WO2017060584A1 - Aeronef avec un ensemble propulsif comprenant un doublet d'helices a l'arriere du fuselage - Google Patents

Aeronef avec un ensemble propulsif comprenant un doublet d'helices a l'arriere du fuselage Download PDF

Info

Publication number
WO2017060584A1
WO2017060584A1 PCT/FR2016/052441 FR2016052441W WO2017060584A1 WO 2017060584 A1 WO2017060584 A1 WO 2017060584A1 FR 2016052441 W FR2016052441 W FR 2016052441W WO 2017060584 A1 WO2017060584 A1 WO 2017060584A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear train
differential
fuselage
epicyclic gear
shafts
Prior art date
Application number
PCT/FR2016/052441
Other languages
English (en)
Inventor
Pierre-Alain Jean Philippe REIGNER
Antoine Jean-Philippe Beaujard
Augustin Marc Michel CURLIER
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Priority to GB1805438.7A priority Critical patent/GB2557817B/en
Priority to US15/764,302 priority patent/US10351252B2/en
Publication of WO2017060584A1 publication Critical patent/WO2017060584A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/46Arrangements of, or constructional features peculiar to, multiple propellers
    • B64C11/48Units of two or more coaxial propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/10Aircraft characterised by the type or position of power plants of gas-turbine type 
    • B64D27/14Aircraft characterised by the type or position of power plants of gas-turbine type  within, or attached to, fuselages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
    • B64D35/04Transmitting power from power plants to propellers or rotors; Arrangements of transmissions characterised by the transmission driving a plurality of propellers or rotors
    • B64D35/06Transmitting power from power plants to propellers or rotors; Arrangements of transmissions characterised by the transmission driving a plurality of propellers or rotors the propellers or rotors being counter-rotating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
    • B64D35/08Transmitting power from power plants to propellers or rotors; Arrangements of transmissions characterised by the transmission being driven by a plurality of power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/072Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with counter-rotating, e.g. fan rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/05Multiple interconnected differential sets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type

Definitions

  • the present invention relates to the aeronautical field in which the aircraft are propelled at least in part by a set of fan rotors arranged at the rear in the extension of the fuselage. Blower rotors are driven by engines such as turbojets.
  • an aircraft is propelled by a propulsion system with counter-rotating fans, integrated in the rear of the fuselage of the aircraft, in the extension thereof.
  • the propulsion system comprises two gas generators which feed a power turbine having two counter-rotating rotors for driving two fan rotors, the blowers being arranged downstream of the gas generators.
  • Gas generators are gas turbine engines incorporated in the fuselage with separate air intakes that each feed a gas generator.
  • the diameter of the nacelle wrapping the fan rotors is, according to this embodiment, substantially equal to that of the largest section of the fuselage of the aircraft.
  • This nacelle integrates the power turbine.
  • the maintenance of the ability to generate thrust may not be ensured.
  • a total obstruction of the hot internal flow by the debris can occur. This would result in the total loss of thrust and a high pumping probability of the gas generators due to the sudden change in flow section.
  • the installation mode of gas generators fully integrated into the fuselage assumes an arrangement of air inlets to not feed the generators with the boundary layer developed on the fuselage of the aircraft; the latter having a speed substantially less than the flight speed, is detrimental to the thermal efficiency of the gas generators.
  • Patent FR 1 339 141 discloses a propulsion device disposed rearward in the tip of the fuselage so as to absorb the boundary layer and comprising a helix disposed in a channel downstream of the fuselage tip, supplied with air on the along the fuselage and driven by turbojets attached to the fuselage at the rear.
  • the drive is provided either by a mechanical transmission or by the gas flow from the engines.
  • the object of the present invention is to provide a solution adapted to the type of aircraft and propeller architecture which has just been described, in which a pair of propellers is available so that the assembly operates optimally independently of the different flight conditions.
  • the problem posed concerns the drive of the pair of propellers by a set of engines likely to have variations in speeds and torques within a certain margin of operation.
  • An object of the invention is also to supply the motors without ingestion of fuselage boundary layer or flow distortion, to maximize the thermal efficiency. It is also a question of maintaining the capacity to feed the thruster with the maximum air coming from the boundary layer in order to maximize the propulsive efficiency.
  • the present invention also aims to maintain a thrust capacity in case of major failure of the propellant module. Presentation of the invention
  • an aircraft comprising a fuselage, a thruster at the rear end of the fuselage and at least two engines each driving a motor shaft, the thruster comprising at least one propeller driven mechanically by the motor shafts.
  • the aircraft is characterized in that the thruster comprises two propellers, each of the propellers being driven by a propeller shaft, the two propeller shafts being driven by the propellers.
  • motor shafts via a transmission mechanism comprising first and second differential epicyclic gear trains, the first differential epicyclic gear train having an input connected to the output of the second differential epicyclic gear train and the second differential gear train comprising two inputs, each of said two inputs being mechanically connected to one of said motor shafts.
  • the motor shafts extend radially with respect to the axis of the fuselage.
  • the motor shafts are arranged in planes substantially perpendicular to the axis of the fuselage and different from each other.
  • the first differential epicyclic gear train comprises an input and two outputs, the input being mechanically connected to the two drive shafts and each of the two outputs driving a propeller shaft.
  • the first differential epicyclic gear train comprises an input sun gear and an output gear crown and gate.
  • the input of the first differential gear train is connected to the output of a second differential epicyclic gear train, the second gear train differential gear comprising two inputs, each of said two inputs being mechanically connected to one of said motor shafts.
  • this system makes it possible to supply power from two sources with differences in speeds or torques supplied, potential but relatively low, to a single output shaft.
  • This shaft is then linked to a differential train to distribute the torque on the two propellers.
  • the axis of rotation of the input of the first differential epicyclic gear train is coaxial with the axis of rotation of the output of the second differential epicyclic gear train.
  • the second differential epicyclic gear train comprises a coaxial satellite carrier and integral with the output of the second differential epicyclic gear train, the satellites of the satellite carrier meshing on two opposite rings, coaxial with the satellite carrier, the two rings each being driven by one of the motor shafts.
  • the satellites of the second differential epicyclic gear train are of radial axis with respect to the axis of rotation of the satellite carrier.
  • the motor shafts are arranged radially with respect to the axis of rotation of the satellite carrier.
  • the engines mounted on the fuselage of the aircraft are gas turbine engines including turbojets whose air inlet sleeves are spaced from the fuselage.
  • the spacing of the inlet ducts is intended in particular to avoid the ingestion of the boundary layer of the air flowing along the fuselage by the engines avoiding disturbances associated with them which are penalizing on the plane the thermal efficiency of the engine.
  • turbojets are configured to propel the aircraft in the event of a failure of the thruster. Indeed, turbojet engines can propel the aircraft independently of the thruster if necessary.
  • the engines are single-flow turbojets and more particularly the turbojets are double-body.
  • the propellers are mounted in a fan casing.
  • FIG. 1 schematically shows the rear of the fuselage of an aircraft with the propulsion system according to the invention
  • FIG. 2 shows the detail of the mechanical transmission between the motor shafts and the two propulsion propellers of the aircraft
  • Figure 3 shows in more detail the structure of the second differential epicyclic gear train.
  • the propulsion unit is mounted at the rear of the aircraft, of which the rear part of the fuselage 1 has not been represented.
  • the engines are, in the example illustrated here, turbojets.
  • a thruster is mounted at the rear tip of the fuselage 1.
  • the thruster comprises a doublet 7 of propellers formed of two coaxial and contra-rotating bladed rotors, 71 and 73, in the axis of the fuselage.
  • the pair of counter-rotating propellers 7 rotates inside a fan casing 10 which is connected by arms 1 1 to the fuselage 1 and which defines a stream of air flow. Upstream of the casing January 1, a space is provided between the leading edge and the fuselage to allow air supply of the doublet 7. In operation, the two propellers suck air at the tip of the fuselage and the evacuated backwards by the nozzle formed by the envelope 10.
  • Both propeller rotors 71 and 73 are integral with coaxial propeller shafts 72, 74. These propeller shafts 72, 74 are rotated by motor shafts 32, 52 through a power transmission mechanism 15 represented by a single block and described hereinafter.
  • the motor shafts 32, 52 extend radially with respect to the axis of the fuselage. In particular, each motor shaft 32, 52 is driven by a motor 3, 5 via a gear box with angle gear.
  • the motor shafts 32, 52 are each arranged radially between the motors 3 and 5 and the power transmission mechanism 15 of the shafts 32, 35 towards the shafts 72 and 74 for driving the propellers.
  • the mechanical power transmission chain which constitutes the mechanism 15, between the two motor shafts 32, 52 and the shafts 72, 74 comprises a first epicyclic gear train differential 40 and a second differential epicyclic gear train 60.
  • the first differential epicyclic gear train 40 comprises a central sun gear 40p, on which meshes 40s planet gears mesh.
  • 40s satellite gears are mounted on a 40ps satellite door inside a 40c crown.
  • the sun gear 40p, the 40ps satellite carrier and the crown are rotatably mounted inside a differential housing, not shown. They are also coaxial with the two concentric shafts 72 and 74.
  • the ring is secured to the shaft 74 and the satellite door is integral with the shaft 72.
  • the second differential epicyclic gear train 60 comprises, within a not shown fixed casing, a first movable wheel 61, a second mobile 62, a 60ps satellite carrier and 60s satellite gears.
  • the 60ps satellite door is integral with a shaft 100 rotatably mounted inside the fuselage and which is also integral with the sun gear 40p of the first differential epicyclic gear train 40.
  • the shafts 100, 72 and 74 are supported by appropriate bearings, not shown, in the fixed structure of the fuselage.
  • the shafts 100, 72, 74 are coaxial.
  • the 60ps satellite carrier supports planet gears 60s whose axes are arranged in the same plane perpendicular to the shaft 100 and oriented radially relative to the shaft 100.
  • the two mobile wheels are mounted via bearings in the housing 60f.
  • the movable wheels 61 and 62 each comprise a first ring gear, 61c1 respectively 62c1, and a second ring gear 61c2 respectively 62c2.
  • the first rings, 61c1 and 62c1, respectively, are of the same radius, arranged in two planes perpendicular to the axis of the shaft 100 of the satellite door while being opposite one another and axially distant from each other. the other to mesh with the 60s satellite gears.
  • the movable wheels 61 and 62 each carry a second ring gear, 61c2 and 62c2 respectively.
  • the second ring gear 61c2 of the wheel 61 is of greater diameter than that of the first ring 61c1 and meshes with a pinion 32p of the radial motor shaft 32.
  • the radial motor shaft 32 extends outwardly toward the motor and is rotated by it through a 90 ° angle gear.
  • the wheel 62 comprises a second ring gear 62c2, here of radius substantially equal to that of the ring 61c2 of the wheel 61.
  • the ring 62c2 meshes with a pinion 52p integral with the motor shaft 52 radial.
  • the two radial motor shafts 32, 52 are not placed in the same plane perpendicular to the axis of the shaft 100.
  • the rings 61c2 and 62c2 constitute the two inputs of the second differential epicyclic gear train 60.
  • the shaft radial motor 52 is connected by a suitable bevel gear to the drive shaft of the second motor.
  • the pinions 32p and 52p with their respective shaft are supported by the fixed structure. They form the planetary gears of the differential system.
  • the second differential epicyclic gear train 60 operates as follows: when the loads applied by the shafts 32 and 52 are the same, they rotate the planet carrier 60ps through its planet gears in rotation about its axis. 60s which remain fixed in their mark. If the forces applied by the motor shafts are no longer identical, the satellites are rotated about their axis.
  • the combined power of two motors is applied to the shaft 100 which drives the sun gear 40p of the first differential epicyclic gear train 40.
  • the latter outputs the distribution of the load between the two propellers 71 and 73 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Retarders (AREA)

Abstract

La présente invention porte sur un aéronef comportant un fuselage (1 ) Aéronef comportant un fuselage (1 ), un propulseur (7) en pointe arrière du fuselage et au moins deux moteurs (3, 5) entraînant chacun un arbre moteur (32, 52), le propulseur comprenant au moins une hélice (71, 73) entraînée mécaniquement par les arbres moteurs (32, 52), caractérisé par le fait que le propulseur (7) comprend deux hélices (71, 73), chacune des hélices étant entraînée par un arbre d'hélice (72,74), les deux arbres d'hélice étant entraînées par les arbres moteurs (32, 52) par l'intermédiaire d'un premier train d'engrenages épicycloïdal différentiel (40). Plus particulièrement l'entrée du premier train d'engrenages différentiel (40) est reliée à la sortie d'un second train d'engrenages épicycloïdal différentiel (60), le second train d'engrenages différentiel (60) comprenant deux entrées (61 c2, 62c2), chacune desdites deux entrées étant reliée mécaniquement à un desdits arbres moteurs (32, 52).

Description

AERONEF AVEC UN ENSEMBLE PROPULSIF COMPRENANT UN DOUBLET D'HELICES A L'ARRIERE DU FUSELAGE
Domaine de l'invention
La présente invention concerne le domaine aéronautique dans lequel les aéronefs sont propulsés au moins en partie par un ensemble de rotors de soufflantes disposés à l'arrière dans le prolongement du fuselage. Les rotors de soufflantes sont entraînés par des moteurs tels que des turboréacteurs.
Etat de la technique II a été proposé dans la demande de brevet FR-A1 -2 997 681 , une nouvelle architecture d'aéronef permettant de réduire les nuisances sonores et la consommation de carburant de l'aéronef en limitant la traînée aérodynamique. Dans une telle architecture, un aéronef est propulsé par un système de propulsion à soufflantes contrarotatives, intégré à l'arrière du fuselage de l'aéronef, dans le prolongement de celui-ci. Le système de propulsion comprenant deux générateurs de gaz qui alimentent une turbine de puissance ayant deux rotors contrarotatifs pour entraîner deux rotors de soufflantes, les soufflantes étant disposées en aval des générateurs de gaz. Les générateurs de gaz sont des moteurs à turbine a gaz incorporés au fuselage avec des entrées d'air distinctes qui alimentent chacune un générateur de gaz. Le diamètre de la nacelle enveloppant les rotors de soufflantes est, selon cette réalisation, sensiblement égal à celui de la plus grande section du fuselage de l'aéronef. Cette nacelle intègre la turbine de puissance. Dans une telle solution, en cas de défaillance de la partie du système de propulsion composée de la turbine contrarotative et des soufflantes contrarotatives, le maintien de la capacité à générer de la poussée peut ne pas être assuré. Par exemple, en cas de destruction des aubages de la turbine contrarotative, une obstruction totale du flux interne chaud par les débris peut se produire. Il s'ensuivrait la perte totale de poussée ainsi qu'une probabilité de pompage élevée des générateurs de gaz en raison de la brutale variation de section débitante.
Par ailleurs, le mode d'installation des générateurs de gaz totalement intégrés au fuselage suppose un agencement des entrées d'air permettant de ne pas alimenter les générateurs avec la couche limite développée sur le fuselage de l'avion ; cette dernière présentant une vitesse sensiblement inférieure à la vitesse de vol, est préjudiciable au rendement thermique des générateurs de gaz.
On connaît par le brevet FR 1 339 141 un dispositif de propulsion disposé à l'arrière dans la pointe du fuselage de manière à absorber la couche limite et comportant une hélice disposée dans un canal en aval de la pointe du fuselage, alimentée en air le long du fuselage et entraînée par des turboréacteurs fixés à l'arrière au fuselage. L'entraînement est assuré soit par une transmission mécanique soit par le flux gazeux issu des moteurs. La présente invention a pour objet de fournir une solution adaptée au type d'architecture d'aéronef et de propulseur qui vient d'être décrit dans lequel on dispose d'un doublet d'hélices pour que l'ensemble fonctionne de manière optimale indépendamment des différentes conditions de vol. En particulier le problème posé porte sur l'entraînement du doublet d'hélices par un ensemble de moteurs susceptibles de présenter des écarts de régimes et de couples à l'intérieur d'une certaine marge de fonctionnement. Un objectif de l'invention est également d'alimenter les moteurs sans ingestion de couche limite fuselage ni de distorsion de flux, pour en maximiser le rendement thermique. Il s'agit aussi de maintenir la capacité à alimenter le propulseur avec le maximum d'air issu de la couche limite afin d'en maximiser le rendement propulsif.
La présente invention a également pour objectif de maintenir une capacité de poussée en cas de défaillance majeure du module propulseur. Exposé de l'invention
On atteint ces objectifs avec un aéronef comportant un fuselage, un propulseur en pointe arrière du fuselage et au moins deux moteurs entraînant chacun un arbre moteur, le propulseur comprenant au moins une hélice entraînée mécaniquement par les arbres moteurs. Conformément à l'invention, l'aéronef est caractérisé par le fait que le propulseur comprend deux hélices, chacune des hélices étant entraînée par un arbre d'hélice, les deux arbres d'hélice étant entraînées par les arbres moteurs par l'intermédiaire d'un mécanisme de transmission comprenant un premier et un second trains d'engrenages épicycloïdal différentiel, le premier train d'engrenages épicycloïdal différentiel comprenant une entrée reliée à la sortie du second train d'engrenages épicycloïdal différentiel et le second train d'engrenages différentiel comprenant deux entrées, chacune desdites deux entrées étant reliée mécaniquement à un desdits arbres moteurs.
Il est à noter que les deux hélices sont contrarotatives.
De manière avantageuse, mais non limitativement, les arbres moteurs s'étendent radialement par rapport l'axe du fuselage.
De manière avantageuse, mais non limitativement, les arbres moteurs sont agencés dans des plans sensiblement perpendiculaires à l'axe du fuselage et différents entre eux.
Plus particulièrement, le premier train d'engrenages épicycloïdal différentiel comprend une entrée et deux sorties, l'entrée étant reliée mécaniquement aux deux arbres moteurs et chacune des deux sorties entraînant un arbre d'hélice. Et selon un mode e réalisation préféré, le premier train d'engrenages épicycloïdal différentiel comprend un planétaire en entrée et une couronne et un porte satellites en sorties. Conformément à une autre caractéristique de l'invention, l'entrée du premier train d'engrenages différentiel est reliée à la sortie d'un second train d'engrenages épicycloïdal différentiel, le second train d'engrenages différentiel comprenant deux entrées, chacune desdites deux entrées étant reliée mécaniquement à un desdits arbres moteurs.
Dans la mesure où les deux moteurs entraînent les arbres moteurs à la même vitesse avec le même couple, ce système permet de fournir de la puissance venant de deux sources avec des écarts de régimes ou de couples fournis, potentiels mais relativement faibles, à un seul arbre de sortie. Cet arbre est ensuite lié à un train différentiel permettant de répartir le couple sur les deux hélices.
Conformément à un mode de réalisation, l'axe de rotation de l'entrée du premier train d'engrenages épicycloïdal différentiel est coaxial à l'axe de rotation de la sortie du second train d'engrenages épicycloïdal différentiel. Par ailleurs, le second train d'engrenages épicycloïdal différentiel comprend un porte satellites coaxial et solidaire de la sortie du second train d'engrenages épicycloïdal différentiel, les satellites du porte satellites engrenant sur deux couronnes opposées, coaxiales avec le porte satellites, les deux couronnes étant entraînées chacune par un des arbres moteurs.
Plus particulièrement, les satellites du second train d'engrenages épicycloïdal différentiel sont d'axe radial par rapport à l'axe de rotation du porte satellites. Enfin les arbres moteurs sont agencés radialement par rapport à l'axe de rotation du porte satellite.
Avantageusement, les moteurs montés sur le fuselage de l'aéronef sont des moteurs à turbine à gaz notamment des turboréacteurs dont les manches d'entrée d'air sont espacées du fuselage. L'espacement des manches d'entrée d'air a pour but notamment d'éviter l'ingestion de la couche limite de l'air circulant le long du fuselage par les moteurs évitant les perturbations qui y sont associées qui sont pénalisantes sur le plan du rendement thermique du moteur.
Les moteurs, en tant que turboréacteurs sont configurés de manière à assurer la propulsion de l'aéronef en cas de défaillance du propulseur. En effet, les turboréacteurs peuvent assurer la propulsion de l'aéronef indépendamment du propulseur le cas échéant.
Avantageusement, les moteurs sont des turboréacteurs mono-flux et plus particulièrement les turboréacteurs sont à double corps. Avantageusement, les hélices sont montées dans un carter de soufflante.
Présentation des figures L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement à la lecture de la description explicative détaillée qui va suivre, d'un mode de réalisation de l'invention donné à titre d'exemple purement illustratif et non limitatif, en référence au dessin schématique annexé. Sur ces dessins :
La figure 1 représente schématiquement l'arrière du fuselage d'un aéronef avec le système de propulsion selon l'invention ; La figure 2 montre le détail de la transmission mécanique entre les arbres moteurs et les deux hélices de propulsion de l'aéronef ; La figure 3 montre plus en détail la structure du second train d'engrenages épicycloïdal différentiel.
Description détaillée d'un mode de réalisation de l'invention L'ensemble propulsif est monté à l'arrière de l'aéronef dont on n'a représenté la partie arrière du fuselage 1. Sur ce fuselage d'axe longitudinal X, sont montés les deux moteurs 3 et 5 de gaz par l'intermédiaire de pylônes convenablement agencés mais non représentés. Ces deux pylônes sont disposés de manière à réserver un espace suffisant entre la paroi du fuselage 1 et la manche d'entrée d'air de chacun des moteurs, 3 et 5 évitant ainsi que l'air de la couche limite formée le long du fuselage ne soit dirigé vers les manches d'entrée d'air. Cet air circule le long du fuselage vers l'arrière. Les moteurs sont, dans l'exemple illustré ici, des turboréacteurs. Ils comprennent ainsi un corps basse pression formé d'un rotor avec un compresseur 31 ; 51 et une turbine 39 ; 59, et d'un corps haute pression formé d'un rotor avec un compresseur 33 ; 53 et d'une turbine 37 ; 57. Les compresseurs alimentent une chambre de combustion 35 ; 55 dont les gaz produits entraînent les turbines haute pression et basse pression successivement. Les gaz sont guidés vers les canaux d'échappement 3T et 5T immédiatement en aval des turbines. Un propulseur est monté en pointe arrière du fuselage 1 . Le propulseur comprend un doublet 7 d'hélices formé de deux rotors aubagés coaxiaux et contrarotatifs, 71 et 73, dans l'axe du fuselage. Le doublet d'hélices 7 contrarotatives tourne à l'intérieur d'un carter de soufflante 10 qui est relié par des bras 1 1 au fuselage 1 et qui définit une veine de flux d'air. En amont du carter 1 1 , un espace est ménagé entre le bord d'attaque et le fuselage pour permettre l'alimentation en air du doublet 7. En fonctionnement, les deux hélices aspirent l'air au niveau de la pointe du fuselage et l'évacué vers l'arrière par la tuyère que forme l'enveloppe 10.
Les deux rotors d'hélices 71 et 73 sont solidaires d'arbres d'hélice 72, 74 coaxiaux. Ces arbres d'hélice 72, 74 sont entraînés en rotation par des arbres moteurs 32, 52 au travers d'un mécanisme 15 de transmission de puissance représenté par un simple bloc et décrit ci- après. Les arbres moteurs 32 , 52 s'étendent radialement par rapport l'axe du fuselage. En particulier, chaque arbre moteur 32, 52 est entraîné par un moteur 3, 5 via une boîte d'engrenages avec renvoi d'angle. Les arbres moteurs 32, 52 sont disposés chacun radialement entre les moteurs 3 et 5 et le mécanisme 15 de transmission de puissance des arbres 32, 35 vers les arbres 72 et 74 d'entraînement des hélices.
Sur la figure 2, on voit les deux hélices 71 et 73 avec leur arbre respectif 72 et 74. La chaîne de transmission de puissance mécanique, que constitue le mécanisme 15, entre les deux arbres moteurs 32, 52 et les arbres 72, 74 comprend un premier train d'engrenages épicycloïdal différentiel 40 et un second train d'engrenages épicycloïdal différentiel 60.
Le premier train d'engrenages épicycloïdal différentiel 40 comprend un pignon planétaire central 40p, sur lequel engrènent des pignons satellites 40s. Les pignons satellites 40s sont montés sur un porte satellite 40ps à l'intérieur d'une couronne 40c. Le planétaire 40p, le porte satellite 40ps et la couronne sont montés rotatifs à l'intérieur d'un carter du différentiel, non représenté. Ils sont également coaxiaux avec les deux arbres concentriques 72 et 74. La couronne est solidaire de l'arbre 74 et le porte satellite est solidaire de l'arbre 72.
Le second train d'engrenages épicycloïdal différentiel 60 comprend, à l'intérieur d'un carter fixe non représenté, une première roue mobile 61 , une seconde mobile 62, un porte satellite 60ps et des pignons satellites 60s. Le porte satellite 60ps est solidaire d'un arbre 100 monté rotatif à l'intérieur du fuselage et qui est également solidaire du pignon planétaire 40p du premier train d'engrenages épicycloïdal différentiel 40. Il est à noter que les arbres 100, 72 et 74 sont supportés par des paliers appropriés, non représentés, dans la structure fixe du fuselage. Les arbres 100, 72, 74 sont coaxiaux.
Le porte satellite 60ps supporte des pignons satellites 60s dont les axes sont disposés dans un même plan perpendiculaire à l'arbre 100 et orientés radialement par rapport à l'arbre 100. Les deux roues mobiles sont montées par l'intermédiaire de paliers dans le carter 60f. Les roues mobiles 61 et 62 comprennent chacune une première couronne dentée, 61 c1 respectivement 62c1 , et une seconde couronne dentée, 61 c2 respectivement 62c2. Les premières couronnes, 61 c1 respectivement 62c1 , sont de même rayon, disposées dans deux plans perpendiculaires à l'axe de l'arbre 100 du porte satellite en étant opposées l'une par rapport à l'autre et distantes axialement l'une de l'autre de manière à engrener sur les pignons satellites 60s. Ici, les dentures des pignons sont à 45° par rapport à l'axe de l'arbre du porte satellite 100. Les roues mobiles 61 et 62 portent chacune une seconde couronne dentée, 61 c2 et 62c2 respectivement. La seconde couronne dentée 61 c2 de la roue 61 est de diamètre supérieur à celui de la première couronne 61 c1 et engrène avec un pignon 32p de l'arbre moteur 32 radial. L'arbre moteur 32 radial se prolonge extérieurement en direction du moteur et est entraîné en rotation par lui par l'intermédiaire d'un renvoi d'angle à 90°. De la même façon, la roue 62 comprend une seconde couronne dentée 62c2, ici de rayon sensiblement égal à celui de la couronne 61 c2 de la roue 61. La couronne 62c2 engrène avec un pignon 52p solidaire de l'arbre moteur 52 radial . Les deux arbres moteurs 32, 52 radiaux ne sont pas placés dans un même plan perpendiculaire à l'axe de l'arbre 100. Les couronnes 61 c2 et 62c2 constituent les deux entrées du second train d'engrenages épicycloïdal différentiel 60. L'arbre moteur radial 52 est relié par un renvoi d'angle approprié à l'arbre d'entraînement du second moteur. Les pignons 32p et 52p avec leur arbre respectif sont supportés par la structure fixe. Ils forment les pignons planétaires du système différentiel. Le second train d'engrenages épicycloïdal différentiel 60 fonctionne de la façon suivante : quand les charges appliquées par les arbres 32 et 52 sont les mêmes, ces derniers entraînent en rotation autour de son axe le porte-satellites 60ps par l'intermédiaire des pignons satellites 60s qui restent fixes dans leur repère. Si les efforts appliqués par les arbres moteurs ne sont plus identiques, les satellites sont amenés à tourner autour de leur axe.
Dans tous les cas, la puissance combinée de deux moteurs est appliquée sur l'arbre 100 qui entraîne le planétaire 40p du premier train d'engrenages épicycloïdal différentiel 40. Ce dernier assure en sortie la répartition de la charge entre les deux hélices 71 et 73.
Lorsqu'une panne intervient sur le propulseur, il est possible avec l'agencement de l'invention d'assurer la propulsion de l'aéronef directement par les gaz issus des moteurs 3 et 5. Ainsi la continuité de la propulsion est-elle assurée.

Claims

REVENDICATIONS
Aéronef comportant un fuselage (1 ), un propulseur (7) en pointe arrière du fuselage et au moins deux moteurs (3, 5) entraînant chacun un arbre moteur (32, 52), le propulseur comprenant au moins une hélice (71 , 73) entraînée mécaniquement par les arbres moteurs (32, 52), caractérisé par le fait que le propulseur (7) comprend deux hélices (71 , 73), chacune des hélices étant entraînée par un arbre d'hélice (72,74), les deux arbres d'hélice étant entraînées par les arbres moteurs (32, 52) par l'intermédiaire d'un mécanisme (15) de transmission comprenant un premier et un second trains d'engrenages épicycloïdal différentiel (40, 60), le premier train (40 d'engrenages épicycloïdal différentiel (60) comprenant une entrée reliée à la sortie du second train d'engrenages épicycloïdal différentiel (60) et le second train d'engrenages différentiel (60) comprenant deux entrées (61 , 62), chacune desdites deux entrées étant reliée mécaniquement à un desdits arbres moteurs (32, 52).
Aéronef selon la revendication 1 dont le premier train d'engrenages épicycloïdal différentiel (40) comprend une entrée (40p) et deux sorties (40ps, 40c) l'entrée étant reliée mécaniquement aux deux arbres moteurs et chacune des deux sorties entraînant un arbre d'hélice.
Aéronef selon la revendication 2 dont le premier train d'engrenages épicycloïdal différentiel (40) comprend un planétaire (40p) en entrée, et une couronne (40c) et un porte satellites (40ps) en sorties.
4. Aéronef selon l'une quelconque des revendications précédentes dont l'axe de rotation de l'entrée (40p) du premier train d'engrenages épicycloïdal différentiel (40) est coaxial à l'axe de rotation de la sortie (60ps) du second train d'engrenages épicycloïdal différentiel (60).
5. Aéronef selon l'une des revendications 1 et 4 dont le second train d'engrenages épicycloïdal différentiel (60) comprend un porte satellites (60ps) formant la sortie du second train d'engrenages épicycloïdal différentiel (60), les satellites (60s) du porte satellites engrenant sur deux couronnes (61 c1 , 62c1 ) opposées, coaxiales avec le porte satellites, les deux couronnes (61 c1 , 62c1 ) étant entraînées chacune par un des arbres moteurs (32, 52).
6. Aéronef selon la revendication précédente dont les satellites (60s) du second train d'engrenages épicycloïdal différentiel sont d'axe de rotation radial par rapport à l'axe de rotation du porte satellites (60ps).
7. Aéronef selon l'une quelconque des revendications 1 à 6 dont les arbres moteurs (32, 52) sont agencés radialement par rapport à l'axe de rotation du porte satellite.
8. Aéronef selon l'une quelconque des revendications précédentes dont les moteurs (3, 5) sont des moteurs dont les manches d'entrée d'air sont espacées du fuselage.
9. Aéronef selon la revendication 8 dont les moteurs sont configurés de manière à assurer la propulsion de l'aéronef en cas de défaillance du propulseur (7).
PCT/FR2016/052441 2015-10-05 2016-09-26 Aeronef avec un ensemble propulsif comprenant un doublet d'helices a l'arriere du fuselage WO2017060584A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1805438.7A GB2557817B (en) 2015-10-05 2016-09-26 Aircraft having a propulsion assembly comprising a pair of propellers at the rear of the fuselage
US15/764,302 US10351252B2 (en) 2015-10-05 2016-09-26 Aircraft comprising a propulsion assembly including a pair of propellers at the rear of the fuselage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1559450A FR3041933B1 (fr) 2015-10-05 2015-10-05 Aeronef avec un ensemble propulsif comprenant un doublet d'helices a l'arriere du fuselage
FRFR1559450 2015-10-05

Publications (1)

Publication Number Publication Date
WO2017060584A1 true WO2017060584A1 (fr) 2017-04-13

Family

ID=54608863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052441 WO2017060584A1 (fr) 2015-10-05 2016-09-26 Aeronef avec un ensemble propulsif comprenant un doublet d'helices a l'arriere du fuselage

Country Status (4)

Country Link
US (1) US10351252B2 (fr)
FR (1) FR3041933B1 (fr)
GB (1) GB2557817B (fr)
WO (1) WO2017060584A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170057649A1 (en) * 2015-08-27 2017-03-02 Edward C. Rice Integrated aircraft propulsion system
US10526069B1 (en) * 2016-09-08 2020-01-07 Northrop Grumman Systems Corporation Collapsible large diameter propeller for quiet aircraft
US10822101B2 (en) * 2017-07-21 2020-11-03 General Electric Company Vertical takeoff and landing aircraft having a forward thrust propulsor
FR3090578A1 (fr) * 2018-12-24 2020-06-26 Airbus Operations Système de propulsion BLI à trois propulseurs arrières
US11193425B2 (en) * 2019-06-19 2021-12-07 Raytheon Technologies Corporation Gearbox for boost spool turbine engine
FR3107698B1 (fr) * 2020-02-28 2024-08-02 Airbus Operations Sas Dispositif de propulsion d’aéronef combinant deux groupes propulseurs à rotor ouvert et un groupe propulseur BLI
CN111301670B (zh) * 2020-03-19 2023-06-16 常州华创航空科技有限公司 一种共轴双旋翼直升机主减速器及一种直升机
DE102020207003A1 (de) 2020-06-04 2021-12-09 Robert Bosch Gesellschaft mit beschränkter Haftung Rotorbaugruppe für einen Flugkörper und Flugkörper
US11725590B2 (en) 2020-10-22 2023-08-15 General Electric Company Turbomachine and gear assembly
FR3116511B1 (fr) * 2020-11-25 2024-07-12 Safran Ensemble propulsif comprenant deux hélices contrarotatives
FR3119605A1 (fr) * 2021-02-10 2022-08-12 Safran Transmission Systems Ensemble propulsif d’aéronef amélioré
CN113483059A (zh) * 2021-07-07 2021-10-08 重庆大学 一种用于共轴直升机的分扭传动减速装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2480806A (en) * 1939-03-07 1949-08-30 Desmoulins Emile Hyacinthe Propeller driving unit
FR1339141A (fr) * 1962-11-06 1963-10-04 Messerschmitt Ag Disposition de propulseurs à réaction à l'extrémité du fuselage d'un avion
EP0272822A1 (fr) * 1986-12-03 1988-06-29 Short Brothers Plc Propulsion pour aéronef
FR2609136A1 (fr) * 1986-12-31 1988-07-01 Camara Alpha Egalisateur de couple pour arbres contrarotatifs
US5090869A (en) * 1989-05-17 1992-02-25 Rolls-Royce Plc Variable pitch propeller module for an aero gas turbine engine powerplant
FR2955085A1 (fr) * 2010-01-08 2011-07-15 Snecma Systeme d'helices contrarotatives pour turbomachine d'aeronef
US20120128487A1 (en) * 2010-11-24 2012-05-24 David John Howard Eames Remote shaft driven open rotor propulsion system with electrical power generation
EP2557033A2 (fr) * 2011-08-12 2013-02-13 Hamilton Sundstrand Corporation Système modulaire d'hélices contrarotatives
FR2997681A1 (fr) * 2012-11-08 2014-05-09 Snecma Avion propulse par un turboreacteur a soufflantes contrarotatives
WO2015134081A2 (fr) * 2013-12-13 2015-09-11 United Technologies Corporation Système d'entraînement de turbine de travail montée transversalement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2120821A (en) * 1935-08-01 1938-06-14 Waseige Charles Propelling device for aeroplanes
US2581320A (en) * 1945-07-20 1952-01-01 Douglas Aircraft Co Inc Multiengine contra-rotating propeller drive transmission
US2753005A (en) * 1951-12-29 1956-07-03 Adolphe C Peterson Tiltable rotor unit with counterrotating propellers
US4587866A (en) * 1981-09-21 1986-05-13 The Garrett Corporation Constant speed drive system and planetary gear drive therefor
WO2011127389A2 (fr) * 2010-04-08 2011-10-13 The Regents Of The University Of Colorado Transmission hybride utilisant un train planétaire pour multiples sources de couple pour véhicules marins, terrestres à deux roues, ou aéronautiques
DE102011078671B4 (de) * 2011-07-05 2015-04-02 Siemens Aktiengesellschaft Elektrische Maschine mit zwei Axiallüftern

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2480806A (en) * 1939-03-07 1949-08-30 Desmoulins Emile Hyacinthe Propeller driving unit
FR1339141A (fr) * 1962-11-06 1963-10-04 Messerschmitt Ag Disposition de propulseurs à réaction à l'extrémité du fuselage d'un avion
EP0272822A1 (fr) * 1986-12-03 1988-06-29 Short Brothers Plc Propulsion pour aéronef
FR2609136A1 (fr) * 1986-12-31 1988-07-01 Camara Alpha Egalisateur de couple pour arbres contrarotatifs
US5090869A (en) * 1989-05-17 1992-02-25 Rolls-Royce Plc Variable pitch propeller module for an aero gas turbine engine powerplant
FR2955085A1 (fr) * 2010-01-08 2011-07-15 Snecma Systeme d'helices contrarotatives pour turbomachine d'aeronef
US20120128487A1 (en) * 2010-11-24 2012-05-24 David John Howard Eames Remote shaft driven open rotor propulsion system with electrical power generation
EP2557033A2 (fr) * 2011-08-12 2013-02-13 Hamilton Sundstrand Corporation Système modulaire d'hélices contrarotatives
FR2997681A1 (fr) * 2012-11-08 2014-05-09 Snecma Avion propulse par un turboreacteur a soufflantes contrarotatives
WO2015134081A2 (fr) * 2013-12-13 2015-09-11 United Technologies Corporation Système d'entraînement de turbine de travail montée transversalement

Also Published As

Publication number Publication date
GB2557817A (en) 2018-06-27
FR3041933A1 (fr) 2017-04-07
US10351252B2 (en) 2019-07-16
FR3041933B1 (fr) 2018-07-13
GB201805438D0 (en) 2018-05-16
US20180281979A1 (en) 2018-10-04
GB2557817B (en) 2021-04-21

Similar Documents

Publication Publication Date Title
WO2017060584A1 (fr) Aeronef avec un ensemble propulsif comprenant un doublet d'helices a l'arriere du fuselage
EP3283747B1 (fr) Turbomoteur a doublet d'helices contrarotatives dispose en amont du generateur de gaz
CA2232169C (fr) Groupe turbopropulseur double corps a regulation isodrome
EP2488739B1 (fr) Entrée d'air de moteur à turbine à gaz dans une nacelle
EP3325345B1 (fr) Aeronef avec un ensemble propulsif comprenant une soufflante a l'arriere du fuselage
EP2368030B1 (fr) Système d'hélices contrarotatives entrainées par un train épicycloïdal offrant une répartition de couple équilibrée entre les deux hélices
WO2011033204A1 (fr) Turbomachine a helices non carenees contrarotatives
WO2015075345A1 (fr) Moteur, tel qu'un turboreacteur, modulaire avec reducteur de vitesse
EP3817978B1 (fr) Système propulsif d'aéronef et aéronef propulsé par un tel système propulsif intégré à l'arrière d'un fuselage de l'aéronef
FR2962109A1 (fr) Turbomoteur a helices non carenees
FR2581423A1 (fr) Turbine de travail a contre-rotation
WO2017060629A1 (fr) Ensemble de propulsion d'un aeronef equipe d'une soufflante principale et d'au moins une soufflante deportee
EP3325771A1 (fr) Aeronef comportant deux soufflantes contrarotatives a l'arriere d'un fuselage avec calage des aubes de la soufflante aval
EP3999418A1 (fr) Module de turbomachine pour une helice a calage variable des pales et turbomachine le comportant
FR3035153B1 (fr) Turbopropulseur a doublet d'helices contrarotatives dispose en amont du generateur de gaz
FR3039206A1 (fr) Turbomachine pour aeronef comportant une turbine libre dans le flux primaire
FR3086001A1 (fr) Systeme de propulsion d'aeronef a soufflante disposee a une extremite arriere du fuselage
FR2951504A1 (fr) Entree d'air de moteur a turbine a gaz dans une nacelle
FR3101614A1 (fr) Système propulsif pour aéronef à turbomoteur déporté
BE1027469A1 (fr) Architecture de turbomachine avec booster accéléré
FR3041932A3 (fr) Ensemble de propulsion d'un aeronef comportant au moins deux soufflantes deportees
FR3056556A1 (fr) Aeronef a turbomachine integree au fuselage arriere comportant une helice entourant un carter d'echappement
FR3035156A1 (fr) Turbomoteur a doublet d'helices contrarotatives dispose en amont du generateur de gaz
FR3080837A1 (fr) Aeronef avec un module propulsif a helices non carenees agence a l'arriere d'un fuselage
FR3041934A1 (fr) Ensemble de propulsion d'un aeronef

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16790633

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15764302

Country of ref document: US

ENP Entry into the national phase

Ref document number: 201805438

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160926

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16790633

Country of ref document: EP

Kind code of ref document: A1