WO2016125252A1 - Hologram recording and reproduction device, and method for correcting optical axis of optical component used for same - Google Patents

Hologram recording and reproduction device, and method for correcting optical axis of optical component used for same Download PDF

Info

Publication number
WO2016125252A1
WO2016125252A1 PCT/JP2015/052969 JP2015052969W WO2016125252A1 WO 2016125252 A1 WO2016125252 A1 WO 2016125252A1 JP 2015052969 W JP2015052969 W JP 2015052969W WO 2016125252 A1 WO2016125252 A1 WO 2016125252A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical axis
optical
reproducing apparatus
hologram recording
Prior art date
Application number
PCT/JP2015/052969
Other languages
French (fr)
Japanese (ja)
Inventor
和良 山崎
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Priority to PCT/JP2015/052969 priority Critical patent/WO2016125252A1/en
Publication of WO2016125252A1 publication Critical patent/WO2016125252A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector

Definitions

  • the present invention relates to a hologram recording / reproducing apparatus, and more particularly to a method for correcting the optical axis of incident light of an optical component in a hologram recording / reproducing apparatus of a two-beam angle multiplexing system.
  • the holographic memory is a system that causes signal light and reference light to interfere with each other and records the interference fringes as a hologram on an optical information recording medium.
  • the hologram is multiplexed and recorded by changing the incident angle of the reference light at the same position on the optical information recording medium.
  • the reference light is incident on the optical information recording medium at the same incident angle as that at the time of recording, and the information recorded on the optical information recording medium is reproduced by detecting the reproduction light diffracted from the hologram by the imaging device.
  • the recording density can be improved by increasing the number of multiplexing and reducing the size of the hologram on the optical information recording medium.
  • the recording density can be further improved by reducing the distance between adjacent holograms on the medium.
  • Patent Document 1 JP 2010-129134 A
  • Patent Document 1 JP 2010-129134 A
  • the objective lens and the optical axis position of the laser beam can be kept constant even if the objective lens is driven without the objective lens and the rising mirror being integrated.
  • a hologram recording apparatus and a hologram reproducing apparatus that can suppress the cost increase without providing a large driving mechanism in the apparatus”
  • in front of the entrance pupil plane of the objective lens on the optical path of the information laser light is described as a solution.
  • An optical path length varying optical component that varies the optical path length of the information laser beam, and a drive that detects the driving amount of the objective lens from the neutral position in the radial direction of the hologram recording medium by the tracking servo means.
  • the optical component causes an angular deviation and a positional deviation that cause deterioration in recording and reproducing performance due to disturbances such as temperature, humidity, and vibration (hereinafter referred to as disturbances) and changes with time.
  • disturbances such as temperature, humidity, and vibration
  • Patent Document 1 discloses a shift multiplex type hologram recording / reproducing apparatus that uses an optical axis position variable means installed in front of an entrance pupil plane of an objective lens to track the objective lens without integrating the objective lens and the rising mirror.
  • the optical axis position is controlled by the optical axis position variable means so that the relationship between the objective lens and the optical axis position of the laser beam is kept constant following the change in the relative position with the recording medium by the servo. That is, an optical axis position varying means installed in front of the entrance pupil plane of the objective lens, corresponding to a relative position change between the objective lens and the recording medium peculiar to the shift multiplexing system is disclosed.
  • the present invention is a hologram recording / reproducing apparatus or an optical system in the hologram reproducing apparatus, which corrects the angle deviation of the optical component, the inclination of the optical axis accompanying the position deviation, and the position deviation, and can perform stable recording or reproduction. It is an object of the present invention to provide a reproducing apparatus and an optical axis correction method for optical components used therefor.
  • the present invention includes a plurality of means for solving the above-mentioned problems.
  • a two-beam angle multiplexing type hologram recording / reproducing apparatus which includes a light source unit that emits a light beam, and a light source unit that emits light from the light source unit.
  • a branching portion for branching the light beam into signal light and reference light, a first lens portion for irradiating the optical information recording medium with signal light, and reference light at substantially the same position as the signal light in the optical information recording medium
  • the optical path angle variable unit for changing the incident angle of the reference light incident on the optical information recording medium.
  • an optical axis variable unit that changes the inclination or position of the incident light on the optical component.
  • a hologram recording / reproducing apparatus capable of performing stable recording or reproduction by correcting optical axis tilt and positional deviation caused by positional deviation and angular deviation of optical components, and optical axis correction of optical components used therefor.
  • a method can be provided.
  • FIG. 1 is a configuration diagram of a hologram recording / reproducing apparatus in Embodiment 1.
  • FIG. 1 is a configuration diagram of an optical pickup device and a phase conjugate optical system in a hologram recording / reproducing apparatus in Embodiment 1.
  • FIG. It is a figure explaining the optical axis variable part 35 in Example 1.
  • FIG. 6 is a diagram illustrating another configuration of the optical axis variable unit 35 in Embodiment 1.
  • FIG. 6 is a configuration diagram of another optical pickup device in Embodiment 1.
  • FIG. 6 is a diagram illustrating another configuration of the optical axis variable unit 35 in Embodiment 1.
  • FIG. 10 is a diagram illustrating still another configuration of the optical axis variable unit 35 in the first embodiment.
  • FIG. 5 is a configuration diagram of an optical pickup device in Embodiment 2.
  • FIG. 6 is a configuration diagram of an optical pickup device in Embodiment 3.
  • FIG. It is a figure explaining the optical axis variable part 120 in Example 3.
  • FIG. 6 is a configuration diagram of an optical pickup device in Embodiment 4.
  • FIG. 10 is a configuration diagram of an optical pickup device in Embodiment 5. It is a figure explaining the optical axis variable part 15 in Example 5.
  • FIG. FIG. 10 is a configuration diagram of an optical pickup device in Example 6.
  • FIG. 10 is a diagram illustrating an intensity distribution conversion lens 16 in Example 6.
  • FIG. 10 is a diagram illustrating an adjustment medium 301 in Embodiment 6. It is a figure explaining another detection method in Example 6.
  • FIG. 10 is a configuration diagram of an optical pickup device in Example 7.
  • FIG. 10 is a diagram illustrating a reference light correction method according to a seventh embodiment.
  • FIG. 10 is a diagram illustrating an adjustment flow in Example 8. It is a figure which shows the adjustment flow in Example 9.
  • FIG. 10 is a configuration diagram of an optical pickup device in Example 7.
  • FIG. 10 is a diagram illustrating a reference light correction method according to a seventh embodiment.
  • FIG. 10 is a diagram illustrating an adjustment flow in Example 8. It is a figure which shows the adjustment flow in Example 9.
  • FIG. 1 shows an overall configuration of a hologram recording / reproducing apparatus according to the present embodiment.
  • the hologram recording / reproducing apparatus includes, for example, an optical pickup device 60, a phase conjugate optical system 512, an optical information recording medium Cure optical system 513, and an optical information recording medium driving element 70 shown in FIG.
  • the optical pickup device 60 plays a role of emitting reference light and signal light to the optical information recording medium 300 and recording digital information using a hologram.
  • the information signal to be recorded is sent to the spatial light modulator (SLM) 25 in the optical pickup device 60 by the controller 89 via the signal generation circuit 86, and the signal light is modulated by the spatial light modulator 25.
  • the phase conjugate light of the reference light emitted from the optical pickup device 60 is generated by the phase conjugate optical system 512.
  • the phase conjugate optical system 512 indicates, for example, the galvanometer mirror 51 of FIG.
  • the phase conjugate light is a light beam that travels in the opposite direction while maintaining the same wavefront as the input light.
  • the reproduction light reproduced by the phase conjugate light is detected by the image sensor 52 in the optical pickup device 60, and the signal is reproduced by the signal processing circuit 85.
  • the irradiation time of the reference light and the signal light applied to the optical information recording medium 300 can be adjusted by controlling the opening / closing time of the shutter in the optical pickup device 60 via the shutter control circuit 87 by the controller 89.
  • the Cure optical system 513 plays a role of generating a light beam used for pre-cure and post-cure of the optical information recording medium 300.
  • the pre-cure is a pre-process in which, when information is recorded at a desired position in the optical information recording medium 300, a predetermined light beam is irradiated in advance before the reference light and signal light are irradiated to the desired position.
  • Post-cure is a post-process in which, after recording information at a desired position in the optical information recording medium 300, a predetermined light beam is irradiated so that the desired position cannot be additionally recorded.
  • a predetermined light source driving current is supplied from the light source driving circuit 82 to the light sources in the optical pickup device 60 and the optical information recording medium Cure optical system 513, and each light source can emit a light beam with a predetermined light amount.
  • optical axis tilt or position shift occurs due to a change in temperature or temperature in the optical pickup device 60
  • the optical axis tilt or position shift is detected, and the optical axis variable unit control circuit 90 detects the optical axis tilt or position shift.
  • the optical axis variable unit in the optical pickup device 60 is driven to correct the optical axis inclination and positional deviation.
  • optical pickup device 60 the phase conjugate optical system 512, and the optical information recording medium Cure optical system 513 are shown independently. However, some optical system configurations or all optical system configurations may be simplified as one. It doesn't matter.
  • FIG. 2 shows the optical pickup device 60 and the phase conjugate optical system 512 in the hologram recording / reproducing apparatus of the two-beam angle multiplexing system of this embodiment.
  • the recording / reproducing method of this embodiment will be described with reference to FIG.
  • the light beam emitted from the light source 10 passes through the collimator lens 11 and is converted into a desired beam diameter, and then passes through the relay lens 13 and the pinhole 14 disposed in the relay lens 13.
  • the non-uniformity of the intensity distribution deteriorates the recording / reproduction performance. Therefore, in this embodiment, unnecessary frequency components are removed from the intensity distribution of the light beam using the relay lens 13 and the pinhole 14.
  • the light beam emitted from the relay lens 13 enters the intensity distribution conversion lens 16.
  • the intensity distribution conversion lens 16 functions as an intensity distribution conversion unit, and is a lens that converts an intensity distribution of a substantially Gaussian distribution into a uniform intensity distribution having a top hat shape. As described above, in hologram recording / reproduction, it is desirable that the intensity distribution of the light beam be uniform. Therefore, in this embodiment, the intensity distribution conversion lens 16 is used to realize a uniform intensity distribution.
  • the light beam emitted from the intensity distribution conversion lens 16 enters the polarization variable element 18 through the shutter 17.
  • the light beam incident on the polarization variable element 18 is converted by the polarization variable element 18 into polarized light including a P polarization component and an S polarization component.
  • the polarization variable element 18 is an element that converts the light into predetermined polarized light according to recording or reproduction.
  • the polarization variable element 18 of this embodiment converts the emitted light into polarized light including a P-polarized component and an S-polarized component during recording, and converts it into S-polarized light during reproduction.
  • the light beam emitted from the polarization variable element 18 enters the PBS prism 19, and the P-polarized component is transmitted and the S-polarized component is reflected.
  • the light beam transmitted through the PBS prism 19 is called signal light
  • the reflected light beam is called reference light.
  • the optical path from the light source 10 to the PBS prism 19 is a common optical path
  • the optical path from the PBS prism 19 to the optical information recording medium 300 via the spatial light modulator 25 is a signal optical path
  • the galvanomirror 51 from the PBS prism 19 to the galvanomirror 37 The optical path leading to is called the reference optical path.
  • the signal light transmitted through the PBS prism 19 enters the beam expander 21 and is converted into a desired beam diameter.
  • the signal light transmitted through the beam expander 21 enters the spatial light modulator 25 through the phase mask 22, the relay lens 23, and the PBS prism 24.
  • the spatial light modulator 25 is an optical element that adds two-dimensional data to signal light.
  • the signal light to which information is added by the spatial light modulator 25 is reflected by the PBS prism 24 and enters the opening 27 in the relay lens 26 via the relay lens 26.
  • the opening 27 is disposed for the purpose of removing the high frequency component of the signal light added by the spatial light modulator 25 in order to increase the recording density of the optical information recording medium 300.
  • the signal light emitted from the opening 27 is condensed in the optical information recording medium 300 through the objective lens 29.
  • the reference light reflected from the PBS prism 19 passes through the mirror 32, the mirror 33, the half-wave plate 34, the optical axis variable unit 35, the pitch collector 36, the galvano mirror 37, and the scanner lens 39, and the optical information recording medium 300.
  • the galvanometer mirror 37 functions as an optical path angle changing unit for changing the incident angle of the reference light incident on the optical information recording medium, and changes the mirror angle with the rotation axis P as the rotation axis, thereby changing the angle of the mirror. The incident angle can be changed.
  • the scanner lens 39 is a lens that allows reference light having a predetermined angle reflected by the galvanometer mirror 37 to be incident at substantially the same position in the optical information recording medium 300 at a predetermined angle. Thereby, angle multiplexing can be realized at substantially the same position in the optical information recording medium 300 using the galvanometer mirror 37 and the scanner lens 39.
  • the pitch collector 36 can tilt the optical axis of the incident reference light in a direction perpendicular to the direction in which the galvanometer mirror 37 tilts. Thus, even when the optical information recording medium 300 is mounted with an inclination, the inclination can be corrected by using the galvanometer mirror 37 and the pitch collector 36.
  • the signal light of the convergent light and the reference light of the parallel light are incident on the optical information recording medium 300 so as to overlap each other.
  • interference fringes are formed in the optical information recording medium 300, and the interference fringes are recorded as holograms on the recording material in the optical information recording medium 300.
  • the shutter 17 is closed, and the information recorded in the optical information recording medium 300 is displayed by the spatial light modulator 25.
  • the galvanometer mirror 37 rotates by a small amount, and the incident angle of the reference light to the optical information recording medium 300 is changed.
  • the shutter 17 is opened, the next two-dimensional data is recorded at substantially the same position in the optical information recording medium 300. This is repeated to perform angle multiplex recording.
  • the position of the optical information recording medium 300 is moved, and further recording is performed.
  • each piece of information recorded by angle multiplexing at substantially the same position is called a page, and an area recorded by angle multiplexing is called a book.
  • the light beam emitted from the light source 10 passes through the collimator lens 11 and is converted into a desired beam diameter, and then passes through the relay lens 13, the pinhole 14 in the relay lens 13, the intensity distribution conversion lens 16, and the shutter 17, and then polarized.
  • the light enters the variable element 18.
  • the light beam is converted into S-polarized light by the polarization variable element 18 and reflected by the PBS prism 19.
  • the reference light reflected from the PBS prism 19 is mirror 32, mirror 33, half-wave plate 34, optical axis variable section 35, pitch collector 36, galvano mirror 37, scanner lens 39, optical information recording medium 300, 1/4.
  • the light enters the galvanometer mirror 51 through the wave plate 50.
  • the galvanometer mirror 51 is controlled by the controller 89 so that the incident reference light is substantially perpendicular to the galvanometer mirror 51.
  • the incident reference light is reflected in a substantially opposite direction, passes through the quarter-wave plate 50, and The light enters the optical information recording medium 300 again.
  • reproduction light that is diffracted light is generated from the hologram in the optical information recording medium 300.
  • Reproduced light enters the image sensor 52 through the objective lens 29, the relay lens 26, the opening 27 in the relay lens, and the PBS prism 24. Then, two-dimensional data is reproduced based on the reproduction light incident on the image sensor 52.
  • the galvanometer mirror 37 and the galvanometer mirror 51 are rotated by a minute amount, and the incident angle of the reference light to the optical information recording medium 300 is changed. Thereby, two-dimensional data of different pages in the same book is reproduced by the image sensor 52. When the predetermined number of pages have been reproduced, the position of the optical information recording medium 300 is moved and the next book is reproduced.
  • stable optical recording / reproducing is performed by correcting optical component positional deviation, optical axis inclination and positional deviation caused by angular deviation in the optical system in the hologram recording / reproducing apparatus.
  • a hologram recording / reproducing apparatus or a hologram reproducing apparatus that can perform reproduction is provided.
  • the relative displacement between the irradiation positions of the signal light and the reference light in the optical information recording medium 300 is referred to as the relative positional deviation between the signal light and the reference light in the optical information recording medium 300.
  • an optical axis variable unit that corrects the optical axis inclination and the positional deviation caused by the angular deviation and positional deviation of the optical component is arranged in the hologram recording / reproducing apparatus.
  • FIG. 3 shows a correction method of the optical axis variable unit 35 of the present embodiment.
  • FIGS. 3A-1 and 3A-2 show the initial state
  • FIGS. 3B-1 and 2B-2 show the position of the reference light incident on the galvanomirror 37 due to disturbance or change over time.
  • (C-1) and (C-2) show the corrected states.
  • (A-1), (B-1), and (C-1) are the optical axis variable unit 35, the parallel plate 105 in the optical axis variable unit 35, the galvanometer mirror 37, the scanner lens 39 and the positional relationship thereof.
  • the reference beam R and the optical axis R1 of the reference beam R are shown, and the alternate long and short dash line in the figure shows the central axis Q of the scanner lens 39. Also, (A-2), (B-2), and (C-2) show the positional relationship between the signal light S and the reference light R in the recording material portion in the optical information recording medium 300.
  • the irradiation position S1 of the signal light S and the irradiation position R2 of the reference light R of the recording material portion in the recording medium 300 are shifted.
  • (C-1) inclines the parallel plate 105 with respect to the optical axis from the state (B-1).
  • the optical axis variable unit 35 of this embodiment includes at least a parallel plate 105 and a rotation mechanism, and the parallel plate 105 is emitted from the parallel plate 105 by being inclined with respect to the optical axis of the reference light by the rotation mechanism.
  • the optical axis of light can be displaced in the parallel direction.
  • the position of the reference light incident on the galvanometer mirror 37 can be made the same position as the initial state, and as a result, the signal light S of the recording material portion in the optical information recording medium 300 as shown in (C-2).
  • the irradiation position S1 and the irradiation position R2 of the reference light R can be matched.
  • the relative position shift between the signal light and the reference light in the optical information recording medium 300 is corrected by displacing the optical axis of the reference light incident on the optical information recording medium 300 in the parallel direction. . This makes it possible to perform stable recording and reproduction even when there are disturbances and changes with time.
  • the parallel plate 105 in the optical axis variable unit 35 is tilted with respect to the optical axis of the reference light, thereby displacing the optical axis of the reference light in the parallel direction and the signal light in the optical information recording medium 300.
  • the relative positional deviation of the reference beam was corrected.
  • the correction method is not limited thereto, and the relative position shift between the signal light and the reference light in the optical information recording medium 300 may be corrected by tilting the optical axis of the reference light using the optical axis variable unit 35.
  • it can be realized by changing the parallel plate 105 to the wedge prism 104 as shown in FIG.
  • the wedge prism 104 is characterized in that the optical axis of the reference light emitted from the wedge prism 104 can be tilted by being inclined with respect to the optical axis of the reference light.
  • (A-1) and (A-2) show the initial state
  • (B-1) and (B-2) show the position of the reference light incident on the galvanomirror 37 due to disturbance and changes over time
  • (C-1) and (C-2) show the corrected states.
  • (A-1), (B-1), and (C-1) are the positional relationship between the optical axis variable unit 35, the wedge prism 104, the galvano mirror 37, and the scanner lens 39 in the optical axis variable unit 35, and The reference beam R and the optical axis R1 of the reference beam R are shown, and the alternate long and short dash line in the figure shows the central axis Q of the scanner lens 39.
  • (A-2), (B-2), and (C-2) show the positional relationship between the signal light S and the reference light R in the recording material portion in the optical information recording medium 300.
  • the recording material portion in the optical information recording medium 300 is shown in (B-2).
  • the irradiation position S1 of the signal light S is shifted from the irradiation position R2 of the reference light R. Therefore, in this embodiment, the optical axis of the reference light is inclined by inclining the wedge prism 104 with respect to the optical axis, and the position of the reference light incident on the galvano mirror 37 is changed as shown in (C-1).
  • the irradiation position S1 of the signal light S and the irradiation position R2 of the reference light R of the recording material portion in the optical information recording medium 300 can be matched as shown in (C-2).
  • the angle of the reference light reflected from the galvanometer mirror 37 changes according to the inclination of the optical axis of the emitted light of the reference light from the wedge prism 104.
  • recording / reproducing similar to the case of the parallel plate 105 can be performed.
  • the wedge prism 104 has a feature that the amount of change in the tilt of the optical axis with respect to the tilt amount of the wedge prism 104 is small, so that the correction can be performed with high accuracy. Furthermore, there is an advantage that the correction range can be made larger than that of the parallel plate 105 by increasing the distance between the wedge prism 104 and the galvanometer mirror 37. 3 and 4 assume that the incident position of the reference light on the galvano mirror 37 is shifted due to disturbances and changes with time of the optical component, but the present invention is not limited to this.
  • the incident position of the reference light on the galvano mirror 37 intentionally using the optical axis variable unit 35 can be used to correct the relative positional deviation between the signal light and the reference light in the optical information recording medium 300.
  • the deviation of the irradiation position of the signal light in the optical information recording medium 300 is large, the following problem is newly born. That is, when the deviation of the irradiation position of the signal light in the optical information recording medium 300 is large, in order to correct the relative positional deviation between the signal light and the reference light in the optical information recording medium 300, the reference light to the galvanometer mirror 37 is corrected. It is necessary to greatly shift the incident position from the initial position. In this case, when the galvanometer mirror 37 is rotated during recording and reproduction, there is a problem that the irradiation position of the reference light in the optical information recording medium 300 changes accordingly.
  • an optical axis variable unit 38 may be disposed between the galvanometer mirror 37 and the scanner lens 39 as shown in FIG.
  • the optical axis variable unit 38 includes a parallel plate and at least a rotation mechanism. When the parallel plate is inclined with respect to the reference light by the rotation mechanism, the reference light emitted from the optical axis variable unit 38 is used as the optical axis. On the other hand, it can be displaced in a parallel direction.
  • the optical axis correction element 38 corrects the relative positional deviation between the signal light and the reference light in the optical information recording medium 300.
  • optical axis correction element 38 corrects the positional deviation of the reference light incident on the galvano mirror 37, so that the relative position of the signal light and the reference light in the optical information recording medium 300 even when the galvano mirror 37 rotates. Deviation can be reduced.
  • the relative positional deviation between the signal light and the reference light in the optical information recording medium 300 is corrected using the optical axis variable unit 35 and the optical axis variable unit 38.
  • the relative positional deviation between the signal light in 300 and the reference light may be corrected.
  • the driving method of the optical axis variable unit 35 and the optical axis variable unit 38 may be a stepping motor, a linear actuator, or the like, or may be manual or other.
  • the optical axis of the reference light is displaced in the parallel direction by inclining the parallel plate 105 of the optical axis variable unit 35 with respect to the optical axis of the reference light.
  • the optical axis variable unit 35 may be configured as shown in FIGS.
  • the incident optical axis can be displaced in the parallel direction by moving at least one of the two wedge prisms arranged side by side.
  • the incident optical axis can be displaced in the parallel direction by simultaneously moving two lenses arranged in the same direction.
  • the optical axis can be displaced in a parallel direction by moving the mirror.
  • the optical axis can be displaced in a parallel direction by simultaneously moving two opposing mirrors.
  • the optical axis of the reference light is tilted by tilting the wedge prism 104 of the optical axis variable unit 35 with respect to the optical axis of the reference light.
  • the optical axis variable unit 35 may be configured as shown in FIGS. 7 (A), (B), and (C).
  • C tilts the optical axis by tilting the mirror.
  • 6 and 7 has an advantage that correction can be performed with high accuracy as compared with the case where large parts such as an objective lens, a scanner lens, and a relay lens are moved.
  • the present embodiment is a two-beam angle multiplexing type hologram recording / reproducing apparatus, which includes a light source unit that emits a light beam and a branch that branches the light beam emitted from the light source unit into signal light and reference light.
  • An optical path angle varying unit for changing the incident angle of the reference light incident on the medium, and an optical component in the optical path from the light source unit to the first lens unit or the second lens unit are provided.
  • the optical axis variable unit that changes the inclination or the position of the incident light is provided.
  • a hologram recording / reproducing apparatus or a hologram reproducing apparatus capable of correcting the optical axis inclination and the positional deviation due to the positional deviation and angular deviation of the optical component and capable of performing stable recording / reproducing.
  • FIG. 8 shows an optical system of the optical pickup device 60 in the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to this embodiment.
  • This embodiment is characterized in that the reference light correction amount in the optical information recording medium 300 is larger than that in the first embodiment.
  • the present embodiment is different from the first embodiment in that the optical axis variable unit 35 is not provided and the optical component of the reference optical path and the optical axis variable unit 40 are added. Since other than that is the same as that of Example 1, a difference with Example 1 is demonstrated in a present Example. First, the reference optical path will be described.
  • the reference light reflected from the PBS prism 19 reflects from the mirror 32a, the mirror 32b, the mirror 32c, and the mirror 32d.
  • the mirror 32a, the mirror 32b, the mirror 32c, and the mirror 32d reflect the reference light in the z direction (direction perpendicular to the paper surface of FIG. 8), the y direction, the z direction, and the x direction, respectively.
  • the reference light reflected by the mirror 32d is incident on the mirror 130, the mirror 131, the mirror 33, the half-wave plate 34, the pitch collector 36, the galvano mirror 37, the scanner lens 39, and the optical information recording medium 300.
  • the present embodiment is characterized in that an optical axis variable unit 40 in which a plurality of optical components are combined as one mechanism unit is disposed.
  • the optical axis variable unit 40 includes a position moving mechanism 41, a position moving mechanism 42, and a position moving mechanism 43 that can move in a predetermined direction.
  • the position moving mechanism 41 is equipped with all parts of the optical path from the mirror 33 to the scanner lens 39
  • the position moving mechanism 42 is equipped with the position moving mechanism 41 and the mirror 131.
  • the position moving mechanism 43 includes the position moving mechanism 42, the mirror 130, and the mirror 32d.
  • the position moving mechanism 41, the position moving mechanism 42, and the position moving mechanism 43 of the optical axis variable unit 40 are movable in a moving direction 41D, a moving direction 42D, and a moving direction 43D, respectively. This is because, for example, when the position moving mechanism 41 moves in the y direction different from the moving direction 41D, the position of the reference light incident on the galvano mirror 37 is shifted, and as a result, the optical information recording medium is rotated along with the rotation of the galvano mirror 37. The position of the optical axis of the reference light in 300 changes.
  • the position moving mechanism 41 moves in the same direction as the reference light incident on the mirror 33 as in the present embodiment, the angle of the optical axis of the reference light incident on the optical component from the mirror 33 to the scanner lens 39 is increased. And the position does not go off.
  • the position moving mechanism 41 moves relative to the objective lens 29, the position of the optical axis of the reference light in the same direction as the moving direction 41D with respect to the irradiation position of the signal light in the optical information recording medium 300. Can move.
  • the irradiation position of the reference light in the optical information recording medium 300 is greatly moved with respect to the first embodiment. It is possible.
  • the angle and position of the optical axis incident on the optical component does not shift with respect to the movement of the position moving mechanism 41, there is an advantage that no wavefront aberration occurs.
  • the position moving mechanism 43 seems to include a mirror 32 c and a mirror 32 d, but actually does not include the mirror 32 c, and the position moving mechanism 43 is connected to the mirror 32 d that is the incident end component of the position moving mechanism 43. Since the optical axis is in the Z direction from the mirror 32c, the movable direction of the position moving mechanism 43 is limited to the moving direction 43D which is the Z direction. As described above, in this embodiment, the relative displacement between the signal light and the reference light in the optical information recording medium 300 is corrected by individually moving the position movement mechanism 41, the position movement mechanism 42, and the position movement mechanism 43.
  • the number of position movement mechanisms may be reduced by limiting the movement direction.
  • the optical axis variable unit 40 of this embodiment drives a large part, it is not possible to adjust a minute position in the optical information recording medium 300 with respect to the first embodiment. For this reason, the position of the optical axis of the reference light in the optical information recording medium 300 may be finely corrected by combining with the optical axis variable unit 35 and the optical axis variable unit 38 of the first embodiment.
  • the present embodiment is a two-beam angle multiplexing type hologram recording / reproducing apparatus, which includes a light source unit that emits a light beam and a branch that branches the light beam emitted from the light source unit into signal light and reference light.
  • An optical path angle varying unit for changing the incident angle of the reference light incident on the medium, and an optical component in the optical path from the light source unit to the first lens unit or the second lens unit are provided.
  • the second lens unit and the optical path angle variable unit are held in the same casing, and are approximately in the direction of the optical axis incident on the casing.
  • a mechanism is provided that moves the casing in parallel directions.
  • the second lens unit and the optical path angle variable unit are held in the same casing, and include a mechanism for moving the casing in a direction at least substantially perpendicular to the optical axis direction incident on the casing. To do.
  • the relative position shift between the signal light and the reference light in the optical information recording medium 300 is corrected using the position moving mechanism in the optical axis variable unit 40. This makes it possible to perform stable recording and reproduction even when there are disturbances and changes with time.
  • FIG. 9 shows an optical system of the optical pickup device 60 in the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to this embodiment.
  • This embodiment is different from the first embodiment in that an optical axis variable unit 120 and an optical axis variable unit 28 are added to the signal optical path. Since other than that is the same as that of Example 1, a difference with Example 1 is demonstrated in a present Example.
  • the optical axis variable unit 35 is used to shift the position of the optical axis of the reference light in the optical information recording medium 300 with respect to the irradiation position of the signal light and the reference light in the optical information recording medium 300 The relative positional deviation of light was corrected.
  • this embodiment is characterized in that the inclination and position of the signal optical axis are corrected in order to ensure the light quantity and signal quality of the signal light.
  • the part 28 is arranged.
  • the optical axis variable unit 120 that corrects the inclination of the optical axis of the signal light is arranged.
  • FIG. 10 is a schematic diagram showing the relationship between the optical axis variable portion 120, the lens portion 26A on one side of the relay lens 26, and the opening 27, and the signal light path.
  • FIG. 10A shows an initial state
  • FIG. 10B shows a state in which the optical axis of the signal light is tilted due to a disturbance or a change with time
  • FIG. 10C shows a state in which the optical axis is corrected. ing.
  • the signal light is incident on the lens portion 26A on one side of the relay lens at a right angle so that the signal light is transmitted through the opening 27, and the signal light is transmitted as shown in FIG. If the light beam enters the lens portion 26A on one side of the relay lens at an angle, the irradiation position of the signal light on the opening 27 is shifted, and the light amount of the signal light is reduced.
  • the optical axis variable unit 120 of this embodiment includes at least a wedge prism 106 and a rotation mechanism, and the wedge prism 106 is emitted from the wedge prism 106 by being inclined with respect to the optical axis of the reference light by the rotation mechanism.
  • the optical axis of light can be tilted. Thereby, the position of the optical axis of the signal light incident on the opening 27 can be displaced. Thus, in this embodiment, the inclination of the optical axis of the signal light incident on the opening 27 is optimized.
  • correction of the position of the optical axis of the signal light by the optical axis variable unit 28 will be described.
  • the position of the spatial light modulator 25 or the relay lens 26 is shifted in the vertical direction with respect to the optical axis of the signal light due to disturbance or changes with time, the position of the optical axis of the signal light incident on the objective lens 29 is shifted. End up. As a result, a part of the signal light is lost due to the objective lens, and there is a problem that normal recording cannot be performed.
  • the optical axis of the signal light is displaced in the parallel direction by using the optical axis variable unit 28.
  • the optical axis variable unit 28 includes at least a parallel plate and a rotation mechanism. With such a configuration, for example, even when the signal light is displaced in the horizontal direction with respect to the optical axis due to disturbance or changes with time, the objective lens can be obtained by tilting the parallel plate of the optical axis variable unit 28 with respect to the optical axis. The position of the optical axis incident on 29 can be corrected. Thereby, in this embodiment, the position of the optical axis of the signal light incident on the objective lens 29 is optimized. Note that the optical axis variable unit 28 can also adjust the position of the reproduction signal light on the image sensor 52 during reproduction.
  • the optical axis variable unit 28 displaces the optical axis of the signal light in the parallel direction, but is not limited thereto.
  • the inclination of the signal light may be corrected by adding a wedge prism and a rotation mechanism to the optical axis variable unit 28. In this way, for example, the angular deviation of the image sensor 52 can be corrected during reproduction.
  • the optical axis variable unit 120 is used to correct the tilt of the optical axis of the incident light of the aperture 27.
  • the spatial light modulator 25 may be tilted as the optical axis variable unit.
  • the optical axis variable unit 28 is used to displace the signal light in the direction parallel to the optical axis by correcting the incident light of the objective lens 29.
  • the two-dimensional data of the spatial light modulator 25 is used.
  • the display which is the output of, may be moved. By doing in this way, it can be set as a simple structure.
  • the present embodiment is characterized in that the optical axis of the signal light is displaced or tilted in a parallel direction with respect to disturbances and changes with time with respect to the optical component. Therefore, the optical axis is made parallel using the display of the spatial light modulator 25. Displacement in the direction is also a feature of this embodiment.
  • the amount of signal light transmitted through the opening 27 and the recording / reproducing performance are secured by tilting the optical axis of the signal light.
  • stable recording can be performed by displacing the optical axis of the signal light in the parallel direction and correcting the position of the optical axis incident on the objective lens. This makes it possible to perform stable recording and reproduction even when there are disturbances and changes with time.
  • FIG. 11 shows an optical system of the optical pickup device 60 in the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to this embodiment.
  • This embodiment differs from Embodiment 1 in that an optical axis variable unit 12 is added to the common optical path. Since other than that is the same as that of Example 1, a difference with Example 1 is demonstrated in a present Example.
  • Example 1 the relative positional deviation between the signal light and the reference light in the optical information recording medium 300 was corrected.
  • the tilt of the optical axis of the light beam incident on the pinhole 14 is corrected in order to ensure recording / reproducing performance and recording / reproducing speed.
  • the pinhole 14 is in contrast to the hole of the pinhole 14.
  • the irradiation position of the upper light beam is shifted. This is the same reason as FIG. 10 of the third embodiment.
  • the pinhole 14 is used together with the relay lens 13 to remove unnecessary frequency component fluctuations from the intensity distribution of the light beam.
  • the hole diameter of the pinhole 14 depends on the wavelength of the beam, the effective diameter of the beam, and the focal length of the relay lens 13.
  • the intensity distribution In order to remove the predetermined frequency component, the hole diameter of the pinhole 14 is several ⁇ m. In this case, the amount of light emitted from the pinhole 14 is significantly reduced only by tilting the optical axis of the light beam incident on the relay lens 13 by several tens of millimeters. As a result, the light amounts of the signal light and the reference light are reduced, resulting in a problem that a desired recording / reproducing speed cannot be obtained. In this case, a frequency component that does not require an intensity distribution passes through the pinhole 14 and is recorded as a hologram on the optical information recording medium 300, which causes a problem that the recording / reproducing performance deteriorates.
  • the optical axis variable portion 12 is used to correct the inclination of the optical axis of the incident light to the pinhole 14.
  • the optical axis variable unit 12 includes at least a wedge prism and a rotation mechanism. Thereby, in the present embodiment, the inclination of the optical axis of the light incident on the pinhole 14 is optimized.
  • the optical axis variable portion 12 is used to incline the optical axis of incident light to the relay lens 13 and the pinhole 14, thereby ensuring the recording / reproducing performance and the recording / reproducing speed. This makes it possible to perform stable recording and reproduction even when there are disturbances and changes with time.
  • FIG. 12 shows an optical system of the optical pickup device 60 in the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to the present embodiment.
  • the present embodiment is different from the first embodiment in that an optical axis variable unit 15 is added to the common optical path. Since other than that is the same as that of Example 1, a difference with Example 1 is demonstrated in a present Example.
  • Example 1 the relative positional deviation between the signal light and the reference light in the optical information recording medium 300 was corrected. In this embodiment, in addition to that, correction of wavefront aberration and correction of intensity distribution are performed.
  • the intensity distribution conversion lens 16 of this embodiment is a lens that makes the intensity distribution described in Japanese Patent No. 3614294 uniform, for example.
  • a uniform intensity distribution is obtained by using the intensity distribution conversion lens 16.
  • the intensity distribution conversion lens 16 has problems of deterioration of uniformity of the intensity distribution and generation of wavefront aberration with respect to the positional deviation and inclination of the optical axis of the light incident on the intensity distribution conversion lens 16.
  • the intensity distribution conversion lens 16 makes the intensity distribution uniform by spreading the light intensity of the central part to the peripheral part and collecting the light intensity of the peripheral part toward the central part with respect to the intensity distribution of the Gaussian distribution emitted from the laser. ing.
  • the intensity distribution conversion lens 16 has a shape in which the inclination of the lens surface of the central portion and that of the peripheral portion are different, and the optical axis of the light beam incident on the intensity distribution conversion lens 16 is inclined. Then, wavefront aberration mainly composed of coma aberration occurs.
  • FIG. 13 shows the optical axis variable unit 15 of the present embodiment.
  • the optical axis variable unit 15 includes a wedge prism 103 and at least a translation mechanism and a rotation mechanism.
  • FIG. 13A shows a case where the wedge prism 103 is moved in a direction perpendicular to the optical axis by the translation mechanism
  • FIG. 13B shows a case where the wedge prism 103 is tilted with respect to the optical axis by the rotation mechanism.
  • the solid lines in (A) and (B) indicate the initial state, and the dotted line indicates the wedge prism 103 and the optical axis of the light beam when the wedge prism 103 is displaced or tilted.
  • the optical axis variable unit 15 of the present embodiment can displace the incident optical axis in the parallel direction by moving the wedge prism 103 in a direction substantially perpendicular to the optical axis as shown in FIG. Further, as shown in (B), by tilting the wedge prism 103 with respect to the optical axis, the optical axis emitted from the wedge prism 103 can be tilted.
  • the optical axis variable unit 15 is used to correct the positional deviation and the inclination of the optical axis of the incident light to the intensity distribution conversion lens 16 caused by the disturbance and change with time of the optical component.
  • the position and inclination of the optical axis of the light beam incident on the wedge prism 103 are optimized.
  • the wedge prism 103 of this embodiment has a small amount of displacement in the direction parallel to the optical axis with respect to the amount of movement. Further, the wedge prism 103 has a small change amount of the inclination of the optical axis with respect to the inclination amount. For this reason, it can correct
  • the displacement and inclination of the optical axis are corrected only by the wedge prism 103, but the present invention is not limited to this.
  • two wedge prisms with optimized optical axis displacement and tilt may be arranged.
  • the intensity distribution conversion lens 16 is similar to the present embodiment by using an optical axis variable unit as long as the intensity distribution is converted using the same method even if the emitted light is not in a top flat shape. The effect is obtained.
  • the intensity distribution conversion lens 16 is a lens, but may be a diffraction element or the like.
  • the optical axis of the light beam transmitted through the intensity distribution conversion lens 16 is displaced by displacing the optical axis of the light incident on the intensity distribution conversion lens 16 in the parallel direction using the optical axis variable unit 15.
  • the distribution is made uniform. Further, the occurrence of wavefront aberration is suppressed by tilting the optical axis of the incident light to the intensity distribution conversion lens 16 using the optical axis variable unit 15. This makes it possible to perform stable recording and reproduction even when there are disturbances and changes with time.
  • FIG. 14 shows an optical system of the optical pickup device 60 in the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to this embodiment.
  • the same reference numerals as those of the optical components shown in the respective embodiments have the same functions as those of the optical components of the respective embodiments.
  • a control method for driving the rotation mechanism and the translation mechanism of each optical axis variable unit will be described.
  • the reference light reflected from the PBS prism 19 is converted into P-polarized light by the polarization variable element 30 and passes through the PBS prism 31.
  • recording / reproduction similar to that in the first embodiment can be performed.
  • the polarization variable element 30 is controlled so that the outgoing polarized light from the polarization variable element 30 becomes S-polarized light.
  • the S-polarized light transmitted through the polarization variable element 30 is reflected by the PBS prism 31 and is condensed on the image sensor 601 by the detection lens 600.
  • the rotation mechanism of the optical axis variable unit 12 is driven so that the signal intensity of the image sensor 601 increases, and the optical axis of the light beam is tilted. Then, when the signal intensity of the image sensor 601 becomes maximum, the rotation mechanism of the optical axis variable unit 12 is stopped.
  • the present embodiment is characterized in that the rotation mechanism of the optical axis variable unit 12 is driven using the amount of light emitted from the pinhole 14 as a detection signal. In this way, the light beam can be controlled to pass through the center of the pinhole 14.
  • a control method for driving the rotation mechanism and the translation mechanism of the optical axis variable unit 15 will be described.
  • a control method for driving the rotation mechanism of the optical axis variable unit 15 will be described.
  • the light beam is incident on the image sensor 601 in the same manner as the control method of the optical axis variable unit 12.
  • FIG. 15 shows the inclination of the optical axis of the light incident on the intensity distribution conversion lens 16 on the upper stage, and shows the relationship of the spots on the image sensor 601 at that time on the lower stage.
  • (A), (B), and (C) are different in the inclination of the optical axis of the light beam incident on the intensity distribution conversion lens 16, and (B) is the optical axis of the light beam incident on the intensity distribution conversion lens 16.
  • (A) and (C) show the state in which the optical axis of the incident light beam is tilted.
  • the intensity distribution conversion lens 16 generates wavefront aberration mainly composed of coma aberration when the optical axis of the light beam incident on the intensity distribution conversion lens 16 is tilted. Thereby, the spot on the image sensor 601 is distorted.
  • the inclination of the light beam incident on the intensity distribution conversion lens 16 is corrected by inclining the optical axis using the optical axis variable unit 15 so that the spot on the image sensor is minimized. Thereby, the generated wavefront aberration can be reduced.
  • a control method for driving the translation mechanism of the optical axis variable unit 15 will be described. First, in FIG.
  • the polarization variable element 20 is controlled so that the outgoing polarized light from the polarization variable element 20 becomes S-polarized light.
  • the S-polarized light that has passed through the polarization variable element 20 passes through the beam expander 21, the phase mask 22, and the relay lens 23, is reflected by the PBS prism 24, and enters the imaging element 52.
  • an image from the image sensor 52 is detected.
  • the translation mechanism of the optical axis variable unit 15 is driven, and the optical axis is changed to the optical axis so that the intensity distribution on the image sensor 52 is substantially symmetric. Displace in the parallel direction. Thereby, a substantially uniform intensity distribution can be obtained.
  • this embodiment is characterized in that the coma aberration of the light beam emitted from the intensity distribution conversion lens 16 is observed and the rotation mechanism of the optical axis variable unit 15 is driven. Further, the translation mechanism is driven by detecting the intensity distribution of the light beam emitted from the intensity distribution conversion lens 16. By performing the above correction, the best wavefront aberration and intensity distribution for hologram recording / reproduction can be obtained.
  • the polarization variable element 18 and the polarization variable element 20 are controlled so that only the signal light enters the optical information recording medium 300.
  • the signal light passes through the optical information recording medium 300, and the signal light enters the detector 606 through the collimating lens 604 and the detection lens 605.
  • the rotation mechanism of the optical axis variable unit 120 is driven so that the detection signal of the detector 606 increases, and the optical axis of the signal light is tilted.
  • the rotation mechanism of the optical axis variable unit 120 is stopped.
  • the present embodiment is characterized in that the rotation mechanism of the optical axis variable unit 120 is driven using the amount of light emitted from the opening 27 as a detection signal. In this way, the signal light can be controlled to enter the center of the opening 27.
  • the translation mechanism of the optical axis variable unit 28 is driven to displace the optical axis of the signal light in a direction parallel to the optical axis.
  • the signal light is lost by the objective lens 29, so that the amount of light is reduced.
  • This is the first position, and then the optical axis is displaced to the opposite side.
  • the position where the amount of light again decreases is set as the second position.
  • the translation mechanism of the optical axis variable unit 28 is driven so that the reference light is arranged at a substantially intermediate position between the first position and the second position. In this way, the signal light can be controlled to pass through the center of the objective lens 29.
  • the optical information recording medium 300 is changed to an adjustment medium 301 having an opening 302.
  • the optical information recording medium 300 and the adjustment medium 301 have the same thickness and the same refractive index.
  • FIG. 16 shows the adjustment medium 301, where the upper part shows a plan view and the lower part shows a cross-sectional view.
  • the opening 302 of the adjustment medium 301 includes a light shielding region 302 ⁇ / b> A and a light shielding region 302 ⁇ / b> B, and the light beam incident on the light shielding region is not transmitted through the adjustment medium 301.
  • the light shielding region 302A is disposed inside the light shielding region 302B, and is characterized by a substantially trapezoidal shape.
  • the dashed-dotted line and the dashed-two dotted line in a figure have each shown the signal light and the reference light. Therefore, the light shielding region 302A is a region that shields the signal light, and the light shielding region 302B is a region that shields the peripheral portion of the reference light.
  • the polarization variable element 18 and the polarization variable element 20 are controlled so that only the signal light enters the adjustment medium 301.
  • the signal light is incident outside the light shielding region 302A and the light shielding region 302B, the signal light is transmitted through the adjustment medium 301 and enters the detector 606 through the collimator lens 604 and the detection lens 605.
  • the position of the adjustment medium 301 is adjusted so that the signal light is irradiated into the light shielding region 302A and the signal intensity of the detector 606 is minimized.
  • the light shielding region 302A can be arranged at a position where the signal light converges in the adjustment medium 301.
  • the polarization variable element 18 and the polarization variable element 30 are controlled so that only the reference light enters the adjustment medium 301.
  • the galvanometer mirror 37 and the galvanometer mirror 51 are controlled to have a predetermined angle.
  • the reference light incident on the adjustment medium 301 other than the light shielding region 302A and the light shielding region 302B is used for the quarter wavelength plate 50, the galvanometer mirror 51, the quarter wavelength plate 50, the adjustment medium 301,
  • the light enters the PBS prism 31 through the scanner lens 39, the galvanometer mirror 37, the pitch collector 36, the optical axis variable unit 35, the half-wave plate 34, the mirror 33, and the mirror 32.
  • the reference light that has entered the PBS prism 31 has been converted to S-polarized light by passing through the quarter-wave plate 50 twice, and therefore reflects the PBS prism 31 and enters the detector 602.
  • the rotation mechanism of the optical axis variable unit 35 is driven so that the signal intensity of the detector 602 is maximized, and the position of the optical axis of the reference light in the optical information recording medium 300 is displaced. Then, when the signal intensity of the detector 602 becomes maximum, the rotation mechanism of the optical axis variable unit 35 is stopped.
  • the position of the reference light on the adjustment medium 301 can be matched with the transmission region inside the light shielding region 302B. Finally, when the adjustment medium 301 is changed to the optical information recording medium 300, the correction is completed.
  • the position of the signal light and the reference light in the medium is adjusted with high accuracy by using the adjusting medium 301 having an opening.
  • each optical axis variable unit By driving the rotation mechanism and translation mechanism of each optical axis variable unit using the control method as described above, there is a case where the optical axis is tilted and the position is shifted due to disturbance or change over time with respect to the optical component. In addition, stable recording and reproduction can be performed.
  • the target to be corrected is not limited.
  • the optical axis of a light beam incident on a pinhole, an aperture, a relay lens, or the like arranged at a position different from the present embodiment may be corrected.
  • the correction target is not limited to the correction target of the present embodiment, and the correction target may be increased or decreased.
  • the description has been made by correcting the relative positions of the signal light and the reference light in the optical information recording medium 300 of the first embodiment, but the correcting means of the second embodiment may be used.
  • the intensity distribution conversion lens 16 is described as one. However, in order to make the signal light and the reference light have an optimum intensity distribution, an intensity distribution conversion lens may be arranged in each optical path. In this case, an optical axis variable unit corresponding to each may be arranged.
  • the adjustment medium 301 of this embodiment may be in the hologram recording / reproducing apparatus or in an apparatus for storing the hologram recording / reproducing apparatus.
  • the spot image is detected by the detection lens 600 and the image sensor 601.
  • a wavefront sensor or the like that measures the wavefront may be used.
  • the shape of the light shielding region 302A of the adjustment medium 301 is substantially trapezoidal because the coma aberration of the signal light has an effect. However, the same detection can be performed even if it is other than the trapezoid.
  • the optical axis tilt and misalignment correction of this embodiment can be used for initial shipment of the hologram recording / reproducing apparatus, maintenance after shipment, and repair in case of abnormality.
  • the imaging element 601 and the imaging element 52 are detected using the polarization variable element 30 and the polarization variable element 20 in order to detect the tilt and the positional deviation of the optical axis of the light incident on the pinhole 14 and the intensity distribution conversion lens 16.
  • the polarization may be converted in advance so that a slight light beam is incident on the image sensor 601 and the image sensor 52 using, for example, a wavelength plate.
  • the leakage light of the PBS prism 31 and the PBS prism 24 may be detected by the image sensor 601 and the image sensor 52 without intentionally converting the polarization.
  • the image sensor 601 is arranged in the reference optical path, but it may be in the signal optical path or in the common optical path as long as it is after the pinhole 14 or the intensity distribution conversion lens 16. Also good.
  • the intensity distribution is detected from the image sensor 52.
  • a lens or an element that extends the optical path is taken in and out of the optical path to the image sensor 601.
  • the intensity distribution may be detected from the image sensor 601 by bringing the light beam on the screen 601 into a defocused state.
  • the detection signal from the detector 602 is used to drive the rotation mechanism of the optical axis variable unit 35.
  • the configuration is not limited to this configuration as long as the transmitted light of the adjustment medium 301 can be detected.
  • a detector may be disposed between the adjustment medium 301 and the quarter wavelength plate 50 when the adjustment medium 301 is inserted.
  • a detector may be attached to the adjustment medium 301.
  • the adjustment medium 301 is used.
  • the adjustment medium 303 and the image sensor 607 in which the protective layer and the medium are half the thickness of the optical information recording medium 300. May be used to detect the relative position of the signal light and the reference light in the optical information recording medium 300.
  • the image sensor 607 is disposed between the adjustment medium 303 and the adjustment medium 303 and the quarter-wave plate 50. Note that the adjustment medium 303 and the image sensor 607 may be in contact with each other. Then, the polarization variable element 18 and the polarization variable element 20 are controlled so that only the signal light enters the adjustment medium 303. Thereafter, the image sensor 607 is driven in the optical axis direction of the objective lens 29 so that the signal light becomes the smallest spot, and the position is determined. By doing in this way, the light-receiving surface of the image pick-up element 607 can be matched with the position where signal light converges.
  • the polarization variable element 18 and the polarization variable element 30 are controlled such that only the reference light enters the adjustment medium 303.
  • the rotation mechanism of the optical axis variable unit 35 is driven, and the optical axis is displaced on the image sensor 607 so that the center of the reference light substantially coincides with the convergence position of the signal light.
  • the adjustment medium 303 is changed to the optical information recording medium 300, the correction is completed.
  • the adjustment medium 303 may not be provided as compared with FIG. In this case, the distance between the signal light and the reference light at the position where the signal light converges on the image sensor 607 is calculated in advance, and the distance between the signal light and the reference light on the image sensor 607 is adjusted according to the amount. You may do it.
  • FIG. 18 shows an optical system of the optical pickup device 60 in the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to the present embodiment.
  • the present embodiment is different from the sixth embodiment in that an optical axis variable unit 38 is added to the reference optical path. Since other than that is the same as that of Example 6, a difference with Example 6 is demonstrated in a present Example.
  • a control method for driving the rotation mechanisms of the optical axis variable unit 35 and the optical axis variable unit 38 will be described.
  • the optical information recording medium 300 is changed to the adjustment medium 301, and the position of the adjustment medium 301 is determined using the signal light in the same manner as in the sixth embodiment.
  • the polarization variable element 18 and the polarization variable element 30 are controlled so that only the reference light enters the adjustment medium 301.
  • the galvanometer mirror 37 and the galvanometer mirror 51 are controlled to have a predetermined angle. By doing so, the reference light is incident on the image sensor 603 as in the first embodiment.
  • the rotation mechanism of the optical axis variable unit 38 is driven so that the signal intensity of the image sensor 603 is maximized, and the irradiation position of the reference light on the adjustment medium 301 is determined.
  • the angle between the galvanometer mirror 37 and the galvanometer mirror 51 is changed.
  • the optical axis variable unit 35 and the optical axis variable unit 38 are optimal. If it is not centrally symmetric at this time, the following steps are repeated.
  • the galvanometer mirror 37 and the galvanometer mirror 51 are controlled to have a predetermined angle. Then, after driving the rotation mechanism of the optical axis variable unit 35 and changing the position of the optical axis of the reference light incident on the adjustment medium 301, the optical axis variable unit so that the signal intensity of the image sensor 603 becomes maximum.
  • the rotation mechanism 38 is driven to determine the position of the optical axis of the reference light irradiated on the adjustment medium 301.
  • the correction amount and direction of the rotation mechanism of the optical axis variable unit 35 can be calculated from the change amount and direction of the light beam on the image sensor 603 corresponding to the angle between the galvanometer mirror 37 and the galvanometer mirror 51.
  • the angle of the galvanometer mirror 37 and the galvanometer mirror 51 is changed, and the change of the light beam on the image sensor 603 is confirmed.
  • the correction is completed. If it is not centrally symmetric, correction is performed again.
  • the optical axis variable unit 35 and the optical axis variable unit 38 can be optimized.
  • FIG. 19 shows the position of the light shielding region 302B of the opening 302 in the adjustment medium 301 with respect to the reference light (left side view) and the size of the reference light on the image sensor 603 at that time (right side view).
  • FIGS. 19A, 19B1 and 19B2 are different in the angle of the optical axis of the reference light incident on the adjustment medium 301.
  • FIG. Further, (B1) and (B2) are different in the position of the optical axis of the reference light incident on the light shielding region 302B.
  • Reference light 801, reference light 803, and reference light 805 indicate reference light from the galvano mirror 37 side
  • reference light 802, reference light 804, and reference light 806 indicate reference light from the galvano mirror 51 side. Show.
  • the hatched portion in the figure indicates the reference light on the image sensor 603.
  • the light shielding region 302A of the opening 302 of the adjustment medium 301 is not considered.
  • the light shielding region 302B is rectangular.
  • the rotation mechanism of the optical axis variable unit 38 is driven to determine the position of the optical axis of the reference light incident on the adjustment medium 301, and then the angle between the galvano mirror 37 and the galvano mirror 51 is changed. Since the reference light is incident on the adjustment medium 301 at an angle, the size of the reference light in the adjustment medium 301 changes. That is, when the reference light is irradiated onto the opening 302 in the adjustment medium 301, the size of the light-shielding region 302B with respect to the reference light changes according to the incident angle of the reference light, and thus enters the image sensor 603. The size of the reference light changes.
  • the size of the reference light with respect to the center of the light shielding region 302B changes symmetrically with respect to the central axis 800 like the reference light 808.
  • the position of the optical axis of the reference light is shifted as shown in (B2) with respect to FIG. 19A, the light beam limited by the light shielding region 302B is relative to the central axis 800 like the reference light 809. Changes asymmetrically. By detecting this, it is possible to detect a change in the position of the optical axis of the reference light in the adjustment medium 301 accompanying the rotation of the galvanometer mirror 37.
  • the optical component is stable even when there is a tilt or position shift of the optical axis due to disturbance or change over time. Recording and reproduction can be performed.
  • the present embodiment can correct the optical component to an optimum state even if a large angular shift or positional shift of the optical component occurs with respect to the sixth embodiment.
  • the image sensor 603 is used.
  • an element that measures the positional deviation of the light beam such as a position detector, may be used.
  • the adjustment medium 301 is used.
  • the protective layer and the medium are half the thickness of the optical information recording medium 300 and the adjustment medium 303 is imaged.
  • the relative position between the signal light and the reference light in the optical information recording medium 300 may be detected using the element 607.
  • the image sensor 607 is disposed between the adjustment medium 303 and the adjustment medium 303 and the quarter-wave plate 50. Then, the polarization variable element 18 and the polarization variable element 20 are controlled so that only the signal light enters the adjustment medium 301. Thereafter, the image sensor 607 is driven in the optical axis direction of the objective lens 29 so that the signal light becomes the smallest spot. Next, the polarization variable element 18 and the polarization variable element 30 are controlled so that only the reference light enters the adjustment medium 301.
  • the galvanometer mirror 37 is driven, and the optical axis is displaced using the optical axis variable unit 35 so that the positional deviation associated with the angle of the galvanometer mirror 37 on the image sensor 607 is reduced.
  • the optical axis is displaced using the optical axis variable unit 38 so that the irradiation position of the signal light coincides with the center of the reference light. Finally, if the adjustment medium 303 is changed to the optical information recording medium 300, the correction is completed.
  • FIG. 20 shows a correction flow of the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to the present embodiment.
  • a present Example has shown the adjustment flow in the case of the structure of FIG.
  • the correction flow includes correction of the inclination of the optical axis of the incident light to the pinhole 14 by the optical axis variable unit 12 (S 1), and incident light to the intensity distribution conversion lens 16 by the optical axis variable unit 15.
  • Correction of the position of the optical axis (S4) and correction of the relative position of the signal light and the reference light in the optical information recording medium 300 by the optical axis variable unit 35 are performed in this order (S5).
  • the present correction flow is characterized in that the signal light and the reference light are corrected at least after the common optical path is corrected. Further, each optical path in the common optical path, the signal optical path, and the reference optical path is characterized in that correction is performed in order from the light source.
  • the optical axis incident on the intensity distribution conversion lens 16 is inclined, which causes a problem that wavefront aberration occurs.
  • the pinhole 14 Both the intensity distribution conversion lenses 16 have an optimum optical axis inclination.
  • the signal light and the reference light are corrected at least after the correction of the common optical path, and the correction is performed in the order closer to the light source in each of the common optical path, the signal optical path, and the reference optical path. Therefore, it is necessary to change the adjustment flow according to the configuration of the optical system. For example, when the intensity distribution conversion lens 16 is arranged closer to the light source than the pinhole 14, the intensity distribution conversion lens is corrected first. Note that either the signal light or the reference light may be corrected first.
  • FIG. 21 shows an adjustment flow of the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to the present embodiment.
  • the eighth embodiment has been described on the assumption that all adjustments are performed. However, an adjustment flow for performing stable recording / reproduction is provided even when a disturbance or a change with time occurs during recording / reproduction.
  • a present Example has shown the adjustment flow in the case of the structure of FIG. In this embodiment, in FIG. 14, it is assumed that a part of the reference light beam is reflected by the PBS prism 31 and is incident on the detector 601.
  • FIG. 14 it is assumed that a part of the reference light beam is reflected by the PBS prism 31 and is incident on the detector 601.
  • FIG. 21 shows an adjustment flow in the case where there is a disturbance during recording / reproducing operation and an angular deviation and a positional deviation of the optical components in the common optical path due to a change with time.
  • recording / reproduction is started, and after recording / reproducing a predetermined amount of data (Sa1), the output signal intensity of the detector 601 is confirmed (Sa2). At this time, if the output signal intensity of the detector 601 is greater than or equal to a predetermined amount, a predetermined amount of data is recorded and reproduced (Sa3).
  • the present embodiment is characterized in that a change in the intensity of the light beam accompanying the angular deviation and positional deviation of the optical component during recording / reproduction is confirmed by the detector 601, and the necessity of correction is determined using the signal.
  • the correction may be performed by combining correction of the inclination and position of the optical axis of the incident light to the intensity distribution conversion lens 16 by the optical axis variable unit 15.
  • the recording / reproduction is temporarily interrupted (Sa5), but the output signal intensity of the light receiving unit 601 is not interrupted.
  • the optical axis variable unit 12 may be finely adjusted so as to increase. Further, it is a feature of this embodiment that a change in the intensity of the light beam is detected by a detector to determine the necessity for correction. For this reason, the necessity for correction of the optical axis variable unit may be confirmed using signals from other detectors. For example, using the output signal of the detector 606 in FIG.
  • the optical axis variable unit 120 corrects the inclination of the optical axis of the incident light to the aperture 27, and the optical axis variable unit 28 sets the optical axis of the incident light to the objective lens 29.
  • the position may be corrected.
  • the output signal intensity of the detector 601 is confirmed (Sa2).
  • the present invention is not limited to this.
  • the output signal intensity of the detector 601 may be constantly checked, and the correction by the optical axis variable unit may be performed when the output signal intensity of the light receiving unit 601 becomes a predetermined amount or less.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each embodiment has been described with respect to the hologram recording / reproducing apparatus, it may be a hologram recording apparatus or a hologram reproducing apparatus.

Abstract

The purpose of the present invention is to provide a hologram recording and reproduction device capable of carrying out stable recording and reproduction, or reproduction by correcting the angular displacement, the inclination of an optical axis associated with a positional displacement, and a positional displacement of an optical component in the optical system in the hologram recording and reproduction device. For this purpose, a two-beam angle multiplexing hologram recording and reproduction device comprises: a light source unit for emitting an optical beam; a divergence unit for diverging the optical beam emitted from the light source into signal light and reference light; a first lens for irradiating an optical information recording medium with the signal light; a second lens for causing the reference light to be incident onto substantially the same position as the position onto which the signal light is incident in the optical information recording medium; a light path angle changing unit for changing the incident angle of the reference light incident on the optical information recording medium; and an optical component in the light path from the light source to the first lens or the second lens. The hologram recording and reproduction device also comprises an optical axis changing unit for changing the inclination or the position of the incident light on the optical component.

Description

ホログラム記録再生装置、及びそれに用いる光学部品の光軸補正方法Hologram recording / reproducing apparatus and optical axis correction method for optical component used therefor
 本発明は、ホログラム記録再生装置に係り、特に2光束角度多重方式のホログラム記録再生装置における光学部品の入射光の光軸補正方法に関する。 The present invention relates to a hologram recording / reproducing apparatus, and more particularly to a method for correcting the optical axis of incident light of an optical component in a hologram recording / reproducing apparatus of a two-beam angle multiplexing system.
 ホログラフィックメモリは、信号光と参照光とを干渉させ、その干渉縞をホログラムとして光情報記録媒体に記録するシステムである。例えば、2光束角度多重方式では、光情報記録媒体上の同一位置に参照光の入射角度を変えてホログラムの多重記録を行う。そして、再生時には、参照光を記録時と同じ入射角度で光情報記録媒体に入射し、ホログラムから回折した再生光を撮像素子で検出することで光情報記録媒体に記録された情報を再生する。 The holographic memory is a system that causes signal light and reference light to interfere with each other and records the interference fringes as a hologram on an optical information recording medium. For example, in the two-beam angle multiplexing system, the hologram is multiplexed and recorded by changing the incident angle of the reference light at the same position on the optical information recording medium. At the time of reproduction, the reference light is incident on the optical information recording medium at the same incident angle as that at the time of recording, and the information recorded on the optical information recording medium is reproduced by detecting the reproduction light diffracted from the hologram by the imaging device.
 一般的にホログラフィックメモリでは、多重数を増やす、光情報記録媒体上のホログラムのサイズを小さくすることで記録密度を向上できる。そして、2光束角度多重方式では、媒体上の隣り合うホログラムの距離を小さくすることで、さらに記録密度を向上することができる。 Generally, in the holographic memory, the recording density can be improved by increasing the number of multiplexing and reducing the size of the hologram on the optical information recording medium. In the two-beam angle multiplexing system, the recording density can be further improved by reducing the distance between adjacent holograms on the medium.
 本技術分野の背景技術として、例えば特開2010-129134号公報(特許文献1)がある。特許文献1には、課題として「対物レンズと立上げミラーを一体にせずとも、対物レンズが駆動しても対物レンズとレーザ光の光軸位置の関係を一定に保つことが可能であり、また装置に大がかりな駆動機構を設けずコストUPを抑制できるホログラム記録装置及びホログラム再生装置を提供する。」と記載があり、解決手段として「情報レーザ光の光路上で対物レンズの入射瞳面の手前に設置され、駆動により情報レーザ光の光軸位置を変化させる、屈折率が空気とは異なる板状物体と、情報レーザ光の光路上で対物レンズの入射瞳面の手前に設置され、駆動により情報レーザ光の光路長を可変する光路長可変用光学部品と、トラッキングサーボ手段による対物レンズのホログラム記録媒体の半径方向の中立位置からの駆動量を検出する駆動量検出手段と、検出した駆動量により板状物体を駆動する光軸位置可変手段と、検出した駆動量により光路長可変用光学部品を駆動する光路長可変手段とを備える。」と記載されている。 As a background art in this technical field, there is, for example, JP 2010-129134 A (Patent Document 1). In Patent Document 1, as a problem, “the objective lens and the optical axis position of the laser beam can be kept constant even if the objective lens is driven without the objective lens and the rising mirror being integrated. There is a description that “a hologram recording apparatus and a hologram reproducing apparatus that can suppress the cost increase without providing a large driving mechanism in the apparatus”, and “in front of the entrance pupil plane of the objective lens on the optical path of the information laser light” is described as a solution. It is installed in front of the entrance pupil plane of the objective lens on the optical path of the information laser light, and a plate-like object having a refractive index different from that of air, which changes the optical axis position of the information laser light by driving. An optical path length varying optical component that varies the optical path length of the information laser beam, and a drive that detects the driving amount of the objective lens from the neutral position in the radial direction of the hologram recording medium by the tracking servo means. The amount detecting means, the optical axis position varying means for driving the plate-like object with the detected driving amount, and the optical path length varying means for driving the optical component for varying the optical path length with the detected driving amount. Yes.
特開2010-129134号公報JP 2010-129134 A
 ホログラフィックメモリにおいて安定した記録再生を実現するためには、高精度な角度精度、位置精度が必要である。さらに、均一な強度分布や良好な波面収差も必要となる。しかし、実際のホログラフィックメモリ装置では、温度、湿度、振動等の外乱(以下、外乱と呼ぶ)や経時変化により、記録再生性能の劣化を引き起こす光学部品の角度ずれ、位置ずれが発生するという課題がある。 In order to realize stable recording / reproduction in the holographic memory, high angular accuracy and positional accuracy are required. In addition, a uniform intensity distribution and good wavefront aberration are required. However, in an actual holographic memory device, there is a problem in that the optical component causes an angular deviation and a positional deviation that cause deterioration in recording and reproducing performance due to disturbances such as temperature, humidity, and vibration (hereinafter referred to as disturbances) and changes with time. There is.
 特許文献1は、シフト多重方式のホログラム記録再生装置において、対物レンズの入射瞳面の手前に設置された光軸位置可変手段により、対物レンズと立上げミラーを一体にせずとも、対物レンズのトラッキングサーボによる記録媒体との相対位置変化に追従して対物レンズとレーザ光の光軸位置の関係を一定に保つように、光軸位置可変手段で光軸位置を制御するものである。すなわち、シフト多重方式特有の対物レンズと記録媒体との相対位置変化に対応した、対物レンズの入射瞳面の手前に設置された光軸位置可変手段を開示している。しかし、特許文献1の場合、対物レンズに至る光路中の個々の光学部品の角度ずれ、位置ずれが発生した場合については考慮されておらず、それらを補正できないため、記録再生性能が劣化してしまうことが課題となる。 Patent Document 1 discloses a shift multiplex type hologram recording / reproducing apparatus that uses an optical axis position variable means installed in front of an entrance pupil plane of an objective lens to track the objective lens without integrating the objective lens and the rising mirror. The optical axis position is controlled by the optical axis position variable means so that the relationship between the objective lens and the optical axis position of the laser beam is kept constant following the change in the relative position with the recording medium by the servo. That is, an optical axis position varying means installed in front of the entrance pupil plane of the objective lens, corresponding to a relative position change between the objective lens and the recording medium peculiar to the shift multiplexing system is disclosed. However, in the case of Patent Document 1, no consideration is given to the case where angular deviation or positional deviation of individual optical components in the optical path leading to the objective lens occurs, and since these cannot be corrected, the recording / reproducing performance deteriorates. It becomes a problem.
 本発明はホログラム記録再生装置またはホログラム再生装置内の光学系で、光学部品の角度ずれ、位置ずれに伴う光軸の傾き、位置ずれを補正し、安定した記録または再生を行うことができるホログラム記録再生装置及びそれに用いる光学部品の光軸補正方法を提供することを目的とする。 The present invention is a hologram recording / reproducing apparatus or an optical system in the hologram reproducing apparatus, which corrects the angle deviation of the optical component, the inclination of the optical axis accompanying the position deviation, and the position deviation, and can perform stable recording or reproduction. It is an object of the present invention to provide a reproducing apparatus and an optical axis correction method for optical components used therefor.
 上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。本発明は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、2光束角度多重方式のホログラム記録再生装置であって、光ビームを出射する光源部と、光源部から出射した光ビームを信号光と参照光に分岐する分岐部と、光情報記録媒体に信号光を照射するための第一のレンズ部と、光情報記録媒体内の信号光と略同じ位置に参照光を入射する第二のレンズ部と、光情報記録媒体に入射する参照光の入射角度を変えるための光路角度可変部と、光源部から第一のレンズ部または第二のレンズ部に至る光路中の光学部品と、を備えており、光学部品への入射光の傾きまたは位置を変化させる光軸可変部を備える構成とする。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present invention includes a plurality of means for solving the above-mentioned problems. For example, a two-beam angle multiplexing type hologram recording / reproducing apparatus, which includes a light source unit that emits a light beam, and a light source unit that emits light from the light source unit. A branching portion for branching the light beam into signal light and reference light, a first lens portion for irradiating the optical information recording medium with signal light, and reference light at substantially the same position as the signal light in the optical information recording medium In the optical path from the light source unit to the first lens unit or the second lens unit, and the optical path angle variable unit for changing the incident angle of the reference light incident on the optical information recording medium. And an optical axis variable unit that changes the inclination or position of the incident light on the optical component.
 本発明によれば、光学部品の位置ずれ、角度ずれに伴う光軸の傾き、位置ずれを補正し、安定した記録または再生を行うことができるホログラム記録再生装置及びそれに用いる光学部品の光軸補正方法を提供することができる。 According to the present invention, a hologram recording / reproducing apparatus capable of performing stable recording or reproduction by correcting optical axis tilt and positional deviation caused by positional deviation and angular deviation of optical components, and optical axis correction of optical components used therefor. A method can be provided.
実施例1におけるホログラム記録再生装置の構成図である。1 is a configuration diagram of a hologram recording / reproducing apparatus in Embodiment 1. FIG. 実施例1におけるホログラム記録再生装置内の光ピックアップ装置と位相共役光学系の構成図である。1 is a configuration diagram of an optical pickup device and a phase conjugate optical system in a hologram recording / reproducing apparatus in Embodiment 1. FIG. 実施例1における光軸可変部35を説明する図である。It is a figure explaining the optical axis variable part 35 in Example 1. FIG. 実施例1における光軸可変部35の別の構成を説明する図である。6 is a diagram illustrating another configuration of the optical axis variable unit 35 in Embodiment 1. FIG. 実施例1における別の光ピックアップ装置の構成図である。6 is a configuration diagram of another optical pickup device in Embodiment 1. FIG. 実施例1における光軸可変部35の別の構成を説明する図である。6 is a diagram illustrating another configuration of the optical axis variable unit 35 in Embodiment 1. FIG. 実施例1における光軸可変部35のさらに別の構成を説明する図である。FIG. 10 is a diagram illustrating still another configuration of the optical axis variable unit 35 in the first embodiment. 実施例2における光ピックアップ装置の構成図である。5 is a configuration diagram of an optical pickup device in Embodiment 2. FIG. 実施例3における光ピックアップ装置の構成図である。6 is a configuration diagram of an optical pickup device in Embodiment 3. FIG. 実施例3における光軸可変部120を説明する図である。It is a figure explaining the optical axis variable part 120 in Example 3. FIG. 実施例4における光ピックアップ装置の構成図である。6 is a configuration diagram of an optical pickup device in Embodiment 4. FIG. 実施例5における光ピックアップ装置の構成図である。FIG. 10 is a configuration diagram of an optical pickup device in Embodiment 5. 実施例5における光軸可変部15を説明する図である。It is a figure explaining the optical axis variable part 15 in Example 5. FIG. 実施例6における光ピックアップ装置の構成図である。FIG. 10 is a configuration diagram of an optical pickup device in Example 6. 実施例6における強度分布変換レンズ16を説明する図である。FIG. 10 is a diagram illustrating an intensity distribution conversion lens 16 in Example 6. 実施例6における調整用媒体301を説明する図である。FIG. 10 is a diagram illustrating an adjustment medium 301 in Embodiment 6. 実施例6における別の検出方法を説明する図である。It is a figure explaining another detection method in Example 6. FIG. 実施例7における光ピックアップ装置の構成図である。FIG. 10 is a configuration diagram of an optical pickup device in Example 7. 実施例7における参照光の補正方法を説明する図である。FIG. 10 is a diagram illustrating a reference light correction method according to a seventh embodiment. 実施例8における調整フローを示す図である。FIG. 10 is a diagram illustrating an adjustment flow in Example 8. 実施例9における調整フローを示す図である。It is a figure which shows the adjustment flow in Example 9. FIG.
 図1は本実施例に係るホログラム記録再生装置の全体的な構成を示したものである。ホログラム記録再生装置は、例えば図2に示す光ピックアップ装置60、位相共役光学系512、光情報記録媒体Cure光学系513、光情報記録媒体駆動素子70を備えている。 FIG. 1 shows an overall configuration of a hologram recording / reproducing apparatus according to the present embodiment. The hologram recording / reproducing apparatus includes, for example, an optical pickup device 60, a phase conjugate optical system 512, an optical information recording medium Cure optical system 513, and an optical information recording medium driving element 70 shown in FIG.
 光ピックアップ装置60は、参照光と信号光を光情報記録媒体300に出射し、ホログラムを利用してデジタル情報を記録する役割を果たす。この際、記録する情報信号はコントローラ89によって信号生成回路86を介して光ピックアップ装置60内の空間光変調器(SLM)25に送り込まれ、信号光は空間光変調器25によって変調される。光情報記録媒体300に記録した情報を再生する場合は、光ピックアップ装置60から出射された参照光の位相共役光を位相共役光学系512によって生成する。ここで、位相共役光学系512とは、例えば図2のガルバノミラー51を示す。また位相共役光とは、入力光と同一の波面を保ちながら逆方向に進む光ビームのことである。 The optical pickup device 60 plays a role of emitting reference light and signal light to the optical information recording medium 300 and recording digital information using a hologram. At this time, the information signal to be recorded is sent to the spatial light modulator (SLM) 25 in the optical pickup device 60 by the controller 89 via the signal generation circuit 86, and the signal light is modulated by the spatial light modulator 25. When reproducing information recorded on the optical information recording medium 300, the phase conjugate light of the reference light emitted from the optical pickup device 60 is generated by the phase conjugate optical system 512. Here, the phase conjugate optical system 512 indicates, for example, the galvanometer mirror 51 of FIG. The phase conjugate light is a light beam that travels in the opposite direction while maintaining the same wavefront as the input light.
 位相共役光によって再生される再生光を光ピックアップ装置60内の撮像素子52によって検出し、信号処理回路85によって信号を再生する。光情報記録媒体300に照射する参照光と信号光の照射時間は、光ピックアップ装置60内のシャッタの開閉時間をコントローラ89によってシャッタ制御回路87を介して制御することで調整できる。 The reproduction light reproduced by the phase conjugate light is detected by the image sensor 52 in the optical pickup device 60, and the signal is reproduced by the signal processing circuit 85. The irradiation time of the reference light and the signal light applied to the optical information recording medium 300 can be adjusted by controlling the opening / closing time of the shutter in the optical pickup device 60 via the shutter control circuit 87 by the controller 89.
 Cure光学系513は、光情報記録媒体300のプリキュアおよびポストキュアに用いる光ビームを生成する役割を果たす。ここでプリキュアとは、光情報記録媒体300内の所望の位置に情報を記録する際、所望位置に参照光と信号光を照射する前に予め所定の光ビームを照射する前工程の事である。またポストキュアとは、光情報記録媒体300内の所望の位置に情報を記録した後、所望の位置を追記不可能とするために所定の光ビームを照射する後工程の事である。 The Cure optical system 513 plays a role of generating a light beam used for pre-cure and post-cure of the optical information recording medium 300. Here, the pre-cure is a pre-process in which, when information is recorded at a desired position in the optical information recording medium 300, a predetermined light beam is irradiated in advance before the reference light and signal light are irradiated to the desired position. . Post-cure is a post-process in which, after recording information at a desired position in the optical information recording medium 300, a predetermined light beam is irradiated so that the desired position cannot be additionally recorded.
 光源駆動回路82からは所定の光源駆動電流が光ピックアップ装置60、光情報記録媒体Cure光学系513内の光源に供給され、各々の光源からは所定の光量で光ビームを発光することができる。 A predetermined light source driving current is supplied from the light source driving circuit 82 to the light sources in the optical pickup device 60 and the optical information recording medium Cure optical system 513, and each light source can emit a light beam with a predetermined light amount.
 また、光ピックアップ装置60内で経時・温度変化による光軸の傾き、位置ずれが起こった場合、その光軸の傾き、位置ずれを検出し、コントローラ89を介して光軸可変部制御回路90によって光ピックアップ装置60内の光軸可変部を駆動し、光軸の傾き、位置ずれを補正する。 Further, when an optical axis tilt or position shift occurs due to a change in temperature or temperature in the optical pickup device 60, the optical axis tilt or position shift is detected, and the optical axis variable unit control circuit 90 detects the optical axis tilt or position shift. The optical axis variable unit in the optical pickup device 60 is driven to correct the optical axis inclination and positional deviation.
 なお、ここでは光ピックアップ装置60、位相共役光学系512、光情報記録媒体Cure光学系513を独立に示したが、いくつかの光学系構成または全ての光学系構成をひとつにまとめて簡素化しても構わない。 Here, the optical pickup device 60, the phase conjugate optical system 512, and the optical information recording medium Cure optical system 513 are shown independently. However, some optical system configurations or all optical system configurations may be simplified as one. It doesn't matter.
 図2は本実施例の2光束角度多重方式のホログラム記録再生装置内の光ピックアップ装置60、位相共役光学系512を示したものである。図2を用いて本実施例の記録、再生方法について説明する。 FIG. 2 shows the optical pickup device 60 and the phase conjugate optical system 512 in the hologram recording / reproducing apparatus of the two-beam angle multiplexing system of this embodiment. The recording / reproducing method of this embodiment will be described with reference to FIG.
 まず、本実施例の記録方法について説明する。光源10を出射した光ビームはコリメートレンズ11を透過し、所望のビーム径に変換された後、リレーレンズ13とリレーレンズ13内に配置されたピンホール14を透過する。ホログラムの記録再生では、強度分布の不均一性が記録再生性能を劣化させるため、本実施例ではリレーレンズ13およびピンホール14を用いて光ビームの強度分布から不要な周波数成分を取り除いている。 First, the recording method of this embodiment will be described. The light beam emitted from the light source 10 passes through the collimator lens 11 and is converted into a desired beam diameter, and then passes through the relay lens 13 and the pinhole 14 disposed in the relay lens 13. In hologram recording / reproduction, the non-uniformity of the intensity distribution deteriorates the recording / reproduction performance. Therefore, in this embodiment, unnecessary frequency components are removed from the intensity distribution of the light beam using the relay lens 13 and the pinhole 14.
 リレーレンズ13を出射した光ビームは、強度分布変換レンズ16に入射する。強度分布変換レンズ16は、強度分布変換部として機能し、略ガウシアン分布の強度分布をトップハット形状の均一な強度分布に変換するレンズである。上記したようにホログラムの記録再生では、光ビームの強度分布が均一であることが望ましい。そこで本実施例では強度分布変換レンズ16を用いて均一な強度分布を実現している。強度分布変換レンズ16を出射した光ビームはシャッタ17を経て、偏光可変素子18に入射する。偏光可変素子18に入射した光ビームは偏光可変素子18によってP偏光成分とS偏光成分を含む偏光に変換される。偏光可変素子18は記録または再生に応じて所定の偏光に変換する素子である。本実施例の偏光可変素子18は、出射光を記録時にはP偏光成分とS偏光成分を含む偏光に変換し、再生時にはS偏光に変換する。 The light beam emitted from the relay lens 13 enters the intensity distribution conversion lens 16. The intensity distribution conversion lens 16 functions as an intensity distribution conversion unit, and is a lens that converts an intensity distribution of a substantially Gaussian distribution into a uniform intensity distribution having a top hat shape. As described above, in hologram recording / reproduction, it is desirable that the intensity distribution of the light beam be uniform. Therefore, in this embodiment, the intensity distribution conversion lens 16 is used to realize a uniform intensity distribution. The light beam emitted from the intensity distribution conversion lens 16 enters the polarization variable element 18 through the shutter 17. The light beam incident on the polarization variable element 18 is converted by the polarization variable element 18 into polarized light including a P polarization component and an S polarization component. The polarization variable element 18 is an element that converts the light into predetermined polarized light according to recording or reproduction. The polarization variable element 18 of this embodiment converts the emitted light into polarized light including a P-polarized component and an S-polarized component during recording, and converts it into S-polarized light during reproduction.
 偏光可変素子18を出射した光ビームはPBSプリズム19に入射し、P偏光成分は透過、S偏光成分は反射する。ここで、PBSプリズム19を透過した光ビームを信号光、反射した光ビームを参照光と呼ぶ。また、光源10からPBSプリズム19に至る光路を共通光路、PBSプリズム19から空間光変調器25を経て光情報記録媒体300に至る光路を信号光路、PBSプリズム19からガルバノミラー37を経てガルバノミラー51に至る光路を参照光路と呼ぶ。 The light beam emitted from the polarization variable element 18 enters the PBS prism 19, and the P-polarized component is transmitted and the S-polarized component is reflected. Here, the light beam transmitted through the PBS prism 19 is called signal light, and the reflected light beam is called reference light. The optical path from the light source 10 to the PBS prism 19 is a common optical path, the optical path from the PBS prism 19 to the optical information recording medium 300 via the spatial light modulator 25 is a signal optical path, and the galvanomirror 51 from the PBS prism 19 to the galvanomirror 37. The optical path leading to is called the reference optical path.
 PBSプリズム19を透過した信号光は、ビームエキスパンダ21に入射し、所望のビーム径に変換される。ビームエキスパンダ21を透過した信号光は、位相マスク22、リレーレンズ23、PBSプリズム24を経て空間光変調器25に入射する。空間光変調器25は、信号光に2次元データを付加する光学素子である。 The signal light transmitted through the PBS prism 19 enters the beam expander 21 and is converted into a desired beam diameter. The signal light transmitted through the beam expander 21 enters the spatial light modulator 25 through the phase mask 22, the relay lens 23, and the PBS prism 24. The spatial light modulator 25 is an optical element that adds two-dimensional data to signal light.
 そして空間光変調器25によって情報を付加された信号光は、PBSプリズム24を反射し、リレーレンズ26を経て、リレーレンズ26内の開口27に入射する。開口27は、光情報記録媒体300の記録密度を高めるため、空間光変調器25で付加した信号光の高周波数成分を除去する目的で配置されている。開口27を出射した信号光は対物レンズ29を経て、光情報記録媒体300内に集光する。 The signal light to which information is added by the spatial light modulator 25 is reflected by the PBS prism 24 and enters the opening 27 in the relay lens 26 via the relay lens 26. The opening 27 is disposed for the purpose of removing the high frequency component of the signal light added by the spatial light modulator 25 in order to increase the recording density of the optical information recording medium 300. The signal light emitted from the opening 27 is condensed in the optical information recording medium 300 through the objective lens 29.
 一方、PBSプリズム19を反射した参照光は、ミラー32、ミラー33、1/2波長板34、光軸可変部35、ピッチコレクタ36、ガルバノミラー37、スキャナレンズ39を経て、光情報記録媒体300に入射する。ここで、ガルバノミラー37は、光情報記録媒体に入射する参照光の入射角度を変えるための光路角度可変部として機能し、回転軸Pを回転軸としてミラーの角度を変えることでスキャナレンズへの入射角度を変えることができる。また、スキャナレンズ39は、ガルバノミラー37を反射した所定角度の参照光を光情報記録媒体300内の略同じ位置に所定角度で入射させることができるレンズである。これにより、ガルバノミラー37、スキャナレンズ39を用いて光情報記録媒体300内の略同じ位置に角度多重を実現することができる。なお、ピッチコレクタ36は、入射した参照光の光軸をガルバノミラー37が傾ける方向に対して垂直方向に傾けることができる。これにより、光情報記録媒体300が傾いて取り付けられた場合であっても、ガルバノミラー37、ピッチコレクタ36を用いることでその傾きを補正することができる。 On the other hand, the reference light reflected from the PBS prism 19 passes through the mirror 32, the mirror 33, the half-wave plate 34, the optical axis variable unit 35, the pitch collector 36, the galvano mirror 37, and the scanner lens 39, and the optical information recording medium 300. Is incident on. Here, the galvanometer mirror 37 functions as an optical path angle changing unit for changing the incident angle of the reference light incident on the optical information recording medium, and changes the mirror angle with the rotation axis P as the rotation axis, thereby changing the angle of the mirror. The incident angle can be changed. In addition, the scanner lens 39 is a lens that allows reference light having a predetermined angle reflected by the galvanometer mirror 37 to be incident at substantially the same position in the optical information recording medium 300 at a predetermined angle. Thereby, angle multiplexing can be realized at substantially the same position in the optical information recording medium 300 using the galvanometer mirror 37 and the scanner lens 39. The pitch collector 36 can tilt the optical axis of the incident reference light in a direction perpendicular to the direction in which the galvanometer mirror 37 tilts. Thus, even when the optical information recording medium 300 is mounted with an inclination, the inclination can be corrected by using the galvanometer mirror 37 and the pitch collector 36.
 このとき、光情報記録媒体300には、収束光の信号光と平行光の参照光が、互いに重ね合うように入射されている。これにより、光情報記録媒体300内には干渉縞が形成され、この干渉縞が光情報記録媒体300内の記録材料にホログラムとして記録される。 At this time, the signal light of the convergent light and the reference light of the parallel light are incident on the optical information recording medium 300 so as to overlap each other. Thereby, interference fringes are formed in the optical information recording medium 300, and the interference fringes are recorded as holograms on the recording material in the optical information recording medium 300.
 そして、光情報記録媒体300内に情報が記録された後、シャッタ17が閉じ、次に光情報記録媒体300内に記録される情報が空間光変調器25によって表示される。同時に、ガルバノミラー37が微小量回転し、光情報記録媒体300への参照光の入射角度が変更される。その後、シャッタ17が開くと、光情報記録媒体300内の略同じ位置に、次の2次元データが記録される。これを繰り返して角度多重記録が行なわれる。そして、所定多重数になった場合には、光情報記録媒体300の位置を移動し、さらに記録を行なう。ここで、略同じ位置に角度多重で記録されたそれぞれの情報をページと呼び、角度多重で記録された領域をブックと呼ぶ。 After the information is recorded in the optical information recording medium 300, the shutter 17 is closed, and the information recorded in the optical information recording medium 300 is displayed by the spatial light modulator 25. At the same time, the galvanometer mirror 37 rotates by a small amount, and the incident angle of the reference light to the optical information recording medium 300 is changed. Thereafter, when the shutter 17 is opened, the next two-dimensional data is recorded at substantially the same position in the optical information recording medium 300. This is repeated to perform angle multiplex recording. When the predetermined multiplexing number is reached, the position of the optical information recording medium 300 is moved, and further recording is performed. Here, each piece of information recorded by angle multiplexing at substantially the same position is called a page, and an area recorded by angle multiplexing is called a book.
 次に再生方法について説明する。光源10を出射した光ビームはコリメートレンズ11を透過し、所望のビーム径に変換された後、リレーレンズ13、リレーレンズ13内のピンホール14、強度分布変換レンズ16、シャッタ17を経て、偏光可変素子18に入射する。そして、光ビームは偏光可変素子18によってS偏光に変換され、PBSプリズム19を反射する。PBSプリズム19を反射した参照光は、ミラー32、ミラー33、1/2波長板34、光軸可変部35、ピッチコレクタ36、ガルバノミラー37、スキャナレンズ39、光情報記録媒体300、1/4波長板50を経てガルバノミラー51に入射する。 Next, the playback method will be described. The light beam emitted from the light source 10 passes through the collimator lens 11 and is converted into a desired beam diameter, and then passes through the relay lens 13, the pinhole 14 in the relay lens 13, the intensity distribution conversion lens 16, and the shutter 17, and then polarized. The light enters the variable element 18. Then, the light beam is converted into S-polarized light by the polarization variable element 18 and reflected by the PBS prism 19. The reference light reflected from the PBS prism 19 is mirror 32, mirror 33, half-wave plate 34, optical axis variable section 35, pitch collector 36, galvano mirror 37, scanner lens 39, optical information recording medium 300, 1/4. The light enters the galvanometer mirror 51 through the wave plate 50.
 ガルバノミラー51は、入射した参照光がガルバノミラー51に対して略垂直となるようコントローラ89によって制御されており、入射した参照光は略反対方向に反射され、1/4波長板50を経て、再度光情報記録媒体300に入射する。ここで、参照光が光情報記録媒体300内の所定ブックに入射すると光情報記録媒体300内のホログラムから回折光である再生光が発生する。 The galvanometer mirror 51 is controlled by the controller 89 so that the incident reference light is substantially perpendicular to the galvanometer mirror 51. The incident reference light is reflected in a substantially opposite direction, passes through the quarter-wave plate 50, and The light enters the optical information recording medium 300 again. Here, when the reference light is incident on a predetermined book in the optical information recording medium 300, reproduction light that is diffracted light is generated from the hologram in the optical information recording medium 300.
 再生光は、対物レンズ29、リレーレンズ26、リレーレンズ内の開口27、PBSプリズム24を経て、撮像素子52に入射する。そして撮像素子52に入射した再生光に基づいて、2次元データが再生される。 Reproduced light enters the image sensor 52 through the objective lens 29, the relay lens 26, the opening 27 in the relay lens, and the PBS prism 24. Then, two-dimensional data is reproduced based on the reproduction light incident on the image sensor 52.
 次にガルバノミラー37、ガルバノミラー51が微小量回転して、光情報記録媒体300への参照光の入射角度が変更される。これにより、同じブック内の異なるページの2次元データが撮像素子52によって再生される。そして、所定のページ数を再生し終わった場合には、光情報記録媒体300の位置を移動し、次のブックの再生を行う。 Next, the galvanometer mirror 37 and the galvanometer mirror 51 are rotated by a minute amount, and the incident angle of the reference light to the optical information recording medium 300 is changed. Thereby, two-dimensional data of different pages in the same book is reproduced by the image sensor 52. When the predetermined number of pages have been reproduced, the position of the optical information recording medium 300 is moved and the next book is reproduced.
 このような、ホログラム記録再生装置において、本実施例では、ホログラム記録再生装置内の光学系での光学部品の位置ずれ、角度ずれに伴う光軸の傾き、位置ずれを補正し、安定した記録再生または再生を行うことができるホログラム記録再生装置またはホログラム再生装置を提供する。 In such a hologram recording / reproducing apparatus, in this embodiment, stable optical recording / reproducing is performed by correcting optical component positional deviation, optical axis inclination and positional deviation caused by angular deviation in the optical system in the hologram recording / reproducing apparatus. Alternatively, a hologram recording / reproducing apparatus or a hologram reproducing apparatus that can perform reproduction is provided.
 ホログラム記録再生装置の記録性能を確保するためは、光情報記録媒体300内の信号光と参照光の照射位置の相対位置ずれを所定量以下に抑える必要がある。ところが、実際のホログラム記録再生装置は光学部品の数が多いことと、光路長が長いことにより光情報記録媒体300内の信号光と参照光の照射位置の相対位置ずれを光学部品の取付けのみで所定量以下に管理することが困難である。このため本実施例では、記録時の光情報記録媒体300内の信号光と参照光の照射位置の相対位置ずれを補正している。以下、その補正手段について説明する。なお、以下、光情報記録媒体300内の信号光と参照光の照射位置の相対位置ずれを光情報記録媒体300内の信号光と参照光の相対位置ずれと呼ぶ。 In order to ensure the recording performance of the hologram recording / reproducing apparatus, it is necessary to suppress the relative displacement between the irradiation positions of the signal light and the reference light in the optical information recording medium 300 to a predetermined amount or less. However, since the actual hologram recording / reproducing apparatus has a large number of optical components and a long optical path length, the relative displacement between the irradiation positions of the signal light and the reference light in the optical information recording medium 300 can be achieved only by mounting the optical components. It is difficult to manage below a predetermined amount. Therefore, in this embodiment, the relative positional deviation between the irradiation positions of the signal light and the reference light in the optical information recording medium 300 at the time of recording is corrected. Hereinafter, the correction means will be described. Hereinafter, the relative positional deviation between the irradiation position of the signal light and the reference light in the optical information recording medium 300 is referred to as the relative positional deviation between the signal light and the reference light in the optical information recording medium 300.
 外乱や経時変化によって光学部品の角度ずれ、位置ずれが発生した場合、理想的には部品ごとに補正した方が良い。ただし、実際にはホログラム記録再生装置の光学部品が多いため、角度ずれ、位置ずれした全ての光学部品を補正するわけにはいかない。そこで、本実施例では、光学部品の角度ずれ、位置ずれによって発生した光軸の傾き、位置ずれを補正する光軸可変部をホログラム記録再生装置内に配置している。 ¡If there is an angular shift or misalignment of the optical component due to disturbance or changes over time, it is ideally corrected for each component. However, since there are actually a large number of optical components in the hologram recording / reproducing apparatus, it is not possible to correct all the optical components that are misaligned or misaligned. Therefore, in this embodiment, an optical axis variable unit that corrects the optical axis inclination and the positional deviation caused by the angular deviation and positional deviation of the optical component is arranged in the hologram recording / reproducing apparatus.
 以下、記録時の光情報記録媒体300内の信号光と参照光の相対位置ずれの補正方法について説明を行う。図3に本実施例の光軸可変部35の補正方法について示している。図3(A-1)、(A-2)は、初期状態を示しており、(B-1)、(B-2)は、外乱や経時変化によってガルバノミラー37に入射する参照光の位置がずれた状態を示しており、(C-1)、(C-2)は、それを補正した状態を示している。そして、(A-1)、(B-1)、(C-1)は、光軸可変部35、光軸可変部35内の平行平板105、ガルバノミラー37、スキャナレンズ39の位置関係およびそのときの参照光R、参照光Rの光軸R1を示しており、図中の一点鎖線は、スキャナレンズ39の中心軸Qを示している。また、(A-2)、(B-2)、(C-2)は、光情報記録媒体300内の記録材料部分の信号光Sと参照光Rの位置関係を示している。 Hereinafter, a method for correcting the relative positional deviation between the signal light and the reference light in the optical information recording medium 300 during recording will be described. FIG. 3 shows a correction method of the optical axis variable unit 35 of the present embodiment. FIGS. 3A-1 and 3A-2 show the initial state, and FIGS. 3B-1 and 2B-2 show the position of the reference light incident on the galvanomirror 37 due to disturbance or change over time. (C-1) and (C-2) show the corrected states. (A-1), (B-1), and (C-1) are the optical axis variable unit 35, the parallel plate 105 in the optical axis variable unit 35, the galvanometer mirror 37, the scanner lens 39 and the positional relationship thereof. The reference beam R and the optical axis R1 of the reference beam R are shown, and the alternate long and short dash line in the figure shows the central axis Q of the scanner lens 39. Also, (A-2), (B-2), and (C-2) show the positional relationship between the signal light S and the reference light R in the recording material portion in the optical information recording medium 300.
 本来、図3(A-2)のように光情報記録媒体300内の記録材料部分の信号光Sの照射位置S1と参照光Rの照射位置R2が一致している状態が望ましい。そのために、初期状態では、図3(A-1)のように、参照光の光軸R1とスキャナレンズ39の中心軸Qが合っている状態となっているとする。この状態から、外乱、経時変化によって、(B-1)のようにガルバノミラー37に入射する参照光Rの光軸R1の位置がずれた場合には、(B-2)のように光情報記録媒体300内の記録材料部分の信号光Sの照射位置S1と参照光Rの照射位置R2がずれる。それに対し、(C-1)は、(B-1)の状態から平行平板105を光軸に対して傾けている。本実施例の光軸可変部35は、少なくとも平行平板105と回転機構から構成されており、平行平板105が回転機構によって参照光の光軸に対して傾くことで、平行平板105を出射する参照光の光軸を平行方向に変位させることができる。これにより、ガルバノミラー37に入射する参照光の位置を初期状態と同じ位置にすることができ、結果として(C-2)のように光情報記録媒体300内の記録材料部分の信号光Sの照射位置S1と参照光Rの照射位置R2を一致させることができる。 Originally, it is desirable that the irradiation position S1 of the signal light S and the irradiation position R2 of the reference light R in the recording material portion in the optical information recording medium 300 coincide with each other as shown in FIG. Therefore, in the initial state, it is assumed that the optical axis R1 of the reference light and the central axis Q of the scanner lens 39 are aligned as shown in FIG. When the position of the optical axis R1 of the reference light R incident on the galvanometer mirror 37 is shifted as shown in (B-1) due to disturbance or change with time from this state, the optical information as shown in (B-2). The irradiation position S1 of the signal light S and the irradiation position R2 of the reference light R of the recording material portion in the recording medium 300 are shifted. On the other hand, (C-1) inclines the parallel plate 105 with respect to the optical axis from the state (B-1). The optical axis variable unit 35 of this embodiment includes at least a parallel plate 105 and a rotation mechanism, and the parallel plate 105 is emitted from the parallel plate 105 by being inclined with respect to the optical axis of the reference light by the rotation mechanism. The optical axis of light can be displaced in the parallel direction. Thereby, the position of the reference light incident on the galvanometer mirror 37 can be made the same position as the initial state, and as a result, the signal light S of the recording material portion in the optical information recording medium 300 as shown in (C-2). The irradiation position S1 and the irradiation position R2 of the reference light R can be matched.
 以上のように、本実施例では光情報記録媒体300に入射する参照光の光軸を平行方向に変位させることにより、光情報記録媒体300内の信号光と参照光の相対位置ずれを補正する。これにより、外乱や経時変化があった場合であっても安定した記録再生を行うことが可能となる。 As described above, in this embodiment, the relative position shift between the signal light and the reference light in the optical information recording medium 300 is corrected by displacing the optical axis of the reference light incident on the optical information recording medium 300 in the parallel direction. . This makes it possible to perform stable recording and reproduction even when there are disturbances and changes with time.
 本実施例では、光軸可変部35内の平行平板105が参照光の光軸に対して傾くことにより、参照光の光軸を平行方向に変位させ、光情報記録媒体300内の信号光と参照光の相対位置ずれを補正した。ただし、補正方法はそれだけに限らず、光軸可変部35を用いて参照光の光軸を傾けることで、光情報記録媒体300内の信号光と参照光の相対位置ずれを補正しても良い。例えば、図4のように平行平板105をウェッジプリズム104に変えることで実現できる。なお、ウェッジプリズム104は、参照光の光軸に対して傾けることで、ウェッジプリズム104を出射した参照光の光軸を傾けることができる特徴がある。 In the present embodiment, the parallel plate 105 in the optical axis variable unit 35 is tilted with respect to the optical axis of the reference light, thereby displacing the optical axis of the reference light in the parallel direction and the signal light in the optical information recording medium 300. The relative positional deviation of the reference beam was corrected. However, the correction method is not limited thereto, and the relative position shift between the signal light and the reference light in the optical information recording medium 300 may be corrected by tilting the optical axis of the reference light using the optical axis variable unit 35. For example, it can be realized by changing the parallel plate 105 to the wedge prism 104 as shown in FIG. Note that the wedge prism 104 is characterized in that the optical axis of the reference light emitted from the wedge prism 104 can be tilted by being inclined with respect to the optical axis of the reference light.
 図4(A-1)、(A-2)は、初期状態を示しており、(B-1)、(B-2)は、外乱や経時変化によってガルバノミラー37に入射する参照光の位置がずれた状態を示しており、(C-1)、(C-2)は、それを補正した状態を示している。そして、(A-1)、(B-1)、(C-1)は、光軸可変部35、光軸可変部35内のウェッジプリズム104、ガルバノミラー37、スキャナレンズ39の位置関係およびそのときの参照光R、参照光Rの光軸R1を示しており、図中の一点鎖線は、スキャナレンズ39の中心軸Qを示している。また、(A-2)、(B-2)、(C-2)は、光情報記録媒体300内の記録材料部分の信号光Sと参照光Rの位置関係を示している。 4 (A-1) and (A-2) show the initial state, and (B-1) and (B-2) show the position of the reference light incident on the galvanomirror 37 due to disturbance and changes over time. (C-1) and (C-2) show the corrected states. (A-1), (B-1), and (C-1) are the positional relationship between the optical axis variable unit 35, the wedge prism 104, the galvano mirror 37, and the scanner lens 39 in the optical axis variable unit 35, and The reference beam R and the optical axis R1 of the reference beam R are shown, and the alternate long and short dash line in the figure shows the central axis Q of the scanner lens 39. Also, (A-2), (B-2), and (C-2) show the positional relationship between the signal light S and the reference light R in the recording material portion in the optical information recording medium 300.
 外乱や経時変化によって図4(B-1)のようにガルバノミラー37に入射する参照光の位置がずれてしまった場合、(B-2)のように光情報記録媒体300内の記録材料部分の信号光Sの照射位置S1と参照光Rの照射位置R2がずれる。そこで、本実施例では、ウェッジプリズム104を光軸に対して傾けることで参照光の光軸を傾け、(C-1)のようにガルバノミラー37に入射する参照光の位置を変えている。これにより、(C-2)のように光情報記録媒体300内の記録材料部分の信号光Sの照射位置S1と参照光Rの照射位置R2を一致させることができる。この場合、ガルバノミラー37を反射する参照光の角度がウェッジプリズム104の参照光の出射光の光軸の傾きに応じて変化してしまう課題がある。これに対しては、記録再生時に予めその入射角度をガルバノミラー37の補正量として加えることで平行平板105のときと同様の記録再生が可能となる。また、ウェッジプリズム104はウェッジプリズム104の傾き量に対する光軸の傾きの変化量は小さいため、高精度の補正ができる特徴がある。さらに、ウェッジプリズム104とガルバノミラー37の間の距離を大きくすることで、平行平板105よりも、補正範囲を大きくすることができる利点がある。
なお、図3、図4は光学部品に対する外乱・経時変化により、ガルバノミラー37への参照光の入射位置がずれることを想定しているが、これには限定されない。例えば対物レンズ29などの位置ずれにより、光情報記録媒体300内の信号光の照射位置がずれた場合には、光軸可変部35を用いて意図的にガルバノミラー37への参照光の入射位置を変えることで光情報記録媒体300内の信号光と参照光の相対位置ずれを補正することができる。
When the position of the reference light incident on the galvano mirror 37 is shifted as shown in FIG. 4 (B-1) due to disturbance or changes with time, the recording material portion in the optical information recording medium 300 is shown in (B-2). The irradiation position S1 of the signal light S is shifted from the irradiation position R2 of the reference light R. Therefore, in this embodiment, the optical axis of the reference light is inclined by inclining the wedge prism 104 with respect to the optical axis, and the position of the reference light incident on the galvano mirror 37 is changed as shown in (C-1). Thereby, the irradiation position S1 of the signal light S and the irradiation position R2 of the reference light R of the recording material portion in the optical information recording medium 300 can be matched as shown in (C-2). In this case, there is a problem that the angle of the reference light reflected from the galvanometer mirror 37 changes according to the inclination of the optical axis of the emitted light of the reference light from the wedge prism 104. On the other hand, by adding the incident angle as a correction amount of the galvanometer mirror 37 in advance during recording / reproducing, recording / reproducing similar to the case of the parallel plate 105 can be performed. In addition, the wedge prism 104 has a feature that the amount of change in the tilt of the optical axis with respect to the tilt amount of the wedge prism 104 is small, so that the correction can be performed with high accuracy. Furthermore, there is an advantage that the correction range can be made larger than that of the parallel plate 105 by increasing the distance between the wedge prism 104 and the galvanometer mirror 37.
3 and 4 assume that the incident position of the reference light on the galvano mirror 37 is shifted due to disturbances and changes with time of the optical component, but the present invention is not limited to this. For example, when the irradiation position of the signal light in the optical information recording medium 300 is shifted due to the positional shift of the objective lens 29 or the like, the incident position of the reference light on the galvano mirror 37 intentionally using the optical axis variable unit 35. Can be used to correct the relative positional deviation between the signal light and the reference light in the optical information recording medium 300.
 ただし、光情報記録媒体300内の信号光の照射位置のずれが大きい場合には、以下の課題が新たに生まれる。すなわち、光情報記録媒体300内の信号光の照射位置ずれが大きい場合、光情報記録媒体300内の信号光と参照光の相対位置ずれを補正するためには、ガルバノミラー37への参照光の入射位置を初期位置から大きくずらす必要がある。この場合、記録再生時にガルバノミラー37を回転するとそれに伴って、光情報記録媒体300内の参照光の照射位置が変化する課題がある。この課題を解決するためには、図5のようにガルバノミラー37とスキャナレンズ39の間に光軸可変部38を配置すれば良い。なお、光軸可変部38は、平行平板と少なくとも回転機構から構成されており、平行平板が回転機構によって参照光に対して傾くことで、光軸可変部38を出射する参照光を光軸に対して平行方向に変位させることができる。この光軸補正素子38は、光情報記録媒体300内の信号光と参照光の相対位置ずれを補正する。また、光軸補正素子38は、ガルバノミラー37に入射する参照光の位置ずれを補正することで、ガルバノミラー37が回転しても、光情報記録媒体300内の信号光と参照光の相対位置ずれを小さくすることができる。 However, when the deviation of the irradiation position of the signal light in the optical information recording medium 300 is large, the following problem is newly born. That is, when the deviation of the irradiation position of the signal light in the optical information recording medium 300 is large, in order to correct the relative positional deviation between the signal light and the reference light in the optical information recording medium 300, the reference light to the galvanometer mirror 37 is corrected. It is necessary to greatly shift the incident position from the initial position. In this case, when the galvanometer mirror 37 is rotated during recording and reproduction, there is a problem that the irradiation position of the reference light in the optical information recording medium 300 changes accordingly. In order to solve this problem, an optical axis variable unit 38 may be disposed between the galvanometer mirror 37 and the scanner lens 39 as shown in FIG. The optical axis variable unit 38 includes a parallel plate and at least a rotation mechanism. When the parallel plate is inclined with respect to the reference light by the rotation mechanism, the reference light emitted from the optical axis variable unit 38 is used as the optical axis. On the other hand, it can be displaced in a parallel direction. The optical axis correction element 38 corrects the relative positional deviation between the signal light and the reference light in the optical information recording medium 300. Further, the optical axis correction element 38 corrects the positional deviation of the reference light incident on the galvano mirror 37, so that the relative position of the signal light and the reference light in the optical information recording medium 300 even when the galvano mirror 37 rotates. Deviation can be reduced.
 なおここでは、光軸可変部35と光軸可変部38を用いて光情報記録媒体300内の信号光と参照光の相対位置ずれを補正したが、光軸可変部38のみで光情報記録媒体300内の信号光と参照光の相対位置ずれを補正しても良い。 Here, the relative positional deviation between the signal light and the reference light in the optical information recording medium 300 is corrected using the optical axis variable unit 35 and the optical axis variable unit 38. The relative positional deviation between the signal light in 300 and the reference light may be corrected.
 また、光軸可変部35、光軸可変部38の駆動方法はステッピングモータ、リニアアクチュエータ等を用いても良いし、手動やその他であっても良い。 The driving method of the optical axis variable unit 35 and the optical axis variable unit 38 may be a stepping motor, a linear actuator, or the like, or may be manual or other.
 そして、本実施例では、光軸可変部35の平行平板105を参照光の光軸に対して傾けることにより、参照光の光軸を平行方向に変位させたが、これには限定されない。例えば、光軸可変部35を図6(A)~(D)の構成としても良い。(A)は、2つ並べたウェッジプリズムの内、少なくとも1つのウェッジプリズムを移動することで入射した光軸を平行方向に変位できる。(B)は、2つ並べたレンズを同時に同じ方向に移動することで入射した光軸を平行方向に変位できる。(C)は、ミラーを動かすことで光軸を平行方向に変位できる。(D)は、2つの向かい合ったミラーを同時に動かすことで光軸を平行方向に変位できる。 In the present embodiment, the optical axis of the reference light is displaced in the parallel direction by inclining the parallel plate 105 of the optical axis variable unit 35 with respect to the optical axis of the reference light. However, the present invention is not limited to this. For example, the optical axis variable unit 35 may be configured as shown in FIGS. In (A), the incident optical axis can be displaced in the parallel direction by moving at least one of the two wedge prisms arranged side by side. In (B), the incident optical axis can be displaced in the parallel direction by simultaneously moving two lenses arranged in the same direction. In (C), the optical axis can be displaced in a parallel direction by moving the mirror. In (D), the optical axis can be displaced in a parallel direction by simultaneously moving two opposing mirrors.
 そして、本実施例では、光軸可変部35のウェッジプリズム104を参照光の光軸に対して傾けることにより、参照光の光軸を傾けたが、これには限定されない。例えば、光軸可変部35を図7(A)、(B)、(C)の構成としても良い。(A)は、2つ並べたウェッジプリズムの内、少なくとも1つのウェッジプリズムを光軸に対して傾けることで入射した光軸を傾ける。(B)は、2つ並べたレンズの内、少なくとも1つのレンズを光軸に対して垂直方向に移動することで入射した光軸を傾ける。(C)は、ミラーを傾けることで光軸を傾ける。また、例えば光軸の平行方向の変位量や傾き量を大きくもしくは小さくしたい場合には、ビームエキスパンダと組み合わせても良い。なお、図6および図7の補正手段は対物レンズ、スキャナレンズ、リレーレンズのような大きな部品を動かす場合に比べ、高精度に補正できる利点がある。 In this embodiment, the optical axis of the reference light is tilted by tilting the wedge prism 104 of the optical axis variable unit 35 with respect to the optical axis of the reference light. However, the present invention is not limited to this. For example, the optical axis variable unit 35 may be configured as shown in FIGS. 7 (A), (B), and (C). (A) tilts the incident optical axis by tilting at least one of the two wedge prisms arranged side by side with respect to the optical axis. (B) tilts the incident optical axis by moving at least one of the two lenses arranged in the direction perpendicular to the optical axis. (C) tilts the optical axis by tilting the mirror. For example, when it is desired to increase or decrease the amount of displacement or inclination in the parallel direction of the optical axis, it may be combined with a beam expander. 6 and 7 has an advantage that correction can be performed with high accuracy as compared with the case where large parts such as an objective lens, a scanner lens, and a relay lens are moved.
 以上のように、本実施例は、2光束角度多重方式のホログラム記録再生装置であって、光ビームを出射する光源部と、光源部から出射した光ビームを信号光と参照光に分岐する分岐部と、光情報記録媒体に信号光を照射するための第一のレンズ部と、光情報記録媒体内の信号光と略同じ位置に参照光を入射する第二のレンズ部と、光情報記録媒体に入射する参照光の入射角度を変えるための光路角度可変部と、光源部から第一のレンズ部または第二のレンズ部に至る光路中の光学部品と、を備えており、光学部品への入射光の傾きまたは位置を変化させる光軸可変部を備える構成とする。 As described above, the present embodiment is a two-beam angle multiplexing type hologram recording / reproducing apparatus, which includes a light source unit that emits a light beam and a branch that branches the light beam emitted from the light source unit into signal light and reference light. A first lens unit for irradiating the optical information recording medium with signal light, a second lens unit for incident reference light at substantially the same position as the signal light in the optical information recording medium, and optical information recording An optical path angle varying unit for changing the incident angle of the reference light incident on the medium, and an optical component in the optical path from the light source unit to the first lens unit or the second lens unit are provided. The optical axis variable unit that changes the inclination or the position of the incident light is provided.
 これにより、光学部品の位置ずれ、角度ずれに伴う光軸の傾き、位置ずれを補正し、安定した記録再生または再生が可能なホログラム記録再生装置またはホログラム再生装置を提供することができる。 Thereby, it is possible to provide a hologram recording / reproducing apparatus or a hologram reproducing apparatus capable of correcting the optical axis inclination and the positional deviation due to the positional deviation and angular deviation of the optical component and capable of performing stable recording / reproducing.
 図8は本実施例に係る2光束角度多重方式のホログラム記録再生装置内の光ピックアップ装置60の光学系を示したものである。本実施例は、実施例1に対して、光情報記録媒体300内の参照光の補正量が大きい特徴がある。本実施例は実施例1に対し、光軸可変部35がない点、参照光路の光学部品と光軸可変部40が追加されている点が異なる。それ以外は実施例1と同様であるため、本実施例では、実施例1との差分について説明を行う。まず、参照光路について説明を行う。 FIG. 8 shows an optical system of the optical pickup device 60 in the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to this embodiment. This embodiment is characterized in that the reference light correction amount in the optical information recording medium 300 is larger than that in the first embodiment. The present embodiment is different from the first embodiment in that the optical axis variable unit 35 is not provided and the optical component of the reference optical path and the optical axis variable unit 40 are added. Since other than that is the same as that of Example 1, a difference with Example 1 is demonstrated in a present Example. First, the reference optical path will be described.
 PBSプリズム19を反射した参照光は、ミラー32a、ミラー32b、ミラー32c、ミラー32dを反射する。ここで、ミラー32a、ミラー32b、ミラー32c、ミラー32dは参照光をz方向(図8紙面に対し垂直方向)、y方向、z方向、x方向にそれぞれ反射している。そして、ミラー32dを反射した参照光は、ミラー130、ミラー131、ミラー33、1/2波長板34、ピッチコレクタ36、ガルバノミラー37、スキャナレンズ39、光情報記録媒体300に入射する。このような光学系において、本実施例は、複数の光学部品を一つの機構部としてまとめた光軸可変部40を配置していることが特徴である。ここで光軸可変部40は、所定方向への移動が可能な位置移動機構41、位置移動機構42、位置移動機構43から構成されている。位置移動機構41は、ミラー33からスキャナレンズ39に至る光路の部品全てを搭載しており、位置移動機構42は、位置移動機構41とミラー131を搭載している。そして、位置移動機構43は、位置移動機構42、ミラー130、ミラー32dを搭載している。以下、本実施例の特徴である光情報記録媒体300内の信号光と参照光の相対位置ずれを補正する手段について説明する。 The reference light reflected from the PBS prism 19 reflects from the mirror 32a, the mirror 32b, the mirror 32c, and the mirror 32d. Here, the mirror 32a, the mirror 32b, the mirror 32c, and the mirror 32d reflect the reference light in the z direction (direction perpendicular to the paper surface of FIG. 8), the y direction, the z direction, and the x direction, respectively. The reference light reflected by the mirror 32d is incident on the mirror 130, the mirror 131, the mirror 33, the half-wave plate 34, the pitch collector 36, the galvano mirror 37, the scanner lens 39, and the optical information recording medium 300. In such an optical system, the present embodiment is characterized in that an optical axis variable unit 40 in which a plurality of optical components are combined as one mechanism unit is disposed. Here, the optical axis variable unit 40 includes a position moving mechanism 41, a position moving mechanism 42, and a position moving mechanism 43 that can move in a predetermined direction. The position moving mechanism 41 is equipped with all parts of the optical path from the mirror 33 to the scanner lens 39, and the position moving mechanism 42 is equipped with the position moving mechanism 41 and the mirror 131. The position moving mechanism 43 includes the position moving mechanism 42, the mirror 130, and the mirror 32d. The means for correcting the relative positional deviation between the signal light and the reference light in the optical information recording medium 300, which is a feature of this embodiment, will be described below.
 光軸可変部40の位置移動機構41、位置移動機構42、位置移動機構43は、移動方向41D、移動方向42D、移動方向43Dにそれぞれ移動可能である。これは、例えば位置移動機構41が移動方向41Dとは異なるy方向に移動すると、ガルバノミラー37に入射する参照光の位置がずれてしまい、結果としてガルバノミラー37の回転に伴い、光情報記録媒体300内の参照光の光軸の位置が変化してしまう。それに対し、本実施例のようにミラー33に入射する参照光と同じ方向に位置移動機構41を移動することで、ミラー33からスキャナレンズ39までの光学部品に入射する参照光の光軸の角度および位置はずれない。その一方で、位置移動機構41が対物レンズ29に対して移動することから、光情報記録媒体300内の信号光の照射位置に対して参照光の光軸の位置を移動方向41Dと同じ方向に移動することができる。また、位置移動機構41の移動に対して光学部品に入射する光軸の角度および位置ずれがないため、実施例1に対して、光情報記録媒体300内の参照光の照射位置を大きく移動させることが可能である。さらに、位置移動機構41の移動に対して光学部品に入射する光軸の角度および位置がずれないため、波面収差が発生しない利点もある。 The position moving mechanism 41, the position moving mechanism 42, and the position moving mechanism 43 of the optical axis variable unit 40 are movable in a moving direction 41D, a moving direction 42D, and a moving direction 43D, respectively. This is because, for example, when the position moving mechanism 41 moves in the y direction different from the moving direction 41D, the position of the reference light incident on the galvano mirror 37 is shifted, and as a result, the optical information recording medium is rotated along with the rotation of the galvano mirror 37. The position of the optical axis of the reference light in 300 changes. In contrast, by moving the position moving mechanism 41 in the same direction as the reference light incident on the mirror 33 as in the present embodiment, the angle of the optical axis of the reference light incident on the optical component from the mirror 33 to the scanner lens 39 is increased. And the position does not go off. On the other hand, since the position moving mechanism 41 moves relative to the objective lens 29, the position of the optical axis of the reference light in the same direction as the moving direction 41D with respect to the irradiation position of the signal light in the optical information recording medium 300. Can move. Further, since there is no angle and position shift of the optical axis incident on the optical component with respect to the movement of the position moving mechanism 41, the irradiation position of the reference light in the optical information recording medium 300 is greatly moved with respect to the first embodiment. It is possible. Furthermore, since the angle and position of the optical axis incident on the optical component does not shift with respect to the movement of the position moving mechanism 41, there is an advantage that no wavefront aberration occurs.
 これについては位置移動機構42、位置移動機構43も同様である。なお、図8上では、位置移動機構43は、ミラー32cとミラー32dを含んでいるように見えるが、実際はミラー32cは含んでおらず、位置移動機構43の入射端部品であるミラー32dへの光軸はミラー32cからのZ方向となるため、位置移動機構43の移動可能方向はZ方向である移動方向43Dに制限されている。このように本実施例では位置移動機構41、位置移動機構42、位置移動機構43を個別に移動することで光情報記録媒体300内の信号光と参照光の相対位置ずれを補正している。 This also applies to the position moving mechanism 42 and the position moving mechanism 43. In FIG. 8, the position moving mechanism 43 seems to include a mirror 32 c and a mirror 32 d, but actually does not include the mirror 32 c, and the position moving mechanism 43 is connected to the mirror 32 d that is the incident end component of the position moving mechanism 43. Since the optical axis is in the Z direction from the mirror 32c, the movable direction of the position moving mechanism 43 is limited to the moving direction 43D which is the Z direction. As described above, in this embodiment, the relative displacement between the signal light and the reference light in the optical information recording medium 300 is corrected by individually moving the position movement mechanism 41, the position movement mechanism 42, and the position movement mechanism 43.
 なお、本実施例の光軸可変部40の位置移動機構は3つであったが、移動方向を限定することで位置移動機構の数を減らしても良い。 Although there are three position movement mechanisms of the optical axis variable unit 40 of the present embodiment, the number of position movement mechanisms may be reduced by limiting the movement direction.
 また、本実施例の光軸可変部40は、大きな部品を駆動するため、実施例1に対し、光情報記録媒体300内での微小な位置の調整ができない。このため、実施例1の光軸可変部35や光軸可変部38と組み合わせることにより、光情報記録媒体300内での参照光の光軸の微小な位置補正を行っても良い。 In addition, since the optical axis variable unit 40 of this embodiment drives a large part, it is not possible to adjust a minute position in the optical information recording medium 300 with respect to the first embodiment. For this reason, the position of the optical axis of the reference light in the optical information recording medium 300 may be finely corrected by combining with the optical axis variable unit 35 and the optical axis variable unit 38 of the first embodiment.
 以上のように、本実施例は、2光束角度多重方式のホログラム記録再生装置であって、光ビームを出射する光源部と、光源部から出射した光ビームを信号光と参照光に分岐する分岐部と、光情報記録媒体に信号光を照射するための第一のレンズ部と、光情報記録媒体内の信号光と略同じ位置に参照光を入射する第二のレンズ部と、光情報記録媒体に入射する参照光の入射角度を変えるための光路角度可変部と、光源部から第一のレンズ部または第二のレンズ部に至る光路中の光学部品と、を備えており、光学部品への入射光の傾きまたは位置を変化させる光軸可変部を備えており、第二のレンズ部と光路角度可変部は、同じ筐体に保持されており、筐体に入射する光軸方向に略平行な方向に筐体を動かす機構を備える構成とする。 As described above, the present embodiment is a two-beam angle multiplexing type hologram recording / reproducing apparatus, which includes a light source unit that emits a light beam and a branch that branches the light beam emitted from the light source unit into signal light and reference light. A first lens unit for irradiating the optical information recording medium with signal light, a second lens unit for incident reference light at substantially the same position as the signal light in the optical information recording medium, and optical information recording An optical path angle varying unit for changing the incident angle of the reference light incident on the medium, and an optical component in the optical path from the light source unit to the first lens unit or the second lens unit are provided. The second lens unit and the optical path angle variable unit are held in the same casing, and are approximately in the direction of the optical axis incident on the casing. A mechanism is provided that moves the casing in parallel directions.
 また、第二のレンズ部と光路角度可変部は、同じ筐体に保持されており、筐体に入射する光軸方向に対して、少なくとも略垂直な方向に筐体を動かす機構を備える構成とする。 Further, the second lens unit and the optical path angle variable unit are held in the same casing, and include a mechanism for moving the casing in a direction at least substantially perpendicular to the optical axis direction incident on the casing. To do.
 これにより、本実施例では光軸可変部40内の位置移動機構を用いて、光情報記録媒体300内の信号光と参照光の相対位置ずれを補正した。これにより、外乱や経時変化があった場合であっても安定した記録再生を行うことが可能となる。 Thus, in this embodiment, the relative position shift between the signal light and the reference light in the optical information recording medium 300 is corrected using the position moving mechanism in the optical axis variable unit 40. This makes it possible to perform stable recording and reproduction even when there are disturbances and changes with time.
 図9は本実施例に係る2光束角度多重方式のホログラム記録再生装置内の光ピックアップ装置60の光学系を示したものである。本実施例は実施例1に対し、信号光路に光軸可変部120と光軸可変部28を追加していることが異なる。それ以外は実施例1と同様であるため、本実施例では、実施例1との差分について説明を行う。 FIG. 9 shows an optical system of the optical pickup device 60 in the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to this embodiment. This embodiment is different from the first embodiment in that an optical axis variable unit 120 and an optical axis variable unit 28 are added to the signal optical path. Since other than that is the same as that of Example 1, a difference with Example 1 is demonstrated in a present Example.
 実施例1では、光軸可変部35を用いて光情報記録媒体300内の参照光の光軸の位置を信号光の照射位置に対してずらすことで光情報記録媒体300内の信号光と参照光の相対位置ずれを補正した。それに対し、本実施例は、信号光の光量および信号品質を確保するため、信号光軸の傾きおよび位置の補正を行うことが特徴である。 In the first embodiment, the optical axis variable unit 35 is used to shift the position of the optical axis of the reference light in the optical information recording medium 300 with respect to the irradiation position of the signal light and the reference light in the optical information recording medium 300 The relative positional deviation of light was corrected. On the other hand, this embodiment is characterized in that the inclination and position of the signal optical axis are corrected in order to ensure the light quantity and signal quality of the signal light.
 本実施例では、光学部品の角度ずれ、位置ずれに伴う信号光の光軸傾き、位置ずれを補正するために、開口27、対物レンズ29に至る光路上に光軸可変部120および光軸可変部28を配置している。以下、信号光の光軸の補正手段に関して詳細を説明する。 In this embodiment, the optical axis variable unit 120 and the optical axis variable on the optical path to the aperture 27 and the objective lens 29 in order to correct the optical axis tilt and the positional deviation of the signal light accompanying the angular deviation and positional deviation of the optical components. The part 28 is arranged. Hereinafter, details regarding the optical axis correction means of the signal light will be described.
 まず、光軸可変部120による信号光の光軸の傾きの補正について説明する。例えば、外乱や経時変化により共通光路の光学部品の角度や位置がずれ、信号光の光軸が傾いた場合、開口27上の信号光の照射位置がずれてしまう。この場合、開口27を出射する光量が低下してしまう課題がある。また、開口27により信号光の低周波数成分が除去されてしまうため、記録再生性能が劣化してしまう課題がある。そこで本実施例では、信号光の光軸の傾きを補正する光軸可変部120を配置している。 First, correction of the optical axis tilt of the signal light by the optical axis variable unit 120 will be described. For example, when the angle or position of the optical component in the common optical path is shifted due to disturbance or change with time, and the optical axis of the signal light is tilted, the irradiation position of the signal light on the opening 27 is shifted. In this case, there is a problem that the amount of light emitted from the opening 27 decreases. Further, since the low frequency component of the signal light is removed by the opening 27, there is a problem that the recording / reproducing performance is deteriorated. Therefore, in this embodiment, the optical axis variable unit 120 that corrects the inclination of the optical axis of the signal light is arranged.
 図10は、光軸可変部120とリレーレンズ26の片側のレンズ部26Aと開口27の関係と信号光路を示した模式図である。なお、説明を簡単にするため、光軸可変部120からリレーレンズの片側のレンズ部26Aに至る光路の部品については省略している。図10(A)は、初期状態を示しており、(B)は、外乱や経時変化によって信号光の光軸が傾いた状態を示しており、(C)は、それを補正した状態を示している。 FIG. 10 is a schematic diagram showing the relationship between the optical axis variable portion 120, the lens portion 26A on one side of the relay lens 26, and the opening 27, and the signal light path. In order to simplify the description, components of the optical path from the optical axis variable unit 120 to the lens unit 26A on one side of the relay lens are omitted. FIG. 10A shows an initial state, FIG. 10B shows a state in which the optical axis of the signal light is tilted due to a disturbance or a change with time, and FIG. 10C shows a state in which the optical axis is corrected. ing.
 図10(A)のように信号光はリレーレンズの片側のレンズ部26Aに対して直交して入射することで、開口27を透過する構成となっており、(B)のように信号光がリレーレンズの片側のレンズ部26Aに傾いて入射すると開口27上の信号光の照射位置がずれ、信号光の光量が低下してしまう。(C)はウェッジプリズム106を光軸に対して傾けている。本実施例の光軸可変部120は、少なくともウェッジプリズム106と回転機構から構成されており、ウェッジプリズム106が回転機構によって参照光の光軸に対して傾くことで、ウェッジプリズム106を出射する参照光の光軸を傾けることができる。これにより、開口27に入射する信号光の光軸の位置を変位させることができる。これにより、本実施例では、開口27に入射する信号光の光軸の傾きを最適にしている。 As shown in FIG. 10A, the signal light is incident on the lens portion 26A on one side of the relay lens at a right angle so that the signal light is transmitted through the opening 27, and the signal light is transmitted as shown in FIG. If the light beam enters the lens portion 26A on one side of the relay lens at an angle, the irradiation position of the signal light on the opening 27 is shifted, and the light amount of the signal light is reduced. (C) tilts the wedge prism 106 with respect to the optical axis. The optical axis variable unit 120 of this embodiment includes at least a wedge prism 106 and a rotation mechanism, and the wedge prism 106 is emitted from the wedge prism 106 by being inclined with respect to the optical axis of the reference light by the rotation mechanism. The optical axis of light can be tilted. Thereby, the position of the optical axis of the signal light incident on the opening 27 can be displaced. Thus, in this embodiment, the inclination of the optical axis of the signal light incident on the opening 27 is optimized.
 次に、光軸可変部28による信号光の光軸の位置の補正について説明する。例えば、外乱や経時変化により、空間光変調器25やリレーレンズ26の位置が信号光の光軸に対して、垂直方向にずれると、対物レンズ29に入射する信号光の光軸の位置がずれてしまう。これにより、対物レンズによって信号光の一部が欠けてしまい、正常な記録ができない課題がある。 Next, correction of the position of the optical axis of the signal light by the optical axis variable unit 28 will be described. For example, when the position of the spatial light modulator 25 or the relay lens 26 is shifted in the vertical direction with respect to the optical axis of the signal light due to disturbance or changes with time, the position of the optical axis of the signal light incident on the objective lens 29 is shifted. End up. As a result, a part of the signal light is lost due to the objective lens, and there is a problem that normal recording cannot be performed.
 そこで、本実施例では、光軸可変部28を用いて信号光の光軸を平行方向に変位させている。その構成については、実施例1の図3の光軸可変部35と同様、光軸可変部28は少なくとも平行平板と回転機構から構成されている。このような構成で、例えば外乱や経時変化によって信号光が光軸に対して水平方向にずれた場合であっても、光軸可変部28の平行平板を光軸に対して傾けることで対物レンズ29に入射する光軸位置を補正することができる。これにより、本実施例では、対物レンズ29に入射する信号光の光軸の位置を最適にしている。なお、光軸可変部28は、再生時に再生信号光の撮像素子52上の位置調整も可能である。 Therefore, in this embodiment, the optical axis of the signal light is displaced in the parallel direction by using the optical axis variable unit 28. As for the configuration, like the optical axis variable unit 35 of FIG. 3 of the first embodiment, the optical axis variable unit 28 includes at least a parallel plate and a rotation mechanism. With such a configuration, for example, even when the signal light is displaced in the horizontal direction with respect to the optical axis due to disturbance or changes with time, the objective lens can be obtained by tilting the parallel plate of the optical axis variable unit 28 with respect to the optical axis. The position of the optical axis incident on 29 can be corrected. Thereby, in this embodiment, the position of the optical axis of the signal light incident on the objective lens 29 is optimized. Note that the optical axis variable unit 28 can also adjust the position of the reproduction signal light on the image sensor 52 during reproduction.
 また、本実施例では、光軸可変部28は信号光の光軸を平行方向に変位させていたが、これだけには限定されない。例えば、光軸可変部28にウェッジプリズムと回転機構を加えることで、信号光の傾きを補正しても良い。このようにすることで、例えば再生時に撮像素子52の角度ずれを補正することができる。 In the present embodiment, the optical axis variable unit 28 displaces the optical axis of the signal light in the parallel direction, but is not limited thereto. For example, the inclination of the signal light may be corrected by adding a wedge prism and a rotation mechanism to the optical axis variable unit 28. In this way, for example, the angular deviation of the image sensor 52 can be corrected during reproduction.
 また、本実施例では、開口27入射光の光軸の傾きの補正に光軸可変部120を用いたが、光軸可変部として空間光変調器25を傾けても良い。また、本実施例では、対物レンズ29入射光の補正で信号光を光軸に対し平行方向に変位させるために、光軸可変部28を用いたが、例えば空間光変調器25の2次元データの出力である表示を移動させても良い。このようにすることで、簡素な構成とすることができる。本実施例は、光学部品に対する外乱・経時変化に対して、信号光の光軸を平行方向に変位させるまたは傾けることが特徴であるため、空間光変調器25の表示を用いて光軸を平行方向に変位させることも本実施例の特徴となる。 In this embodiment, the optical axis variable unit 120 is used to correct the tilt of the optical axis of the incident light of the aperture 27. However, the spatial light modulator 25 may be tilted as the optical axis variable unit. In this embodiment, the optical axis variable unit 28 is used to displace the signal light in the direction parallel to the optical axis by correcting the incident light of the objective lens 29. For example, the two-dimensional data of the spatial light modulator 25 is used. The display, which is the output of, may be moved. By doing in this way, it can be set as a simple structure. The present embodiment is characterized in that the optical axis of the signal light is displaced or tilted in a parallel direction with respect to disturbances and changes with time with respect to the optical component. Therefore, the optical axis is made parallel using the display of the spatial light modulator 25. Displacement in the direction is also a feature of this embodiment.
 以上のように、本実施例では信号光の光軸を傾けることにより、開口27を透過する信号光の光量および記録再生性能を確保した。また、信号光の光軸を平行方向に変位させ、対物レンズに入射する光軸の位置を補正することで、安定した記録が行えるようにした。これにより、外乱や経時変化があった場合であっても安定した記録再生を行うことが可能となる。 As described above, in this embodiment, the amount of signal light transmitted through the opening 27 and the recording / reproducing performance are secured by tilting the optical axis of the signal light. Also, stable recording can be performed by displacing the optical axis of the signal light in the parallel direction and correcting the position of the optical axis incident on the objective lens. This makes it possible to perform stable recording and reproduction even when there are disturbances and changes with time.
 図11は本実施例に係る2光束角度多重方式のホログラム記録再生装置内の光ピックアップ装置60の光学系を示したものである。本実施例は実施例1に対し、共通光路に光軸可変部12を追加していることが異なる。それ以外は実施例1と同様であるため、本実施例では、実施例1との差分について説明を行う。 FIG. 11 shows an optical system of the optical pickup device 60 in the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to this embodiment. This embodiment differs from Embodiment 1 in that an optical axis variable unit 12 is added to the common optical path. Since other than that is the same as that of Example 1, a difference with Example 1 is demonstrated in a present Example.
 実施例1では、光情報記録媒体300内の信号光と参照光の相対位置ずれを補正した。本実施例では、それに加え、記録再生性能および記録再生速度を確保するため、ピンホール14に入射する光ビームの光軸の傾きの補正を行う。 In Example 1, the relative positional deviation between the signal light and the reference light in the optical information recording medium 300 was corrected. In this embodiment, in addition to that, the tilt of the optical axis of the light beam incident on the pinhole 14 is corrected in order to ensure recording / reproducing performance and recording / reproducing speed.
 例えば、外乱や経時変化により共通光路の光学部品の角度ずれ、位置ずれが発生し、リレーレンズ13に入射する光ビームの光軸が傾いた場合、ピンホール14の穴に対して、ピンホール14上の光ビームの照射位置がずれてしまう。これは、実施例3の図10と同様の理由である。ピンホール14は、リレーレンズ13と共に用いることで、光ビームの強度分布から不要な周波数成分の変動を取り除いている。ピンホール14の穴径は、ビームの波長、ビームの有効径、リレーレンズ13の焦点距離にも依存するが、例えば波長405nm、有効径4mm、リレーレンズ焦点距離10mmであった場合、強度分布の所定の周波数成分を取り除くには、ピンホール14の穴径は数μmとなる。この場合、リレーレンズ13に入射する光ビームの光軸が数十ミリ度傾くだけでピンホール14を出射する光量が大幅に低下してしまう。これにより、信号光、参照光の光量が低下し、結果として所望の記録再生速度が得られない課題がある。また、その場合には強度分布の不要な周波数成分がピンホール14を透過し、ホログラムとして光情報記録媒体300に記録されてしまうため、記録再生性能が劣化する課題がある。 For example, when the optical axis of the optical beam incident on the relay lens 13 is tilted due to an angular deviation or a positional deviation of the optical components in the common optical path due to disturbance or a change with time, the pinhole 14 is in contrast to the hole of the pinhole 14. The irradiation position of the upper light beam is shifted. This is the same reason as FIG. 10 of the third embodiment. The pinhole 14 is used together with the relay lens 13 to remove unnecessary frequency component fluctuations from the intensity distribution of the light beam. The hole diameter of the pinhole 14 depends on the wavelength of the beam, the effective diameter of the beam, and the focal length of the relay lens 13. For example, when the wavelength is 405 nm, the effective diameter is 4 mm, and the relay lens focal length is 10 mm, the intensity distribution In order to remove the predetermined frequency component, the hole diameter of the pinhole 14 is several μm. In this case, the amount of light emitted from the pinhole 14 is significantly reduced only by tilting the optical axis of the light beam incident on the relay lens 13 by several tens of millimeters. As a result, the light amounts of the signal light and the reference light are reduced, resulting in a problem that a desired recording / reproducing speed cannot be obtained. In this case, a frequency component that does not require an intensity distribution passes through the pinhole 14 and is recorded as a hologram on the optical information recording medium 300, which causes a problem that the recording / reproducing performance deteriorates.
 このため、本実施例では光軸可変部12を用いてピンホール14への入射光の光軸の傾きを補正している。その構成については、実施例3の図10の光軸可変部120と同様、光軸可変部12は少なくともウェッジプリズムと回転機構から構成されている。これにより、本実施例では、ピンホール14への入射光の光軸の傾きを最適にしている。 For this reason, in this embodiment, the optical axis variable portion 12 is used to correct the inclination of the optical axis of the incident light to the pinhole 14. Regarding the configuration, like the optical axis variable unit 120 of FIG. 10 of the third embodiment, the optical axis variable unit 12 includes at least a wedge prism and a rotation mechanism. Thereby, in the present embodiment, the inclination of the optical axis of the light incident on the pinhole 14 is optimized.
 以上のように、本実施例では光軸可変部12を用いてリレーレンズ13およびピンホール14への入射光の光軸を傾けることにより、記録再生性能および記録再生速度を確保した。これにより、外乱や経時変化があった場合であっても安定した記録再生を行うことが可能となる。 As described above, in this embodiment, the optical axis variable portion 12 is used to incline the optical axis of incident light to the relay lens 13 and the pinhole 14, thereby ensuring the recording / reproducing performance and the recording / reproducing speed. This makes it possible to perform stable recording and reproduction even when there are disturbances and changes with time.
 図12は本実施例に係る2光束角度多重方式のホログラム記録再生装置内の光ピックアップ装置60の光学系を示したものである。本実施例は実施例1に対し、共通光路に光軸可変部15を追加していることが異なる。それ以外は実施例1と同様であるため、本実施例では、実施例1との差分について説明を行う。 FIG. 12 shows an optical system of the optical pickup device 60 in the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to the present embodiment. The present embodiment is different from the first embodiment in that an optical axis variable unit 15 is added to the common optical path. Since other than that is the same as that of Example 1, a difference with Example 1 is demonstrated in a present Example.
 実施例1では、光情報記録媒体300内の信号光と参照光の相対位置ずれを補正した。本実施例では、それに加え、波面収差の補正および強度分布の補正を行う。 In Example 1, the relative positional deviation between the signal light and the reference light in the optical information recording medium 300 was corrected. In this embodiment, in addition to that, correction of wavefront aberration and correction of intensity distribution are performed.
 本実施例の強度分布変換レンズ16は、例えば特許第3614294号記載の強度分布を均一にするレンズである。本実施例では、強度分布変換レンズ16を用いることで均一な強度分布を得ている。ただし、強度分布変換レンズ16は、強度分布変換レンズ16への入射光の光軸の位置ずれ、傾きに対して、強度分布の均一性の劣化および波面収差の発生の課題がある。強度分布変換レンズ16は、レーザから出射したガウシアン分布の強度分布に対し、中央部の光強度を周辺部に広げ、周辺部の光強度を中央部に向かって集めることで、強度分布を均一にしている。このため、強度分布変換レンズ16に入射する光ビームの光軸の位置がずれてしまうとそれに伴って強度分布の均一性が劣化する。また、強度分布変換レンズ16は強度分布を均一にするために中央部と周辺部のレンズ面の傾きが異なる形状となっており、強度分布変換レンズ16に入射する光ビームの光軸が傾くと、コマ収差を主成分とした波面収差が発生する。 The intensity distribution conversion lens 16 of this embodiment is a lens that makes the intensity distribution described in Japanese Patent No. 3614294 uniform, for example. In this embodiment, a uniform intensity distribution is obtained by using the intensity distribution conversion lens 16. However, the intensity distribution conversion lens 16 has problems of deterioration of uniformity of the intensity distribution and generation of wavefront aberration with respect to the positional deviation and inclination of the optical axis of the light incident on the intensity distribution conversion lens 16. The intensity distribution conversion lens 16 makes the intensity distribution uniform by spreading the light intensity of the central part to the peripheral part and collecting the light intensity of the peripheral part toward the central part with respect to the intensity distribution of the Gaussian distribution emitted from the laser. ing. For this reason, if the position of the optical axis of the light beam incident on the intensity distribution conversion lens 16 is shifted, the uniformity of the intensity distribution deteriorates accordingly. Further, in order to make the intensity distribution uniform, the intensity distribution conversion lens 16 has a shape in which the inclination of the lens surface of the central portion and that of the peripheral portion are different, and the optical axis of the light beam incident on the intensity distribution conversion lens 16 is inclined. Then, wavefront aberration mainly composed of coma aberration occurs.
 このため、本実施例では、光軸を平行方向に変位させる機能および傾ける機能を有する光軸可変部15を配置している。図13は本実施例の光軸可変部15を示したものである。光軸可変部15は、ウェッジプリズム103と少なくとも並進機構と回転機構から構成されている。図13(A)は、並進機構によってウェッジプリズム103を光軸と垂直方向に移動させた場合、(B)は、回転機構によってウェッジプリズム103を光軸に対して傾けた場合を示している。なお、(A)、(B)の実線は初期状態、点線はウェッジプリズム103を変位させた場合、傾けた場合のウェッジプリズム103と光ビームの光軸を示している。 For this reason, in this embodiment, the optical axis variable section 15 having the function of displacing the optical axis in the parallel direction and the function of tilting is arranged. FIG. 13 shows the optical axis variable unit 15 of the present embodiment. The optical axis variable unit 15 includes a wedge prism 103 and at least a translation mechanism and a rotation mechanism. FIG. 13A shows a case where the wedge prism 103 is moved in a direction perpendicular to the optical axis by the translation mechanism, and FIG. 13B shows a case where the wedge prism 103 is tilted with respect to the optical axis by the rotation mechanism. The solid lines in (A) and (B) indicate the initial state, and the dotted line indicates the wedge prism 103 and the optical axis of the light beam when the wedge prism 103 is displaced or tilted.
 本実施例の光軸可変部15は、(A)のようにウェッジプリズム103を光軸に対して略垂直方向に移動することで、入射した光軸を平行方向に変位させることができる。また、(B)のように、ウェッジプリズム103を光軸に対して傾けることで、ウェッジプリズム103を出射した光軸を傾けることができる。 The optical axis variable unit 15 of the present embodiment can displace the incident optical axis in the parallel direction by moving the wedge prism 103 in a direction substantially perpendicular to the optical axis as shown in FIG. Further, as shown in (B), by tilting the wedge prism 103 with respect to the optical axis, the optical axis emitted from the wedge prism 103 can be tilted.
 本実施例では、このような光軸可変部15を用いて光学部品に対する外乱・経時変化によって発生した強度分布変換レンズ16への入射光の光軸の位置ずれ、傾きを補正する。これにより、本実施例では、ウェッジプリズム103に入射する光ビームの光軸の位置、傾きを最適にしている。 In this embodiment, the optical axis variable unit 15 is used to correct the positional deviation and the inclination of the optical axis of the incident light to the intensity distribution conversion lens 16 caused by the disturbance and change with time of the optical component. Thus, in this embodiment, the position and inclination of the optical axis of the light beam incident on the wedge prism 103 are optimized.
 なお、本実施例のウェッジプリズム103は移動量に対する光軸の平行方向の変位量は小さい。また、ウェッジプリズム103は傾き量に対する光軸の傾きの変化量も小さい。このため、ステッピングモータなどの安価な駆動部品を用いても高精度に補正することができる。 The wedge prism 103 of this embodiment has a small amount of displacement in the direction parallel to the optical axis with respect to the amount of movement. Further, the wedge prism 103 has a small change amount of the inclination of the optical axis with respect to the inclination amount. For this reason, it can correct | amend with high precision even if it uses cheap drive components, such as a stepping motor.
 また、本実施例ではウェッジプリズム103のみで光軸の変位と傾きを補正したが、これには限定されない。例えば、光軸の変位量と傾き量を最適化したウェッジプリズムを2つ配置しても良い。また、図6、図7に示す構成を組み合わせても良い。なお、強度分布変換レンズ16は、出射光がトップフラット形状になっていなくとも同様の方法を用いて強度分布を変換しているのであれば、光軸可変部を用いることで本実施例と同様の効果は得られる。本実施例では、強度分布変換レンズ16はレンズであったが、回折素子等であっても良い。 In this embodiment, the displacement and inclination of the optical axis are corrected only by the wedge prism 103, but the present invention is not limited to this. For example, two wedge prisms with optimized optical axis displacement and tilt may be arranged. Moreover, you may combine the structure shown in FIG. 6, FIG. The intensity distribution conversion lens 16 is similar to the present embodiment by using an optical axis variable unit as long as the intensity distribution is converted using the same method even if the emitted light is not in a top flat shape. The effect is obtained. In this embodiment, the intensity distribution conversion lens 16 is a lens, but may be a diffraction element or the like.
 以上のように、本実施例では光軸可変部15を用いて強度分布変換レンズ16への入射光の光軸を平行方向に変位させることにより、強度分布変換レンズ16を透過した光ビームの強度分布を均一化している。また、光軸可変部15を用いて強度分布変換レンズ16への入射光の光軸を傾けることにより波面収差の発生を抑えている。これにより、外乱や経時変化があった場合であっても安定した記録再生を行うことが可能となる。 As described above, in this embodiment, the optical axis of the light beam transmitted through the intensity distribution conversion lens 16 is displaced by displacing the optical axis of the light incident on the intensity distribution conversion lens 16 in the parallel direction using the optical axis variable unit 15. The distribution is made uniform. Further, the occurrence of wavefront aberration is suppressed by tilting the optical axis of the incident light to the intensity distribution conversion lens 16 using the optical axis variable unit 15. This makes it possible to perform stable recording and reproduction even when there are disturbances and changes with time.
 本実施例は、光軸可変部の回転機構、並進機構を駆動するための制御方法について説明する。図14は本実施例に係る2光束角度多重方式のホログラム記録再生装置内の光ピックアップ装置60の光学系を示したものである。なお、図14において各実施例で示した光学部品と同じ番号で示したものは、各実施例の光学部品と同様の機能を有している。
以下、各光軸可変部の回転機構、並進機構を駆動するための制御方法について説明を行う。本実施例では、記録再生時には、PBSプリズム19を反射した参照光は、偏光可変素子30によりP偏光に変換され、PBSプリズム31を透過する。これにより、実施例1同様の記録再生を行うことができる。
In this embodiment, a control method for driving the rotation mechanism and the translation mechanism of the optical axis variable unit will be described. FIG. 14 shows an optical system of the optical pickup device 60 in the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to this embodiment. In FIG. 14, the same reference numerals as those of the optical components shown in the respective embodiments have the same functions as those of the optical components of the respective embodiments.
Hereinafter, a control method for driving the rotation mechanism and the translation mechanism of each optical axis variable unit will be described. In this embodiment, at the time of recording / reproducing, the reference light reflected from the PBS prism 19 is converted into P-polarized light by the polarization variable element 30 and passes through the PBS prism 31. As a result, recording / reproduction similar to that in the first embodiment can be performed.
 最初に、光軸可変部12の回転機構を駆動するための制御方法について説明する。まず、図14において、偏光可変素子30からの出射偏光がS偏光となるように、偏光可変素子30を制御する。これにより、偏光可変素子30を透過したS偏光はPBSプリズム31を反射し、検出レンズ600によって撮像素子601に集光される。次に、撮像素子601の信号強度が大きくなるように光軸可変部12の回転機構を駆動し、光ビームの光軸を傾ける。そして、撮像素子601の信号強度が最大となったところで光軸可変部12の回転機構を停止する。本実施例では、ピンホール14から出射する光量を検出信号として光軸可変部12の回転機構を駆動することを特徴としている。このようにすることで、光ビームがピンホール14の中心を通過する状態に制御することができる。
次に光軸可変部15の回転機構、並進機構を駆動するための制御方法について説明する。まず、光軸可変部15の回転機構を駆動するための制御方法について説明する。
図14において、光軸可変部12の制御方法と同様にして、撮像素子601に光ビームを入射する。そして、撮像素子601上のスポットが最小となるように光軸可変部15の回転機構を用いて強度分布変換レンズ16への入射光の光軸を傾ける。図15は、強度分布変換レンズ16への入射光の光軸の傾きを上段に、その時の撮像素子601上のスポットの関係を下段に示している。なお、(A)(B)(C)は、強度分布変換レンズ16に入射する光ビームの光軸の傾きが異なっており、(B)は強度分布変換レンズ16に入射する光ビームの光軸が最適な状態、(A)、(C)は入射する光ビームの光軸が傾いた状態を示している。上記したように、強度分布変換レンズ16は、強度分布変換レンズ16に入射する光ビームの光軸が傾くとコマ収差を主成分とした波面収差が発生する。これにより、撮像素子601上のスポットが歪む。この特性を利用し、本実施例では撮像素子上のスポットが最小となるよう光軸可変部15を用いて光軸を傾けることで強度分布変換レンズ16に入射する光ビームの傾きを補正する。これにより、発生する波面収差を小さくすることができる。
次に光軸可変部15の並進機構を駆動するための制御方法について説明する。まず、図14において、偏光可変素子20からの出射偏光がS偏光となるように、偏光可変素子20を制御する。これにより、偏光可変素子20を透過したS偏光は、ビームエキスパンダ21、位相マスク22、リレーレンズ23を経て、PBSプリズム24を反射し、撮像素子52に入射する。そして、撮像素子52からの画像を検出する。このとき、検出した画像の強度分布が非対称となっていた場合には、光軸可変部15の並進機構を駆動し、撮像素子52上の強度分布が略対称となるように光軸を光軸と平行方向に変位させる。これにより、略均一な強度分布を得ることができる。以上のように、本実施例では、強度分布変換レンズ16を出射した光ビームのコマ収差を観測し、光軸可変部15の回転機構を駆動することを特徴としている。また、強度分布変換レンズ16を出射した光ビームの強度分布を検出することで並進機構を駆動することを特徴としている。以上の補正を行うことで、ホログラム記録再生に最良な波面収差、強度分布を得ることができる。
First, a control method for driving the rotation mechanism of the optical axis variable unit 12 will be described. First, in FIG. 14, the polarization variable element 30 is controlled so that the outgoing polarized light from the polarization variable element 30 becomes S-polarized light. As a result, the S-polarized light transmitted through the polarization variable element 30 is reflected by the PBS prism 31 and is condensed on the image sensor 601 by the detection lens 600. Next, the rotation mechanism of the optical axis variable unit 12 is driven so that the signal intensity of the image sensor 601 increases, and the optical axis of the light beam is tilted. Then, when the signal intensity of the image sensor 601 becomes maximum, the rotation mechanism of the optical axis variable unit 12 is stopped. The present embodiment is characterized in that the rotation mechanism of the optical axis variable unit 12 is driven using the amount of light emitted from the pinhole 14 as a detection signal. In this way, the light beam can be controlled to pass through the center of the pinhole 14.
Next, a control method for driving the rotation mechanism and the translation mechanism of the optical axis variable unit 15 will be described. First, a control method for driving the rotation mechanism of the optical axis variable unit 15 will be described.
In FIG. 14, the light beam is incident on the image sensor 601 in the same manner as the control method of the optical axis variable unit 12. Then, the optical axis of the incident light to the intensity distribution conversion lens 16 is tilted using the rotation mechanism of the optical axis variable unit 15 so that the spot on the image sensor 601 is minimized. FIG. 15 shows the inclination of the optical axis of the light incident on the intensity distribution conversion lens 16 on the upper stage, and shows the relationship of the spots on the image sensor 601 at that time on the lower stage. (A), (B), and (C) are different in the inclination of the optical axis of the light beam incident on the intensity distribution conversion lens 16, and (B) is the optical axis of the light beam incident on the intensity distribution conversion lens 16. (A) and (C) show the state in which the optical axis of the incident light beam is tilted. As described above, the intensity distribution conversion lens 16 generates wavefront aberration mainly composed of coma aberration when the optical axis of the light beam incident on the intensity distribution conversion lens 16 is tilted. Thereby, the spot on the image sensor 601 is distorted. Using this characteristic, in this embodiment, the inclination of the light beam incident on the intensity distribution conversion lens 16 is corrected by inclining the optical axis using the optical axis variable unit 15 so that the spot on the image sensor is minimized. Thereby, the generated wavefront aberration can be reduced.
Next, a control method for driving the translation mechanism of the optical axis variable unit 15 will be described. First, in FIG. 14, the polarization variable element 20 is controlled so that the outgoing polarized light from the polarization variable element 20 becomes S-polarized light. As a result, the S-polarized light that has passed through the polarization variable element 20 passes through the beam expander 21, the phase mask 22, and the relay lens 23, is reflected by the PBS prism 24, and enters the imaging element 52. Then, an image from the image sensor 52 is detected. At this time, when the intensity distribution of the detected image is asymmetric, the translation mechanism of the optical axis variable unit 15 is driven, and the optical axis is changed to the optical axis so that the intensity distribution on the image sensor 52 is substantially symmetric. Displace in the parallel direction. Thereby, a substantially uniform intensity distribution can be obtained. As described above, this embodiment is characterized in that the coma aberration of the light beam emitted from the intensity distribution conversion lens 16 is observed and the rotation mechanism of the optical axis variable unit 15 is driven. Further, the translation mechanism is driven by detecting the intensity distribution of the light beam emitted from the intensity distribution conversion lens 16. By performing the above correction, the best wavefront aberration and intensity distribution for hologram recording / reproduction can be obtained.
 次に光軸可変部120の回転機構を駆動するための制御方法について説明する。まず、図14において、信号光のみが光情報記録媒体300に入射するように偏光可変素子18と偏光可変素子20を制御する。このとき、信号光は、光情報記録媒体300を透過し、コリメートレンズ604、検出レンズ605を経て検出器606に信号光が入射する。本実施例では、検出器606の検出信号が大きくなるよう光軸可変部120の回転機構を駆動し、信号光の光軸を傾ける。そして、検出器606の信号強度が最大となったところで光軸可変部120の回転機構を停止する。本実施例は、開口27から出射する光量を検出信号として光軸可変部120の回転機構を駆動することを特徴としている。このようにすることで、信号光が開口27の中心に入射する状態に制御することができる。 Next, a control method for driving the rotation mechanism of the optical axis variable unit 120 will be described. First, in FIG. 14, the polarization variable element 18 and the polarization variable element 20 are controlled so that only the signal light enters the optical information recording medium 300. At this time, the signal light passes through the optical information recording medium 300, and the signal light enters the detector 606 through the collimating lens 604 and the detection lens 605. In the present embodiment, the rotation mechanism of the optical axis variable unit 120 is driven so that the detection signal of the detector 606 increases, and the optical axis of the signal light is tilted. Then, when the signal intensity of the detector 606 reaches the maximum, the rotation mechanism of the optical axis variable unit 120 is stopped. The present embodiment is characterized in that the rotation mechanism of the optical axis variable unit 120 is driven using the amount of light emitted from the opening 27 as a detection signal. In this way, the signal light can be controlled to enter the center of the opening 27.
 次に、光軸可変部28の並進機構を駆動するための制御方法について説明する。まず、図14において、光軸可変部28の並進機構を駆動し、信号光の光軸を光軸と平行方向に変位させる。信号光の光軸が変位すると、対物レンズ29によって信号光が欠けるため、光量が低下する。これを第一位置とし、次は反対側に光軸を変位させていく。そして、再度光量が低下した位置を第二位置とする。本実施例では、第一位置と第二位置の略中間位置に参照光が配置されるよう光軸可変部28の並進機構を駆動する。このようにすることで、信号光が対物レンズ29の中心を通過する状態に制御することができる。 Next, a control method for driving the translation mechanism of the optical axis variable unit 28 will be described. First, in FIG. 14, the translation mechanism of the optical axis variable unit 28 is driven to displace the optical axis of the signal light in a direction parallel to the optical axis. When the optical axis of the signal light is displaced, the signal light is lost by the objective lens 29, so that the amount of light is reduced. This is the first position, and then the optical axis is displaced to the opposite side. Then, the position where the amount of light again decreases is set as the second position. In this embodiment, the translation mechanism of the optical axis variable unit 28 is driven so that the reference light is arranged at a substantially intermediate position between the first position and the second position. In this way, the signal light can be controlled to pass through the center of the objective lens 29.
 最後に、光軸可変部35の回転機構を駆動するための制御方法について説明する。まず、光情報記録媒体300を開口部302を有する調整用媒体301に変更する。このとき、光情報記録媒体300と調整用媒体301は、同じ厚さ、同じ屈折率であることが望ましい。図16は、調整用媒体301を示したものであり、上段が平面図、下段が断面図を示している。図16において、調整用媒体301の開口部302は遮光領域302A、遮光領域302Bから構成されており、遮光領域に入射した光ビームは、調整用媒体301を透過しない特徴がある。また、遮光領域302Aは遮光領域302Bよりも内部に配置されており、形状が略台形となっていることが特徴である。なお、図中の一点鎖線、二点鎖線は、信号光、参照光をそれぞれ示している。よって、遮光領域302Aは信号光を遮光する領域であり、遮光領域302Bは参照光の周辺部を遮光する領域となる。このような調整用媒体301を用いて、光情報記録媒体300内の信号光と参照光の相対位置の補正を行う。 Finally, a control method for driving the rotation mechanism of the optical axis variable unit 35 will be described. First, the optical information recording medium 300 is changed to an adjustment medium 301 having an opening 302. At this time, it is desirable that the optical information recording medium 300 and the adjustment medium 301 have the same thickness and the same refractive index. FIG. 16 shows the adjustment medium 301, where the upper part shows a plan view and the lower part shows a cross-sectional view. In FIG. 16, the opening 302 of the adjustment medium 301 includes a light shielding region 302 </ b> A and a light shielding region 302 </ b> B, and the light beam incident on the light shielding region is not transmitted through the adjustment medium 301. Further, the light shielding region 302A is disposed inside the light shielding region 302B, and is characterized by a substantially trapezoidal shape. In addition, the dashed-dotted line and the dashed-two dotted line in a figure have each shown the signal light and the reference light. Therefore, the light shielding region 302A is a region that shields the signal light, and the light shielding region 302B is a region that shields the peripheral portion of the reference light. Using such an adjustment medium 301, the relative positions of the signal light and the reference light in the optical information recording medium 300 are corrected.
 図14において、調整用媒体301に変更後、信号光のみが調整用媒体301に入射するように偏光可変素子18と偏光可変素子20を制御する。このとき、遮光領域302A、遮光領域302B以外に信号光が入射していれば、調整用媒体301を透過し、コリメートレンズ604、検出レンズ605を経て検出器606に信号光が入射する。本実施例では、信号光を遮光領域302A内に照射し、検出器606の信号強度が最小となるように調整用媒体301の位置を調整する。これを行うことで、調整用媒体301内で信号光が収束する位置に遮光領域302Aを配置することができる。次に、参照光のみが調整用媒体301に入射するように偏光可変素子18と偏光可変素子30を制御する。ここで、ガルバノミラー37とガルバノミラー51を所定角度となるように制御する。このようにすることで、調整用媒体301の遮光領域302A、遮光領域302B以外に入射した参照光は、1/4波長板50、ガルバノミラー51、1/4波長板50、調整用媒体301、スキャナレンズ39、ガルバノミラー37、ピッチコレクタ36、光軸可変部35、1/2波長板34、ミラー33、ミラー32を経てPBSプリズム31に入射する。PBSプリズム31に入射した参照光は、1/4波長板50を2回透過したことでS偏光に変換されているため、PBSプリズム31を反射し、検出器602に入射する。本実施例では、検出器602の信号強度が最大となるように光軸可変部35の回転機構を駆動し、光情報記録媒体300内の参照光の光軸の位置を変位する。そして、検出器602の信号強度が最大となったところで光軸可変部35の回転機構を停止する。 In FIG. 14, after changing to the adjustment medium 301, the polarization variable element 18 and the polarization variable element 20 are controlled so that only the signal light enters the adjustment medium 301. At this time, if the signal light is incident outside the light shielding region 302A and the light shielding region 302B, the signal light is transmitted through the adjustment medium 301 and enters the detector 606 through the collimator lens 604 and the detection lens 605. In the present embodiment, the position of the adjustment medium 301 is adjusted so that the signal light is irradiated into the light shielding region 302A and the signal intensity of the detector 606 is minimized. By doing this, the light shielding region 302A can be arranged at a position where the signal light converges in the adjustment medium 301. Next, the polarization variable element 18 and the polarization variable element 30 are controlled so that only the reference light enters the adjustment medium 301. Here, the galvanometer mirror 37 and the galvanometer mirror 51 are controlled to have a predetermined angle. By doing in this way, the reference light incident on the adjustment medium 301 other than the light shielding region 302A and the light shielding region 302B is used for the quarter wavelength plate 50, the galvanometer mirror 51, the quarter wavelength plate 50, the adjustment medium 301, The light enters the PBS prism 31 through the scanner lens 39, the galvanometer mirror 37, the pitch collector 36, the optical axis variable unit 35, the half-wave plate 34, the mirror 33, and the mirror 32. The reference light that has entered the PBS prism 31 has been converted to S-polarized light by passing through the quarter-wave plate 50 twice, and therefore reflects the PBS prism 31 and enters the detector 602. In this embodiment, the rotation mechanism of the optical axis variable unit 35 is driven so that the signal intensity of the detector 602 is maximized, and the position of the optical axis of the reference light in the optical information recording medium 300 is displaced. Then, when the signal intensity of the detector 602 becomes maximum, the rotation mechanism of the optical axis variable unit 35 is stopped.
 この一連の工程を行うことで、調整用媒体301上の参照光の位置を遮光領域302Bの内側の透過領域に合わせることができる。そして最後に、調整用媒体301から光情報記録媒体300に変更すれば、補正は終了である。 By performing this series of steps, the position of the reference light on the adjustment medium 301 can be matched with the transmission region inside the light shielding region 302B. Finally, when the adjustment medium 301 is changed to the optical information recording medium 300, the correction is completed.
 このように、本実施例では開口が構成されている調整用媒体301を用いることで媒体内の信号光と参照光の位置を高精度に合わせている。 Thus, in this embodiment, the position of the signal light and the reference light in the medium is adjusted with high accuracy by using the adjusting medium 301 having an opening.
 以上のような制御方法を用いて各光軸可変部の回転機構、並進機構を駆動することで、光学部品に対する外乱・経時変化に伴う光軸の傾きおよび位置のずれがあった場合であっても安定した記録再生を行うことができる。 By driving the rotation mechanism and translation mechanism of each optical axis variable unit using the control method as described above, there is a case where the optical axis is tilted and the position is shifted due to disturbance or change over time with respect to the optical component. In addition, stable recording and reproduction can be performed.
 なお、本実施例は光軸を任意に変化させる光軸可変部を備えていることが特徴であるため、補正する対象は限定されない。例えば、本実施例とは異なる位置に配置したピンホール、開口、リレーレンズなどに入射する光ビームの光軸を補正しても良い。また、本実施例の補正対象に限らず、補正対象を増減させても良い。また、本実施例では、実施例1の光情報記録媒体300内の信号光と参照光の相対位置の補正で説明を行ったが、実施例2の補正手段であっても良い。 In addition, since the present embodiment is characterized by including an optical axis variable unit that arbitrarily changes the optical axis, the target to be corrected is not limited. For example, the optical axis of a light beam incident on a pinhole, an aperture, a relay lens, or the like arranged at a position different from the present embodiment may be corrected. Further, the correction target is not limited to the correction target of the present embodiment, and the correction target may be increased or decreased. In the present embodiment, the description has been made by correcting the relative positions of the signal light and the reference light in the optical information recording medium 300 of the first embodiment, but the correcting means of the second embodiment may be used.
 本実施例では、強度分布変換レンズ16を1つとして説明したが、信号光、参照光を最適な強度分布にするためにそれぞれの光路に強度分布変換レンズを配置しても良く、その場合には、それぞれに対応した光軸可変部を配置すれば良い。 In this embodiment, the intensity distribution conversion lens 16 is described as one. However, in order to make the signal light and the reference light have an optimum intensity distribution, an intensity distribution conversion lens may be arranged in each optical path. In this case, an optical axis variable unit corresponding to each may be arranged.
 本実施例の調整用媒体301は、ホログラム記録再生装置内にあっても良いし、ホログラム記録再生装置を格納する装置内にあっても良い。また、本実施例では、検出レンズ600と撮像素子601で、スポット画像を検出したが、波面を計測する波面センサ等を用いても良い。さらに、調整用媒体301の遮光領域302Aの形状は略台形としたが、これは信号光のコマ収差が影響しているためである。ただし、台形以外であっても同様の検出ができる。 The adjustment medium 301 of this embodiment may be in the hologram recording / reproducing apparatus or in an apparatus for storing the hologram recording / reproducing apparatus. In this embodiment, the spot image is detected by the detection lens 600 and the image sensor 601. However, a wavefront sensor or the like that measures the wavefront may be used. Furthermore, the shape of the light shielding region 302A of the adjustment medium 301 is substantially trapezoidal because the coma aberration of the signal light has an effect. However, the same detection can be performed even if it is other than the trapezoid.
 本実施例の光軸の傾き、位置ずれ補正は、ホログラム記録再生装置の初期出荷時、出荷後のメンテナンス、異常時の修復に用いることもできる。本実施例では、ピンホール14、強度分布変換レンズ16への入射光の光軸の傾きおよび位置ずれを検出するために偏光可変素子30、偏光可変素子20を用いて撮像素子601および撮像素子52に光ビームを導いたが、例えば波長板等を用いて撮像素子601、撮像素子52にわずかな光ビームが入射するように予め偏光を変換しておいても良い。また、意図的に偏光を変換させずに、PBSプリズム31、PBSプリズム24の漏れ光を撮像素子601、撮像素子52で検出しても良い。そして、本実施例では、撮像素子601を参照光路中に配置したが、ピンホール14または強度分布変換レンズ16の後であれば、信号光路中であっても良いし、共通光路中であっても良い。さらに、光軸可変部15の並進機構を駆動するために、撮像素子52から強度分布を検出したが、例えば、撮像素子601に至る光路中に、レンズや光路を伸ばす素子を出し入れし、撮像素子601上での光ビームをデフォーカス状態にすることにより撮像素子601から強度分布を検出しても良い。 The optical axis tilt and misalignment correction of this embodiment can be used for initial shipment of the hologram recording / reproducing apparatus, maintenance after shipment, and repair in case of abnormality. In the present embodiment, the imaging element 601 and the imaging element 52 are detected using the polarization variable element 30 and the polarization variable element 20 in order to detect the tilt and the positional deviation of the optical axis of the light incident on the pinhole 14 and the intensity distribution conversion lens 16. However, the polarization may be converted in advance so that a slight light beam is incident on the image sensor 601 and the image sensor 52 using, for example, a wavelength plate. Further, the leakage light of the PBS prism 31 and the PBS prism 24 may be detected by the image sensor 601 and the image sensor 52 without intentionally converting the polarization. In this embodiment, the image sensor 601 is arranged in the reference optical path, but it may be in the signal optical path or in the common optical path as long as it is after the pinhole 14 or the intensity distribution conversion lens 16. Also good. Furthermore, in order to drive the translation mechanism of the optical axis variable unit 15, the intensity distribution is detected from the image sensor 52. For example, a lens or an element that extends the optical path is taken in and out of the optical path to the image sensor 601. The intensity distribution may be detected from the image sensor 601 by bringing the light beam on the screen 601 into a defocused state.
 そして、光軸可変部35の回転機構を駆動するために、検出器602からの検出信号を用いたが、調整用媒体301の透過光を検出できれば良いため、この構成には限定されない。例えば、調整用媒体301を挿入時に調整用媒体301と1/4波長板50の間に検出器を配置しても良い。また、調整用媒体301に検出器が取り付けられていても良い。このようにすることで、本実施例の構成よりも小型化、低コスト化を実現できる利点がある。そして、ガルバノミラー51の透過する参照光を検出しても良い。 The detection signal from the detector 602 is used to drive the rotation mechanism of the optical axis variable unit 35. However, the configuration is not limited to this configuration as long as the transmitted light of the adjustment medium 301 can be detected. For example, a detector may be disposed between the adjustment medium 301 and the quarter wavelength plate 50 when the adjustment medium 301 is inserted. A detector may be attached to the adjustment medium 301. By doing in this way, there exists an advantage which can implement | achieve size reduction and cost reduction rather than the structure of a present Example. Then, the reference light transmitted through the galvanometer mirror 51 may be detected.
 本実施例では、調整用媒体301を用いたが、例えば図17のように光情報記録媒体300に対し、保護層や媒体がそれぞれ半分の厚さになっている調整用媒体303と撮像素子607を用いて光情報記録媒体300内の信号光と参照光の相対位置を検出しても良い。 In this embodiment, the adjustment medium 301 is used. For example, as shown in FIG. 17, the adjustment medium 303 and the image sensor 607 in which the protective layer and the medium are half the thickness of the optical information recording medium 300. May be used to detect the relative position of the signal light and the reference light in the optical information recording medium 300.
 この場合、まず調整用媒体303と、調整用媒体303と1/4波長板50との間に撮像素子607を配置する。なお、調整用媒体303と撮像素子607は接触していても良い。そして、信号光のみが調整用媒体303に入射するように偏光可変素子18と偏光可変素子20を制御する。その後、信号光が最も小さなスポットになるように撮像素子607を対物レンズ29の光軸方向に駆動し、位置を決定する。このようにすることで、撮像素子607の受光面を信号光が収束する位置に合わせることができる。次に、参照光のみが調整用媒体303に入射するように偏光可変素子18と偏光可変素子30を制御する。ここで、光軸可変部35の回転機構を駆動し、撮像素子607上で参照光の中心が信号光の収束位置に略一致するように光軸を変位させる。最後に、調整用媒体303から光情報記録媒体300に変更すれば、補正は終了である。 In this case, first, the image sensor 607 is disposed between the adjustment medium 303 and the adjustment medium 303 and the quarter-wave plate 50. Note that the adjustment medium 303 and the image sensor 607 may be in contact with each other. Then, the polarization variable element 18 and the polarization variable element 20 are controlled so that only the signal light enters the adjustment medium 303. Thereafter, the image sensor 607 is driven in the optical axis direction of the objective lens 29 so that the signal light becomes the smallest spot, and the position is determined. By doing in this way, the light-receiving surface of the image pick-up element 607 can be matched with the position where signal light converges. Next, the polarization variable element 18 and the polarization variable element 30 are controlled such that only the reference light enters the adjustment medium 303. Here, the rotation mechanism of the optical axis variable unit 35 is driven, and the optical axis is displaced on the image sensor 607 so that the center of the reference light substantially coincides with the convergence position of the signal light. Finally, if the adjustment medium 303 is changed to the optical information recording medium 300, the correction is completed.
 これにより、光情報記録媒体300内の信号光と参照光の相対位置ずれを補正することができる。このようにすることで、小型化、低コスト化を実現できる利点がある。また、図17に対して調整用媒体303がなくても良い。この場合、撮像素子607上に信号光が収束する位置での信号光と参照光の距離を予め算出しておき、撮像素子607上の信号光と参照光の距離をその量に合わせることで補正しても良い。 Thereby, the relative positional deviation between the signal light and the reference light in the optical information recording medium 300 can be corrected. By doing in this way, there exists an advantage which can implement | achieve size reduction and cost reduction. Further, the adjustment medium 303 may not be provided as compared with FIG. In this case, the distance between the signal light and the reference light at the position where the signal light converges on the image sensor 607 is calculated in advance, and the distance between the signal light and the reference light on the image sensor 607 is adjusted according to the amount. You may do it.
図18は本実施例に係る2光束角度多重方式のホログラム記録再生装置内の光ピックアップ装置60の光学系を示したものである。本実施例は実施例6に対し、参照光路に光軸可変部38を追加していることが異なる。それ以外は実施例6と同様であるため、本実施例では、実施例6との差分について説明を行う。本実施例では、光軸可変部35と光軸可変部38の回転機構を駆動するための制御方法について説明を行う。 FIG. 18 shows an optical system of the optical pickup device 60 in the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to the present embodiment. The present embodiment is different from the sixth embodiment in that an optical axis variable unit 38 is added to the reference optical path. Since other than that is the same as that of Example 6, a difference with Example 6 is demonstrated in a present Example. In this embodiment, a control method for driving the rotation mechanisms of the optical axis variable unit 35 and the optical axis variable unit 38 will be described.
 図18において、まず、光情報記録媒体300を調整用媒体301に変更し、実施例6と同様に信号光を用いて調整用媒体301の位置を決定する。次に、参照光のみが調整用媒体301に入射するように偏光可変素子18と偏光可変素子30を制御する。ここで、ガルバノミラー37とガルバノミラー51を所定角度となるように制御する。このようにすることで、実施例1同様に撮像素子603に参照光が入射する。そして、撮像素子603の信号強度が最大となるように光軸可変部38の回転機構を駆動し、調整用媒体301の参照光の照射位置を決定する。 18, first, the optical information recording medium 300 is changed to the adjustment medium 301, and the position of the adjustment medium 301 is determined using the signal light in the same manner as in the sixth embodiment. Next, the polarization variable element 18 and the polarization variable element 30 are controlled so that only the reference light enters the adjustment medium 301. Here, the galvanometer mirror 37 and the galvanometer mirror 51 are controlled to have a predetermined angle. By doing so, the reference light is incident on the image sensor 603 as in the first embodiment. Then, the rotation mechanism of the optical axis variable unit 38 is driven so that the signal intensity of the image sensor 603 is maximized, and the irradiation position of the reference light on the adjustment medium 301 is determined.
 次に、ガルバノミラー37とガルバノミラー51の角度を変える。このとき、撮像素子603上の光ビームが、中心対称に変化すれば、光軸可変部35、光軸可変部38は最適となっている。もし、このとき中心対称となっていない場合には、以下の工程をやり直す。まず、ガルバノミラー37とガルバノミラー51を所定角度となるように制御する。そして、光軸可変部35の回転機構を駆動し、調整用媒体301に入射する参照光の光軸の位置を変化させた後、撮像素子603の信号強度が最大となるように光軸可変部38の回転機構を駆動し、調整用媒体301に照射する参照光の光軸の位置を決定する。ここで、光軸可変部35の回転機構の補正量と方向については、ガルバノミラー37とガルバノミラー51の角度に応じた撮像素子603上の光ビームの変化量、方向から算出することができる。 Next, the angle between the galvanometer mirror 37 and the galvanometer mirror 51 is changed. At this time, if the light beam on the image sensor 603 changes symmetrically, the optical axis variable unit 35 and the optical axis variable unit 38 are optimal. If it is not centrally symmetric at this time, the following steps are repeated. First, the galvanometer mirror 37 and the galvanometer mirror 51 are controlled to have a predetermined angle. Then, after driving the rotation mechanism of the optical axis variable unit 35 and changing the position of the optical axis of the reference light incident on the adjustment medium 301, the optical axis variable unit so that the signal intensity of the image sensor 603 becomes maximum. The rotation mechanism 38 is driven to determine the position of the optical axis of the reference light irradiated on the adjustment medium 301. Here, the correction amount and direction of the rotation mechanism of the optical axis variable unit 35 can be calculated from the change amount and direction of the light beam on the image sensor 603 corresponding to the angle between the galvanometer mirror 37 and the galvanometer mirror 51.
 その後、ガルバノミラー37とガルバノミラー51の角度を変え、撮像素子603上の光ビームの変化を確認する。このとき、撮像素子603上の光ビームが、中心対称に変化すれば補正終了である。また、中心対称となっていなければ再度補正を行う。これを繰り返すことで光軸可変部35、光軸可変部38は最適にすることができる。 Thereafter, the angle of the galvanometer mirror 37 and the galvanometer mirror 51 is changed, and the change of the light beam on the image sensor 603 is confirmed. At this time, if the light beam on the image sensor 603 changes symmetrically, the correction is completed. If it is not centrally symmetric, correction is performed again. By repeating this, the optical axis variable unit 35 and the optical axis variable unit 38 can be optimized.
 以下、撮像素子603上の参照光を用いて調整用媒体301内の参照光の光軸の位置ずれを確認できる理由について説明を行う。 Hereinafter, the reason why the positional deviation of the optical axis of the reference light in the adjustment medium 301 can be confirmed using the reference light on the image sensor 603 will be described.
 図19は、参照光に対する調整用媒体301内の開口部302の遮光領域302Bの位置(左側図)と、そのときの撮像素子603上の参照光の大きさ(右側図)を示している。ここで、図19(A)と(B1)、(B2)は調整用媒体301に入射する参照光の光軸の角度が異なっている。また、(B1)と(B2)は遮光領域302Bに入射する参照光の光軸の位置が異なっている。そして、参照光801、参照光803、参照光805は、ガルバノミラー37側からの参照光を示しており、参照光802、参照光804、参照光806は、ガルバノミラー51側からの参照光を示している。また、図中の斜線部は、撮像素子603上の参照光を示している。なお、説明を簡単にするため、調整用媒体301の開口部302の遮光領域302Aは考慮していない。また、同じ理由で遮光領域302Bを長方形としている。 FIG. 19 shows the position of the light shielding region 302B of the opening 302 in the adjustment medium 301 with respect to the reference light (left side view) and the size of the reference light on the image sensor 603 at that time (right side view). Here, FIGS. 19A, 19B1 and 19B2 are different in the angle of the optical axis of the reference light incident on the adjustment medium 301. FIG. Further, (B1) and (B2) are different in the position of the optical axis of the reference light incident on the light shielding region 302B. Reference light 801, reference light 803, and reference light 805 indicate reference light from the galvano mirror 37 side, and reference light 802, reference light 804, and reference light 806 indicate reference light from the galvano mirror 51 side. Show. Further, the hatched portion in the figure indicates the reference light on the image sensor 603. For simplicity of explanation, the light shielding region 302A of the opening 302 of the adjustment medium 301 is not considered. For the same reason, the light shielding region 302B is rectangular.
 本実施例では、光軸可変部38の回転機構を駆動し、調整用媒体301に入射する参照光の光軸の位置を決定した後、ガルバノミラー37とガルバノミラー51の角度を変える。参照光は、調整用媒体301に斜めに入射するため、調整用媒体301内の参照光の大きさが変化する。すなわち、この参照光が調整用媒体301内の開口部302に照射されると、参照光の入射角度に応じて、参照光に対する遮光領域302Bの大きさが変化するため、撮像素子603に入射する参照光の大きさが変化する。 In this embodiment, the rotation mechanism of the optical axis variable unit 38 is driven to determine the position of the optical axis of the reference light incident on the adjustment medium 301, and then the angle between the galvano mirror 37 and the galvano mirror 51 is changed. Since the reference light is incident on the adjustment medium 301 at an angle, the size of the reference light in the adjustment medium 301 changes. That is, when the reference light is irradiated onto the opening 302 in the adjustment medium 301, the size of the light-shielding region 302B with respect to the reference light changes according to the incident angle of the reference light, and thus enters the image sensor 603. The size of the reference light changes.
 ここで、例えば図19(A)に対する(B1)のように調整用媒体301上の参照光の光軸の位置がずれていない場合には、遮光領域302Bの中心に対して参照光の大きさは対称に変化するため、遮光領域302Bで制限された参照光は、参照光808のように中心軸800に対して対称に変化する。一方、図19(A)に対する(B2)のように参照光の光軸の位置がずれていた場合には、遮光領域302Bで制限された光ビームは参照光809のように中心軸800に対して非対称に変化する。これを検出することより、ガルバノミラー37の回転に伴う調整用媒体301内の参照光の光軸の位置変化を検出することができる。 Here, for example, when the position of the optical axis of the reference light on the adjustment medium 301 is not shifted as shown in (B1) with respect to FIG. 19A, the size of the reference light with respect to the center of the light shielding region 302B. Changes symmetrically, the reference light limited by the light shielding region 302B changes symmetrically with respect to the central axis 800 like the reference light 808. On the other hand, when the position of the optical axis of the reference light is shifted as shown in (B2) with respect to FIG. 19A, the light beam limited by the light shielding region 302B is relative to the central axis 800 like the reference light 809. Changes asymmetrically. By detecting this, it is possible to detect a change in the position of the optical axis of the reference light in the adjustment medium 301 accompanying the rotation of the galvanometer mirror 37.
 以上のような制御方法を用いて各光軸可変部の回転機構を駆動することで、光学部品に対する外乱・経時変化に伴う光軸の傾きおよび位置のずれがあった場合であっても安定した記録再生を行うことができる。また、本実施例は、実施例6に対して光学部品の大きな角度ずれ、位置ずれが発生しても最適な状態に補正することが可能である。なお、本実施例では撮像素子603を用いたが例えば位置検出素子などの光ビームの位置ずれを測定する素子であっても良い。 By driving the rotation mechanism of each optical axis variable unit using the control method as described above, the optical component is stable even when there is a tilt or position shift of the optical axis due to disturbance or change over time. Recording and reproduction can be performed. In addition, the present embodiment can correct the optical component to an optimum state even if a large angular shift or positional shift of the optical component occurs with respect to the sixth embodiment. In this embodiment, the image sensor 603 is used. However, an element that measures the positional deviation of the light beam, such as a position detector, may be used.
 そして、本実施例では、調整用媒体301を用いたが、例えば図17のように光情報記録媒体300に対し、保護層や媒体がそれぞれ半分の厚さになっている調整用媒体303と撮像素子607を用いて光情報記録媒体300内の信号光と参照光の相対位置を検出しても良い。 In this embodiment, the adjustment medium 301 is used. However, for example, as shown in FIG. 17, the protective layer and the medium are half the thickness of the optical information recording medium 300 and the adjustment medium 303 is imaged. The relative position between the signal light and the reference light in the optical information recording medium 300 may be detected using the element 607.
 この場合、まず調整用媒体303と、調整用媒体303と1/4波長板50との間に撮像素子607を配置する。そして、信号光のみが調整用媒体301に入射するように偏光可変素子18と偏光可変素子20を制御する。その後、信号光が最も小さなスポットになるように撮像素子607を対物レンズ29の光軸方向に駆動する。次に、参照光のみが調整用媒体301に入射するように偏光可変素子18と偏光可変素子30を制御する。ここで、ガルバノミラー37を駆動し、撮像素子607上でガルバノミラー37の角度に伴う位置ずれが小さくなるように光軸可変部35を用いて光軸を変位させる。その後、信号光の照射位置と参照光の中心が一致するように光軸可変部38を用いて光軸を変位させる。最後に、調整用媒体303から光情報記録媒体300に変更すれば、補正は終了である。 In this case, first, the image sensor 607 is disposed between the adjustment medium 303 and the adjustment medium 303 and the quarter-wave plate 50. Then, the polarization variable element 18 and the polarization variable element 20 are controlled so that only the signal light enters the adjustment medium 301. Thereafter, the image sensor 607 is driven in the optical axis direction of the objective lens 29 so that the signal light becomes the smallest spot. Next, the polarization variable element 18 and the polarization variable element 30 are controlled so that only the reference light enters the adjustment medium 301. Here, the galvanometer mirror 37 is driven, and the optical axis is displaced using the optical axis variable unit 35 so that the positional deviation associated with the angle of the galvanometer mirror 37 on the image sensor 607 is reduced. Thereafter, the optical axis is displaced using the optical axis variable unit 38 so that the irradiation position of the signal light coincides with the center of the reference light. Finally, if the adjustment medium 303 is changed to the optical information recording medium 300, the correction is completed.
 これにより、光情報記録媒体300内の信号光と参照光の相対位置ずれを補正することができる。このようにすることで、本実施例の構成よりも小型化、低コスト化を実現できる利点がある。また、本実施例よりも高速に補正できる利点がある。 Thereby, the relative positional deviation between the signal light and the reference light in the optical information recording medium 300 can be corrected. By doing in this way, there exists an advantage which can implement | achieve size reduction and cost reduction rather than the structure of a present Example. Further, there is an advantage that correction can be performed at a higher speed than in the present embodiment.
 図20は本実施例に係る2光束角度多重方式のホログラム記録再生装置の補正フローを示したものである。なお、本実施例は、実施例6の図14の構成の場合の調整フローを示している。 FIG. 20 shows a correction flow of the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to the present embodiment. In addition, a present Example has shown the adjustment flow in the case of the structure of FIG.
 図20に示すように、補正フローは、光軸可変部12によるピンホール14への入射光の光軸の傾きの補正(S1)、光軸可変部15による強度分布変換レンズ16への入射光の光軸の傾きおよび位置の補正(S2)、光軸可変部120による開口27への入射光の光軸の傾きの補正(S3)、光軸可変部28による対物レンズ29への入射光の光軸の位置の補正(S4)、光軸可変部35による光情報記録媒体300内の信号光と参照光の相対位置の補正(S5)の順で行う。本補正フローは、少なくとも共通光路の補正が行われた後に信号光および参照光の補正が行われることを特徴としている。また、共通光路、信号光路、参照光路内の各光路では、光源に近い順に補正を行うことを特徴としている。 As shown in FIG. 20, the correction flow includes correction of the inclination of the optical axis of the incident light to the pinhole 14 by the optical axis variable unit 12 (S 1), and incident light to the intensity distribution conversion lens 16 by the optical axis variable unit 15. Correction of the optical axis inclination and position (S2), correction of the optical axis inclination of the incident light to the aperture 27 by the optical axis variable unit 120 (S3), and correction of the incident light to the objective lens 29 by the optical axis variable unit 28 Correction of the position of the optical axis (S4) and correction of the relative position of the signal light and the reference light in the optical information recording medium 300 by the optical axis variable unit 35 are performed in this order (S5). The present correction flow is characterized in that the signal light and the reference light are corrected at least after the common optical path is corrected. Further, each optical path in the common optical path, the signal optical path, and the reference optical path is characterized in that correction is performed in order from the light source.
 例えば、強度分布変換レンズ16への入射光の光軸の傾きおよび位置の補正後にピンホール14への入射光の光軸の傾きの補正を行うと、ピンホール14に対して最適な光軸の傾きとなるが、強度分布変換レンズ16に入射する光軸が傾いてしまうため、波面収差が発生してしまう課題がある。それに対し、本実施例のようにピンホール14への入射光の光軸の傾きの補正後に強度分布変換レンズ16への入射光の光軸の傾きおよび位置の補正を行えば、ピンホール14、強度分布変換レンズ16ともに最適な光軸の傾きとなる。このように補正を行うことで、光量、強度分布、波面収差を最良にすることができる。 For example, if the inclination of the optical axis of the incident light to the pinhole 14 is corrected after the inclination and position of the optical axis of the incident light to the intensity distribution conversion lens 16 are corrected, Although it is inclined, the optical axis incident on the intensity distribution conversion lens 16 is inclined, which causes a problem that wavefront aberration occurs. On the other hand, if the inclination and the position of the optical axis of the incident light to the intensity distribution conversion lens 16 are corrected after the correction of the inclination of the optical axis of the incident light to the pinhole 14 as in this embodiment, the pinhole 14, Both the intensity distribution conversion lenses 16 have an optimum optical axis inclination. By performing correction in this way, the light amount, intensity distribution, and wavefront aberration can be optimized.
 以上のような補正フローを行うことで光学部品に対する外乱・経時変化に伴う光軸の傾きおよび位置のずれがあった場合であっても安定した記録再生を行うことができる。
本実施例では複数の補正対象を示したが、全ての補正を行う必要は必ずしもなく、補正対象を増減させても良い。本実施例の特徴は、少なくとも共通光路の補正が行われた後に信号光および参照光の補正が行われること、共通光路、信号光路、参照光路の各光路内では、光源に近い順に補正を行うことを特徴としているため、光学系の構成に応じて調整フローを変化する必要がある。例えば、ピンホール14よりも強度分布変換レンズ16が光源側に配置された場合には、強度分布変換レンズを先に補正する。なお、信号光と参照光の補正はどちらが先であっても良い。
By performing the correction flow as described above, stable recording / reproduction can be performed even when the optical component is tilted or displaced due to a disturbance or change with time.
Although a plurality of correction targets are shown in the present embodiment, it is not always necessary to perform all corrections, and the correction targets may be increased or decreased. The feature of the present embodiment is that the signal light and the reference light are corrected at least after the correction of the common optical path, and the correction is performed in the order closer to the light source in each of the common optical path, the signal optical path, and the reference optical path. Therefore, it is necessary to change the adjustment flow according to the configuration of the optical system. For example, when the intensity distribution conversion lens 16 is arranged closer to the light source than the pinhole 14, the intensity distribution conversion lens is corrected first. Note that either the signal light or the reference light may be corrected first.
 図21は本実施例に係る2光束角度多重方式のホログラム記録再生装置の調整フローを示したものである。実施例8では、全ての調整を行うことを前提に説明したが、記録再生中に外乱、経時変化が起こった場合であっても、安定した記録再生を行うための調整フローを提供する。なお、本実施例は、実施例6の図14の構成の場合の調整フローを示している。本実施例では図14において、参照光の一部の光ビームはPBSプリズム31を反射し、検出器601に入射しているとする。
図21は、記録再生動作中での外乱、経時変化による共通光路内の光学部品の角度ずれ、位置ずれがあった場合の調整フローについて示している。
図21において、まず、記録再生を開始し、所定量のデータを記録再生(Sa1)した後、検出器601の出力信号強度を確認(Sa2)する。このとき、検出器601の出力信号強度が所定量以上の場合には、所定量のデータを記録再生する(Sa3)。それに対し、受光部601の出力信号強度が所定量以下になってしまった場合には、一旦、記録再生を中断(Sa5)し、光軸可変部12によるピンホール14への入射光の光軸の傾きの補正(Sa6)を行った後、記録再生を再開し、所定領域の記録再生を行う(Sa3)。このとき、記録再生が終了していない場合には、再度、所定量のデータを記録再生(Sa1)した後、検出器601の出力信号強度を確認(Sa2)し、記録再生を続ける。
FIG. 21 shows an adjustment flow of the hologram recording / reproducing apparatus of the two-beam angle multiplexing system according to the present embodiment. The eighth embodiment has been described on the assumption that all adjustments are performed. However, an adjustment flow for performing stable recording / reproduction is provided even when a disturbance or a change with time occurs during recording / reproduction. In addition, a present Example has shown the adjustment flow in the case of the structure of FIG. In this embodiment, in FIG. 14, it is assumed that a part of the reference light beam is reflected by the PBS prism 31 and is incident on the detector 601.
FIG. 21 shows an adjustment flow in the case where there is a disturbance during recording / reproducing operation and an angular deviation and a positional deviation of the optical components in the common optical path due to a change with time.
In FIG. 21, first, recording / reproduction is started, and after recording / reproducing a predetermined amount of data (Sa1), the output signal intensity of the detector 601 is confirmed (Sa2). At this time, if the output signal intensity of the detector 601 is greater than or equal to a predetermined amount, a predetermined amount of data is recorded and reproduced (Sa3). On the other hand, when the output signal intensity of the light receiving unit 601 becomes a predetermined amount or less, recording / reproduction is temporarily interrupted (Sa5), and the optical axis of the incident light to the pinhole 14 by the optical axis variable unit 12 After correcting the inclination (Sa6), recording / reproduction is resumed, and recording / reproduction of a predetermined area is performed (Sa3). At this time, if the recording / reproduction is not completed, a predetermined amount of data is again recorded / reproduced (Sa1), the output signal intensity of the detector 601 is confirmed (Sa2), and the recording / reproduction is continued.
 本実施例では記録再生中の光学部品の角度ずれ、位置ずれに伴う光ビームの強度変化を検出器601で確認し、その信号を用いて補正の必要性を判断することを特徴としている。なお、本実施例では、記録再生を中断(Sa5)したときに光軸可変部12によるピンホール14への入射光の光軸の傾きの補正(Sa6)のみを行ったが、それだけには限定されない。例えば、光軸可変部15による強度分布変換レンズ16への入射光の光軸の傾きおよび位置の補正等を組み合わせて補正しても良い。また、本実施例では、受光部601の出力信号強度が所定量以下になってしまった場合には、一旦、記録再生を中断(Sa5)したが、中断せずに受光部601の出力信号強度が大きくなるように光軸可変部12を微調整しても良い。
また、光ビームの強度変化を検出器で検出し、補正の必要性を判断することが本実施例の特徴である。このため、他の検出器の信号を用いて光軸可変部の補正の必要性を確認しても良い。例えば、図14の検出器606の出力信号を用いて光軸可変部120による開口27への入射光の光軸の傾きの補正、光軸可変部28による対物レンズ29への入射光の光軸の位置の補正を行っても良い。
さらに、本実施例では、所定量のデータを記録再生(Sa3)した後に、検出器601の出力信号強度を確認(Sa2)するとしたが、これには限定されない。例えば、絶えず検出器601の出力信号強度を確認しておき、受光部601の出力信号強度が所定量以下となった時点で、光軸可変部での補正を行っても良い。
The present embodiment is characterized in that a change in the intensity of the light beam accompanying the angular deviation and positional deviation of the optical component during recording / reproduction is confirmed by the detector 601, and the necessity of correction is determined using the signal. In the present embodiment, when the recording / reproduction is interrupted (Sa5), only the optical axis inclination correction (Sa6) of the incident light to the pinhole 14 is performed by the optical axis variable unit 12, but this is not limitative. . For example, the correction may be performed by combining correction of the inclination and position of the optical axis of the incident light to the intensity distribution conversion lens 16 by the optical axis variable unit 15. Further, in this embodiment, when the output signal intensity of the light receiving unit 601 has become a predetermined amount or less, the recording / reproduction is temporarily interrupted (Sa5), but the output signal intensity of the light receiving unit 601 is not interrupted. The optical axis variable unit 12 may be finely adjusted so as to increase.
Further, it is a feature of this embodiment that a change in the intensity of the light beam is detected by a detector to determine the necessity for correction. For this reason, the necessity for correction of the optical axis variable unit may be confirmed using signals from other detectors. For example, using the output signal of the detector 606 in FIG. 14, the optical axis variable unit 120 corrects the inclination of the optical axis of the incident light to the aperture 27, and the optical axis variable unit 28 sets the optical axis of the incident light to the objective lens 29. The position may be corrected.
Furthermore, in the present embodiment, after recording and reproducing (Sa3) a predetermined amount of data, the output signal intensity of the detector 601 is confirmed (Sa2). However, the present invention is not limited to this. For example, the output signal intensity of the detector 601 may be constantly checked, and the correction by the optical axis variable unit may be performed when the output signal intensity of the light receiving unit 601 becomes a predetermined amount or less.
 本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。さらに各実施例は、ホログラム記録再生装置で説明を行ったが、ホログラム記録装置やホログラム再生装置であっても良い。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. Further, although each embodiment has been described with respect to the hologram recording / reproducing apparatus, it may be a hologram recording apparatus or a hologram reproducing apparatus.
10:光源、11:コリメートレンズ、12、光軸可変部、13:リレーレンズ、14:ピンホール、15:光軸可変部、16:強度分布変換レンズ、17:シャッタ、18:偏光可変素子、19:PBSプリズム、20:偏光可変素子、21:ビームエキスパンダ、22:位相マスク、23:リレーレンズ、24:PBSプリズム、25:空間光変調器(SLM)、26:リレーレンズ、27:開口、28:光軸可変部、29:対物レンズ、30:偏光可変素子、31:PBSプリズム、32:ミラー、33:ミラー、34:1/2波長板、35:光軸可変部、36:ピッチコレクタ、37:ガルバノミラー、38:光軸可変部、39:スキャナレンズ、40:光軸可変部、41:位置移動機構、42:位置移動機構、43:位置移動機構、50:1/4波長板、51:ガルバノミラー、52:撮像素子、60:光ピックアップ装置、70:光情報記録媒体駆動素子、82:光源駆動回路、85:信号処理回路、86:信号生成回路、87:シャッタ制御回路、89:コントローラ、120:光軸可変部、300:光情報記録媒体、301,303:調整用媒体、302:開口部、512:位相共役光学系、513:光情報記録媒体Cure光学系、600:検出レンズ、601:撮像素子、602:検出器、603:撮像素子、604:コリメートレンズ、605:検出レンズ、606:検出器 10: light source, 11: collimating lens, 12, optical axis variable unit, 13: relay lens, 14: pinhole, 15: optical axis variable unit, 16: intensity distribution conversion lens, 17: shutter, 18: polarization variable element, 19: PBS prism, 20: polarization variable element, 21: beam expander, 22: phase mask, 23: relay lens, 24: PBS prism, 25: spatial light modulator (SLM), 26: relay lens, 27: aperture 28: Optical axis variable part, 29: Objective lens, 30: Polarization variable element, 31: PBS prism, 32: Mirror, 33: Mirror, 34: 1/2 wavelength plate, 35: Optical axis variable part, 36: Pitch Collector: 37: Galvano mirror, 38: Optical axis variable unit, 39: Scanner lens, 40: Optical axis variable unit, 41: Position moving mechanism, 42: Position moving mechanism, 43: Position moving mechanism 50: 1/4 wavelength plate, 51: Galvano mirror, 52: Imaging element, 60: Optical pickup device, 70: Optical information recording medium driving element, 82: Light source driving circuit, 85: Signal processing circuit, 86: Signal generation circuit , 87: shutter control circuit, 89: controller, 120: optical axis variable unit, 300: optical information recording medium, 301, 303: adjustment medium, 302: aperture, 512: phase conjugate optical system, 513: optical information recording Medium Cure optical system, 600: detection lens, 601: imaging device, 602: detector, 603: imaging device, 604: collimating lens, 605: detection lens, 606: detector

Claims (20)

  1. 2光束角度多重方式のホログラム記録再生装置であって、
    光ビームを出射する光源部と、
    前記光源部から出射した光ビームを信号光と参照光に分岐する分岐部と、
    光情報記録媒体に前記信号光を照射するための第一のレンズ部と、
    前記光情報記録媒体内の前記信号光と略同じ位置に前記参照光を入射する第二のレンズ部と、
    前記光情報記録媒体に入射する前記参照光の入射角度を変えるための光路角度可変部と、
    前記光源部から前記第一のレンズ部または第二のレンズ部に至る光路中の光学部品と、
    を備えており、
    前記光学部品への入射光の傾きまたは位置を変化させる光軸可変部を備えていることを特徴とするホログラム記録再生装置。
    A hologram recording / reproducing apparatus of a two-beam angle multiplexing system,
    A light source that emits a light beam;
    A branching section for branching the light beam emitted from the light source section into signal light and reference light;
    A first lens unit for irradiating the optical information recording medium with the signal light;
    A second lens unit for injecting the reference light at substantially the same position as the signal light in the optical information recording medium;
    An optical path angle variable unit for changing an incident angle of the reference light incident on the optical information recording medium;
    An optical component in an optical path from the light source unit to the first lens unit or the second lens unit;
    With
    A hologram recording / reproducing apparatus comprising an optical axis variable unit that changes the inclination or position of incident light on the optical component.
  2. 請求項1に記載のホログラム記録再生装置であって、
    前記分岐部はPBSプリズムであり、
    前記第一のレンズ部は対物レンズであり、
    前記第二のレンズ部はスキャナレンズであり、
    前記光路角度可変部はガルバノミラーである、
    ことを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 1,
    The branch is a PBS prism;
    The first lens unit is an objective lens,
    The second lens unit is a scanner lens;
    The optical path angle variable unit is a galvanometer mirror,
    And a hologram recording / reproducing apparatus.
  3. 請求項1に記載のホログラム記録再生装置であって、
    前記光源部から前記第一のレンズ部または第二のレンズ部に至る光路中に、ピンホールを備えており、
    前記光軸可変部は、前記ピンホールに入射する光軸を傾けることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 1,
    In the optical path from the light source part to the first lens part or the second lens part, a pinhole is provided,
    The hologram recording / reproducing apparatus, wherein the optical axis variable unit tilts an optical axis incident on the pinhole.
  4. 請求項1に記載のホログラム記録再生装置であって、
    前記光源部から前記第一のレンズ部または第二のレンズ部に至る光路中に、略ガウシアン分布の強度分布を略トップハット形状の強度分布に変換する強度分布変換部を備えており、
    前記光軸可変部は、前記強度分布変換部に入射する光ビームの光軸を少なくとも傾けることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 1,
    In the optical path from the light source unit to the first lens unit or the second lens unit, an intensity distribution conversion unit that converts an intensity distribution of a substantially Gaussian distribution into an intensity distribution of a substantially top hat shape is provided.
    The hologram recording / reproducing apparatus, wherein the optical axis variable unit tilts at least an optical axis of a light beam incident on the intensity distribution conversion unit.
  5. 請求項1に記載のホログラム記録再生装置であって、
    前記光軸可変部は、前記光路角度可変部に入射する光ビームの光軸の位置を変えることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 1,
    The hologram recording / reproducing apparatus, wherein the optical axis variable unit changes a position of an optical axis of a light beam incident on the optical path angle variable unit.
  6. 請求項1に記載のホログラム記録再生装置であって、
    前記光学部品を出射した光ビームを検出する検出部を備え、
    前記光軸可変部は、前記検出部の信号をもとに前記光軸可変部の出射光の光軸を傾けることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 1,
    A detection unit for detecting a light beam emitted from the optical component;
    The hologram recording / reproducing apparatus, wherein the optical axis variable unit tilts the optical axis of the emitted light of the optical axis variable unit based on the signal of the detection unit.
  7. 請求項1に記載のホログラム記録再生装置であって、
    前記信号光、参照光を検出する検出部を備え、
    前記光軸可変部は、前記検出部の信号をもとに前記光軸可変部の出射光の光軸を光軸と平行方向に変位させることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 1,
    A detector for detecting the signal light and the reference light;
    The hologram recording / reproducing apparatus characterized in that the optical axis variable unit displaces the optical axis of the emitted light of the optical axis variable unit in a direction parallel to the optical axis based on the signal of the detection unit.
  8. 請求項3に記載のホログラム記録再生装置であって、
    前記光学部品を出射した光ビームを検出する検出部を備え、
    前記光軸可変部は、前記検出部で検出した信号強度をもとに、前記ピンホールに入射する光ビームの光軸を傾けることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 3,
    A detection unit for detecting a light beam emitted from the optical component;
    The hologram recording / reproducing apparatus, wherein the optical axis variable unit tilts the optical axis of the light beam incident on the pinhole based on the signal intensity detected by the detection unit.
  9. 請求項4に記載のホログラム記録再生装置であって、
    前記光学部品を出射した光ビームを検出する検出部を備え、
    前記光軸可変部は、前記検出部のスポット形状が略最小となるよう、前記強度分布変換部に入射する光ビームの光軸を傾けることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 4,
    A detection unit for detecting a light beam emitted from the optical component;
    The hologram recording / reproducing apparatus, wherein the optical axis variable unit tilts an optical axis of a light beam incident on the intensity distribution conversion unit so that a spot shape of the detection unit is substantially minimized.
  10. 請求項4に記載のホログラム記録再生装置であって、
    前記光学部品を出射した光ビームを検出する検出部を備え、
    前記光軸可変部は、前記検出部で検出した波面収差の情報をもとに、前記強度分布変換部に入射する光ビームの光軸を傾けることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 4,
    A detection unit for detecting a light beam emitted from the optical component;
    The hologram recording / reproducing apparatus, wherein the optical axis variable unit tilts an optical axis of a light beam incident on the intensity distribution conversion unit based on information on wavefront aberration detected by the detection unit.
  11. 請求項4に記載のホログラム記録再生装置であって、
    前記光学部品を出射した光ビームを検出する検出部を備え、
    前記光軸可変部は、前記検出部で検出した強度分布の情報をもとに、前記強度分布変換部に入射する光ビームの光軸を変位させることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 4,
    A detection unit for detecting a light beam emitted from the optical component;
    The hologram recording / reproducing apparatus, wherein the optical axis variable unit displaces an optical axis of a light beam incident on the intensity distribution conversion unit based on information on an intensity distribution detected by the detection unit.
  12. 請求項5に記載のホログラム記録再生装置であって、
    前記信号光、前記参照光を検出する検出部を備え、
    前記光軸可変部は、前記検出部で検出した信号強度をもとに、前記光路角度可変部に入射する光ビームの光軸の位置を変えることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 5,
    A detector for detecting the signal light and the reference light;
    The hologram recording / reproducing apparatus, wherein the optical axis variable unit changes the position of the optical axis of the light beam incident on the optical path angle variable unit based on the signal intensity detected by the detection unit.
  13. 請求項5に記載のホログラム記録再生装置であって、
    前記信号光、前記参照光を検出する検出部を備え、
    信号光を遮光する第一の遮光部と、参照光の周辺部を遮光する第二の遮光部を有する調整用媒体を前記信号光と前記参照光の交わる位置に配置したとき、
    前記信号光のみを入射した際に、前記検出部の信号強度が最小となるように調整用媒体を移動し、
    前記参照光のみを入射した際に、前記検出部の信号強度が最大となるように前記光軸可変部によって光軸を調整することを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 5,
    A detector for detecting the signal light and the reference light;
    When the adjustment medium having a first light-shielding part that shields the signal light and a second light-shielding part that shields the peripheral part of the reference light is arranged at a position where the signal light and the reference light intersect,
    When only the signal light is incident, the adjustment medium is moved so that the signal intensity of the detection unit is minimized,
    A hologram recording / reproducing apparatus, wherein the optical axis is adjusted by the optical axis variable unit so that the signal intensity of the detection unit becomes maximum when only the reference light is incident.
  14. 請求項5に記載のホログラム記録再生装置であって、
    前記信号光、前記参照光を検出する検出部を備え、
    前記第一のレンズ部からの前記信号光を検出することで、前記検出部の位置を決定し、
    その後、前記光路角度可変部に入射する光ビームの光軸の位置を変えること特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 5,
    A detector for detecting the signal light and the reference light;
    By detecting the signal light from the first lens unit, the position of the detection unit is determined,
    Then, the hologram recording / reproducing apparatus characterized in that the position of the optical axis of the light beam incident on the optical path angle variable unit is changed.
  15. 請求項14に記載のホログラム記録再生装置であって、
    前記検出部は、撮像素子であることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 14,
    The hologram recording / reproducing apparatus, wherein the detection unit is an image sensor.
  16. 請求項1に記載のホログラム記録再生装置であって、
    前記第二のレンズ部と前記光路角度可変部は、同じ筐体に保持されており、
    前記筐体に入射する光軸方向に略平行な方向に筐体を動かす機構を備えていることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 1,
    The second lens unit and the optical path angle variable unit are held in the same housing,
    A hologram recording / reproducing apparatus comprising a mechanism for moving the casing in a direction substantially parallel to an optical axis direction incident on the casing.
  17. 請求項1に記載のホログラム記録再生装置であって、
    前記第二のレンズ部と前記光路角度可変部は、同じ筐体に保持されており、
    前記筐体に入射する光軸方向に対して、少なくとも略垂直な方向に筐体を動かす機構を備えていることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 1,
    The second lens unit and the optical path angle variable unit are held in the same housing,
    A hologram recording / reproducing apparatus comprising a mechanism for moving the casing in a direction at least substantially perpendicular to the optical axis direction incident on the casing.
  18. 2光束角度多重方式のホログラム記録再生装置であって、
    光ビームを出射する光源部と、
    前記光源部から出射した光ビームを信号光と参照光に分岐する分岐部と、
    前記信号光に2次元データを付加するための空間光変調器と、
    光情報記録媒体に前記信号光を照射するための第一のレンズ部と、
    前記光情報記録媒体内の前記信号光と略同じ位置に前記参照光を入射する第二のレンズ部と、
    前記光情報記録媒体に入射する前記参照光の入射角度を変えるための光路角度可変部と、
    を備えており、
    空間光変調器の2次元データの出力を変えることで、前記第一のレンズ部に入射する信号光を変位させることを特徴とするホログラム記録再生装置。
    A hologram recording / reproducing apparatus of a two-beam angle multiplexing system,
    A light source that emits a light beam;
    A branching section for branching the light beam emitted from the light source section into signal light and reference light;
    A spatial light modulator for adding two-dimensional data to the signal light;
    A first lens unit for irradiating the optical information recording medium with the signal light;
    A second lens unit for injecting the reference light at substantially the same position as the signal light in the optical information recording medium;
    An optical path angle variable unit for changing an incident angle of the reference light incident on the optical information recording medium;
    With
    A hologram recording / reproducing apparatus characterized in that the signal light incident on the first lens unit is displaced by changing the output of the two-dimensional data of the spatial light modulator.
  19. 2光束角度多重方式のホログラム記録再生装置における光学部品の入射光の光軸補正方法であって、
    前記ホログラム記録再生装置は、
    光ビームを出射する光源部と、
    前記光源部から出射した光ビームを信号光と参照光に分岐する分岐部と、
    前記信号光に2次元データを付加するための空間光変調器と、
    光情報記録媒体に入射する前記参照光の入射角度を変えるための光路角度可変部とを有しており、
    前記光源部から前記分岐部に至る光路を共通光路、
    前記分岐部から前記空間光変調器を経て前記光情報記録媒体に至る光路を信号光路、
    前記分岐部から前記光路角度可変部に至る光路を参照光路としたとき、
    前記共通光路中の光学部品の入射光の光軸の傾きまたは位置の補正を行った後、前記信号光路及び参照光路中の光学部品の入射光の光軸の傾きまたは位置の補正を行なうことを特徴とする光軸補正方法。
    An optical axis correction method for incident light of an optical component in a hologram recording / reproducing apparatus of a two-beam angle multiplexing system,
    The hologram recording / reproducing apparatus comprises:
    A light source that emits a light beam;
    A branching section for branching the light beam emitted from the light source section into signal light and reference light;
    A spatial light modulator for adding two-dimensional data to the signal light;
    An optical path angle variable unit for changing the incident angle of the reference light incident on the optical information recording medium,
    An optical path from the light source part to the branch part is a common optical path,
    An optical path from the branching section through the spatial light modulator to the optical information recording medium is a signal optical path,
    When the optical path from the branch part to the optical path angle variable part is a reference optical path,
    After correcting the inclination or position of the optical axis of the incident light of the optical component in the common optical path, the inclination or position of the optical axis of the incident light of the optical component in the signal optical path and the reference optical path is corrected. A characteristic optical axis correction method.
  20. 請求項19に記載の光軸補正方法であって、
    前記共通光路、信号光路、参照光路の各光路内での光学部品の入射光の光軸の傾きまたは位置の補正は、前記光源部に近い光学部品の順に補正を行うことを特徴とする光軸補正方法。
    The optical axis correction method according to claim 19,
    Correction of the inclination or position of the optical axis of the incident light of the optical component in each of the common optical path, the signal optical path, and the reference optical path is performed in the order of the optical components close to the light source unit. Correction method.
PCT/JP2015/052969 2015-02-03 2015-02-03 Hologram recording and reproduction device, and method for correcting optical axis of optical component used for same WO2016125252A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052969 WO2016125252A1 (en) 2015-02-03 2015-02-03 Hologram recording and reproduction device, and method for correcting optical axis of optical component used for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052969 WO2016125252A1 (en) 2015-02-03 2015-02-03 Hologram recording and reproduction device, and method for correcting optical axis of optical component used for same

Publications (1)

Publication Number Publication Date
WO2016125252A1 true WO2016125252A1 (en) 2016-08-11

Family

ID=56563617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052969 WO2016125252A1 (en) 2015-02-03 2015-02-03 Hologram recording and reproduction device, and method for correcting optical axis of optical component used for same

Country Status (1)

Country Link
WO (1) WO2016125252A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03147536A (en) * 1989-11-01 1991-06-24 Matsushita Electric Ind Co Ltd Optical head
JP2003228875A (en) * 2002-02-01 2003-08-15 Minebea Co Ltd Optical unit for hologram and method for adjusting its optical axis
JP2008027490A (en) * 2006-07-19 2008-02-07 Fujifilm Corp Information recording and reproducing apparatus and information reproducing method
JP2010102784A (en) * 2008-10-24 2010-05-06 Konica Minolta Opto Inc Optical information recording and reproducing device
JP2010129134A (en) * 2008-11-28 2010-06-10 Pulstec Industrial Co Ltd Hologram recording device and hologram reproducing device
JP2011054265A (en) * 2009-08-31 2011-03-17 General Electric Co <Ge> Optical data storage medium and method for using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03147536A (en) * 1989-11-01 1991-06-24 Matsushita Electric Ind Co Ltd Optical head
JP2003228875A (en) * 2002-02-01 2003-08-15 Minebea Co Ltd Optical unit for hologram and method for adjusting its optical axis
JP2008027490A (en) * 2006-07-19 2008-02-07 Fujifilm Corp Information recording and reproducing apparatus and information reproducing method
JP2010102784A (en) * 2008-10-24 2010-05-06 Konica Minolta Opto Inc Optical information recording and reproducing device
JP2010129134A (en) * 2008-11-28 2010-06-10 Pulstec Industrial Co Ltd Hologram recording device and hologram reproducing device
JP2011054265A (en) * 2009-08-31 2011-03-17 General Electric Co <Ge> Optical data storage medium and method for using the same

Similar Documents

Publication Publication Date Title
EP1515320B1 (en) Multi-layer information reading and /or writing apparatus
US8004950B2 (en) Optical pickup, optical information recording and reproducing apparatus and method for optically recording and reproducing information
US20070146838A1 (en) Hologram recording device, hologram reproductive device, hologram recording method, hologram reproduction method, and hologram recording medium
EP2144237A1 (en) Multi-wavelength micro holographic data recording/reproducing apparatus
US7283286B2 (en) Hologram recording/reproducing device and optical unit
JP2010250908A (en) Hologram device, tilt detection method, and tilt correction method
JP2010061750A (en) Optical information recording and reproducing device and method
JP5183667B2 (en) Playback apparatus and playback method
US7990830B2 (en) Optical pickup, optical information recording apparatus and optical information recording and reproducing apparatus using the optical pickup
US8085643B2 (en) Optical information reproducing apparatus, optical information recording and reproducing apparatus
WO2014199504A1 (en) Optical information recording/reproduction device and adjustment method
JP5104695B2 (en) Information recording device
JP2010102784A (en) Optical information recording and reproducing device
US8391119B2 (en) Apparatus and method for recording/reproducing optical information, and data fetching by reference to optical information recording medium
WO2016125252A1 (en) Hologram recording and reproduction device, and method for correcting optical axis of optical component used for same
JP6158339B2 (en) Hologram reproducing apparatus and hologram reproducing method
US8830810B2 (en) Holographic optical pickup device, optical information recording and reproducing device, and method of recording and reproducing optical information
US9508377B2 (en) Hologram recording and reproducing device, and angular multiplexing recording and reproducing method
JP2010102785A (en) Optical information recording/reproducing apparatus
WO2014167618A1 (en) Optical information playback device and adjustment method
JP2015204121A (en) Optical information device
JP2012069207A (en) Holographic memory using holography
US9520152B2 (en) Optical information recording/reproducing apparatus
WO2017060984A1 (en) Hologram reproduction device and hologram reproduction method
JP2012133879A (en) Information recording device, information reproduction device, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP