WO2017060601A1 - Procede de fabrication d'une piece en materiau composite ceramique par injection sous pression d'une barbotine chargee dans un moule poreux - Google Patents

Procede de fabrication d'une piece en materiau composite ceramique par injection sous pression d'une barbotine chargee dans un moule poreux Download PDF

Info

Publication number
WO2017060601A1
WO2017060601A1 PCT/FR2016/052535 FR2016052535W WO2017060601A1 WO 2017060601 A1 WO2017060601 A1 WO 2017060601A1 FR 2016052535 W FR2016052535 W FR 2016052535W WO 2017060601 A1 WO2017060601 A1 WO 2017060601A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
slip
fibrous texture
fibrous
porous
Prior art date
Application number
PCT/FR2016/052535
Other languages
English (en)
Other versions
WO2017060601A8 (fr
Inventor
Nicolas DROZ
Ludovic Philippe LIAIS
Adrien PAIXAO
Michael Podgorski
Sofia HAIFI
Original Assignee
Safran Aircraft Engines
Safran
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines, Safran filed Critical Safran Aircraft Engines
Priority to BR112018006792-0A priority Critical patent/BR112018006792A2/pt
Priority to EP16790654.4A priority patent/EP3359506B1/fr
Priority to US15/766,206 priority patent/US10954169B2/en
Priority to RU2018116397A priority patent/RU2721674C2/ru
Priority to CA3000963A priority patent/CA3000963A1/fr
Priority to JP2018517597A priority patent/JP6878420B2/ja
Priority to CN201680070989.0A priority patent/CN108779033B/zh
Publication of WO2017060601A1 publication Critical patent/WO2017060601A1/fr
Publication of WO2017060601A8 publication Critical patent/WO2017060601A8/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/24Producing shaped prefabricated articles from the material by injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • B28B1/261Moulds therefor
    • B28B1/262Mould materials; Manufacture of moulds or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • B28B1/265Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor pressure being applied on the slip in the filled mould or on the moulded article in the mould, e.g. pneumatically, by compressing slip in a closed mould
    • B28B1/266Means for counteracting the pressure being applied on the slip or on the moulded article in the mould, e.g. means for clamping the moulds parts together in a frame-like structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0006Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects the reinforcement consisting of aligned, non-metal reinforcing elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/344Moulds, cores, or mandrels of special material, e.g. destructible materials from absorbent or liquid- or gas-permeable materials, e.g. plaster moulds in general
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for
    • D03D25/005Three-dimensional woven fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/08Ceramic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/24Rotors for turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/226Carbides
    • F05D2300/2261Carbides of silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/228Nitrides
    • F05D2300/2283Nitrides of silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6034Orientation of fibres, weaving, ply angle

Definitions

  • the present invention relates to a method for manufacturing a composite material part, in particular of the oxide / oxide or ceramic matrix (CMC) type, that is to say having a fiber reinforcement formed from densified refractory ceramic fibers. by a matrix also made of refractory ceramic material.
  • CMC ceramic matrix
  • the oxide / oxide composite material parts are generally produced by draping in a mold of a plurality of fibrous layers made from refractory oxide fibers, the layers being each impregnated beforehand with a slip loaded with refractory oxide particles. All of the layers thus disposed is then compacted using a counter-mold or a vacuum cover and an autoclave. The filled preform thus obtained is then subjected to sintering in order to form a refractory oxide matrix in the preform and obtain a piece of oxide / oxide composite material. This technique can also be used to produce ceramic matrix composite (CMC) parts.
  • CMC ceramic matrix composite
  • the fibrous layers are made from silicon carbide (SiC) or carbon fibers and are impregnated with a slurry loaded with carbide particles (eg SiC), boride (eg TiB2) or nitride particles. (eg Si3N4).
  • SiC silicon carbide
  • boride eg TiB2
  • nitride particles eg Si3N4
  • this type of production method makes it possible to produce only oxide / oxide or CMC composite material having a small thickness and two-dimensional (2D) fibrous reinforcement.
  • the mechanical characteristics of these types of composite material remain limited in certain directions. In particular, these materials have a low resistance to delamination and do not withstand shear forces well.
  • the pressure gradient between the part of the fibrous texture through which the loaded slip is injected and the other part of the fibrous texture by which the liquid phase of the slip is to be removed is difficult to control over the entire fibrous texture. If the pressure is not balanced over the entire surface of the fibrous texture facing the bottom of the mold having one or more evacuation vents through which or the liquid phase of the slurry must be evacuated, it is created a pressure difference between the areas near the vents and the more distant areas. In this case, the evacuation of the liquid phase is difficult because it must be removed from the texture without disturbing the distribution of solid particles (refractory oxide, carbide, boride, nitride, etc.) deposited via the slip. Indeed, during its evacuation, the liquid phase can take with it particles and / or modify the distribution of the latter in the fibrous texture and lead to the appearance of large porosities in the final material due to lack of matrix in certain places.
  • solid particles refractory oxide, carbide, boride, nitride, etc.
  • the object of the present invention is to overcome the aforementioned drawbacks and to propose a solution that makes it possible to produce composite material parts, particularly of the oxide / oxide or CMC type, from a thick fibrous texture and / or complex geometry, and this in a fast and reliable manner while allowing a good control of the deposition and the distribution of the solid particles in the fibrous texture in order to obtain a material with a very low macroporosity rate.
  • the invention proposes a method for manufacturing a composite material part comprising the following steps:
  • the injection tool comprises a mold of porous material having an internal housing in which the fibrous texture is placed, the slip being injected into the fibrous texture by at least one injection port present on the tool injection and opening into the inner housing of the mold of porous material, the tooling further comprising an enclosure of rigid material in which the mold of porous material is maintained during the pressure injection of the slip and the drainage of the liquid of said slip, the liquid of the slurry being evacuated by at least one vent present on the enclosure of rigid material.
  • the method of the invention makes it possible to eliminate the liquid phase of the slip introduced into the fibrous texture without removing the refractory solid particles also present in the texture.
  • the mold of porous material surrounding the entire fibrous texture the liquid of the slip can be drained out of said texture in all directions, that is to say at any point of the interface between the texture and the mold. This makes it possible to promote a deposit by homogeneous and dense sedimentation of the refractory ceramic particles in the fibrous texture and to obtain, consequently, a high matrix volume ratio in the final piece made of composite material and to significantly increase the residence time. drainage.
  • the composite material part has, therefore, improved mechanical properties.
  • the mold of porous material being held in an enclosure of rigid material, it can withstand the injection pressures the slip loaded in the texture as well as those exerted by pumping for the evacuation of the liquid medium of the slip.
  • the mold made of porous material has a size smaller than the internal volume of the enclosure made of rigid material, the volume present between the mold made of porous material and the enclosure made of rigid material being filled by a porous compact medium.
  • a porous medium facilitates in particular the integration of the porous material mold in the injection tooling by matching any type of mold shape even complex while ensuring a good transfer of forces between the mold and the enclosure injection equipment. This transfer makes it possible to ensure the increase in pressure without deformation of the porous mold. The sealing problems are thus considerably reduced.
  • the presence of a porous medium around the mold makes it possible to better evacuate the liquid from the slip from the mold of porous material, thus facilitating its cleaning after each injection and, consequently, its reuse.
  • the void volume present in the porous medium is preferably greater than the volume of the liquid phase of the slip injected into the fiber texture.
  • the porous medium may consist in particular of sand of a foam, or of any granular material having a stacking rate making it possible to provide a housing or passage for the filtrate.
  • the mold may be made of a material chosen from at least one of the following materials: porous resin and plaster.
  • the yarns can be woven in three-dimensional or multi-layer weave.
  • the fibrous texture can also be produced by stacking woven layers in a two-dimensional weave, the texture having a thickness of at least 0.5 mm and preferably at least 1 mm.
  • the yarns of the preform may be fiber yarns made of one or more of the following materials: alumina, mullite, silica, aluminosilicate, borosilicate, silicon carbide, and carbon.
  • the refractory ceramic particles may be of a material chosen from: alumina, mullite, silica, an aluminosilicate, an aluminophosphate, zirconia, a carbide, a boride and a nitride.
  • the piece of composite material obtained may constitute a turbomachine blade.
  • FIG. 1 is a diagrammatic perspective exploded view of an injection tool according to an embodiment of the invention
  • FIG. 2 is a diagrammatic sectional view showing the tool of FIG. 1 closed with a fibrous texture positioned therein,
  • FIG. 3 is a schematic sectional view showing the steps of impregnating a fibrous texture with a slip loaded in the tool of Figure 2.
  • the method of manufacturing a composite material part, especially of the oxide / oxide or CMC type according to the present invention starts with the production of a fibrous texture intended to form the reinforcement of the part.
  • the fibrous structure is made in known manner by weaving by means of a Jacquard loom on which a bundle of warp yarns or strands has been arranged in a plurality of layers, the warp yarns being bound by yarns of yarn. frame or vice versa.
  • the fibrous texture can be made by stacking strata or plies obtained by two-dimensional weaving (2D).
  • the fibrous texture can also be made directly in one piece by three-dimensional weaving (3D).
  • two-dimensional weaving is meant here a conventional weaving each weft yarn passes from one side to the other of yarns of a single chain layer or vice versa.
  • the method of the invention is particularly adapted to allow the introduction of a filled slip in 2D fiber textures, namely textures obtained by stacking 2D layers or plies, of large thickness, that is to say 2D fibrous structures having a thickness of at least 0.5 mm, preferably at least 1 mm.
  • three-dimensional weaving or “3D weaving” or “multilayer weaving” is meant here a weaving mode whereby at least some of the weft yarns bind warp yarns on several layers of warp yarns or conversely following a weave corresponding to a weave weave which can be chosen in particular from one of the following armor: interlock, multi-fabric, multi-satin and multi-twill.
  • weave or interlock fabric is meant here a 3D weave armor, each layer of warp threads binding several layers of weft threads with all the threads of the same warp column having the same movement in the plane of the weave. armor.
  • armor or multi-fabric fabric is meant here a 3D weave with several layers of weft threads whose basic armor of each layer is equivalent to a conventional canvas type armor but with some points of the armor that bind the layers of weft threads together.
  • multi-satin weave or fabric is meant here a 3D weave with several layers of weft yarns whose basic weave of each layer is equivalent to a classic satin-like weave but with certain points of the weave which bind the layers of weft threads together.
  • weave or multi-twill fabric is meant here a 3D weave with several layers of weft threads whose basic armor of each layer is equivalent to a classic twill type armor but with some points of the armor that bind the layers of weft threads together.
  • 3D textures have a complex geometry in which it is difficult to introduce and evenly distribute solid particles in suspension.
  • the process of the invention is also very well suited for the introduction of a loaded slip in 3D woven fiber textures.
  • the yarns used to weave the fibrous texture intended to form the fibrous reinforcement of the piece of composite material may in particular be formed of fibers consisting of one of the following materials: alumina, mullite, silica, an aluminosilicate, a borosilicate, silicon carbide, carbon or a mixture of several of these materials.
  • the fibrous texture is placed in an injection tool according to the invention which allows, as explained below, to deposit refractory particles within the fibrous texture.
  • a fibrous texture 10 is placed in an injection tool 100.
  • the fibrous texture 10 is produced according to one of the techniques defined above (stacking). 2D layers or 3D weave) with Nextel 610 TM alumina wires.
  • the fibrous texture 10 is here intended to form the fibrous reinforcement of a blade of oxide / oxide composite material.
  • the tooling 100 comprises a mold made of porous material 110 formed in two parts 111 and 112 each respectively comprising a cavity 1110 and a cavity 1120.
  • the cavities 1110 and 1120 delimit a molding cavity 113 (FIG. 2) when the two parts 111 and 112 are assembled against each other, cavity in which the fibrous texture is intended to be placed.
  • the impressions 1110 and 1120 have a shape corresponding to the shape of the workpiece to be made from the fibrous texture.
  • the two parts 111 and 112 serve to size the preform and thus the part to be obtained and to adjust the fiber content in the part to be obtained.
  • the portion 111 of the porous material mold 110 comprises a channel 1111 for injecting a slurry loaded into the fibrous texture as explained hereinafter in detail.
  • Injection tooling 100 also comprises an enclosure made of rigid material 130 in which the mold of porous material 110 is maintained.
  • the enclosure 130 comprises a bottom 131, a side wall 132 integral with the bottom 131 and a cover 133.
  • the enclosure 130 may be made of any type of material having sufficient rigidity to withstand the injection pressures of the slip and the pumping (drawing of the empty) for the evacuation of the liquid phase from it.
  • the enclosure may in particular be made of metal or plastic material.
  • the lid 133 has an injection port 134 through which the slip is intended to be injected in order to penetrate the porosity of the fiber texture 10.
  • the slip is intended to be injected. through an injection port 134 opening into the molding cavity 113.
  • the enclosure 130 comprises a single vent 135 of the liquid medium of the slip, present here on the side wall 132 in the vicinity of the bottom 131.
  • a single vent 135 of the liquid medium of the slip present here on the side wall 132 in the vicinity of the bottom 131.
  • the porous material mold 110 has a size smaller than the internal volume of the metallic material enclosure 130.
  • the volume present between the porous material mold and the metal material enclosure is filled by a porous medium 120 to allow the circulation and evacuation of the liquid phase of the slip.
  • the porous medium 120 may consist in particular of sand, foam or granular material.
  • any type of foam, rigid or flexible, which has a porosity network for the passage of the liquid medium of the slip can be used as a porous medium.
  • any type of granular material having a stacking rate compatible with the passage of the liquid phase of the slip can be used as a porous medium.
  • the porous medium 120 comprises a conduit 121 in communication with both the injection port 134 of the enclosure 130 and the channel 1111 of the porous material mold 110 in order to allow the injection of the slip into the fibrous texture 10.
  • the void volume present in the porous medium is preferably greater than the amount or volume of the liquid phase of the slip that is to be injected into the fiber texture. This makes it possible to evacuate the entire liquid phase from the walls of the porous mud when a vacuum draw is made at the level of the vent (s). and / or when applying the pressure in the injection port.
  • the mold of porous material has external dimensions equivalent to the internal volume of the enclosure.
  • the mold of porous material is directly in contact with the internal walls of the enclosure.
  • the porous material mold is preferably dimensioned so that it has a void volume greater than the quantity or volume of the liquid phase of the slip which must be injected into the fibrous texture. This optimizes the filling of the fibrous texture when a vacuum draw is made at the evacuation vent or vents.
  • the mold of porous material 110 may for example be made from a porous resin.
  • the portions 111 and 112 of the mold 110 are themselves molded by injecting and polymerizing a resin between a mold and a counter-mold, the mold having a shape corresponding to the impressions 1110 and 1120 of the parts 111 and 112 if said fingerprints are identical.
  • a different mold is used for each part 111 and 112 so as to form in each of them a different imprint.
  • the characteristics of the porous network within the mold particularly in terms of pore size and porosity level, can be controlled by adjusting the polymerization cycle (s) depending on the nature of the resin used. As a result, there are as many choices of porosity networks as there are porous resins available.
  • the following porous resins may be used for producing the mold made of porous material:
  • the mold 110 can be made from a rigid porous material such as microporous polytetrafluoroetylene (PTFE) as the "microporous PTFE" products sold by the company Porex® .
  • PTFE microporous polytetrafluoroetylene
  • the PM 0130 material sold by the company Porex® having a pore size of between 1 ⁇ m and 2 ⁇ m can be used to produce the mold 110.
  • the cavities 1110 and 1120 are each respectively produced by thermoforming or machining the porous material.
  • the mold 110 can also be made with plaster.
  • the mold made of porous material 110 allows the liquid medium of the slip to be drained outside the fibrous texture 10 and evacuated through the vent 135 due to the application of a pressure gradient between the vent 135 and the injection port 134.
  • the average pore size (D50) of the porous material mold may for example be between 1 ⁇ m and 10 ⁇ m.
  • Figure 3 illustrates the configuration obtained during the injection of a slurry 150 and the drainage of the medium or liquid phase thereof.
  • a vacuum was produced in the mold of porous material to then fill the fibrous texture with the slip to the maximum.
  • the vacuum draw can be carried out by pumping at the exhaust vent 135.
  • the slurry 150 has been injected under pressure through the injection port 121 and transported to the fibrous texture 10 via the conduit 121 and the channel 1111 so as to penetrate into the fibrous texture 10.
  • the refractory particles 1500 in the slurry 150 are intended to allow the formation of a refractory ceramic matrix in the porosity of the fibrous texture 10.
  • This refractory ceramic matrix may, in an exemplary embodiment, be a refractory oxide matrix.
  • the slip may for example be a suspension of an alumina powder in water.
  • the alumina powder used may be an alpha alumina powder marketed by Baikowski under the name SM8. More generally, the slip may be a suspension comprising refractory ceramic particles having a mean particle size of between 0.1 ⁇ m and 10 ⁇ m.
  • the volume content of refractory ceramic particles in the slip may, before injection, be between 15% and 40%.
  • the refractory ceramic particles may comprise a material chosen from: alumina, mullite, silica, aluminosilicates, aluminophosphates, carbides, borides, nitrides and mixtures of such materials.
  • the refractory ceramic particles may, in addition, be mixed with particles of alumina, zirconia, aluminosilicate, a rare earth oxide, rare earth silicate (which may example be used in environmental or thermal barriers) or any other load to functionalize the piece of composite material to obtain such as carbon black, graphite or silicon carbide.
  • the medium or liquid phase of the slip may, for example, comprise an aqueous phase having an acidic pH (i.e. a pH below 7) and / or an alcoholic phase comprising for example ethanol.
  • the slip may comprise an acidifier such as nitric acid and the pH of the liquid medium may for example be between 1.5 and 4.
  • the slip may, in addition, comprise an organic binder such as polyvinyl alcohol (PVA which is especially soluble in water.
  • PVA polyvinyl alcohol
  • the refractory ceramic particles 1500 are present after injection of the slip 150 into the porosity of the fibrous texture 10.
  • the arrows 1501 represent the movement of the medium or liquid phase 1501 of the slip drained by the mold made of material porous 110.
  • a pumping P may, in addition, be performed at the outlet vent 135 during drainage, for example by means of a primary vacuum pump.
  • the realization of such pumping improves the drainage and dry more quickly the fibrous texture.
  • the porous material mold 110 makes it possible to retain in the fibrous texture 10 the refractory ceramic particles 1500 initially present in the slip and that all or some of these particles are deposited by filtration in the fibrous texture 10.
  • the medium or liquid phase 1501 of the slip can be drained out of the fibrous texture 10 in all directions, with the liquid medium or phase 1501 then flowing in the porous medium 120 until at the vent 135 through which it is discharged from the injection tool 100.
  • This drainage of the liquid medium in all directions makes it possible to promote a deposit by homogeneous and dense sedimentation of the refractory ceramic particles 1500 in the fibrous texture 10 and to obtain, therefore, a high matrix volume ratio in the final piece.
  • the mold of porous material 110 being held in a rigid material enclosure 130, it can withstand the injection pressures of the slip loaded in the texture and those exerted by the pumping for the evacuation of the liquid medium of the slip.
  • a fibrous preform 15 is obtained which is filled with refractory ceramic particles, for example particles of refractory ceramic oxide or alumina.
  • the preform obtained is then dried and demolded, the preform can retain after demolding the shape adopted in the mold cavity.
  • the preform is then subjected to a sintering heat treatment, for example in air at a temperature of between 1000 ° C. and 1200 ° C. in order to sinter the refractory ceramic particles and thus form a refractory ceramic matrix in the porosity of the fibrous preform.
  • a piece of composite material is thus obtained, for example a part made of composite Oxide / Oxide material, provided with a fibrous reinforcement formed by the fibrous preform and having a high matrix volume ratio with a homogeneous distribution of the refractory ceramic matrix in all the fibrous reinforcement.
  • a piece of CMC composite material other than Oxide / Oxide can be obtained in the same way by producing the fibrous texture with silicon carbide and / or carbon fibers and by using a slurry loaded with carbide particles (for example SiC ), boride (for example TiB 2 ) or nitride (for example Si 3 N 4 ).
  • carbide particles for example SiC
  • boride for example TiB 2
  • nitride for example Si 3 N 4

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Woven Fabrics (AREA)

Abstract

Un procédé de fabrication d'une pièce en matériau composite comprend les étapes suivantes : - injection sous pression d'une barbotine (150) contenant une poudre de particules céramiques réfractaires (1500) dans une texture fibreuse, - drainage du liquide (1501) de la barbotine (150) ayant traversé la texture fibreuse (10) et rétention de la poudre de particules céramiques réfractaires à l'intérieur de ladite texture de manière à obtenir une préforme fibreuse (15) chargée de particules céramiques réfractaires (1500). L'outillage d'injection comprend un moule en matériau poreux (110) comportant un logement interne (113) dans lequel la texture fibreuse est placée, la barbotine (150) étant injectée dans la texture fibreuse (10) par au moins un port d'injection (134) présent sur l'outillage d'injection et débouchant dans le logement interne (113) du moule en matériau poreux (110). L'outillage comprend en outre une enceinte en matériau rigide (130) dans laquelle le moule en matériau poreux (110) est maintenu pendant l'injection sous pression de la barbotine (150) et le drainage du liquide (1501) de ladite barbotine, le liquide (1501) de la barbotine étant évacué par au moins un évent (135) présent sur l'enceinte en matériau rigide.

Description

Procédé de fabrication d'une pièce en matériau composite par injection d'une barbotine chargée dans un moule poreux
Arrière-plan de l'invention
La présente invention concerne un procédé de fabrication d'une pièce en matériau composite notamment de type oxyde/oxyde ou à matrice céramique (CMC), c'est-à-dire comportant un renfort fibreux formé à partir de fibres en matériau céramique réfractaire densifié par une matrice également en matériau céramique réfractaire.
Les pièces en matériau composite oxyde/oxyde sont généralement élaborées par drapage dans un moule d'une pluralité de strates fibreuses réalisées à partir de fibres en oxyde réfractaire, les strates étant chacune préalablement imprégnées avec une barbotine chargée de particules d'oxyde réfractaire. L'ensemble des strates ainsi disposées est ensuite compacté à l'aide d'un contre-moule ou d'une bâche à vide et un passage en autoclave. La préforme chargée ainsi obtenue est alors soumise à un frittage afin de former une matrice en oxyde réfractaire dans la préforme et obtenir une pièce en matériau composite oxyde/oxyde. Cette technique peut être également utilisée pour réaliser des pièces en matériau composite à matrice céramique (CMC). Dans ce cas, les strates fibreuses sont réalisées à partir de fibres de carbure de silicium (SiC) ou de carbone et sont imprégnées avec une barbotine chargée de particules de carbure (ex. SiC), de borure (ex. TiB2) ou de nitrure (ex. Si3N4).
Cependant, ce type de procédé d'élaboration ne permet de réaliser que des pièces en matériau composite oxyde/oxyde ou CMC ayant une faible épaisseur et un renfort fibreux bidimensionnel (2D). Les caractéristiques mécaniques de ces types de matériau composite restent limitées dans certaines directions. En particulier, ces matériaux ont une faible tenue au délaminage et ne résistent pas bien aux efforts de cisaillement.
La réalisation de textures fibreuses obtenues par tissage tridimensionnel entre des fils continus de chaîne et de trame permet d'augmenter la résistance mécanique du matériau et en particulier sa résistance au délaminage. Dans ce cas et également pour des textures fibreuses 2D de forte épaisseur, seuls les procédés utilisant un gradient de pression, comme les procédés de type infusion, moulage par injection dits « RTM » ou aspiration de poudre submicronique dits « APS », permettent de faire pénétrer une barbotine chargée dans la texture fibreuse dont l'épaisseur peut atteindre plusieurs dizaines de millimètres selon les applications visées.
Cependant, le gradient de pression entre la partie de la texture fibreuse par laquelle la barbotine chargée est injectée et l'autre partie de la texture fibreuse par laquelle la phase liquide de la barbotine doit être évacuée est difficile à contrôler sur l'ensemble de la texture fibreuse. Si la pression n'est pas équilibrée sur l'ensemble de la surface de la texture fibreuse en regard du fond du moule comportant un ou plusieurs évents d'évacuation par lequel ou lesquels la phase liquide de la barbotine doit être évacuée, il se crée une différence de pression entre les zones proches des évents et les zones plus éloignées. Dans ce cas, l'évacuation de la phase liquide est délicate car celle-ci doit être retirée de la texture sans perturber la répartition des particules solides (oxyde réfractaire, carbure, borure, nitrure, etc.) déposées via la barbotine. En effet, lors de son évacuation, la phase liquide peut emmener avec elle des particules et/ou modifier la répartition de ces dernières dans la texture fibreuse et conduire à l'apparition d'importantes porosités dans le matériau final en raison du manque de matrice à certains endroits.
Objet et résumé de l'invention
La présente invention a pour but de remédier aux inconvénients précités et de proposer une solution qui permet de réaliser des pièces en matériau composite notamment de type oxyde/oxyde ou CMC à partir d'une texture fibreuse épaisse et/ou de géométrie complexe, et ce de manière rapide et fiable tout en permettant un bon contrôle du dépôt et de la répartition des particules solides dans la texture fibreuse afin d'obtenir un matériau avec un taux de macroporosité très faible.
A cet effet, l'invention propose un procédé de fabrication d'une pièce en matériau composite comprenant les étapes suivantes :
- formation d'une texture fibreuse à partir de fibres céramique réfractai res,
- placement de la texture fibreuse dans un outillage d'injection, - injection sous pression d'une barbotine contenant une poudre de particules céramique réfractaires dans la texture fibreuse,
- drainage du liquide de la barbotine ayant traversé la texture fibreuse et rétention de la poudre de particules céramiques réfractaires à l'intérieur de ladite texture de manière à obtenir une préforme fibreuse chargée de particules réfractaires,
- séchage de la préforme fibreuse,
- démoulage de la préforme fibreuse, et
- frittage des particules céramiques réfractaires présentes dans la préforme fibreuse afin de former une matrice réfractai re dans ladite préforme,
caractérisé en ce que l'outillage d'injection comprend un moule en matériau poreux comportant un logement interne dans lequel la texture fibreuse est placée, la barbotine étant injectée dans la texture fibreuse par au moins un port d'injection présent sur l'outillage d'injection et débouchant dans le logement interne du moule en matériau poreux, l'outillage comprenant en outre une enceinte en matériau rigide dans laquelle le moule en matériau poreux est maintenu pendant l'injection sous pression de la barbotine et le drainage du liquide de ladite barbotine, le liquide de la barbotine étant évacué par au moins un évent présent sur l'enceinte en matériau rigide.
En utilisant un moule en matériau poreux, le procédé de l'invention permet d'éliminer la phase liquide de la barbotine introduite dans la texture fibreuse sans éliminer les particules solides réfractaires également présentes dans la texture. En outre, le moule en matériau poreux entourant toute la texture fibreuse, le liquide de la barbotine peut être drainé hors de ladite texture dans toutes les directions, c'est-à-dire en tout point de l'interface entre la texture et le moule. Cela permet de favoriser un dépôt par sédimentation homogène et dense des particules céramiques réfractaires dans la texture fibreuse et d'obtenir, par conséquent, un taux volumique de matrice élevé dans la pièce finale en matériau composite et d'augmenter de manière significative le temps de drainage. La pièce en matériau composite présente, par conséquent, des propriétés mécaniques améliorées.
En outre, le moule en matériau poreux étant maintenu dans une enceinte en matériau rigide, celui-ci peut résister aux pressions d'injection de la barbotine chargée dans la texture ainsi qu'à celles exercées par un pompage pour l'évacuation du milieu liquide de la barbotine.
Selon une caractéristique particulière du procédé de l'invention, le moule en matériau poreux présente une taille inférieure au volume interne de l'enceinte en matériau rigide, le volume présent entre le moule en matériau poreux et l'enceinte en matériau rigide étant comblé par un milieu compact poreux. L'utilisation d'un milieu poreux facilite notamment l'intégration du moule en matériau poreux dans l'outillage d'injection en épousant tout type de forme de moule même complexe tout en assurant un bon transfert des efforts entre le moule et l'enceinte de l'outillage d'injection. Ce transfert permet de s'assurer la montée en pression sans déformation du moule poreux. Les problèmes d'étanchéité sont ainsi considérablement diminués. Par ailleurs, la présence d'un milieu poreux autour du moule permet de mieux évacuer le liquide de la barbotine hors du moule en matériau poreux, facilitant ainsi son nettoyage après chaque injection et, par conséquent, sa réutilisation.
Le volume de vide présent dans le milieu poreux est de préférence supérieur au volume de la phase liquide de la barbotine injectée dans la texture fibreuse.
Le milieu poreux peut être constitué notamment de sable d'une mousse, ou de tout matériau granulaire ayant un taux d'empilement permettant de ménager un logement ou passage au filtrat
Selon un aspect particulier du procédé de l'invention, le moule peut être en un matériau choisi parmi au moins un des matériaux suivants : résine poreuse et plâtre.
Lors de l'étape de la formation de la texture fibreuse, les fils peuvent être tissés suivant un tissage tridimensionnel ou multicouche. La texture fibreuse peut être également réalisée par empilement de strates tissées suivant un tissage bidimensionnel, la texture présentant une épaisseur d'au moins 0,5 mm et de préférence d'au moins 1 mm.
Les fils de la préforme peuvent être des fils formés de fibres constituées d'un ou plusieurs des matériaux suivants : l'alumine, la mullite, la silice, un aluminosilicate, un borosiiicate, du carbure de silicium et du carbone. Les particules céramiques réfractaires peuvent être en un matériau choisi parmi : l'alumine, la mullite, la silice, un aluminosilicate, un aluminophosphate, la zircone, un carbure, un borure et un nitrure.
Dans un exemple de réalisation, la pièce en matériau composite obtenue peut constituer une aube de turbomachine.
Brève description des dessins
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels :
- la figure 1 est une vue schématique en perspective éclatée d'un outillage d'injection conformément à un mode de réalisation de l'invention,
- la figure 2 est une vue schématique en coupe montrant l'outillage de la figure 1 fermé avec une texture fibreuse positionnée dans celui-ci,
- la figure 3 est une vue schématique en coupe montrant les étapes d'imprégnation d'une texture fibreuse avec une barbotine chargée dans l'outillage de la figure 2.
Description détaillée de modes de réalisation
Le procédé de fabrication d'une pièce en matériau composite notamment de type oxyde/oxyde ou CMC conforme à la présente invention débute par la réalisation d'une texture fibreuse destinée à former le renfort de la pièce.
La structure fibreuse est réalisée de façon connue par tissage au moyen d'un métier à tisser de type jacquard sur lequel on a disposé un faisceau de fils de chaîne ou torons en une pluralité de couches, les fils de chaîne étant liés par des fils de trame ou inversement. La texture fibreuse peut être réalisée par empilement de strates ou plis obtenus par tissage bidimensionnel (2D). La texture fibreuse peut également être réalisée directement en une seule pièce par tissage tridimensionnel (3D). Par « tissage bidimensionnel », on entend ici un mode de tissage classique par lequel chaque fil de trame passe d'un côté à l'autre de fils d'une seule couche de chaîne ou inversement. Le procédé de l'invention est particulièrement adapté pour permettre l'introduction d'une barbotine chargée dans des textures fibreuses 2D, à savoir des textures obtenues par empilement de strates ou plis 2D, d'épaisseur importante, c'est-à-dire des structures fibreuses 2D ayant une épaisseur d'au moins 0,5 mm, de préférence au moins 1 mm.
Par « tissage tridimensionnel » ou « tissage 3D » ou encore « tissage multicouche », on entend ici un mode de tissage par lequel certains au moins des fils de trame lient des fils de chaîne sur plusieurs couches de fils de chaîne ou inversement suivant un tissage correspondant à une armure de tissage qui peut être notamment choisie parmi une des armures suivantes : interlock, multi-toile, multi-satin et multi-sergé.
Par « armure ou tissu interlock », on entend ici une armure de tissage 3D dont chaque couche de fils de chaîne lie plusieurs couches de fils de trame avec tous les fils de la même colonne de chaîne ayant le même mouvement dans le plan de l'armure.
Par « armure ou tissu multi-toile », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type toile classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles.
Par « armure ou tissu multi-satin », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type satin classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles.
Par « armure ou tissu multi-sergé », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type sergé classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles.
Les textures 3D présentent une géométrie complexe dans laquelle il est difficile d'introduire et de répartir de manière homogène des particules solides en suspension. Le procédé de l'invention est également très bien adapté pour l'introduction d'une barbotine chargée dans des textures fibreuses tissées 3D.
Les fils utilisés pour tisser la texture fibreuse destinée à former le renfort fibreux de la pièce en matériau composite peuvent être notamment formés de fibres constituées d'un des matériaux suivants: l'alumine, la mullite, la silice, un aluminosilicate, un borosilicate, du carbure de silicium, du carbone ou d'un mélange de plusieurs de ces matériaux.
Une fois la texture fibreuse réalisée, celle-ci est placée dans un outillage d'injection conforme à l'invention qui permet, comme expliqué ci- après, de déposer des particules réfractaires au sein de la texture fibreuse. A cet effet et comme illustrée sur les figures 1 et 2, une texture fibreuse 10 est placée dans un outillage d'injection 100. Dans l'exemple décrit ici, la texture fibreuse 10 est réalisée suivant une des techniques définies ci-avant (empilement strates 2D ou tissage 3D) avec des fils d'alumine Nextel 610™. La texture fibreuse 10 est ici destinée à former le renfort fibreux d'une aube en matériau composite oxyde/oxyde.
L'outillage 100 comprend un moule en matériau poreux 110 formé en deux parties 111 et 112 comportant chacune respectivement une empreinte 1110 et une empreinte 1120. Les empreintes 1110 et 1120 délimitent une cavité de moulage 113 (figure 2) lorsque les deux parties 111 et 112 sont assemblées l'une contre l'autre, cavité dans laquelle la texture fibreuse est destinée à être placée. Les empreintes 1110 et 1120 présentent une forme correspondant à la forme de la pièce à fabriquer à partir de la texture fibreuse. Les deux parties 111 et 112 servent à dimensionner la préforme et donc la pièce à obtenir ainsi qu'à ajuster le taux de fibres dans la pièce à obtenir.
Dans l'exemple décrit ici, la partie 111 du moule en matériau poreux 110 comporte un canal 1111 pour l'injection d'une barbotine chargée dans la texture fibreuse comme expliqué ci-après en détails.
L'outillage d'injection 100 comprend également une enceinte en matériau rigide 130 dans laquelle le moule en matériau poreux 110 est maintenu. L'enceinte 130 comprend un fond 131, une paroi latérale 132 solidaire du fond 131 et un couvercle 133. L'enceinte 130 peut être réalisée avec tout type de matériau présentant une rigidité suffisante pour résister aux pressions d'injection de la barbotine et au pompage (tirage du vide) pour l'évacuation de la phase liquide de celle-ci. L'enceinte peut être notamment réalisée en matériau métallique ou plastique.
Le couvercle 133 comporte un port d'injection 134 au travers duquel la barbotine est destinée à être injectée afin de pénétrer dans la porosité de ia texture fibreuse 10. Dans l'exemple illustré aux figures 1 et 2, la barbotine est destinée à être injectée au travers d'un port d'injection 134 débouchant dans la cavité de moulage 113. Toutefois, on ne sort pas du cadre de l'invention lorsque la barbotine est injectée au travers d'une pluralité de ports d'injection débouchant dans la cavité de moulage.
L'enceinte 130 comporte un unique évent d'évacuation 135 du milieu liquide de la barbotine, présent ici sur la paroi latéral 132 au voisinage du fond 131. Bien entendu, on ne sort pas du cadre de l'invention lorsqu'une pluralité d'évents de sortie est mise en uvre à différents endroits de l'enceinte.
Dans le mode de réalisation décrit ici, le moule en matériau poreux 110 présente une taille inférieure au volume interne de l'enceinte en matériau métallique 130. Dans ce cas, le volume présent entre le moule en matériau poreux et l'enceinte en matériau métallique est comblé par un milieu poreux 120 afin de permettre la circulation et l'évacuation de la phase liquide de la barbotine. Le milieu poreux 120 peut être constitué notamment par du sable une mousse, ou un matériau granulaire. Concernant la mousse, tout type de mousse, rigide ou souple, qui présente un réseau de porosité permettant le passage du milieu liquide de la barbotine peut être utilisé comme milieu poreux. De même, tout type de matériau granulaire ayant un taux d'empilement compatible avec le passage de la phase liquide de la barbotine peut être utilisé comme milieu poreux. Le milieu poreux 120 comporte un conduit 121 en communication à la fois avec le port d'injection 134 de l'enceinte 130 et le canal 1111 du moule en matériau poreux 110 afin de permettre l'injection de la barbotine dans la texture fibreuse 10.
Le volume de vide présent dans le milieu poreux est de préférence supérieur à la quantité ou volume de la phase liquide de ia barbotine qui doit être injectée dans la texture fibreuse. Cela permet d'évacuer la totalité de la phase liquide des parois du mouie poreux lorsqu'un tirage de vide est réalisé au niveau du ou des évents d'évacuation et/ou lors de l'application de la pression dans le port d'injection.
Selon une variante de réalisation, le moule en matériau poreux présente des dimensions externes équivalentes au volume interne de l'enceinte. Dans ce cas, le moule en matériau poreux est directement en contact avec les parois internes de l'enceinte. Dans ce cas, on dimensionne de préférence le moule en matériau poreux de manière à ce qu'il présente un volume de vide supérieur à la quantité ou volume de la phase liquide de la barbotine qui doit être injectée dans la texture fibreuse. Cela permet d'optimiser le remplissage de la texture fibreuse lorsqu'un tirage de vide est réalisé au niveau du ou des évents d'évacuation.
Le moule en matériau poreux 110 peut être par exemple réalisé à partir d'une résine poreuse. Dans ce cas, les parties 111 et 112 du moule 110 sont elles-mêmes réalisées par moulage en injectant et en polymérisant une résine entre un moule et un contre-moule, le moule présentant une forme correspondant aux empreintes 1110 et 1120 des parties 111 et 112 si lesdites empreintes sont identiques. Dans le cas contraire, on utilise un moule différent pour chaque partie 111 et 112 de manière à former dans chacune de celle-ci une empreinte différente. Les caractéristiques du réseau poreux au sein du moule, notamment en termes de taille de pores et de taux de porosité, peuvent être contrôlées en ajustant le ou les cycles de polymérisation en fonction de la nature de la résine utilisée. On dispose, par conséquent, d'autant de choix de réseaux de porosité qu'il y a de résines poreuses disponibles. A titre d'exemples non limitatifs, les résines poreuses suivantes peuvent être utilisées pour la réalisation du moule en matériau poreux :
- Gil-Resin® T avec des pores ayant une taille comprise entre 8 et 13 pm,
- Gil-Resin® F+ avec des pores ayant une taille comprise entre
4 et 7 pm,
- SamaPore avec des pores ayant une taille comprise entre 3 et
10 pm,
- Microplast Fine avec des pores ayant une taille moyenne de 7 pm. Le moule 110, ou plus précisément les parties 111 et 112 constituant le moule 110, peuvent être réalisées à partir d'un matériau poreux rigide tel que du poiytétrafluoroét ylène (PTFE) microporeux comme les produits « microporous PTFE » vendus par la société Porex®. On peut par exemple utiliser pour réaliser la moule 110, le matériau PM 0130 commercialisé par la société Porex® présentant une taille de pores comprise entre 1 pm et 2 pm. Les empreintes 1110 et 1120 sont chacune respectivement réalisées par thermoformage ou usinage du matériau poreux.
A titre d'exemple non limitatif, le moule 110 peut également être réalisé avec du plâtre.
Le moule en matériau poreux 110 permet le drainage du milieu liquide de la barbotine à l'extérieur de la texture fibreuse 10 et son évacuation par l'évent 135 du fait de l'application d'un gradient de pression entre l'évent 135 et le port d'injection 134.
A titre d'exemple, la taille moyenne des pores (D50) du moule en matériau poreux peut par exemple être comprise entre 1 pm et 10 pm.
La figure 3 illustre la configuration obtenue durant l'injection d'une barbotine 150 et le drainage du milieu ou phase liquide de celle-ci. Avant l'injection de la barbotine dans l'outillage, un tirage au vide a été réalisé au sein du moule en matériau poreux afin de remplir ensuite au maximum la texture fibreuse avec la barbotine. Le tirage au vide peut être réalisé par pompage au niveau de l'évent d'évacuation 135.
Sur la figure 3, la barbotine 150 a été injectée sous pression par le port d'injection 121 et transportée jusqu'à la texture fibreuse 10 par le conduit 121 et le canal 1111 de manière à pénétrer dans la texture fibreuse 10. Les particules réfractaires 1500 présentes dans la barbotine 150 sont destinées à permettre la formation d'une matrice céramique réfractaire dans la porosité de la texture fibreuse 10. Cette matrice céramique réfractaire peut, dans un exemple de réalisation, être une matrice d'oxyde réfractaire.
La barbotine peut par exemple être une suspension d'une poudre d'alumine dans de l'eau. La poudre d'alumine utilisée peut être une poudre d'alumine alpha commercialisée par la société Baikowski sous la dénomination SM8. Plus généralement, la barbotine peut être une suspension comportant des particules céramiques réfractaires présentant une dimension particulaire moyenne comprise entre 0,1 pm et 10 pm. La teneur volumique en particules céramiques réfractaires dans la barbotine peut, avant l'injection, être comprise entre 15% et 40%. Les particules céramiques réfractaires peuvent comporter un matériau choisi parmi : l'alumine, la mullite, la silice, les aluminosilicates, les aluminophosphates, les carbures, les borures, les nitrures et les mélanges de tels matériaux. En fonction de leur composition de base, les particules céramiques réfractaires peuvent, en outre, être mélangées avec des particules d'alumine, de zircone, d'aluminosilicate, d'un oxyde de terre rare, de silicate de terre rare (lequel peut par exemple être utilisé dans les barrières environnementales ou thermiques) ou toute autre charge permettant de fonctionnaliser la pièce en matériau composite à obtenir comme le noir de carbone, le graphite ou le carbure de silicium.
Le milieu ou phase liquide de la barbotine peut, par exemple, comporter une phase aqueuse présentant un pH acide (i.e. un pH inférieur à 7) et/ou une phase alcoolique comportant par exemple de l'éthanol. La barbotine peut comporter un acidifiant tel que de l'acide nitrique et le pH du milieu liquide peut par exemple être compris entre 1,5 et 4. La barbotine peut, en outre, comporter un liant organique comme de l'alcool polyvinylique (PVA) lequel est notamment soluble dans l'eau.
Comme illustré sur la figure 3, les particules céramiques réfractaires 1500 sont présentes après injection de la barbotine 150 dans la porosité de la texture fibreuse 10. Les flèches 1501 représentent le mouvement du milieu ou phase liquide 1501 de la barbotine drainé par le moule en matériau poreux 110.
Un pompage P peut, en outre, être réalisé au niveau de l'évent de sortie 135 durant le drainage, par exemple au moyen d'une pompe à vide primaire. La réalisation d'un tel pompage permet d'améliorer le drainage et de sécher plus rapidement la texture fibreuse.
Dans cette configuration, le moule en matériau poreux 110 permet de retenir dans la texture fibreuse 10 les particules céramiques réfractaires 1500 initialement présentes dans la barbotine et que tout ou partie de ces particules se déposent par filtration dans la texture fibreuse 10. Grâce à l'utilisation du moule en matériau poreux 110, le milieu ou phase liquide 1501 de la barbotine peut être drainé hors de la texture fibreuse 10 dans toutes les directions, le milieu ou phase liquide 1501 circulant ensuite dans le milieu poreux 120 jusqu'à l'évent 135 par lequel il est évacué hors de l'outillage d'injection 100. Ce drainage du milieu liquide dans toutes les directions permet de favoriser un dépôt par sédimentation homogène et dense des particules céramiques réfractaires 1500 dans la texture fibreuse 10 et d'obtenir, par conséquent, un taux volumique de matrice élevé dans la pièce finale.
En outre, le moule en matériau poreux 110 étant maintenu dans une enceinte en matériau rigide 130, celui-ci peut résister aux pressions d'injection de la barbotine chargée dans la texture ainsi qu'à celles exercées par le pompage pour l'évacuation du milieu liquide de la barbotine.
Une fois les étapes d'injection et de drainage effectuées, on obtient une préforme fibreuse 15 chargée de particules céramiques réfractaires, par exemple de particules d'oxyde céramique réfractaire ou d'alumine.
La préforme obtenue est ensuite séchée puis démoulée, la préforme pouvant conserver après démoulage la forme adoptée dans la cavité de moulage.
La préforme est ensuite soumise à un traitement thermique de frittage, par exemple sous air à une température comprise entre 1000°C et 1200°C afin de fritter les particules céramiques réfractaires et ainsi former une matrice céramique réfractaire dans la porosité de la préforme fibreuse. On obtient alors une pièce en matériau composite, par exemple une pièce en matériau composite Oxyde/Oxyde, munie d'un renfort fibreux formé par la préforme fibreuse et présentant un taux volumique de matrice élevé avec une répartition homogène de la matrice céramique réfractaire dans tout le renfort fibreux.
Une pièce en matériau composite CMC autre que Oxyde/Oxyde peut être obtenue de la même façon en réalisant la texture fibreuse avec des fibres de carbure de silicium et/ou de carbone et en utilisant une barbotine chargée de particules de carbure (par exemple de SiC), de borure (par exemple de TiB2) ou de nitrure (par exemple de Si3N4).

Claims

REVENDICATIONS
1. Procédé de fabrication d'une pièce en matériau composite comprenant les étapes suivantes :
- formation d'une texture fibreuse (10) à partir de fibres céramiques réfractaires,
- placement de la texture fibreuse (10) dans un outillage d'injection (110),
- injection sous pression d'une barbotine (150) contenant une poudre de particules céramiques réfractaires (1500) dans la texture fibreuse (10),
- drainage du liquide (1501) de la barbotine (150) ayant traversé la texture fibreuse (10) et rétention de la poudre de particules céramiques réfractaires à l'intérieur de ladite texture de manière à obtenir une préforme fibreuse (15) chargée de particules céramiques réfractaires (1500),
- séchage de la préforme fibreuse (15),
- démoulage de la préforme fibreuse (15), et
- frittage des particules céramiques réfractaires présentes dans la préforme fibreuse afin de former une matrice réfractaire dans ladite préforme,
caractérisé en ce que l'outillage d'injection comprend un moule en matériau poreux (110) comportant un logement interne (113) dans lequel la texture fibreuse (10) est placée, la barbotine (150) étant injectée dans la texture fibreuse (10) par au moins un port d'injection (134) présent sur l'outillage d'injection et débouchant dans le logement interne (113) du moule en matériau poreux (110), l'outillage comprenant en outre une enceinte en matériau rigide (130) dans laquelle le moule en matériau poreux (110) est maintenu pendant l'injection sous pression de la barbotine (150) et le drainage du liquide (1501) de ladite barbotine, le liquide (1501) de la barbotine étant évacué par au moins un évent (135) présent sur l'enceinte en matériau rigide.
2. Procédé selon la revendication 1, caractérisé en ce que le moule en matériau poreux (110) présente une taille inférieure au volume interne de l'enceinte en matériau rigide (130) et en ce que le volume présent entre le moule en matériau poreux et l'enceinte en matériau métallique est comblé par un milieu poreux (120).
3. Procédé selon la revendication 2, caractérisé en ce que le milieu poreux (120) est constitué au moins de sable ou d'une mousse.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le volume de vide présent dans le milieu poreux (120) est supérieure au volume de la phase liquide (1501) de la barbotine (150) injectée dans la texture fibreuse (10).
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le moule (110) est en un matériau choisi parmi un des matériaux suivants : résine poreuse et plâtre.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que, lors de l'étape de la formation de la texture fibreuse (10), les fils sont tissés suivant un tissage tridimensionnel ou multicouche.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisée en ce que les fils de la texture fibreuse (10) sont formés de fibres constituées d'un ou plusieurs des matériaux suivants : l'alumine, la mullite, la silice, un aluminosilicate, un borosilicate, du carbure de silicium et du carbone.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les particules céramiques réfractaires (1500) sont en un matériau choisi parmi : l'alumine, la mullite, la silice, un aluminosilicate, un aluminophosphate, la zircone, un carbure, un borure et un nitrure.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la pièce en matériau composite obtenue constitue une aube de turbomachine.
PCT/FR2016/052535 2015-10-05 2016-10-04 Procede de fabrication d'une piece en materiau composite ceramique par injection sous pression d'une barbotine chargee dans un moule poreux WO2017060601A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112018006792-0A BR112018006792A2 (pt) 2015-10-05 2016-10-04 método para fabricação de uma peça de material compósito.
EP16790654.4A EP3359506B1 (fr) 2015-10-05 2016-10-04 Procédé de fabrication d'une pièce en matériau composite céramique par injection sous pression d'une barbotine chargée dans un moule poreux
US15/766,206 US10954169B2 (en) 2015-10-05 2016-10-04 Process for manufacturing a ceramic composite material part by pressurized injection of a loaded slurry into a porous mould
RU2018116397A RU2721674C2 (ru) 2015-10-05 2016-10-04 Способ производства детали из композиционного керамического материала посредством инжекции под давлением наполненной суспензии в пористую форму
CA3000963A CA3000963A1 (fr) 2015-10-05 2016-10-04 Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans un moule poreux
JP2018517597A JP6878420B2 (ja) 2015-10-05 2016-10-04 多孔性型への装入スラリーの加圧注入によってセラミック複合材料部品を製造するための方法
CN201680070989.0A CN108779033B (zh) 2015-10-05 2016-10-04 用于通过将加载浆料加压注入到多孔模具中来制造陶瓷复合材料部件的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1559430 2015-10-05
FR1559430A FR3041890B1 (fr) 2015-10-05 2015-10-05 Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans un moule poreux

Publications (2)

Publication Number Publication Date
WO2017060601A1 true WO2017060601A1 (fr) 2017-04-13
WO2017060601A8 WO2017060601A8 (fr) 2017-12-21

Family

ID=55299597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052535 WO2017060601A1 (fr) 2015-10-05 2016-10-04 Procede de fabrication d'une piece en materiau composite ceramique par injection sous pression d'une barbotine chargee dans un moule poreux

Country Status (9)

Country Link
US (1) US10954169B2 (fr)
EP (1) EP3359506B1 (fr)
JP (1) JP6878420B2 (fr)
CN (1) CN108779033B (fr)
BR (1) BR112018006792A2 (fr)
CA (1) CA3000963A1 (fr)
FR (1) FR3041890B1 (fr)
RU (1) RU2721674C2 (fr)
WO (1) WO2017060601A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107266099A (zh) * 2017-06-16 2017-10-20 中国人民解放军第五七九工厂 一种航空发动机陶瓷基复合材料涡轮导向器叶片近净成型用夹具
WO2017194886A1 (fr) * 2016-05-11 2017-11-16 Safran Ceramics Pièce en matériau composite a matrice céramique
FR3071245A1 (fr) * 2017-09-21 2019-03-22 Safran Ceramics Procede d'injection d'une barbotine chargee dans une texture fibreuse
WO2019068996A1 (fr) 2017-10-03 2019-04-11 Safran Ceramics Realisation en materiau composite d'une structure a lobes de melangeur de flux
WO2020074813A1 (fr) 2018-10-12 2020-04-16 Safran Aircraft Engines Procédé de fabrication d'une pièce en matériau composite avec contrôle de conformité
CN111132954A (zh) * 2017-09-19 2020-05-08 赛峰航空陶瓷技术公司 将负载的悬浮液注入纤维织构体的方法和制造由复合材料制成的部件的方法
WO2021005282A2 (fr) 2019-07-11 2021-01-14 Safran Aircraft Engines Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
FR3098433A1 (fr) 2019-07-11 2021-01-15 Safran Aircraft Engines Procédé de fabrication d’une pièce en matériau composite par injection d’une barbotine chargée dans une texture fibreuse
FR3098434A1 (fr) 2019-07-11 2021-01-15 Safran Aircraft Engines Outillage pour l’injection d’une barbotine chargée
US11753947B2 (en) 2017-09-21 2023-09-12 Safran Ceramics Method for manufacturing a part made from CMC

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107096882B (zh) * 2017-06-13 2023-03-21 柳州智云科技有限公司 基于3d打印的铸造用模具及该模具的制备方法
US11122935B2 (en) * 2018-05-29 2021-09-21 Chun-Shyong LEE Ceramic deep-frying device capable of withstanding high temperatures and releasing far-infrared energy and method for making the same
US10780498B2 (en) * 2018-08-22 2020-09-22 General Electric Company Porous tools and methods of making the same
FR3096299B1 (fr) * 2019-05-23 2023-05-12 Safran Procédé de fabrication d’une pièce en matériau composite par injection d’une barbotine chargée dans une texture fibreuse
CN111039687B (zh) * 2019-12-13 2022-04-19 中国航空制造技术研究院 一种连续纤维增强陶瓷基复合材料无伤制孔方法
US11318642B2 (en) 2019-12-20 2022-05-03 Eaton Intelligent Power Limited Permeable wall encapsulation mold
CN112140282B (zh) * 2020-09-28 2022-02-15 中航装甲科技有限公司 一种提高硅基陶瓷型芯浆料流动性的方法
CN113458398A (zh) * 2021-06-09 2021-10-01 北京科技大学 一种注射浆料实现金属注射成形的方法
EP4144709A1 (fr) * 2021-09-01 2023-03-08 Raytheon Technologies Corporation Injection de particules contrôlée dans du tissu pour une homogénéité de microstructure améliorée dans des cmc
US12017379B2 (en) 2021-12-20 2024-06-25 Rtx Corporation Ribbonized tows for optimized improved composite performance
CN114799158B (zh) * 2022-03-23 2023-07-18 深圳艾利门特科技有限公司 一种713C-AlN-TiC多层嵌合复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2359803A1 (fr) * 1976-07-28 1978-02-24 Porcelaine Cie Nle Procede et installation pour la fabrication d'articles en porcelaine, faience, de pieces ceramiques ou analogues
FR2702475A1 (fr) * 1993-03-08 1994-09-16 Agency Ind Science Techn Procédé de fabrication de céramiques renforcées par des fibres disposées dans trois dimensions, et appareil pour mettre en Óoeuvre ce procédé.
US5436042A (en) * 1994-03-11 1995-07-25 The Carborundum Company Ceramic fiber-reinforced composite articles and their production
WO2010049961A1 (fr) * 2008-10-31 2010-05-06 Universita' Del Salento Procédé de production de composants fabriqués avec un matériau composite à matrice céramique
EP2357070A1 (fr) * 2010-02-12 2011-08-17 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Procédé de moulage par injection pour résines de condensation et dispositif pour le procédé
WO2016102839A1 (fr) * 2014-12-23 2016-06-30 Snecma Procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791121B2 (ja) * 1993-03-08 1995-10-04 工業技術院長 3次元繊維強化セラミックス基複合材料の製造法及びその装置
CA2268019C (fr) * 1997-08-11 2007-03-13 Volvo Aero Corporation Procede de fabrication d'un materiau composite ceramique
GB9827889D0 (en) 1998-12-18 2000-03-29 Rolls Royce Plc A method of manufacturing a ceramic matrix composite
JP4850352B2 (ja) * 2001-06-06 2012-01-11 イビデン株式会社 大型黒鉛材及びその製造方法
CA2434447A1 (fr) * 2003-06-27 2004-12-27 Eduardo Ruiz Fabrication des composites par un procede d'injection flexible au moyen d'un moule a double chambre ou a chambres multiples
WO2010057502A2 (fr) * 2008-11-24 2010-05-27 Vestas Wind Systems A/S Aube d’éolienne comprenant une matière de liaison renforcée avec des particules
CN101880172B (zh) * 2010-06-13 2013-01-16 东华大学 三维机织结构纤维增强陶瓷基复合材料的制备方法
RU2516628C1 (ru) * 2012-12-28 2014-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Способ изготовления деталей из композиционных материалов
FR3014008B1 (fr) * 2013-12-04 2016-10-28 Snecma Procede d'impregnation d'une preforme fibreuse et dispositif pour la mise en œuvre de ce procede

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2359803A1 (fr) * 1976-07-28 1978-02-24 Porcelaine Cie Nle Procede et installation pour la fabrication d'articles en porcelaine, faience, de pieces ceramiques ou analogues
FR2702475A1 (fr) * 1993-03-08 1994-09-16 Agency Ind Science Techn Procédé de fabrication de céramiques renforcées par des fibres disposées dans trois dimensions, et appareil pour mettre en Óoeuvre ce procédé.
US5436042A (en) * 1994-03-11 1995-07-25 The Carborundum Company Ceramic fiber-reinforced composite articles and their production
WO2010049961A1 (fr) * 2008-10-31 2010-05-06 Universita' Del Salento Procédé de production de composants fabriqués avec un matériau composite à matrice céramique
EP2357070A1 (fr) * 2010-02-12 2011-08-17 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Procédé de moulage par injection pour résines de condensation et dispositif pour le procédé
WO2016102839A1 (fr) * 2014-12-23 2016-06-30 Snecma Procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10988417B2 (en) 2016-05-11 2021-04-27 Safran Ceramics Composite material part
WO2017194886A1 (fr) * 2016-05-11 2017-11-16 Safran Ceramics Pièce en matériau composite a matrice céramique
CN107266099A (zh) * 2017-06-16 2017-10-20 中国人民解放军第五七九工厂 一种航空发动机陶瓷基复合材料涡轮导向器叶片近净成型用夹具
CN111132954B (zh) * 2017-09-19 2022-07-29 赛峰航空陶瓷技术公司 将负载的悬浮液注入纤维织构体的方法和制造由复合材料制成的部件的方法
US11655193B2 (en) 2017-09-19 2023-05-23 Safran Ceramics Method for injecting a loaded suspension into a fibrous texture and method for manufacturing a part made of composite material
CN111132954A (zh) * 2017-09-19 2020-05-08 赛峰航空陶瓷技术公司 将负载的悬浮液注入纤维织构体的方法和制造由复合材料制成的部件的方法
US11753947B2 (en) 2017-09-21 2023-09-12 Safran Ceramics Method for manufacturing a part made from CMC
JP2020534243A (ja) * 2017-09-21 2020-11-26 サフラン セラミクス 充填されたスラリーを繊維質テクスチャに注入する方法
WO2019058054A1 (fr) * 2017-09-21 2019-03-28 Safran Ceramics Procédé d'injection d'une barbotine chargée dans une texture fibreuse
FR3071245A1 (fr) * 2017-09-21 2019-03-22 Safran Ceramics Procede d'injection d'une barbotine chargee dans une texture fibreuse
US11255203B2 (en) 2017-09-21 2022-02-22 Safran Ceramics Method for injecting a loaded slurry into a fibrous texture
WO2019068996A1 (fr) 2017-10-03 2019-04-11 Safran Ceramics Realisation en materiau composite d'une structure a lobes de melangeur de flux
US11667089B2 (en) 2017-10-03 2023-06-06 Safran Ceramics Production in composite material of a lobed structure of a flow mixer
WO2020074813A1 (fr) 2018-10-12 2020-04-16 Safran Aircraft Engines Procédé de fabrication d'une pièce en matériau composite avec contrôle de conformité
CN113242846A (zh) * 2018-10-12 2021-08-10 赛峰飞机发动机公司 具有合规性控制的由复合材料制造零件的方法
CN113242846B (zh) * 2018-10-12 2022-07-19 赛峰飞机发动机公司 具有合规性控制的由复合材料制造零件的方法
FR3087194A1 (fr) 2018-10-12 2020-04-17 Safran Aircraft Engines Procede de fabrication d'une piece en materiau composite avec controle de conformite
US11891342B2 (en) 2018-10-12 2024-02-06 Safran Aircraft Engines Method for manufacturing a part made of composite material with compliance control
WO2021005282A3 (fr) * 2019-07-11 2021-03-25 Safran Aircraft Engines Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
FR3098434A1 (fr) 2019-07-11 2021-01-15 Safran Aircraft Engines Outillage pour l’injection d’une barbotine chargée
FR3098433A1 (fr) 2019-07-11 2021-01-15 Safran Aircraft Engines Procédé de fabrication d’une pièce en matériau composite par injection d’une barbotine chargée dans une texture fibreuse
WO2021005282A2 (fr) 2019-07-11 2021-01-14 Safran Aircraft Engines Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse

Also Published As

Publication number Publication date
EP3359506A1 (fr) 2018-08-15
US20180297901A1 (en) 2018-10-18
FR3041890A1 (fr) 2017-04-07
FR3041890B1 (fr) 2017-11-24
JP6878420B2 (ja) 2021-05-26
EP3359506B1 (fr) 2022-02-09
RU2721674C2 (ru) 2020-05-21
BR112018006792A2 (pt) 2018-10-16
US10954169B2 (en) 2021-03-23
CA3000963A1 (fr) 2017-04-13
WO2017060601A8 (fr) 2017-12-21
CN108779033B (zh) 2021-08-24
RU2018116397A (ru) 2019-11-08
CN108779033A (zh) 2018-11-09
JP2018537378A (ja) 2018-12-20
RU2018116397A3 (fr) 2020-03-23

Similar Documents

Publication Publication Date Title
EP3359506B1 (fr) Procédé de fabrication d'une pièce en matériau composite céramique par injection sous pression d'une barbotine chargée dans un moule poreux
FR3050454B1 (fr) Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
EP3237660B1 (fr) Procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires
CA2972172C (fr) Procede de fabrication d'une piece en materiau composite
EP3237358B1 (fr) Procédé de fabrication d'une pièce réfractaire en matériau composite
CA2971426A1 (fr) Procede de fabrication d'une piece en materiau composite presentant une ou plusieurs variations locales d'epaisseur
EP3996889B1 (fr) Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
EP3863992B1 (fr) Procédé de fabrication d'une pièce en matériau composite avec contrôle de conformité
FR3098433A1 (fr) Procédé de fabrication d’une pièce en matériau composite par injection d’une barbotine chargée dans une texture fibreuse
WO2020234550A1 (fr) Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
FR3098434A1 (fr) Outillage pour l’injection d’une barbotine chargée
WO2022079379A1 (fr) Texture fibreuse non tissee avec embuvage
EP4355542A1 (fr) Procede d'injection de poudres ceramiques avec filtre cree in situ dans la preforme fibreuse
FR3114990A1 (fr) Texture fibreuse comprenant des plis unidirectionnels avec des mèches espacées

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16790654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3000963

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15766206

Country of ref document: US

Ref document number: 2018517597

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018006792

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2018116397

Country of ref document: RU

Ref document number: 2016790654

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112018006792

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180404