2 of the reference beam 102 has changed from the previous book reproduction. Therefore, it is necessary to change φ2 corresponding to the book movement.
 そこで、本実施例では、再生対象のブック移動に応じて補正角度φ2を変化させる角度補正動作を行う。また、各ページを再生する際には、上記第2の特徴で説明したように、参照光102の入射角度φbに応じて参照光補正角度φ2を変化させる角度補正動作を行う。
Therefore, in this embodiment, an angle correction operation for changing the correction angle φ2 in accordance with the movement of the book to be reproduced is performed. Further, when each page is reproduced, as described in the second feature, an angle correction operation for changing the reference light correction angle φ2 according to the incident angle φb of the reference light 102 is performed.
 図8は再生動作フローを示す。まず、ステップS801において、スピンドルモータの送り回転角度を制御してブックを移動し、参照光102に対して媒体107上の対象ブックを位置付けする。この際、参照光102の媒体半径位置が検出される。ステップS802において、媒体107内の対象ブック108に対する参照光102の媒体円周方向123の照射角度を、所望のページ再生に必要な角度にセットする。ステップS803において、参照光102の媒体円周方向123の照射角度を検出し、対象ブック108に参照光102を照射する。ステップS804において、媒体107の円周方向に関する対象ブックと参照光の位置ずれ量および方向を検出する。ステップS805において、ステップS804までに取得した情報(参照光102の媒体半径位置、媒体円周方向123の照射角度、媒体107の円周方向に関する対象ブックとの位置ずれ量)に基づき、参照光102の媒体半径方向124の照射角度の補正角度を算出し、参照光102の媒体半径方向124の照射角度を補正、変更する。その後、ステップS806においてページ再生を実行する。 FIG. 8 shows a playback operation flow. First, in step S <b> 801, the book is moved by controlling the feed rotation angle of the spindle motor, and the target book on the medium 107 is positioned with respect to the reference beam 102. At this time, the medium radial position of the reference beam 102 is detected. In step S802, the irradiation angle in the medium circumferential direction 123 of the reference beam 102 with respect to the target book 108 in the medium 107 is set to an angle necessary for desired page reproduction. In step S803, the irradiation angle of the reference light 102 in the medium circumferential direction 123 is detected, and the target book 108 is irradiated with the reference light 102. In step S804, the amount and direction of the positional deviation between the target book and the reference light in the circumferential direction of the medium 107 are detected. In step S805, based on the information acquired up to step S804 (the medium radial position of the reference light 102, the irradiation angle in the medium circumferential direction 123, and the amount of positional deviation from the target book in the circumferential direction of the medium 107), the reference light 102 The correction angle of the irradiation angle in the medium radial direction 124 is calculated, and the irradiation angle of the reference light 102 in the medium radial direction 124 is corrected and changed. Thereafter, page reproduction is executed in step S806.
 S806でページ再生を実行したら、S807で別のページを再生するか否かの判断を行う。別のページを再生する場合はステップS802に戻り、再びステップS802からステップS805の動作を行う。なお、再生ページが変わる毎に参照光102の媒体円周方向123の照射角度が変わることになるが、これに応じて参照光102の媒体半径方向124の照射角度の補正角度を以前のページ再生時と異なる値に変化させる。その後、ステップS806において別のページ再生を実行する。 If the page reproduction is executed in S806, it is determined whether or not another page is reproduced in S807. When reproducing another page, the process returns to step S802, and the operations from step S802 to step S805 are performed again. Each time the playback page changes, the irradiation angle of the reference beam 102 in the medium circumferential direction 123 changes. Accordingly, the correction angle of the irradiation angle of the reference beam 102 in the medium radial direction 124 is changed to the previous page playback. Change to a value different from the time. Thereafter, another page reproduction is executed in step S806.
 ページ再生が終了したら、S808で別のブックを再生するか否かの判断を行う。別のブックを再生する場合はステップS801に戻り、ブックを移動し、参照光102に対して媒体107上の対象ブック108を位置付けする。再びステップS802からステップS806の動作を行う。 When the page reproduction is completed, it is determined whether or not another book is reproduced in S808. When reproducing another book, the process returns to step S 801, the book is moved, and the target book 108 on the medium 107 is positioned with respect to the reference beam 102. The operations from step S802 to step S806 are performed again.
 なお、再生対象のブックが移動する毎に媒体107の円周方向に関する対象ブックと参照光の位置ずれ量が変わるため、これに応じて参照光102の媒体半径方向124の照射角度の補正角度を以前のブック再生時とは異なる値に変化させる。 Since the amount of positional deviation between the target book and the reference light in the circumferential direction of the medium 107 changes every time the book to be reproduced moves, the correction angle of the irradiation angle of the reference light 102 in the medium radial direction 124 is set accordingly. Change to a value different from the previous book playback.
 以上、本実施例の実施例を説明してきたが、得られる効果についてまとめると以下のようになる。
(1)ブック再生時の外乱、すなわち媒体円周方向に関する再生対象ブックと参照光の相対ずれに関して、その許容値を拡大することが可能となるのでホログラム再生の信頼性を向上させることができる。
(2)再生対象ブックと参照光のずれ情報検出手段として、重い媒体ではなく軽量の光学素子である開口フィルタを駆動し、画像情報を検出する撮像素子ではなく光量検出専用の光検出器を使用するようにしたので、ずれ情報を高速に検出できる。さらに、再生対象ブックと参照光の相対角度変更手段として、重い媒体ではなく軽量の光学素子である反射ミラーを、前記ずれ情報検出手段からのずれ情報を基にフィードバック制御駆動するようにしたので角度変更を高速に行うことができる。よって、再生速度を高速にすることができる。
As mentioned above, although the Example of a present Example was described, it is as follows when the effect acquired is put together.
(1) Regarding the disturbance during book reproduction, that is, the relative deviation between the book to be reproduced and the reference beam in the circumferential direction of the medium, the allowable value can be increased, so that the reliability of hologram reproduction can be improved.
(2) As a means for detecting deviation information between the book to be reproduced and the reference light, an aperture filter which is a light optical element rather than a heavy medium is driven, and a light detector dedicated to light amount detection is used instead of an image pickup element for detecting image information. As a result, deviation information can be detected at high speed. Furthermore, as a means for changing the relative angle between the book to be reproduced and the reference light, the reflection mirror, which is a light optical element rather than a heavy medium, is feedback-controlled based on deviation information from the deviation information detection means, so that the angle Changes can be made at high speed. Therefore, the reproduction speed can be increased.
 なお、本実施例は上記実施例に限定されるものではなく、様々な変形例が含まれる。 In addition, a present Example is not limited to the said Example, Various modifications are included.
 例えば、上記実施例ではブック108位置ずれの光学的検出手段として、図1を用いて説明したように、開口フィルタ113、PBS116、検出レンズ117、光検出器118から構成される検出光学系を備える。これに限らず、例えば、媒体107を挟み対物レンズ111と対向するように検出レンズ、例えば2分割受光面を有する光検出器で構成した検出光学系を用いても良い。なお、光検出器はCCD、CMOS等のイメージセンサであっても良い。また、上記実施例では1個の角度可変ミラーを媒体の円周方向と半径方向の2軸方向に傾斜させる構成としたが、第1の角度可変ミラーを媒体の円周方向に、第2の角度可変ミラーを媒体の半径方向にそれぞれ傾斜させる構成としても良い。 For example, in the above-described embodiment, as described with reference to FIG. 1, the detection optical system including the aperture filter 113, the PBS 116, the detection lens 117, and the photodetector 118 is provided as an optical detection unit for the book 108 positional deviation. . For example, a detection optical system including a detection lens, for example, a photodetector having a two-divided light receiving surface may be used so as to face the objective lens 111 with the medium 107 interposed therebetween. Note that the photodetector may be an image sensor such as a CCD or CMOS. In the above embodiment, one angle variable mirror is inclined in two axial directions, ie, the circumferential direction and the radial direction of the medium. However, the first variable angle mirror is arranged in the circumferential direction of the medium. The variable angle mirror may be inclined in the radial direction of the medium.
 実施例1では、ブックの媒体上記録位置(以下、トラックと呼ぶことにする)が理想的な場合について説明したが、媒体記録時の誤差としてトラックの偏心が挙げられる。そこで本実施例では、トラックの偏心が生じた場合の参照光角度補正について説明する。 In the first embodiment, the case where the recording position on the medium of the book (hereinafter referred to as a track) is ideal has been described, but an error in recording the medium includes the eccentricity of the track. Therefore, in this embodiment, reference beam angle correction when the track is decentered will be described.
 図9は、記録時に生じたトラックの偏心を示しており、901は媒体を、903は所定の半径Rにおける理想トラックを、902は理想トラック903の中心を示す。905は記録トラックを示しており、このトラック905の中心904は中心902からΔだけ偏心した状態にある。 FIG. 9 shows the eccentricity of the track generated at the time of recording. 901 indicates a medium, 903 indicates an ideal track at a predetermined radius R, and 902 indicates the center of the ideal track 903. Reference numeral 905 denotes a recording track, and the center 904 of the track 905 is decentered from the center 902 by Δ.
 記録する際、この偏心Δが0になるように媒体901を駆動することで偏心を補正することが考えられるが、この偏心補正を行うと媒体901に振動が発生する。ホログラムの記録では媒体の振動を十分に減衰させることが求められるので、偏心補正を行うと振動が静定するまでの待ち時間がかかる。その結果、装置の記録速度向上を妨げることになる。そこで、装置の記録速度向上に適した、すなわち記録時に発生したトラック偏心の影響を補償可能な再生方法が必要であり、以下その詳細について説明する。 When recording, it is conceivable to correct the eccentricity by driving the medium 901 so that the eccentricity Δ becomes 0. However, if this eccentricity correction is performed, vibration occurs in the medium 901. Since hologram recording requires that the vibration of the medium be sufficiently attenuated, if eccentricity correction is performed, a waiting time is required until the vibration is settled. As a result, improvement in the recording speed of the apparatus is hindered. Therefore, there is a need for a reproduction method suitable for improving the recording speed of the apparatus, that is, capable of compensating for the influence of track eccentricity that has occurred during recording, and the details thereof will be described below.
 図10は本実施例におけるホログラム再生装置を示しており、1006はホログラム再生装置、1001は光ピックアップ、1005は光ピックアップ1001の光学系を示す。なお、実施例1の図1と重複する箇所は図1と同一の符号を用いて示す。ホログラム再生装置1006は、入出力制御回路90を介し外部制御装置91と接続されている。再生する場合、光ピックアップ1001の撮像素子120から出力された画像情報を信号処理回路85により電気信号に変換し、この電気信号を入出力制御回路90により外部制御装置91に送信する。 FIG. 10 shows a hologram reproducing apparatus according to the present embodiment, where 1006 is a hologram reproducing apparatus, 1001 is an optical pickup, and 1005 is an optical system of the optical pickup 1001. In addition, the same part as FIG. 1 of Example 1 is shown using the same code | symbol as FIG. The hologram reproducing device 1006 is connected to the external control device 91 via the input / output control circuit 90. When reproducing, the image information output from the image sensor 120 of the optical pickup 1001 is converted into an electric signal by the signal processing circuit 85, and this electric signal is transmitted to the external control device 91 by the input / output control circuit 90.
 本実施例の光ピックアップ1001は、図1で示した光ピックアップ11に対してトラック905の偏心量Δを検出する偏心検出光学手段を付加した点が異なる。この偏心検出光学手段は、媒体107を挟み対物レンズ111と対向するように設けられた検出レンズ1002、光検出器1003から構成される。ブック108に照射された参照光102は、ミラー109に向かう透過光と検出レンズ1002に向かう回折光1004に分かれるが、このうち回折光1004を偏心検出光として用いる。回折光1004は検出レンズ1002によって集光され、光検出器1003に照射される。 The optical pickup 1001 of this embodiment is different from the optical pickup 11 shown in FIG. 1 in that an eccentricity detecting optical means for detecting the eccentricity Δ of the track 905 is added. The decentering detection optical means includes a detection lens 1002 and a light detector 1003 provided so as to face the objective lens 111 with the medium 107 interposed therebetween. The reference light 102 irradiated to the book 108 is divided into transmitted light directed to the mirror 109 and diffracted light 1004 directed to the detection lens 1002, and among these, the diffracted light 1004 is used as the eccentricity detection light. The diffracted light 1004 is collected by the detection lens 1002 and irradiated to the photodetector 1003.
 光検出器1003の受光面を図11に示す。光検出器1003の受光面1101は、分割線1103、分割線1104により4つの受光領域1105a、1105b、1105c、1105dに分割され、これらの受光領域に光スポット1102が照射される。同図のX方向が媒体107の円周方向123に、Y方向が媒体107の半径方向124に対応する。 FIG. 11 shows the light receiving surface of the photodetector 1003. The light receiving surface 1101 of the photodetector 1003 is divided into four light receiving areas 1105a, 1105b, 1105c, and 1105d by a dividing line 1103 and a dividing line 1104, and a light spot 1102 is irradiated to these light receiving areas. The X direction in the figure corresponds to the circumferential direction 123 of the medium 107, and the Y direction corresponds to the radial direction 124 of the medium 107.
 媒体の位置が移動するとその量と方向に応じて光この光スポット1102の中心が移動することを利用し、媒体107を円周方向123に回転させトラック905の偏心量Δを検出することができる。偏心検出部1006は偏心量Δの検出結果を格納するとともに参照光補正角度演算部129に伝送する。なお、光ピックアップの組立調整時に、偏心量Δと光スポット1102の移動量の関係が校正されている。その他の部分については実施例1と同じであるためここでは説明を省略する。 When the position of the medium moves, the center of the light spot 1102 moves according to the amount and direction of the medium, and the eccentric amount Δ of the track 905 can be detected by rotating the medium 107 in the circumferential direction 123. . The eccentricity detection unit 1006 stores the detection result of the eccentricity amount Δ and transmits it to the reference light correction angle calculation unit 129. Note that the relationship between the amount of eccentricity Δ and the amount of movement of the light spot 1102 is calibrated during assembly adjustment of the optical pickup. Since other parts are the same as those in the first embodiment, description thereof is omitted here.
 以下、図12を用いて記録トラックの偏心がある状態でブック再生を行う際、媒体の半径方向124に関して必要な参照光補正角度を導出する。 Hereinafter, the reference beam correction angle necessary for the radial direction 124 of the medium is derived when the book is reproduced with the recording track being decentered with reference to FIG.
 図12(a)は先ほど図9で示したように、記録トラック905が理想トラック903からΔだけ偏心した状態を示す。ブック108は記録トラック905の中心1204から見て角度α傾いた状態にあり、この角度αは以下の(式8)で表される。
  (式8)α=Δ/R
 図12(b)はブック108が理想トラック903上にあり、実施例1で示したように、ブック位置付け動作にずれ量Dが発生している状態を示す。ブック108は理想トラック903の中心902から見て角度θ傾いた状態にあり、この角度θは実施例1の(式6)或いは(式6‘)と同様に表される。
図12(c)は記録トラック905が理想トラック903からΔだけ偏心した状態でブック位置付け動作を行った状態を示しており、上記(a)と(b)を合わせた状態に相当する。そのため、ブック108は媒体の回転中心1201から見て角度(α+θ)傾いた状態になり、この角度(α+θ)は(式6‘)と(式8)から以下の式で表される。
(式9)α+θ=(Δ+D)/R
 本実施例では、実施例1の(数式4)中のθを(α+θ)で置き換えた以下の式により、媒体の半径方向124に関して必要な参照光補正角度φ2を算出することができる。
(式10)φ2=-φb・Sin(α+θ)=-φb・Sin[(Δ+D)/R]
 最後に、本実施例の参照光角度補正動作による再生動作フローについて、図13を用いて説明する。図8と同様のステップには同様の符号を付し、説明を省略する。まず、ステップS1301において目標トラックに移動し、ステップS1302においてスピンドルモータを回転させ、記録トラックの偏心量を検出する。ステップS801において、スピンドルモータの送り回転角度を制御してブックを移動し、参照光102に対して媒体107上の対象ブックを位置付けする。この際、参照光102の媒体半径位置が検出される。ステップS802において、媒体107内の対象ブック108に対する参照光102の媒体円周方向123の照射角度を、所望のページ再生に必要な角度にセットする。ステップS803において、参照光102の媒体円周方向123の照射角度を検出し、対象ブック108に参照光102を照射する。ステップS804において、媒体107の円周方向に関する対象ブックと参照光の位置ずれ量および方向を検出する。ステップS1303において、ステップS1204までに取得した情報(参照光102の媒体半径位置、記録トラックの偏心量、媒体円周方向123の照射角度、媒体107の円周方向に関する対象ブックとの位置ずれ量)に基づき、参照光102の媒体半径方向124の照射角度の補正角度を算出し、参照光102の媒体半径方向124の照射角度を補正、変更する。その後、ステップS806においてページ再生を実行する。
FIG. 12A shows a state where the recording track 905 is decentered by Δ from the ideal track 903, as shown in FIG. The book 108 is inclined at an angle α when viewed from the center 1204 of the recording track 905, and the angle α is expressed by the following (formula 8).
(Formula 8) α = Δ / R
FIG. 12B shows a state in which the book 108 is on the ideal track 903 and the shift amount D is generated in the book positioning operation as shown in the first embodiment. The book 108 is inclined by an angle θ as viewed from the center 902 of the ideal track 903, and this angle θ is expressed in the same manner as in (Equation 6) or (Equation 6 ′) of the first embodiment.
FIG. 12C shows a state in which the book positioning operation is performed in a state where the recording track 905 is decentered by Δ from the ideal track 903, and corresponds to a state in which the above (a) and (b) are combined. Therefore, the book 108 is inclined by an angle (α + θ) when viewed from the rotation center 1201 of the medium, and this angle (α + θ) is expressed by the following equation from (Equation 6 ′) and (Equation 8).
(Formula 9) α + θ = (Δ + D) / R
In the present embodiment, the reference light correction angle φ2 necessary for the radial direction 124 of the medium can be calculated by the following formula in which θ in (Formula 4) of the first embodiment is replaced by (α + θ).
(Formula 10) φ2 = −φb · Sin (α + θ) = − φb · Sin [(Δ + D) / R]
Finally, a reproduction operation flow by the reference light angle correction operation of the present embodiment will be described with reference to FIG. Steps similar to those in FIG. 8 are denoted by the same reference numerals, and description thereof is omitted. First, in step S1301, the target track is moved, and in step S1302, the spindle motor is rotated to detect the eccentricity of the recording track. In step S <b> 801, the feed rotation angle of the spindle motor is controlled to move the book, and the target book on the medium 107 is positioned with respect to the reference beam 102. At this time, the medium radial position of the reference beam 102 is detected. In step S802, the irradiation angle in the medium circumferential direction 123 of the reference beam 102 with respect to the target book 108 in the medium 107 is set to an angle necessary for desired page reproduction. In step S803, the irradiation angle of the reference light 102 in the medium circumferential direction 123 is detected, and the target book 108 is irradiated with the reference light 102. In step S804, the amount and direction of the positional deviation between the target book and the reference light in the circumferential direction of the medium 107 are detected. Information acquired up to step S1204 in step S1303 (the medium radial position of the reference beam 102, the amount of eccentricity of the recording track, the irradiation angle in the medium circumferential direction 123, and the amount of positional deviation from the target book in the circumferential direction of the medium 107) The correction angle of the irradiation angle of the reference light 102 in the medium radial direction 124 is calculated, and the irradiation angle of the reference light 102 in the medium radial direction 124 is corrected and changed. Thereafter, page reproduction is executed in step S806.
 別のページの再生(S807)、別のブックの再生(S808)に関しては、図8と同様である。 Reproduction of another page (S807) and reproduction of another book (S808) are the same as in FIG.
 ブック再生が終了し、S2104で別のトラックを再生するか否かの判断をする。別のトラックを再生する場合はステップS2101に戻り、目標トラックに移動する。再びステップS2101からステップS2104までの動作を行う。 Book reproduction ends, and it is determined in step S2104 whether another track is to be reproduced. When reproducing another track, the process returns to step S2101 to move to the target track. The operations from step S2101 to step S2104 are performed again.
 本実施例は、媒体の記録トラックの偏心量に応じて参照光補正角度φ2を変化させる角度補正動作に特徴があり、記録時に発生したトラック偏心の影響を補償可能であるため再生方法装置の記録速度向上を図ることができる。 The present embodiment is characterized by an angle correction operation in which the reference light correction angle φ2 is changed in accordance with the amount of eccentricity of the recording track of the medium. Since the influence of the track eccentricity generated during recording can be compensated, the recording of the reproducing method apparatus Speed can be improved.
 図14は本実施例における光ピックアップの構成を示す。本実施例と実施例1との差異は、光ピックアップ1401がウエッジプリズム1403を備えている点である。
FIG. 14 shows the configuration of the optical pickup in this embodiment. The difference between the present embodiment and the first embodiment is that the optical pickup 1401 includes a wedge prism 1403.
 以下、図14を用いて説明する。1401は本実施例における光ピックアップを示しており、この光ピックアップ1401と実施例1の図1で示した信号生成回路86、サーボ制御回路84、サーボ信号生成回路83、信号処理回路85が接続されてホログラム再生装置を構成する。なお、実施例1と重複する箇所は図1と同一の符号を用いて示す。 Hereinafter, description will be made with reference to FIG. Reference numeral 1401 denotes an optical pickup in the present embodiment, and the optical pickup 1401 is connected to the signal generation circuit 86, servo control circuit 84, servo signal generation circuit 83, and signal processing circuit 85 shown in FIG. Thus, a hologram reproducing apparatus is configured. In addition, the same part as Example 1 is shown using the same code | symbol as FIG.
 参照光102は所定の頂角を持つウエッジプリズム1403を透過、ミラー1407で反射された後、スキャナレンズ106を通過し、媒体107に対して所定の入射角度で照射される。ウエッジプリズム1603は1軸方向に回転駆動するアクチュエータ1604に保持されており、ウエッジプリズム1403を回転駆動することで媒体107の半径方向124に関する入射角度を変化させることができる。アクチュエータ1404と、ウエッジプリズム1403の回転角度を検出する角度センサ1405はピッチ角度制御回路1619に接続され、フィードバック制御によってウエッジプリズム1403を所望の回転角度に制御する。ミラー1407は1軸方向に回転駆動するアクチュエータ1406に保持されており、ミラー1407を回転駆動することで媒体107の円周方向123に関する入射角度を変化させることができる。アクチュエータ1406と、ミラー1407の回転角度を検出する角度センサ1409はブラッグ角度制御回路1418に接続され、フィードバック制御によりミラー1407を所望の回転角度に制御する。 The reference light 102 passes through the wedge prism 1403 having a predetermined apex angle, is reflected by the mirror 1407, passes through the scanner lens 106, and is irradiated onto the medium 107 at a predetermined incident angle. The wedge prism 1603 is held by an actuator 1604 that is rotationally driven in one axis direction, and the incident angle of the medium 107 in the radial direction 124 can be changed by rotationally driving the wedge prism 1403. An actuator 1404 and an angle sensor 1405 for detecting the rotation angle of the wedge prism 1403 are connected to the pitch angle control circuit 1619 and control the wedge prism 1403 to a desired rotation angle by feedback control. The mirror 1407 is held by an actuator 1406 that is rotationally driven in one axis direction, and the incident angle in the circumferential direction 123 of the medium 107 can be changed by rotationally driving the mirror 1407. An actuator 1406 and an angle sensor 1409 for detecting the rotation angle of the mirror 1407 are connected to a Bragg angle control circuit 1418 and control the mirror 1407 to a desired rotation angle by feedback control.
 ブック108に照射された参照光102は、ミラー109に向かう透過光と検出レンズ1611に向かう回折光1410に分かれるが、この回折光1410は偏光分離素子1602によって互いに偏光方向が異なる2つの偏光に分離されている。一方の偏光方向の光はPBS1413を透過し、検出レンズ1414によって光検出器1415に集光される。もう一方の偏光方向の光はPBS1413を反射し、検出レンズ1416によって光検出器1417に集光される。光検出器1415、光検出器1417で得られた信号はブラッグ角度制御回路1418によって上記φbの制御角度信号生成に用いられる。 The reference light 102 irradiated on the book 108 is divided into transmitted light directed to the mirror 109 and diffracted light 1410 directed to the detection lens 1611. This diffracted light 1410 is separated into two polarized light beams having different polarization directions by the polarization separation element 1602. Has been. The light in one polarization direction passes through the PBS 1413 and is collected on the photodetector 1415 by the detection lens 1414. The light in the other polarization direction is reflected by the PBS 1413 and collected by the detection lens 1416 on the photodetector 1417. Signals obtained by the photodetectors 1415 and 1417 are used by the Bragg angle control circuit 1418 to generate the control angle signal of φb.
 参照光102の媒体円周方向123に関する照射角度情報がブラッグ角度制御回路1418から参照光補正角度演算部129に伝送される。参照光補正角度演算部129では、伝送された情報から参照光の媒体半径方向124への補正角度を演算し、その結果を格納するとともに参照光角度変更指令部130に伝送する。参照光角度変更指令部130は、補正角度の指令値をピッチ角度制御回路1419に伝送するとともに、ピッチ角度制御回路1419をコントロールする。ピッチ角度制御回路1619はアクチュエータ1404の駆動と角度センサ1605からの出力によりフィードバック制御を行い、ウエッジプリズム1403の媒体半径方向124への角度を変更する。このようにして、再生対象ブック108に対する参照光102の媒体半径方向124への照射角度を変更する。 The irradiation angle information regarding the medium circumferential direction 123 of the reference light 102 is transmitted from the Bragg angle control circuit 1418 to the reference light correction angle calculation unit 129. The reference light correction angle calculation unit 129 calculates a correction angle of the reference light in the medium radial direction 124 from the transmitted information, stores the result, and transmits the result to the reference light angle change command unit 130. The reference light angle change command unit 130 transmits the command value of the correction angle to the pitch angle control circuit 1419 and controls the pitch angle control circuit 1419. The pitch angle control circuit 1619 performs feedback control by driving the actuator 1404 and the output from the angle sensor 1605 to change the angle of the wedge prism 1403 in the medium radial direction 124. In this way, the irradiation angle of the reference beam 102 to the reproduction target book 108 in the medium radial direction 124 is changed.
 本実施例の構成によりページ再生時に参照光102の円周方向123の入射角度を高速制御することができる。参照光の媒体円周方向への入射角度φb走査速度が速くなるので、実施例1のホログラム再生装置に比べて再生速度を向上させたホログラム再生装置を提供することが可能となる。 With the configuration of this embodiment, the incident angle of the reference beam 102 in the circumferential direction 123 can be controlled at high speed during page reproduction. Since the scanning speed of the incident angle φb in the medium circumferential direction of the reference light is increased, it is possible to provide a hologram reproducing apparatus having an improved reproducing speed as compared with the hologram reproducing apparatus of the first embodiment.
 なお、以上説明した実施例1、実施例2、実施例3は本実施例を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれ、具体的な変形例としては以下の例が挙げられる。 The first, second, and third embodiments described above have been described in detail for easy understanding of the present embodiment, and are not necessarily limited to those having all the configurations described. Absent. Further, the present invention is not limited to the above-described embodiments, and various modifications are included, and specific examples include the following examples.
 変形例1として、ページデータを角度多重記録したホログラム媒体に対して参照光を照射し、発生した回折光を再生光として撮像素子で受光することにより前記ページデータを再生するホログラム再生装置において、前記ホログラム媒体の再生対象領域のずれ状態を光学的に検出する検出光学部を備え、前記検出光学部から取得した再生対象領域のずれ情報をもとにして前記参照光の照射角度を変化させる補正を行うことを特徴とするホログラム再生装置。 As a modified example 1, in the hologram reproducing apparatus for reproducing the page data by irradiating the hologram medium on which the page data is angle-multiplexed recorded with reference light, and receiving the generated diffracted light as reproduction light by the imaging device, A correction optical unit that optically detects the shift state of the reproduction target area of the hologram medium, and correction that changes the irradiation angle of the reference light based on the shift information of the reproduction target area acquired from the detection optical unit. A hologram reproducing apparatus characterized in that:
 変形例2として、変形例1において、前記再生対象領域の移動時に前記補正を行うことを特徴とするホログラム再生装置。 As a second modification, the hologram reproduction apparatus according to the first modification, wherein the correction is performed when the reproduction target area is moved.
 変形例3として、変形例1において、再生対象ページの変更時に前記補正を行うことを特徴とするホログラム再生装置。 As a third modification, the hologram reproduction apparatus according to the first modification, wherein the correction is performed when the reproduction target page is changed.
 変形例4として、変形例1において、前記検出光学部は前記媒体と前記撮像素子の間の光路に設けられ、前記回折光の0次光のみ前記撮像素子に受光させる開口フィルタ光学素子と、前記ホログラム媒体の再生対象領域のずれ状態を、前記開口フィルタ光学素子を通過する0次光の状態変化として検知する検出レンズ、光検出器、前記開口フィルタ光学素子を駆動するアクチェータを備えることを特徴とするホログラム再生装置。 As Modification Example 4, in Modification Example 1, the detection optical unit is provided in an optical path between the medium and the image sensor, and the aperture filter optical element that causes the image sensor to receive only the 0th-order light of the diffracted light; and A detection lens, a photodetector, and an actuator for driving the aperture filter optical element are provided to detect a shift state of a reproduction target area of the hologram medium as a change in state of zero-order light passing through the aperture filter optical element. Hologram playback device.
 変形例5として、ページデータを角度多重記録したホログラム媒体に対し参照光を照射し、発生した回折光を再生光として撮像素子で受光することにより前記ページデータを再生するホログラム装置の再生方法であり、前記撮像素子以外の光学的検出手段により前記参照光と再生対象領域の媒体円周方向への相対位置ずれ量を検出する第1のステップと、前記再生対象領域の媒体半径方向位置および前記検出の相対位置ずれ量から前記再生対象領域の媒体円周方向への傾き量を算出する第2のステップと、前記算出の傾き量および前記再生対象領域への媒体円周方向に関する照射角度から前記参照光の媒体半径方向への補正角度を算出する第3のステップと、前記算出の補正角度をもとに前記参照光の媒体半径方向への照射角度を変更する第4のステップを備えることを特徴とするホログラム再生装置の再生方法。 As a fifth modified example, there is a reproducing method of a hologram apparatus for reproducing the page data by irradiating a hologram medium on which page data is angle-multiplexed recorded with reference light and receiving the generated diffracted light as reproducing light by an imaging device. A first step of detecting a relative positional shift amount of the reference light and the reproduction target area in the medium circumferential direction by an optical detection means other than the image pickup device; a medium radial position of the reproduction target area and the detection; The second step of calculating the amount of inclination of the reproduction target area in the medium circumferential direction from the relative positional deviation amount, and the reference from the calculated inclination amount and the irradiation angle of the reproduction target area with respect to the medium circumferential direction A third step of calculating a correction angle of light in the medium radial direction, and changing an irradiation angle of the reference light in the medium radial direction based on the calculated correction angle Reproducing method of a hologram reproducing apparatus, characterized in that it comprises a fourth step.
 また、制御線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線を示しているとは限らない。
Further, the control lines indicate what is considered necessary for the explanation, and not all control lines are necessarily shown on the product.
10 ホログラム再生装置、11 光ピックアップ
101 光ピックアップ11の光学系、102 参照光、103 参照光角度可変ミラー、104 アクチュエータ、105 角度センサ、107 ホログラム媒体、108 ブック
113 開口フィルタ、117 検出レンズ、118 光検出器、115 位置検出センサ
123 媒体円周方向、127 ブック位置ずれ検出部、129 参照光補正角度演算部、130 参照光角度変更指令部、135 再生半径位置検出部
DESCRIPTION OF SYMBOLS 10 Hologram reproducing | regenerating apparatus, 11 Optical pick-up 101 Optical system of optical pick-up 11, 102 Reference light, 103 Reference light angle variable mirror, 104 Actuator, 105 Angle sensor, 107 Hologram medium, 108 Book 113 Aperture filter, 117 Detection lens, 118 Light Detector, 115 position detection sensor 123 medium circumferential direction, 127 book position deviation detection unit, 129 reference light correction angle calculation unit, 130 reference light angle change command unit, 135 reproduction radius position detection unit

Claims (8)

  1.  第一の方向に参照光の入射角度を変化させてホログラムを角度多重記録した記録媒体に対して参照光を照射し、発生した回折光を再生光として撮像素子で受光することにより前記記録されたホログラムを再生するホログラム再生装置において、
     前記参照光が前記記録媒体に入射する媒体入射角度を調整する参照光角度調整部と、
     前記記録媒体からの前記再生光が入射し、該再生光が透過する開口部を有する開口フィルタと、
     前記開口フィルタを出射した光を検出し、該検出した光に基づいて信号を出力する光検出部と、
     前記光検出部が出力した信号に基づいて、再生対象ホログラムの記録位置と該再生対象ホログラムを再生するための参照光の前記記録媒体上の照射位置との相対的な位置ずれ量を検出する位置ずれ検出部と、
    を備え、
     前記参照光角度調整部は、位置ずれ検出部で検出した位置ずれ量に基づいて、前記参照光の前記第一の方向に垂直な第二の方向の媒体入射角度を調整することを特徴とするホログラム再生装置。
    The recording was performed by irradiating the recording medium on which the hologram was angle-multiplexed recorded by changing the incident angle of the reference light in the first direction, and receiving the generated diffracted light as reproduction light by the imaging device. In a hologram reproducing apparatus for reproducing a hologram,
    A reference light angle adjusting unit for adjusting a medium incident angle at which the reference light is incident on the recording medium;
    An aperture filter having an opening through which the reproduction light from the recording medium is incident and through which the reproduction light is transmitted;
    A light detection unit that detects light emitted from the aperture filter and outputs a signal based on the detected light;
    A position for detecting a relative displacement amount between the recording position of the reproduction target hologram and the irradiation position on the recording medium of the reference light for reproducing the reproduction target hologram, based on the signal output from the light detection unit A deviation detection unit;
    With
    The reference light angle adjusting unit adjusts a medium incident angle in a second direction perpendicular to the first direction of the reference light based on a positional shift amount detected by a positional shift detection unit. Hologram playback device.
  2.  請求項1に記載のホログラム再生装置において、
     再生対象ホログラムの前記記録媒体上の半径位置を検出する再生位置検出部を有し、
     前記参照光角度調整部は、前記再生対象ホログラムの半径位置と、前記記録媒体上の第一の方向のずれ量と、に基づいて前記参照光の前記第二の方向の媒体入射角度を調整することを特徴とするホログラム再生装置。
    The hologram reproducing apparatus according to claim 1,
    A reproduction position detecting unit for detecting a radial position of the hologram to be reproduced on the recording medium;
    The reference light angle adjustment unit adjusts the medium incident angle of the reference light in the second direction based on the radial position of the reproduction target hologram and the shift amount in the first direction on the recording medium. A hologram reproducing apparatus characterized by that.
  3.  請求項1に記載のホログラム再生装置において、
     前記参照光角度調整部は、前記再生対象ホログラムを再生する際に照射する参照光の前記第一の方向の媒体入射角度に基づいて、前記参照光の前記第二の方向の媒体入射角度を調整することを特徴とするホログラム再生装置。
    The hologram reproducing apparatus according to claim 1,
    The reference light angle adjustment unit adjusts the medium incident angle in the second direction of the reference light based on the medium incident angle in the first direction of the reference light irradiated when reproducing the hologram to be reproduced. A hologram reproducing apparatus characterized in that:
  4.  請求項2に記載のホログラム再生装置において、
     前記参照光角度調整部は、さらに前記再生対象ホログラムを再生する際に照射する参照光の前記第一の方向の媒体入射角度に基づいて、前記参照光の前記第二の方向の媒体入射角度を調整することを特徴とするホログラム再生装置。
    The hologram reproducing apparatus according to claim 2,
    The reference light angle adjustment unit further determines the medium incident angle of the reference light in the second direction based on the medium incident angle of the reference light irradiated when reproducing the reproduction target hologram. A hologram reproducing apparatus characterized by adjusting.
  5.  請求項1に記載のホログラム再生装置において、
     前記位置ずれ検出部は、前記光検出部が出力した信号に基づいて前記開口フィルタ部の位置誤差信号を生成し、
     前記開口フィルタは、前記位置誤差信号に基づき駆動し、
     前記位置ずれ検出部は、前記開口フィルタの駆動量に基づき前記位置ずれ量を検出する、
    ことを特徴とするホログラム再生装置。
    The hologram reproducing apparatus according to claim 1,
    The positional deviation detection unit generates a position error signal of the aperture filter unit based on the signal output from the light detection unit,
    The aperture filter is driven based on the position error signal,
    The positional deviation detection unit detects the positional deviation amount based on the driving amount of the aperture filter.
    A hologram reproducing apparatus characterized by that.
  6.  請求項1に記載のホログラム再生装置であって、
     前記参照光角度調整部は、参照光照射位置を移動した際に前記第二の方向の媒体入射角度の調整を行うことを特徴とするホログラム再生装置。
    The hologram reproducing apparatus according to claim 1,
    The hologram reproducing apparatus, wherein the reference light angle adjusting unit adjusts the medium incident angle in the second direction when the reference light irradiation position is moved.
  7.  第一の方向に参照光の入射角度を変化させてホログラムを角度多重記録した記録媒体に対して参照光を照射し、発生した回折光を再生光として撮像素子で受光することにより前記記録されたホログラムを再生するホログラム再生方法において、
     前記参照光が前記記録媒体に入射する媒体入射角度を調整する参照光角度調整ステップと、
     前記記録媒体からの前記再生光が入射し、該再生光が透過する開口部を有する開口フィルタを出射した光を検出し、該検出した光に基づいて信号を出力する光検出ステップと、
     前記光検出ステップで出力した信号に基づいて、再生対象ホログラムの記録位置と該再生対象ホログラムを再生するための参照光の前記記録媒体上の照射位置との相対的な位置ずれ量を検出する位置ずれ検出ステップと、
    を備え、
     前記参照光角度調整ステップでは、位置ずれ検出ステップで検出した位置ずれ量に基づいて前記参照光の前記第一の方向に垂直な第二の方向の媒体入射角度を調整することを特徴とするホログラム再生方法。
    The recording was performed by irradiating the recording medium on which the hologram was angle-multiplexed recorded by changing the incident angle of the reference light in the first direction, and receiving the generated diffracted light as reproduction light by the imaging device. In a hologram reproduction method for reproducing a hologram,
    A reference light angle adjusting step for adjusting a medium incident angle at which the reference light is incident on the recording medium;
    A light detection step of detecting light that is incident on the reproduction light from the recording medium and that is emitted from an aperture filter having an opening through which the reproduction light is transmitted, and that outputs a signal based on the detected light;
    A position for detecting a relative displacement amount between the recording position of the reproduction target hologram and the irradiation position on the recording medium of the reference light for reproducing the reproduction target hologram, based on the signal output in the light detection step. A slip detection step;
    With
    In the reference light angle adjusting step, a medium incident angle in a second direction perpendicular to the first direction of the reference light is adjusted based on a positional shift amount detected in the positional shift detection step. Playback method.
  8.  第一の方向に参照光の記録媒体への入射角度を変化させてホログラムを角度多重記録した記録媒体に対して参照光を照射し、発生した回折光を再生光として受光することにより前記記録されたホログラムを再生するホログラム再生装置におけるホログラム再生方法において、
     前記ホログラム再生装置は、
     前記参照光が前記記録媒体に入射する媒体入射角度を調整する参照光角度調整部と、
     前記記録媒体からの前記再生光が入射し、該再生光が透過する開口部を有する開口フィルタと、
    を備え、
     前記参照光角度調整部で前記第一の方向に前記参照光の媒体入射角度を調整するステップと、
     前記開口フィルタの位置を調整するステップと、
     前記参照光角度調整部で前記第一の方向と直行する第二の方向に、前記参照光の媒体入射角度を調整するステップと、を備えることを特徴とするホログラム再生方法。
    The recording is performed by irradiating the reference light onto the recording medium on which the hologram is angle-multiplexed recorded by changing the incident angle of the reference light on the recording medium in the first direction and receiving the generated diffracted light as reproduction light. In a hologram reproducing method in a hologram reproducing apparatus for reproducing a hologram,
    The hologram reproducing apparatus includes:
    A reference light angle adjusting unit for adjusting a medium incident angle at which the reference light is incident on the recording medium;
    An aperture filter having an opening through which the reproduction light from the recording medium is incident and through which the reproduction light is transmitted;
    With
    Adjusting the medium incident angle of the reference light in the first direction by the reference light angle adjustment unit;
    Adjusting the position of the aperture filter;
    Adjusting the medium incident angle of the reference light in a second direction perpendicular to the first direction by the reference light angle adjusting unit.
PCT/JP2015/078436 2015-10-07 2015-10-07 Hologram reproduction device and hologram reproduction method WO2017060984A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078436 WO2017060984A1 (en) 2015-10-07 2015-10-07 Hologram reproduction device and hologram reproduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078436 WO2017060984A1 (en) 2015-10-07 2015-10-07 Hologram reproduction device and hologram reproduction method

Publications (1)

Publication Number Publication Date
WO2017060984A1 true WO2017060984A1 (en) 2017-04-13

Family

ID=58488185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078436 WO2017060984A1 (en) 2015-10-07 2015-10-07 Hologram reproduction device and hologram reproduction method

Country Status (1)

Country Link
WO (1) WO2017060984A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208921A (en) * 2005-01-31 2006-08-10 Alps Electric Co Ltd Holography recording system and reproducing device, method thereof, and holography medium
JP2006251355A (en) * 2005-03-10 2006-09-21 Sharp Corp Information reproducing apparatus and information reproducing method
JP2014089779A (en) * 2012-10-29 2014-05-15 Nippon Hoso Kyokai <Nhk> Two-dimensional code decryption device and its program, and hologram recording and reproducing device
WO2014188540A1 (en) * 2013-05-22 2014-11-27 株式会社日立製作所 Optical component positioning device and optical recording device using same
WO2015040681A1 (en) * 2013-09-18 2015-03-26 日立コンシューマエレクトロニクス株式会社 Hologram reproducing apparatus and hologram reproducing method
JP2015082327A (en) * 2013-10-21 2015-04-27 株式会社日立エルジーデータストレージ Optical information reproduction apparatus, optical information reproduction method, and optical information recording method
WO2015114743A1 (en) * 2014-01-29 2015-08-06 日立コンシューマエレクトロニクス株式会社 Optical information device and optical information processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208921A (en) * 2005-01-31 2006-08-10 Alps Electric Co Ltd Holography recording system and reproducing device, method thereof, and holography medium
JP2006251355A (en) * 2005-03-10 2006-09-21 Sharp Corp Information reproducing apparatus and information reproducing method
JP2014089779A (en) * 2012-10-29 2014-05-15 Nippon Hoso Kyokai <Nhk> Two-dimensional code decryption device and its program, and hologram recording and reproducing device
WO2014188540A1 (en) * 2013-05-22 2014-11-27 株式会社日立製作所 Optical component positioning device and optical recording device using same
WO2015040681A1 (en) * 2013-09-18 2015-03-26 日立コンシューマエレクトロニクス株式会社 Hologram reproducing apparatus and hologram reproducing method
JP2015082327A (en) * 2013-10-21 2015-04-27 株式会社日立エルジーデータストレージ Optical information reproduction apparatus, optical information reproduction method, and optical information recording method
WO2015114743A1 (en) * 2014-01-29 2015-08-06 日立コンシューマエレクトロニクス株式会社 Optical information device and optical information processing method

Similar Documents

Publication Publication Date Title
JP2010250908A (en) Hologram device, tilt detection method, and tilt correction method
US20120188618A1 (en) Optical information reproducing method and optical information reproducing apparatus
JP2007240581A (en) Hologram recording device
JP2010231850A (en) Light irradiation device and control method
JP5487057B2 (en) Playback apparatus and playback method
JP2007304263A (en) Holographic memory device
JP5096191B2 (en) Optical pickup, optical information reproducing apparatus and optical information recording / reproducing apparatus using the same
JP2006004596A (en) Optical pickup device, optical recording/reproducing apparatus and gap detection method
US20070121433A1 (en) Optical information recording and reproducing apparatus
JP5726816B2 (en) Optical pickup device for hologram, optical information recording / reproducing device, optical information recording / reproducing method, and optical information device
JP5728432B2 (en) Optical pickup device for hologram and optical information recording / reproducing device
EP1843334B1 (en) Optical information reproducing apparatus and optical information reproducing method using the same
US20060227677A1 (en) Aberration detection device and optical pickup device provided with same
WO2017060984A1 (en) Hologram reproduction device and hologram reproduction method
JP2010129134A (en) Hologram recording device and hologram reproducing device
JP5816132B2 (en) Optical pickup device for hologram and optical information recording / reproducing device
JP4858472B2 (en) Hologram recording apparatus and hologram reproducing apparatus
JP4933984B2 (en) Hologram recording / reproducing device
JPS60124031A (en) Tracking unit having optical scanner for audio or video reproducer
WO2015040681A1 (en) Hologram reproducing apparatus and hologram reproducing method
JP2016091572A (en) Hologram reproduction device and hologram reproduction method
JPWO2009044470A1 (en) Hologram reproducing apparatus and hologram reproducing method
US20160055875A1 (en) Hologram recording and reproducing device, and angular multiplexing recording and reproducing method
WO2016125252A1 (en) Hologram recording and reproduction device, and method for correcting optical axis of optical component used for same
JP2008299992A (en) Holographic memory recording device, holographic reproducing device, or holographic recording and reproducing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP