WO2017060952A1 - Light-emitting element lighting device - Google Patents

Light-emitting element lighting device Download PDF

Info

Publication number
WO2017060952A1
WO2017060952A1 PCT/JP2015/078218 JP2015078218W WO2017060952A1 WO 2017060952 A1 WO2017060952 A1 WO 2017060952A1 JP 2015078218 W JP2015078218 W JP 2015078218W WO 2017060952 A1 WO2017060952 A1 WO 2017060952A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting element
transformer
current
switching element
lighting device
Prior art date
Application number
PCT/JP2015/078218
Other languages
French (fr)
Japanese (ja)
Inventor
靖彦 河野
大澤 孝
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/078218 priority Critical patent/WO2017060952A1/en
Priority to JP2017544083A priority patent/JP6456512B2/en
Publication of WO2017060952A1 publication Critical patent/WO2017060952A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Definitions

  • the present invention relates to a light emitting element lighting device for lighting a semiconductor light emitting element with a lighting current generated by intermittently applying a current by hysteresis control in which a difference is provided between a lighting current value for starting energization and a lighting current value for stopping energization. .
  • LEDs light emitting diodes
  • LEDs have many variations in lighting current and size, and the number of LEDs used to obtain desired brightness can be arbitrarily selected. For this reason, the design of the in-vehicle lamp is diversified by adopting the LED as the light source. Along with the diversification of design, the configuration of lighting devices for lighting LEDs has also diversified.
  • a lighting device having an increased output voltage has been developed.
  • a lamp with a variable number of LEDs to be lit among a plurality of LEDs it is lit quickly in response to load fluctuations in order to keep the output current to the LEDs constant even when the number of LEDs to be lit changes.
  • Equipment has been developed.
  • the voltage of the in-vehicle battery that is a power source is unstable. Therefore, the lighting device that responds quickly to fluctuations in the power supply voltage or a capacitor or coil is used to temporarily supply power. Lighting devices and the like have been developed that suppress the effects of fluctuations in power supply voltage by storing them.
  • Hysteresis control is to switch the switching element alternately between an on state and an off state in response to the energized current so that the average current value becomes the target current value while alternately raising and lowering the energized current.
  • a difference is provided between a current value serving as a threshold value for switching the switching element from off to on state and a current value serving as a threshold value for switching from the on state to the off state.
  • hysteresis is provided for the current value at which the energization current starts to increase and the current value at which the energization current starts to decrease, and the average value is controlled to the target value while raising and lowering the energization current between both threshold values. Therefore, in the lighting device based on hysteresis control, the output current to the LED oscillates within a certain range, but the switching element is directly turned on / off in response to fluctuations in the input current or output current. It is possible to realize control with quick response to voltage and load fluctuations.
  • Patent Documents 1 to 4 disclose lighting devices using hysteresis control.
  • the lighting device using hysteresis control controls the output current by turning on and off the input current, the supply voltage to the LED with respect to the power supply voltage is lowered on the principle. For this reason, for example, when a plurality of LEDs connected in series are lit, when the supply voltage to the LED is set to a value higher than the power supply voltage, it is necessary to provide a circuit for boosting the power supply voltage separately from the circuit for hysteresis control.
  • the lighting device of Patent Document 4 is provided with a power factor correction circuit before the control circuit, and a boost chopper is provided in the power factor correction circuit.
  • the configuration in which the circuit for boosting the power supply voltage is provided separately from the circuit for controlling the hysteresis has a problem that the lighting device becomes large due to the circuit for boosting the power supply voltage, and the number of parts increases and the manufacturing cost increases.
  • a boost chopper is used in the power supply voltage booster circuit, on / off control of the switching element of the boost chopper is required in addition to on / off control of the switching element for hysteresis control, and there is a problem that the control becomes complicated.
  • the present invention has been made to solve the above-described problems, and in a light-emitting element lighting device that performs hysteresis control, compared to a lighting device that has a separate boosting circuit as in the prior art, more
  • An object of the present invention is to provide a light-emitting element lighting device capable of obtaining a desired output voltage or output current with a simple circuit configuration and simple control.
  • the light-emitting element lighting device of the present invention inputs a primary winding that generates a current for lighting the light-emitting element from power input from a DC power source, a transformer having a secondary winding, and inputs to the primary winding of the transformer.
  • a switching element that interrupts current, a rectifier diode that rectifies the current output from the secondary winding of the transformer to the light emitting element, and a current detection unit that detects a current value input to the transformer or a current value output to the light emitting element;
  • a difference is provided between the current value for switching the switching element to the on state and the current value for switching to the off state.
  • a hysteresis control unit that controls the current value of the output current to a value within the reference range by hysteresis control.
  • the light emitting element lighting device of the present invention is configured as described above, a desired output voltage or output current can be obtained with a simple circuit configuration and simple control.
  • FIG. 4A is a timing chart showing ON / OFF of the switching element.
  • FIG. 4B is a characteristic diagram showing an output current of the light emitting element lighting device with respect to time.
  • FIG. 6A is a timing chart showing ON / OFF of the switching element.
  • FIG. 6B is a characteristic diagram showing the output current of the light-emitting element lighting device with respect to time.
  • FIG. 7A is a timing chart showing ON / OFF of the switching element.
  • FIG. 7B is a characteristic diagram showing the output current of the light-emitting element lighting device with respect to time.
  • It is explanatory drawing which shows the example which comprised the 1st transformer and coil which concern on Embodiment 1 of this invention integrally. It is a circuit diagram which shows the principal part of the light emitting element lighting device which concerns on Embodiment 2 of this invention. It is explanatory drawing which shows the electric current which flows into the light emitting element lighting device of FIG. It is explanatory drawing which shows the electric current which flows into the light emitting element lighting device of FIG.
  • FIG. 24A is a plan view showing a main part of another leakage transformer according to the third embodiment of the present invention.
  • FIG. 24B is an explanatory view of the main part of the leakage transformer shown in FIG.
  • FIG. 25A is a plan view showing a main part of another leakage transformer according to Embodiment 3 of the present invention.
  • FIG. 25B is an explanatory view of the main part of the leakage transformer shown in FIG. It is explanatory drawing which looked at the principal part of the other leakage transformer which concerns on Embodiment 3 of this invention from the front. It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 3 of this invention.
  • FIG. 1 is a circuit diagram showing a main part of the light-emitting element lighting device 100 according to Embodiment 1.
  • FIG. 1 With reference to FIG. 1, the example which used the light emitting element lighting device 100 for the vehicle-mounted headlamp is demonstrated.
  • the DC power source 1 is constituted by, for example, a battery mounted on a vehicle.
  • the light emitting element 2 is a light source of an in-vehicle headlamp, in which n (n is an integer of 2 or more) LEDs 2 1 to 2 n are connected in series.
  • the headlight illuminates a desired direction by selecting and lighting an arbitrary LED among the LEDs 2 1 to 2 n , and the LED that is lit depending on the situation in which the vehicle travels is switched at any time.
  • a transformer 3 is provided between the DC power source 1 and the light emitting element 2.
  • the transformer 3 is composed of a single first transformer 31.
  • the first transformer 31 has a primary winding P ⁇ b> 1 that is electrically connected to the DC power source 1.
  • the first transformer 31 includes a secondary winding S1 and a magnetic flux resetting secondary winding S1R that are electrically connected to the light emitting element 2.
  • the turn ratio m of the secondary winding S1 to the primary winding P1 is set to an arbitrary value.
  • the first transformer 31 for example, a voltage that is m times the voltage applied to the primary winding P1 is generated in the secondary winding S1, and a current that is m times the current flowing in the secondary winding S1 is This is a so-called “potential transformer” that flows in the primary winding P1.
  • This is a so-called “current transformer” in which a voltage of / m times is generated in the primary winding P1.
  • the potential transformer and the current transformer have the same structure, and the first transformer 31 may be any transformer.
  • a switching element 4 is provided between the DC power source 1 and the transformer 3.
  • the switching element 4 is a P-channel field effect transistor (Field Effect Transistor, FET), the source terminal is electrically connected to the high potential side terminal of the DC power supply 1, and the drain terminal is The primary transformer 31 is electrically connected to the primary winding P1.
  • the switching element 4 turns on / off the input current from the DC power source 1 to the transformer 3 in accordance with the gate voltage of the FET.
  • a rectifier diode 5 is provided between the transformer 3 and the light emitting element 2.
  • the rectifier diode 5 is composed of one first rectifier diode 51.
  • the first rectifier diode 51, the anode is the secondary winding S1 and electrically connected to the first transformer 31, and the cathode are LED2 connected first anode and electrically through the coil 6.
  • the cathode of the return diode 7 is electrically connected between the cathode of the first rectifier diode 51 and the coil 6, and the anode of the return diode 7 is connected to the secondary winding S 1 of the first transformer 31 and the magnetic flux reset 2. It is electrically connected to a reference potential (low potential side terminal of the DC power supply 1) to which the next winding S1R is connected. And the cathode of the diode 8 is electrically connected between the coil 6 and the LED2 1 anode, the anode of the diode 8 is connected electrically to the magnetic flux reset secondary winding SR of the first transformer 31 Yes.
  • the diode 8 is a diode having a smaller current capacity than the rectifier diode 5 and the freewheeling diode 7.
  • a current detection resistor 9 is provided between the cathode of the LED 2 n and the reference potential (the low potential side terminal of the DC power supply 1).
  • the output current detection unit 10 detects the current value of the output current from the transformer 3 to the light emitting element 2 by detecting the value of the current flowing through the current detection resistor 9, and the coil when the switching element 4 is off The current value of the output current from 6 to the light emitting element 2 is detected.
  • the hysteresis control unit 11 controls the gate voltage of the switching element 4 using the current value detected by the output current detection unit 10. Specifically, the hysteresis control unit 11 switches the ON state and the OFF state of the switching element 4 alternately, thereby changing the current value of the output current from the transformer 3 and the coil 6 to the light emitting element 2 within a reference range. The so-called hysteresis control is performed.
  • the output current detection unit 10 and the hysteresis control unit 11 constitute a control unit 12.
  • the control unit 12 may be realized by an analog circuit or may be realized by a digital circuit.
  • the control unit 12 may be realized by a dedicated processing circuit such as an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a system LSI (Large-Scale Integration).
  • the control part 12 may be implement
  • the light emitting element lighting device 100 is configured by the transformer 3, the switching element 4, the rectifier diode 5, the coil 6, the freewheeling diode 7, the diode 8, the current detection resistor 9, and the control unit 12.
  • FIG. 2 shows a current when the switching element 4 is turned on.
  • the switching element 4 When the switching element 4 is turned on, current supply from the DC power source 1 to the transformer 3 is started, and the input current Iin flows through the primary winding P1 of the first transformer 31. Further, when the input current Iin flows through the primary winding P1, a current also flows through the secondary winding S1. This current is rectified by the first rectifier diode 51, and an output current Iout flows through the coil 6, the light emitting element 2, and the current detection resistor 9.
  • the voltage value on the secondary winding S1 side of the first transformer 31 is m times the voltage value on the primary winding P1 side. Further, the current value of the output current Iout is limited according to the inductance value of the coil 6. On the other hand, the coil 6 stores magnetic energy by energization of the output current Iout.
  • FIG. 3 shows the current when the switching element 4 is turned off.
  • the coil 6 releases the magnetic energy stored in the on state of the switching element 4 as a current.
  • This current is recirculated to the light emitting element 2 by the freewheeling diode 7 and flows to the light emitting element 2 and the current detecting resistor 9 as an output current Iout.
  • the excitation magnetic flux in the on state of the switching element 4 remains in the first transformer 31.
  • the magnetic flux resetting secondary winding S1R is provided so as to release the excitation magnetic flux as the reset current.
  • This reset current is rectified by the diode 8 and flows to the light emitting element 2 and the current detection resistor 9 as the reset current Ir. By flowing the reset current Ir, the magnetic flux of the core of the first transformer 31 is reset, and saturation of the magnetic flux can be prevented.
  • the diode 8 that rectifies the reset current Ir can be a diode having a smaller current capacity than the rectifier diode 5 and the freewheeling diode 7.
  • the light emitting element lighting device 100 has a circuit configuration in which the secondary winding S1R for magnetic flux reset and the diode 8 are removed.
  • FIG. 4A is a timing chart showing ON / OFF of the switching element 4.
  • FIG. 4B is a characteristic diagram showing the output current Iout at the same time as the timing chart of FIG.
  • the hysteresis controller 11 is preset with a first current value IoutH corresponding to the upper limit value of the reference range ⁇ Iout and a second current value IoutL corresponding to the lower limit value.
  • the first current value IoutH and the second current value IoutL are values to be compared with the current value detected by the output current detection unit 10, that is, the current value of the output current Iout.
  • a target current value IoutT corresponding to the lighting current of the light emitting element 2 is included in the reference range ⁇ Iout.
  • the hysteresis control unit 11 switches the switching element 4 between the on state and the off state alternately. That is, when the switching element 4 is turned on, the output current Iout from the secondary winding S1 flows while storing magnetic energy in the coil 6 as shown in FIG. 2, and the current value of the output current Iout gradually increases. When the current value detected by the output current detection unit 10 becomes equal to or greater than the first current value IoutH, the hysteresis control unit 11 turns off the switching element 4. When the switching element 4 is turned off, the output current Iout flows due to the release of the magnetic energy stored in the coil 6 as shown in FIG. 3, and the current value of the output current Iout gradually decreases.
  • the hysteresis control unit 11 When the current value detected by the output current detection unit 10 becomes equal to or less than the second current value IoutL, the hysteresis control unit 11 turns on the switching element 4. Thereafter, the hysteresis control unit 11 repeats the same on / off control.
  • the current value of the output current Iout becomes a value within the reference range ⁇ Iout by moving up and down between the first current value IoutH and the second current value IoutL. Further, the average current value IoutA of the output current Iout can be maintained at a value equivalent to the target current value IoutT. Thereby, the light emitting element lighting device 100 can output a current suitable for lighting the light emitting element 2.
  • the first transformer 31 fulfills the function of a step-up transformer by making the turns ratio m larger than 1, and fulfills the function of a step-down transformer by making the turns ratio m smaller than 1. Any configuration may be used.
  • the light-emitting element lighting device 100 with the turn ratio m larger than 1 is suitable, for example, for an in-vehicle headlamp having an increased number of series-connected LEDs 2 1 to 2 n .
  • the power supply voltage of a vehicle-mounted battery is 12 volts (V).
  • the light emitting element lighting device 100 of Embodiment 1 can make the voltage applied to the light source larger than the power supply voltage of the battery by increasing the turns ratio m of the first transformer 31. That is, it is possible to realize the light emitting element lighting device 100 with a simpler circuit configuration without the need for a circuit for boosting the power supply voltage that has been provided outside the circuit for controlling hysteresis in the related art.
  • the ON / OFF control of the switching element for the boost chopper which is necessary in the structure using the conventional boost chopper, is unnecessary, and a desired output current can be obtained with simpler control.
  • the light emitting element lighting device 100 in which the turn ratio m is smaller than 1 can facilitate the control of stabilizing the output voltage against the fluctuation of the input voltage in a lamp whose LED lighting voltage is lower than the power supply voltage. it can.
  • the light emitting element lighting device 100 can stabilize the output voltage by changing the on / off duty ratio of the switching element 4 in accordance with the fluctuation of the input voltage due to the ripple.
  • the change amount of the output voltage with respect to the change amount of the duty ratio is fixed, and it is required to precisely control the duty ratio.
  • the light emitting element lighting device 100 can change the change amount of the output voltage with respect to the change amount of the duty ratio of the switching element 4 according to the turn ratio m of the first transformer 31. That is, by appropriately setting the turn ratio m so that the change amount of the output voltage with respect to the change amount of the duty ratio becomes small, the output voltage can be easily stabilized even if the control of the duty ratio is rough. In this way, control for stabilizing the output voltage against fluctuations in the input voltage can be facilitated.
  • the light emitting element lighting device 100 shown in FIG. 5 performs hysteresis control using the current value of the input current Iin instead of the output current Iout.
  • the same components as those of the light emitting element lighting device 100 shown in FIG. 5 are identical components as those of the light emitting element lighting device 100 shown in FIG.
  • the current detection resistor 9 is provided between the high potential side terminal of the DC power supply 1 and the source terminal of the switching element 4.
  • the control unit 12 has an input current detection unit 13 instead of the output current detection unit 10 shown in FIG.
  • the input current detector 13 detects the current value of the input current from the DC power supply 1 to the transformer 3 by detecting the current value flowing through the current detection resistor 9.
  • the control unit 12 has an output voltage detection unit 15.
  • the output voltage detector 15 detects an output voltage from the transformer 3 to the light emitting element 2 with respect to a reference potential by detecting a voltage value divided by the voltage detection resistors 14a and 14b.
  • the hysteresis control unit 11 switches the ON state and the OFF state of the switching element 4 alternately using the current value detected by the input current detection unit 13 and the voltage value detected by the output voltage detection unit 15. .
  • FIG. 6A is a timing chart showing ON / OFF of the switching element 4.
  • FIG. 6B is a characteristic diagram showing the output current Iout at the same time as the timing chart of FIG.
  • the hysteresis control unit 11 is preset with a current value detected by the input current detection unit 13, that is, a first current value IinH to be compared with the current value of the input current Iin.
  • the first current value IinH is a value that is m times the turn ratio with respect to the upper limit value (first current value IoutH) of the output current Iout.
  • the hysteresis control unit 11 sets the off time Toff of the switching element 4 according to the voltage value detected by the output voltage detection unit 15.
  • the hysteresis control unit 11 turns off the switching element 4 when the current value detected by the input current detection unit 13 is equal to or higher than the first current value IinH. Further, the hysteresis control unit 11 turns on the switching element 4 when the off time Toff elapses after the switching element 4 is turned off. Thereafter, the hysteresis control unit 11 repeats the same on / off control.
  • the current value of the output current Iout can be set to a value within the reference range ⁇ Iout, and the average current value IoutA can be kept equal to the target current value IoutT.
  • the off time Toff corresponding to the output voltage is too long, the minimum value of the output current Iout becomes low, and the average current value IoutA becomes lower than the target current value IoutT.
  • the off time Toff corresponding to the output voltage is too short, the output current Iout does not sufficiently decrease, and the average current value IoutA becomes higher than the target current value IoutT. For this reason, the off time Toff is set to an appropriate value according to the value of the output voltage so that the average current value IoutA is equal to the target current value IoutT.
  • the light-emitting element lighting device 100 includes the current detection resistor 9 and the output current detection unit 10 shown in FIG. 1, and the voltage detection resistors 14a and 14b and the output voltage detection unit 15 shown in FIG.
  • the operation of the hysteresis control unit 11 will be described.
  • FIG. 7A is a timing chart showing ON / OFF of the switching element 4.
  • FIG. 7B is a characteristic diagram showing the output current Iout at the same time as the timing chart of FIG.
  • a second current value IoutL to be compared with the current value detected by the output current detection unit 10 is set in advance.
  • the hysteresis control unit 11 sets the on-time Ton of the switching element 4 according to the voltage value detected by the output voltage detection unit 15.
  • the hysteresis control unit 11 turns on the switching element 4 when the current value detected by the output current detection unit 10 is equal to or less than the second current value IoutL. Further, the hysteresis control unit 11 turns off the switching element 4 when the on-time Ton elapses after the switching element 4 is turned on. Thereafter, the hysteresis control unit 11 repeats the same on / off control.
  • the current value of the output current Iout can be set to a value within the reference range ⁇ Iout, and the average current value IoutA can be kept equal to the target current value IoutT.
  • the ON time Ton is set to an appropriate value according to the value of the output voltage so that the average current value IoutA becomes equal to the target current value IoutT.
  • the switching element 4 may be any element as long as it is provided between the high potential side terminal of the DC power source 1 and the transformer 3 to turn on and off the input current Iin.
  • the present invention is not limited to a P-channel type FET.
  • a PNP bipolar transistor may be used for the switching element 4.
  • an N-channel FET may be used for the switching element 4 and a power source for driving the FET may be provided separately from the DC power source 1.
  • the light emitting element 2 may be any element that uses a semiconductor light emitting element, and is not limited to an LED.
  • an organic light emitting diode Organic Light Emitting Diode, OLED
  • a laser diode Laser Diode, LD
  • OLED Organic Light Emitting Diode
  • LD Laser Diode
  • the use of the light emitting element lighting device 100 is not limited to a headlamp, and is not limited to an in-vehicle lamp. Any lamp can be used as long as the semiconductor light emitting element is turned on by hysteresis control.
  • the light emitting element lighting device 100 may be configured by integrally forming the core of the first transformer 31 and the core of the coil 6.
  • An example of the first transformer 31 and the coil 6 in this case is shown in FIG.
  • the gap 62 is provided between the middle leg portion 61 of the E type core and the I type core, and the coil 6 is formed by winding the winding L around the middle leg portion 61.
  • the primary winding P1 is wound around the middle leg portion 32
  • the secondary winding S1 is wound around the outer periphery thereof
  • the magnetic flux resetting secondary winding S1R is provided around the outer periphery thereof.
  • the first transformer 31 is configured by winding. As shown in FIG.
  • a part of one E-type core that constitutes the core 30 of the first transformer 31 is combined and configured integrally.
  • the light-emitting element lighting device 100 includes the transformer 3 provided between the DC power supply 1 and the light-emitting element 2, and the switching element 4 that turns on and off the input current Iin from the DC power supply 1 to the transformer 3.
  • the rectifier diode 5 that rectifies the output current Iout from the transformer 3 to the light emitting element 2, the current detector (output current detector 10) that detects the current value of the output current Iout, and the current detector (output current detector 10).
  • a hysteresis control unit 11 that changes the current value of the output current Iout to a value within the reference range ⁇ Iout by alternately switching between the on state and the off state of the switching element 4 using the current value detected by (1).
  • a first current value IoutH corresponding to the upper limit value of the reference range ⁇ Iout and a second current value IoutL corresponding to the lower limit value of the reference range ⁇ Iout are set, and a current detection unit (output current detection unit)
  • the switching element 4 is turned off, and when the current value detected by the current detection unit (output current detection unit 10) becomes equal to or lower than the second current value IoutL. Turn on. With this hysteresis control, a current suitable for lighting the light emitting element 2 can be output.
  • the light-emitting element lighting device 100 that has a quick response to fluctuations in the power supply voltage of the DC power supply 1 and changes in load voltage due to changes in the number of lighting of the LEDs 2 1 to 2 n to be lit.
  • this configuration by appropriately setting the turns ratio m of the transformer 3, a desired output current can be obtained while changing the output voltage with respect to the input voltage. That is, the light emitting element lighting device 100 capable of outputting an arbitrary current while ensuring a necessary output voltage can be realized with a simple circuit configuration and simple control.
  • the light-emitting element lighting device 100 includes a coil 6 connected between the first rectifier diode 51 and the light-emitting element 2 and a reflux diode 7 that circulates an output current Iout generated by the coil 6.
  • the current value of the output current Iout can be limited according to the inductance value of the coil 6, so that the current value of the output current Iout can be set to a desired value by appropriately setting the inductance value of the coil 6. can do.
  • the return diode 7 the current output from the coil 6 can be returned to the light emitting element 2 when the switching element 4 is in the OFF state, and used for lighting the light emitting element 2.
  • the first transformer 31 has a magnetic flux resetting secondary winding S1R that discharges the magnetic flux used for excitation as a current.
  • the light emitting element lighting device 100 includes a diode 8 that rectifies and outputs the reset current Ir output from the magnetic flux resetting secondary winding S1R when the switching element 4 is in the OFF state. By flowing the reset current Ir, the magnetic flux of the core of the first transformer 31 can be reset and saturation of the magnetic flux can be prevented.
  • the light-emitting element lighting device 100 includes a current detection unit (input current detection unit 13) that detects a current value of the input current Iin and a voltage detection unit that detects a voltage value of an output voltage from the transformer 3 to the light-emitting element 2 ( An output voltage detector 15).
  • a current detection unit input current detection unit 13
  • a voltage detection unit that detects a voltage value of an output voltage from the transformer 3 to the light-emitting element 2
  • an upper limit value (first current value IinH) of the input current Iin corresponding to the upper limit value (first current value IoutH) of the output current Iout is set, and the voltage detection unit (output voltage detection)
  • the off time Toff of the switching element 4 is set using the voltage value detected by the unit 15), and when the current value detected by the current detection unit (input current detection unit 13) becomes equal to or higher than the first current value IinH, the switching element 4 Is turned off and the switching element 4 is turned on when the off time Toff has elapsed since the switching element 4 was turned off.
  • the light-emitting element lighting device 100 includes a current detection unit (output current detection unit 10) that detects the current value of the output current Iout and a voltage detection unit that detects the voltage value of the output voltage from the transformer 3 to the light-emitting element 2 ( An output voltage detector 15).
  • a lower limit value (second current value IoutL) of the output current Iout is set, and the switching element 4 is turned on using the voltage value detected by the voltage detection unit (output voltage detection unit 15).
  • the switching element 4 is turned on. After a lapse of time, the switching element 4 is turned off.
  • a current suitable for lighting the light emitting element 2 can be output.
  • the switching element 4 is connected between the high potential side terminal of the DC power source 1 and the transformer 3.
  • the switching element 4 for example, a P-channel FET, a PNP bipolar transistor, or an N-channel FET can be used.
  • the light emitting element 2 is a semiconductor light emitting element.
  • the light emitting element 2 is not limited to an LED, and an OLED or an LD can also be used.
  • the light emitting element lighting device 100 can be used for an in-vehicle light emitting element lighting device. Since the light-emitting element lighting device 100 according to Embodiment 1 has a quick response to fluctuations in the power supply voltage, it is used for in-vehicle devices such as headlamps and taillights that require reduction of flicker while using an in-vehicle battery with large voltage fluctuation as a power source. It is particularly suitable for the lamp.
  • FIG. FIG. 9 is a circuit diagram showing a main part of the light emitting element lighting device 100 according to the second embodiment.
  • the light emitting element lighting device 100 shown in FIG. 9 is obtained by replacing the functions of the coil 6 and the free wheel diode 7 of the light emitting element lighting device 100 shown in FIG. 1 with a second transformer 33 and a second rectifier diode 52.
  • the transformer 3 has a second transformer 33 in addition to the first transformer 31 similar to the first embodiment.
  • the primary winding P2 of the second transformer 33 is electrically connected in series with the primary winding P1 of the first transformer 31 with respect to the DC power source 1.
  • the secondary winding S ⁇ b> 2 of the second transformer 33 is electrically connected to the light emitting element 2 in parallel with the secondary winding S ⁇ b> 1 of the first transformer 31.
  • the turn ratio m of the secondary winding S2 to the primary winding P2 of the second transformer 33 is set to the same value as the turn ratio m of the secondary winding S1 to the primary winding P1 of the first transformer 31. .
  • the second transformer 33 stores magnetic energy by passing a current through the primary winding P1, and also stores the stored magnetic energy from the secondary winding S1 when the energization of the primary winding P1 is stopped. It is a so-called “flyback transformer” that is released as Incidentally, the light-emitting element lighting device 100 shown in FIG. 9 replaces the coil 6 arranged on the secondary side of the first transformer 31 of the light-emitting element lighting device 100 shown in FIG.
  • the function of storing and discharging the current of the second transformer 33 and the function of limiting the current flowing through the first transformer correspond to the function of the coil 6.
  • the function of the free wheeling diode 7 corresponds to the function of the second rectifier diode 52.
  • the rectifier diode 5 includes a second rectifier diode 52 in addition to the first rectifier diode 51 similar to that of the first embodiment.
  • Second rectifier diode 52, the anode is the secondary winding S1 and electrically connected to the second transformer 33, and its cathode connected LED2 1 anode and electrically.
  • FIG. 10 shows a current when the switching element 4 is turned on.
  • the switching element 4 When the switching element 4 is turned on, current supply from the DC power source 1 to the transformer 3 is started, and the input current Iin flows through the primary winding P1 of the first transformer 31 and the primary winding P2 of the second transformer 33.
  • the input current Iin flows through the primary winding P1 of the first transformer 31 and the primary winding P2 of the second transformer 33.
  • a current also flows through the secondary winding S1.
  • This current is rectified by the first rectifier diode 51 and becomes an output current Iout flowing through the light emitting element 2 and the current detection resistor 9.
  • the input current Iin flows through the primary winding P2 of the second transformer 33, whereby the second transformer 33 stores magnetic energy.
  • the input current Iin is limited according to the inductance value of the primary winding P2 of the second transformer 33.
  • the voltage value on the primary winding P1 side of the first transformer 31 with respect to the power supply voltage of the DC power supply 1 decreases.
  • the voltage value on the secondary winding S1 side of the first transformer 31 is m times the voltage value on the primary winding P1 side.
  • FIG. 11 shows the current when the switching element 4 is turned off.
  • the second transformer 33 releases the magnetic energy stored in the on state of the switching element 4 from the secondary winding S2 as a current.
  • This current is rectified by the second rectifier diode 52 and becomes an output current Iout flowing through the light emitting element 2 and the current detection resistor 9.
  • the reset current Ir flows from the magnetic flux resetting secondary winding S1R to the light emitting element 2 and the current detecting resistor 9 in accordance with the exciting magnetic flux remaining in the core of the first transformer 31. Since the function and current value of the reset current Ir are the same as those in the first embodiment, description thereof is omitted.
  • the operation of the hysteresis control unit 11 shown in FIG. 9 is the same as that of the hysteresis control unit 11 shown in FIG. That is, since it is the same as that described with reference to FIG. 4 in Embodiment 1, illustration and description are omitted.
  • the light emitting element lighting device 100 shown in FIG. 12 performs hysteresis control using the current value of the input current Iin instead of the output current Iout.
  • the same components as those of the light emitting element lighting device 100 shown in FIG. 12 the same components as those of the light emitting element lighting device 100 shown in FIG.
  • the current detection resistor 9 is provided between the high potential side terminal of the DC power supply 1 and the source terminal of the switching element 4.
  • the control unit 12 has an input current detection unit 13 instead of the output current detection unit 10 shown in FIG.
  • the input current detector 13 detects the current value of the input current from the DC power supply 1 to the transformer 3 by detecting the current value flowing through the current detection resistor 9.
  • the control unit 12 has an output voltage detection unit 15.
  • the output voltage detection unit 15 detects the voltage value divided by the voltage detection resistors 14a and 14b, so that the output voltage from the transformer 3 to the light emitting element 2 with respect to the reference potential (the low potential side terminal of the DC power supply 1). Is detected.
  • the hysteresis control unit 11 switches the ON state and the OFF state of the switching element 4 alternately using the current value detected by the input current detection unit 13 and the voltage value detected by the output voltage detection unit 15. .
  • the operation of the hysteresis control unit 11 shown in FIG. 12 is the same as that of the hysteresis control unit 11 shown in FIG. That is, since it is the same as that described with reference to FIG. 6 in Embodiment 1, illustration and description are omitted.
  • the core of the first transformer 31 and the core of the second transformer 33 may be integrally configured.
  • An example of the first transformer 31 and the second transformer 33 in this case is shown in FIG.
  • the primary winding P1 is wound around the middle leg portion 32 of the E type core
  • the secondary winding S1 is wound around the outer peripheral portion thereof
  • the magnetic flux resetting secondary winding is further wound around the outer peripheral portion thereof.
  • the first transformer 31 is configured by winding S1R.
  • a gap 36 is provided between the middle leg portion 35 of the E type core and the I type core, and the primary winding P2 is wound around the middle leg portion 35.
  • the second transformer 33 is configured by winding the next winding S2. As shown in FIG. 8, the I-type core constituting the core 30 of the first transformer 31 and the I-type core constituting the core 34 of the second transformer 33 are combined and configured integrally. By integrating the cores 30 and 34, the number of parts can be reduced, and the manufacturing cost of the light emitting element lighting device 100 can be reduced.
  • the transformer 3 includes the second transformer 33, and the primary winding P ⁇ b> 2 of the second transformer 33 is one of the first transformer 31 with respect to the DC power supply 1.
  • the secondary winding S2 of the second transformer 33 is connected in series with the secondary winding P1, and is connected in parallel to the secondary winding S1 of the first transformer 31 with respect to the light emitting element 2, and the rectifier diode 5 Includes a second rectifier diode 52 that rectifies the output current Iout from the secondary winding S2 of the second transformer 33 to the light emitting element 2 when the switching element 4 is in the OFF state.
  • FIG. 14 is a circuit diagram showing a main part of the light-emitting element lighting device 100 according to Embodiment 3.
  • FIG. 15 is an explanatory view of the main part of the leakage transformer 37 according to the third embodiment as viewed from the front.
  • the leakage transformer is a transformer having a configuration in which a part of the magnetic flux generated by the primary winding leaks without being transmitted to the secondary winding, and the terminals of the secondary winding of the transformer are short-circuited.
  • the transformer can maintain a large inductance (leakage inductance) on the primary winding side.
  • the transformer 3 is composed of a single leakage transformer 37.
  • the leakage transformer 37 has a primary winding P electrically connected to the DC power source 1.
  • the leakage transformer 37 includes a secondary winding S and a magnetic flux resetting secondary winding SR electrically connected to the light emitting element 2.
  • the turn ratio m of the secondary winding S to the primary winding P is set to an arbitrary value.
  • FIG. 15 shows an example of the leakage transformer 37.
  • the primary winding P is wound around the middle leg portion 39 of one E type core
  • the secondary winding S is wound around the middle leg portion 40 of the other E type core.
  • a gap 41 is provided between the primary winding P and the secondary winding S, and a magnetic flux resetting secondary winding SR is wound around the outer periphery of the primary winding P and the secondary winding S. Yes. In this way, the leakage transformer 37 is configured.
  • the rectifier diode 5 includes a first rectifier diode 51 and a second rectifier diode 52.
  • the first rectifier diode 51, the anode is the secondary winding S electrically connected to the leakage transformer 37, and its cathode connected LED2 1 anode and electrically.
  • Second rectifier diode 52, the anode is connected to the magnetic flux reset secondary winding SR electrically leakage transformer 37, and its cathode connected LED2 1 anode and electrically.
  • FIG. 16 shows a current when the switching element 4 is turned on.
  • the switching element 4 When the switching element 4 is turned on, current supply from the DC power source 1 to the transformer 3 is started, and the input current Iin flows through the primary winding P of the leakage transformer 37. Further, when the input current Iin flows through the primary winding P, a current also flows through the secondary winding S. This current is rectified by the first rectifier diode 51, and an output current Iout flows through the light emitting element 2 and the current detection resistor 9.
  • the leakage transformer 37 has an inductance due to the leakage magnetic flux ⁇ 2, so-called “leakage inductance”.
  • the leakage transformer 37 stores magnetic energy by energizing the input current Iin. Further, the current value of the output current Iout is limited according to the leakage inductance value of the leakage transformer 37.
  • FIG. 18 shows a current when the switching element 4 is turned off.
  • the leakage transformer 37 releases the magnetic energy stored in the on state of the switching element 4 as a current from the magnetic flux resetting secondary winding SR.
  • This current is rectified by the second rectifier diode 52 and becomes an output current Iout flowing through the light emitting element 2 and the current detection resistor 9.
  • the output current Iout also functions as a reset current Ir, and the exciting magnetic flux ⁇ 3 remaining in the core of the leakage transformer 37 is reset.
  • leakage transformer 37 is a single transformer, it performs the same function as the first transformer 31 and the coil 6 in the first embodiment.
  • the leakage transformer 37 is a single transformer, and performs the same function as the first transformer 31 and the second transformer 33 in the second embodiment.
  • the leakage transformer 37 is not limited to the structure shown in FIG. Any structure may be used as long as it has a leakage inductance by providing an interval between the primary winding P and the secondary winding S.
  • Any structure may be used as long as it has a leakage inductance by providing an interval between the primary winding P and the secondary winding S.
  • FIGS. 1-10 Another example of the leakage transformer 37 will be described with reference to FIGS.
  • a leakage transformer 37 shown in FIG. 19 has a gap 42 between middle legs 39 and 40 of an E-type core.
  • the gap 42 between the middle legs 39 and 40 By providing the gap 42 between the middle legs 39 and 40, the inductance of the primary winding P is reduced, and the input current Iin can be increased. Further, by providing the gap 42 between the middle leg portions 39 and 40, the leakage magnetic flux ⁇ 2 and the excitation magnetic flux ⁇ 3 are increased, and the magnetic energy stored in the leakage transformer 37 can be increased. As a result, when the switching element 4 is turned off, the output current Iout due to the magnetic flux resetting secondary winding SR can be increased.
  • auxiliary core 43 provided in the gap 41 between the primary winding P and the secondary winding S and the gap 42 between the middle leg portions 39 and 40. Since the auxiliary core 43 forms a magnetic path of the leakage flux ⁇ 2, the leakage flux ⁇ 2 increases and the leakage inductance of the leakage transformer 37 can be increased.
  • a leakage transformer 37 shown in FIG. 21 uses an EER core having a circular cross section of the middle leg, and is smaller than the diameter ⁇ S of the middle leg 40 of the EER core around which the secondary winding S is wound.
  • the diameter ⁇ P of the middle leg portion 39 of the EER type core around which the next winding P is wound is increased.
  • a magnetic path is formed from the corner portion of the middle leg portion 39 around which the primary winding P is wound toward the gap 41 between the primary winding P and the secondary winding S, so that the leakage flux ⁇ 2 increases.
  • the leakage inductance of the leakage transformer 37 can be increased.
  • the leakage transformer 37 shown in FIG. 22 has a primary winding P wound around the middle legs 39 and 40 of the EE core, a magnetic flux resetting secondary winding SR is wound around the outer periphery thereof, and the outer periphery thereof is further wound around.
  • the secondary winding S is wound. That is, instead of providing a gap between the primary winding P and the secondary winding S, the magnetic flux resetting secondary winding SR is sandwiched between the primary winding P and the secondary winding S, so that 1 In this configuration, the leakage inductance is ensured by widening the interval between the secondary winding P and the secondary winding S.
  • a leakage transformer 37 shown in FIG. 23 has a primary winding P wound around the middle leg portions 39 and 40 of the EE core, a magnetic flux resetting secondary winding SR is wound around the outer periphery thereof, and a spacer is formed around the outer periphery thereof. 44 and the secondary winding S is wound around the outer periphery of the spacer 44.
  • a leakage transformer 37 shown in FIG. 24 uses a rod-shaped core 45 instead of the EE type or EER type core.
  • a primary winding P and a secondary winding S are wound around a rod-shaped core 45, and a gap 41 is provided between the primary winding P and the secondary winding S.
  • a magnetic flux resetting secondary winding SR is wound around the outer periphery of the primary winding P. With the gap 41 between the primary winding P and the secondary winding S, the leakage flux ⁇ 2 is increased to ensure the leakage inductance of the leakage transformer 37.
  • a leakage transformer 37 shown in FIG. 25 uses a rod-shaped core 45 and a cylindrical core 46 instead of the EE-type or EER-type core.
  • a primary winding P and a secondary winding S are wound around a rod-shaped core 45, and a gap 41 is provided between the primary winding P and the secondary winding S.
  • a magnetic flux resetting secondary winding SR is wound around the outer periphery of the primary winding P.
  • the rod-shaped core 45, the primary winding P, the secondary winding S, and the magnetic flux resetting secondary winding SR are accommodated in a cylindrical core 46. By providing the cylindrical core 46, the degree of magnetic coupling between the primary winding P and the secondary winding S can be adjusted.
  • a leakage transformer 37 shown in FIG. 26 has a primary winding P wound around one outer leg 47a of the EE core and a secondary winding S wound around the other outer leg 47b.
  • the magnetic flux resetting secondary winding SR is wound around the outer periphery of the wire P.
  • the light emitting element lighting device 100 shown in FIG. 27 performs hysteresis control using the current value of the input current Iin instead of the current value of the output current Iout. Since the current detection resistor 9, the input current detection unit 13, the voltage detection resistors 14a and 14b, and the output voltage detection unit 15 are the same as those described in the first and second embodiments, description thereof is omitted. Further, since the operation of the hysteresis control unit 11 is the same as that described in the first and second embodiments, illustration and description thereof are omitted.
  • the light emitting element lighting device 100 shown in FIG. FIG. 29 shows an example of the leakage transformer 37 from which the magnetic flux resetting secondary winding SR is removed.
  • the leakage transformer 37 shown in FIG. 29 removes the magnetic flux resetting secondary winding SR from the leakage transformer 37 shown in FIG. 23 and increases the thickness of the spacer 44 to increase the primary winding P and the secondary winding.
  • the interval between S is increased. By increasing the interval between the primary winding P and the secondary winding S, the secondary winding S also functions as the secondary winding SR for magnetic flux reset. Therefore, the secondary winding for magnetic flux reset SR can be made unnecessary.
  • the rectifier diode 5 is configured by a bridge circuit using four diodes 53a, 53b, 53c, and 53d, a so-called “diode bridge”.
  • the secondary winding S of the leakage transformer 37 When the switching element 4 is turned on, the secondary winding S of the leakage transformer 37 outputs an output current Iout indicated by a solid line arrow in the figure. When the switching element 4 is turned off, the secondary winding S of the leakage transformer 37 outputs an output current Iout indicated by a broken-line arrow in the figure, and this output current Iout also functions as a reset current Ir.
  • a diode bridge for the rectifier diode 5 both the output current Iout from the secondary winding S when the switching element 4 is turned on and the output current Iout from the secondary winding S when it is turned off are rectified. Can do.
  • the switching element 4 is provided between the low potential side terminal (reference potential) of the DC power source 1 and the transformer 3.
  • the switching element 4 is an N-channel FET
  • the source terminal is electrically connected to the low potential side terminal of the DC power supply 1
  • the drain terminal is the primary winding P of the leakage transformer 37. And are electrically connected.
  • the switching element 4 turns on / off the input current from the DC power source 1 to the transformer 3 in accordance with the gate voltage of the FET.
  • the switching element 4 in this case is not limited to an N-channel FET, and may be an NPN bipolar transistor, an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT), or the like.
  • the light emitting element lighting device 100 shown in FIG. 31 removes the magnetic flux resetting secondary winding SR from the leakage transformer 37, configures the rectifier diode 5 by a diode bridge, and sets the switching element 4 to the low potential side of the DC power source 1.
  • the snubber circuit 16 (surge voltage suppression circuit) is added to the circuit configuration arranged in FIG. That is, between the terminals and the LED2 1 anode connected to the primary winding P of the switching element 4, the capacitor 161 and the diode 162 are electrically connected in series.
  • a resistor 163 and a diode 164 are electrically connected in series between the low potential side terminal (reference potential) of the DC power supply 1 and between the capacitor 161 and the diode 162.
  • the diodes 162 and 164 are diodes having a smaller current capacity than the diodes 53a, 53b, 53c, and 53d of the rectifier diode 5.
  • the snubber circuit 16 (surge voltage suppression circuit) is configured by the capacitor 161, the diode 162, the resistor 163, and the diode 164.
  • the leakage transformer 37 has incomplete magnetic coupling between the primary winding P and the secondary winding S due to the presence of the leakage magnetic flux ⁇ 2, and when the switching element 4 is turned off, a surge voltage is applied to the primary winding P side. May occur and the switching element 4 may fail. Therefore, by providing the snubber circuit 16 to absorb the surge energy, it is possible to suppress the surge voltage applied to the switching element 4 and to obtain the light emitting element lighting device 100 with high reliability in which the switching element 4 hardly breaks down. it can.
  • a snubber circuit 16 different from that in FIG. That is, between the terminals and the LED2 1 anode connected to the primary winding P of the switching element 4, the capacitor 161 and the diode 162 are electrically connected in series.
  • a resistor 163 and a diode 164 are electrically connected in series between the high potential side terminal of the DC power supply 1 and between the capacitor 161 and the diode 162.
  • the current capacity of the diodes 162 and 164 and the function of the snubber circuit 16 are the same as those in FIG.
  • the switching element 4 may be provided between the low potential side terminal (reference potential) of the DC power source 1 and the transformer 3. Further, a snubber circuit 16 may be provided.
  • the transformer 3 has the gap 41 between the primary winding P connected to the DC power supply 1 and the secondary winding S connected to the light emitting element 2.
  • the leakage transformer 37 is provided. Although the leakage transformer 37 is a single transformer, it performs the same function as the first transformer 31 and the coil 6 in the first embodiment, and the first transformer 31 and the second transformer in the second embodiment. It performs the same function as 33. Thereby, the circuit configuration of the light emitting element lighting device 100 can be further simplified, and a smaller light emitting element lighting device 100 can be configured.
  • the rectifier diode 5 includes a diode bridge composed of four diodes 53a, 53b, 53c, and 53d.
  • the secondary winding S rectifies both the current output when the switching element 4 is on and the current output when it is off. be able to.
  • the switching element 4 is connected between the low potential side terminal (reference potential) of the DC power source 1 and the transformer 3.
  • the switching element 4 for example, an N-channel FET, an NPN bipolar transistor, or an IGBT can be used.
  • the light emitting element lighting device 100 includes a surge voltage suppression circuit (snubber circuit 16) that protects the switching element 4 from a surge voltage generated on the primary winding P side of the leakage transformer 37.
  • a surge voltage suppression circuit (snubber circuit 16) that protects the switching element 4 from a surge voltage generated on the primary winding P side of the leakage transformer 37.
  • the snubber circuit 16 absorbs the surge energy, the surge voltage applied to the switching element 4 is suppressed, and the light emitting element lighting device 100 with high reliability in which the switching element 4 is unlikely to fail can be obtained.
  • Embodiment 4 FIG.
  • the structure of the leakage transformer 37 is not limited to the structure illustrated in FIGS. 15, 19 to 26, and 29 (winding arrangement, core shape, etc.). Further, the circuit configuration of the light emitting element lighting device 100 using the leakage transformer 37 may be any depending on the structure of the leakage transformer 37 and is limited to the circuit configurations illustrated in FIGS. 14 and 27 to 32. It is not something.
  • a modification of the light emitting element lighting device 100 using the leakage transformer 37 will be described below with reference to FIGS. Incidentally, FIGS. 33 to 45, for simplicity, omitted with use in a schematic one LED2 1 to the light emitting element 2, the control unit 12, the current detecting resistor 9 and the voltage detecting resistor 14a, and 14b A circuit diagram is shown.
  • the light emitting element lighting device 100 shown in FIG. 33 is configured by configuring the primary winding P and secondary winding S of the leakage transformer 37 and the secondary winding SR for magnetic flux reset as separate windings,
  • the number of turns of the primary winding P is set to a value equivalent to the number of turns of the secondary winding S.
  • the switching element 4 is connected between the high potential side terminal of the DC power source 1 and the leakage transformer 37.
  • LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode to the low potential side terminal of the DC power source 1.
  • the input current Iin flows through the primary winding P as shown in FIG. Further, secondary winding S, the output current Iout flows first in rectifying diodes 51 and LED2 1.
  • the potential of the LED2 1 of the anode is higher than the high potential side terminal of the DC power source 1. That, LED2 1 of the applied voltage becomes larger than the power supply voltage of the DC power source 1, a leakage transformer 37 is intended to fulfill the function of a step-up transformer.
  • the light-emitting element lighting device 100 shown in FIG. 34 is configured by configuring the primary winding P and secondary winding S of the leakage transformer 37 and the secondary winding SR for magnetic flux reset as separate windings,
  • the number of turns of the primary winding P is set to a value equivalent to the number of turns of the secondary winding S.
  • the switching element 4 is connected between the high potential side terminal of the DC power source 1 and the leakage transformer 37.
  • LED2 1 of the anode is connected to the low potential side terminal of the DC power source 1
  • LED2 1 of the cathode is connected to the anode of the first rectifier diode 51 and the second rectifying diode 52.
  • the switching element 4 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, the secondary winding S, LED2 1 and the output current Iout to the first rectifier diode 51 flows. At this time, the cathode potential of the LED2 1, lower than the low potential terminal of the DC power source 1. That is, ones LED2 1 of the applied voltage becomes lower than the potential of the DC power source 1, a leakage transformer 37 to fulfill the transformer function of generating a negative voltage.
  • the output current Iout flows in the magnetic flux reset secondary winding SR, LED2 1 and the second rectifying diode 52. This output current Iout also functions as a reset current Ir.
  • the light-emitting element lighting device 100 shown in FIG. 35 is configured by configuring the primary winding P and secondary winding S of the leakage transformer 37 and the secondary winding SR for magnetic flux reset as separate windings,
  • the number of turns of the primary winding P is set to a value equivalent to the number of turns of the secondary winding S.
  • the switching element 4 is connected between the low potential side terminal of the DC power source 1 and the leakage transformer 37.
  • LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode to the low potential side terminal of the DC power source 1.
  • a leakage transformer 37 is intended to fulfill the function of a step-up transformer.
  • the light emitting element lighting device 100 shown in FIG. 36 is configured by configuring the primary winding P and secondary winding S of the leakage transformer 37 and the secondary winding SR for magnetic flux reset as separate windings.
  • the number of turns of the primary winding P is set to a value equivalent to the number of turns of the secondary winding S.
  • the switching element 4 is connected between the low potential side terminal of the DC power source 1 and the leakage transformer 37.
  • LED2 1 of the anode is connected to the low potential side terminal of the DC power source 1
  • LED2 1 of the cathode is connected to the anode of the first rectifier diode 51 and the second rectifying diode 52.
  • the output current Iout flows in the magnetic flux reset secondary winding SR, LED2 1 and the second rectifying diode 52. This output current Iout also functions as a reset current Ir.
  • a light-emitting element lighting device 100 shown in FIG. 37 is configured such that the leakage transformer 37 is configured with a single winding with a tap, and a part of the windings constituting the magnetic flux resetting secondary winding SR.
  • a primary winding P is configured.
  • the number of turns of the secondary winding S is set to a value equivalent to the number of turns of the secondary winding SR for magnetic flux reset, and the number of turns of the primary winding P is smaller than the number of turns of the secondary winding S. .
  • the switching element 4 is connected between the high potential side terminal of the DC power source 1 and the leakage transformer 37.
  • LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode to the low potential side terminal of the DC power source 1.
  • a leakage transformer 37 is intended to fulfill the function of a step-up transformer.
  • the light-emitting element lighting device 100 shown in FIG. 38 has a leakage transformer 37 configured with a single winding with a tap, and the secondary winding SR for magnetic flux reset is also used as the primary winding P with the same number of turns. ing.
  • the number of turns of the secondary winding S is also set equal to the number of turns of the secondary winding SR for magnetic flux reset.
  • the switching element 4 is connected between the low potential side terminal of the DC power source 1 and the leakage transformer 37.
  • LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode to the low potential side terminal of the DC power source 1.
  • a leakage transformer 37 are those functions of the step-up transformer with a simple winding.
  • those configurations in which the number of turns of the secondary winding S equal to the number of turns of the primary winding P, the output voltage to the LED2 1 is suitable in the case of 2 times the power supply voltage of the DC power source 1 ing.
  • a light-emitting element lighting device 100 shown in FIG. 39 is configured such that the leakage transformer 37 is configured with a single winding with a tap, and a magnetic flux is reset by a part of the windings constituting the primary winding P.
  • a secondary winding SR is configured.
  • the number of turns of the secondary winding S is set to a value equivalent to the number of turns of the secondary winding SR for magnetic flux reset, and the number of turns of the primary winding P is larger than the number of turns of the secondary winding S. .
  • the switching element 4 is connected between the low potential side terminal of the DC power source 1 and the leakage transformer 37.
  • LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode to the low potential side terminal of the DC power source 1.
  • a leakage transformer 37 is intended to fulfill the function of a step-up transformer.
  • those configuration the winding number of the secondary winding S which was less than the number of turns of the primary winding P, suitable when the output voltage to the LED2 1 is less than twice the power supply voltage of the DC power source 1 Yes.
  • the light-emitting element lighting device 100 shown in FIG. 40 is configured such that the leakage transformer 37 is configured with a single winding with a tap, and the secondary winding SR for magnetic flux reset is also used as the primary winding P having the same number of turns. ing.
  • the number of turns of the secondary winding S is also set equal to the number of turns of the secondary winding SR for magnetic flux reset.
  • the switching element 4 is connected between the high potential side terminal of the DC power source 1 and the leakage transformer 37.
  • LED2 1 of the anode is connected to the high potential side terminal of the DC power source 1
  • LED2 1 of the cathode is connected to the anode of the first rectifier diode 51 and the second rectifying diode 52.
  • the switching element 4 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, the secondary winding S, LED2 1 and the output current Iout to the first rectifier diode 51 flows. At this time, the potential of the LED2 1 of the anode at a high potential side terminal and the potential of the DC power source 1, the cathode potential of the LED2 1, is lower than the low potential side terminal of the DC power source 1. That is, by the negative potential to cathode potential of LED2 1, the voltage applied to the LED2 1 is higher than the power supply voltage of the DC power source 1, a leakage transformer 37 is intended to fulfill the function of a step-up transformer.
  • the output current Iout flows in the magnetic flux reset secondary winding SR, LED2 1 and the second rectifying diode 52. This output current Iout also functions as a reset current Ir.
  • the light-emitting element lighting device 100 shown in FIG. 41 is configured such that the leakage transformer 37 is configured with a single winding with a tap, and the magnetic flux resetting secondary winding SR is also used as the primary winding P having the same number of turns. ing.
  • the number of turns of the secondary winding S is also set equal to the number of turns of the secondary winding SR for magnetic flux reset.
  • the switching element 4 is connected between the low potential side terminal of the DC power source 1 and the leakage transformer 37.
  • LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode is to the high potential side terminal of the DC power source 1.
  • the input current Iin flows through the primary winding P as shown in FIG. Further, secondary winding S, the output current Iout flows first in rectifying diodes 51 and LED2 1.
  • the cathode potential of the LED2 1, a high potential terminal and the potential of the DC power source 1 the potential of the LED2 1 of the anode is higher than the high potential side terminal of the DC power source 1. That results in applying a potential difference between the potential of LED2 1 anodic high potential side potential of the DC power source 1 to LED2 1, a leakage transformer 37 is intended to fulfill the function of a step-down transformer.
  • the light emitting element lighting device 100 shown in FIG. 42 is configured by configuring the primary winding P and the secondary winding S of the leakage transformer 37 and the secondary winding SR for magnetic flux reset as separate windings.
  • the number of turns of the primary winding P is set to a value equivalent to the number of turns of the secondary winding S.
  • the switching element 4 is connected between the low potential side terminal of the DC power source 1 and the leakage transformer 37.
  • LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode is to the high potential side terminal of the DC power source 1.
  • a light-emitting element lighting device 100 shown in FIG. 43 is configured such that the leakage transformer 37 is configured with a single winding with a tap, and a magnetic flux is reset by a part of the windings constituting the primary winding P.
  • a secondary winding SR is configured.
  • the number of turns of the secondary winding S is set to a value equivalent to the number of turns of the secondary winding SR for magnetic flux reset, and the number of turns of the primary winding P is larger than the number of turns of the secondary winding S. .
  • the switching element 4 is connected between the low potential side terminal of the DC power supply 1 and the leakage transformer 37.
  • LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode is to the high potential side terminal of the DC power source 1.
  • a leakage transformer 37 is of the step-down transformer that outputs a voltage lower than the configuration of FIG. 41 or FIG. 42 It fulfills its function.
  • the light-emitting element lighting device 100 shown in FIG. 44 has a leakage transformer 37 configured with a single winding with a tap, and the magnetic flux resetting secondary winding SR is also used as the primary winding P having the same number of turns. ing.
  • the number of turns of the secondary winding S is also set equal to the number of turns of the secondary winding SR for magnetic flux reset.
  • the switching element 4 is connected between the high potential side terminal of the DC power source 1 and the leakage transformer 37.
  • LED2 1 of the cathode is connected is connected to the anode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the anode to the low potential side terminal of the DC power source 1.
  • the switching element 4 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, the secondary winding S, LED2 1 and the output current Iout to the first rectifier diode 51 flows. At this time, the cathode potential of the LED2 1, lower than the low potential terminal of the DC power source 1. That is, ones LED2 1 of the applied voltage becomes lower than the potential of the DC power source 1, a leakage transformer 37 to fulfill the transformer function of generating a negative voltage.
  • the light-emitting element lighting device 100 shown in FIG. 45 is configured such that the leakage transformer 37 is configured by a single winding with a tap, and a magnetic flux is reset by a part of the windings constituting the primary winding P.
  • a secondary winding SR is configured.
  • the number of turns of the secondary winding S is set to a value equivalent to the number of turns of the secondary winding SR for magnetic flux reset, and the number of turns of the primary winding P is larger than the number of turns of the secondary winding S. .
  • the switching element 4 is connected between the high potential side terminal of the DC power source 1 and the leakage transformer 37.
  • LED2 1 of the cathode is connected is connected to the anode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the anode to the low potential side terminal of the DC power source 1.
  • the switching element 4 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, the secondary winding S, LED2 1 and the output current Iout to the first rectifier diode 51 flows. At this time, the cathode potential of the LED2 1, lower than the low potential terminal of the DC power source 1. That is, the LED2 1 of the applied voltage becomes lower than the potential of the DC power source 1, a leakage transformer 37 is intended to fulfill the transformer function of generating a low (small absolute value) negative voltage than the configuration of FIG. 44
  • the light-emitting element lighting device of the present invention can be used for various lamps that light a semiconductor light-emitting element by hysteresis control.
  • it is suitable for in-vehicle lamps such as headlamps.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

This light-emitting element lighting device (100) includes: a transformer (3) provided between a DC power supply (1) and a light-emitting element (2); a switching element (4) that turns an input current from the DC power supply (1) to the transformer (3) on and off; a rectifier diode (5) that rectifies an output current from the transformer (3) to the light-emitting element (2); an output current detection unit (10) that detects a current value of the output current; and a hysteresis control unit (11) that sets the current value of the output current to be a value within a reference range by alternatively switching between an on-state and an off-state of the switching element (4) by using the current value detected by the output current detection unit (10).

Description

発光素子点灯装置Light-emitting element lighting device
 本発明は、通電を開始する点灯電流値と、通電を停止する点灯電流値に差を設けたヒステリシス制御により通電電流を断続して生成した点灯電流で半導体発光素子を点灯させる発光素子点灯装置に関する。 The present invention relates to a light emitting element lighting device for lighting a semiconductor light emitting element with a lighting current generated by intermittently applying a current by hysteresis control in which a difference is provided between a lighting current value for starting energization and a lighting current value for stopping energization. .
 従来、車載用前照灯を含む各種灯具の光源に、タングステンフィラメントを発光体とした電球、及び、アーク放電により発光する放電灯などが用いられていた。近年、電球及び放電灯に代替して、発光ダイオード(Light Emitting Diode,LED)などの半導体発光素子が普及してきている。LEDは、長寿命であるとともに、必要な明るさを少ない消費電力で確保することができ、かつ、定電流を供給する簡単な制御により明るさを安定させることができるため、車載用灯具の光源に好適である。 Conventionally, bulbs using tungsten filaments as light emitters and discharge lamps that emit light by arc discharge have been used as light sources for various lamps including in-vehicle headlamps. In recent years, semiconductor light emitting devices such as light emitting diodes (LEDs) have been widely used in place of light bulbs and discharge lamps. The LED has a long life, can secure the necessary brightness with low power consumption, and can stabilize the brightness by a simple control that supplies a constant current. It is suitable for.
 LEDは、点灯電流及びサイズのバリエーションが多く、所望の明るさを得るために用いるLEDの個数を任意に選択することができる。このため、光源にLEDを採用することで車載用灯具の設計が多様化している。設計の多様化にともない、LEDを点灯する点灯装置の構成も多様化している。 LEDs have many variations in lighting current and size, and the number of LEDs used to obtain desired brightness can be arbitrarily selected. For this reason, the design of the in-vehicle lamp is diversified by adopting the LED as the light source. Along with the diversification of design, the configuration of lighting devices for lighting LEDs has also diversified.
 例えば、直列に接続した複数個のLEDを有する灯具では、出力電圧を高めた点灯装置が開発されている。複数個のLEDのうちの点灯するLEDの個数を可変とした灯具では、点灯するLEDの個数が変化したときにもLEDへの出力電流を一定に保つために、負荷の変動に対する応答の早い点灯装置が開発されている。また、車載用の灯具では、電源である車載用バッテリの電圧が不安定であるため、電源電圧の変動に対する応答の早い点灯装置、又は、コンデンサやコイルなどを用いて内部に一時的に電力を貯えることで電源電圧の変動の影響を抑制した点灯装置などが開発されている。 For example, for a lamp having a plurality of LEDs connected in series, a lighting device having an increased output voltage has been developed. In the case of a lamp with a variable number of LEDs to be lit among a plurality of LEDs, it is lit quickly in response to load fluctuations in order to keep the output current to the LEDs constant even when the number of LEDs to be lit changes. Equipment has been developed. In addition, in an in-vehicle lamp, the voltage of the in-vehicle battery that is a power source is unstable. Therefore, the lighting device that responds quickly to fluctuations in the power supply voltage or a capacitor or coil is used to temporarily supply power. Lighting devices and the like have been developed that suppress the effects of fluctuations in power supply voltage by storing them.
 電源電圧及び負荷の変動に対する応答の早い点灯装置の一つに、いわゆる「ヒステリシス制御」を用いたものがある。ヒステリシス制御は、通電する電流に呼応してスイッチング素子をオン状態とオフ状態に交互に切り替えることで、通電電流を交互に上昇下降させながら平均電流値が目標電流値になるようにするもので、スイッチング素子をオフからオン状態に切り替える閾値となる電流値と、オンからオフ状態に切り替える閾値となる電流値に差を設ける。即ち、通電電流を上昇させ始める電流値と通電電流を下降させ始める電流値にヒステリシスを設けて、通電電流を両閾値の間で上下させながら平均値を目標値にする制御である。従って、ヒステリシス制御による点灯装置においては、LEDへの出力電流が一定範囲内で振動することにはなるが、入力電流又は出力電流の変動に呼応してスイッチング素子を直接的にオンオフするので、電源電圧及び負荷の変動に対する応答の早い制御を実現することができる。特許文献1~4には、ヒステリシス制御を用いた点灯装置が開示されている。 One of the lighting devices that responds quickly to fluctuations in power supply voltage and load is what uses so-called “hysteresis control”. Hysteresis control is to switch the switching element alternately between an on state and an off state in response to the energized current so that the average current value becomes the target current value while alternately raising and lowering the energized current. A difference is provided between a current value serving as a threshold value for switching the switching element from off to on state and a current value serving as a threshold value for switching from the on state to the off state. In other words, hysteresis is provided for the current value at which the energization current starts to increase and the current value at which the energization current starts to decrease, and the average value is controlled to the target value while raising and lowering the energization current between both threshold values. Therefore, in the lighting device based on hysteresis control, the output current to the LED oscillates within a certain range, but the switching element is directly turned on / off in response to fluctuations in the input current or output current. It is possible to realize control with quick response to voltage and load fluctuations. Patent Documents 1 to 4 disclose lighting devices using hysteresis control.
特開2007-103232号公報JP 2007-103232 A 特開2007-165001号公報JP 2007-165001 A 特開2012-227076号公報JP 2012-227076 A 特開2013-27200号公報JP 2013-27200 A
 ヒステリシス制御を用いた点灯装置は、入力電流のオンオフにより出力電流を制御するものであるため、その原理上、電源電圧に対するLEDへの供給電圧が低下する。このため、例えば直列に接続した複数個のLEDを点灯する場合など、LEDへの供給電圧を電源電圧以上の値にする場合、ヒステリシス制御用の回路とは別に電源電圧昇圧用の回路を設ける必要がある。例えば、特許文献4の点灯装置は、制御回路の前段に力率改善回路を設けて、この力率改善回路に昇圧チョッパを設けている。 Since the lighting device using hysteresis control controls the output current by turning on and off the input current, the supply voltage to the LED with respect to the power supply voltage is lowered on the principle. For this reason, for example, when a plurality of LEDs connected in series are lit, when the supply voltage to the LED is set to a value higher than the power supply voltage, it is necessary to provide a circuit for boosting the power supply voltage separately from the circuit for hysteresis control. There is. For example, the lighting device of Patent Document 4 is provided with a power factor correction circuit before the control circuit, and a boost chopper is provided in the power factor correction circuit.
 ヒステリシス制御用の回路と別に電源電圧昇圧用の回路を設けた構成は、電源電圧昇圧用の回路により点灯装置が大型になるとともに、部品点数が増加して製造コストが増加する問題があった。また、電源電圧昇圧回路に昇圧チョッパを用いた場合、ヒステリシス制御用のスイッチング素子のオンオフ制御に加えて、昇圧チョッパのスイッチング素子のオンオフ制御が必要となり、制御が複雑になる問題があった。 The configuration in which the circuit for boosting the power supply voltage is provided separately from the circuit for controlling the hysteresis has a problem that the lighting device becomes large due to the circuit for boosting the power supply voltage, and the number of parts increases and the manufacturing cost increases. In addition, when a boost chopper is used in the power supply voltage booster circuit, on / off control of the switching element of the boost chopper is required in addition to on / off control of the switching element for hysteresis control, and there is a problem that the control becomes complicated.
 本発明は、上記のような課題を解決するためになされたものであり、ヒステリシス制御を行う発光素子点灯装置において、従来のように別途昇圧用の回路を設けた点灯装置と比較して、より簡単な回路構成かつ簡単な制御により所望の出力電圧あるいは出力電流を得ることができる発光素子点灯装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and in a light-emitting element lighting device that performs hysteresis control, compared to a lighting device that has a separate boosting circuit as in the prior art, more An object of the present invention is to provide a light-emitting element lighting device capable of obtaining a desired output voltage or output current with a simple circuit configuration and simple control.
 本発明の発光素子点灯装置は、直流電源より入力される電力から発光素子を点灯する電流を生成する1次巻線と2次巻線を有したトランスと、トランスの1次巻線に入力する電流を断続するスイッチング素子と、トランスの2次巻線が発光素子へ出力する電流を整流する整流ダイオードと、トランスに入力する電流又は発光素子に出力する電流の電流値を検出する電流検出部と、電流検出部が検出した電流値に呼応してスイッチング素子のオン状態とオフ状態とを交互に切り替えるときに、スイッチング素子をオン状態に切り替える電流値と、オフ状態に切り替える電流値に差を設けたヒステリシス制御によって出力電流の電流値を基準範囲内の値に制御するヒステリシス制御部と、を備えるものである。 The light-emitting element lighting device of the present invention inputs a primary winding that generates a current for lighting the light-emitting element from power input from a DC power source, a transformer having a secondary winding, and inputs to the primary winding of the transformer. A switching element that interrupts current, a rectifier diode that rectifies the current output from the secondary winding of the transformer to the light emitting element, and a current detection unit that detects a current value input to the transformer or a current value output to the light emitting element; When the switching element is alternately switched between the on state and the off state in response to the current value detected by the current detection unit, a difference is provided between the current value for switching the switching element to the on state and the current value for switching to the off state. A hysteresis control unit that controls the current value of the output current to a value within the reference range by hysteresis control.
 本発明の発光素子点灯装置は、上記のように構成したので、簡単な回路構成かつ簡単な制御により所望の出力電圧あるいは出力電流を得ることができる。 Since the light emitting element lighting device of the present invention is configured as described above, a desired output voltage or output current can be obtained with a simple circuit configuration and simple control.
本発明の実施の形態1に係る発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the light emitting element lighting device which concerns on Embodiment 1 of this invention. 図1の発光素子点灯装置に流れる電流を示す説明図である。It is explanatory drawing which shows the electric current which flows into the light emitting element lighting device of FIG. 図1の発光素子点灯装置に流れる電流を示す説明図である。It is explanatory drawing which shows the electric current which flows into the light emitting element lighting device of FIG. 図4(a)は、スイッチング素子のオンオフを示すタイミングチャートである。図4(b)は、時間に対する発光素子点灯装置の出力電流を示す特性図である。FIG. 4A is a timing chart showing ON / OFF of the switching element. FIG. 4B is a characteristic diagram showing an output current of the light emitting element lighting device with respect to time. 本発明の実施の形態1に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 1 of this invention. 図6(a)は、スイッチング素子のオンオフを示すタイミングチャートである。図6(b)は、時間に対する発光素子点灯装置の出力電流を示す特性図である。FIG. 6A is a timing chart showing ON / OFF of the switching element. FIG. 6B is a characteristic diagram showing the output current of the light-emitting element lighting device with respect to time. 図7(a)は、スイッチング素子のオンオフを示すタイミングチャートである。図7(b)は、時間に対する発光素子点灯装置の出力電流を示す特性図である。FIG. 7A is a timing chart showing ON / OFF of the switching element. FIG. 7B is a characteristic diagram showing the output current of the light-emitting element lighting device with respect to time. 本発明の実施の形態1に係る第1トランス及びコイルを一体に構成した例を示す説明図である。It is explanatory drawing which shows the example which comprised the 1st transformer and coil which concern on Embodiment 1 of this invention integrally. 本発明の実施の形態2に係る発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the light emitting element lighting device which concerns on Embodiment 2 of this invention. 図9の発光素子点灯装置に流れる電流を示す説明図である。It is explanatory drawing which shows the electric current which flows into the light emitting element lighting device of FIG. 図9の発光素子点灯装置に流れる電流を示す説明図である。It is explanatory drawing which shows the electric current which flows into the light emitting element lighting device of FIG. 本発明の実施の形態2に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る第1トランス及び第2トランスを一体に構成した例を示す説明図である。It is explanatory drawing which shows the example which comprised the 1st transformer and 2nd transformer which concern on Embodiment 2 of this invention integrally. 本発明の実施の形態3に係る発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the light emitting element lighting device which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係るリーケージトランスの要部を正面から見た説明図である。It is explanatory drawing which looked at the principal part of the leakage transformer which concerns on Embodiment 3 of this invention from the front. 図14の発光素子点灯装置に流れる電流を示す説明図である。It is explanatory drawing which shows the electric current which flows into the light emitting element lighting device of FIG. 図15のリーケージトランスに生じる磁束を示す説明図である。It is explanatory drawing which shows the magnetic flux which arises in the leakage transformer of FIG. 図14の発光素子点灯装置に流れる電流を示す説明図である。It is explanatory drawing which shows the electric current which flows into the light emitting element lighting device of FIG. 本発明の実施の形態3に係る他のリーケージトランスの要部を正面から見た説明図である。It is explanatory drawing which looked at the principal part of the other leakage transformer which concerns on Embodiment 3 of this invention from the front. 本発明の実施の形態3に係る他のリーケージトランスの要部を正面から見た説明図である。It is explanatory drawing which looked at the principal part of the other leakage transformer which concerns on Embodiment 3 of this invention from the front. 本発明の実施の形態3に係る他のリーケージトランスの要部を正面から見た説明図である。It is explanatory drawing which looked at the principal part of the other leakage transformer which concerns on Embodiment 3 of this invention from the front. 本発明の実施の形態3に係る他のリーケージトランスの要部を正面から見た説明図である。It is explanatory drawing which looked at the principal part of the other leakage transformer which concerns on Embodiment 3 of this invention from the front. 本発明の実施の形態3に係る他のリーケージトランスの要部を正面から見た説明図である。It is explanatory drawing which looked at the principal part of the other leakage transformer which concerns on Embodiment 3 of this invention from the front. 図24(a)は、本発明の実施の形態3に係る他のリーケージトランスの要部を示す平面図である。図24(b)は、図24(a)に示すリーケージトランスの要部を正面から見た説明図である。FIG. 24A is a plan view showing a main part of another leakage transformer according to the third embodiment of the present invention. FIG. 24B is an explanatory view of the main part of the leakage transformer shown in FIG. 図25(a)は、本発明の実施の形態3に係る他のリーケージトランスの要部を示す平面図である。図25(b)は、図25(a)に示すリーケージトランスの要部を正面から見た説明図である。FIG. 25A is a plan view showing a main part of another leakage transformer according to Embodiment 3 of the present invention. FIG. 25B is an explanatory view of the main part of the leakage transformer shown in FIG. 本発明の実施の形態3に係る他のリーケージトランスの要部を正面から見た説明図である。It is explanatory drawing which looked at the principal part of the other leakage transformer which concerns on Embodiment 3 of this invention from the front. 本発明の実施の形態3に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る他のリーケージトランスの要部を正面から見た説明図である。It is explanatory drawing which looked at the principal part of the other leakage transformer which concerns on Embodiment 3 of this invention from the front. 本発明の実施の形態3に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the light emitting element lighting device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る他の発光素子点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the other light emitting element lighting device which concerns on Embodiment 4 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る発光素子点灯装置100の要部を示す回路図である。図1を参照して、発光素子点灯装置100を車載用前照灯に用いた例について説明する。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a circuit diagram showing a main part of the light-emitting element lighting device 100 according to Embodiment 1. In FIG. With reference to FIG. 1, the example which used the light emitting element lighting device 100 for the vehicle-mounted headlamp is demonstrated.
 直流電源1は、例えば、車両に搭載したバッテリにより構成されている。発光素子2は、n個(nは2以上の整数)のLED2~2を直列に接続したものであり、車載用前照灯の光源である。なお、当前照灯は、LED2~2の中の任意のLEDを選択して点灯することによって所望の方向を照らすもので、車両が走行する状況によって点灯するLEDは随時切換えられる。 The DC power source 1 is constituted by, for example, a battery mounted on a vehicle. The light emitting element 2 is a light source of an in-vehicle headlamp, in which n (n is an integer of 2 or more) LEDs 2 1 to 2 n are connected in series. The headlight illuminates a desired direction by selecting and lighting an arbitrary LED among the LEDs 2 1 to 2 n , and the LED that is lit depending on the situation in which the vehicle travels is switched at any time.
 直流電源1と発光素子2間に、トランス3が設けられている。図1の例では、トランス3は1個の第1トランス31により構成されている。第1トランス31は、直流電源1と電気的に接続された1次巻線P1を有している。また、第1トランス31は、発光素子2と電気的に接続された2次巻線S1及び磁束リセット用2次巻線S1Rを有している。1次巻線P1に対する2次巻線S1の巻数比mは、任意の値に設定されている。 A transformer 3 is provided between the DC power source 1 and the light emitting element 2. In the example of FIG. 1, the transformer 3 is composed of a single first transformer 31. The first transformer 31 has a primary winding P <b> 1 that is electrically connected to the DC power source 1. The first transformer 31 includes a secondary winding S1 and a magnetic flux resetting secondary winding S1R that are electrically connected to the light emitting element 2. The turn ratio m of the secondary winding S1 to the primary winding P1 is set to an arbitrary value.
 第1トランス31は、例えば、1次巻線P1への印加電圧に対してm倍の電圧が2次巻線S1に生じるとともに、2次巻線S1に流れる電流に対してm倍の電流が1次巻線P1に流れる、いわゆる「ポテンシャルトランス」である。または、第1トランス31は、1次巻線P1への通電電流に対して1/m倍の電流が2次巻線S1に流れるとともに、2次巻線S1に接続した負荷による電圧降下の1/m倍の電圧が1次巻線P1に生じる、いわゆる「カレントトランス」である。なお、ポテンシャルトランス及びカレントトランスはいずれも同じ構造であり、第1トランス31はいずれのトランスであっても良い。 In the first transformer 31, for example, a voltage that is m times the voltage applied to the primary winding P1 is generated in the secondary winding S1, and a current that is m times the current flowing in the secondary winding S1 is This is a so-called “potential transformer” that flows in the primary winding P1. Alternatively, in the first transformer 31, a current that is 1 / m times as large as the energization current to the primary winding P1 flows in the secondary winding S1, and the voltage drop due to the load connected to the secondary winding S1 is 1 This is a so-called “current transformer” in which a voltage of / m times is generated in the primary winding P1. Note that the potential transformer and the current transformer have the same structure, and the first transformer 31 may be any transformer.
 直流電源1とトランス3間に、スイッチング素子4が設けられている。図1の例では、スイッチング素子4はPチャネル型の電界効果トランジスタ(Field Effect Transistor,FET)であり、ソース端子が直流電源1の高電位側端子と電気的に接続され、かつ、ドレイン端子が第1トランス31の1次巻線P1と電気的に接続されている。スイッチング素子4は、FETのゲート電圧に応じて、直流電源1からトランス3への入力電流をオンオフするものである。 A switching element 4 is provided between the DC power source 1 and the transformer 3. In the example of FIG. 1, the switching element 4 is a P-channel field effect transistor (Field Effect Transistor, FET), the source terminal is electrically connected to the high potential side terminal of the DC power supply 1, and the drain terminal is The primary transformer 31 is electrically connected to the primary winding P1. The switching element 4 turns on / off the input current from the DC power source 1 to the transformer 3 in accordance with the gate voltage of the FET.
 トランス3と発光素子2間に、整流ダイオード5が設けられている。図1の例では、整流ダイオード5は1個の第1整流ダイオード51により構成されている。第1整流ダイオード51は、陽極が第1トランス31の2次巻線S1と電気的に接続され、かつ、陰極がコイル6を介してLED2の陽極と電気的に接続されている。 A rectifier diode 5 is provided between the transformer 3 and the light emitting element 2. In the example of FIG. 1, the rectifier diode 5 is composed of one first rectifier diode 51. The first rectifier diode 51, the anode is the secondary winding S1 and electrically connected to the first transformer 31, and the cathode are LED2 connected first anode and electrically through the coil 6.
 第1整流ダイオード51の陰極とコイル6との間には還流ダイオード7の陰極が電気的に接続されており、還流ダイオード7の陽極は第1トランス31の2次巻線S1と磁束リセット用2次巻線S1Rが接続される基準電位(直流電源1の低電位側端子)に電気的に接続されている。コイル6とLED2の陽極との間にはダイオード8の陰極が電気的に接続されており、ダイオード8の陽極は第1トランス31の磁束リセット用2次巻線SRと電気的に接続されている。ダイオード8は、整流ダイオード5及び還流ダイオード7よりも電流容量の小さいダイオードである。 The cathode of the return diode 7 is electrically connected between the cathode of the first rectifier diode 51 and the coil 6, and the anode of the return diode 7 is connected to the secondary winding S 1 of the first transformer 31 and the magnetic flux reset 2. It is electrically connected to a reference potential (low potential side terminal of the DC power supply 1) to which the next winding S1R is connected. And the cathode of the diode 8 is electrically connected between the coil 6 and the LED2 1 anode, the anode of the diode 8 is connected electrically to the magnetic flux reset secondary winding SR of the first transformer 31 Yes. The diode 8 is a diode having a smaller current capacity than the rectifier diode 5 and the freewheeling diode 7.
 LED2の陰極と基準電位(直流電源1の低電位側端子)との間に、電流検出用抵抗器9が設けられている。出力電流検出部10は、電流検出用抵抗器9に流れる電流値を検出することで、トランス3から発光素子2への出力電流の電流値を検出するとともに、スイッチング素子4のオフ状態にてコイル6から発光素子2への出力電流の電流値を検出するものである。 A current detection resistor 9 is provided between the cathode of the LED 2 n and the reference potential (the low potential side terminal of the DC power supply 1). The output current detection unit 10 detects the current value of the output current from the transformer 3 to the light emitting element 2 by detecting the value of the current flowing through the current detection resistor 9, and the coil when the switching element 4 is off The current value of the output current from 6 to the light emitting element 2 is detected.
 ヒステリシス制御部11は、出力電流検出部10が検出した電流値を用いて、スイッチング素子4のゲート電圧を制御するものである。具体的には、ヒステリシス制御部11は、スイッチング素子4のオン状態とオフ状態とを交互に切り替えることで、トランス3及びコイル6から発光素子2への出力電流の電流値を基準範囲内の値にする、いわゆるヒステリシス制御を行うものである。 The hysteresis control unit 11 controls the gate voltage of the switching element 4 using the current value detected by the output current detection unit 10. Specifically, the hysteresis control unit 11 switches the ON state and the OFF state of the switching element 4 alternately, thereby changing the current value of the output current from the transformer 3 and the coil 6 to the light emitting element 2 within a reference range. The so-called hysteresis control is performed.
 出力電流検出部10及びヒステリシス制御部11により、制御部12が構成されている。制御部12は、アナログ回路で実現されたものでも良く、デジタル回路で実現されたものでも良い。また、制御部12は、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)又はシステムLSI(Large-Scale Integration)などの専用の処理回路で実現されたものでも良い。また、制御部12は、出力電流検出部10及びヒステリシス制御部11の機能に対応するプログラムが記憶されたメモリと、このメモリからプログラムを読み出して実行するプロセッサとにより実現されたものでも良い。 The output current detection unit 10 and the hysteresis control unit 11 constitute a control unit 12. The control unit 12 may be realized by an analog circuit or may be realized by a digital circuit. The control unit 12 may be realized by a dedicated processing circuit such as an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a system LSI (Large-Scale Integration). Moreover, the control part 12 may be implement | achieved by the memory in which the program corresponding to the function of the output current detection part 10 and the hysteresis control part 11 was memorize | stored, and the processor which reads a program from this memory and executes it.
 トランス3、スイッチング素子4、整流ダイオード5、コイル6、還流ダイオード7、ダイオード8、電流検出用抵抗器9及び制御部12により、発光素子点灯装置100が構成されている。 The light emitting element lighting device 100 is configured by the transformer 3, the switching element 4, the rectifier diode 5, the coil 6, the freewheeling diode 7, the diode 8, the current detection resistor 9, and the control unit 12.
 次に、図2及び図3を参照して、発光素子点灯装置100に流れる電流について説明する。
 図2は、スイッチング素子4をオンしたときの電流を示している。スイッチング素子4をオンすると、直流電源1からトランス3への電流供給が開始され、第1トランス31の1次巻線P1に入力電流Iinが流れる。また、1次巻線P1に入力電流Iinが流れることで、2次巻線S1にも電流が流れる。この電流は第1整流ダイオード51により整流され、コイル6、発光素子2及び電流検出用抵抗器9に出力電流Ioutが流れる。
Next, with reference to FIG.2 and FIG.3, the electric current which flows into the light emitting element lighting device 100 is demonstrated.
FIG. 2 shows a current when the switching element 4 is turned on. When the switching element 4 is turned on, current supply from the DC power source 1 to the transformer 3 is started, and the input current Iin flows through the primary winding P1 of the first transformer 31. Further, when the input current Iin flows through the primary winding P1, a current also flows through the secondary winding S1. This current is rectified by the first rectifier diode 51, and an output current Iout flows through the coil 6, the light emitting element 2, and the current detection resistor 9.
 このとき、第1トランス31の2次巻線S1側の電圧値は、1次巻線P1側の電圧値のm倍となる。また、出力電流Ioutの電流値は、コイル6のインダクタンス値に応じて制限される。また一方では、出力電流Ioutの通電により、コイル6は磁気エネルギを貯える。 At this time, the voltage value on the secondary winding S1 side of the first transformer 31 is m times the voltage value on the primary winding P1 side. Further, the current value of the output current Iout is limited according to the inductance value of the coil 6. On the other hand, the coil 6 stores magnetic energy by energization of the output current Iout.
 図3は、スイッチング素子4をオフしたときの電流を示している。スイッチング素子4をオフすると、コイル6は、スイッチング素子4のオン状態にて貯えていた磁気エネルギを電流として放出する。この電流は還流ダイオード7により発光素子2に還流され、発光素子2及び電流検出用抵抗器9に出力電流Ioutとして流れる。 FIG. 3 shows the current when the switching element 4 is turned off. When the switching element 4 is turned off, the coil 6 releases the magnetic energy stored in the on state of the switching element 4 as a current. This current is recirculated to the light emitting element 2 by the freewheeling diode 7 and flows to the light emitting element 2 and the current detecting resistor 9 as an output current Iout.
 また、スイッチング素子4をオフした後、第1トランス31にはスイッチング素子4のオン状態における励磁磁束が残留している。この励磁磁束を放出しない場合、第1トランス31のコアに磁束が溜まり、結果的に磁束が飽和すると第1トランス31の磁気的特性が失われる。そこで、発光素子点灯装置100においては、磁束リセット用2次巻線S1Rを設けて励磁磁束をリセット電流として放出させるようにしている。このリセット電流はダイオード8により整流され、発光素子2及び電流検出用抵抗器9にリセット電流Irとして流れる。リセット電流Irを流すことで、第1トランス31のコアの磁束がリセットされ、磁束の飽和を防ぐことができる。 Further, after the switching element 4 is turned off, the excitation magnetic flux in the on state of the switching element 4 remains in the first transformer 31. When this exciting magnetic flux is not released, the magnetic flux is accumulated in the core of the first transformer 31. As a result, when the magnetic flux is saturated, the magnetic characteristics of the first transformer 31 are lost. Therefore, in the light emitting element lighting device 100, the magnetic flux resetting secondary winding S1R is provided so as to release the excitation magnetic flux as the reset current. This reset current is rectified by the diode 8 and flows to the light emitting element 2 and the current detection resistor 9 as the reset current Ir. By flowing the reset current Ir, the magnetic flux of the core of the first transformer 31 is reset, and saturation of the magnetic flux can be prevented.
 なお、リセット電流Irの電流値は、出力電流Ioutと比較して十分に小さい値である。このため、発光素子点灯装置100による発光素子2の点灯動作に対してリセット電流Irが与える影響は無視できる程度に小さい。また、リセット電流Irを整流するダイオード8は、整流ダイオード5及び還流ダイオード7よりも電流容量の小さいダイオードを用いることができる。 Note that the current value of the reset current Ir is a sufficiently small value as compared with the output current Iout. For this reason, the influence of the reset current Ir on the lighting operation of the light emitting element 2 by the light emitting element lighting device 100 is small enough to be ignored. The diode 8 that rectifies the reset current Ir can be a diode having a smaller current capacity than the rectifier diode 5 and the freewheeling diode 7.
 なお、仮に、第1トランス31に励磁磁束の残留しない理想的なトランスを用いることができる場合、リセット電流Irを流すための構成は不要である。この場合、発光素子点灯装置100は、磁束リセット用2次巻線S1R及びダイオード8を除去した回路構成となる。 Note that if an ideal transformer in which no exciting magnetic flux remains can be used as the first transformer 31, a configuration for causing the reset current Ir to flow is not necessary. In this case, the light emitting element lighting device 100 has a circuit configuration in which the secondary winding S1R for magnetic flux reset and the diode 8 are removed.
 次に、図2~図4を参照して、ヒステリシス制御部11の動作について説明する。
 図4(a)は、スイッチング素子4のオンオフを示すタイミングチャートである。図4(b)は、図4(a)のタイミングチャートと同じ時間における出力電流Ioutを示す特性図である。
Next, the operation of the hysteresis control unit 11 will be described with reference to FIGS.
FIG. 4A is a timing chart showing ON / OFF of the switching element 4. FIG. 4B is a characteristic diagram showing the output current Iout at the same time as the timing chart of FIG.
 ヒステリシス制御部11には、基準範囲ΔIoutの上限値に対応する第1電流値IoutHと、下限値に対応する第2電流値IoutLとが予め設定されている。第1電流値IoutH及び第2電流値IoutLは、出力電流検出部10が検出した電流値、すなわち出力電流Ioutの電流値との比較対象となる値である。また、基準範囲ΔIout内には、発光素子2の点灯電流に応じた目標電流値IoutTが含まれている。 The hysteresis controller 11 is preset with a first current value IoutH corresponding to the upper limit value of the reference range ΔIout and a second current value IoutL corresponding to the lower limit value. The first current value IoutH and the second current value IoutL are values to be compared with the current value detected by the output current detection unit 10, that is, the current value of the output current Iout. In addition, a target current value IoutT corresponding to the lighting current of the light emitting element 2 is included in the reference range ΔIout.
 ヒステリシス制御部11は、スイッチング素子4のオン状態とオフ状態とを交互に切り替える。すなわち、スイッチング素子4をオンすると、図2に示す如く2次巻線S1による出力電流Ioutがコイル6に磁気エネルギを貯えながら流れ、出力電流Ioutの電流値が次第に上昇する。出力電流検出部10の検出した電流値が第1電流値IoutH以上になると、ヒステリシス制御部11はスイッチング素子4をオフする。スイッチング素子4をオフすると、図3に示す如くコイル6に貯えた磁気エネルギの放出による出力電流Ioutが流れ、出力電流Ioutの電流値が次第に低下する。出力電流検出部10の検出した電流値が第2電流値IoutL以下になると、ヒステリシス制御部11はスイッチング素子4をオンする。以下、ヒステリシス制御部11は同様のオンオフ制御を繰り返す。 The hysteresis control unit 11 switches the switching element 4 between the on state and the off state alternately. That is, when the switching element 4 is turned on, the output current Iout from the secondary winding S1 flows while storing magnetic energy in the coil 6 as shown in FIG. 2, and the current value of the output current Iout gradually increases. When the current value detected by the output current detection unit 10 becomes equal to or greater than the first current value IoutH, the hysteresis control unit 11 turns off the switching element 4. When the switching element 4 is turned off, the output current Iout flows due to the release of the magnetic energy stored in the coil 6 as shown in FIG. 3, and the current value of the output current Iout gradually decreases. When the current value detected by the output current detection unit 10 becomes equal to or less than the second current value IoutL, the hysteresis control unit 11 turns on the switching element 4. Thereafter, the hysteresis control unit 11 repeats the same on / off control.
 図4に示すヒステリシス制御により、出力電流Ioutの電流値は第1電流値IoutHと第2電流値IoutLの間を上下することで、基準範囲ΔIout内の値になる。また、出力電流Ioutの平均電流値IoutAを、目標電流値IoutTと同等の値に保つことができる。これにより、発光素子点灯装置100は、発光素子2の点灯に適した電流を出力することができる。 By the hysteresis control shown in FIG. 4, the current value of the output current Iout becomes a value within the reference range ΔIout by moving up and down between the first current value IoutH and the second current value IoutL. Further, the average current value IoutA of the output current Iout can be maintained at a value equivalent to the target current value IoutT. Thereby, the light emitting element lighting device 100 can output a current suitable for lighting the light emitting element 2.
 なお、第1トランス31は、巻数比mを1よりも大きくすることで昇圧トランスの機能を果たし、かつ、巻数比mを1よりも小さくすることで降圧トランスの機能を果たすものであるが、いずれの構成であっても良い。 The first transformer 31 fulfills the function of a step-up transformer by making the turns ratio m larger than 1, and fulfills the function of a step-down transformer by making the turns ratio m smaller than 1. Any configuration may be used.
 巻数比mを1よりも大きくした発光素子点灯装置100は、例えば、直列接続のLED2~2の個数を増やした車載用前照灯に適している。一般に、車載用バッテリの電源電圧は12ボルト(V)である。これに対し、車載用前照灯の光源に例えば16個のLEDを直列接続し、このうち点灯するLEDの個数を前照灯の配光に応じて制御する構成とした場合、光源の印加電圧は点灯対象のLEDの個数に応じて例えば最大48Vを出力することが求められる。 The light-emitting element lighting device 100 with the turn ratio m larger than 1 is suitable, for example, for an in-vehicle headlamp having an increased number of series-connected LEDs 2 1 to 2 n . Generally, the power supply voltage of a vehicle-mounted battery is 12 volts (V). On the other hand, when, for example, 16 LEDs are connected in series to the light source of the vehicle headlamp, and the number of LEDs to be lit is controlled according to the light distribution of the headlamp, the applied voltage of the light source Is required to output a maximum of 48 V, for example, according to the number of LEDs to be lit.
 このとき、印加電圧を12Vよりも大きい値にする場合、従来の点灯装置ではヒステリシス制御用の回路の外部に電源電圧昇圧用の回路を設ける必要があった。これに対し、実施の形態1の発光素子点灯装置100は、第1トランス31の巻数比mを大きくすることで、光源への印加電圧をバッテリの電源電圧よりも大きくすることができる。すなわち、従来ヒステリシス制御用の回路の外部に設けていた電源電圧昇圧用の回路を不要として、発光素子点灯装置100をより簡単な回路構成で実現することができる。また、従来の昇圧チョッパを用いた構造において必要であった昇圧チョッパ用のスイッチング素子のオンオフ制御を不要として、より簡単な制御で所望の出力電流が得られる。 At this time, when the applied voltage is set to a value larger than 12 V, it is necessary to provide a circuit for boosting the power supply voltage outside the hysteresis control circuit in the conventional lighting device. On the other hand, the light emitting element lighting device 100 of Embodiment 1 can make the voltage applied to the light source larger than the power supply voltage of the battery by increasing the turns ratio m of the first transformer 31. That is, it is possible to realize the light emitting element lighting device 100 with a simpler circuit configuration without the need for a circuit for boosting the power supply voltage that has been provided outside the circuit for controlling hysteresis in the related art. In addition, the ON / OFF control of the switching element for the boost chopper, which is necessary in the structure using the conventional boost chopper, is unnecessary, and a desired output current can be obtained with simpler control.
 他方、巻数比mを1よりも小さくした発光素子点灯装置100は、LEDの点灯電圧が電源電圧よりも低い灯具において、入力電圧の変動に対して出力電圧を安定させる制御を容易にすることができる。 On the other hand, the light emitting element lighting device 100 in which the turn ratio m is smaller than 1 can facilitate the control of stabilizing the output voltage against the fluctuation of the input voltage in a lamp whose LED lighting voltage is lower than the power supply voltage. it can.
 例えば、直流電源1に、家庭用電源などの交流100Vを半波整流する単純なAC/DCコンバータを用いた場合、直流電源1の出力電圧には正弦波状のリプルが残る。発光素子点灯装置100は、このリプルによる入力電圧の変動に応じてスイッチング素子4のオンオフのデューティ比を変化させることで、出力電圧を安定させることができる。 For example, when a simple AC / DC converter for half-wave rectification of AC 100V, such as a household power supply, is used as the DC power supply 1, a sinusoidal ripple remains in the output voltage of the DC power supply 1. The light emitting element lighting device 100 can stabilize the output voltage by changing the on / off duty ratio of the switching element 4 in accordance with the fluctuation of the input voltage due to the ripple.
 このとき、例えばスイッチング素子及びコイルを用いた降圧チョッパ回路においては、デューティ比の変化量に対する出力電圧の変化量が固定されており、デューティ比を精密に制御することが求められる。これに対し、発光素子点灯装置100は、第1トランス31の巻数比mに応じて、スイッチング素子4のデューティ比の変化量に対する出力電圧の変化量を変えることができる。すなわち、デューティ比の変化量に対する出力電圧の変化量が小さくなるように巻数比mを適切に設定することで、デューティ比の制御が粗くとも出力電圧を安定させやすくなる。このように、入力電圧の変動に対して出力電圧を安定させる制御をより容易にすることができる。 At this time, for example, in a step-down chopper circuit using a switching element and a coil, the change amount of the output voltage with respect to the change amount of the duty ratio is fixed, and it is required to precisely control the duty ratio. On the other hand, the light emitting element lighting device 100 can change the change amount of the output voltage with respect to the change amount of the duty ratio of the switching element 4 according to the turn ratio m of the first transformer 31. That is, by appropriately setting the turn ratio m so that the change amount of the output voltage with respect to the change amount of the duty ratio becomes small, the output voltage can be easily stabilized even if the control of the duty ratio is rough. In this way, control for stabilizing the output voltage against fluctuations in the input voltage can be facilitated.
 次に、図5を参照して、発光素子点灯装置100の変形例について説明する。
 図5に示す発光素子点灯装置100は、出力電流Ioutに代えて入力電流Iinの電流値を用いてヒステリシス制御を行うものである。図5において、図1に示す発光素子点灯装置100と同様の構成部材には同一符号を付して説明を省略する。
Next, a modification of the light emitting element lighting device 100 will be described with reference to FIG.
The light emitting element lighting device 100 shown in FIG. 5 performs hysteresis control using the current value of the input current Iin instead of the output current Iout. In FIG. 5, the same components as those of the light emitting element lighting device 100 shown in FIG.
 電流検出用抵抗器9は、直流電源1の高電位側端子とスイッチング素子4のソース端子との間に設けられている。制御部12は、図1に示す出力電流検出部10に代えて、入力電流検出部13を有している。入力電流検出部13は、電流検出用抵抗器9に流れる電流値を検出することで、直流電源1からトランス3への入力電流の電流値を検出するものである。 The current detection resistor 9 is provided between the high potential side terminal of the DC power supply 1 and the source terminal of the switching element 4. The control unit 12 has an input current detection unit 13 instead of the output current detection unit 10 shown in FIG. The input current detector 13 detects the current value of the input current from the DC power supply 1 to the transformer 3 by detecting the current value flowing through the current detection resistor 9.
 トランス3と発光素子2間に、電圧検出用抵抗器14a,14bが設けられている。電圧検出用抵抗器14a,14bは、発光素子2に対して電気的に並列に接続されている。制御部12は、出力電圧検出部15を有している。出力電圧検出部15は、電圧検出用抵抗器14a,14bによって分圧した電圧値を検出することで、基準電位に対するトランス3から発光素子2への出力電圧を検出するものである。 Between the transformer 3 and the light emitting element 2, voltage detection resistors 14a and 14b are provided. The voltage detection resistors 14 a and 14 b are electrically connected to the light emitting element 2 in parallel. The control unit 12 has an output voltage detection unit 15. The output voltage detector 15 detects an output voltage from the transformer 3 to the light emitting element 2 with respect to a reference potential by detecting a voltage value divided by the voltage detection resistors 14a and 14b.
 ヒステリシス制御部11は、入力電流検出部13が検出した電流値と、出力電圧検出部15が検出した電圧値とを用いて、スイッチング素子4のオン状態とオフ状態とを交互に切り替えるものである。 The hysteresis control unit 11 switches the ON state and the OFF state of the switching element 4 alternately using the current value detected by the input current detection unit 13 and the voltage value detected by the output voltage detection unit 15. .
 次に、図6を参照して、図5に示すヒステリシス制御部11の動作の一例について説明する。
 図6(a)は、スイッチング素子4のオンオフを示すタイミングチャートである。図6(b)は、図6(a)のタイミングチャートと同じ時間における出力電流Ioutを示す特性図である。
Next, an example of the operation of the hysteresis control unit 11 shown in FIG. 5 will be described with reference to FIG.
FIG. 6A is a timing chart showing ON / OFF of the switching element 4. FIG. 6B is a characteristic diagram showing the output current Iout at the same time as the timing chart of FIG.
 ヒステリシス制御部11には、入力電流検出部13が検出した電流値、すなわち入力電流Iinの電流値と比較する第1電流値IinHが予め設定されている。ちなみに、第1電流値IinHは、出力電流Ioutの上限値(第1電流値IoutH)に対して巻数比m倍の値になる。また、ヒステリシス制御部11は、出力電圧検出部15が検出した電圧値に応じて、スイッチング素子4のオフ時間Toffを設定するようになっている。 The hysteresis control unit 11 is preset with a current value detected by the input current detection unit 13, that is, a first current value IinH to be compared with the current value of the input current Iin. Incidentally, the first current value IinH is a value that is m times the turn ratio with respect to the upper limit value (first current value IoutH) of the output current Iout. In addition, the hysteresis control unit 11 sets the off time Toff of the switching element 4 according to the voltage value detected by the output voltage detection unit 15.
 ヒステリシス制御部11は、入力電流検出部13の検出した電流値が第1電流値IinH以上になると、スイッチング素子4をオフする。また、ヒステリシス制御部11は、スイッチング素子4をオフしてからオフ時間Toffが経過すると、スイッチング素子4をオンする。以下、ヒステリシス制御部11は同様のオンオフ制御を繰り返す。 The hysteresis control unit 11 turns off the switching element 4 when the current value detected by the input current detection unit 13 is equal to or higher than the first current value IinH. Further, the hysteresis control unit 11 turns on the switching element 4 when the off time Toff elapses after the switching element 4 is turned off. Thereafter, the hysteresis control unit 11 repeats the same on / off control.
 これにより、図6(b)に示す如く、出力電流Ioutの電流値を基準範囲ΔIout内の値にするとともに、平均電流値IoutAを目標電流値IoutTと同等の値に保つことができる。 Thereby, as shown in FIG. 6B, the current value of the output current Iout can be set to a value within the reference range ΔIout, and the average current value IoutA can be kept equal to the target current value IoutT.
 なお、出力電圧に対応するオフ時間Toffが長すぎると、出力電流Ioutの最低値が低くなり、平均電流値IoutAが目標電流値IoutTよりも低くなる。他方、出力電圧に対応するオフ時間Toffが短すぎると、出力電流Ioutのが充分に低下しなくなり、平均電流値IoutAが目標電流値IoutTよりも高くなる。このため、オフ時間Toffは、平均電流値IoutAが目標電流値IoutTと同等の値になるように、出力電圧の値に応じて適切な値に設定する。 If the off time Toff corresponding to the output voltage is too long, the minimum value of the output current Iout becomes low, and the average current value IoutA becomes lower than the target current value IoutT. On the other hand, if the off time Toff corresponding to the output voltage is too short, the output current Iout does not sufficiently decrease, and the average current value IoutA becomes higher than the target current value IoutT. For this reason, the off time Toff is set to an appropriate value according to the value of the output voltage so that the average current value IoutA is equal to the target current value IoutT.
 次に、発光素子点灯装置100として、図1に示す電流検出用抵抗器9及び出力電流検出部10と、図5に示す電圧検出用抵抗器14a,14b及び出力電圧検出部15とを備える構成及び、ヒステリシス制御部11の動作を説明する。図7(a)は、スイッチング素子4のオンオフを示すタイミングチャートである。図7(b)は、図7(a)のタイミングチャートと同じ時間における出力電流Ioutを示す特性図である。 Next, the light-emitting element lighting device 100 includes the current detection resistor 9 and the output current detection unit 10 shown in FIG. 1, and the voltage detection resistors 14a and 14b and the output voltage detection unit 15 shown in FIG. The operation of the hysteresis control unit 11 will be described. FIG. 7A is a timing chart showing ON / OFF of the switching element 4. FIG. 7B is a characteristic diagram showing the output current Iout at the same time as the timing chart of FIG.
 ヒステリシス制御部11には、出力電流検出部10が検出した電流値と比較する第2電流値IoutLが予め設定されている。また、ヒステリシス制御部11は、出力電圧検出部15が検出した電圧値に応じて、スイッチング素子4のオン時間Tonを設定するようになっている。 In the hysteresis control unit 11, a second current value IoutL to be compared with the current value detected by the output current detection unit 10 is set in advance. In addition, the hysteresis control unit 11 sets the on-time Ton of the switching element 4 according to the voltage value detected by the output voltage detection unit 15.
 ヒステリシス制御部11は、出力電流検出部10の検出した電流値が第2電流値IoutL以下になると、スイッチング素子4をオンする。また、ヒステリシス制御部11は、スイッチング素子4をオンしてからオン時間Tonが経過すると、スイッチング素子4をオフする。以下、ヒステリシス制御部11は同様のオンオフ制御を繰り返す。 The hysteresis control unit 11 turns on the switching element 4 when the current value detected by the output current detection unit 10 is equal to or less than the second current value IoutL. Further, the hysteresis control unit 11 turns off the switching element 4 when the on-time Ton elapses after the switching element 4 is turned on. Thereafter, the hysteresis control unit 11 repeats the same on / off control.
 これにより、図7(b)に示す如く、出力電流Ioutの電流値を基準範囲ΔIout内の値にするとともに、平均電流値IoutAを目標電流値IoutTと同等の値に保つことができる。 Thereby, as shown in FIG. 7B, the current value of the output current Iout can be set to a value within the reference range ΔIout, and the average current value IoutA can be kept equal to the target current value IoutT.
 なお、出力電圧に対応するオン時間Tonが長すぎると、出力電流Ioutの最高値が高くなり、平均電流値IoutAが目標電流値IoutTよりも高くなる。他方、出力電圧に対応するオン時間Tonが短すぎると、出力電流Ioutが充分に上昇しなくなり、平均電流値IoutAが目標電流値IoutTよりも低くなる。このため、オン時間Tonは、平均電流値IoutAが目標電流値IoutTと同等の値になるように、出力電圧の値に応じて適切な値に設定する。 Note that if the on-time Ton corresponding to the output voltage is too long, the maximum value of the output current Iout becomes high, and the average current value IoutA becomes higher than the target current value IoutT. On the other hand, if the on-time Ton corresponding to the output voltage is too short, the output current Iout does not rise sufficiently, and the average current value IoutA becomes lower than the target current value IoutT. For this reason, the ON time Ton is set to an appropriate value according to the value of the output voltage so that the average current value IoutA becomes equal to the target current value IoutT.
 なお、図1及び図5に示す発光素子点灯装置100において、スイッチング素子4は、直流電源1の高電位側端子とトランス3との間に設けられて入力電流Iinをオンオフするものであれば良く、Pチャネル型のFETに限定されるものではない。例えば、スイッチング素子4にPNP型のバイポーラトランジスタを用いたものでも良い。または、スイッチング素子4にNチャネル型のFETを用いて、直流電源1とは別にFET駆動用の電源を設けたものでも良い。 In the light emitting element lighting device 100 shown in FIGS. 1 and 5, the switching element 4 may be any element as long as it is provided between the high potential side terminal of the DC power source 1 and the transformer 3 to turn on and off the input current Iin. The present invention is not limited to a P-channel type FET. For example, a PNP bipolar transistor may be used for the switching element 4. Alternatively, an N-channel FET may be used for the switching element 4 and a power source for driving the FET may be provided separately from the DC power source 1.
 また、発光素子2は半導体発光素子を用いたものであれば良く、LEDに限定されるものではない。例えば、LEDに代えて有機発光ダイオード(Organic Light Emitting Diode,OLED)又はレーザダイオード(Laser Diode,LD)などを用いたものでも良く、複数種類の半導体発光素子を組み合わせて用いたものでも良い。 Further, the light emitting element 2 may be any element that uses a semiconductor light emitting element, and is not limited to an LED. For example, an organic light emitting diode (Organic Light Emitting Diode, OLED) or a laser diode (Laser Diode, LD) may be used instead of the LED, or a combination of a plurality of types of semiconductor light emitting elements may be used.
 なお、発光素子点灯装置100の用途は前照灯に限定されるものではなく、車載用の灯具に限定されるものでもない。ヒステリシス制御により半導体発光素子を点灯するものであれば、如何なる灯具にも用いることができる。 In addition, the use of the light emitting element lighting device 100 is not limited to a headlamp, and is not limited to an in-vehicle lamp. Any lamp can be used as long as the semiconductor light emitting element is turned on by hysteresis control.
 また、発光素子点灯装置100は、第1トランス31のコアとコイル6のコアとを一体に構成したものでも良い。この場合の第1トランス31及びコイル6の一例を図8に示す。EI型のコア60において、E型コアの中脚部61とI型コアとの間に間隙62を設けるとともに、中脚部61に巻線Lを巻回することでコイル6が構成されている。また、EE型のコア30において、中脚部32に1次巻線P1を巻回し、その外周部に2次巻線S1を巻回し、さらにその外周部に磁束リセット用2次巻線S1Rを巻回することで第1トランス31が構成されている。図8に示す如く、コイル6のコア60を構成するI型コアとして、第1トランス31のコア30を構成する一方のE型コアの一部が兼用され一体に構成されている。コア30,60を一体化することで部品点数を削減し、発光素子点灯装置100の製造コストを低減することができる。 Moreover, the light emitting element lighting device 100 may be configured by integrally forming the core of the first transformer 31 and the core of the coil 6. An example of the first transformer 31 and the coil 6 in this case is shown in FIG. In the EI type core 60, the gap 62 is provided between the middle leg portion 61 of the E type core and the I type core, and the coil 6 is formed by winding the winding L around the middle leg portion 61. . Further, in the EE type core 30, the primary winding P1 is wound around the middle leg portion 32, the secondary winding S1 is wound around the outer periphery thereof, and the magnetic flux resetting secondary winding S1R is provided around the outer periphery thereof. The first transformer 31 is configured by winding. As shown in FIG. 8, as an I-type core that constitutes the core 60 of the coil 6, a part of one E-type core that constitutes the core 30 of the first transformer 31 is combined and configured integrally. By integrating the cores 30 and 60, the number of parts can be reduced, and the manufacturing cost of the light emitting element lighting device 100 can be reduced.
 以上のように、実施の形態1の発光素子点灯装置100は、直流電源1と発光素子2間に設けたトランス3と、直流電源1からトランス3への入力電流Iinをオンオフするスイッチング素子4と、トランス3から発光素子2への出力電流Ioutを整流する整流ダイオード5と、出力電流Ioutの電流値を検出する電流検出部(出力電流検出部10)と、電流検出部(出力電流検出部10)が検出した電流値を用いてスイッチング素子4のオン状態とオフ状態とを交互に切り替えることで、出力電流Ioutの電流値を基準範囲ΔIout内の値にするヒステリシス制御部11と、を備える。ヒステリシス制御部11には、基準範囲ΔIoutの上限値に対応する第1電流値IoutH及び基準範囲ΔIoutの下限値に対応する第2電流値IoutLが設定されており、電流検出部(出力電流検出部10)で検出した電流値が第1電流値IoutH以上になるとスイッチング素子4をオフし、電流検出部(出力電流検出部10)で検出した電流値が第2電流値IoutL以下になるとスイッチング素子4をオンする。かかるヒステリシス制御により、発光素子2の点灯に適した電流を出力することができる。また、直流電源1の電源電圧の変動及び点灯対象となるLED2~2の点灯数の変化による負荷電圧の変動などに対して応答を早めた発光素子点灯装置100を得ることができる。当構成において、トランス3の巻数比mを適宜設定することで、入力電圧に対する出力電圧を変化させながら所望の出力電流を得ることができる。すなわち、必要な出力電圧を確保しながら、任意の電流を出力できる発光素子点灯装置100を、簡単な回路構成かつ簡単な制御で実現することができる。 As described above, the light-emitting element lighting device 100 according to Embodiment 1 includes the transformer 3 provided between the DC power supply 1 and the light-emitting element 2, and the switching element 4 that turns on and off the input current Iin from the DC power supply 1 to the transformer 3. The rectifier diode 5 that rectifies the output current Iout from the transformer 3 to the light emitting element 2, the current detector (output current detector 10) that detects the current value of the output current Iout, and the current detector (output current detector 10). And a hysteresis control unit 11 that changes the current value of the output current Iout to a value within the reference range ΔIout by alternately switching between the on state and the off state of the switching element 4 using the current value detected by (1). In the hysteresis control unit 11, a first current value IoutH corresponding to the upper limit value of the reference range ΔIout and a second current value IoutL corresponding to the lower limit value of the reference range ΔIout are set, and a current detection unit (output current detection unit) When the current value detected in 10) becomes equal to or higher than the first current value IoutH, the switching element 4 is turned off, and when the current value detected by the current detection unit (output current detection unit 10) becomes equal to or lower than the second current value IoutL. Turn on. With this hysteresis control, a current suitable for lighting the light emitting element 2 can be output. In addition, it is possible to obtain the light-emitting element lighting device 100 that has a quick response to fluctuations in the power supply voltage of the DC power supply 1 and changes in load voltage due to changes in the number of lighting of the LEDs 2 1 to 2 n to be lit. In this configuration, by appropriately setting the turns ratio m of the transformer 3, a desired output current can be obtained while changing the output voltage with respect to the input voltage. That is, the light emitting element lighting device 100 capable of outputting an arbitrary current while ensuring a necessary output voltage can be realized with a simple circuit configuration and simple control.
 また、発光素子点灯装置100は、第1整流ダイオード51と発光素子2間に接続されたコイル6と、コイル6が発する出力電流Ioutを還流する還流ダイオード7と、を備える。スイッチング素子4がオン状態のとき、出力電流Ioutの電流値をコイル6のインダクタンス値に応じて制限できるため、コイル6のインダクタンス値を適宜設定することで出力電流Ioutの電流値を所望の値にすることができる。また、還流ダイオード7を設けることで、スイッチング素子4がオフ状態のときにコイル6が出力する電流を発光素子2に還流して、発光素子2の点灯に用いることができる。 The light-emitting element lighting device 100 includes a coil 6 connected between the first rectifier diode 51 and the light-emitting element 2 and a reflux diode 7 that circulates an output current Iout generated by the coil 6. When the switching element 4 is in the ON state, the current value of the output current Iout can be limited according to the inductance value of the coil 6, so that the current value of the output current Iout can be set to a desired value by appropriately setting the inductance value of the coil 6. can do. Further, by providing the return diode 7, the current output from the coil 6 can be returned to the light emitting element 2 when the switching element 4 is in the OFF state, and used for lighting the light emitting element 2.
 また、第1トランス31は、励磁に使用した磁束を電流にして排出する磁束リセット用2次巻線S1Rを有する。発光素子点灯装置100は、スイッチング素子4がオフ状態のときに磁束リセット用2次巻線S1Rが出力するリセット電流Irを整流して出力するダイオード8を備える。リセット電流Irを流すことで、第1トランス31のコアの磁束をリセットして、磁束が飽和するのを防ぐことができる。 The first transformer 31 has a magnetic flux resetting secondary winding S1R that discharges the magnetic flux used for excitation as a current. The light emitting element lighting device 100 includes a diode 8 that rectifies and outputs the reset current Ir output from the magnetic flux resetting secondary winding S1R when the switching element 4 is in the OFF state. By flowing the reset current Ir, the magnetic flux of the core of the first transformer 31 can be reset and saturation of the magnetic flux can be prevented.
 または、発光素子点灯装置100は、入力電流Iinの電流値を検出する電流検出部(入力電流検出部13)と、トランス3から発光素子2への出力電圧の電圧値を検出する電圧検出部(出力電圧検出部15)を備える。ヒステリシス制御部11には、出力電流のIoutの上限値(第1電流値IoutH)に対応する入力電流Iinの上限値(第1電流値IinH)が設定されており、電圧検出部(出力電圧検出部15)が検出した電圧値を用いてスイッチング素子4のオフ時間Toffを設定するとともに、電流検出部(入力電流検出部13)で検出した電流値が第1電流値IinH以上になるとスイッチング素子4をオフし、スイッチング素子4をオフしてからオフ時間Toffが経過するとスイッチング素子4をオンする。かかるヒステリシス制御により、発光素子2の点灯に適した電流を出力することができる。 Alternatively, the light-emitting element lighting device 100 includes a current detection unit (input current detection unit 13) that detects a current value of the input current Iin and a voltage detection unit that detects a voltage value of an output voltage from the transformer 3 to the light-emitting element 2 ( An output voltage detector 15). In the hysteresis control unit 11, an upper limit value (first current value IinH) of the input current Iin corresponding to the upper limit value (first current value IoutH) of the output current Iout is set, and the voltage detection unit (output voltage detection) The off time Toff of the switching element 4 is set using the voltage value detected by the unit 15), and when the current value detected by the current detection unit (input current detection unit 13) becomes equal to or higher than the first current value IinH, the switching element 4 Is turned off and the switching element 4 is turned on when the off time Toff has elapsed since the switching element 4 was turned off. With this hysteresis control, a current suitable for lighting the light emitting element 2 can be output.
 または、発光素子点灯装置100は、出力電流Ioutの電流値を検出する電流検出部(出力電流検出部10)と、トランス3から発光素子2への出力電圧の電圧値を検出する電圧検出部(出力電圧検出部15)を備える。ヒステリシス制御部11には、出力電流のIoutの下限値(第2電流値IoutL)が設定されており、電圧検出部(出力電圧検出部15)が検出した電圧値を用いてスイッチング素子4のオン時間Tonを設定するとともに、電流検出部(出力電流検出部10)で検出した電流値が第2電流値IoutL以下になるとスイッチング素子4をオンし、スイッチング素子4をオンしてからオン時間Tonが経過するとスイッチング素子4をオフする。かかるヒステリシス制御により、発光素子2の点灯に適した電流を出力することができる。 Alternatively, the light-emitting element lighting device 100 includes a current detection unit (output current detection unit 10) that detects the current value of the output current Iout and a voltage detection unit that detects the voltage value of the output voltage from the transformer 3 to the light-emitting element 2 ( An output voltage detector 15). In the hysteresis control unit 11, a lower limit value (second current value IoutL) of the output current Iout is set, and the switching element 4 is turned on using the voltage value detected by the voltage detection unit (output voltage detection unit 15). In addition to setting the time Ton, when the current value detected by the current detection unit (output current detection unit 10) becomes equal to or less than the second current value IoutL, the switching element 4 is turned on. After a lapse of time, the switching element 4 is turned off. With this hysteresis control, a current suitable for lighting the light emitting element 2 can be output.
 また、スイッチング素子4は、直流電源1の高電位側端子とトランス3との間に接続されている。スイッチング素子4は、例えば、Pチャネル型のFET、PNP型のバイポーラトランジスタ又はNチャネル型のFETなどを用いることができる。 The switching element 4 is connected between the high potential side terminal of the DC power source 1 and the transformer 3. As the switching element 4, for example, a P-channel FET, a PNP bipolar transistor, or an N-channel FET can be used.
 また、発光素子2は半導体発光素子である。発光素子2はLEDに限定されるものではなく、OLED又はLDなどを用いることもできる。 Further, the light emitting element 2 is a semiconductor light emitting element. The light emitting element 2 is not limited to an LED, and an OLED or an LD can also be used.
 また、発光素子点灯装置100は、車載用の発光素子点灯装置に用いることができる。実施の形態1の発光素子点灯装置100は、電源電圧の変動に対する応答が早いため、電圧変動の大きい車載用バッテリを電源としながらも、ちらつきの低減が求められる前照灯や尾灯等の車載用の灯具に特に好適である。 Moreover, the light emitting element lighting device 100 can be used for an in-vehicle light emitting element lighting device. Since the light-emitting element lighting device 100 according to Embodiment 1 has a quick response to fluctuations in the power supply voltage, it is used for in-vehicle devices such as headlamps and taillights that require reduction of flicker while using an in-vehicle battery with large voltage fluctuation as a power source. It is particularly suitable for the lamp.
実施の形態2.
 図9は、実施の形態2に係る発光素子点灯装置100の要部を示す回路図である。図9に示す発光素子点灯装置100は、図1に示す発光素子点灯装置100のコイル6及び還流ダイオード7の機能を、第2トランス33及び第2整流ダイオード52に代替したものである。図9において、図1に示す発光素子点灯装置100と同様の構成部材には同一符号を付して説明を省略する。
Embodiment 2. FIG.
FIG. 9 is a circuit diagram showing a main part of the light emitting element lighting device 100 according to the second embodiment. The light emitting element lighting device 100 shown in FIG. 9 is obtained by replacing the functions of the coil 6 and the free wheel diode 7 of the light emitting element lighting device 100 shown in FIG. 1 with a second transformer 33 and a second rectifier diode 52. In FIG. 9, the same components as those of the light-emitting element lighting device 100 shown in FIG.
 トランス3は、実施の形態1と同様の第1トランス31に加えて、第2トランス33を有している。第2トランス33の1次巻線P2は、直流電源1に対して第1トランス31の1次巻線P1と電気的に直列に接続されている。第2トランス33の2次巻線S2は、発光素子2に対して第1トランス31の2次巻線S1と電気的に並列に接続されている。第2トランス33の1次巻線P2に対する2次巻線S2の巻数比mは、第1トランス31の1次巻線P1に対する2次巻線S1の巻数比mと同じ値に設定されている。 The transformer 3 has a second transformer 33 in addition to the first transformer 31 similar to the first embodiment. The primary winding P2 of the second transformer 33 is electrically connected in series with the primary winding P1 of the first transformer 31 with respect to the DC power source 1. The secondary winding S <b> 2 of the second transformer 33 is electrically connected to the light emitting element 2 in parallel with the secondary winding S <b> 1 of the first transformer 31. The turn ratio m of the secondary winding S2 to the primary winding P2 of the second transformer 33 is set to the same value as the turn ratio m of the secondary winding S1 to the primary winding P1 of the first transformer 31. .
 第2トランス33は、1次巻線P1に電流を流すことで磁気エネルギを貯えるとともに、1次巻線P1への通電を止めたときに、貯えていた磁気エネルギを2次巻線S1から電流として放出する、いわゆる「フライバックトランス」である。ちなみに、図9に示す発光素子点灯装置100は、図1に示す発光素子点灯装置100の第1トランス31の2次側に配置したコイル6を第2トランス33に代替して、第1トランス31の1次側に移動したもので、第2トランス33の電流を貯えて放出する機能と、第1トランスに流れる電流を制限する機能は、コイル6の機能に相当する。また、還流ダイオード7の機能は、第2整流ダイオード52の機能に相当する。 The second transformer 33 stores magnetic energy by passing a current through the primary winding P1, and also stores the stored magnetic energy from the secondary winding S1 when the energization of the primary winding P1 is stopped. It is a so-called “flyback transformer” that is released as Incidentally, the light-emitting element lighting device 100 shown in FIG. 9 replaces the coil 6 arranged on the secondary side of the first transformer 31 of the light-emitting element lighting device 100 shown in FIG. The function of storing and discharging the current of the second transformer 33 and the function of limiting the current flowing through the first transformer correspond to the function of the coil 6. The function of the free wheeling diode 7 corresponds to the function of the second rectifier diode 52.
 整流ダイオード5は、実施の形態1と同様の第1整流ダイオード51に加えて、第2整流ダイオード52を有している。第2整流ダイオード52は、陽極が第2トランス33の2次巻線S1と電気的に接続され、かつ、陰極がLED2の陽極と電気的に接続されている。 The rectifier diode 5 includes a second rectifier diode 52 in addition to the first rectifier diode 51 similar to that of the first embodiment. Second rectifier diode 52, the anode is the secondary winding S1 and electrically connected to the second transformer 33, and its cathode connected LED2 1 anode and electrically.
 次に、図10及び図11を参照して、このように構成された発光素子点灯装置100に流れる電流について説明する。
 図10は、スイッチング素子4をオンしたときの電流を示している。スイッチング素子4をオンすると、直流電源1からトランス3への電流供給が開始され、第1トランス31の1次巻線P1及び第2トランス33の1次巻線P2に入力電流Iinが流れる。第1トランス31の1次巻線P1に入力電流Iinが流れることで、2次巻線S1にも電流が流れる。この電流は第1整流ダイオード51により整流され、発光素子2及び電流検出用抵抗器9に流通する出力電流Ioutとなる。また、第2トランス33の1次巻線P2に入力電流Iinが流れることで、第2トランス33は磁気エネルギを貯える。
Next, with reference to FIG.10 and FIG.11, the electric current which flows into the light emitting element lighting device 100 comprised in this way is demonstrated.
FIG. 10 shows a current when the switching element 4 is turned on. When the switching element 4 is turned on, current supply from the DC power source 1 to the transformer 3 is started, and the input current Iin flows through the primary winding P1 of the first transformer 31 and the primary winding P2 of the second transformer 33. When the input current Iin flows through the primary winding P1 of the first transformer 31, a current also flows through the secondary winding S1. This current is rectified by the first rectifier diode 51 and becomes an output current Iout flowing through the light emitting element 2 and the current detection resistor 9. Further, the input current Iin flows through the primary winding P2 of the second transformer 33, whereby the second transformer 33 stores magnetic energy.
 このとき、入力電流Iinは、第2トランス33の1次巻線P2のインダクタンス値に応じて制限される。第2トランス33の1次巻線P2のインダクタンス値に応じて、直流電源1の電源電圧に対する第1トランス31の1次巻線P1側の電圧値が低下する。第1トランス31の2次巻線S1側の電圧値は、1次巻線P1側の電圧値のm倍となる。 At this time, the input current Iin is limited according to the inductance value of the primary winding P2 of the second transformer 33. In accordance with the inductance value of the primary winding P2 of the second transformer 33, the voltage value on the primary winding P1 side of the first transformer 31 with respect to the power supply voltage of the DC power supply 1 decreases. The voltage value on the secondary winding S1 side of the first transformer 31 is m times the voltage value on the primary winding P1 side.
 図11は、スイッチング素子4をオフしたときの電流を示している。スイッチング素子4をオフすると、第2トランス33は、スイッチング素子4のオン状態にて貯えていた磁気エネルギを電流として2次巻線S2から放出する。この電流は第2整流ダイオード52により整流され、発光素子2及び電流検出用抵抗器9に流通する出力電流Ioutとなる。 FIG. 11 shows the current when the switching element 4 is turned off. When the switching element 4 is turned off, the second transformer 33 releases the magnetic energy stored in the on state of the switching element 4 from the secondary winding S2 as a current. This current is rectified by the second rectifier diode 52 and becomes an output current Iout flowing through the light emitting element 2 and the current detection resistor 9.
 また、第1トランス31のコアに残留した励磁磁束に応じて、磁束リセット用2次巻線S1Rから発光素子2及び電流検出用抵抗器9にリセット電流Irが流れる。リセット電流Irの機能及び電流値は実施の形態1と同様であるため、説明を省略する。 Also, the reset current Ir flows from the magnetic flux resetting secondary winding S1R to the light emitting element 2 and the current detecting resistor 9 in accordance with the exciting magnetic flux remaining in the core of the first transformer 31. Since the function and current value of the reset current Ir are the same as those in the first embodiment, description thereof is omitted.
 図9に示すヒステリシス制御部11の動作は、図1に示すヒステリシス制御部11と同様である。すなわち、実施の形態1にて図4を参照して説明したものと同様であるため、図示及び説明を省略する。 The operation of the hysteresis control unit 11 shown in FIG. 9 is the same as that of the hysteresis control unit 11 shown in FIG. That is, since it is the same as that described with reference to FIG. 4 in Embodiment 1, illustration and description are omitted.
 次に、図12を参照して、発光素子点灯装置100の変形例について説明する。
 図12に示す発光素子点灯装置100は、出力電流Ioutに代えて入力電流Iinの電流値を用いてヒステリシス制御を行うものである。図12において、図9に示す発光素子点灯装置100と同様の構成部材には同一符号を付して説明を省略する。
Next, a modification of the light emitting element lighting device 100 will be described with reference to FIG.
The light emitting element lighting device 100 shown in FIG. 12 performs hysteresis control using the current value of the input current Iin instead of the output current Iout. In FIG. 12, the same components as those of the light emitting element lighting device 100 shown in FIG.
 電流検出用抵抗器9は、直流電源1の高電位側端子とスイッチング素子4のソース端子との間に設けられている。制御部12は、図9に示す出力電流検出部10に代えて、入力電流検出部13を有している。入力電流検出部13は、電流検出用抵抗器9に流れる電流値を検出することで、直流電源1からトランス3への入力電流の電流値を検出するものである。 The current detection resistor 9 is provided between the high potential side terminal of the DC power supply 1 and the source terminal of the switching element 4. The control unit 12 has an input current detection unit 13 instead of the output current detection unit 10 shown in FIG. The input current detector 13 detects the current value of the input current from the DC power supply 1 to the transformer 3 by detecting the current value flowing through the current detection resistor 9.
 トランス3と発光素子2間に、電圧検出用抵抗器14a,14bが設けられている。電圧検出用抵抗器14a,14bは、直流電源1及びトランス3に対して発光素子2と電気的に並列に接続されている。制御部12は、出力電圧検出部15を有している。出力電圧検出部15は、電圧検出用抵抗器14a,14bによって分圧した電圧値を検出することで、基準電位(直流電源1の低電位側端子)に対するトランス3から発光素子2への出力電圧を検出するものである。 Between the transformer 3 and the light emitting element 2, voltage detection resistors 14a and 14b are provided. The voltage detection resistors 14 a and 14 b are electrically connected to the light emitting element 2 in parallel with the DC power source 1 and the transformer 3. The control unit 12 has an output voltage detection unit 15. The output voltage detection unit 15 detects the voltage value divided by the voltage detection resistors 14a and 14b, so that the output voltage from the transformer 3 to the light emitting element 2 with respect to the reference potential (the low potential side terminal of the DC power supply 1). Is detected.
 ヒステリシス制御部11は、入力電流検出部13が検出した電流値と、出力電圧検出部15が検出した電圧値とを用いて、スイッチング素子4のオン状態とオフ状態とを交互に切り替えるものである。 The hysteresis control unit 11 switches the ON state and the OFF state of the switching element 4 alternately using the current value detected by the input current detection unit 13 and the voltage value detected by the output voltage detection unit 15. .
 図12に示すヒステリシス制御部11の動作は、図5に示すヒステリシス制御部11と同様である。すなわち、実施の形態1にて図6を参照して説明したものと同様であるため、図示及び説明を省略する。 The operation of the hysteresis control unit 11 shown in FIG. 12 is the same as that of the hysteresis control unit 11 shown in FIG. That is, since it is the same as that described with reference to FIG. 6 in Embodiment 1, illustration and description are omitted.
 なお、図9及び図12に示す発光素子点灯装置100において、第1トランス31のコアと第2トランス33のコアとを一体に構成したものでも良い。この場合の第1トランス31及び第2トランス33の一例を図13に示す。EI型のコア30において、E型コアの中脚部32に1次巻線P1を巻回し、その外周部に2次巻線S1を巻回し、さらにその外周部に磁束リセット用2次巻線S1Rを巻回することで第1トランス31が構成されている。また、EI型のコア34において、E型コアの中脚部35とI型コアとの間に間隙36を設けるとともに、中脚部35に1次巻線P2を巻回し、その外周部に2次巻線S2を巻回することで第2トランス33が構成されている。図8に示す如く、第1トランス31のコア30を構成するI型コアと、第2トランス33のコア34を構成するI型コアが兼用され一体に構成されている。コア30,34を一体化することで部品点数を削減し、発光素子点灯装置100の製造コストを低減することができる。 In addition, in the light emitting element lighting device 100 shown in FIGS. 9 and 12, the core of the first transformer 31 and the core of the second transformer 33 may be integrally configured. An example of the first transformer 31 and the second transformer 33 in this case is shown in FIG. In the EI type core 30, the primary winding P1 is wound around the middle leg portion 32 of the E type core, the secondary winding S1 is wound around the outer peripheral portion thereof, and the magnetic flux resetting secondary winding is further wound around the outer peripheral portion thereof. The first transformer 31 is configured by winding S1R. Further, in the EI type core 34, a gap 36 is provided between the middle leg portion 35 of the E type core and the I type core, and the primary winding P2 is wound around the middle leg portion 35. The second transformer 33 is configured by winding the next winding S2. As shown in FIG. 8, the I-type core constituting the core 30 of the first transformer 31 and the I-type core constituting the core 34 of the second transformer 33 are combined and configured integrally. By integrating the cores 30 and 34, the number of parts can be reduced, and the manufacturing cost of the light emitting element lighting device 100 can be reduced.
 以上のように、実施の形態2の発光素子点灯装置100は、トランス3が第2トランス33を含み、第2トランス33の1次巻線P2は直流電源1に対して第1トランス31の1次巻線P1と直列に接続され、かつ、第2トランス33の2次巻線S2は発光素子2に対して第1トランス31の2次巻線S1と並列に接続されており、整流ダイオード5には、スイッチング素子4のオフ状態にて第2トランス33の2次巻線S2から発光素子2への出力電流Ioutを整流する第2整流ダイオード52を含む。第2トランス33の1次巻線P2のインダクタンス値を設定することで、実施の形態1におけるコイル6のインダクタンス値を設定するのと同様に、発光素子2に流れる電流を所望の値にすることができる。 As described above, in the light emitting element lighting device 100 according to the second embodiment, the transformer 3 includes the second transformer 33, and the primary winding P <b> 2 of the second transformer 33 is one of the first transformer 31 with respect to the DC power supply 1. The secondary winding S2 of the second transformer 33 is connected in series with the secondary winding P1, and is connected in parallel to the secondary winding S1 of the first transformer 31 with respect to the light emitting element 2, and the rectifier diode 5 Includes a second rectifier diode 52 that rectifies the output current Iout from the secondary winding S2 of the second transformer 33 to the light emitting element 2 when the switching element 4 is in the OFF state. By setting the inductance value of the primary winding P2 of the second transformer 33, the current flowing through the light emitting element 2 is set to a desired value, similarly to setting the inductance value of the coil 6 in the first embodiment. Can do.
実施の形態3.
 図14は、実施の形態3に係る発光素子点灯装置100の要部を示す回路図である。図15は、実施の形態3に係るリーケージトランス37の要部を正面から見た説明図である。図14及び図15を参照して、トランス3にリーケージトランス37を用いた発光素子点灯装置100について説明する。なお、図14において、図1に示す実施の形態1の発光素子点灯装置100と同様の構成部材には同一符号を付して説明を省略する。ちなみに、リーケージトランスとは、1次巻線が発する磁束の一部を2次巻線に伝達することなく漏洩する構成を有したトランスであり、当トランスの2次巻線の端子間を短絡したときにも1次巻線側のインダクタンス(リーケージインダクタンス)を大きく保つことができるトランスである。
Embodiment 3 FIG.
FIG. 14 is a circuit diagram showing a main part of the light-emitting element lighting device 100 according to Embodiment 3. FIG. 15 is an explanatory view of the main part of the leakage transformer 37 according to the third embodiment as viewed from the front. With reference to FIGS. 14 and 15, the light emitting element lighting device 100 using the leakage transformer 37 as the transformer 3 will be described. In FIG. 14, the same components as those of the light-emitting element lighting device 100 of Embodiment 1 shown in FIG. Incidentally, the leakage transformer is a transformer having a configuration in which a part of the magnetic flux generated by the primary winding leaks without being transmitted to the secondary winding, and the terminals of the secondary winding of the transformer are short-circuited. In some cases, the transformer can maintain a large inductance (leakage inductance) on the primary winding side.
 トランス3は、1個のリーケージトランス37により構成されている。リーケージトランス37は、直流電源1と電気的に接続した1次巻線Pを有している。また、リーケージトランス37は、発光素子2と電気的に接続した2次巻線S及び磁束リセット用2次巻線SRを有している。1次巻線Pに対する2次巻線Sの巻数比mは、任意の値に設定されている。 The transformer 3 is composed of a single leakage transformer 37. The leakage transformer 37 has a primary winding P electrically connected to the DC power source 1. The leakage transformer 37 includes a secondary winding S and a magnetic flux resetting secondary winding SR electrically connected to the light emitting element 2. The turn ratio m of the secondary winding S to the primary winding P is set to an arbitrary value.
 図15に、リーケージトランス37の一例を示す。EE型のコア38において、一方のE型コアの中脚部39に1次巻線Pが巻回されており、他方のE型コアの中脚部40に2次巻線Sが巻回されている。1次巻線Pと2次巻線S間には間隙41が設けられており、1次巻線P及び2次巻線Sの外周部に磁束リセット用2次巻線SRが巻回されている。このようにして、リーケージトランス37が構成されている。 FIG. 15 shows an example of the leakage transformer 37. In the EE type core 38, the primary winding P is wound around the middle leg portion 39 of one E type core, and the secondary winding S is wound around the middle leg portion 40 of the other E type core. ing. A gap 41 is provided between the primary winding P and the secondary winding S, and a magnetic flux resetting secondary winding SR is wound around the outer periphery of the primary winding P and the secondary winding S. Yes. In this way, the leakage transformer 37 is configured.
 整流ダイオード5は、第1整流ダイオード51及び第2整流ダイオード52により構成されている。第1整流ダイオード51は、陽極がリーケージトランス37の2次巻線Sと電気的に接続され、かつ、陰極がLED2の陽極と電気的に接続されている。第2整流ダイオード52は、陽極がリーケージトランス37の磁束リセット用2次巻線SRと電気的に接続され、かつ、陰極がLED2の陽極と電気的に接続されている。 The rectifier diode 5 includes a first rectifier diode 51 and a second rectifier diode 52. The first rectifier diode 51, the anode is the secondary winding S electrically connected to the leakage transformer 37, and its cathode connected LED2 1 anode and electrically. Second rectifier diode 52, the anode is connected to the magnetic flux reset secondary winding SR electrically leakage transformer 37, and its cathode connected LED2 1 anode and electrically.
 次に、図16~図18を参照して、このように構成された発光素子点灯装置100に流れる電流及びリーケージトランス37の磁束について説明する。
 図16は、スイッチング素子4をオンしたときの電流を示している。スイッチング素子4をオンすると、直流電源1からトランス3への電流供給が開始され、リーケージトランス37の1次巻線Pに入力電流Iinが流れる。また、1次巻線Pに入力電流Iinが流れることで、2次巻線Sにも電流が流れる。この電流は第1整流ダイオード51により整流され、発光素子2及び電流検出用抵抗器9に出力電流Ioutが流れる。
Next, with reference to FIGS. 16 to 18, the current flowing through the light emitting element lighting device 100 configured as described above and the magnetic flux of the leakage transformer 37 will be described.
FIG. 16 shows a current when the switching element 4 is turned on. When the switching element 4 is turned on, current supply from the DC power source 1 to the transformer 3 is started, and the input current Iin flows through the primary winding P of the leakage transformer 37. Further, when the input current Iin flows through the primary winding P, a current also flows through the secondary winding S. This current is rectified by the first rectifier diode 51, and an output current Iout flows through the light emitting element 2 and the current detection resistor 9.
 このとき、図17に示す如く、1次巻線Pが発生した磁束の大部は2次巻線Sと磁気的に結合する磁束Φ1となるが、間隙41を設けたことにより、1次巻線Pが発生した磁束の一部が漏洩して漏洩磁束Φ2が生じる。リーケージトランス37は、この漏洩磁束Φ2によるインダクタンス、いわゆる「リーケージインダクタンス」を有する。 At this time, as shown in FIG. 17, most of the magnetic flux generated by the primary winding P becomes the magnetic flux Φ1 magnetically coupled to the secondary winding S. However, by providing the gap 41, the primary winding A part of the magnetic flux generated by the line P leaks to generate a leakage magnetic flux Φ2. The leakage transformer 37 has an inductance due to the leakage magnetic flux Φ2, so-called “leakage inductance”.
 入力電流Iinの通電により、リーケージトランス37は磁気エネルギを貯える。また、出力電流Ioutの電流値は、リーケージトランス37のリーケージインダクタンス値に応じて制限される。 The leakage transformer 37 stores magnetic energy by energizing the input current Iin. Further, the current value of the output current Iout is limited according to the leakage inductance value of the leakage transformer 37.
 図18は、スイッチング素子4をオフしたときの電流を示している。スイッチング素子4をオフすると、リーケージトランス37は、スイッチング素子4のオン状態にて貯えていた磁気エネルギを磁束リセット用2次巻線SRから電流として放出する。この電流は第2整流ダイオード52により整流され、発光素子2及び電流検出用抵抗器9に流通する出力電流Ioutとなる。なお、この出力電流Ioutはリセット電流Irの機能を兼ねるものであり、リーケージトランス37のコアに残留した励磁磁束Φ3がリセットされる。 FIG. 18 shows a current when the switching element 4 is turned off. When the switching element 4 is turned off, the leakage transformer 37 releases the magnetic energy stored in the on state of the switching element 4 as a current from the magnetic flux resetting secondary winding SR. This current is rectified by the second rectifier diode 52 and becomes an output current Iout flowing through the light emitting element 2 and the current detection resistor 9. The output current Iout also functions as a reset current Ir, and the exciting magnetic flux Φ3 remaining in the core of the leakage transformer 37 is reset.
 このように、リーケージトランス37は、1個のトランスでありながら、実施の形態1における第1トランス31及びコイル6と同等の機能を果たすものである。また、リーケージトランス37は、1個のトランスでありながら、実施の形態2における第1トランス31及び第2トランス33と同等の機能を果たすものである。 Thus, while the leakage transformer 37 is a single transformer, it performs the same function as the first transformer 31 and the coil 6 in the first embodiment. The leakage transformer 37 is a single transformer, and performs the same function as the first transformer 31 and the second transformer 33 in the second embodiment.
 なお、リーケージトランス37は、図15に示す構造に限定されるものではない。1次巻線Pと2次巻線S間に間隔を設けてリーケージインダクタンスを有するものであれば、如何なる構造であっても良い。以下、図19~図26を参照して、リーケージトランス37の他の例について説明する。 The leakage transformer 37 is not limited to the structure shown in FIG. Any structure may be used as long as it has a leakage inductance by providing an interval between the primary winding P and the secondary winding S. Hereinafter, another example of the leakage transformer 37 will be described with reference to FIGS.
 図19に示すリーケージトランス37は、E型コアの中脚部39,40間に間隙42を設けたものである。中脚部39,40間に間隙42を設けることで、1次巻線Pのインダクタンスが小さくなり、入力電流Iinを増やすことができる。また、中脚部39,40間に間隙42を設けることで、漏洩磁束Φ2及び励磁磁束Φ3が増加して、リーケージトランス37が貯える磁気エネルギを増やすことができる。この結果、スイッチング素子4をオフしたとき、磁束リセット用2次巻線SRによる出力電流Ioutを増やすことができる。 A leakage transformer 37 shown in FIG. 19 has a gap 42 between middle legs 39 and 40 of an E-type core. By providing the gap 42 between the middle legs 39 and 40, the inductance of the primary winding P is reduced, and the input current Iin can be increased. Further, by providing the gap 42 between the middle leg portions 39 and 40, the leakage magnetic flux Φ2 and the excitation magnetic flux Φ3 are increased, and the magnetic energy stored in the leakage transformer 37 can be increased. As a result, when the switching element 4 is turned off, the output current Iout due to the magnetic flux resetting secondary winding SR can be increased.
 図20に示すリーケージトランス37は、1次巻線Pと2次巻線S間の間隙41及び中脚部39,40間の間隙42に補助コア43を設けたものである。補助コア43が漏洩磁束Φ2の磁路を形成することで、漏洩磁束Φ2が増加して、リーケージトランス37のリーケージインダクタンスを大きくすることができる。 20 includes an auxiliary core 43 provided in the gap 41 between the primary winding P and the secondary winding S and the gap 42 between the middle leg portions 39 and 40. Since the auxiliary core 43 forms a magnetic path of the leakage flux Φ2, the leakage flux Φ2 increases and the leakage inductance of the leakage transformer 37 can be increased.
 図21に示すリーケージトランス37は、中脚の断面形状が円形のEER型コアを用いたもので、2次巻線Sを巻回したEER型コアの中脚部40の直径φSよりも、1次巻線Pを巻回したEER型コアの中脚部39の直径φPを太くしたものである。これにより、1次巻線Pを巻回した中脚部39の角部から1次巻線Pと2次巻線S間の間隙41に向かう磁路が形成されるため、漏洩磁束Φ2が増加して、リーケージトランス37のリーケージインダクタンスを大きくすることができる。 A leakage transformer 37 shown in FIG. 21 uses an EER core having a circular cross section of the middle leg, and is smaller than the diameter φS of the middle leg 40 of the EER core around which the secondary winding S is wound. The diameter φP of the middle leg portion 39 of the EER type core around which the next winding P is wound is increased. As a result, a magnetic path is formed from the corner portion of the middle leg portion 39 around which the primary winding P is wound toward the gap 41 between the primary winding P and the secondary winding S, so that the leakage flux Φ2 increases. Thus, the leakage inductance of the leakage transformer 37 can be increased.
 図22に示すリーケージトランス37は、EE型コアの中脚部39,40に1次巻線Pを巻回し、その外周部に磁束リセット用2次巻線SRを巻回し、さらにその外周部に2次巻線Sを巻回したものである。すなわち、1次巻線Pと2次巻線S間に間隙を設けるのに代えて、1次巻線Pと2次巻線S間に磁束リセット用2次巻線SRを挟むことで、1次巻線Pと2次巻線S間の間隔を広げてリーケージインダクタンスを確保する構成である。 The leakage transformer 37 shown in FIG. 22 has a primary winding P wound around the middle legs 39 and 40 of the EE core, a magnetic flux resetting secondary winding SR is wound around the outer periphery thereof, and the outer periphery thereof is further wound around. The secondary winding S is wound. That is, instead of providing a gap between the primary winding P and the secondary winding S, the magnetic flux resetting secondary winding SR is sandwiched between the primary winding P and the secondary winding S, so that 1 In this configuration, the leakage inductance is ensured by widening the interval between the secondary winding P and the secondary winding S.
 図23に示すリーケージトランス37は、EE型コアの中脚部39,40に1次巻線Pを巻回し、その外周部に磁束リセット用2次巻線SRを巻回し、その外周部にスペーサ44を設けて、スペーサ44の外周部に2次巻線Sを巻回したものである。スペーサ44を設けることで、図22に示す構造よりも1次巻線Pと2次巻線S間の間隔が広くなるため、漏洩磁束Φ2を増やしてリーケージインダクタンスをさらに大きくすることができる。 A leakage transformer 37 shown in FIG. 23 has a primary winding P wound around the middle leg portions 39 and 40 of the EE core, a magnetic flux resetting secondary winding SR is wound around the outer periphery thereof, and a spacer is formed around the outer periphery thereof. 44 and the secondary winding S is wound around the outer periphery of the spacer 44. By providing the spacer 44, the interval between the primary winding P and the secondary winding S becomes wider than that in the structure shown in FIG. 22, so that the leakage flux Φ2 can be increased to further increase the leakage inductance.
 図24に示すリーケージトランス37は、EE型あるいはEER型のコアに代えて棒状のコア45を用いたものである。棒状のコア45に1次巻線P及び2次巻線Sがそれぞれ巻回されており、1次巻線Pと2次巻線S間には間隙41が設けられている。1次巻線Pの外周部に、磁束リセット用2次巻線SRが巻回されている。1次巻線Pと2次巻線S間の間隙41により、漏洩磁束Φ2を増やしてリーケージトランス37のリーケージインダクタンスを確保する構成である。 A leakage transformer 37 shown in FIG. 24 uses a rod-shaped core 45 instead of the EE type or EER type core. A primary winding P and a secondary winding S are wound around a rod-shaped core 45, and a gap 41 is provided between the primary winding P and the secondary winding S. A magnetic flux resetting secondary winding SR is wound around the outer periphery of the primary winding P. With the gap 41 between the primary winding P and the secondary winding S, the leakage flux Φ2 is increased to ensure the leakage inductance of the leakage transformer 37.
 図25に示すリーケージトランス37は、EE型あるいはEER型のコアに代えて、棒状のコア45と筒状のコア46とを用いたものである。棒状のコア45に1次巻線P及び2次巻線Sがそれぞれ巻回されており、1次巻線Pと2次巻線S間には間隙41が設けられている。1次巻線Pの外周部に、磁束リセット用2次巻線SRが巻回されている。棒状のコア45、1次巻線P、2次巻線S及び磁束リセット用2次巻線SRは、筒状のコア46内に収容されている。筒状のコア46を設けることで、1次巻線Pと2次巻線S間の磁気的な結合の度合いを調整することができる。 A leakage transformer 37 shown in FIG. 25 uses a rod-shaped core 45 and a cylindrical core 46 instead of the EE-type or EER-type core. A primary winding P and a secondary winding S are wound around a rod-shaped core 45, and a gap 41 is provided between the primary winding P and the secondary winding S. A magnetic flux resetting secondary winding SR is wound around the outer periphery of the primary winding P. The rod-shaped core 45, the primary winding P, the secondary winding S, and the magnetic flux resetting secondary winding SR are accommodated in a cylindrical core 46. By providing the cylindrical core 46, the degree of magnetic coupling between the primary winding P and the secondary winding S can be adjusted.
 図26に示すリーケージトランス37は、EE型コアの一方の外脚部47aに1次巻線Pを巻回するとともに、他方の外脚部47bに2次巻線Sを巻回し、1次巻線Pの外周部に磁束リセット用2次巻線SRを巻回したものである。1次巻線Pと2次巻線Sとを互いに異なる外脚部47a,47bに巻回することで、1次巻線Pと2次巻線S間の間隔を広げてリーケージインダクタンスを確保する構成である。 A leakage transformer 37 shown in FIG. 26 has a primary winding P wound around one outer leg 47a of the EE core and a secondary winding S wound around the other outer leg 47b. The magnetic flux resetting secondary winding SR is wound around the outer periphery of the wire P. By winding the primary winding P and the secondary winding S around different outer leg portions 47a and 47b, the space between the primary winding P and the secondary winding S is widened to ensure leakage inductance. It is a configuration.
 次に、図27~図32を参照して、実施の形態3に係る発光素子点灯装置100の変形例について説明する。
 図27に示す発光素子点灯装置100は、出力電流Ioutの電流値に代えて、入力電流Iinの電流値を用いてヒステリシス制御を行うものである。電流検出用抵抗器9、入力電流検出部13、電圧検出用抵抗器14a,14b及び出力電圧検出部15は実施の形態1,2で説明したものと同様であるため、説明を省略する。また、ヒステリシス制御部11の動作も実施の形態1,2で説明したものと同様であるため、図示及び説明を省略する。
Next, a modification of the light-emitting element lighting device 100 according to Embodiment 3 will be described with reference to FIGS.
The light emitting element lighting device 100 shown in FIG. 27 performs hysteresis control using the current value of the input current Iin instead of the current value of the output current Iout. Since the current detection resistor 9, the input current detection unit 13, the voltage detection resistors 14a and 14b, and the output voltage detection unit 15 are the same as those described in the first and second embodiments, description thereof is omitted. Further, since the operation of the hysteresis control unit 11 is the same as that described in the first and second embodiments, illustration and description thereof are omitted.
 図28に示す発光素子点灯装置100は、リーケージトランス37から磁束リセット用2次巻線SRを除去したものである。図29に、磁束リセット用2次巻線SRを除去したリーケージトランス37の一例を示す。図29に示すリーケージトランス37は、図23に示すリーケージトランス37から磁束リセット用2次巻線SRを除去するとともに、スペーサ44の肉厚を大きくすることで1次巻線Pと2次巻線S間の間隔を大きくしたものである。1次巻線Pと2次巻線S間の間隔を大きくすることで、2次巻線Sが磁束リセット用2次巻線SRの機能を兼ねるようになるため、磁束リセット用2次巻線SRを不要とすることができる。 28 is obtained by removing the magnetic flux resetting secondary winding SR from the leakage transformer 37. The light emitting element lighting device 100 shown in FIG. FIG. 29 shows an example of the leakage transformer 37 from which the magnetic flux resetting secondary winding SR is removed. The leakage transformer 37 shown in FIG. 29 removes the magnetic flux resetting secondary winding SR from the leakage transformer 37 shown in FIG. 23 and increases the thickness of the spacer 44 to increase the primary winding P and the secondary winding. The interval between S is increased. By increasing the interval between the primary winding P and the secondary winding S, the secondary winding S also functions as the secondary winding SR for magnetic flux reset. Therefore, the secondary winding for magnetic flux reset SR can be made unnecessary.
 また、図28に示す発光素子点灯装置100は、整流ダイオード5が、4個のダイオード53a,53b,53c,53dを用いたブリッジ回路、いわゆる「ダイオードブリッジ」により構成されている。 In the light-emitting element lighting device 100 shown in FIG. 28, the rectifier diode 5 is configured by a bridge circuit using four diodes 53a, 53b, 53c, and 53d, a so-called “diode bridge”.
 スイッチング素子4をオンすると、リーケージトランス37の2次巻線Sは、図中実線の矢印で示す出力電流Ioutを出力する。スイッチング素子4をオフすると、リーケージトランス37の2次巻線Sは、図中破線の矢印で示す出力電流Ioutを出力し、この出力電流Ioutはリセット電流Irの機能を兼ねるものである。整流ダイオード5にダイオードブリッジを用いることで、スイッチング素子4をオンしたときの2次巻線Sによる出力電流Ioutと、オフしたときの2次巻線Sによる出力電流Ioutとの両方を整流することができる。 When the switching element 4 is turned on, the secondary winding S of the leakage transformer 37 outputs an output current Iout indicated by a solid line arrow in the figure. When the switching element 4 is turned off, the secondary winding S of the leakage transformer 37 outputs an output current Iout indicated by a broken-line arrow in the figure, and this output current Iout also functions as a reset current Ir. By using a diode bridge for the rectifier diode 5, both the output current Iout from the secondary winding S when the switching element 4 is turned on and the output current Iout from the secondary winding S when it is turned off are rectified. Can do.
 図30に示す発光素子点灯装置100は、スイッチング素子4を、直流電源1の低電位側端子(基準電位)とトランス3との間に設けたものである。図30の例では、スイッチング素子4はNチャネル型のFETであり、ソース端子が直流電源1の低電位側端子と電気的に接続され、かつ、ドレイン端子がリーケージトランス37の1次巻線Pと電気的に接続されている。スイッチング素子4は、FETのゲート電圧に応じて、直流電源1からトランス3への入力電流をオンオフするものである。なお、この場合のスイッチング素子4はNチャネル型のFETに限定されるものではなく、NPN型のバイポーラトランジスタ、又は絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor,IGBT)などを用いたものでも良い。 30 is a device in which the switching element 4 is provided between the low potential side terminal (reference potential) of the DC power source 1 and the transformer 3. In the example of FIG. 30, the switching element 4 is an N-channel FET, the source terminal is electrically connected to the low potential side terminal of the DC power supply 1, and the drain terminal is the primary winding P of the leakage transformer 37. And are electrically connected. The switching element 4 turns on / off the input current from the DC power source 1 to the transformer 3 in accordance with the gate voltage of the FET. Note that the switching element 4 in this case is not limited to an N-channel FET, and may be an NPN bipolar transistor, an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT), or the like.
 図31に示す発光素子点灯装置100は、リーケージトランス37から磁束リセット用2次巻線SRを除去するとともに整流ダイオード5をダイオードブリッジにより構成し、かつ、スイッチング素子4を直流電源1の低電位側に配置した回路構成において、スナバ回路16(サージ電圧抑制回路)を追加したものである。すなわち、スイッチング素子4の1次巻線Pに接続した端子とLED2の陽極との間に、コンデンサ161及びダイオード162が電気的に直列に接続されている。直流電源1の低電位側端子(基準電位)と、コンデンサ161とダイオード162間との間に、抵抗器163及びダイオード164が電気的に直列に接続されている。ダイオード162,164は、整流ダイオード5のダイオード53a,53b,53c,53dよりも電流容量の小さいダイオードである。コンデンサ161、ダイオード162、抵抗器163及びダイオード164により、スナバ回路16(サージ電圧抑制回路)が構成されている。 The light emitting element lighting device 100 shown in FIG. 31 removes the magnetic flux resetting secondary winding SR from the leakage transformer 37, configures the rectifier diode 5 by a diode bridge, and sets the switching element 4 to the low potential side of the DC power source 1. The snubber circuit 16 (surge voltage suppression circuit) is added to the circuit configuration arranged in FIG. That is, between the terminals and the LED2 1 anode connected to the primary winding P of the switching element 4, the capacitor 161 and the diode 162 are electrically connected in series. A resistor 163 and a diode 164 are electrically connected in series between the low potential side terminal (reference potential) of the DC power supply 1 and between the capacitor 161 and the diode 162. The diodes 162 and 164 are diodes having a smaller current capacity than the diodes 53a, 53b, 53c, and 53d of the rectifier diode 5. The snubber circuit 16 (surge voltage suppression circuit) is configured by the capacitor 161, the diode 162, the resistor 163, and the diode 164.
 リーケージトランス37は、漏洩磁束Φ2が存在するため1次巻線Pと2次巻線S間の磁気的結合が不完全であり、スイッチング素子4をオフしたとき1次巻線P側にサージ電圧が発生し、スイッチング素子4が故障することがある。そこで、スナバ回路16を設けて当該サージエネルギを吸収することで、スイッチング素子4に印加されるサージ電圧を抑制し、スイッチング素子4が故障し難く信頼性の高い発光素子点灯装置100を得ることができる。 The leakage transformer 37 has incomplete magnetic coupling between the primary winding P and the secondary winding S due to the presence of the leakage magnetic flux Φ2, and when the switching element 4 is turned off, a surge voltage is applied to the primary winding P side. May occur and the switching element 4 may fail. Therefore, by providing the snubber circuit 16 to absorb the surge energy, it is possible to suppress the surge voltage applied to the switching element 4 and to obtain the light emitting element lighting device 100 with high reliability in which the switching element 4 hardly breaks down. it can.
 図32に示す発光素子点灯装置100は、図31と異なるスナバ回路16を設けたものである。すなわち、スイッチング素子4の1次巻線Pに接続した端子とLED2の陽極との間に、コンデンサ161及びダイオード162が電気的に直列に接続されている。直流電源1の高電位側端子と、コンデンサ161とダイオード162間との間に、抵抗器163及びダイオード164が電気的に直列に接続されている。ダイオード162,164の電流容量及びスナバ回路16の機能は図31と同様であるため、説明を省略する。 32 is provided with a snubber circuit 16 different from that in FIG. That is, between the terminals and the LED2 1 anode connected to the primary winding P of the switching element 4, the capacitor 161 and the diode 162 are electrically connected in series. A resistor 163 and a diode 164 are electrically connected in series between the high potential side terminal of the DC power supply 1 and between the capacitor 161 and the diode 162. The current capacity of the diodes 162 and 164 and the function of the snubber circuit 16 are the same as those in FIG.
 なお、実施の形態1,2で示した各々の発光素子点灯装置100において、スイッチング素子4を直流電源1の低電位側端子(基準電位)とトランス3との間に設けたものとしても良く、さらにスナバ回路16を設けたものとしても良い。 In each of the light emitting element lighting devices 100 shown in the first and second embodiments, the switching element 4 may be provided between the low potential side terminal (reference potential) of the DC power source 1 and the transformer 3. Further, a snubber circuit 16 may be provided.
 以上のように、実施の形態3の発光素子点灯装置100は、トランス3を、直流電源1に接続した1次巻線Pと発光素子2に接続した2次巻線Sとの間に間隔41を設けたリーケージトランス37により構成した。リーケージトランス37は、1個のトランスでありながら、実施の形態1における第1トランス31及びコイル6と同等の機能を果たすものであり、かつ、実施の形態2における第1トランス31及び第2トランス33と同等の機能を果たすものである。これにより、発光素子点灯装置100の回路構成をさらに簡単にして、より小型な発光素子点灯装置100を構成することができる。 As described above, in the light emitting element lighting device 100 according to the third embodiment, the transformer 3 has the gap 41 between the primary winding P connected to the DC power supply 1 and the secondary winding S connected to the light emitting element 2. The leakage transformer 37 is provided. Although the leakage transformer 37 is a single transformer, it performs the same function as the first transformer 31 and the coil 6 in the first embodiment, and the first transformer 31 and the second transformer in the second embodiment. It performs the same function as 33. Thereby, the circuit configuration of the light emitting element lighting device 100 can be further simplified, and a smaller light emitting element lighting device 100 can be configured.
 また、整流ダイオード5は、4個のダイオード53a,53b,53c,53dによるダイオードブリッジを含む。これにより、リーケージトランス37から磁束リセット用2次巻線SRを除去した構成において、2次巻線Sがスイッチング素子4のオン状態で出力する電流とオフ状態で出力する電流との両方を整流することができる。 Further, the rectifier diode 5 includes a diode bridge composed of four diodes 53a, 53b, 53c, and 53d. Thus, in the configuration in which the magnetic flux resetting secondary winding SR is removed from the leakage transformer 37, the secondary winding S rectifies both the current output when the switching element 4 is on and the current output when it is off. be able to.
 また、スイッチング素子4は、直流電源1の低電位側端子(基準電位)とトランス3との間に接続されている。スイッチング素子4は、例えば、Nチャネル型のFET、NPN型のバイポーラトランジスタ又はIGBTなどを用いることができる。 The switching element 4 is connected between the low potential side terminal (reference potential) of the DC power source 1 and the transformer 3. As the switching element 4, for example, an N-channel FET, an NPN bipolar transistor, or an IGBT can be used.
 また、発光素子点灯装置100は、リーケージトランス37の1次巻線P側に発生するサージ電圧からスイッチング素子4を保護するサージ電圧抑制回路(スナバ回路16)を備える。スナバ回路16が当該サージエネルギを吸収することで、スイッチング素子4に印加されるサージ電圧を抑制し、スイッチング素子4が故障し難く信頼性の高い発光素子点灯装置100を得ることができる。 Further, the light emitting element lighting device 100 includes a surge voltage suppression circuit (snubber circuit 16) that protects the switching element 4 from a surge voltage generated on the primary winding P side of the leakage transformer 37. When the snubber circuit 16 absorbs the surge energy, the surge voltage applied to the switching element 4 is suppressed, and the light emitting element lighting device 100 with high reliability in which the switching element 4 is unlikely to fail can be obtained.
実施の形態4.
 リーケージトランス37の構造は、図15、図19~図26及び図29に例示した構造(巻き線の配置、コアの形状等)に限定されるものではない。また、リーケージトランス37を用いた発光素子点灯装置100の回路構成は、リーケージトランス37の構造に応じて如何なるものであっても良く、図14及び図27~図32に例示した回路構成に限定されるものではない。以下、図33~図45を参照して、リーケージトランス37を用いた発光素子点灯装置100の変形例について説明する。なお、図33~図45は、簡略のため、発光素子2に模式的な1個のLED2を用いるとともに、制御部12、電流検出用抵抗器9及び電圧検出用抵抗器14a,14bを省略した回路図を示している。
Embodiment 4 FIG.
The structure of the leakage transformer 37 is not limited to the structure illustrated in FIGS. 15, 19 to 26, and 29 (winding arrangement, core shape, etc.). Further, the circuit configuration of the light emitting element lighting device 100 using the leakage transformer 37 may be any depending on the structure of the leakage transformer 37 and is limited to the circuit configurations illustrated in FIGS. 14 and 27 to 32. It is not something. A modification of the light emitting element lighting device 100 using the leakage transformer 37 will be described below with reference to FIGS. Incidentally, FIGS. 33 to 45, for simplicity, omitted with use in a schematic one LED2 1 to the light emitting element 2, the control unit 12, the current detecting resistor 9 and the voltage detecting resistor 14a, and 14b A circuit diagram is shown.
 図33に示す発光素子点灯装置100は、リーケージトランス37の1次巻線P及び2次巻線Sと磁束リセット用2次巻線SRとをそれぞれ別体の巻線で構成したものであり、1次巻線Pの巻き数が2次巻線Sの巻き数と同等の値に設定されている。スイッチング素子4は、直流電源1の高電位側端子とリーケージトランス37との間に接続されている。LED2の陽極は第1整流ダイオード51及び第2整流ダイオード52の陰極と接続されており、LED2の陰極は直流電源1の低電位側端子に接続されている。 The light emitting element lighting device 100 shown in FIG. 33 is configured by configuring the primary winding P and secondary winding S of the leakage transformer 37 and the secondary winding SR for magnetic flux reset as separate windings, The number of turns of the primary winding P is set to a value equivalent to the number of turns of the secondary winding S. The switching element 4 is connected between the high potential side terminal of the DC power source 1 and the leakage transformer 37. LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode to the low potential side terminal of the DC power source 1.
 スイッチング素子4をオンすると、図33(a)に示す如く、1次巻線Pに入力電流Iinが流れる。また、2次巻線S、第1整流ダイオード51及びLED2に出力電流Ioutが流れる。このとき、LED2の陽極の電位は、直流電源1の高電位側端子よりも高くなる。すなわち、LED2の印加電圧が直流電源1の電源電圧よりも大きくなり、リーケージトランス37は昇圧トランスの機能を果たすものである。 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, secondary winding S, the output current Iout flows first in rectifying diodes 51 and LED2 1. At this time, the potential of the LED2 1 of the anode is higher than the high potential side terminal of the DC power source 1. That, LED2 1 of the applied voltage becomes larger than the power supply voltage of the DC power source 1, a leakage transformer 37 is intended to fulfill the function of a step-up transformer.
 スイッチング素子4をオフすると、図33(b)に示す如く、磁束リセット用2次巻線SR、第2整流ダイオード52及びLED2に出力電流Ioutが流れる。この出力電流Ioutは、リセット電流Irの機能を兼ねるものである。 When turning off the switching element 4, as shown in FIG. 33 (b), the magnetic flux reset secondary winding SR, the output current Iout second rectifier diode 52 and LED2 1 flows. This output current Iout also functions as a reset current Ir.
 図34に示す発光素子点灯装置100は、リーケージトランス37の1次巻線P及び2次巻線Sと磁束リセット用2次巻線SRとをそれぞれ別体の巻線で構成したものであり、1次巻線Pの巻き数が2次巻線Sの巻き数と同等の値に設定されている。スイッチング素子4は、直流電源1の高電位側端子とリーケージトランス37との間に接続されている。LED2の陽極は直流電源1の低電位側端子に接続されており、LED2の陰極は第1整流ダイオード51及び第2整流ダイオード52の陽極と接続されている。 The light-emitting element lighting device 100 shown in FIG. 34 is configured by configuring the primary winding P and secondary winding S of the leakage transformer 37 and the secondary winding SR for magnetic flux reset as separate windings, The number of turns of the primary winding P is set to a value equivalent to the number of turns of the secondary winding S. The switching element 4 is connected between the high potential side terminal of the DC power source 1 and the leakage transformer 37. LED2 1 of the anode is connected to the low potential side terminal of the DC power source 1, LED2 1 of the cathode is connected to the anode of the first rectifier diode 51 and the second rectifying diode 52.
 スイッチング素子4をオンすると、図34(a)に示す如く、1次巻線Pに入力電流Iinが流れる。また、2次巻線S、LED2及び第1整流ダイオード51に出力電流Ioutが流れる。このとき、LED2の陰極の電位は、直流電源1の低電位端子よりも低くなる。すなわち、LED2の印加電圧は直流電源1の電位よりも低くなり、リーケージトランス37は負電圧を生成するトランスの機能を果たすものである。 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, the secondary winding S, LED2 1 and the output current Iout to the first rectifier diode 51 flows. At this time, the cathode potential of the LED2 1, lower than the low potential terminal of the DC power source 1. That is, ones LED2 1 of the applied voltage becomes lower than the potential of the DC power source 1, a leakage transformer 37 to fulfill the transformer function of generating a negative voltage.
 スイッチング素子4をオフすると、図34(b)に示す如く、磁束リセット用2次巻線SR、LED2及び第2整流ダイオード52に出力電流Ioutが流れる。この出力電流Ioutは、リセット電流Irの機能を兼ねるものである。 When turning off the switching element 4, as shown in FIG. 34 (b), the output current Iout flows in the magnetic flux reset secondary winding SR, LED2 1 and the second rectifying diode 52. This output current Iout also functions as a reset current Ir.
 図35に示す発光素子点灯装置100は、リーケージトランス37の1次巻線P及び2次巻線Sと磁束リセット用2次巻線SRとをそれぞれ別体の巻線で構成したものであり、1次巻線Pの巻き数が2次巻線Sの巻き数と同等の値に設定されている。スイッチング素子4は、直流電源1の低電位側端子とリーケージトランス37との間に接続されている。LED2の陽極は第1整流ダイオード51及び第2整流ダイオード52の陰極と接続されており、LED2の陰極は直流電源1の低電位側端子に接続されている。 The light-emitting element lighting device 100 shown in FIG. 35 is configured by configuring the primary winding P and secondary winding S of the leakage transformer 37 and the secondary winding SR for magnetic flux reset as separate windings, The number of turns of the primary winding P is set to a value equivalent to the number of turns of the secondary winding S. The switching element 4 is connected between the low potential side terminal of the DC power source 1 and the leakage transformer 37. LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode to the low potential side terminal of the DC power source 1.
 スイッチング素子4をオンすると、図35(a)に示す如く、1次巻線Pに入力電流Iinが流れる。また、2次巻線S、第1整流ダイオード51及びLED2に出力電流Ioutが流れる。このとき、図33(a)と同様の動作によりLED2の印加電圧が直流電源1の電源電圧よりも高くなり、リーケージトランス37は昇圧トランスの機能を果たすものである。 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, secondary winding S, the output current Iout flows first in rectifying diodes 51 and LED2 1. In this case, higher than the power supply voltage shown in FIG. 33 (a) and the same operation by LED2 1 of the applied voltage is a direct current power supply 1, a leakage transformer 37 is intended to fulfill the function of a step-up transformer.
 スイッチング素子4をオフすると、図35(b)に示す如く、磁束リセット用2次巻線SR、第2整流ダイオード52及びLED2に出力電流Ioutが流れる。この出力電流Ioutは、リセット電流Irの機能を兼ねるものである。 When turning off the switching element 4, as shown in FIG. 35 (b), the magnetic flux reset secondary winding SR, the output current Iout second rectifier diode 52 and LED2 1 flows. This output current Iout also functions as a reset current Ir.
 図36に示す発光素子点灯装置100は、リーケージトランス37の1次巻線P及び2次巻線Sと磁束リセット用2次巻線SRとをそれぞれ別体の巻線で構成したものであり、1次巻線Pの巻き数が2次巻線Sの巻き数と同等の値に設定されている。スイッチング素子4は、直流電源1の低電位側端子とリーケージトランス37との間に接続されている。LED2の陽極は直流電源1の低電位側端子に接続されており、LED2の陰極は第1整流ダイオード51及び第2整流ダイオード52の陽極と接続されている。 The light emitting element lighting device 100 shown in FIG. 36 is configured by configuring the primary winding P and secondary winding S of the leakage transformer 37 and the secondary winding SR for magnetic flux reset as separate windings. The number of turns of the primary winding P is set to a value equivalent to the number of turns of the secondary winding S. The switching element 4 is connected between the low potential side terminal of the DC power source 1 and the leakage transformer 37. LED2 1 of the anode is connected to the low potential side terminal of the DC power source 1, LED2 1 of the cathode is connected to the anode of the first rectifier diode 51 and the second rectifying diode 52.
 スイッチング素子4をオンすると、図36(a)に示す如く、1次巻線Pに入力電流Iinが流れる。また、2次巻線S、LED2及び第1整流ダイオード51に出力電流Ioutが流れる。このとき、図34(a)と同様の動作によりLED2の陰極の電位は、直流電源1の低電位端子よりも低くなり、リーケージトランス37は負電圧を生成するトランスの機能を果たすものである。 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, the secondary winding S, LED2 1 and the output current Iout to the first rectifier diode 51 flows. At this time, the cathode potential of LED2 1 by the same operation as FIG. 34 (a) becomes lower than the low potential terminal of the DC power supply 1, a leakage transformer 37 is intended to fulfill the transformer function of generating a negative voltage .
 スイッチング素子4をオフすると、図36(b)に示す如く、磁束リセット用2次巻線SR、LED2及び第2整流ダイオード52に出力電流Ioutが流れる。この出力電流Ioutは、リセット電流Irの機能を兼ねるものである。 When turning off the switching element 4, as shown in FIG. 36 (b), the output current Iout flows in the magnetic flux reset secondary winding SR, LED2 1 and the second rectifying diode 52. This output current Iout also functions as a reset current Ir.
 図37に示す発光素子点灯装置100は、リーケージトランス37をタップ付の単巻線で構成したものであり、磁束リセット用2次巻線SRを構成する巻線のうちの一部の巻線により1次巻線Pが構成されている。2次巻線Sの巻き数は磁束リセット用2次巻線SRの巻き数と同等の値に設定されており、1次巻線Pの巻き数は2次巻線Sの巻き数よりも少ない。スイッチング素子4は、直流電源1の高電位側端子とリーケージトランス37との間に接続されている。LED2の陽極は第1整流ダイオード51及び第2整流ダイオード52の陰極と接続されており、LED2の陰極は直流電源1の低電位側端子に接続されている。 A light-emitting element lighting device 100 shown in FIG. 37 is configured such that the leakage transformer 37 is configured with a single winding with a tap, and a part of the windings constituting the magnetic flux resetting secondary winding SR. A primary winding P is configured. The number of turns of the secondary winding S is set to a value equivalent to the number of turns of the secondary winding SR for magnetic flux reset, and the number of turns of the primary winding P is smaller than the number of turns of the secondary winding S. . The switching element 4 is connected between the high potential side terminal of the DC power source 1 and the leakage transformer 37. LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode to the low potential side terminal of the DC power source 1.
 スイッチング素子4をオンすると、図37(a)に示す如く、1次巻線Pに入力電流Iinが流れる。また、2次巻線S、第1整流ダイオード51及びLED2に出力電流Ioutが流れる。このとき、図33(a)と同様の動作によりLED2の印加電圧が直流電源1の電源電圧よりも高くなり、リーケージトランス37は昇圧トランスの機能を果たすものである。なお、当構成は2次巻線Sの巻き数を1次巻線Pの巻き数より多くしたもので、LED2への出力電圧が直流電源1の電源電圧の2倍以上の場合に適している。 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, secondary winding S, the output current Iout flows first in rectifying diodes 51 and LED2 1. In this case, higher than the power supply voltage shown in FIG. 33 (a) and the same operation by LED2 1 of the applied voltage is a direct current power supply 1, a leakage transformer 37 is intended to fulfill the function of a step-up transformer. Incidentally, those configuration the winding number of the secondary winding S obtained by more than the number of turns of the primary winding P, suitable when the output voltage to the LED2 1 is more than twice the power supply voltage of the DC power source 1 Yes.
 スイッチング素子4をオフすると、図37(b)に示す如く、磁束リセット用2次巻線SR、第2整流ダイオード52及びLED2に出力電流Ioutが流れる。この出力電流Ioutは、リセット電流Irの機能を兼ねるものである。 When turning off the switching element 4, as shown in FIG. 37 (b), the magnetic flux reset secondary winding SR, the second rectifier diode 52 and LED2 1 to the output current Iout flows. This output current Iout also functions as a reset current Ir.
 図38に示す発光素子点灯装置100は、リーケージトランス37をタップ付の単巻線で構成したものであり、磁束リセット用2次巻線SRを巻き数が同数の1次巻線Pと兼用している。2次巻線Sの巻き数も磁束リセット用2次巻線SRの巻き数と同等に設定されている。スイッチング素子4は、直流電源1の低電位側端子とリーケージトランス37との間に接続されている。LED2の陽極は第1整流ダイオード51及び第2整流ダイオード52の陰極と接続されており、LED2の陰極は直流電源1の低電位側端子に接続されている。 The light-emitting element lighting device 100 shown in FIG. 38 has a leakage transformer 37 configured with a single winding with a tap, and the secondary winding SR for magnetic flux reset is also used as the primary winding P with the same number of turns. ing. The number of turns of the secondary winding S is also set equal to the number of turns of the secondary winding SR for magnetic flux reset. The switching element 4 is connected between the low potential side terminal of the DC power source 1 and the leakage transformer 37. LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode to the low potential side terminal of the DC power source 1.
 スイッチング素子4をオンすると、図38(a)に示す如く、1次巻線Pに入力電流Iinが流れる。また、2次巻線S、第1整流ダイオード51及びLED2に出力電流Ioutが流れる。このとき、図33(a)と同様の動作によりLED2の印加電圧が直流電源1の電源電圧よりも高くなり、リーケージトランス37は簡素な巻き線ながら昇圧トランスの機能を果たすものである。なお、当構成は2次巻線Sの巻き数を1次巻線Pの巻き数と同等にしたもので、LED2への出力電圧が直流電源1の電源電圧の2倍程度の場合に適している。 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, secondary winding S, the output current Iout flows first in rectifying diodes 51 and LED2 1. In this case, higher than the power supply voltage shown in FIG. 33 (a) and the same operation by LED2 1 of the applied voltage is a direct current power supply 1, a leakage transformer 37 are those functions of the step-up transformer with a simple winding. Incidentally, those configurations in which the number of turns of the secondary winding S equal to the number of turns of the primary winding P, the output voltage to the LED2 1 is suitable in the case of 2 times the power supply voltage of the DC power source 1 ing.
 スイッチング素子4をオフすると、図38(b)に示す如く、磁束リセット用2次巻線SR、第2整流ダイオード52及びLED2に出力電流Ioutが流れる。この出力電流Ioutは、リセット電流Irの機能を兼ねるものである。 When turning off the switching element 4, as shown in FIG. 38 (b), the magnetic flux reset secondary winding SR, the output current Iout second rectifier diode 52 and LED2 1 flows. This output current Iout also functions as a reset current Ir.
 図39に示す発光素子点灯装置100は、リーケージトランス37をタップ付の単巻線で構成したものであり、1次巻線Pを構成する巻線のうちの一部の巻線により磁束リセット用2次巻線SRが構成されている。2次巻線Sの巻き数は磁束リセット用2次巻線SRの巻き数と同等の値に設定されており、1次巻線Pの巻き数は2次巻線Sの巻き数よりも多い。スイッチング素子4は、直流電源1の低電位側端子とリーケージトランス37との間に接続されている。LED2の陽極は第1整流ダイオード51及び第2整流ダイオード52の陰極と接続されており、LED2の陰極は直流電源1の低電位側端子に接続されている。 A light-emitting element lighting device 100 shown in FIG. 39 is configured such that the leakage transformer 37 is configured with a single winding with a tap, and a magnetic flux is reset by a part of the windings constituting the primary winding P. A secondary winding SR is configured. The number of turns of the secondary winding S is set to a value equivalent to the number of turns of the secondary winding SR for magnetic flux reset, and the number of turns of the primary winding P is larger than the number of turns of the secondary winding S. . The switching element 4 is connected between the low potential side terminal of the DC power source 1 and the leakage transformer 37. LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode to the low potential side terminal of the DC power source 1.
 スイッチング素子4をオンすると、図39(a)に示す如く、1次巻線Pに入力電流Iinが流れる。また、2次巻線S、第1整流ダイオード51及びLED2に出力電流Ioutが流れる。このとき、図33(a)と同様の動作によりLED2の印加電圧が直流電源1の電源電圧よりも高くなり、リーケージトランス37は昇圧トランスの機能を果たすものである。なお、当構成は2次巻線Sの巻き数を1次巻線Pの巻き数より少なくしたもので、LED2への出力電圧が直流電源1の電源電圧の2倍以下の場合に適している。 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, secondary winding S, the output current Iout flows first in rectifying diodes 51 and LED2 1. In this case, higher than the power supply voltage shown in FIG. 33 (a) and the same operation by LED2 1 of the applied voltage is a direct current power supply 1, a leakage transformer 37 is intended to fulfill the function of a step-up transformer. Incidentally, those configuration the winding number of the secondary winding S which was less than the number of turns of the primary winding P, suitable when the output voltage to the LED2 1 is less than twice the power supply voltage of the DC power source 1 Yes.
 スイッチング素子4をオフすると、図39(b)に示す如く、磁束リセット用2次巻線SR、第2整流ダイオード52及びLED2に出力電流Ioutが流れる。この出力電流Ioutは、リセット電流Irの機能を兼ねるものである。 When turning off the switching element 4, as shown in FIG. 39 (b), the magnetic flux reset secondary winding SR, the output current Iout second rectifier diode 52 and LED2 1 flows. This output current Iout also functions as a reset current Ir.
 図40に示す発光素子点灯装置100は、リーケージトランス37をタップ付の単巻線で構成したものであり、磁束リセット用2次巻線SRを巻き数が同数の1次巻線Pと兼用している。2次巻線Sの巻き数も磁束リセット用2次巻線SRの巻き数と同等に設定されている。スイッチング素子4は、直流電源1の高電位側端子とリーケージトランス37との間に接続されている。LED2の陽極は直流電源1の高電位側端子に接続されており、LED2の陰極は第1整流ダイオード51及び第2整流ダイオード52の陽極と接続されている。 The light-emitting element lighting device 100 shown in FIG. 40 is configured such that the leakage transformer 37 is configured with a single winding with a tap, and the secondary winding SR for magnetic flux reset is also used as the primary winding P having the same number of turns. ing. The number of turns of the secondary winding S is also set equal to the number of turns of the secondary winding SR for magnetic flux reset. The switching element 4 is connected between the high potential side terminal of the DC power source 1 and the leakage transformer 37. LED2 1 of the anode is connected to the high potential side terminal of the DC power source 1, LED2 1 of the cathode is connected to the anode of the first rectifier diode 51 and the second rectifying diode 52.
 スイッチング素子4をオンすると、図40(a)に示す如く、1次巻線Pに入力電流Iinが流れる。また、2次巻線S、LED2及び第1整流ダイオード51に出力電流Ioutが流れる。このとき、LED2の陽極の電位は、直流電源1の高電位側端子と同電位で、LED2の陰極の電位は、直流電源1の低電位側端子よりも低くなる。すなわち、LED2の陰極の電位を負電位にすることで、LED2への印加電圧が直流電源1の電源電圧よりも高くなり、リーケージトランス37は昇圧トランスの機能を果たすものである。 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, the secondary winding S, LED2 1 and the output current Iout to the first rectifier diode 51 flows. At this time, the potential of the LED2 1 of the anode at a high potential side terminal and the potential of the DC power source 1, the cathode potential of the LED2 1, is lower than the low potential side terminal of the DC power source 1. That is, by the negative potential to cathode potential of LED2 1, the voltage applied to the LED2 1 is higher than the power supply voltage of the DC power source 1, a leakage transformer 37 is intended to fulfill the function of a step-up transformer.
 スイッチング素子4をオフすると、図40(b)に示す如く、磁束リセット用2次巻線SR、LED2及び第2整流ダイオード52に出力電流Ioutが流れる。この出力電流Ioutは、リセット電流Irの機能を兼ねるものである。 When turning off the switching element 4, as shown in FIG. 40 (b), the output current Iout flows in the magnetic flux reset secondary winding SR, LED2 1 and the second rectifying diode 52. This output current Iout also functions as a reset current Ir.
 図41に示す発光素子点灯装置100は、リーケージトランス37をタップ付の単巻線で構成したものであり、磁束リセット用2次巻線SRを巻き数が同数の1次巻線Pと兼用している。2次巻線Sの巻き数も磁束リセット用2次巻線SRの巻き数と同等に設定されている。スイッチング素子4は、直流電源1の低電位側端子とリーケージトランス37との間に接続されている。LED2の陽極は第1整流ダイオード51及び第2整流ダイオード52の陰極と接続されており、LED2の陰極は直流電源1の高電位側端子に接続されている。 The light-emitting element lighting device 100 shown in FIG. 41 is configured such that the leakage transformer 37 is configured with a single winding with a tap, and the magnetic flux resetting secondary winding SR is also used as the primary winding P having the same number of turns. ing. The number of turns of the secondary winding S is also set equal to the number of turns of the secondary winding SR for magnetic flux reset. The switching element 4 is connected between the low potential side terminal of the DC power source 1 and the leakage transformer 37. LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode is to the high potential side terminal of the DC power source 1.
 スイッチング素子4をオンすると、図41(a)に示す如く、1次巻線Pに入力電流Iinが流れる。また、2次巻線S、第1整流ダイオード51及びLED2に出力電流Ioutが流れる。このとき、LED2の陰極の電位は、直流電源1の高電位側端子と同電位で、LED2の陽極の電位は、直流電源1の高電位側端子よりも高くなる。すなわち、LED2の陽極の電位と直流電源1の高電位側電位の電位差をLED2に印加することになり、リーケージトランス37は降圧トランスの機能を果たすものである。 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, secondary winding S, the output current Iout flows first in rectifying diodes 51 and LED2 1. At this time, the cathode potential of the LED2 1, a high potential terminal and the potential of the DC power source 1, the potential of the LED2 1 of the anode is higher than the high potential side terminal of the DC power source 1. That results in applying a potential difference between the potential of LED2 1 anodic high potential side potential of the DC power source 1 to LED2 1, a leakage transformer 37 is intended to fulfill the function of a step-down transformer.
 スイッチング素子4をオフすると、図41(b)に示す如く、磁束リセット用2次巻線SR、第2整流ダイオード52及びLED2に出力電流Ioutが流れる。この出力電流Ioutは、リセット電流Irの機能を兼ねるものである。 When turning off the switching element 4, as shown in FIG. 41 (b), the magnetic flux reset secondary winding SR, the output current Iout second rectifier diode 52 and LED2 1 flows. This output current Iout also functions as a reset current Ir.
 図42に示す発光素子点灯装置100は、リーケージトランス37の1次巻線P及び2次巻線Sと磁束リセット用2次巻線SRとを互いに別体の巻線で構成したものであり、1次巻線Pの巻き数が2次巻線Sの巻き数と同等の値に設定されている。スイッチング素子4は、直流電源1の低電位側端子とリーケージトランス37との間に接続されている。LED2の陽極は第1整流ダイオード51及び第2整流ダイオード52の陰極と接続されており、LED2の陰極は直流電源1の高電位側端子に接続されている。 The light emitting element lighting device 100 shown in FIG. 42 is configured by configuring the primary winding P and the secondary winding S of the leakage transformer 37 and the secondary winding SR for magnetic flux reset as separate windings. The number of turns of the primary winding P is set to a value equivalent to the number of turns of the secondary winding S. The switching element 4 is connected between the low potential side terminal of the DC power source 1 and the leakage transformer 37. LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode is to the high potential side terminal of the DC power source 1.
 スイッチング素子4をオンすると、図42(a)に示す如く、1次巻線Pに入力電流Iinが流れる。また、2次巻線S、LED2及び第1整流ダイオード51に出力電流Ioutが流れる。このとき、図41(a)と同様の動作によりLED2の印加電圧が直流電源1の電源電圧よりも小さくなり、リーケージトランス37は降圧トランスの機能を果たすものである。 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, the secondary winding S, LED2 1 and the output current Iout to the first rectifier diode 51 flows. At this time, LED2 1 of the voltage applied by the same operation as FIG. 41 (a) is smaller than the power supply voltage of the DC power source 1, a leakage transformer 37 is intended to fulfill the function of a step-down transformer.
 スイッチング素子4をオフすると、図42(b)に示す如く、磁束リセット用2次巻線SR、第2整流ダイオード52及びLED2に出力電流Ioutが流れる。この出力電流Ioutは、リセット電流Irの機能を兼ねるものである。 When turning off the switching element 4, as shown in FIG. 42 (b), the magnetic flux reset secondary winding SR, the output current Iout second rectifier diode 52 and LED2 1 flows. This output current Iout also functions as a reset current Ir.
 図43に示す発光素子点灯装置100は、リーケージトランス37をタップ付の単巻線で構成したものであり、1次巻線Pを構成する巻線のうちの一部の巻線により磁束リセット用2次巻線SRが構成されている。2次巻線Sの巻き数は磁束リセット用2次巻線SRの巻き数と同等の値に設定されており、1次巻線Pの巻き数は2次巻線Sの巻き数よりも多い。スイッチング素子4は直流電源1の低電位側端子とリーケージトランス37との間に接続されている。LED2の陽極は第1整流ダイオード51及び第2整流ダイオード52の陰極と接続されており、LED2の陰極は直流電源1の高電位側端子に接続されている。 A light-emitting element lighting device 100 shown in FIG. 43 is configured such that the leakage transformer 37 is configured with a single winding with a tap, and a magnetic flux is reset by a part of the windings constituting the primary winding P. A secondary winding SR is configured. The number of turns of the secondary winding S is set to a value equivalent to the number of turns of the secondary winding SR for magnetic flux reset, and the number of turns of the primary winding P is larger than the number of turns of the secondary winding S. . The switching element 4 is connected between the low potential side terminal of the DC power supply 1 and the leakage transformer 37. LED2 1 of the anode is connected is connected to the cathode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the cathode is to the high potential side terminal of the DC power source 1.
 スイッチング素子4をオンすると、図43(a)に示す如く、1次巻線Pに入力電流Iinが流れる。また、2次巻線S、第1整流ダイオード51及びLED2に出力電流Ioutが流れる。このとき、図41(a)と同様の動作によりLED2の印加電圧が直流電源1の電源電圧よりも小さくなり、リーケージトランス37は図41あるいは図42の構成より低い電圧を出力する降圧トランスの機能を果たすものである。 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, secondary winding S, the output current Iout flows first in rectifying diodes 51 and LED2 1. In this case, smaller than the power supply voltage of FIG. 41 (a) and the same operation by LED2 1 of the applied voltage is a direct current power supply 1, a leakage transformer 37 is of the step-down transformer that outputs a voltage lower than the configuration of FIG. 41 or FIG. 42 It fulfills its function.
 スイッチング素子4をオフすると、図43(b)に示す如く、磁束リセット用2次巻線SR、第2整流ダイオード52及びLED2に出力電流Ioutが流れる。この出力電流Ioutは、リセット電流Irの機能を兼ねるものである。 When turning off the switching element 4, as shown in FIG. 43 (b), the magnetic flux reset secondary winding SR, the output current Iout second rectifier diode 52 and LED2 1 flows. This output current Iout also functions as a reset current Ir.
 図44に示す発光素子点灯装置100は、リーケージトランス37をタップ付の単巻線で構成したものであり、磁束リセット用2次巻線SRを巻き数が同数の1次巻線Pと兼用している。2次巻線Sの巻き数も磁束リセット用2次巻線SRの巻き数と同等に設定されている。スイッチング素子4は、直流電源1の高電位側端子とリーケージトランス37との間に接続されている。LED2の陰極は第1整流ダイオード51及び第2整流ダイオード52の陽極と接続されており、LED2の陽極は直流電源1の低電位側端子に接続されている。 The light-emitting element lighting device 100 shown in FIG. 44 has a leakage transformer 37 configured with a single winding with a tap, and the magnetic flux resetting secondary winding SR is also used as the primary winding P having the same number of turns. ing. The number of turns of the secondary winding S is also set equal to the number of turns of the secondary winding SR for magnetic flux reset. The switching element 4 is connected between the high potential side terminal of the DC power source 1 and the leakage transformer 37. LED2 1 of the cathode is connected is connected to the anode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the anode to the low potential side terminal of the DC power source 1.
 スイッチング素子4をオンすると、図44(a)に示す如く、1次巻線Pに入力電流Iinが流れる。また、2次巻線S、LED2及び第1整流ダイオード51に出力電流Ioutが流れる。このとき、LED2の陰極の電位は、直流電源1の低電位端子よりも低くなる。すなわち、LED2の印加電圧は直流電源1の電位よりも低くなり、リーケージトランス37は負電圧を生成するトランスの機能を果たすものである。 When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, the secondary winding S, LED2 1 and the output current Iout to the first rectifier diode 51 flows. At this time, the cathode potential of the LED2 1, lower than the low potential terminal of the DC power source 1. That is, ones LED2 1 of the applied voltage becomes lower than the potential of the DC power source 1, a leakage transformer 37 to fulfill the transformer function of generating a negative voltage.
 スイッチング素子4をオフすると、図44(b)に示す如く、磁束リセット用2次巻線SR、第2整流ダイオード52及びLED2に出力電流Ioutが流れる。この出力電流Ioutは、リセット電流Irの機能を兼ねるものである。 When turning off the switching element 4, as shown in FIG. 44 (b), the magnetic flux reset secondary winding SR, the output current Iout second rectifier diode 52 and LED2 1 flows. This output current Iout also functions as a reset current Ir.
 図45に示す発光素子点灯装置100は、リーケージトランス37をタップ付の単巻線で構成したものであり、1次巻線Pを構成する巻線のうちの一部の巻線により磁束リセット用2次巻線SRが構成されている。2次巻線Sの巻き数は磁束リセット用2次巻線SRの巻き数と同等の値に設定されており、1次巻線Pの巻き数は2次巻線Sの巻き数よりも多い。スイッチング素子4は、直流電源1の高電位側端子とリーケージトランス37との間に接続されている。LED2の陰極は第1整流ダイオード51及び第2整流ダイオード52の陽極と接続されており、LED2の陽極は直流電源1の低電位側端子に接続されている。 The light-emitting element lighting device 100 shown in FIG. 45 is configured such that the leakage transformer 37 is configured by a single winding with a tap, and a magnetic flux is reset by a part of the windings constituting the primary winding P. A secondary winding SR is configured. The number of turns of the secondary winding S is set to a value equivalent to the number of turns of the secondary winding SR for magnetic flux reset, and the number of turns of the primary winding P is larger than the number of turns of the secondary winding S. . The switching element 4 is connected between the high potential side terminal of the DC power source 1 and the leakage transformer 37. LED2 1 of the cathode is connected is connected to the anode of the first rectifier diode 51 and the second rectifying diode 52, LED2 1 of the anode to the low potential side terminal of the DC power source 1.
 スイッチング素子4をオンすると、図45(a)に示す如く、1次巻線Pに入力電流Iinが流れる。また、2次巻線S、LED2及び第1整流ダイオード51に出力電流Ioutが流れる。このとき、LED2の陰極の電位は、直流電源1の低電位端子よりも低くなる。すなわち、LED2の印加電圧は直流電源1の電位よりも低くなり、リーケージトランス37は図44の構成より低い(絶対値の小さい)負電圧を生成するトランスの機能を果たすものである When the switching element 4 is turned on, the input current Iin flows through the primary winding P as shown in FIG. Further, the secondary winding S, LED2 1 and the output current Iout to the first rectifier diode 51 flows. At this time, the cathode potential of the LED2 1, lower than the low potential terminal of the DC power source 1. That is, the LED2 1 of the applied voltage becomes lower than the potential of the DC power source 1, a leakage transformer 37 is intended to fulfill the transformer function of generating a low (small absolute value) negative voltage than the configuration of FIG. 44
 スイッチング素子4をオフすると、図45(b)に示す如く、磁束リセット用2次巻線SR、第2整流ダイオード52及びLED2に出力電流Ioutが流れる。この出力電流Ioutは、リセット電流Irの機能を兼ねるものである。 When turning off the switching element 4, as shown in FIG. 45 (b), the magnetic flux reset secondary winding SR, the output current Iout second rectifier diode 52 and LED2 1 flows. This output current Iout also functions as a reset current Ir.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .
 本発明の発光素子点灯装置は、ヒステリシス制御により半導体発光素子を点灯させる各種灯具に用いることができる。特に、前照灯などの車載用灯具に好適である。 The light-emitting element lighting device of the present invention can be used for various lamps that light a semiconductor light-emitting element by hysteresis control. In particular, it is suitable for in-vehicle lamps such as headlamps.
 1 直流電源、2 発光素子、2~2 LED、3 トランス、4 スイッチング素子、5 整流ダイオード、6 コイル、7 還流ダイオード、8 ダイオード、9 電流検出用抵抗器、10 出力電流検出部、11 ヒステリシス制御部、12 制御部、13 入力電流検出部、14a,14b 電圧検出用抵抗器、15 出力電圧検出部、16 スナバ回路、30 コア、31 第1トランス、32 中脚部、33 第2トランス、34 コア、35 中脚部、36 間隙、37 リーケージトランス、38 コア、39 中脚部、40 中脚部、41 間隙、42 間隙、43 補助コア、44 スペーサ、45 コア、46 コア、47a,47b 外脚部、51 第1整流ダイオード、52 第2整流ダイオード、53a,53b,53c,53d ダイオード、60 コア、61 中脚部、62 間隙、100 発光素子点灯装置、161 コンデンサ、162 ダイオード、163 抵抗器、164 ダイオード、L 巻線、P,P1,P2 1次巻線、S,S1,S2 2次巻線、SR,S1R 磁束リセット用2次巻線。 1 DC power supply, 2 light emitting element, 2 1 to 2 n LED, 3 transformer, 4 switching element, 5 rectifier diode, 6 coil, 7 freewheeling diode, 8 diode, 9 current detection resistor, 10 output current detection unit, 11 Hysteresis control unit, 12 control unit, 13 input current detection unit, 14a, 14b voltage detection resistor, 15 output voltage detection unit, 16 snubber circuit, 30 core, 31 first transformer, 32 middle leg, 33 second transformer 34 core, 35 middle leg, 36 gap, 37 leakage transformer, 38 core, 39 middle leg, 40 middle leg, 41 gap, 42 gap, 43 auxiliary core, 44 spacer, 45 core, 46 core, 47a, 47b outer leg, 51 first rectifier diode, 52 second rectifier diode, 53a, 53b, 53c, 53d diode, 60 core, 6 Middle leg part, 62 gap, 100 light emitting element lighting device, 161 capacitor, 162 diode, 163 resistor, 164 diode, L winding, P, P1, P2 primary winding, S, S1, S2 secondary winding, SR, S1R Secondary winding for magnetic flux reset.

Claims (15)

  1.  直流電源より入力される電力から発光素子を点灯する電流を生成する1次巻線と2次巻線を有したトランスと、
     前記トランスの1次巻線に入力する電流を断続するスイッチング素子と、
     前記トランスの2次巻線が前記発光素子へ出力する電流を整流する整流ダイオードと、
     前記トランスに入力する電流又は前記発光素子に出力する電流の電流値を検出する電流検出部と、
     前記電流検出部が検出した電流値に呼応して前記スイッチング素子のオン状態とオフ状態とを交互に切り替えるときに、前記スイッチング素子をオン状態に切り替える電流値と、オフ状態に切り替える電流値に差を設けたヒステリシス制御によって前記出力電流の電流値を基準範囲内の値に制御するヒステリシス制御部と、
     を備える発光素子点灯装置。
    A transformer having a primary winding and a secondary winding for generating a current for lighting a light emitting element from electric power input from a DC power supply;
    A switching element that interrupts the current input to the primary winding of the transformer;
    A rectifier diode that rectifies a current output from the secondary winding of the transformer to the light emitting element;
    A current detector for detecting a current value of a current input to the transformer or a current output to the light emitting element;
    In response to the current value detected by the current detection unit, when the switching element is alternately switched between the on state and the off state, the difference between the current value that switches the switching element to the on state and the current value that switches to the off state. A hysteresis control unit that controls the current value of the output current to a value within a reference range by hysteresis control provided with;
    A light emitting element lighting device comprising:
  2.  前記トランスは、1次巻線を前記直流電源に接続し、かつ、2次巻線を前記発光素子に接続した第1トランスを含み、
     前記整流ダイオードは、前記スイッチング素子のオン状態にて前記第1トランスの2次巻線から前記発光素子へ流れる電流を整流する第1整流ダイオードを含む
     ことを特徴とする請求項1記載の発光素子点灯装置。
    The transformer includes a first transformer having a primary winding connected to the DC power source and a secondary winding connected to the light emitting element,
    The light-emitting element according to claim 1, wherein the rectifier diode includes a first rectifier diode that rectifies a current flowing from the secondary winding of the first transformer to the light-emitting element in an ON state of the switching element. Lighting device.
  3.  前記第1整流ダイオードと前記発光素子間に接続されたコイルと、
     前記スイッチング素子のオフ状態にて前記コイルによって発生する電流を前記発光素子に還流する還流ダイオードと、
     を備えることを特徴とする請求項2記載の発光素子点灯装置。
    A coil connected between the first rectifier diode and the light emitting element;
    A free-wheeling diode that circulates current generated by the coil to the light-emitting element in an off state of the switching element;
    The light emitting element lighting device according to claim 2, further comprising:
  4.  前記トランスは第2トランスを含み、該第2トランスの1次巻線は前記直流電源に対して前記第1トランスの1次巻線と直列に接続され、かつ、該第2トランスの2次巻線は前記発光素子に対して前記第1トランスの2次巻線と並列に接続されており、
     前記整流ダイオードは、前記スイッチング素子のオフ状態にて前記第2トランスの2次巻線から前記発光素子へ流れる電流を整流する第2整流ダイオードを含む
     ことを特徴とする請求項2記載の発光素子点灯装置。
    The transformer includes a second transformer, the primary winding of the second transformer is connected in series with the primary winding of the first transformer with respect to the DC power source, and the secondary winding of the second transformer The line is connected in parallel with the secondary winding of the first transformer with respect to the light emitting element,
    The light-emitting element according to claim 2, wherein the rectifier diode includes a second rectifier diode that rectifies a current flowing from the secondary winding of the second transformer to the light-emitting element when the switching element is in an off state. Lighting device.
  5.  前記トランスは、前記直流電源に接続した1次巻線と前記発光素子に接続した2次巻線との間に間隔を設け、前記1次巻線が発する磁束の一部を2次巻線に伝達することなく漏洩する構成を有したトランスにより構成したことを特徴とする請求項1記載の発光素子点灯装置。 The transformer has a space between a primary winding connected to the DC power source and a secondary winding connected to the light emitting element, and a part of the magnetic flux generated by the primary winding is used as a secondary winding. The light-emitting element lighting device according to claim 1, wherein the light-emitting element lighting device is configured by a transformer having a configuration that leaks without being transmitted.
  6.  前記第1トランスは、前記発光素子に接続した磁束リセット用2次巻線を有し、
     前記スイッチング素子のオフ状態にて前記磁束リセット用2次巻線から前記発光素子へ流れるリセット電流を整流するダイオードを備える
     ことを特徴とする請求項2記載の発光素子点灯装置。
    The first transformer has a secondary winding for magnetic flux reset connected to the light emitting element,
    The light emitting element lighting device according to claim 2, further comprising: a diode that rectifies a reset current flowing from the magnetic flux resetting secondary winding to the light emitting element when the switching element is in an off state.
  7.  前記ヒステリシス制御部には、前記基準範囲の上限値に対応する第1電流値及び前記基準範囲の下限値に対応する第2電流値が設定されており、
     前記ヒステリシス制御部は、前記電流検出部で検出した電流値が前記第1電流値以上になると前記スイッチング素子をオフし、前記電流検出部で検出した電流値が前記第2電流値以下になると前記スイッチング素子をオンすることを繰り返して、出力電流を制御する
     こと特徴とする請求項1記載の発光素子点灯装置。
    In the hysteresis control unit, a first current value corresponding to the upper limit value of the reference range and a second current value corresponding to the lower limit value of the reference range are set,
    The hysteresis control unit turns off the switching element when the current value detected by the current detection unit is equal to or higher than the first current value, and when the current value detected by the current detection unit is equal to or lower than the second current value, The light emitting element lighting device according to claim 1, wherein the output current is controlled by repeatedly turning on the switching element.
  8.  前記発光素子への出力電圧の電圧値を検出する電圧検出部を備え、
     前記ヒステリシス制御部には、前記基準範囲の上限値に対応する第1電流値が設定されており、
     前記ヒステリシス制御部は、前記電圧検出部が検出した電圧値を用いて前記スイッチング素子のオフ時間を設定するとともに、前記電流検出部で検出した電流値が前記第1電流値以上になると前記スイッチング素子をオフし、前記スイッチング素子をオフしてから前記オフ時間が経過すると前記スイッチング素子をオンすることを繰り返して、出力電流を制御する
     ことを特徴とする請求項1記載の発光素子点灯装置。
    A voltage detector for detecting a voltage value of an output voltage to the light emitting element;
    In the hysteresis control unit, a first current value corresponding to an upper limit value of the reference range is set,
    The hysteresis control unit sets an off time of the switching element using the voltage value detected by the voltage detection unit, and the switching element when the current value detected by the current detection unit becomes equal to or greater than the first current value. 2. The light emitting element lighting device according to claim 1, wherein the output current is controlled by repeatedly turning on the switching element when the off time has elapsed after turning off the switching element and turning off the switching element.
  9.  前記発光素子への出力電圧の電圧値を検出する電圧検出部を備え、
     前記ヒステリシス制御部には、前記基準範囲の下限値に対応する第2電流値が設定されており、
     前記ヒステリシス制御部は、前記電圧検出部が検出した電圧値を用いて前記スイッチング素子のオン時間を設定するとともに、前記電流検出部で検出した電流値が前記第2電流値以下になると前記スイッチング素子をオンし、前記スイッチング素子をオンしてから前記オン時間が経過すると前記スイッチング素子をオフすることを繰り返して、出力電流を制御する
     ことを特徴とする請求項1記載の発光素子点灯装置。
    A voltage detector for detecting a voltage value of an output voltage to the light emitting element;
    A second current value corresponding to a lower limit value of the reference range is set in the hysteresis control unit,
    The hysteresis control unit sets an ON time of the switching element using the voltage value detected by the voltage detection unit, and the switching element when the current value detected by the current detection unit becomes equal to or less than the second current value. 2. The light emitting element lighting device according to claim 1, wherein the output current is controlled by repeatedly turning off the switching element when the on-time has elapsed after turning on the switching element and turning on the switching element.
  10.  前記整流ダイオードは、4個のダイオードによるダイオードブリッジを含むことを特徴とする請求項5記載の発光素子点灯装置。 The light-emitting element lighting device according to claim 5, wherein the rectifier diode includes a diode bridge including four diodes.
  11.  前記スイッチング素子は、前記直流電源の高電位側端子と前記トランスとの間に接続されていることを特徴とする請求項1記載の発光素子点灯装置。 The light-emitting element lighting device according to claim 1, wherein the switching element is connected between a high potential side terminal of the DC power supply and the transformer.
  12.  前記スイッチング素子は、前記直流電源の低電位側端子と前記トランスとの間に接続されていることを特徴とする請求項1記載の発光素子点灯装置。 The light emitting element lighting device according to claim 1, wherein the switching element is connected between a low potential side terminal of the DC power source and the transformer.
  13.  前記トランスの1次巻線に発生するサージ電圧を抑制し、前記スイッチング素子を保護するサージ電圧抑制回路を備えることを特徴とする請求項1記載の発光素子点灯装置。 The light-emitting element lighting device according to claim 1, further comprising a surge voltage suppression circuit that suppresses a surge voltage generated in the primary winding of the transformer and protects the switching element.
  14.  前記発光素子は半導体発光素子であることを特徴とする請求項1記載の発光素子点灯装置。 The light-emitting element lighting device according to claim 1, wherein the light-emitting element is a semiconductor light-emitting element.
  15.  車載用であることを特徴とする請求項1記載の発光素子点灯装置。 The light-emitting element lighting device according to claim 1, wherein the light-emitting element lighting device is for in-vehicle use.
PCT/JP2015/078218 2015-10-05 2015-10-05 Light-emitting element lighting device WO2017060952A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/078218 WO2017060952A1 (en) 2015-10-05 2015-10-05 Light-emitting element lighting device
JP2017544083A JP6456512B2 (en) 2015-10-05 2015-10-05 Light-emitting element lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078218 WO2017060952A1 (en) 2015-10-05 2015-10-05 Light-emitting element lighting device

Publications (1)

Publication Number Publication Date
WO2017060952A1 true WO2017060952A1 (en) 2017-04-13

Family

ID=58488136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078218 WO2017060952A1 (en) 2015-10-05 2015-10-05 Light-emitting element lighting device

Country Status (2)

Country Link
JP (1) JP6456512B2 (en)
WO (1) WO2017060952A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746681A (en) * 1980-08-30 1982-03-17 Elco- Kk Inverter circuit
JPH01311865A (en) * 1988-06-07 1989-12-15 Fujitsu Ltd Flux resetting circuit of transformer
JPH0731140A (en) * 1993-07-09 1995-01-31 Mels Corp Pwm converter
JP2000341947A (en) * 1999-05-28 2000-12-08 Mitsubishi Electric Corp Dc-dc converter
JP2002281756A (en) * 2001-03-22 2002-09-27 Sony Corp Switching converter circuit
JP2006238510A (en) * 2005-02-22 2006-09-07 Tdk Corp Power unit
JP2013093214A (en) * 2011-10-26 2013-05-16 Koito Mfg Co Ltd Semiconductor light source lighting circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110002A (en) * 2011-11-22 2013-06-06 Panasonic Corp Discharge lamp lighting device and vehicle head light unit using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746681A (en) * 1980-08-30 1982-03-17 Elco- Kk Inverter circuit
JPH01311865A (en) * 1988-06-07 1989-12-15 Fujitsu Ltd Flux resetting circuit of transformer
JPH0731140A (en) * 1993-07-09 1995-01-31 Mels Corp Pwm converter
JP2000341947A (en) * 1999-05-28 2000-12-08 Mitsubishi Electric Corp Dc-dc converter
JP2002281756A (en) * 2001-03-22 2002-09-27 Sony Corp Switching converter circuit
JP2006238510A (en) * 2005-02-22 2006-09-07 Tdk Corp Power unit
JP2013093214A (en) * 2011-10-26 2013-05-16 Koito Mfg Co Ltd Semiconductor light source lighting circuit

Also Published As

Publication number Publication date
JPWO2017060952A1 (en) 2018-01-25
JP6456512B2 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP4169008B2 (en) LED driving device and lighting device using the same
US20120319610A1 (en) Led lighting apparatus
JP6087960B2 (en) LED light source
JP6147073B2 (en) Control unit and vehicle lamp
US20140015432A1 (en) Power supply, solid-state light-emitting element lighting device, and luminaire
US9089033B2 (en) LED lighting device
JP6245433B2 (en) LED power supply device and LED lighting device
JP2011192865A (en) Lighting control device and lighting fixture for vehicle
US9763294B2 (en) Lighting device and lighting fixture using same
US9101009B2 (en) Circuit arrangement for operating N parallel-connected strings having at least one semiconductor light source
JP6456512B2 (en) Light-emitting element lighting device
JP2017021970A (en) Lighting device, luminaire and vehicle using the same
JP6139360B2 (en) Light source drive device
JP7012267B2 (en) Lighting device and lighting system
JP6009344B2 (en) LIGHTING DEVICE AND LIGHTING DEVICE CONTROL METHOD
JP6587054B2 (en) Lighting device and lighting apparatus
JP4909727B2 (en) Semiconductor device
JP5366769B2 (en) Constant current power supply
JP7457920B2 (en) lighting equipment
JP5513087B2 (en) Constant current power supply
JP6256755B2 (en) Lighting device and lighting device
JP5574934B2 (en) LED lighting device
CN110602829B (en) Lighting LED driving circuit, device and control method
JP6008286B2 (en) Lighting device
JP2016027778A (en) Switching power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544083

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905772

Country of ref document: EP

Kind code of ref document: A1